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DECAY OF HOMOGENEOUS TURBULENCE FROM A SPECIFIED STATE 


by Robert  G. Deiss ler  


Lewis Research C e n t e r  


SUMMARY 


The homogeneous turbulence problem is formulated by first specifying the multi
point velocity correlations o r  their  spectral  equivalents at an initial t ime. Those quan
tities, together with the correlation o r  spectral  equations, a r e  then used to calculate 
initial t ime derivatives of correlations o r  spectra .  The derivatives in turn a r e  used in 
t ime series to calculate the evolution of turbulence quantities with t ime. When the prob
lem is treated in  this way, the correlation equations a r e  closed by the initial specifica
tion of the turbulence and no closure assumption is necessary.  An exponential s e r i e s  
which is an  iterative solution of the Navier-Stokes equations gave much better resu l t s  
than a Taylor power series when used with the limited available initial data. In general, 
the agreement between theory and experiment was good. 

INTRODUCTlON 

A basic difficulty in  the usual analyses of homogeneous turbulence is the closure 
problem; that is, the s e t  of correlation o r  moment equations contains more  unknowns 
than equations. The problem occurs,  of course,  because of the nonlinearity of the 
Navier-Stokes equations from which the correlation equations a r e  obtained (ref. 1). 

Although many approximations have been introduced into the correlation equations 
(or equivalent spectral  equations) in  attempts to obtain closure, those suggestions have 
varying degrees of arbi t rar iness .  The analyses in references 2 and 3 ,  although based 
on definite physical ideas,  contain dimensionless constants which must  be determined by 
experiment. Those in references 4 to 7, although somewhat more  deductive, have other 
difficulties. That in  reference 4, at least for the res t r ic ted  initial condition for which it 
has been worked out, sometimes gives negative energies (ref. 8). The analyses in ref
erences 5 and 6 give reasonable resu l t s  for moderately weak turbulence but become un
duly complex for high Reynolds numbers. That i n  reference 7, although it has yielded 
some real is t ic  deductions, a lso has computational difficulties because of its complexity. 



There is another way of looking at the problem of homogeneous turbulence. In order  
not to  lose sight of our goal, we will first give a statement of that problem. The state
ment given by Batchelor is essentially the following: given the statist ical  state of a 
homogeneous turbulent field at an initial instant, the problem is to  predict  the evolution 
of the turbulence (in probability) as a function of time. Note that the initial development 
of turbulence from a nonturbulent state produced by, say,  flow through a grid, is not 
considered in this report .  Rather we a r e  concerned with the evolution of turbulence 
after a t ime when the flow is already turbulent. In order  t o  specify completely a turbu
lent field at an  initial t ime,  it is necessary to give all of the multipoint velocity correla
tions or  their  spectral  equivalents at that t ime (ref. 1). It is not hard to show that, 
given these multipoint correlations and the correlation equations, all the t ime deriva
tives of the turbulent energy tensor and of other pertinent turbulence quantities can be 
calculated. These t ime derivatives can then be used in a series, for instance a Taylor 
series, to calculate the evolution of the turbulent energy tensor (or of the equivalent 
energy spectrum tensor)  and of other turbulence quantities. 

It is noted that when the turbulence is treated in this  way, we no longer have the 
problem of closing the infinite set of correlation o r  spectral  equations. The correlation 
equations are used only to re la te  the correlations at an initial t ime to their  time deriva
tives, and those correlations must be given in order  to have a complete specification of 
the turbulence at that t ime. Of course,  in practice only a smal l  number of the correla
tions, and thus of their  t ime derivatives, will ordinarily be available, but a sufficient 
number may be known to give a reasonably good representation. It might be pointed out 
that even in those analyses which require a closure assumption, the turbulence should 
be specified initially by its correlations or  spectra  since the correlation equations re 
quire initial conditions. 

Kraichnan (ref.  9 )  has very recently studied the convergence properties of s e r i e s  
such as those considered in this report .  As mentioned in another ar t ic le  by that author 
(ref. lo) ,  it is not necessary that an expansion be convergent in order  to be useful, 
since divergent series can provide excellent asymptotic approximations (ref. 11). 

Although the present problem circumvents the closure problem in the usual sense,  
there  is still the question of the legitimate truncation of the t ime se r i e s  to  obtain expli
cit  resul ts .  This report  is not concerned pr imari ly  with convergence questions but will 
use as a tes t  the agreement of the resu l t s  with experiment. Although a Taylor s e r i e s  
might give good resu l t s  i f  sufficient statist ical  information were available at the initial 
t ime, it will be seen that an exponential s e r i e s  which a r i s e s  in a study of the nonlinear 
decay of a disturbance in a fluid (ref. 12) is much more  satisfactory. This is not s u r 
prising since the exponential series is an i terative solution of the Navier-Stokes equa
tions and thus contains information which is not contained in  the Taylor s e r i e s .  The re
sulting formulation gives resul ts  which a r e  in quite good agreement with the available 
experimental data. 
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INITIAL TIME DERIVATIVES AND SIMPLE EXPANSIONS 

As mentioned in  the INTRODUCTION, if  the multipoint correlations a r e  known at an  
initial instant, as they must  be for a complete specification of the turbulence at that 
instant, then the t ime derivatives of the correlations can be calculated from the correla
tion equations. For illustrative purposes we will consider the derivatives of the turbu-
lent energy tensor u.u!, where ui and u! are respectively velocity components at the

1 1  
points P and P' separated by the vecto: F, and the overbar indicates an averaged

-
value. Then the first t ime derivative of u.u! at t = t l  is given directly by the two

1 1
point correlation equations (ref. 5 )  evaluated at t = tl: 

where the pressure-velocity correlations are given by 

and a s imilar  equation for . The pertinent solution of equation (2) is (ref. 1) 

-1 -(pu!J L t ,  
P 	 as. ask

1 

where u"
j 

is the velocity at the point 2'= x't - g, and the integration is over all ,? 
space. This solution is for a n  infinite fluid, for  which case the boundary conditions are 
that pur

J 
is bounded for  r'=0 and zero  for  r'= m. The quantity p is the density, 
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v is the kinematic viscosity, and p is the pressure .  A repeated subscript  in a te rm 
indicates a summation, with the subscript  successively taking on the values 1, 2, and 3 .  
The correlation equations are, of course,  derived from the Navier-Stokes equations. 
The quantity &.u!/at at t = t l  can be calculated from equations (1)and (2) i f  u.u!1 J  


1 3  
and the two-point tr iple correlations a r e  known at t = tl.-

The second time derivative of u.u' is obtained by differentiating the two-point cor
1 j 


relation equations and evaluating the resul t  at tl .  This gives(y)A[(-??) -(:*) ]2


t=tl t=tl t=tl 

and 

The quantity [(? /a t )  ( y k I t = , ,  in equation (3 )  is obtained from the three-point correlau.u!u' 
I 

tion equations (ref. 5) written for t = t l  and r" = F. (The vector y' separates  the 

points P and P".) Thus, 

c 
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where (-)pup; t=tl is given by 

L 4 

arm ar; 

Similar equations a r e  obtained for the other pressure- velocity correlations.  The bound
a r y  conditions for equation (6) a r e  s imilar  to those for equation (2); that is, pu!u"k isJ 
bounded for  or  r't = 0 and zero fo r  r' or r't = 00. Also, an expression for 
[(a/at)(u.u!u)l 

t=tl 
in equation (3) is obtained by letting r" = 0 instead of ? = r' in 

J 

equation (5). Thus, i f  the turbulence is specified sufficiently well at t = t l  that the 

double, triple, and quadruple velocity correlations a r e  known, a u.u! atL1can be(7 

calculated. Similarly, higher order  derivatives a r e  obtained by considering four or 
more point correlations in the turbulent field (ref. 6). With the time derivatives of- 
u.u! known at t = tl, a Taylor s e r i e s  gives u.u? as a function of time as
1 1  1 1  


A similar  analysis can be car r ied  out in wave number space. For instance, the 
energy spectrum function E, which shows the contributions at various wave numbers to-
u.u!/2, can be written as 
1 J  


5 
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where aE/at is obtained from the Fourier transform of the two-point correlation equa
tion (eq. (9) of ref. 5 )  as 

-
where dA is an  element of surface area of a sphere of radius K ,  K is the wave number 
vector corresponding to the  spatial  vector F, and qii and qiki a r e  respectively the 

-
Fourier t ransforms of u.u! and uiuku;. Extracting from the integral  that portion which

1 1  

can be written in  t e rms  of E and setting the r e s t  of the integral equal to T give 

aE- = T - 2VK 2E 
a t  

Equation (10) is the well known sca la r  form of the two-point spectral  equation. The 
transfer te rm T produces energy t ransfer  between wave numbers and arises from the 
tr iple correlation term in equation (1 )  (with i = j (ref. 1)). (Note that the pressure-
velocity correlation t e r m s  in  eq. (1)drop out for  i = j .  ) The second time derivative of 
E is 

=(:) aE(9) - 2VK 2 (T) 
t= t l  t=tl t=t l  

The quantity (aT/2t)t=t can be calculated from the two- and three-point spectral  equa
1 

tions i f  the two- and three-point spectral  quantities in those equations a r e  known a t  

t = t 1' From equations ( 2 0 ) ,  ( 2 3 ) ,  and ( 2 4 )  of reference 5 we obtain 
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where c' is the wave number vector corresponding to  ?, d F  = dK1 dK2 d ~ ~ ,0..and 13k 
and Pijkz a r e  respectively the Fourier transforms of u.u!u" and u i u j u ~ u l ~ .If by1 3 k  
analogy with the procedure used for obtaining equation ( lo) ,  we extract  from the integral  
that portion which can be written in t e r m s  of spectral  quantities already defined (E and 
T) ,  we have 

where V is a quantity related to the three-point spectral  tensors  Bijk and BijkZ. More 
precisely we can say that V is a functional of p. .  and pijkl, s ince each value of V 

1Jk 
depends on values of Pijk and pijkl at all points of ;T( space. With equation (11), the 

expression for ( a2E/at 2 )t=t becomes 
1 

The Taylor s e r i e s  for E then becomes 

E = E  ( - ~ v K ~ E ~ = ~)(t- t l )
t=tl + Tt=tl  1 

Equation (13)  was used in conjunction with available experimental data at an initial t ime-
(ref. 13) in an attempt to  calculate the variation with t ime of E and thus of uiui. How
ever ,  with the available initial data 

(
Etzt 

1 
, TtZtl, and VtZt 

1), reasonable resul ts  were 

not obtained except at small  t imes (fig. 2). It thus appears that, in order  to  obtain good 
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resu l t s  by using a simple Taylor se r ies ,  init ial  s ta t is t ical  information of much higher 
order  than that which is available would have to  be given. Thus, an alternative approach 
which makes more  efficient use of the initial s ta t is t ical  information and a l so  incorpor
ates additional information from the equations of motion will be considered. 

A WORKABLE FORMULATION FOR THE DEVELOPMENT OF 

TURBULENCE FROM A GIVEN INITIAL STATE 

In order  to  obtain a more  efficient means for calculating the evolution of turbulence 
than by a Taylor s e r i e s  in time, we consider an  iterative solution of the Navier-Stokes 
equations s imilar  to  that in reference 12. In addition to  the initial statist ical  informa
tion and calculated t ime derivatives, we will then have information about the form of the 
decay law from the equations of motion. 

Although attention was confined to determinate initial conditions in reference 12, 
for  the present purposes we can just as well assume the initial velocity fluctuations to 
be random or turbulent. Thus, we consider a field of homogeneous turbulence to  be 
made up of a very high density of eddies or harmonic disturbances in wave number space. 
For all practical  purposes then, since the density of disturbances is very high, the spec
trum of the turbulence can be considered continuous. The velocity and pressure  at any 
point in the field are given by 

and 

The latter equation is obtained by taking the divergence of equation (14) and applying the 
continuity e quation. 

From the spectrum of harmonic disturbances we arbi t rar i ly  select  two cosine t e rms  
with wave number vectors and F. Then, the velocity associated with those distur
bances will be 
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where the superscr ipt  cc on the velocity indicates that it depends on two cosine te rms .  
The resu l t s  that follow would be the same  if  two sine t e r m s  o r  a sine and a cosine te rm 
were considered. If is substituted for ui in the right s ides  of equations (14) and 
(15), the t ime variations of ai and bi plus additional harmonic t e r m s  are obtained. 
If we then substitute that new expression into equations (14) and (15), another expression 
containing still more  harmonic t e r m s  is obtained. In each approximation, the linear 
t e r m s  of the Navier-Stokes equations are considered as unknown and the nonlinear t e r m s  
as known from the preceding approximation. As shown in reference 12, continuation of 
this process  leads to 

where 

-A''-= > a c  
1, K ,  4 

exp
i, K 

and 

Comparison of equations (17) to (19) with the first and second approximations in 
reference 12 shows that b$, 

= b?, = V K
2 . Also, we note that since the two harmonic 

components in equation (16) were selected arbitrati ly,  expressions s imilar  to equations 
(17) to  (19) will be obtained for any other two components. But the nonlinear interaction 
of any number of harmonic components can be expressed as the sum of the interactions 
of pa i r s  of components (eqs. (37)  and (38) of ref .  12). Thus, ui, the velocity resulting 
from all the harmonic components, will be of the form of equations (17) to (19) and can 
be written as 

9 




The summations in equations (20) and (21) will, of course,  contain more t e r m s  by many 
orders  of magnitude than those in equations (17) to  (19). Since the initial conditions a r e  
random, the quantities A.0 -, a.0 - and b-0 a r e  assumed to  be random variables. 

1 7  K 1, K7 q’ K7 q 
The space-averaged value of ui2 (no sum on i) is obtained from equation (20) by squar
ing, integrating over a cycle, and using the orthogonality property of s ines  and cosines. 
This gives 

where 

According to  equation (23), (A:, ;t)2 and (A:, in equation (22) have the s a m e  form, 
so that we do not need to c a r r y  along the superscr ipts  c and s. 

We want to  obtain an averaged form of equation (23) which is a smoothed function of 
the magnitude of the vector r ( b u t  not of its direction). In order  to  do that, we divide 
the interval of K = ( K ~ K ~ ) ” ~over which disturbances occur into a large number of small  

increments AK. The t e rms  in in equations (22) and (23) a r e  divided into groups each 
K 

of which corresponds to a particular AK. Note that, while the magnitudes of the various 
vectors lying in a particular AK are approximately equal, their  directions can, of 
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course,  vary. The group of t e r m s  corresponding t o  each A K  is then subdivided into 

groups in  each of which the values of the b. - in  do not vary appreciably from 
1 7  K7 q 4 

q+1 
a value of b S ( K ) .  The index s designates a particular increment in  the values of the 
b. 

1 7  K7 q‘ Also, for each s ,  a.2 - will have an  average value which we designate by 
1 7  K7 q 

(a:7x>,. The summation in  equation (23), which applies t o  a particular z7is then 
q 

replaced by 
q-f1 

which applies to  a particular A K ,  and where n 
s7 (i)

is the number of t e r m s  in 
q

q# 1
which are assigned to the group s for the component i. The parentheses around i 
indicate that there  is no summation on that subscript .  A s imi la r  regrouping can be 

\\ 
car r ied  out for the t e r m s  in  L.However, that summation turns  out to  be zero, i f  we 

q ,
q# 1 

assume that the random a. - are uncorrelated, since will be zero for 
1 7  K 

q # r. Then the average value of A? - in the increment AK becomes (see eq. (23))
1,  K 

-
where nK is the number of t e r m s  in >: that lie in AK. The expression for  ui2 

q 

(eq. (22)) then becomes 
q-f1 
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To obtain an expression for the energy spectrum function E ,  we note that (ref. 1) 

- 2where uiui = u12 + u2 + u t .  Equations (25) and (26) then give 

l a i 7j E dK = ;z,A K  '7 

0 K 

-7 
/hi J 

S 

where there  is now a summation on i. If A K  is very small ,  we can write, to  a very 
good approximation, 

S 


Equation (28) gives the evolution in t ime of the energy spectrum function from an initial 
state which is specified by the B's and b 's  in  the equation. 

As shown in the last section, i f  the turbulence is specified at an  initial instant, the 
t ime derivatives of E can be calculated at that instant by using the Fourier transformed 
correlation equations. Thus, it is desirable t o  write the B's and b's in equation (28) 
in t e r m s  of E and its derivatives at the initial t ime.  That can be done by evaluating 
equation (28) and its time derivatives at t = t l  and solving the resulting system of equa
tions for the B's and b's. 

In what follows, we will first retain only two t e rms  of equation (28). Equation (28) 
can then be written conveniently as 

12 




where 0 5 C 5 1. 
For C = 1 equation (29) reduces to  the well-known expression for the final period 

of decay (ref. 1). For the general case (C # 1)we could determine C and b in t e r m s  
of the first and second derivatives of equation (29) for t = tl and then evaluate those 
derivatives by using the two-point spectral  equations (see eqs. (10) to (12)). The follow
ing procedure turns  out to be simpler,  however. By substituting equation (29) into the 
spectral  equation (10) we get for the energy transfer te rm 

2T = 2(1 - C ) ( V K  - b)EtZtl expE  2b(t - tl] = Tt,t exp[- 2b(t - tl] 
(30)

1 

Then 

aT-= -2bTtZtl exp[-2b(t - tl)l = (E) exp[-2b(t - tl)l
a t  a t  t=tl 

Comparing the last two members  of equation (31) and using equation (11) gives 

2 %tl 
~ = V K-

%tl 

From equations (30) and (32) we have 

2 

Tt=tl  

C = l - - (33) 
Vt=t1 

Et=t1 

Equations (29) and (30) then become 

13 
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( 2  ( 2  

and 

T = TtZt1 exp[- 2 k2- -)(t - tl] (35) 

From equation (11) 

where C is given by equation (33). 
Equations (34) and (35) were obtained by retaining two t e rms  on the right side of 

equation (28). We consider next a higher order  approximation in which three t e rms  a r e  
retained in that equation. If equation (28), with three t e rms  retained, is substituted into 
equation ( lo) ,  we get for T 

T = ~ B : ( K ~- bl) exp[- 2bl(t - tl)] + ~ B ; ( K ~- b2) e q [ - 2b2(t - tli] (37)  

Equation (37) contains four unknown functions which a r e  to  be determined by the initial 
conditions. For that purpose we use equation (37) and its first three derivatives evalu
ated at t = tl. Thus, we obtain 

T1T2 - Tt=t,T3 

T1T2 - Tt=t,T3 

T1- Tt=t1T2) 

T1T2 - Tt=t1T3 

, J 2- Tt=t1T2)T1 

r 

r 

- Tt=t1T2) 

2 

2 

T2 - T1T3 
2 ~ t + )  

2 
T2 - T1T3 

(39) 

T1 - Tt=t1T2)( 
J 
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B12 = 
2b2T2 + T3 

16b: (~~- bl)(b2 - bl) 

and 

-2 2blT2 + T3 
4 

16b;(~' - b2)(bl - b2) 

where T1, T2, and T3 are the first, second, and third t ime derivatives of T at 
t = tl. The first derivative T1 can be written in  t e r m s  of the functional Vtzt , which 

1 
gives a representation of three-point spectral  quantities (eq. (11)). Equations for higher 
order  functionals can be obtained by the procedure used for obtaining equation (11)for 
V. Thus, by using the four-point spectral  equations of reference 6 (eqs. (11)and (12)) 
we get 

where R is a functional of three- and four-point spectral  quantities. Similarly, 

where S is a functional of three- ,  four-, and five-point spec t ra l  quantities. By using 
equations (ll),(42), and (43), the first, second, and third t ime derivatives of T at 
t = t l  in  equations (38) to  (41) can be written in t e r m s  of higher order  spectral  quanti
ties as 

and 
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RESULTS AND DISCUSSION 

A comparison between the experimental data of Uberoi (ref. 13) and the present 
theory (eqs. (34) to (36)) is given in figures 1to  4. (Another pertinent experimental in
vestigation is that of C. W. Van Atta of the University of California at San Diego. He 
recently measured directly the individual t e r m s  in  the two-point spectral  equation; how
ever ,  his data are for only one time. ) The comparison in figures l to  4 is made for  an 
initial t ime corresponding t o  X/M = 48 in the experiment (ti = (v/M 2)t = 0.001818, X 
is the distance downstream from the grid,  and M is the mesh  s ize  of the grid). For the 
initial specification of the turbulence values of E and T were obtained from figures 5, 
9, and 10 of reference 13. Initial values of V were not given directly in  reference 13 
but were estimated from the decay data for T and equation (11). Except for experi
mental e r r o r  those values will be the same as those that might have been measured 
directly. 

The agreement between the predicted and experimental  energy spectra  for the same 
initial conditions (fig. 1)appears  to be quite good, considering the difficulty of the meas
urements. The calculation of the experimental values of E required the differentiation 
of measured one- dimensional spectra  and an assumption of isotropy.

-
Predicted and experimental values for the decay of uiui are plotted in figure 2. 

The agreement between theory and experiment is excellent for values of t" up to  about 
0.006. (Note that spectra  were measured only for values of t" between 0.00182 and 
0.00417. ) Elimination of the moderate deviation for t" > 0.006 might require  a higher 

Theory ( t h r e e  t e r m s  
in eq. ( 2 8 ) )  

Experiment (ref.  14) 

I 

6x104 
r 

4x104 

0 10 20 30 LO 50 
K' = MK 

F igure  1. -Compar ison of theory  w i t h  exper iment  of r e f e r 
ence 13 for decay of t u r b u l e n t  energy  spectra. 
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1 
2 

Theory (eqs. (33) and (34)) 
0 Experiment (Uberoi, ref.  13) 
- Weak t u r b u l e n c e  approximat ion 
___- Taylor series (eq. (13)) 

1 I I II 
0 2 4 6 8 1 0 ~ 1 0 - ~  

F igure  2. - Comparison of t h e o r y  w i t h  exper iment of r e f e r 
ence 13 for decay of average component of velocity var iance 

order  theory (more t e r m s  in eq. (28)), together with additional initial statist ical  infor
mation. Alternatively, the deviation might be due to the amplification at large t imes  of 
slight inaccuracies in the measured initial spectra.  The theoretical  values for t" l e s s  
than 0.00182 were calculated by working backwards from the measured initial spectra .  
Also included in figure 2 is a Taylor s e r i e s  solution which uses  the same initial informa
tion as the exponential s e r i e s  and the curve for the weak turbulence approximation. It 
might be pointed out that the curve for the weak turbulence approximation is not the -5/2 
power decay law usually given for the final period ( re f .  1)but is the curve obtained by 
using the measured initial energy spectrum and equation (29) with C = 1. 

Spectra for the energy t ransfer  t e rm T are plotted in figure 3. The experimental 
and theoretical  curves are in good agreement except near the value of K where TtZt 

1 
changes sign. The deviation there  resu l t s  from a mathematical singularity in equa
tion (35) when TtZt = 0. However, that deviation does not seem to be ser ious,  because 

1 
the real physical curve in  that region can easily be estimated graphically or  by using an  
interpolation formula. This is particularly t rue  since it is known that the total area en
closed by the T spectrum should be zero (ref. 1). It appears  likely that the difficulty 
could be eliminated i f  another t e rm were retained in equation (28). (More will be said 
about that possibility i n  the next paragraph. ) The deviation also ca r r i e s  over to  some -
extent into the resu l t s  for E and uiui. However, if  one does not use values of K close 

-
to  the point where TtZt changes sign for calculating E and uiui, the inaccuracies in 

1 
those quantities will be small .  It appears  that the overall  agreement between theory and 
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experiment obtained by using equations (33) to  (35) should be considered encouraging. 
For the sake of completeness, spectra  of the functional V (eqs. (11)and (36)), the 

third initial condition specified for  the turbulence, are plotted in  figure 4. The agree
ment  between theory and experiment is probably within the uncertainty in  estimating V 
f rom the decay data in  reference 13, except in  the vicinity of the point where TtZt1 
changes sign. Thus, the theory predicts the evolution in  t ime of E, T, and V, when 
those quantities are specified at a n  initial time. 

We have not been able to  apply a higher order  theory t o  Uberoi's data, that is, to  
evaluate three instead of two t e r m s  in  equation (28) by using the initial data given in  his 
article. However, we can apply a higher order  theory to  a n  analysis in  reference 5, 
since for that analysis we can, in  effect, calculate as much initial information as is de
si red.  That analysis neglects quadruple correlation t e r m s  in  the three-point correlation 
equations and should apply, for  a particular set of initial conditions, at t imes somewhat 
before the final period of decay. The initial conditions, as well as values at later t imes ,  
are given by closed-form equations in  that analysis and thus are better defined than may 
be possible in an  experiment. For the present purposes, the analytical resu l t s  from 
reference 5 might in fact be thought of as experimental resu l t s  in which the initial condi
tions are specified exactly. This is t rue  because the analysis of reference 5 is exact for 
the model chosen, and the initial conditions used in both that analysis and the present 
theory correspond to that model. 

The case considered here corresponds to  figure 6 of reference 5. Values of dimen
sionless E, T ,  and time derivatives of T for the initial specification of the turbulence 
(t; = 0.002) are obtained from equations (40) and (39) in  reference 5. We can eliminate 
the t ime derivatives of T by introducing V (eq. (11))and the higher order  functionals 
R and S (eqs. (42) and (43)). In the present case,  those quantities will all be represen
tations of correlations of order  no higher than the third,  since t e r m s  involving correla
t ions of higher order  than the third are assumed negligible in  the analysis of reference 5. 

Figure 5 gives a comparison between resu l t s  for T calculated from the present anal
ys i s  and those from reference 5. The quantity Jo is a constant related to conditions at 
t: 	 = -0.00633 in  the equations of reference 5. The s t a r r ed  quantities in  figures 5 to 7 
are the same as those in  figures 1 to 4 i f  we let Jo = M3 2v . As expected, when T is 
calculated from equation (35), the agreement with reference 5 is good except in the region 
where TtZt changes sign. However, when a higher order  theory is used by retaining

1 
three t e r m s  in  the expression for E (two t e r m s  in  the expression for T eq. (37)) the 
agreement is excellent at essentially all values of K .  It might be expected that a s imilar  
improvement would be obtained in figures 3 and 4 i f  a higher order  theory could be used 
for comparison with the experimental data of Uberoi. 

Because of the good agreement obtained for T in  figure 5, one would expect the 
calculated energy spectra  E to  a l so  be in good agreement with those from reference 5. 
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decay of h ighe r  o r d w  spectral quan t i t y  V 
(ea. (11)). 

Figure 6 shows that that is indeed the case.  The energy spectrum, in this case,  decays 
in a highly nonsimilar fashion. In order  to  show the effects of energy t ransfer  between 
wave numbers, curves  for the final period of decay (first t e rm of eq. (40) of ref.  5) are 
also included in  figure 6. 

Figures 7 to 9 show plots for the decay of the higher order  spectral  quantities V, 
R, and S. The agreement between the present higher order theory and the resu l t s  of 
reference 5 is very good, Although the effects of the singularity at K = 15.33 a r e  
greater  for these higher order  quantities than for the lower order  ones, they a r e  still 
not apparent unless points close to  the singularity a r e  used in plotting the curves. For 
points close to the singularity, an interpolation formula can be used. Thus, by specify
ing the initial conditions for E, T, V, R, and S, we can predict  the evolution in t ime 
of those quantities by using the present higher order theory. That is, the required num
ber  of initial conditions is no greater  than the number of quantities whose decay we can 
predict. 

The higher order  theory (three exponential t e r m s  retained in  eq. (28)) can also be 
compared with some recent grid-turbulence data obtained in a water channel by Ling and 
Huang (ref. 14). For  that comparison, the experimental input can be conveniently ob
tained from an  empirical  equation for E (eq. (22)) in their  ar t ic le .  The higher order  
spectra  were not measured directly in  their  experiment but could be calculated from 
their  equation for E by using equations ( lo) ,  (ll),(42), and (43). Except for possible 
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Figure 10. - Comparison of  theory with experiment of 
reference 14 for decay of turbulent energy. 

experimental e r r o r  those values will be the same as those that might have been meas
ured directly. The comparison is shown in dimensionless form in figures 10 to 15. 
The quantity A is a constant with the dimensions of a length squared and is related to  
conditions at a t ime to (ref. 14). A s  in the preceding comparisons, unphysical singu
larities occurred in  the theoretical  spec t ra  at certain values of K ,  particularly in the 
higher order  spectra .  Thus, in the vicinity of those points, four-point interpolation 
formulas were used. 

Figure 10 compares theory and experiment for the decay of turbulent energy when 
the initial state is specified at (v/A)tl = 0.0075. Theoretical curves  are shown for 1, 
2, and 3 exponential t e r m s  retained in equation (28). The curve f o r  three t e rms  is in 
good agreement with the experiment for the whole decay period. The curve for two 
t e r m s  is in almost as good agreement. That is not the case for the spectra ,  where only 
the curves for three t e r m s  agree closely (see the curves for E in fig. ll), Compari
son of the curve in  figure 10 for one t e rm retained (weak turbulence approximation) with 
the experimental curve shows the effect of iner t ia  on the decay process .  As in figure 2 ,  
the curve for the weak turbulence approximation in  figure 10 is not the -5/2-power decay 
law usually given for the final period, since measured initial energy spectra  were used 
in  this report .  

Figures 11to  15 give a comparison of theory and experiment for the decay of the 
spectra  used to  specify the initial state of the turbulence at tl. The curves indicate 
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good agreement with the higher order  theory. That is, the theory is able to  predict  the 
decay of all of the spectra  used to  specify the initial turbulence, when three exponential 
t e r m s  are retained in equation (28). 

CONCLUDING REMARKS 

If a homogeneous turbulent field is specified at an initial instant by its multipoint-
velocity correlations (or their  spectral  equivalents), the initial t ime derivatives of those 
quantities can be calculated from the correlation or  spectral  equations. The develop
ment of the turbulence in t ime can then be obtained by using those derivatives in  a series 
such as a Taylor power series. When the problem is formulated in  th i s  way, an 
assumption for closing the system of correlation equations is not required,  since those 
equations are closed by the initially specified correlations or  spectral  quantities. A 
Taylor s e r i e s  expansion, however , did not give real is t ic  resu l t s  (except for sma l l  
t imes)  when the limited initial experimental data were used. An exponential series 
(eq. (28)) which was an  i terative solution of the Navier-Stokes equations worked much 
better.  

In general, when the energy and t ransfer  spec t ra  and a quantity related to  three
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point spectra  were specified at an initial t ime, the predicted changes with t ime of those 
spectra,  as well as the turbulent energy, were in  good agreement with the experimental 
wind-tunnel data of Uberoi. Since the prediction of the changes of those spectra  with 
t ime is evidently an  essent ia l  par t  of the homogeneous turbulence problem, the resu l t s  
are encouraging. 

A higher order  theory was given in  which the three-point spectral  quantities, as 
well as two additional higher order  spectral  quantities, were specified initially. The 
predicted decay of all of those quantities agreed very  well with the water-channel data 
of Ling and Huang, as well  as with the resu l t s  for a previous analytical model. For the 
present purposes the resu l t s  for the previous model might be thought of as experimental 
resu l t s  in which the initial conditions are specified exactly. Thus, when the resu l t s  

from the present theory are compared with either experimental resu l t s  or  the resu l t s  
of an  "analytical experiment, ' I  the agreement is good. The evolutions of the various 
spectra  are interdependent on the initial specifications of those spectra.  

By specifying n spectra  at an  initial t ime, where n is an odd integer greater  than 
or  equal t o  3,  we have been able to predict  the evolution in  t ime of those n spectra.  
We have not been able to  obtain determinate resu l t s  for n < 3 ,  except for weak turbu
lence. But when one considers the fac t  that  an infinite number of spectra  (or correla
t ions) would be required for a complete initial specification, there seems to  be no ob
vious reason why we should be able to do so. In fact, i f  we were to claim that we should 
be able to  predict the decay of the energy spectrum by specifying at an initial instant 
only that spectrum, we would in effect be saying that the Fourier components of the 
energy spectrum decay independently, as in the final period. If we want to include the 
effect  of the interaction of those components, we will have to specify the initial energy 
t ransfer  spectrum. The Fourier components of the transfer spectrum, and of higher 
order  spectra,  will a lso interact in this nonlinear problem, so it is not surpr is ing that 
we have to give the initial specifications of at least  three spectra  in order  to predict the 
decay of any of them. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, January 17, 1972, 
136- 13. 
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