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Nth-ORDER FLAT APPROXIMATION OF THE
SIGNUM FUNCTION BY A POLYNOMIAL

SUMMARY

In the interval - N2 = x =2, the signum function, sgn x, is
demonstrated to be uniquely approximated by an odd polynomial fn(x) of the

order 2n - 1 whereby the approximation is nth-order flat with respect to the
points (1,1) and (-1,-1).

A theorem is proved which states that, for even integers n = 2, the
approximating polynomial fn(x) has a pair of nonzero real roots =+ X such

that

1 '—
-7
\/2+2n+1<xn_ 3

that these roots X, form a monotonically decreasing sequence {xn}

(n=2, 4...), andthat lim X = N2 .

n—+oo

Foé6r odd n, fn(x) represents a strictly increasing monotonic function

of x in
-0 X<

As n — o, fn(x) converges to sgn x uniformly in - N2=x=<€<0

and 0<e€=x =A2 .

DEVELOPMENT OF THE APPROXIMATION

In the process of synthesizing transfer functions which approximate
constant gain and, simultaneously, constant phase response in a finite
frequency band, we encounter a polynomial fn(x) which provides an nth-

order flat approximation to the signum function !

1. The author is indebted to Dr. Bernard A. Asner, Assistant Professor,
Department of Mathematics, Robert College, Istanbul, Turkey, for valuable
suggestions, encouragement, and guidance during his summer employment
at MSFC.



Owhenx=0
- 1whenx< 0

+ 1 whenx> 0
sgnx =

in a closed interval, - N2 =x =n72 . The limit function of approximation
is defined by

f(x) = sgnx for -N2 =x=n2 . (1)

Since sgn x is an odd function, an odd polynomial in x is chosen to represent
the approximating function fn(x) .

2n-1
on 1% . (2)

f(x) =amx+ agx®+...+a
Then the approximation problem can be solved by constraining fn(x) , equation

(2), so that fn(x) is nth-order flat at the points (1, 1) and (-1, 1); i.e.

fn(il) = 11

and

(r)

fn (+1) =0 for r =1, 2, ..., n-1 . (3)

The second constraint in equation (3) requires that the first n - 1 derivatives
of fn(x) vanish at x = + 1. The polynomial in equation (2) has n

coefficients, and the constraint conditions in equation (3) furnish exactly n
linear equations to determine uniquely the n coefficients of the polynomial.
Therefore, equations (2) and (3) together yield a unique solution to the
approximation problem posed.



If £ (x) is analytic at the points x = x+ 1 and if and only if £ (x) and

its first n - 2 derivatives vanish at x = + 1, then the equation

fr'l(x) =0

has zeros of the ordern - 1 at x = + 1 [1]. These properties of fr'1(x)

are ensured if fr‘l(x) is chosen to be of the following form:

£ (x) = k (1-x2)%?
n n

1

= kn(i_x)n'1(1+x)n' (4)

where f;l(i 1) = 0 of (n-1)st order so that

r-1
' {x)
-1
dxr n Xx = +1

f(r) (+ 1) = d
n

I

0 for r = 1, 2, ..., n-1.
We obtain fn(x) by integrating equation (4) from 0 to x,
% n-1
f(x) =k [ (1-tH) " (5)
n n

where the constant kn is determined from the first condition in equation (3),



fn(i) =1

or '
IS
1 -z R A~
Lo Syl e
k - ’ i
n o . z,
1o u
To evaluate this integral we make the change of variable, t? = u, and obtain
[2]
1 1 1
1 n-1 i - = n-1
-k——:f(i—tz) dt=-2—fu 2 (1-u) ﬂt”é;)\
n o o
T (=) T(n)
_ 27 -
C2 1
T (n+ 2!
N7 T (n)
- 1
r(n + 3!
n-1
_(n-1)!2 .
=135 (m-0) (n > 0, integer) (6)
so that
1 . - oo _ 1
e e T T (7)



Considering the inequality [3],

1 1
p? = I (n + 1) < (n + 1)2

T (n +%)

(where n is a natural number) together with equation (6), the following useful
inequality for kn is obtained:

N~

2 _ n® 2
NTO(1 o+ L)
n

IA
=
1A
|
=}
[ S

(WM
=]
4

(8)

Using the binomial expansion of (1 - ¢ )n-i on the right of equation (5) and

carrying out the integration term-by-term results in the following polynomial
representation of fn(x):

n-1 nd r X2r+1
fn(x) - kn rz=: (r) (-1) or +1

] (n > 0) (9)
0]

where kn is given by equation (7).

The behavior of fn(x) is illustrated in Figures 1 and 2 for even and odd
integers n, respectively. We note that fn(x) behaves quite differently,
depending on whether n is even or odd. When n is even, fn(x) has a
maximum (minimum) at x=1 (x = - 1); when n is odd, fn(x) has

inflection points with zero slope at x

+ 1,



fn (x)

.

Figure 1. fn(x) , for even n,

To demonstrate this behavior of fn(x) analytically, we note that

fn(x) is an odd function as seen from equation (9). Therefore,

fn(x) = —fn(—x)

and (10)

f (0) = 0,
n

and it suffices to conduct the demonstration for x > 0 since fn(x), as an odd
function, has rotational symmetry about the origin.

The slope of fn(x), fr'1 (x) as given by equation (4) is positive for
0 =x < 1. Therefore, considering equations (3) and (10), fn(x) increases

monotonically from 0 to 1 as x increases from 0 to 1. It follows from the
second constraint in equation (3) that the slope of fn(x) is equal to zero at

x=1, f'n(i) = 0.

6




frn (x)
16

nio Figure 2. fn(x) , for odd n.
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o~ @

n=

To decide whether fn(i) =1 represents a maximum, we form higher deriva-

tives of fn(x). The rth derivative of fn(x) is

r-1

(r) _d '
fn (x) = dxr_i fn(X)




Using equation (4) and Leibnitz's product rule gives

£ ()
r-2 r-1, ,n-1 , n-1 n-1 1 +
=k Co O (o m! (r-m-1)! (<077 (e 0) 7 ) T
m=0
fr T @0t (0" e ey (A1)

where n> 1,

For x =1 we have

Oifa>0

(x - 1)° ={
lifa=0

and note that the last term on the right of equation (11) contains the lowest
power of (x - 1). Therefore the right side of equation (11) is equal to zero

for x =1 aslongas r =n -1 sothat fr(lr) (1) =0 for r=1, 2, .. .,n-1.

However, for r =n, all terms on the right of equation (11) vanish for x =1
except the last term and we obtain

£ (1) =k (e (gl (12)
n n
Then a Taylor-series expansion of fn(x) about x =1 yields

f (1+h) -f (1) =b—rif(n) (1+4h), 0<d<1 (13)
n " n n! ‘n ? ?

because, by the second constraint in equation (3), the first n - 1 derivatives of
fn(x) vanish at x = 1,



For extremely small values of h the sign of fl(ln) (1+4Kk), 0<& <1,
is the same as that of frfn) (1),

sgn {ft(1n) (1+4k)}= sgn {fr(ln) (1)} = sgn { (_1)n—1} .
Then equation (13) yields
sgn { £ (1+h) -1 (1) ) = sen { (-0)* W™y

and we conclude that, for even n = 2, fn(i) = 1 represents a maximum

because
f{t+h) -f (1)<0forhz o (evenn=2) (14)
while, for odd n> 1, fn(i) =1 represents a point of inflection because

<0forh<o

>0forh>0 (oddn > 1) . (15)

£ (1+h) -t (1) {

For x> 0, fn (x) has only one maximum or only one point of inflection
depending on whether n is even or odd because, for x> 0, fr'1 (x) has only

one zero (of multiplicity n-1) which occurs at x = 1.

This establishes the behavior of fn(x) for x > 0. Its behavior for
x < 0 can be readily inferred by the odd symmetry of fn(x) , first
equation (10).



We further note by inspecting Figures1 and 2 that, for even n, fn(x) =0
has a pair of nonzero real roots = X which tend to +N2 as n increases
and that, for odd n, fn(x) is an increasing function for all x. Furthermore,
we note that, as n increases, fn(x) approaches the shape of the signum

function, sgn (x), in the interval, -N2=x= +n2. These additional
properties are stated in the following theorem.

THEOREM AND PROOF
Theorem

Let

X
_ 211-—1
£ (x) knof(i-t) da

where the integer n > 1 and where

1
_ 9 n—i —1 _
k = Of (1 -t?) ""at =

]

1 g - 5"'(21'1—71)
21 (no1)

Then:

i1, If n is even, then fn(x) 0 has only one pair of nonzero real

roots + X such that

1
2n + 1

2+ < x <~N3, x <x (n=2,4,6,...) ,
n n + n

2
lim x = N2 ,

n—cw n

and

10



f (x)>0forx<-x and 0<x<x

n n n

f (x) <0 for x>x_ and -x <x<0 ;
n n n

2. I n is odd, then fn(x) is a strictly increasing monotonic function

of x and

>0forx>0
<O0forx<O0

£ (x) {
3. Ifn-—w, then fn(x)—’f(x) = sgn x, uniformly in
-N2=x=€< 0 and 0<e=x=n~N2

Proof

We restrict the proof to values of x > 0 since the statements for x< 0
can be inferred from the odd symmetry of fn(x) , equation (10). We shall

prove part 3 of the theorem first.

In the interval J: 0 < x =2, the limiting function f(x) is
equal to one,

f(x) = sgn(x) = +1 for 0<x =N2 .

We shall demonstrate that, as n — «,

fn(x)—’f(x) =+1 ,

11



uniformly in the closed subinterval
Jhesx=AN2,¢e>0.

Using equation (5) we write

X
£ = k[ (1-12)" g
(o]
! n-1 x 2. n-1
- 2yn- -
= knof(i_t) dt+kn1f(1_t) dt

where, according to the first constraint in equation (3) ,

Il

1
ayn-1.
£ (1) knof(i_t) dat = 1

so that

I

X
9 1’1—1
fn(x) 1+kn1f(1—t) dt

or, with the abbreviation

X 9 n-1
In(x)=kn1f(1_t) dt

fn(x) =1+ In(x)

12

(16)



To demonstrate that, as n — o,
fn(x) — 1, uniformly in J'

we must show that, as n — =,
In(x) — 0, uniformly in J'

This will be shown separately in the two closed subintervals
J"0<e=x=1 and J'": 1Sx=nN2 .

For 0< € < 1, we select the following inequality for the integrand of In(x):

(1ot =)™t (ocest=t1n=1,2,...),

which establishes an upper bound for IIn(x )l ,

X
[t ta

=k (1-e) (1-eH™! (0<ce<x=1
1 n

IIn(x)I = kn
n=1,2,...).

By inequality (8)

L =2
N~

13



i -
sothat k (1 -¢€) (1-ez)n_1< 2 n® (1- 2)n { (n=1, 2, )
n
N7
and we can write
1 -
II(X)I< 2 H2(1-€2)n1 (0<e=x=1;n=1,2,...)
n NT

where the upper bound of IIn(x)l is independent of x in J'',
1 -1 3 + (n-1 1-€2
Now n2(1—€2)n :ezlnn (n-1) In (1-€%)

and In (1—62)<0 for0<e<1.

Then we can choose a positive integer N sufficiently large and a
positive number M(N) so that

%ln N+(N-1) In(1-€2)<-M(N) <0

and we obtain

1 2
o2 In n+ (n-1) In(1-€ )< . ~-M(N) forn > N

Therefore, as n — «,

lIn(x)l — 0, uniformly inJ'"': 0<e=x=1.

14



To show that, as n — =,

In(x) — 0, uniformly in J'': 1 =x = N2,
we establish the following inequality:

et_'\/Eth'—i for 1=t=n~N2.

It is a direct consequence of the mean-value theorem that

2
ey=1+y+% e9y (0<6<1)

and therefore the following inequality holds for all y:

ey =1+y .
Then, upon letting
y=t- N2

we proceed to show that

et'\/-z-zi-\/?z%tth-i

by showing that

1-N2+t=t2-1

a7

15



or
t2-t+N2-2=0 for 1St=n2 .

Writing the left side of this inequality in factored form,
(t-1+N2) (t-N2)=0,

we note that it is satisfied for

1-N2<t=AN2

and, since 1 - N2< 1, also for 1 =t = nN2 . This establishes inequality (17).

Then, using inequalities (8) and (17), we can majorize the integrand of

X
_1
II(X)I = [k t2-1)"" i 1=x=+2
n 1 n

as follows:

1 - -
kn (tz-i)n_15 2 nze(t V2) (n-1) for 1=t=n~2 .

a

Since the integrands are positive and increasing withtin {1 =t = N2, we obtain

2 [kt (eb)
1

N2
e dt= f n%e (t-\'2) (n-1)
NT 1

I (%)} = ka (t2-1) " lag = -2
lnx|_1 n B NS

16

dt



in the subinterval J''': 1 = x =2 . But,

'\/E 1 1
2 f nfe(t—\rz-) (n—i)dt<-4—n 2. n>1.
Ne 1 T
Therefore,

4 -1
IIn(x)I <—n % forn>{1ind'",
N3

Choosing

we obtain

4 -
IIn(x)| < —mn “ <efor n> N, independently of x in 1 =x= NP
N

Thus, asn — < ,

In(x) —0, uniformly in J''": 1 =x =2 ,

This completes the proof of part 3 of the theorem.

17



To prove part 1 of the theorem, we begin by showing that the equation
fn(x) =0

has only one positive real root X .
Equation (16) yields

X
_ 2 n—i
f(x)=1+k 1f(i-t) dt

which, for x> 1 and even n = 2, can be rewritten as

X
f(x)=1-k f (2 - 1)n_1dt (x=1; n= 2, even)
n n

where the integrand is po§itive,
2 n-1
(t° - 1) >0 for 1<t<x

and monotonically increasing with t, so that the integral,

3 n-1
[@-1""a>0
1

is also positive and monotonically increasing with x > 1. Therefore, for
even n=2 and x> 1, fn(x) is monotonically decreasing and the equation

18



X
fn(x)zi—knif(tz—i)n_idtzo (X>1, n=2,4,6,.. -) (18)

has only one real root, X, > 1.

In the special case, n = 2, equation (7) yields kj =% , and equation

(18) can be solved in closed form to yield the positive root
X9 = ’\/_3- . (19)

From equation (18) we conclude that

However, we shall demonstrate that

1
Xy J2+2n+1 i

(n=2,4,6,...) . (20)

For even n = 2, we know that fn(x) has a maximum at x =1, fn( 1) =1
and that, by equation (18), fn(x) is monotonically decreasing for x> 1 so

that we have

>0for0<x<xn
f(x) { =0forx = x ) (21)
n

<0forx>xn

19



Therefore, to demonstrate inequality (20), we must show that

1
fn(x)>0 for x = 2+2n+1 . (22)

Since fn(x) >0 for 0<x< X inequality (21), we conclude that inequality

(20) holds,

1
2n+1<Xn ’

2 +

if inequality (22) is satisfied.
It follows from equation (18) that the following inequality is equivalent

to inequality (22):

i
2n + 1

X
-1
k[ (t2-1)"dt< 1 for x=n2+
"

By defining the equation for kn ,

1
1_ 2n—1
?—f(i-t) at ,
n (o}

this can be rewritten as

& 1 ! 1
[f@-0" g < [ -ty at (23)
1 o}

20



with the abbreviation

2n + 1

The change of variable

_a-~-u

t S |

enables us to make the limits of integration of the integral onthe right of
inequality (23) the same as those on the left, and we obtain the inequality,

(¢

9 n-1 o
E'(a_t) } at> [(t2- 0" Tat, (-2, 4,...). (24
1

1
1oz—i a -1

We proceed by noting that this inequality is satisfied if the following inequality
between the corresponding integrands is satisfied for

= =t =
0" :2+2n+1 and | St= o
-1
1 a -t \2]" — (.2 n-1 -
— [1-(@_1 J > (t2_ 1) (n=2,4,...). (25)

-1
Both sides of inequality (25) contain the factor (t - 1)™ "~ because

(L2~ 1) = (t+1) (t-1)

21



and

o -t 2] 1
1~ =—— @Qa-1-t) (t-1)
l: (Ol—i) (a_i)z

so that inequality (25) becomes

1

5 (20 - 1 _t)n‘1 (t - 1)“'1 = (t + 1)“'1 (t - 1)“'1 .
(a - 1)

n-1

-1
However, since (t - 1)n =0 for 1=t =0, the problem is reduced to
showing that

1 — (200 - 1_t)n-1> (t + 1)n—i
(¢ - 1)77
or
n~1 n-1 - = i _
A" (t)> B (t) for 1=t=a = 2+2r1+1 (n=2, 4, ...)
where
Alt) = ! (2a - 1_1)
a 2n - 1 T
(a_i)n_i
B(t) =t+1

22



We note that

A(t) >0

=t=
B(t)>05 fori=t=uw

Therefore we can continue by showing that

A(t) > B(t)

or

1
2n +1

A(t) - B(t) >0 for 1=t=a = N2+

The left side of this inequality is linear in t. Then it suffices to show that

i
the inequality is satisfied for the endpoints, t =1 and t=a = N2+ on 11 °

of the interval. This reduces the problem to showing that the following two
inequalities are satisfied:

A(1) -B(1)> 0

or
2 (o - 1) _ 1 _
Ty - 220 (a= 2+2n+1,n—2,4,...) (26)
(a—i)n_i

and

A(a) - B(a)>0

23



or

(o - 1) _ / 1 _
on -1 - (x+1)>0(a = 2+ 51> n=2 4, ...) . (27)
(o - 1)n -1
We reduce inequality (26) to
n
(e -1~ tcy
n-1
n
(a -1) < 1 =1 (n=2, 4, )
Then substitution of
’ 1
@ =nNz+ 2n + 1
yields
LR (n=2, 4 )
2n + 1 S
Thus inequality (26) is satisfied for all even n = 2.
-1
Inequality (27) can be reduced to (a? - 1)n (a-1)<1 .

1
Since @ =N2 + 1 , this becomes (1 +

2n + 1 2n + 1

24

2t (et 2n1+ - 1)<t



or

i1 ,n-t 1 1 .n-1
(1+2n+1) ( 2+2n+1—1)<(1+2n+1) (V2.2-1)< 1
(n=2, 4,...)
Then, since
: > 2,

N2.2-1
it suffices to show that

(1+2n141)n_1<2< b (28)

’ N2 2 -1

To verify inequality (28) we start with the inequality [3]

2n+1

1) <o

2n + 1

(1+

Dividing both sides by (1 + P 1)n+2 , we obtain
(1 "_;Li'n-1'< ; I "’61 1
2n + 1 n+2 n- 3
U+ o) Aoy ey

25




But

e e
< (n=2, 4, ...)
1i n-1 i 3 1 n-1 >
+
(1+2n+1) (1 2n+1) (1+2n+1)
so that we obtain
1 n-1 e
(1+2n+f) <(1+ 1 )n-i
2n + 1
or
i n-1 3
(1+2n+1) <e?<2

This verifies inequality (28) and, in turn, inequality (27) and completes the
proof of inequality (20).

Next we shall demonstrate that the roots X form a bounded decreasing

sequence {xn} , h=2,4, ... . We start by showing that the following

monotonicity condition is satisfied:

Xn+2<xn (n=2,4,...) . (29)

We have shown that the equation

fn(x) =0

for even n = 2 has only one real root X > 1in0<x <o,

26



Then, since n + 2 is also an even integer, the equation

fn+2(x) =0 , foreven n= 2, (30)

must also have only one real root,

X >1 in 0<x<eo,
n+2

Upon replacing n by n + 2 in equation (5) and letting x = X 490
equation (30) yields
n+2 n+1i
f@-)y"at=0 (n=2,4,...)
(o]
If we integrate first from 0 to xn and then from X to Xn+ 9 this equation

can be rewritten as follows:

X X
n n+2

[a-™a + [ - a=o

(o] X
n

Now we apply the mean-value theorem for integrals to the second integral

+1
because (1 - 1‘.2)n is continuous on [Xn, Xn+2] and obtain

X

. n+1
[ @r- 1" a
o

- = - = 2, 4, PR (31
X 0 "X, -y 1)n+1 (n ) )

27



where x=x_ + & (x -xX); 0<¢#<1,and x> 1 since x > 1 and
n n n n

+2

Xn+2> 1.

To prove inequality (29), we must demonstrate that the right
side of equation (31} is negative. We note that

x>1

and therefore the denominator

(x%- 1)n+1 >0 .

Then it remains to be shown that

X
n

[ @-n™as>0 (=2 4,...).
(o]

After performing integration by parts twice, we obtain

% X
fn 2 - 1) - (200 ™t (a2t "
) RERE T (20 +3) (2n+ 1)

n

(o}

X
4(n+1)n n 5 n—i
fTmramen J CoUTE

But, by definition,

Xn .
S owr-n"Tat = - (x) =0 (=24, ...)

o

28



Then we have

*n (en +1) x_ (x%2 - )"
2 n+tl n'n 2 1
Of (t%- )" Tae = (2n +3) (20 + 1) !Xn— (2+2n+1)]

where the right side is positive because

i . .
x > 2+ o 71 inequality (20)

Therefore
n

X
I GE T
0O

and, by equation (31),

X -x <0
n+2 n

which proves inequality (29). Then, by inequality (29), {Xn} (n=2, 4, ...)

is a monotonically decreasing sequence with a lower bound and, by equation
(19) and inequality (20), X is bounded by the inequality,
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We shall demonstrate that the sequence {xn} converges to N2,

Since X is a root of the equation,
f(x) =0 (n=2,4,...)
n

equation (5) yields

X

n
_ -1
fn(xn)—knof (1 -t3) "dt=o0

or, upon splitting the interval of integration,

\/—2- X

n
zn—i 211—1 _
knof(i-t) dt+knf(1_t) dt =0

NZ

Now, applying the mean-value theorem to the second integral results in

X

n
k f (1 -3 lgp =k x_ -~N2) (-1 (o
n n n

N2

with X = ’\/E-Fé‘(xn-\/?), 0<&<1

30

(32)

(33)

(34)



Furthermore, for x =N2, equation (5) yields

N2 nd
- 2
£(N2) =k [ (1-t)  at (35)
o
Then, substituting equations (34) and (35) into equation (33) gives
£ (N2)
xn-~15= — —  (n=2,4,...) (36)
k (x%2-1)
n
with N2 <Xx< X (an'\/_S-)

We obtain an upper and lower bound for (x - NZ') by substituting X =~N2

and X =~3 into equation (36), respectively:

£ (N2) £ (N2)
2 N2) < I:{

<{x -
n
n

k 2"~
n
since, by inequality (21), fn( N2)>0 (0<~N2< xn)

From inequality (8), we obtain

Then inequality (37) can be replaced by

(37)



NTE (NE) V7 (1+5)F g (V3
n n n
—I 5 < (xn—«/2) <

n? 2 2n

BOfls

We have shown in the proof of part 3that, as n — « ,
fn(x) —1, uniformly in 0< e =x = N2

Therefore,

lim £ (N2) =1
n—eow N
and, as n — o,
(Xn—’\/-Z-)‘"’O
or lim x =~N2 .
n—co n

This completes the proof of part 1 of the theorem. To prove part 2 of the

theorem, we note that, by equation (10), fn(x) is an odd function and that,

by equation (4),

fr'l(x)ZO for -2 <x<+» andodd n> 1.

Therefore, for odd n> 1, fn(x) is a strictly increasing monotonic function of

X in - <x <o , This completes the proof of the theorem.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration
Marshall Space Flight Center, Alabama 35812, October 1, 1971
933-89-00-0000, 965-89-00-0000
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