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Nth-ORDER FLAT APPROXIMATION OF THE 
SIGNUM FUNCTION BY A POLYNOMIAL 

SUMMARY 
In the interval - 6 5  x 5 the signum function, sgn x, is 

demonstrated to  be uniquely approximated by an odd polynomial fn(x) of the 

order 2n - I whereby the approximation is nth-order flat with respect t o  the 
points (1,l) and (-i,-l). 

A theorem is proved which states that, for even integers n 2 2, the 
approximating polynomial f (x) has a pair of nonzero real roots f x such n n 
that 

I 4 

that these roots xn form a monotonically decreasing sequence {xn} 
( n =  2, 4 . . . ) ,  andthat lim x = &-. 

n--a, n 

F6r odd n, f (x) represents a strictly increasing monotonic function n 
of x in 

AS n --a,, f n (x) converges to  sgn x uniformly in - 5 5 x 5 E < o 
and O < ~ S x s f i .  

DEVELOPMENT OF THE APPROXIMATION 
In the process of synthesizing transfer functions which approximate 

constant gain and, simultaneously, constant phase response in a finite 
frequency band, we encounter a polynomial f n (x) which provides an nth-

order flat approximation to  the signum function 

I.The author is indebted to Dr. Bernard A. Asner, Assistant Professor, 
Department of Mathematics, Robert College, Istanbul, Turkey, for valuable 
suggestions, encouragement, and guidance during his summer employment 
at MSFC. 



0 when x = 0 
Iwhen x < O 

in  a closed interval, - 6 5  x 5 . The limit function of approximation 
is defined by 

Since sgn x is an odd function, an odd polynomial in x is chosen to  represent 
the approximating function f (x),n 

2n- 1
f n (x) = aix + a3x3+ ...+ a2n- 1X 

Then the approximation problem can be solved by constraining f (x) , equation
n 

( 2 )  so that f (x) is nth-order flat at the points ( I ,  1) and (-1, 1); i. e. n 

fnG 1) = f 1 

and 

0 for r = 1, 2, ... n-1 . (3) 

The second constraint in equation ( 3 )  requires that the first n - 1derivatives 
of f (x) vanish at x = f 1. The polynomial in equation ( 2) has n n 
coefficients and the constraint conditions in equation ( 3) furnish exactly n 
linear equations to  determine uniquely the n coefficients of the polynomial. 
Therefore, equations (2) and (3) together yield a unique solution to the 
approximation problem posed. 
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If f *  (x) is analytic at the points x = + Iand if and only if f *  (x) and 
n n 

its first n - 2 derivatives vanish at x = * I,then the equation 

f ' ( x )  = 0 n 

has zeros of the order n - 1 at x = A 1 111. These properties of f i (x )  

are ensured if f '  (x) is chosen to be of the following form: n 

f ' ( x )  = k (1 - x2)n-in n 

= kn (1 - x)"-'(i + x I n - l  ( 4) 

where f f  (+ I )  = 0 of (n-1)st order s o  that n 

dr-I 
f ' ( x )  I x = k i  

= 0 for  r = i , 2,..., n - 1 .f(r)  (+ 1) = ~ &r-i nn 

We obtain f (x) by integrating equation (4) from 0 to x,n 

X 
2 n-1

fn(x) = k n s  (1- t ) dt 
0 


where the constant k is determined from the first condition in equation ( 3 ) ,n 
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- 

or 

-1 = 
I (I - t 2 )  n- Idt . 

k n o 

To evaluate this integral we  make the change of variable, t 2  = u, and obtain 
21 

- (n - I)! Zn-' 
1 .  3 .  5 ... (a-1) 

(n > 0, integer) ( 6 )  

so that 
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Considering the inequality [ 31 , 

(where n is a natural number) together with equation (6), the following useful 
inequality for k is obtained: n 

2 n-1
Using the binomial expansion of ( 1 - t ) on the right of equation (5) and 
carrying out the integration term-by-term results in the following polynomial 
representation off (x) :n 

where k is given by equation (7) .n 

The behavior of fn(x)  is illustrated in Figures 1 and 2 for even and odd 

integers n, respectively. W e  note that f n (x) behaves quite differently, 

depending on whether n is even or  odd. When n is even, fn(x) has a 

maximum (minimum) at x = I (x = - I);when n is odd, fn(x) has 

inflection points with zero slope at x = I. 
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Figure I. f (x) , fo r  even n,n 

To demonstrate this behavior of f (x) analytically, we note that n 
f (x) is an odd function as seen from equation (9). Therefore,n 

f n (x) = - f  n (-x) 

and 

and it suffices to  conduct the demonstration for x > 0 since f (x), as  an odd n 
function, has rotational symmetry about the origin. 

The slope of fn (x ) ,  f ’  (x) as given by equation (4)is positive for n 
0 5 x < 1. Therefore, considering equations (3)  and (IO) , fn (x) increases 

monotonically from 0 to  Ias x increases from 0 to  I. It follows from the 
second constraint in equation (3) that the slope of f,(x) is equal to  zero at 

x = I, f’ ( I )  = 0. 
n 
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Figure 2. fn(x) ,  for odd n. 

(I) = I represents a maximum, we form higher deriva­

rth derivative of fn(x) is 

dr-I 
f(l')(x) = &r-i f 'n (XI  .n 
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Using equation (4) and Leibnitz ‘s product rule gives 

r -2  r-i n-i  n-i  
( m ) ( m ) (r-m-i  )m!  (r-m-i)!  (-1)n- i (x-1)n-m-i (x+i) n+m-r-

- kn m=o 

+ k (n- I
) (r-I)! (-1)n-I 

( X - l ) n - r  (x+i)n-i
n r-i 

where n >  I. 

For x = f we have 

= { o i f a > o  
(x ­

l i f a = O  

and note that the last term on the right of equation (11) contains the lowest 
power of (x  - I). Therefore the right side of equation ( 11) is equal to zero 

fo r  x = 1 as long as r 5 n - I so that fn(r) ( I )  = 0 for r = 1, 2, . . ., n - I. 

However, for  r = n, all te rms  on the right of equation (11) vanish for x = I 
except the last term and we obtain 

n-i n-If(n)  (I)= k (n-I)! (-1) 2 
n n 

Then a Taylor-series expansion of f (x) about x = I yieldsn 

because, by the second constraint in  equation (3) , the first n - i derivatives of 
fn(x) vanish at x = 1. 
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For extremely small values of h the sign of f (n)  (I+ 9 k)., 0 < 9 < i ,
n 

is the same as that off, (n) ( 1) s 

Then equation (13) yields 

sgn { fn  (I+ h) - f n ( l )  } = sgn { (-l)n-ihn 1 , 

and w e  conclude that, for even n 2 2, f (1) = I represents a maximum 
n 

because 

f + h )  - f  ( I ) <  Ofor h <' 0 ( e v e n n r  2)n n 

while, for odd n > I,f ( I)= I represents a point of inflection because n 

For x > 0,  f (x) has only one maximum o r  only one point of inflection n 
depending on whether n is even or  odd because, for  x > 0, f 'n (x) has only 

one zero (of multiplicity n-I) which occurs at x = i. 

This establishes the behavior of f (x) for  x > 0. Its behavior for n 
x < 0 can be readily inferred by the odd symmetry of fn(x) , first 

equation (la). 

9 




.I..,-- I .,. .-,,-..- ., . ,. ..... ...... . . ...I,. 

We further note by inspecting Figures I and 2 that, fo r  even n, f,(x) = 0 

has a pair of nonzero real roots i xn which tend to  i G a s  n increases 

and that, for  odd n, f (x) is an increasing function for all x. Furthermore,
n 

we note that, as n increases, fn(x) approaches the shape of the signum 

function, sgn (x), in the interval, - f i  5x 5 + G. These additional 
properties are stated in the following theorem. 

THEOREM AND PROOF 
Theorem 

Let 

X 

f (x) = k (I- t2)n-idt ,n n 
0 


where the integer n > I and where 

I I.3 .  5... (2 n a  
kn =( / (I- t2)n-1+ = 2n-I(n-I) ! 

Then: 

I.If n is even, then f (x) = 0 has only one pair of nonzero real n 
roots -I: xn' such that 

J2+ 2n 
I 
+ i 

< x 
n 
4% X n + 2  < X  ( n =  2, 4, 6, ...) , 

and 
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f ( x ) > O f o r x <  - x  and O < x < x  n n n 

f ( x ) < O  for  x > x  and - x  < x < O  ;n n n 

2. If n is odd, then f (x) is a strictly increasing monotonic function n 
of x and 

3. If n - 00, then fn(x) -ff(x) = sgn x, uniformly in 

Proof 
We restrict  the proof to  values of x > 0 since the statements for x < 0 

can be inferred from the odd symmetry of f (x)  , equation ( I O ) .  W e  shall n 
prove part 3 of the theorem first. 

In the interval J: 0 < x 5 f i ,the limiting function f (x)  is 
equal t o  one, 

f (x)  = sgn (x) = + I for  o < x 5 6 . 

We shall demonstrate that, as n - 00, 

fn(x) -f(x) = + I , 

I1 




uniformly in the closed subinterval 

J ' : E * = x S f i ,  E > O .  

Using equation ( 5) we wri te  

A 


f (x) = k 1(I-t2jn- 'dt
n n 

0 

1 X 
2= k [ ( l - t 2 ) n - i d t + k  S ( 1 - t )n-I dt 

n n
0 I 

where,  according to the first constraint in equation ( 3) , 

so that 

X 
fn(x)  = 1 + k  n I 

( I  - t2)n- id t  

o r ,  with the abbreviation 

X 

I n (x) = k n (I- t2)n-idt 
I 

f n ( X )  = I + I  (x) .n 

12 




To demonstrate that , as n -~0 , 

f (x) -1, uniformly in Jl n 

we must show that, as n - 03, 

In(x) -0, uniformly in J1 . 

This wi l l  be shown separately in the two closed subintervals 

J": O <  E 5 x 5 1 and J lrr :  1 I:x 5 f i  . 

For 0 < E < 1, we select the following inequality for the integrand of In(x): 

2 n-1 2 n-1 ( O <  E s t  5 1; n =  1, 2, . . .)  ,( 1 - t )  - ( l - � )  

which establishes an upper bound 

s n-1kn (1-6) (LE) ( o < � < x i i ;  

n =  1, 2, . . . ) .  

By inequality ( 8 )  

2 1
k s - n 2  ( n =  1, 2 , .  . .)  . 
n G  
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2 " -n2 (I- �Vi( n = l ,  2, . . .)so tha t  k (I- E )  (1 - E ~ ) ~ - ' <n 6 


and we can write 

where the upper bound of IIn(x) I is independent of x in J f I .  

and In ( i - E 2 ) < 0  f o r o < � <  I. 

Then we can choose a positive integer N sufficiently large and a 
positive number M(N)  so that 

I-
2 

In N + ( N  - I) In ( I  - E ' )  < - M(N) < 0 

and we obtain 

Therefore, as n - m ,  

14 




To show that, as n - o' , 

-0,~ ~ ( x )  uniformly in ~ f l t :  i 5 x fi , 

we establish the following inequality: 

It is a direct consequence of the mean-value theorem that 

and therefore the following inequality holds for all y: 

Then, upon letting 

y = t - F J ; Z  

we proceed to show that 

by showing that 

i - f i + t r t 2 - i  



or  

Writing the left side of this inequality in factored form, 

( t - l + f i )  ( t - f i ) ' O ,  

we note that it is satisfied for 

and, since i - f i<I, also for  I 5 t 5 f i  . This establishes inequality (17). 
Then, using inequalities ( 8 )  and (17) ,  we can majorize the integrand of 

Since the integrands are positive and increasing with t in 1 5 t 5 6,we obtain 

16  




in the subinterval J1?': I5 x 5 6. But, 

Therefore, 

Choosing 

we  obtain 

I (x)I < 
6 
-
4 

n 
-$  

< � f o r  n > N ,  independently of x in 1 5 x 5 6 . 
I n  

Thus, as n - 00 , 

In(x)  -0, uniformly in Jt l ' :  1 5 x 5 f i  . 

This completes the proof of part 3 of the theorem. 

17 



To prove part  Iof the theorem, we begin by showing that the equation 

has only one positive real root xn' 

Equation (16) yields 

X 

f (x) = I+ k (I- t2)n-idtn n I 

which, for x > I and even n -> 2, can be rewritten as 

X 

f (x) = I- k 1(t2- i)"-'dt (x2 I;n 2 2, even)n n I 

where the integrand is positive,
s 


( t 2  - l j n - '  > 0 for I< t < x 

and monotonically increasing with t, so that the integral, 

X 


(t2- l)n-idt > 0 , 

is also positive and monotonically increasing with x > i. Therefore, for 
even n 2 2 and x > I,f (x) is monotonically decreasing and the equationn 

18 




X 

f ( x ) = l - k n  [ ( t 2 - l )  n- 1d t = O  ( x > l ,  n = 2 ,  4, 6 , .  . .) (18)n 
1 

has only one real root, x > 1. n 

3In the special case, n = 2, equation (7)yields k2 =- 2 , and equation 

( 18) can be solved in closed form to  yield the positive root 

x 2 = 6 .  

From equation (18) we conclude that 

x 	 > 1 ( n =  2, 4, 6 ,  . . . )  . n 

However, we shall demonstrate that 

I 4 

nx >  J2+-2n: , ( n =  2 ,  4, 6, . . .)  . ( 2 0 )  

For even n 2 2, we know that f (x) has a maximum at x = 1, f ( 1) = 1 n n 
and that, by equation ( 18) , f (x) is monotonically decreasing for  x > 1 so n 
that w e  have 

> 0 for 0 < x < x n=Oforx = x n n< 0 for x > x  n 

19 
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Therefore, to demonstrate inequality (201,we must show that 

f ( x ) >  o for x =IJz+- i 
n 2 n + l  

Since f n (x) > 0 for  0 < x < xn ’  inequality ( 2 1 )  , we conclude that inequality 

( 20)  holds, 

if inequality ( 2 2 )  is satisfied. 

It follows from equation ( 18) that the following inequality is equivalent 
to  inequality ( 2 2 ) :  

X 

k s (t2- l)n-idt < Ifor x = n i 

By defining the equation f o r  kn ’  

this  can be rewritten as 

20 




with the abbreviation 

a! = ./2+-- I 
2 n + I  

The change of variable 

t=- 	a - U  

a ! - I  

enables us  to  make the l imits of integration of the integral onthe right of 
inequality ( 23) the same as those on the left , and we  obtain the inequality, 

We proceed by noting that this inequality is satisfied if the following inequality 
between the corresponding integrands is satisfied for  

a = Jz+- i 
2n + I and 

Both sides of inequality (25) contain the factor (t - I)"-' because 

( t2- I) = (t + I) (t - I) 

21 
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and 

[i -(-,"I = I (20 - I - t) (t - I )  
(a! - 1)2 

so that inequality ( 25) becomes 

I 
2n- I (2a  - 1 - t )  n- 1 (t - i ) " - l z  (t + I)n- I (t - 1p- I  . 

(Q!- I) 

or 

An-'(t) > B
n- 1

(t) for I - i t  5 Q! = (n  = 2, 4, ...) 

where 

IA(t) = 
2n -

~ 

1 (2Q! - 1 - t) 
n - i 

(Q!- 1) 

B(t)  = t +  I . 

22 




We note that 

Therefore we can continue by showing that 

or 

The left side of this inequality is linear in t. Then it suffices to  show that 

I 
the inequality is satisfied for the endpoints, t = I and t = Q! = 4 2  + 2 n + I  ’ 
of the interval. This reduces the problem to showing that the following two 
inequalities are satisfied: 

A ( 1 )  - B ( I ) >  0 

or  

2 (a !  - I) 7
2n - I - 2 > 0  ( a ! =  42+-

2 n + i y  
n =  2, 4, . . . I  

( a ! - l ) n - l  

and 

23 




or 


(a!  -
2n 

1)
- I - ( a ! + l ) > O ( a ! =  v' n = 2, 4, ...) . (27)2 n + I  

n - I  
(01 - 1) 

We reduce inequality (26) t o  

n - i  
n 

( a !  - I)< I = 1 ( n = 2 ,  4, . . . I  . 

Then substitution of 

a ! =  
2n + I 

yields 

2n+ I < 2 ( n =  2, 4, . . . I  . 

Thus inequality (26) is satisfied for  all even n 2 2. 

Inequality (27) can be reduced to (a2- 1)n-i (a!  - I)< I . 

Since Q! = d 2n+ I7 , this becomes (1 + ~2n + I 2n + I 

24 




ox 


I n-i JF
( I  + -2n + I ( 2 G l  - i)< ( I +  -2n+  I ( E 2 - I ) <  i 


( n = 2 ,  4,...) . 

Then, since 

it suffices to  show that 

I 1 

(,I+ 5TT-T 

)n-I 
< 2 <  (28) 


K 2 - 1  


To verify inequality ( 28) we s tar t  with the inequality [ 31 


2n+ I
I
(I+--­
2n+  I) s e  . 


IDividing both sides by (I +-2n+ I)n+2 , we obtain 

(I+--)
2n + 

I 
i 

n-I 
5 

e -- . - ... . .  
e 

(I + ___ )n+2 (I +-2n + I)n-1 (I+---
2n + I

l 3  ­

2n + 1 
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-- 

But 

e e 
i I < - ( n = 2 ,  4, . . . I  

(I + 2n -+ I )n-i (1 +-)3
2n + 1 ( i+ ~

2n + 1 

so that we  obtain 

(I + 
2n 

1 
+ 1 

)n- I  < 
(I +-

2n 

e 
1 
+ I 

)n-1 

or  

1 


-(1  +-.2n + I < e 2 < 2  . 

This verifies inequality (28) and, in turn, inequality (27) and completes the 
proof of inequality (20) .  

Next we shall demonstrate that the roots xn form a bounded decreasing 

sequence {x } , n = 2, 4, ... . We star t  by showing that the followingn 
monotonicity condition is satisfied: 

X
n+2 

< x  ( n = 2 ,  4, . . . )  . 
n 

We have shown that the equation 

f n (x) = 0 

for even n 2 2 has only one real  root xn > I in 0 < x < 03 . 
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Then, since n + 2 is also an even integer, the equation 

fn+2(xI = 0 , for even n 2 2 , 

must also have only one real root, 

xn+2 > I  in O < x < a .  

Upon replacing n by n + 2 in equation (5) and letting x = xn + 2 '  
equation ( 30) yields 

Xn+2s ( l - t 2 ) n + i d t = 0  ( n = 2 ,  4, ...) . 
0 

If we integrate first from 0 to  x n and then from x n to  xn + 2 '  this equation 

can be rewritten as follows: 

X Xn+2 
J n  ( I  - t 2 ) n + i  dt + ( I  -t2)n+1dt = 0 . 
0 X n 

Now we apply the mean-value theorem for integrals to the second integral 
n+ I

because ( I  - t2) is continuous on [xn' xn+2] and obtain 

X ns (t2­
x

n+2 
-x 

n 
= -

0 

(2- I)n+l ( n = 2 ,  4, ...) 

27 
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- xn) ; 0 < 9 < 1, and % >  1 since x > i andwhere x= x n + 9 ( x ~ + ~  n 
xn+2 > I .  

To prove inequality (29), we must demonstrate that the right 
side of equation (31) is negative. We note that 

and therefore the denominator 

n+1(X2-1) > o  . 

Then it remains to be shown that 

= 2 ,  4, ...) . 
0 

After performing integration by parts twice, we obtain 

X n 
+ 	 4 (n + I) n

(2n + 3) (2n + 1) 
(t2- l)"-'dt . 

But, by definition, 

28 




Then we have 

x 
(a+I)xn (xi  - i 

0 
s” (t2- I )

n+ldt = 
( a + 3 )  ( & + I )  2n+ I 

where the right side is positive because 

x n > J2+-
2 n + l ’  

inequality (20) . 

Theref or	e 

X n 
j- ( t 2  - q n + I> 0 
0 

and, by equation ( 31) , 

xn+2 - x  n < o  

which proves inequality (29 ) .  Then, by inequality (29), {xn) (n = 2, 4, ...) 
is a monotonically decreasing sequence with a lower bound and, by equation 
( 19) and inequality (20), x is bounded by the inequality,n 
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We shall demonstrate that the sequence {xn) converges to  f i  , 

lim x = 4T . n-w n 

Since x is a root of the equation,n 

f n (x) = o ( n = 2 ,  4, . . .)  , 

equation (5) yields 

X 
n 

fn(xn) = k s (1 - t2)"-ldt = 0 n 
0 

o r ,  upon splitting the interval of integration, 

f i  X 
n 

k [ ( I  - t2)n-1dt + k [ (1 - t2)n-idt = 0 (33) _ _  nn 
0 f i  

NOW, applying the mean-value theorem to  the second integral results in 

X n 
k s ( I  - t2)n-1dt = - k  (x -6)( I  -Z2)n-i  (n  = 2, 4, ...) (34)n n n  
fi 


with x = f i + S  (x -&), O < S . c  i . n 
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Furthermore, for  x = 6,equation (5) yields 

6 
fn ( f i )= kn (I-t2)n-idt . 

0 


Then, substituting equations (34) and (35) into equation (33) gives 

We obtain an upper and lower bound for (xn - f i )by substituting 2 = f i  

and X = 6 into equation (36) , respectively: 

since, by inequality (21) , fn (  f i )> 0 (0  < f i<xn) . 

From inequality ( 8) , we obtain 

Then inequality (37) can be replaced by 
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We have shown in the proof of part 3 that, as n - 00 , 

Therefore, 

lim f a)=.l n--a, n 

and, as n - m y  

or lim x =fi. n--.o n 

This completes the proof of part of the theorem. To prove part 2 of the 

theorem, we note that, by equation (10)  fn (x) is an odd function and that, 

by equation ( 4), 

f ’  (x) 2 0 for - 00 < x < + 03 and odd n > i . n 

Therefore, for odd n > i, fn(x) is a strictly increasing monotonic function of 

x in - 00 < x < 03 , This completes the proof of the theorem. 

George C; Marshall Space Flight Center 
National Aeronautics and Space Administration 

Marshall Space Flight Center, Alabama 35812, October I, 1971 
933-89-00-0000, 965-89-00-0000 
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