## NASATECHNICAL MEMORANDUM

## NASA TM X-2458



NASA TM X-2458


COMPUTER PROGRAM FOR SOLVING COMPRESSIBLE NONSIMILAR-BOUNDARY-LAYER EQUATIONS FOR LAMINAR, TRANSITIONAL, OR TURBULENT FLOWS OF A PERFECT GAS
by Joseph M. Price and Julius E. Harris
Langley Research Center
Hampton, Va. 23365

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • APRIL 1972

| 1. Report No. <br> NASA TM X-2458 | 2. Government Accession No. | 3. Recipient's Catalog No. |
| :---: | :---: | :---: |
| 4. Title and Subtitle COMPUTER PROGRAM FOR SOLVING COMPRESSIBLE NONSIMILAR-BOUNDARY-LAYER EQUATIONS FOR LAMINAR, TRANSITIONAL, OR TURBULENT FLOWS OF A PERFECT GAS |  | 5. Report Date April 1972 |
|  |  | 6. Performing Organization Code |
| 7. Author(s) Joseph M. Price and Julius E. Harris |  | 8. Performing Organization Report No. L-8037 |
| 9. Performing Organization Name and Address <br> NASA Langley Research Center <br> Hampton, Va. 23365 |  | 10. Work Unit No. $136-13-05-04$ |
|  |  | 11. Contract or Grant No. |
| 12. Sponsoring Agency Name and Address <br> National Aeronautics and Space Administration Washington, D.C. 20546 |  | 13. Type of Report and Period Covered Technical Memorandum |
|  |  | 14. Sponsoring Agency Code |
| 15. Supplementary Notes |  |  |
| 16. Abstract <br> A computer program is described which solves the compressible laminar, transitional, or turbulent boundary-layer equations for planar or axisymmetric flows. Three-point implicit difference relations are used to reduce the momentum and energy equations to finite-difference form. These equations are solved simultaneously without iteration. Turbulent flow is treated by the inclusion of either a two-layer eddy-viscosity model or a mixing-length formulation. The eddy conductivity is related to the eddy viscosity through a static turbulent Prandtl number which may be an arbitrary function of the distance from the wall boundary. The transitional boundary layer is treated by the inclusion of an intermittency function which modifies the fully turbulent model. The laminar-boundary-layer equations are recovered when the intermittency is zero, and the fully turbulent equations are solved when the intermittency is unity. This program was used to obtain the solutions presented in NASA TR R-368. |  |  |
| 17. Key Words (Suggested by Author(s)) <br> Computer program <br> Boundary layer <br> Compressible <br> Laminar, transitional, or tur | bulent $\quad$18. Distribution Statemen <br> Unclassified | - Unlimited |
| 19. Security Classif. (of this report) Unclassified | 20. Security Classif. (of this page) Unclassified | 21. No. of Pages 22. Price* <br> 114 $\$ 3.00$ |

[^0]
## CONTENTS

Page
SUMMARY ..... 1
INTRODUCTION ..... 1
SYMBOLS ..... 2
PROBLEM DESCRIPTION ..... 11
Basic Partial Differential Equations ..... 11
Governing equations ..... 11
Eddy viscosity ..... 11
Two-layer model ..... 12
Mixing-length model ..... 12
Eddy conductivity and static turbulent Prandtl number ..... 13
Transformed plane ..... 14
Transition location ..... 17
Transition extent ..... 17
Intermittency distribution ..... 17
Numerical Solution of the Governing Equations ..... 18
Finite-difference mesh model ..... 18
Difference equations ..... 19
Solution of difference equations ..... 20
Solution of continuity equation ..... 24
Initial profiles ..... 25
Evaluation of wall derivatives ..... 25
PROGRAM DESCRIPTION ..... 26
General Discussion ..... 26
Descriptions, Flow Charts, and Listings of the Main
Programs and Subprograms ..... 27
Main program D2390 ..... 27
Main program D23901 ..... 34
Subroutine GEOM ..... 36
Main program D2401 ..... 38
Subroutine TURBLNT ..... 61
Subroutine VARENT ..... 65
Subroutine TABLE ..... 67
Subroutine SETUP ..... 70
Function INTEGT ..... 72
Subroutine INUNIT ..... 74
Page
USAGE ..... 77
Array Dimensions ..... 77
Intermediate Data Storage ..... 77
Input Description ..... 77
Output Description ..... 83
Sample Cases ..... 89
Case 1 ..... 89
Case 2 ..... 94
APPENDIX A - DIFFERENCE RELATIONS ..... 99
APPENDIX B - COEFFICIENTS FOR DIFFERENCE EQUATIONS ..... 104
APPENDIX C - LANGLEY LIBRARY SUBROUTINE FTLUP ..... 110
REFERENCES ..... 111

## COMPUTER PROGRAM FOR SOLVING

# COMPRESSIBLE NONSIMILAR-BOUNDARY-LAYER EQUATIONS 

FOR LAMINAR, TRANSITIONAL, OR TURBULENT FLOWS
OF A PERFECT GAS

By Joseph M. Price and Julius E. Harris<br>Langley Research Center

## SUMMARY

A computer program is described which solves the compressible laminar, transitional, or turbulent boundary-layer equations for planar or axisymmetric flows by an implicit finite-difference procedure. The program was used to obtain the solutions presented in NASA TR R-368. Turbulent flow is treated by the inclusion of either a twolayer eddy-viscosity model or a mixing-length formulation. The eddy conductivity is related to the eddy viscosity by the static turbulent Prandtl number which may be an arbitrary function of the distance from the wall boundary. The transitional boundary layer is treated by introducing an intermittency function which modifies the fully turbulent model. The intermittency function describes the probability distribution of turbulent spots and ranges from zero for laminar flow to unity for a fully turbulent flow.

## INTRODUCTION

A number of finite-difference methods are currently available for computing the development of compressible turbulent boundary layers. (See, for example, refs. 1 to 8.) The numerical methods used to solve the governing equations in these references are generally different, in particular those given in references 7 and 8; however, the results are similar when common eddy-viscosity formulations are used. References 1 to 7 use implicit or Crank Nicolson type differences to reduce the governing differential equations to finite-difference form, whereas explicit-type differences are used in reference 8. A coupled solution technique is used in reference 7 (see also ref. 9) which requires no iteration procedure. However, the methods used in references 1 to 6 require iteration since the momentum and energy equations are uncoupled. Another difference, of course, among the various methods is in the formulation of the eddy-viscosity and turbulent Prandtl number formulations used to model the turbulent flux terms appearing in the mean flow equations.

This report describes a computer program developed to solve the compressible nonsimilar-boundary-layer equations for laminar, transitional, or turbulent flows of a perfect gas. The program was used to obtain the results reported in references 7 and 10. A coupled, implicit finite-difference procedure similar to that used for laminar flows in references 9 and 11 is used to solve the momentum and energy equations without iteration. The program will solve problems for two-dimensional or axisymmetric flow geometry for the flow of a perfect gas. Currently, power-law and perfect-air viscosity (Sutherland's) relations are included in the code; however, any perfect gas can be treated by inserting the correct viscosity temperature relations. Transverse curvature effects are included with the option of being neglected if desired. The equations are solved so that nonsimilar terms may also be neglected if desired.

Options are provided for either a two-layer eddy-viscosity model or an arbitrary mixing-length formulation. The turbulent Prandtl number may be either a constant or a function of distance normal to the wall boundary. The transitional region of the flow is modeled through an intermittency distribution which modifies the fully turbulent eddyviscosity models. Transition location and extent must be specified either from experimental data or correlation relations. The laminar equations are recovered by setting the intermittency to zero.

## SYMBOLS

Values are given in both SI and U.S. Customary Units. The measurements and calculations were made in U.S. Customary Units.

A
damping function, $26 \mathrm{v} / \mathrm{u}_{\tau}$
$\mathrm{A}^{+}=\mathrm{Au}_{\tau} / \nu$
$\mathrm{A} 1_{n}, B 1_{n}, C 1_{n}, D 1_{n}$, coefficients in difference equation (43a) and defined by equa$\left.\mathrm{E} 1_{\mathrm{n}}, \mathrm{F} 1_{\mathrm{n}}, \mathrm{G} 1_{\mathrm{n}}\right\}$ tions (B3) to (B9)
$\left.\begin{array}{l}\mathrm{A} 2_{\mathrm{n}}, \mathrm{B} 2_{\mathrm{n}}, \mathrm{C} 2_{\mathrm{n}}, \mathrm{D} 2_{\mathrm{n}}, \\ \mathrm{E} 2_{\mathrm{n}}, \mathrm{F} 2_{\mathrm{n}}, \mathrm{G} 2_{\mathrm{n}}\end{array}\right\} \quad \begin{gathered}\text { coefficients in difference equation (43b) and defined by equa- } \\ \text { tions (B10) to (B16) }\end{gathered}$
$\mathrm{C}_{\mathrm{f}} \quad$ skin-friction coefficient, $\frac{\tau_{\mathrm{w}}}{\frac{1}{2} \rho \mathrm{u}^{2}}$
$C_{m 1}, C_{m 1}^{\prime}$ defined in equations (B45) and (B46), respectively

| $c_{p}$ | specific heat at constant pressure |
| :---: | :---: |
| $\overline{\mathrm{E}}_{\mathrm{m} 1}, \hat{\mathrm{E}}_{\mathrm{m} 1}$ | defined in equations (B36) and (B37), respectively |
| $\hat{E}_{Y}$ | defined in equation (B39) |
| F | velocity ratio, $u / u_{e}$ |
| $\mathrm{F}_{\mathrm{m} 1}$ | defined in equation (B29) |
| $\mathrm{F}_{\mathrm{m} 2}$ | defined in equation (B32) |
| $\mathrm{F}_{\mathrm{Y}}$ | defined in equation (B40) |
| G,H | typical variables in the boundary layer (see appendix A) |
| $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3},$. | $\ldots, \mathrm{H}_{12}$ coefficients defined by equations (B17) to (B28) |
| h | heat-transfer coefficient |
| i | index used in grid-point notation (see eq. (41)) |
| j | flow index; $\mathrm{j}=0$ in planar flow, $\mathrm{j}=1$ in axisymmetric flow |
| k | grid-point spacing parameter (see eq. (41)) |
| $\mathrm{k}_{l}$ | thermal conductivity |
| $\mathrm{k}_{\mathrm{T}}$ | eddy conductivity (see eq. (15)) |
| $\mathrm{k}_{1}$ | constant in eddy-viscosity model (see eq. (6)) |
| $\mathrm{k}_{2}$ | constant in eddy-viscosity model (see eq. (7)) |
| $\mathrm{k}_{3}$ | see equation (8) |
| $\mathrm{k}_{4}$ | constant in intermittency function (see eq. (10)) |
| L | reference length |

$\mathrm{L}_{\mathrm{m} 1}, \mathrm{~L}_{\mathrm{m} 1}^{\prime}$ defined in equations (B34) and (B35), respectively
$l \quad$ defined in equation (30)
$\bar{l} \quad$ mixing length (see eq. (13))

M Mach number
m grid-point index in X-direction (see fig. 2)

N number of grid points at each x -station (see fig. 2)
$\mathrm{N}_{\mathrm{Pr}} \quad$ Prandtl number, $\mathrm{c}_{\mathrm{p}} \mu / \mathrm{k}_{l}$
$\mathrm{N}_{\mathrm{Pr}, \mathrm{t}} \quad$ static turbulent Prandtl number (see eqs. (16) and (17))
$\mathrm{N}_{\mathrm{St}} \quad$ Stanton number, $\mathrm{h} /\left(\mathrm{c}_{\mathrm{p}} \rho \mathrm{u}\right)$
n grid-point index in Y-direction (see fig. 2)
$P^{(1)}, P^{(2)}, P^{(3)} \quad$ defined in equations (48)
p pressure
$Q^{(1)}, Q^{(2)}, Q^{(3)} \quad$ defined in equations (48)
q heat-transfer rate
$\mathrm{R}, \mathrm{Z} \quad$ body axes system with origin at the stagnation point, where Z is positive downstream and $R$ is positive radially outward (see fig. 1)
$R_{e} \quad$ unit Reynolds number, $u_{e} / \nu_{e}$
$R_{e, x} \quad$ Reynolds number based on $x, \quad u_{e} x / \nu_{e}$

$R_{e, \delta^{*}} \quad$ Reynolds number based on displacement thickness, $u_{e} \delta^{*} / \nu_{e}$

| $\mathbf{R e}_{\mathbf{e}, \theta}$ | Reynolds number based on momentum thickness, $\mathrm{u}_{\mathrm{e}} \theta / \nu_{\mathrm{e}}$ |
| :---: | :---: |
| $\mathrm{R}_{\mathrm{g}}$ | gas constant (see eq. (19)) |
| r | radial body coordinate measured normal to Z -axis (see fig. 1) |
| $\mathrm{r}_{0}$ | body radius (see fig. 1) |
| S | Sutherland's viscosity constant, $110.3^{\circ} \mathrm{K}\left(198.6^{\circ} \mathrm{R}\right)$ |
| T | static temperature |
| $\mathrm{T}_{\mathrm{Y}}$ | defined in equation (B4i) |
| $\mathrm{T}_{\text {aw }}$ | adiabatic wall temperature |
| $\mathrm{T}_{\mathrm{m} 1}, \mathrm{~T}_{\mathrm{m} 2}$ | defined in equations (B30) and (B33), respectively |
| t | transverse curvature term (see eq. (23)) |
| u | velocity component in X -direction (fig. 1) |
| $\mathrm{u}^{+}$ | law of wall coordinate, $u / u_{\tau}$ |
| $\mathrm{u}_{\tau}$ | friction velocity, $\sqrt{\tau_{\mathrm{w}} / \rho}$ |
| V | transformed normal-velocity component (see eq. (26)) |
| $\mathrm{V}_{\mathrm{m} 1}$ | defined in equation (B31) |
| v | velocity component in Y -direction |
| $\widetilde{\mathrm{v}}$ | velocity component, $\quad \mathrm{v}+\frac{\rho^{\prime} \mathrm{v}^{\prime}}{\rho}$ |

$\mathbf{X}, \mathbf{Y} \quad$ orthogonal boundary-layer coordinate system with origin at stagnation point, where $X$ lies along the body surface and is positive downstream and $Y$ is normal to the body surface and positive outward (see fig. 1)
$\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{5} \quad$ functions of grid-point distribution (see eqs. (A4) to (A8))
boundary-layer coordinate along X -axis (see fig. 1)
$x_{t, f} \quad$ end of transition (see fig. 1)
$x_{t, i} \quad$ beginning of transition (see fig. 1)
$\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{6} \quad$ functions of grid-point distributions (see eqs. (A12) to (A17))
y boundary-layer coordinate along $Y$-axis (see fig. 1)
$\mathrm{y}^{+} \quad$ law of wall coordinate, $\quad \mathrm{yu}_{\tau} / \nu$
$\mathrm{y}_{\mathrm{m}} \quad$ match point for two-layer eddy-viscosity model
z
axial body coordinate (see fig. 1)
$\alpha \quad$ defined in equation (30)
$\beta \quad$ defined in equation (30)
$\Gamma \quad$ streamwise intermittency distribution (see eq. (38))
$\gamma \quad$ ratio of specific heats
$\bar{\gamma} \quad$ transverse intermittency distribution (see eq. (10))
$\Delta^{*} \quad$ defined in equation ( 48 g )
$\Delta x, \Delta y \quad$ grid-point spacing, physical plane
$\Delta x_{t} \quad \operatorname{transition}$ extent, $x_{t, f}-x_{t, i}$
$\Delta \xi, \Delta \eta \quad$ grid-point spacing, transformed plane (see fig. 2)
$\delta$ boundary-layer thickness

ס* displacement thickness
$\delta_{\text {inc }}^{*} \quad$ incompressible displacement thickness, $\int_{0}^{\infty}(1-F) d y$

$$
\delta_{\dot{\mathrm{w}}}^{+}=\delta \mathbf{u}_{\tau, \mathrm{w}} / \nu_{\mathrm{w}}
$$

$$
\epsilon \quad \text { eddy viscosity, }-\rho \frac{\overline{u^{\prime} v^{\prime}}}{\partial u / \partial y}
$$

$\bar{\epsilon} \quad$ eddy-viscosity function (see eq. (4))
$\bar{\epsilon}_{\mathrm{av}} \quad$ defined in equation (B36b)
eddy-viscosity function (see eq. (5))
$\eta \quad$ transformed normal boundary-layer coordinate (see fig. 2)
$\Theta \quad$ static-temperature ratio, $T / T_{e}$
momentum thickness (see fig. 1)
shock-wave angle (see fig. 1)
$\lambda \quad$ defined in equation (40)
$\mu \quad$ molecular viscosity
kinematic viscosity
average kinematic viscosity
transformed streamwise boundary-layer coordinate (see fig. 2)
defined in equation (39)
$\rho \quad$ density
$\sigma \quad$ exponent in power-law viscosity relation (see eq. (21))
shear stress
$\phi \quad$ local surface angle (see fig. 1)
$\chi$
vorticity Reynolds number, $\frac{y^{2}}{\nu} \frac{\partial u}{\partial y}$

```
\chi max maximum local value of }
\psi stream function
\omega=(\frac{\mp@subsup{\rho}{\textrm{r}}{\mp@subsup{u}{r}{}}\mp@subsup{\textrm{L}}{}{\prime}}{\mp@subsup{\mu}{\textrm{r}}{}}\mp@subsup{)}{}{-1/2}
```


## Subscripts:

```
e bașed on boundary-layer edge conditions
i inner region of turbulent layer
m mesh point in \(\xi\)-direction (see fig. 2)
n mesh point in \(\eta\)-direction (see fig. 2)
o outer region of turbulent layer
r reference quantity
s shock
\(t\) total condition
w wall value
\(\infty \quad\) free stream
```

Superscript:
j flow index; $\mathrm{j}=0$ in planar flow, $\mathrm{j}=1$ in axisymmetric flow

A prime on a symbol denotes a fluctuating component.
A bar over a symbol denotes the time average value.
A coordinate used as a subscript denotes the partial differential with respect to the coordinate. (See eqs. (A1).)


Figure 1.- Coordinate system and notation.


Figure 2.- Finite-difference grid model.

## PROBLEM DESCRIPTION

This section presents the governing equations for compressible laminar, transitional, or turbulent boundary-layer flows together with the required boundary conditions. The eddy viscosity, eddy conductivity, transition location and extent, and transitional-flowstructure models are presented and briefly discussed; however, the reader interested in a detailed discussion of these models is referred to references 7 and 10.

## Basic Partial Differential Equations

Governing equations.- The partial differential equations describing laminar, transitional, or turbulent compressible boundary-layer flows over planar or axisymmetric geometries are as follows (see refs. 7 and 12):

Continuity

$$
\begin{equation*}
\frac{\partial}{\partial \mathbf{x}}\left(\mathrm{r}^{\mathrm{j}} \rho \mathrm{u}\right)+\frac{\partial}{\partial \mathbf{y}}\left(\mathrm{r}^{\mathrm{j}} \rho \tilde{\mathrm{v}}\right)=0 \tag{1}
\end{equation*}
$$

Momentum

$$
\begin{equation*}
\rho\left(u \frac{\partial u}{\partial x}+\tilde{v} \frac{\partial u}{\partial y}\right)=-\frac{d p}{d x}+\frac{1}{r^{j}} \frac{\partial}{\partial y}\left(r^{j} \bar{\epsilon} \frac{\partial u}{\partial y}\right) \tag{2}
\end{equation*}
$$

Energy

$$
\begin{equation*}
\rho\left[u \frac{\partial}{\partial x}\left(c_{p} T\right)+\tilde{v} \frac{\partial}{\partial y}\left(c_{p} T\right)\right]=u \frac{d p}{d x}+\bar{\epsilon}\left(\frac{\partial u}{\partial y}\right)^{2}+\frac{1}{r^{j}} \frac{\partial}{\partial y}\left[r^{j} \tilde{\epsilon} \frac{\partial}{\partial y}\left(c_{p} T\right)\right] \tag{3}
\end{equation*}
$$

where the conventional overbar notation for time mean-average variables has been dropped for brevity. The eddy-viscosity parameters $\bar{\epsilon}$ and $\tilde{\epsilon}$ are defined, respectively, as follows:

$$
\begin{equation*}
\bar{\epsilon}=\mu\left(1+\frac{\epsilon}{\mu} \Gamma\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\epsilon}=\frac{\mu}{\mathrm{N}_{\operatorname{Pr}}}\left(1+\frac{\epsilon}{\mu} \frac{\mathrm{N}_{\operatorname{Pr}}}{\mathrm{N}_{\operatorname{Pr}, \mathrm{t}}} \Gamma\right) \tag{5}
\end{equation*}
$$

The intermittency-distribution parameter $\Gamma$ is discussed in a subsequent section. (See eq. (38).)

Eddy viscosity.- Options are provided in the coded program for selecting either a two-layer eddy-viscosity model (KODVIS $=1$ ) or a straight-forward mixing-length model (KODVIS = 2) .

Two-layer model.- The equations describing the two-layer model are as follows (see ref. 7):

$$
\begin{array}{lll}
\left(\frac{\epsilon}{\mu}\right)_{\mathrm{i}}=\frac{\rho}{\mu}\left(\mathrm{k}_{1} \mathrm{yD}\right)^{2}\left|\frac{\partial \mathrm{u}}{\partial \mathrm{y}}\right| & \left(0 \leqq \mathrm{y} \leqq \mathrm{y}_{\mathrm{m}}\right) \\
\left(\frac{\epsilon}{\mu}\right)_{0}=\frac{\rho}{\mu} \mathrm{k}_{2} \mathrm{u}_{\mathrm{e}} \delta_{\mathrm{inc}}^{*} \bar{\gamma} & \therefore \quad\left(\mathrm{y}_{\mathrm{m}}<\mathrm{y}\right)
\end{array}
$$

where

$$
\begin{align*}
& \mathrm{D}=1-\exp \left\{-\left[\sqrt{\frac{\nu_{\mathrm{w}}}{\bar{\nu}}}\left(1+\mathrm{k}_{3}\right)-\mathrm{k}_{3}\right] \frac{\mathrm{y}}{\mathrm{~A}}\right\}  \tag{8}\\
& \delta_{\mathrm{inc}}^{*}=\int_{0}^{\infty}\left(1-\frac{\mathrm{u}}{\mathrm{u}_{\mathrm{e}}}\right) \mathrm{dy} \tag{9}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{\gamma}=\frac{1-\operatorname{erf}\left[5\left(\frac{\mathrm{y}}{\delta}-\mathrm{k}_{4}\right)\right]}{2} \tag{10}
\end{equation*}
$$

The boundary-layer thickness $\delta$ appearing in equation (10) is defined as the distance normal to the wall boundary where $u / u_{e}=0.995$. The empirical constants $k_{1}, k_{2}, k_{3}$, and $\mathrm{k}_{4}$ are assigned values of $0.4,0.0168,0.0$, and 0.78 , respectively. Note that for $\mathrm{k}_{3}=-1.0$, the kinematic-viscosity term is removed from equation (8) (XT5 = -1.0). The empirical constants $\mathrm{k}_{1}$ and $\mathrm{k}_{2}$ can easily be treated as functions of some correlation parameter, say $\delta_{\mathrm{W}}^{+}$, in order to account properly for low Reynolds number effects in hypersonic flows. (See ref. 13 for discussion of low Reynolds number effects.) The location of the boundary separating the two layers $y_{m}$ is determined from the continuity of eddy viscosity; that is, where

$$
\begin{equation*}
\left(\frac{\epsilon}{\mu}\right)_{\mathrm{i}}=\left(\frac{\epsilon}{\mu}\right)_{\mathrm{o}} \tag{11}
\end{equation*}
$$

Mixing-length model.- A mixing-length formulation is provided (KODVIS = 2) for those interested in utilizing experimental mixing-length distributions. (See ref. 13, for example.) The eddy-viscosity distribution across the boundary layer can be written as follows:

$$
\begin{equation*}
\frac{\epsilon}{\mu}=\frac{\rho}{\mu} \bar{l}^{2}\left|\frac{\partial \mathrm{u}}{\partial \mathrm{y}}\right| \tag{12}
\end{equation*}
$$

where the mixing length $\bar{l}$ may be written as

$$
\begin{equation*}
\frac{\bar{l}}{\delta}=\mathrm{D}_{\bar{\gamma} \mathrm{f}}\left(\frac{\mathrm{y}}{\bar{\delta}}\right) \tag{13}
\end{equation*}
$$

Currently, the simplest possible formulation is provided in the digital code for $f\left(\frac{y}{\delta}\right)$ as follows:

$$
\mathrm{f}\left(\frac{\mathrm{y}}{\delta}\right)=\left\{\begin{array}{ll}
0.4\left(\frac{\mathrm{y}}{\delta}\right) & \left(\frac{\mathrm{y}}{\delta} \leqq 0.2\right)  \tag{14}\\
0.08 & \left(\frac{\mathrm{y}}{\delta}>0.2\right)
\end{array}\right\}
$$

However, it should be noted that any functional variation can be utilized in the program.
Eddy conductivity and static turbulent Prandtl number. - The eddy conductivity defined as

$$
\begin{equation*}
\mathrm{k}_{\mathrm{T}}=-\mathrm{c}_{\mathrm{p}} \rho \frac{\overline{\mathrm{v}^{\prime} \mathrm{T}^{\prime}}}{\partial \mathrm{T} / \partial \mathrm{y}} \tag{15}
\end{equation*}
$$

is modeled as a static turbulent Prandtl number $\mathrm{N}_{\mathrm{Pr}, \mathrm{t}}$ as follows:

$$
\begin{equation*}
\mathrm{N}_{\operatorname{Pr}, \mathrm{t}}=\frac{\mathrm{c}_{\mathrm{p}} \epsilon}{\mathrm{k}_{\mathrm{T}}} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{P r, t}=\frac{\overline{\mathbf{u}^{\prime} \mathrm{v}^{\prime}}}{\overline{\mathrm{v}^{\prime} \mathrm{T}^{\prime}}}\left(\frac{\partial \mathrm{T} / \partial \mathrm{y}}{\partial \mathrm{u} / \partial \mathrm{y}}\right) \tag{17}
\end{equation*}
$$

Any desired functional relation for $N_{P r, t}=f\left(\frac{y}{\delta}\right)$ may be utilized in the digital code; three options are available. These options are (1) a constant, say $N_{p r, t}=0.95$, (2) an arbitrary distribution $N \operatorname{Pr,t}=f\left(\frac{y}{\delta}\right)$ supplied in tabular form, and (3) the Rotta distribution (see ref. 14) as follows:

$$
\begin{equation*}
N_{P r, t}=0.45\left[2-\left(\frac{y}{\delta}\right)^{2}\right] \tag{18}
\end{equation*}
$$

The system of equations is closed by the addition of the perfect-gas laws and a viscosity-temperature relation. The perfect-gas law is expressed as

$$
\begin{equation*}
\mathrm{P}=\rho \mathrm{R}_{\mathrm{g}} \mathrm{~T} \tag{19}
\end{equation*}
$$

Currently, the digital code is written to include the Sutherland viscosity-temperature relation for air (IGAS $=1$ )

$$
\begin{equation*}
\frac{\mu}{\mu_{r}}=\left(\frac{T}{T_{r}}\right)^{3 / 2}\left(\frac{T_{r}+S}{T+S}\right) \tag{20}
\end{equation*}
$$

as well as the power-law expression

$$
\begin{equation*}
\frac{\mu}{\mu_{\mathbf{r}}}=\left(\frac{\mathrm{T}}{\mathrm{~T}_{\mathbf{r}}}\right)^{\sigma} \tag{21}
\end{equation*}
$$

where $\sigma=0.647$ for helium (IGAS =2).
Transformed plane.- The system of governing equations is singular at $x=0$. The Probstein-Elliott (ref. 15) and Levy-Lees (ref. 16) transformation is used to remove this singularity as well as to reduce the growth of the boundary layer as the solution proceeds downstream. This transformation can be written as follows:

$$
\begin{align*}
& \xi(\mathrm{x})=\int_{0}^{\mathrm{x}} \rho_{\mathrm{e}^{\mathrm{u}}} \mathrm{e}^{\mu_{\mathrm{e}}} \mathrm{r}_{\mathrm{o}}^{2 \mathrm{j}} \mathrm{dx}  \tag{22a}\\
& \eta(\mathrm{x}, \mathrm{y})=\frac{\rho_{\mathrm{e}} \mathrm{u}_{\mathrm{e}} \mathrm{r}_{\mathrm{o}}^{\mathrm{j}}}{\sqrt{2 \xi}} \int_{0}^{\mathrm{y}} \mathrm{t}^{\mathrm{j}}\left(\frac{\rho}{\rho_{\mathrm{e}}}\right) \mathrm{dy} \tag{22b}
\end{align*}
$$

where the parameter $t$ appearing in equation (22b) is the transverse curvature term, defined as

$$
\begin{equation*}
\mathrm{t}=1+\frac{\mathrm{r}}{\mathrm{r}_{\mathrm{o}}} \tag{23a}
\end{equation*}
$$

or, in terms of the $y$-coordinate, as

$$
\begin{equation*}
\mathrm{t}=1+\frac{\mathrm{y}}{\mathrm{r}_{\mathrm{O}}} \cos \phi \tag{23b}
\end{equation*}
$$

The relation between derivatives in the physical ( $\mathrm{x}, \mathrm{y}$ ) and transformed ( $\xi, \eta$ ) coordinate system is as follows:

$$
\begin{align*}
& \left(\frac{\partial}{\partial \mathbf{x}}\right)_{\mathrm{y}}=\rho_{\mathrm{e}} \mathrm{u}_{\mathrm{e}} \mu_{\mathrm{e}} \mathrm{r}_{\mathrm{o}}^{2 \mathrm{j}}\left(\frac{\partial}{\partial \xi}\right)_{\eta}+\left(\frac{\partial \eta}{\partial \mathrm{x}}\right)\left(\frac{\partial}{\partial \eta}\right)_{\xi}  \tag{24a}\\
& \left(\frac{\partial}{\partial \mathbf{y}}\right)_{\mathrm{x}}=\frac{\rho_{\mathrm{e}} \mathrm{u}_{\mathrm{e}} \mathbf{r}_{\mathrm{o}}^{\mathrm{j}} \mathrm{t}}{\sqrt{2 \xi}}\left(\frac{\rho}{\rho_{\mathrm{e}}}\right)\left(\frac{\partial}{\partial \eta}\right)_{\xi} \tag{24b}
\end{align*}
$$

Two new parameters $F$ and $\Theta$ are introduced and defined as

$$
\left.\begin{array}{l}
F=\frac{u}{u_{e}}  \tag{25}\\
\Theta=\frac{T}{T_{e}}
\end{array}\right\}
$$

as well as a transformed normal velocity

$$
\begin{equation*}
\mathrm{V}=\frac{2 \xi}{\rho_{\mathrm{e}^{\mathrm{u}}} \mu_{\mathrm{e}} \mathrm{r}_{\mathrm{o}}^{2 \mathrm{j}}}\left[F\left(\frac{\partial \eta}{\partial \mathrm{x}}\right)+\frac{\rho \tilde{\mathrm{v}} \mathrm{r}_{\mathrm{o}}^{\mathrm{j}} \mathrm{t}^{\mathrm{j}}}{\sqrt{2 \xi}}\right] \tag{26}
\end{equation*}
$$

The governing equations in the transformed plane can then be expressed as follows:
Continuity

$$
\begin{equation*}
\frac{\partial V}{\partial \eta}+2 \xi \frac{\partial F}{\partial \xi}+F=0 \tag{27}
\end{equation*}
$$

## Momentum

$$
\begin{equation*}
2 \xi \mathrm{~F} \frac{\partial \mathbf{F}}{\partial \xi}+\mathrm{V} \frac{\partial \mathbf{F}}{\partial \eta}-\frac{\partial}{\partial \eta}\left(\mathrm{t}^{2 \mathrm{j}} l \bar{\epsilon} \frac{\partial \mathbf{F}}{\partial \eta}\right)+\beta\left(\mathbf{F}^{2}-\Theta\right)=0 \tag{28}
\end{equation*}
$$

Energy

$$
\begin{equation*}
2 \xi \mathrm{~F} \frac{\partial \Theta}{\partial \xi}+\mathrm{V} \frac{\partial \Theta}{\partial \eta}-\frac{\partial}{\partial \eta}\left(\mathrm{t}^{2 \mathrm{j}} \frac{l}{\mathrm{~N}_{\operatorname{Pr}}} \tilde{\epsilon} \frac{\partial \Theta}{\partial \eta}\right)-\alpha l \mathrm{t}^{2 \mathrm{j}} \bar{\epsilon}\left(\frac{\partial \mathrm{~F}}{\partial \eta}\right)^{2}=0 \tag{29}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
l=\frac{\rho \mu}{(\rho \mu)_{\mathrm{e}}} \\
\alpha=\frac{\mathrm{u}_{\mathrm{e}}^{2}}{\mathrm{c}_{\mathrm{p}} T_{\mathrm{e}}}  \tag{30}\\
\beta=\frac{2 \xi}{u_{\mathrm{e}}}\left(\frac{d u_{\mathrm{e}}}{\mathrm{~d} \xi}\right)
\end{array}\right\}
$$

By using the viscosity relations (eqs. (20) and (21)) and the equation of state (eq. (19)), the parameter $l$ can be written as follows:

$$
\begin{equation*}
l=\sqrt{\Theta}\left(\frac{1+\overline{\mathrm{S}}}{\Theta+\overline{\mathrm{S}}}\right) \tag{Aironly}
\end{equation*}
$$

$$
\begin{equation*}
l=(\Theta)^{\sigma-1.0} \tag{31b}
\end{equation*}
$$

(Power-law viscosity)
where $\bar{S}=S / T_{e}$.
The transverse-curvature term can be written in terms of the transformed variables as

$$
\begin{equation*}
\mathrm{t}= \pm\left(1+\frac{2 \sqrt{2 \xi} \cos \phi}{\rho_{\mathrm{e}^{\mathrm{u}}}} \int_{0}^{\eta} \frac{\rho_{\mathrm{e}}}{\rho} \mathrm{~d} \eta\right)^{1 / 2} \tag{32}
\end{equation*}
$$

The physical coordinate normal to the wall is obtained from the inverse transformation; namely,

$$
\begin{equation*}
\mathrm{y}=\frac{\mathrm{r}_{\mathrm{o}}}{\cos \phi}\left[-1 \pm\left(\frac{1+2 \sqrt{2 \xi} \cos \phi}{\rho_{\mathrm{e}^{\mathrm{u}^{2}}} \mathrm{r}_{\mathrm{o}}^{2 \mathrm{j}}} \int_{0}^{\eta} \Theta \mathrm{d} \eta\right)^{1 / 2}\right] \tag{33}
\end{equation*}
$$

The positive sign is used in equations (32) and (33) for axisymmetric flow over bodies of revolution (SIGN $=1.0$ ), and the negative sign is used for flow inside axisymmetric ducts (SIGN $=-1.0$ ).

The boundary conditions in the transformed plane are as follows:
Wall boundary

$$
\left.\begin{array}{l}
\mathrm{F}(\xi, 0)=0  \tag{34a}\\
\mathrm{~V}(\xi, 0)=\mathrm{V}_{\mathrm{W}}(\xi) \\
\Theta(\xi, 0)=\Theta_{\mathrm{W}}(\xi)
\end{array}\right\}
$$

or

$$
\left(\frac{\partial \Theta}{\partial \eta}\right)_{\xi, 0}=\left(\frac{\partial \Theta}{\partial \eta}\right)_{\mathrm{w}}
$$

Edge conditions

$$
\left.\begin{array}{l}
\mathrm{F}\left(\xi, \eta_{\mathrm{e}}\right)=1 \\
\Theta\left(\xi, \eta_{\mathrm{e}}\right)=1 \tag{34b}
\end{array}\right\}
$$

The boundary condition at the wall for the transformed $V$ component can be related to the physical plane as (see ref. 7)

$$
\begin{equation*}
\mathrm{V}_{\mathrm{w}}=\frac{\sqrt{2 \xi}}{\mu_{\mathrm{e}} \mathrm{r}_{\mathrm{o}}^{2 \mathrm{j}}}\left(\frac{\rho_{\mathrm{w}} \mathrm{v}_{\mathrm{w}}}{\rho_{\mathrm{e}^{\mathrm{u}}}}\right) \tag{35}
\end{equation*}
$$

Transition location.- Many parameters influence the location of transition. These parameters are discussed in an extensive review presented in reference 17. (See also ref. 7.)

It is not currently possible to predict with assurance the location of transition for a general geometry; however, for some particular classes of flow such as those caused by sharp cones, empirical correlations are available which can be used with confidence providing it is realized that a probable range of transition locations is being predicted and not an exact fixed point. (See ref. 7.) In the present digital code either the transition location (SST) or the stability index (SMXTR) must be specified; however, any correlation relation may be directly incorporated into the program if desired.

Transition extent.- The assumption of a universal intermittency distribution implies that the transition-zone length (transition extent) can be expressed as a function of the transition Reynolds number, $\mathrm{u}_{\mathrm{e}} \mathrm{x}_{\mathrm{t}, \mathrm{i}} / \nu_{\mathrm{e}}$. In reference 18 it is shown, for the transition data considered, that the data are represented on the average by the equation

$$
\begin{equation*}
R_{e, \Delta x_{t}}=5\left(R_{e, x_{t, i}}\right)^{0.8} \tag{36}
\end{equation*}
$$

where $R_{e, \Delta x_{t}}=\frac{u_{e}}{\nu_{e}}\left(x_{t, f}-x_{t, i}\right)$. The location of the end of transition, $x_{t, f}$ can then be obtained directly from equation (36) as follows:

$$
\begin{equation*}
x_{t, f}=x_{t, i}+5 R_{e}^{-1}\left(R_{e, x_{t, i}}\right)^{0.8} \tag{37}
\end{equation*}
$$

where $R_{e}$ is the local unit Reynolds number, $u_{e} / \nu_{e}$.
In the present digital code, due to the lack of general correlations for the extent of transition, this quantity $\left(x_{t, f}-x_{t, i}\right)$ can be specified in one of two ways: (1) from equation (37) (KTCOD = 1), or (2) from the specification of $x_{t, f} / x_{t, i}$ obtained from experimental data (TLNGTH, KTCOD = 2). It should be noted that the digital code can be modified to include any desired correlation or equation in place of equation (37).

Intermittency distribution.- The parameter $\Gamma$ appearing in equations (4) and (5) represents the streamwise intermittency distribution which models the turbulent spot
distribution in the transitional region; the parameter $\Gamma$ is a function of the x -coordinate only and is defined as follows (see ref. 18):

$$
\begin{equation*}
\Gamma(\bar{\xi})=1-\exp \left(-0.412 \bar{\xi}^{2}\right) \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\xi}=\frac{\mathrm{x}-\mathrm{x}_{\mathrm{t}, \mathrm{i}}}{\lambda} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda=(\mathrm{x})_{\Gamma=3^{4}}{ }^{-(\mathrm{x})} \Gamma=\frac{1}{4} \tag{40}
\end{equation*}
$$

It should be noted that $\Gamma=0$ for laminar flow, $\quad \Gamma=1$ for fully turbulent flow, and $\Gamma$ ranges from 0 to 1 through the transitional-flow region. Equations (1) to (3) reduce to the classical laminar boundary-layer equations when $\Gamma$ is set to zero. (See ref. 19.)

## Numerical Solution of the Governing Equations

The system of governing equations (eqs. (19) to (21) and (27) to 29)) is parabolic and, therefore, can be numerically integrated in a step-by-step procedure in the streamwise direction. In order to cast the equations into a form in which the step-by-step procedure can be efficiently used, the derivatives with respect to $\xi$ and $\eta$ are replaced by finitedifference quotients. The method of linearization and solution used in the analysis closely parallels that of references 9 and 11.

Finite-difference mesh model.- It has been shown for laminar boundary layers that equally spaced grid points can be used in the normal coordinate direction. (See refs. 9 and 11.) However, for transitional and turbulent boundary layers the use of equally spaced grid points is not practical because the fine-mesh size required to obtain accurate results near the wall boundary is inefficient for the entire boundary layer. The gridpoint spacing in the $\eta$-direction used in the program is such that the ratio of any two successive strips is a constant; that is, the successive $\Delta \eta_{i}$-coordinates form a geometric progression. In constructing the difference quotients, the sketch of the grid-point distribution presented in figure 2 is useful for reference. The dependent variables $F, \Theta$, and V are assumed known at each of the N grid points along the $\mathrm{m}-1$ and m stations, but are unknown at station $\mathrm{m}+1$. The $\Delta \xi_{1}$ and $\Delta \xi_{2}$ values, not specified to be equal, are obtained from the specified $x$ values $\left(x_{m-1}, x_{m}, x_{m+1}\right)$ and from equation (22a). The relationship between the $\Delta \eta_{i}$-coordinates for the chosen grid-point spacing is given by the following equation (see ref. 1):

$$
\begin{equation*}
\Delta \eta_{\mathrm{i}}=(\mathrm{k})^{\mathrm{i}-1} \Delta \eta_{1} \tag{41}
\end{equation*}
$$

$$
(i=1,2,3, \ldots, N)
$$

where $k$ is the ratio of any two successive steps (XK), $\Delta \eta_{1}$ is the spacing between the second grid point and the wall (note that the first grid point is at the wall boundary), and N denotes the total number of grid points across the chosen $\eta$ strip. The total thickness of the $\eta$ strip can then be expressed as follows:

$$
\eta_{\mathrm{N}}=\Delta \eta_{\mathrm{i}}\left[\frac{1-(\mathrm{k})^{\mathrm{N}-1}}{1-\mathrm{k}}\right]
$$

The selection of the optimum $k$ and $N$ values for a specified $\eta_{N}$-coordinate depends upon the particular problem under consideration. The main objective in the selection is to obtain the minimum number of grid points with which a convergent solution may be obtained and thereby minimize the computer-processing time for each test case. The laminar boundary layer presents no problem since $a k$ value of unity is acceptable; however, for transitional or turbulent layers, the value of $k$ will be a number slightly greater than unity, say between 1.02 and 1.04. If transitional or turbulent flow occurs in a given problem, the laminar portion of the boundary layer is calculated with the value of k used for the turbulent region; that is, for a given problem, $k$ is invariant.

Difference equations.- Three-point implicit difference relations (see appendix A) are used to reduce the transformed momentum and energy equations (eqs. (28) and (29), respectively) to finite-difference form. The difference quotients produce linear difference equations when substituted into the momentum and energy equations provided truncation terms of the order $\Delta \xi_{\mathrm{m}-1} \Delta \xi_{\mathrm{m}}$ and $\Delta \eta_{\mathrm{n}-1} \Delta \eta_{\mathrm{n}}$ are neglected. (It should be noted that the truncation term for $\partial^{2} \mathrm{~F} / \partial \eta^{2}$ is of the order $\Delta \eta_{\mathrm{n}-1}-\Delta \eta_{\mathrm{n}}$.) The resulting difference equations may be written as follows:

$$
\begin{align*}
& \mathrm{A} 1_{\mathrm{n}} \mathrm{~F}_{\mathrm{m}+1, \mathrm{n}-1}+\mathrm{B} 1_{\mathrm{n}} \mathrm{~F}_{\mathrm{m}+1, \mathrm{n}}+\mathrm{C} 1_{\mathrm{n}} \mathrm{~F}_{\mathrm{m}+1, \mathrm{n}+1}+\mathrm{D} 1_{\mathrm{n}} \Theta_{\mathrm{m}+1, \mathrm{n}-1} \\
& +\mathrm{E} 1_{\mathrm{n}} \Theta_{\mathrm{m}+1, \mathrm{n}}+\mathrm{F} 1_{\mathrm{n}} \Theta_{\mathrm{m}+1, \mathrm{n}+1}=\mathrm{G} 1_{\mathrm{n}}  \tag{43a}\\
& \mathrm{~A} 2_{\mathrm{n}} \mathrm{~F}_{\mathrm{m}+1, \mathrm{n}-1}+\mathrm{B} 2_{\mathrm{n}} \mathrm{~F}_{\mathrm{m}+1, \mathrm{n}}+\mathrm{C} 2_{\mathrm{n}} \mathrm{~F}_{\mathrm{m}+1, \mathrm{n}+1}+\mathrm{D} 2_{\mathrm{n}} \Theta_{\mathrm{m}+1, \mathrm{n}-1} \\
& +\mathrm{E} 2_{\mathrm{n}} \Theta_{\mathrm{m}+1, \mathrm{n}}+\mathrm{F} 2_{\mathrm{n}} \Theta_{\mathrm{m}+1, \mathrm{n}+1}=\mathrm{G} 2_{\mathrm{n}} \tag{43b}
\end{align*}
$$

The coefficients $\mathrm{A} 1_{n}, B 1_{n}, \ldots, G 1_{n}$ and $A 2_{n}, B 2_{n}, \ldots, G 2_{n}$ (see appendix $B$ ) are functions of known quantities at stations m and $\mathrm{m}-1$. It is important to note that equations (43)
are coupled through the dependent variables $F$ and $\Theta$; however, the dependent variable $V$ does not appear explicitly as an unknown at station $m+1$. The variable $V$ is uncoupled from the system because of the particular way that the nonlinear terms $V \frac{\partial F}{\partial \eta}$ and $\mathrm{V} \frac{\partial \Theta}{\partial \eta}$ (see eqs. (28) and (29), respectively) are linearized. (See eq. (A23).)

Solution of difference equations.- The system of difference equations (eqs. (43)) represents a set of exactly $2(\mathrm{~N}-1$ ) linear algebraic equations for $2(\mathrm{~N}-1)$ unknowns. The proper boundary conditions to be used with the difference equations are specified in equations (34). The $2(\mathrm{~N}-1)$ linear algebraic equations may be written in tridiagonal matrix form; consequently, an efficient algorithm (Gaussian elimination) is available for simultaneous solution.

The simultaneous or coupled-solution technique is presented in appendix B of reference 9 ; however, because of differences between the present work and that presented in reference 9 , the solution technique is discussed here in some detail.

Because of the special form of equations (43), the following relations exist (see ref. 20):

$$
\begin{align*}
& F_{m+1, n-1}=P_{m+1, n-1}^{(1)}+P_{m+1, n-1}^{(2)} F_{m+1, n}+P_{m+1, n-1}^{(3)} \Theta_{m+1, n}  \tag{44a}\\
& \Theta_{m+1, n-1}=Q_{m+1, n-1}^{(1)}+Q_{m+1, n-1}^{(2)} F_{m+1, n}+Q_{m+1, n-1}^{(3)} \Theta_{m+1, n} \tag{44b}
\end{align*}
$$

Next, equations (44) are substituted into equations (43) to obtain the following relations:

$$
\begin{align*}
\mathrm{B} 1_{\mathrm{m}+1, \mathrm{n}}^{*} \mathrm{~F} \mathrm{~m}_{\mathrm{m} 1, \mathrm{n}}+\mathrm{E} 1_{\mathrm{m}+1, \mathrm{n}}^{*} \Theta_{\mathrm{m}+1, \mathrm{n}}= & \mathrm{G} 1_{\mathrm{m}+1, \mathrm{n}}^{*}-\mathrm{C} 1_{\mathrm{m}+1, \mathrm{n}} \mathrm{~F}_{\mathrm{m}+1, \mathrm{n}+1} \\
& -\mathrm{F} 1_{\mathrm{m}+1, \mathrm{n}} \Theta_{\mathrm{m}+1, \mathrm{n}+1}  \tag{45a}\\
\mathrm{~B} 2_{\mathrm{m}+1, \mathrm{n}}^{*} \mathrm{~F}_{\mathrm{m}+1, \mathrm{n}}+\mathrm{E} 2_{\mathrm{m}+1, \mathrm{n}}^{*} \Theta_{\mathrm{m}+1, \mathrm{n}}= & \mathrm{G} 2_{\mathrm{m}+1, \mathrm{n}}^{*}-\mathrm{C} 2_{\mathrm{m}+1, \mathrm{n}} \mathrm{~F}_{\mathrm{m}+1, \mathrm{n}+1} \\
& -\mathrm{F} 1_{\mathrm{m}+1, \mathrm{n}} \Theta_{\mathrm{m}+1, \mathrm{n}+1} \tag{45b}
\end{align*}
$$

where

$$
\begin{align*}
& \mathrm{B}{\underset{m+1, n}{*}=\mathrm{B} 1_{\mathrm{m}+1, \mathrm{n}}+\mathrm{A} 1_{\mathrm{m}+1, \mathrm{n}} \mathrm{P}_{\mathrm{m}+1, \mathrm{n}-1}^{(2)}+\mathrm{D} 1_{\mathrm{m}+1, \mathrm{n}} \mathrm{Q}_{\mathrm{m}+1, \mathrm{n}-1}^{(2)}}_{\mathrm{E} 1_{\mathrm{m}+1, \mathrm{n}}^{*}=\mathrm{E} 1_{\mathrm{m}+1, \mathrm{n}}+\mathrm{A} 1_{\mathrm{m}+1, \mathrm{n}^{2}} \mathrm{P}_{\mathrm{m}+1, \mathrm{n}-1}^{(3)}+\mathrm{D} 1_{\mathrm{m}+1, \mathrm{n}} \mathrm{Q}_{\mathrm{m}+1, \mathrm{n}-1}^{(3)}} . \tag{46a}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{G} 1_{\mathrm{m}+1, \mathrm{n}}^{*}=\mathrm{G} 1_{\mathrm{m}+1, \mathrm{n}}-\mathrm{A} 1_{\mathrm{m}+1, \mathrm{n}} \mathrm{P}_{\mathrm{m}+1, \mathrm{n}-1}^{(1)}-\mathrm{D} 1_{\mathrm{m}+1, \mathrm{n}} \mathrm{Q}_{\mathrm{m}+1, \mathrm{n}-1}^{(1)}  \tag{46c}\\
& \mathrm{B} 2_{\mathrm{m}+1, \mathrm{n}}^{*}=\mathrm{B} 2_{\mathrm{m}+1, \mathrm{n}}+\mathrm{A} 2_{\mathrm{m}+1, \mathrm{n}} \mathrm{P}_{\mathrm{m}+1, \mathrm{n}-1}^{(2)}+\mathrm{D} 2_{\mathrm{m}+1, \mathrm{n}} \mathrm{Q}_{\mathrm{m}+1, \mathrm{n}-1}^{(2)}  \tag{46d}\\
& \mathrm{E} 2_{\mathrm{m}+1, \mathrm{n}}^{*}=\mathrm{E} 2_{\mathrm{m}+1, \mathrm{n}}+\mathrm{A} 2_{\mathrm{m}+1, \mathrm{n}} \mathrm{P}_{\mathrm{m}+1, \mathrm{n}-1}^{(3)}+\mathrm{D} 2_{\mathrm{m}+1, \mathrm{n}} \mathrm{Q}_{\mathrm{m}+1, \mathrm{n}-1}^{(3)} \tag{46e}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{G} 2_{\mathrm{m}+1, \mathrm{n}}^{*}=\mathrm{G} 2_{\mathrm{m}+1, \mathrm{n}}-\mathrm{A} 2_{\mathrm{m}+1, \mathrm{n}} \mathrm{P}_{\mathrm{m}+1, \mathrm{n}-1}^{(1)}-\mathrm{D} 2_{\mathrm{m}+1, \mathrm{n}} \mathrm{Q}_{\mathrm{m}+1, \mathrm{n}-1}^{(1)} \tag{46f}
\end{equation*}
$$

The unknown values of $F$ and $\Theta$ at station $m+1, n$ are obtained from equations (45) as follows:

$$
\begin{align*}
& F_{m+1, n}=P_{m+1, n}^{(1)}+P_{m+1, n}^{(2)} F_{m+1, n+1}+P_{m+1, n}^{(3)} \Theta_{m+1, n+1}  \tag{47a}\\
& \Theta_{m+1, n}=Q_{m+1, n}^{(1)}+Q_{m+1, n}^{(2)} F_{m+1, n+1}+Q_{m+1, n}^{(3)} \Theta_{m+1, n+1} \tag{47b}
\end{align*}
$$

where

$$
\begin{align*}
& P_{m+1, n}^{(1)}=\left(E 2_{m+1, n}^{*} G 1_{m+1, n}^{*}-E 1_{m+1, n}^{*} G 2_{m+1, n}^{*}\right) \Delta_{m+1, n}^{*}  \tag{48a}\\
& P_{m+1, n}^{(2)}=\left(E 1_{m+1, n}^{*} C 2_{m+1, n}-E 2_{m+1, n}^{*} C 1_{m+1, n}\right) \Delta_{m+1, n}^{*}  \tag{48b}\\
& P_{m+1, n}^{(3)}=\left(E 1_{m+1, n}^{*} F 2_{m+1, n}-E 2_{m+1, n}^{*} F 1_{m+1, n}\right) \Delta_{m+1, n}^{*}  \tag{48c}\\
& Q_{m+1, n}^{(1)}=\left(B 1_{m+1, n}^{*} G 2_{m+1, n}^{*}-B 2_{m+1, n}^{*} G 1_{m+1, n}^{*}\right) \Delta_{m+1, n}^{*}  \tag{48d}\\
& Q_{m+1, n}^{(2)}=\left(B 2_{m+1, n}^{*} C 1_{m+1, n}-B 1_{m+1, n}^{*} C 2_{m+1, n}\right) \Delta_{m+1, n}^{*}  \tag{48e}\\
& Q_{m+1, n}^{(3)}=\left(B 2_{m+1, n}^{*} F 1_{m+1, n}-B 1_{m+1, n}^{*} F 2_{m+1, n}\right) \Delta_{m+1, n}^{*} \tag{48f}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta_{\mathrm{m}+1, \mathrm{n}}^{*}=\frac{1}{\left(\mathrm{~B} 1_{\mathrm{m}+1, \mathrm{n}}^{*} \mathrm{E} 2_{\mathrm{m}+1, \mathrm{n}}^{*}-\mathrm{B} 2_{\mathrm{m}+1, \mathrm{n}}^{*} \mathrm{E} 1_{\mathrm{m}+1, \mathrm{n}}^{*}\right)} \tag{48~g}
\end{equation*}
$$

Next, equations (44) are rewritten as follows (where $n=n+1$ )

$$
\begin{align*}
& F_{m+1, n}=P_{m+1, n}^{(1)}+P_{m+1, n}^{(2)} F_{m+1, n+1}+P_{m+1, n}^{(3)} \Theta_{m+1, n+1}  \tag{49a}\\
& \Theta_{m+1, n}=Q_{m+1, n}^{(1)}+Q_{m+1, n}^{(2)} F_{m+1, n+1}+Q_{m+1, n}^{(3)} \Theta_{m+1, n+1} \tag{49b}
\end{align*}
$$

The "no-slip" boundary condition ( $\mathrm{F}_{\mathrm{m}+1,1}=0$ ) is applied at the wall boundary to obtain the values of $P_{m+1,1}^{(i)}$ where $i=1,2,3$; that is,

$$
\begin{equation*}
\mathrm{P}_{\mathrm{m}+1,1}^{(1)}=\mathrm{P}_{\mathrm{m}+1,1}^{(2)}=\mathrm{P}_{\mathrm{m}+1,1}^{(3)}=0 \tag{50}
\end{equation*}
$$

The thermal condition at the wall boundary may be specified in one of two ways:
(1) specified wall-temperature distribution, or (2) specified heat-transfer distribution.

For a specified wall-temperature distribution it can be seen directly from equation (49b) that

$$
\left.\begin{array}{l}
Q_{\mathrm{m}+1,1}^{(1)}=\Theta_{\mathrm{m}+1,1}  \tag{51}\\
\mathrm{Q}_{\mathrm{m}+1,1}^{(2)}=\mathrm{Q}_{\mathrm{m}+1,1}^{(3)}=0
\end{array}\right\}
$$

The case in which a heat-transfer distribution is specified presents a more difficult problem; however, this class of flows is often of interest. (For example, consider adiabatic flows.)

The heat transfer at the wall boundary can be written in the transformed plane as follows (see ref. 7):

$$
\begin{equation*}
\mathrm{q}_{\mathrm{m}+1,1}=\frac{-\mu_{\mathrm{r}} \mathrm{u}_{\mathrm{r}}^{2}}{\omega \mathrm{~L}}\left(\frac{\rho_{\mathrm{e}}^{\mathrm{u}_{\mathrm{e}} \mathrm{~T}_{\mathrm{c}} \mu_{\mathrm{e}} \mathrm{r}_{\mathrm{o}}^{\mathrm{j}}}}{\mathrm{~N}_{\operatorname{Pr}} \sqrt{2 \xi}}\right)_{\mathrm{m}+1, \mathrm{~N}} l_{\mathrm{m}+1,1}\left(\frac{\partial \Theta}{\partial \eta}\right)_{\mathrm{m}+1,1} \tag{52}
\end{equation*}
$$

Then, for a specified value of $\mathrm{q}_{\mathrm{m}+1,1}$, the gradient of $\Theta$ can be obtained directly as follows:

$$
\begin{equation*}
\left(\frac{\partial \Theta}{\partial \eta}\right)_{\mathrm{m}+1,1}=-\mathrm{q}_{\mathrm{m}+1,1}\left(\frac{\omega \mathrm{~L}}{\mu_{\mathrm{r}} \mathrm{u}_{\mathrm{r}}^{2}}\right)\left(\frac{\mathrm{N}_{\mathrm{Pr}} \sqrt{2 \xi}}{\rho_{\mathrm{e}} \mathrm{u}_{\mathrm{e}} \mathrm{~T}_{\mathrm{e}} \mu_{\mathrm{e}} \mathrm{r}_{\mathrm{o}}^{\mathrm{j}}}\right)_{\mathrm{m+1,N}}\left(\frac{1}{l}\right)_{\mathrm{m}+1,1} \tag{53}
\end{equation*}
$$

For the grid-point spacing used in the analysis (geometric progression, see eq. (41)), the gradient of $\Theta$ evaluated at the wall, by using a 3-point relation, is as follows:

$$
\begin{equation*}
\left(\frac{\partial \Theta}{\partial \eta}\right)_{\mathrm{m}+1,1}=\frac{\left[1-(1+\mathrm{k})^{2}\right] \Theta_{\mathrm{m}+1,1}+(1+\mathrm{k})^{2} \Theta_{\mathrm{m}+1,2}-\Theta_{\mathrm{m}+1,3}}{\mathrm{k}(1+\mathrm{k}) \Delta \eta_{1}} \tag{54}
\end{equation*}
$$

Equations (53) and (54) then yield the following expression for $\Theta_{m+1,1}$ :

$$
\begin{equation*}
\Theta_{\mathrm{m}+1,1}=\frac{\mathrm{k}(1+\mathrm{k}) \Delta \eta_{1}}{1-(1+\mathrm{k})^{2}}\left(\frac{\partial \Theta}{\partial \eta}\right)_{\mathrm{m}+1,1}-\frac{(1+\mathrm{k})^{2}}{1-(1+\mathrm{k})^{2}} \Theta_{\mathrm{m}+1,2}+\frac{1}{1-(1+\mathrm{k})^{2}} \Theta_{\mathrm{m}+1,3} \tag{55}
\end{equation*}
$$

where $\left(\frac{\partial \Theta}{\partial \eta}\right)_{m+1,1}$ is evaluated from equation (53). Equations (43) are next written at the $m+1,2$ point to obtain two equations in terms of $F_{m+1, n}$ and $\Theta_{m+1, n}$ where $\mathrm{n}=1,2,3$. (Note that $\mathrm{F}_{\mathrm{m}+1,1}=0$.) The quantity $\mathrm{F}_{\mathrm{m}+1,3}$ is next eliminated from these two equations to obtain one equation in terms of $F_{m+1,2}$ and $\Theta_{m+1, n}$ where $n=1,2,3$. The quantity $\Theta_{m+1,3}$ is next eliminated through use of equation (55) to obtain the relation

$$
\begin{equation*}
\Theta_{\mathrm{m}+1,1}=\overline{\mathrm{Q}}_{\mathrm{m}+1,1}^{(1)}+\overline{\mathrm{Q}}_{\mathrm{m}+1,1}^{(2)} \mathrm{F}_{\mathrm{m}+1,2}+\overline{\mathrm{Q}}_{\mathrm{m}+1,1}^{(3)} \Theta_{\mathrm{m}+1,2} \tag{56}
\end{equation*}
$$

where

$$
\begin{align*}
& \overline{\mathrm{Q}}_{\mathrm{m}+1,1}^{(1)}=\frac{[(\mathrm{C} 2)(\mathrm{G} 1)-(\mathrm{C} 1)(\mathrm{G} 2)]_{\mathrm{m}+1,2}+[(\mathrm{C} 2)(\mathrm{F} 1)-(\mathrm{C} 1)(\mathrm{F} 2)]_{\mathrm{m}+1,2}\left[\mathrm{k}(1+\mathrm{k}) \Delta \eta_{1}\right]\left(\frac{\partial \Theta}{\partial \eta}\right)_{\mathrm{m}+1,1}}{\Delta_{\mathrm{m}+1,2}}  \tag{57a}\\
& \overline{\mathrm{Q}}_{\mathrm{m}+1,1}^{(2)}=\frac{[(\mathrm{C} 1)(\mathrm{B} 2)-(\mathrm{C} 2)(\mathrm{B} 1)]_{\mathrm{m}+1,2}}{\Delta_{\mathrm{m}+1,2}}  \tag{57b}\\
& \overline{\mathrm{Q}}_{\mathrm{m}+1,1}^{(3)}=\frac{[(\mathrm{C} 1)(\mathrm{E} 2)-(\mathrm{C} 2)(\mathrm{E} 1)]_{\mathrm{m}+1,2}+[(\mathrm{C} 1)(\mathrm{F} 2)-(\mathrm{C} 2)(\mathrm{F} 1)]_{\mathrm{m}+1,2}{ }^{(1+\mathrm{k})^{2}}}{\Delta_{\mathrm{m}+1,2}} \tag{57c}
\end{align*}
$$

and

$$
\begin{equation*}
\Delta_{\mathrm{m}+1,2}=\left\{[(\mathrm{C} 2)(\mathrm{D} 1)-(\mathrm{C} 1)(\mathrm{D} 2)]+[(\mathrm{C} 2)(\mathrm{F} 1)-(\mathrm{C} 1)(\mathrm{F} 2)]\left[1-(1+\mathrm{k})^{2}\right]\right\}_{\mathrm{m}+1,2} \tag{57d}
\end{equation*}
$$

By comparing equations (49b) and (56) it is observed that

$$
\begin{equation*}
Q_{m+1,1}^{(\mathrm{i})}=\bar{Q}_{m+1,1}^{(\mathrm{i})} \tag{58}
\end{equation*}
$$

$$
(i=1,2,3)
$$

which completes the desired boundary condition for the case of a specified heat-transfer distribution along the wall boundary. The temperature at the wall is obtained directly from equation (55) once $\Theta_{m+1,2}$ and $\Theta_{m+1,3}$ are known.

The quantities $P_{m+1, n}^{(i)}$ and $Q_{m+1, n}^{(i)}$ where $i=1,2,3$ (see eqs. (49)) must first be determined across the boundary layer at the $m+1$ station where $n=1,2, \ldots, N$. These quantities are calculated by the following procedure:
(1) Perform the following steps at the first grid point away from the wall $(\mathrm{n}=2)$ :
(a) Calculate $\mathrm{A1}_{2}, \mathrm{B1}_{2}, \ldots, \mathrm{G1}_{2}$ from equations (B3) to (B9).
(b) Calculate $\mathrm{A} 2_{2}, \mathrm{~B} 2_{2}, \ldots, \mathrm{G} 2_{2}$ from equations (B10) to (B16).
(c) By using the results from steps (a) and (b) and the boundary conditions (eqs. (50) and (51) or (57)), calculate $\quad \mathrm{B} 1_{2}^{*}, \quad \mathrm{~B} 2_{2}^{*}, \quad \mathrm{E} 1_{2}^{*}, \mathrm{E} 2_{2}^{*}, \quad \mathrm{G} 1_{2}^{*}$, and G2 ${ }_{2}^{*}$ from equations (46).
(d) By using the results from steps (a) to (c), calculate $P_{2}^{(i)}$ and $Q_{2}^{(i)}$ where $i=1,2,3$ from equations (48).
(2) The procedure outlined in step (1) is now repeated at grid point with $n=3$ by using the results obtained at $n=2$. This procedure is repeated until the entire boundary layer is traversed ( $n=N$ ) and all values of $P_{m+1, n}^{(i)}$ and $Q_{m+1, n}^{(i)}$ are determined where $i=1,2,3$ and $n=2,3,4, \ldots, N$.
(3) By knowing the values of $P_{m+1, n}^{(i)}$ and $Q_{m+1, n}^{(i)}$ where $i=1,2,3$ and $n=2,3,4, \ldots, N$, the values of $F_{m+1, n}$ and $\Theta_{m+1, n}$ where $n=N-1, N-2, \ldots, 2$ are calculated from equations (47). It should be noted that $F_{m+1, N}$ and $\Theta_{\mathrm{m}+1, \mathrm{~N}}$ are specified edge boundary conditions (eqs. (34b)). The wallboundary values of $F$ and $\Theta$ are obtained from equations (34a) or equation (55) for the case of a specified wall-boundary heat-transfer distribution. Before the computations can proceed downstream, the transformed velocity $\mathrm{V}_{\mathrm{m}+1, \mathrm{n}}$ must be determined across the boundary layer where $\mathrm{n}=2,3, \ldots, \mathrm{~N}$. This requires the solution of the continuity equation. (See eq. (27).)
Solution of continuity equation. - The continuity equation (eq. (27)) is solved numerically for the $N-1$ unknown values of $V$ at station $m+1$. Equation (27) is integrated once to yield the following relation for $V_{m+1, n}$ :

$$
\begin{equation*}
\mathrm{V}_{\mathrm{m}+1, \mathrm{n}}=\mathrm{V}_{\mathrm{m}+1,1}-\int_{0}^{\eta_{\mathrm{n}}}\left(2 \xi \frac{\partial \mathrm{~F}}{\partial \xi}+\mathrm{F}\right)_{\mathrm{m}+1} \mathrm{~d} \eta \tag{59}
\end{equation*}
$$

where $\mathrm{V}_{\mathrm{m}+1,1}$ represents the boundary condition at the wall $\mathrm{V}_{\mathrm{w}}$. (See eq. (35).) The integral appearing in equation (59) is numerically integrated across the $\eta$-strip to obtain the N-1 values of $V$. In the present program the trapezoidal rule of integration is used.

Initial profiles.- Initial profiles for starting the finite-difference scheme are required at two $x$-stations since three-point differences are utilized. The initial profiles at the stagnation point or line for blunt bodies, or near $x=0$ for sharp-tipped bodies, are obtained by numerically solving the similar boundary-layer equations. (See eqs. (B47) to (B49).) The equations are solved by a fourth-order Runge-Kutta scheme with a Newton iteration method to modify the initial estimates of the gradients of $F$ and $\Theta$ evaluated at the wall boundary. The $N-1$ values of $F, \Theta$, and $V$ obtained at the equally spaced N-1 grid points are numerically redistributed to $N-1$ grid points whose spacing is determined from equations (41) and (42) if a variable spacing is required. (As noted previously, variable spacing is required if transitional or turbulent flow occurs.) The second initial profile located at station m is assumed identical to the one located at station $\mathrm{m}-1$. Any errors that might be incurred because of this assumption are minimized by using an extremely small value of $\Delta \xi$; that is, an initial step size in the physical plane on the order of $\Delta x=1 \times 10^{-5}$ is used. The solution at the unknown station $m+1$ is then obtained by the finite-difference method. Extremely small, equally spaced $\Delta \xi-$ steps are used in the region of the initial profile. The step size is increased after errors due to the starting procedure have approached zero, that is, after 10 to 15 steps in $\Delta \xi$.

Evaluation of wall derivatives.- The shear stress and heat transfer at the wall are directly proportional to the gradient of $F$ and $\Theta$ evaluated at the wall, respectively. By using $G$ to represent a general quantity, where $G_{m+1,1}$ is the value of $G$ evaluated at the wall, the four-point difference scheme used to evaluate derivatives at the wall is given as

$$
\begin{equation*}
\left(\frac{\partial \mathrm{G}}{\partial \eta}\right)_{\mathrm{m}+1,1}=\mathrm{Y}_{7} \mathrm{G}_{\mathrm{m}+1,1}+\mathrm{Y}_{8} \mathrm{G}_{\mathrm{m}+1,2}+\mathrm{Y}_{9} \mathrm{G}_{\mathrm{m}+1,3}+\mathrm{Y}_{10} \mathrm{G}_{\mathrm{m}+1,4} \tag{60}
\end{equation*}
$$

where the coefficients $Y_{7}, \ldots, Y_{10}$ are defined by the following relations:

$$
\begin{equation*}
Y_{7}=-\frac{\left(1+k+k^{2}\right)^{2}[k(1+k)-1]+(1+k)}{(1+k)\left(1+k+k^{2}\right) k^{3} \Delta \eta_{1}} \tag{61a}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{Y}_{8}=\frac{\left(1+\mathrm{k}+\mathrm{k}^{2}\right)}{\mathrm{k}^{2} \Delta \eta_{1}}  \tag{61b}\\
& \mathrm{Y}_{9}=-\frac{\left(1+\mathrm{k}+\mathrm{k}^{2}\right)}{(1+\mathrm{k}) \mathrm{k}^{3} \Delta \eta_{1}} \tag{61c}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{Y}_{10}=\frac{1}{\left(1+\mathrm{k}+\mathrm{k}^{2}\right) \mathrm{k}^{3} \Delta \eta_{1}} \tag{61d}
\end{equation*}
$$

For the case of equally spaced grid points in the $\eta$-direction ( $k=1$ ), equations (61) become

$$
\begin{align*}
& \mathrm{Y}_{7}=-\frac{11}{6 \Delta \eta}  \tag{62a}\\
& \mathrm{Y}_{8}=\frac{18}{6 \Delta \eta}  \tag{62b}\\
& \mathrm{Y}_{9}=-\frac{9}{6 \Delta \eta}  \tag{62c}\\
& \mathrm{Y}_{10}=\frac{2}{6 \Delta \eta} \tag{62d}
\end{align*}
$$

and equation (60) reduces to the familiar four-point relation; that is,

$$
\begin{equation*}
\left(\frac{\partial \mathrm{G}}{\partial \eta}\right)_{\mathrm{m}+1,1}=-\frac{1}{6 \Delta \eta}\left(11 \mathrm{G}_{\mathrm{m}+1,1}-18 \mathrm{G}_{\mathrm{m}+1,2}+9 \mathrm{G}_{\mathrm{m}+1,3}-2 \mathrm{G}_{\mathrm{m}+1,4}\right) \tag{63}
\end{equation*}
$$

## PROGRAM DESCRIPTION

## General Discussion

The program, written in FORTRAN IV for the CDC 6000 series computers, consists of three main programs, D2390, D23901, and D2401. Program D2390 computes the initial similarity solution to equations (B47) to (B49) with the points equally spaced in the $\eta$ direction. Program D23901 takes this solution and redistributes the values of $\eta$ geomettrically in subroutine GEOM, then interpolates to provide the solution over the geometrically spaced points. Program D2401 takes these data as a starting profile, reads other
input, and computes initial conditions. Steps are then taken down the body to solve the momentum and energy equations in finite-difference form, and the continuity equation is numerically integrated. Various boundary-layer parameters such as boundary-layer thickness, displacement thickness, momentum thickness, and skin-friction and heattransfer coefficients are then calculated and the output is printed. Program D2401 uses the following subroutines: TURBLNT calculates the eddy viscosity, its derivatives, and the intermittency distributions required for the solution of transitional and turbulent flows; VARENT reads the variable-entropy input in tabular form, computes $d r_{s} / d z$, and prints the input and the derivatives; TABLE reads the body-geometry input, nondimensionalizes it, and, if necessary, distributes the values according to specified steps and computes derivatives; SETUP determines from input where profiles and wall values are to be printed; function INTEGT integrates by using the trapezoidal rule; INUNIT converts data, if necessary, to the U.S. Customary System of Units for computation and back to the International System for printout; FTLUP performs a second-order interpolation to find intermediate values from a tabular array (see appendix C).

## Descriptions, Flow Charts, and Listings of the <br> Main Programs and Subprograms

Main program D2390.- The main program D2390 performs the locally similar solution to the continuity, momentum, and energy equations ((B47), (B48), and (B49), respectively), by using a fourth-order Runge-Kutta technique with Newton's iteration method. The flow diagram of main program D2390 is as follows:





begin runge-kutta


## CCMPUTE RUNGF-KUTTA CONSTANTS COMPUTE K1

$N$



$16 I=1, N$
$I)=H * F(I)$
$\stackrel{1}{n}$
29

$n$
0


COMDIJTF K4

2
$\begin{array}{llll}\text { NOITE } & (6,34) & X, Y N(1), Y N(2), Y N(3), Y N(4), Y N(5), Y N(6) \\ W D I T E & (9,34) & X, Y N(1), Y N(2), Y N(3), Y N(4), Y N(5), Y N(6)\end{array}$ RESCT VALIJES FOR NEXT NEWTONS ITERATION. IF (X-XG:ND) $29,22,22$
CINTINUE
IF (NCELT $23,25,27$
IF (ARS(TFARTI-0.0DOJJ11 $24,25,25$
CTNTINUF

$\vec{N} N \underset{N}{N}$
$n$
15000000
15100000
15200000
15300000
154000000
15500000
15600000
15700000
15800000
15900000
11000000
16100000
16200000
11030000
16500000
16600000
116700000
11800000
16900000
17000000

$n$
$\sim$
$\sim$


* SOLVE DIFFERENTIAL EOUATIONS
FOFMAT (1H1)
FORMAT $(6 X, 3 H 5 T A 9 X, 5 H Y O(1) 8 X, 5 H Y O(2) 8 X, 5 H Y O(3) 8 X, 5 H Y O(4) 8 X, 5 H Y O(5)$
$\cdots \mathrm{m} m \mathrm{~m}$

Main program D23901.- Main program D23901 takes the initial profile data from the program D2390 solution and redistributes the equally spaced $\eta$ values geometrically according to input-distribution constant XK and then interpolates to redistribute the profile to correspond with the new $\eta$ values. The flow diagram of the main program D23901 is as follows:



Subroutine GEOM.- Subroutine GEOM redistributes the equally spaced $\eta$ values to geometrically spaced values according to input-distribution constant XK. The flow diagram for subroutine GEOM is as follows:


The program listing for subroutine GEOM is as follows:

SUBDOLTIME GEDM (K, fTAEDGE, iEDGE, AA)
IMENSION DETA(301), AA(301)
F (K.EO.1.) FiOTC
TnTR2
ETAII= $=$ TAFOGE/(IEGG=-1)
$A(2)=D$ TAI 11
TA(N)=1K**(N-1))*DETA(1) TURN

$\sim$
m

Main program D2401.- The main program D2401 controls the finite-difference solution of the boundary-layer equations. It reads the initial profile data (which may come from D2390 or D23901) and other input, computes initial conditions, solves the momentum and energy equations in finite-difference form, numerically integrates the continuity equation, calculates the boundary-layer thickness, displacement thickness, momentum thickness, and skin-friction and heat-transfer coefficients, and prints the output. The flow diagram of the main program D2401 is as follows:





Calculate wall and initial values required for basic boundary-layer parameters


Calculate basic boundary-layer parameters:
$\delta^{*}, \quad \theta, \quad \mathrm{u}_{\tau}, \quad \mathrm{u}^{+}, \quad \mathrm{y}^{+}, \frac{\partial \mathrm{F}}{\partial \eta}, \frac{\partial \Theta}{\partial \eta}$,
$\frac{\mathrm{T}_{\mathrm{t}}}{\mathrm{T}_{\mathrm{t}, \mathrm{e}}}, \quad \imath=\frac{\rho \mu}{(\rho \mu)_{\mathrm{e}}}, \quad \frac{\partial l}{\partial \eta}, \quad \frac{\mathrm{M}}{\mathrm{M}_{\mathrm{e}}}, \quad \frac{\mathrm{y}}{\mathrm{y}_{\mathrm{e}}}$,
$\frac{\delta^{*}}{\theta}, \quad \mathbf{R}_{\mathrm{e}, \theta}, \mathbf{R}_{\mathbf{e}, \delta^{*},} \mathbf{R}_{\mathbf{e}, \mathrm{x}}, \mathbf{C}_{\mathrm{f}, \mathrm{e}}$,
$\mathrm{C}_{\mathrm{f}, \mathrm{w}}, \mathrm{q}_{\mathrm{w}}, \mathrm{T}_{\mathrm{aw}}, \mathrm{h}, \mathrm{N}_{\mathrm{St}, \mathrm{e}}$,
$\mathrm{N}_{\mathrm{St}, \mathrm{w}}$


Calculate vorticity Reynolds number and determine stability index





 9ATA WAVF/90./,r/1.4/,R/1716./,SU/198.6/,PR/.72/,PRT/.9/,W/O/,FT/1

 4)./, NOUTYPF/1/.1DDП/J/,IPRNT/J/


 REWIMD 9 ORIII $=1, J N$
PROVALII
$T$ 6= ПUTPUT,TAPE2L, TAPE9, T
O(JK), TP(JK), VNIJK),
 JK), MCNE(JK), XN(JK), Y(JK), OY(JK), XKI(JK), XK2(JK), XK3(JK), X 4JK), RATOP(JK), TTOTT(JK), CROCCO(JK), UコUPL (JKi, TCORD(JK), UDEF 5JK), तIME DIWFNSICM YO(6)
DIMENSTCM RQS(1) SINFNSICN P
 2W5,N, ETAEחG,KOחVIS,A,XRE,X,PR, CONSTNT, KחDPRT, PRT, PRTAR,GLAR,NUMBI CTNMCA /UNTT, VISCON,DTI,TTI,WAVE, D,SU,CTNE,DS,SST,RTL,PI,T1,RI,U1 1, $\triangle A I, T R F F, V I S Q E F, D E S T A R, T E S T A R, R E S T A R$, UESTAR,MUESTAR,YES
$2 T A U D, Q S O, H D, U D L U S, D I S D, P E, Z, T W, Q W, R V W A L O, P R O I N C, P R N T I N C ~$ INTEGER FTAEDG,W
$\begin{aligned} & \text { DEAL MOME, NUE, N } \\ & \text { EXTERNAI INTFGT }\end{aligned}$
NANELIST /NAMI/HPR,XENO,H, PF, XKK, BFFA, AIDHA, XO, YO, IEDGE, XK, IGAS,V
$\begin{aligned} & \text { ISCAN,VISDOW, KODUNIT } \\ & \text { NAMELIST /NAMZI XMA, }\end{aligned}$
2H, CIFP, CTNSTNT, XT1,XT2,XT3,XT4,XT5, PROINC, PRNTINC, IPRO, PR JVAL, IPRN
3T, PDNTVAL, NAUXPRT, ALNGTH,NPUTYPE, KOOPRT, NUMPI, PRTAR,GLAR,KTCOD
$1, X K 2, X K 3, X L 1, X L 2, X L 3, F N, F J, F D, T N, T O, T P, V N, V O, V P, E P, F P P, X L M 11, X L P M 1$
21. RATCP
IAITIALIZC DATA TC STANDARO INPUT
DEAL MOMF, NUE, NUW, KWD, KED, INTGRL, INTSGT,INTEGL, NONDEL, MUESTAR




| $\vec{a}$ | 0 | 0 |
| :--- | :--- | :--- |
| $\alpha$ | 0 | $a$ |


COATINUE

WRITF (6,103) (Y(N),VN(N), FN(V),TN(N), X51,X6N,N=1,IEDGE)
PRCGRAM CONSTANTS
$C D A T I N U E$
$X M A T=1 .+.5 *(G-1.1 * X N A * 幺 ?$
$91=P T 1 /(\times M \Delta C) \neq(G /(\mathrm{G}-1)$. Q $1=\mathrm{NT} 1 /(X M A C) * *(1-/(T-1 \cdot))$ T1 = TT1/XMAT

$U 1=X^{M A} \Delta \Delta A 1$
$T R E F=1 J 1 * * 2 /((G)(G-1 \cdot 1) * R)$

rir TC 16
VISI=VISCON* $\{T I * * V I C P J W\}$
$V I S R F F=V I S C O N *(T R Y F * * V I S P O W)$
CTATINUE
DEY $=$ RI
WU1

$X W A V E=1.74533^{\circ}-02 \neq W A V E$
$\triangle R C=(X M A * S I N(X W A V E)) * * 2$
$\triangle R C=(X M A \neq S I *(X W A V:)) * * 2$
$P L O=D T 1 /\{R 1 * U 1+1\} 1)$

10
I

$\stackrel{n}{\sim}$

$\$$
F $\pm$ $\begin{array}{lll}A & 150 \\ A & 151 \\ A & 152\end{array}$ $\begin{array}{ll}A & 152 \\ A & 153 \\ A & 154\end{array}$ A 155
 read tabular data

## if（noit．gt．0） 60 to 21


 GO TH（21，2J），IENTRO
CALL VARENT（RRS，IIS，ORSDIS，NNNI
CJNTINUE
GO TO

> IF (IGAS.EO.1) VISID=(T10**1.5)*(1.0+T10*TC)/(T10+T10*TC)
> P1PT $2=$ P1/ $\mathrm{DT}_{1}$
> If (XMA.LE-1.) GOTO 23 (c-1.) 1) $) * *(-1.1(G-1.1)$


ミ ロの呙

## $2 ?$

＊



$n$
$N$
$N$

$\ln$
$N$

$\stackrel{n}{n}$ $N$
$N$

DO $93 \mathrm{M}=2$, IENDI $S M 2=S N 1$


SET UP DIFFERENCE-QUCTIENT COEFFICIENTS FOR X-COORDINATE

## 21=2.*( $(0 \times 1+2 . * D \times 2) /(0 \times 1+D \times 2))$

 $2=2 \cdot *(0 \times 1+0 \times 2) / 0 \times 1 \quad(0 \times 1+0 \times 2)) 1$$3=2 . *(10 \times 2 * 0 \times 2) /(0 \times 1 *(0 \times 1+0 \times 2)))$
$2=(0 \times 1+0 \times 2) / 0 \times 1$ $25=0 \times 2 / 0 \times 1$

XK1 (1) $=0.0$




+
$N$
$N$


$\vec{m}$
$N$
$m$

## 

$E P M 1=E P P(N)$ $G \cap T O 37$
CONTINUE
TMI 744 TO
IF TMI G
TMI $=1$ TOIN
WRITE IG,
CONTINUE
RATO=Z4*R
ORATO=FAB

RATD=24*RATOO(N)-25*RATON(N)
ORATO=FAB*TMI
$R A T O 2 J=R A T O * *\{2 * J)$
IF IIGAS.EQ.2) GT TO 35
$I F(I G A S . E Q .2) G \cap T \cap 35$
$X L M I=(1 L+T R) * S Q R T(T M L) /$
$X L M 1=((1+4 R) * S Q R T(T M L) /(T M 1+T R))$
$X L P M 1=X L M 1 *(T P-T M 1) /(2 * T M I *(T M I+T R))$ GO Tח 36

XLNL=TM1**(VISPOW-1.)
XLPM1 $=(V I S P O W-1) *.(T M 1 * *(V I S P O W-2)$.
CDNTINUE

## FY=(FD(N+1)-FO(N-1))/(OY(N-1)+OY(N))

 $T Y=(T O(N+1)-T \cap(N-1)) /(C Y(N-1)+D Y(N))$ $F M 1=24 * F O(N)-25 * F N(N)$ $F M 1=E P(N)$EPNI=天PD(N)
CONTINUE
IN

$$
\begin{aligned}
& V M 1=14 * V \cap(N)-15 * V N(N) \\
& T M 2=22 * T \cap(N)-23 * T N(N)
\end{aligned}
$$

$$
\begin{aligned}
& T M 2=22 * T O(N)-23 * T N(N) \\
& F M 2=22 * F \cap(N)-23 * F N(N)
\end{aligned}
$$ $H 7=V M 1-X L M 1 *((R A T O 2 J * E T P M 1)+(E T M 1 * D R A T O))$

$H 8=-X A L * R A T C 2 J * X L M 1 * E M 1$
$H 9=-R A T \cap ? J * X L P M 1 * C T M 1$
$H 10=H 9 * X L M 1 / X L P M 1$ $H 7=V M 1-X L M 1 *((R A T O 2 J * E T P M 1)+(E T M 1 * D R A T O))$
$H 8=-X A L * R A T C 2 J * X L M 1 * E M 1$
$H 9=-R A T \cap ? J * X L P M 1 * C T M 1$
$H 10=H 9 * X L M 1 / X L P M 1$

$$
\begin{aligned}
& H 6=V M 1-X L M 1 *((R A T O 2 J * E T P M 1)+(E T M 1 * D R A T O)) \\
& H 7=(1)
\end{aligned}
$$ $H 11=H 2+H 4 * T Y$

$H 12=H 7+2 \neq H 9 * T Y$
$A 1=-Y 6 * H 11+Y 3 * H 3$
A1 =-Y6*H11+Y3*H3
Q1=-Y5*H11-Y2*H3+H5+71*H1
$C .1=Y 4 * H 11+Y 1 * H 3$
$C 1=Y 4 * H 11+Y 1 * H 3$
$\cap 1=-Y 6 * H 4 * F Y$
$E 1=(01+Y 5 / Y 6)+H 6$

$$
F 1=-01 * Y 4 / Y 6
$$




$<$




SET UP MATRIX ARRAYS
$(I-N) Z 7 X * I O+(I-N) Z x X * I \nabla+I \forall=S I G$
$S=R 1+A 1 * X K 2(N-1)+C 1 * X L 2(N-1)$
$S=92+A 2 * \times K 2(N-1)+C 2 * \times L 2(N-1)$


E1S
$\mathrm{F} 2 \mathrm{~S}=\mathrm{E} 2+\mathrm{A} 2 * X K 3(\mathrm{~N}-1)+\mathrm{E} 2 * X L 3(\mathrm{~N}-1)$
$\mathrm{G} 1 \mathrm{~S}=\mathrm{G} 1-A 1 * X K 1(\mathrm{~N}-1)-\mathrm{CL}+\mathrm{XL} 1(\mathrm{~N}-1)$
$\mathrm{G} 2 \mathrm{~S}=\mathrm{G} 2-\Delta 2 * X K 1(\mathrm{~N}-1)-\mathrm{D} 2 * X L 1(\mathrm{~N}-1)$ $n=1.0 /(R 1 S * E 2 S-E 1 S * 22 S)$
 XK $3(N)=D *(E 1 S * F 2-F 1 * E 2 S)$ $X L 1(N)=D *(R 1 S * G 2 S-B 2 S * C I S)$
$X L 2(N)=C *(C 1 * R 2 S-R 1 C * C 2)$
$X L 3(N)=D *(F 1 * B 2 S-R 1 S * F 2)$
$X L 3(N)=D *(F 1 * B 2 S-R 1 S * F 2)$
DYI = DY2
CONTINUE
$N=I E D G E+1$
$N N=N-1$
$K O N=N N$
MATRIX SJLITIDN FTR MOMENTUM AND ENERGY FOUATIONS
$F D(K C N)=X K 1(K) N)+X K 2(K O N) * F P(K O N+1)+X K 3(K O N) * T P(K O N+1)$ $T P(K C N)=X L 1(K O N)+X L 2(K O N) \neq F P(K O N+1)+X L 3(K O N) * T P(K O N+1)$ KOA $=\mathrm{KCN}-1$


42400000
 8

 응․ ？

















 18
0
0

0 | 8 |
| :--- |
| 0 |
| 0 |
| 0 | 08

0. 

0
On
in
0 8.8
0.
0.8
0
0
0
1
1 O 00000017

CONTINUE
TWOTTI＝TO（1）＊TE＊TREF／TTI
41
 F（M－20）48，48，43
IF（ARSIFPIIEDGE－15）－FP（IEDGE－16））－．0001） $44,44,45$ （ABSITP（IEDGF－15）－TD （xK．ED．1．1
ITE $^{(6,105)^{\prime}}$ RITE $(6,105)$ IF（TRFACT．LT．l．1 GC TO 47
WRITF（6，106）
STCP IF（TRFACT．LT．l．1 GC TO 47
WRITF（6，106）
STCP

IF（IEDGE．LE． 301 ）Gn TD 49
HRITE（6，107）
子ま゙き
～
\％
F
$\stackrel{\infty}{+}$
of
ceterminf location of boundary layer ejge

$\cdots$

CALCULATE WALL AND INITIAL VALUES RFQUIRED
FOR PASIC ROUNDARY LAYER PARAMETERS

 $X N F 1=2.0+X A L$.
$X M E R=T D(1) * T \Gamma / T 10$
$X M E 2=T P(1) * T: / T 10$
XMF $=1 . J-X M F 2$
!
TRTT(1)=(2.0*TP(1)+XAL*FP(1)*FP(1))/XMF1 CRCCCR(1) $=(T$ THTT (1)-XYF2)/XMF3

UnER (1)=0.0
XMF4=FPS*XNUC*UE*UE*(PMI**J)*XLMII(1)*FZ(1)/OZ

| 0 |
| :--- |
| 0 |
| 11 |
| 1 |

$1 C D=0.0$
THETA=0.0
PK=0.0

CALCULATE RAGIC ROUNDARY LGYER DAEAMETERS
$2060 \mathrm{~N}=2, \mathrm{~K} 9 \mathrm{~N}$
$+P K=T P K+0.5 *(T D(N-1)+T P(N)) * \cap Y(N-1)$
$\triangle T \cap D(N)=S!C N * S \cap D T(1 . J+F A B * T P K)$
$X N(N)=F A) *(-1.0+S I G N * S G R T(1.0+F A C \neq T P K))$.
$C=1.0 /(Q A T \cap D(N) \neq * J)$
$C=C *(F P(N) *(1 .-E D(N)))$
THETA =THCT $1+0.5 *(C D+\Gamma) * D Y(N-1)$

JOLUS = SORT (XMC4*TP(N))




10
$N$
$\alpha$
in
$\begin{array}{ll}\pi & 3 \\ 0 & 3\end{array}$
0
N
0

 0
in in
in
$<$

## 0 0

 $O$ $\cdots$
## $\infty$ $n$ $n$ $n$

 -$\Delta Z I=X M A * X M A *(T+1 \cdot) / 2$.
$\Delta Z Z=(G+1 * I /(2 * * G * X M A * X M A-G+1 \cdot 1$
$D T R E F=P T I$

(TRFACT.GT.O.O.AND.TRFACT.LT.0.9999) GO TO 74 u.
$\Delta Z 1=X M A * X M A *\{T ;+1 \cdot) / 2$.

IF (XMA.LE.I.) GO TO 68
PTREF=(AZ1** $(G /(G-1-)) *(A Z 2 * *(1 . /(G-1)) \mid) /.(G * X M A * X M A)$
CONTINUE
GO TO 71

PTODT(I) = PT2/PTQFF
CALCULATE VORTICITY REYNOLDS NUMBER
ANO DETERMINE STABILITY INDEX



TOTAL DRESSURE RATIO, (PT 2 )BL/(PT2)REF



* $N$ $\checkmark$


PRINT ORNFILES ANT WALL VALUES
IF (S.GT. DRCVALINUMRP)-. OOOOOL.AND.S.LT. DROVAL(NUMRR)+.OOOJO1) GO


WRITE (G,IL5) Y(I), NONOEL(I),FP(I),TP(I),TTOTT(I),CROCCOII), PTOPT(
II), MCME(I),FI(I),YZ(I),STARZ(I),XLMII(I) $\square$ OO $84 \mathrm{I}=1$, IEDGEX WI),MCME(I),FI(I),TY(I),STAR2(I),XLMII(I)
กO $85 \mathrm{I}=1$, IFDTEX
WRITE (6,115) Y(I), NONCEL(I),FP(I),TP(I),TTOTT(I),CROCCOII),PTOPT(
II),MOME(I),TCORO(I),UOUPL(II,UDEF(I), EP(I)
$\infty$
0
0
$r$
$c^{\infty}$
$c^{\circ}$

II), पCME(I),TCOQD(I),UJUPL(I),UDEF(I), EP(I)

กO 89 NUMPFR $=1, J M$
IF IS.GT.PRNTVALI
$\qquad$ CONTINUE

$\underset{\sim}{\infty} \underset{\sim}{\circ}$
$\infty \quad \begin{array}{ll}\infty & -1\end{array}$
$\underset{\sim}{\sim}$
$\stackrel{c}{\infty}$
$\infty$
$\infty$
$\infty$
$\infty$
G? TO 91
$\qquad$ 00000202





品



|  | RESTAR $=$ RE*R1 |
| :---: | :---: |
|  | UESTAR $=$ UE* Ul |
|  | MUESTAR = XNUE*VISREF |
|  |  |
|  | IF (KOQUNIT.ED.I) CALL WALLOUT (PRDVAL, PRNTVAL, JM, JN) |
|  | WRITF: $(6,117)$ S,RETHET, PP, CFW, $2 S, Y E S T A R, X, R E S, D T E D X, Q S D, R S, I J P L U S, R$ |
|  | IMI, PFSTAO, DUEDX,HC, ITPO, PTREF, L, TESTAR, DISP, CHE, TWOTTL, JPOINT, XRE. |
|  | 2RFSTAR, THETA, CHW, PFCTIR, P20 |
|  | WPITE (6, 1181 TRFACT,UESTAR, THADIS, NUF, ST2MAX,EPS,RVWALD, XMAE, TAUS |
|  | 1, NUW, DSMXI, RFOELT, MUESTAP, CFE, THATS, XNDEN |
|  | IF (KCDUNIT.EO.1) $S=S * 3.280839$ ¢95 |
| 91 | C.INTINUE |
|  | UPחATF VARIARLFS FJR YARCHING PROCEDURE |
|  | D' $92 \mathrm{~N}=1, \mathrm{NN}$ |
|  | $F N(N)=F O(N)$ |
|  | $F \cap(N)=F P(N)$ |
|  | $T N(N)=T \cap(N)$ |
|  | $T \cap(N)=T P(N)$ |
|  | $V N(N)=V \cap(N)$ |
|  | $V O(N)=V P(N)$ |
|  | $R \Delta T \cap N(N)=R \Delta T O \cap(N)$ |
|  | RATCO(N) = R ATOP(N) |
|  | XLM1N=XLM1O |
|  | $X$ V $10=X L M 1 P$ |
| 92 | CONT INUE |
| 93 | D $\times 1=\mathrm{DX2}$ |
|  | IF IIENTFO.E0.1) STOP 100 |
|  | IF (NOIT.GE.ITMAX) STフP 77 |
|  | $N \cap I T=N C I T+1$ |
|  | REWIND 4 |
|  | FEWINO 9 |
|  | RFAT (9,NAM1) |
|  | IF (ENOFILF 9) 94.95 |
| 94 | STOD 12 |
| 95 | CONTINUF |
|  |  |
|  | IF (ENDFILS 9) 96,97 |
| 96 | STEO 13 |
| 97 | COATINU5. |
|  | FEAO (9,104) (Y(N), VN(N), FN(N), DUM, TN(N), DUM, X6N, N=2,IEOGE) |
|  | IF (ENDFILS 9) 98.99 |
| 98 | STCP 14 |
| 99 | CONTINUE |
|  | COTM 14 |

75300000 38
0
0
0
0
0
1




 응 $00000 \varepsilon 82$
00000 28
00000181

 0000098
 00000062




 4692

## 

 $\square$FORMAT (1H1)
FORMAT ( $6 X, 3 H E T A 9 X, 5 H Y C(1) 8 X, 5 H Y O(2) 8 X, 54 Y O(4) 8 X, 5 H Y O(5) 8 X, 5 H Y \cap(6) ~$

FORMAT (22H GPID WIDTH TOO SMALL/78HMAXIMUM LIMIT (3J1) FOR IEDGS
108 FORMAT $(53 \mathrm{H} \quad X K=1.0-X K$ MUST RE $>1.0$ FOR TURBULENT FLCWS) 110 ETRMAT $1 / 23 \mathrm{H}$ YOU DID IT AGAIN - TP $, 13,13 \mathrm{HI}$ IS NEGATIVE/3H S=,FIO.
 14, 4HAT $111 \times 2 \mathrm{HX}=\mathrm{F} 14,4,9 \mathrm{H}$

dヨ 1ヨก/ก) $\wedge$

 15 FORMA
116 FORMAT $/ / / 4 X, 3 H E T A, 8 X, 4 H Y / Y E, 7 X, 4 H U / J F, 7 X, 4 H T / T F, 6 X, 6 H T T / T T E, 5 X, 6 H$



 $52,2 \mathrm{X}, 7 \mathrm{HPTF}=, \mathrm{C} 12.5,12 \mathrm{X}, 7 \mathrm{HZ}=, \quad \mathrm{E} 12.5,2 \mathrm{X}, 7 \mathrm{HTE}=, \quad, \mathrm{E} 12,5,2 \mathrm{X}, 7 \mathrm{HD}$ $72, / 2 X, 7 H R E T A=, 612.5,2 X, 7 H R E=\quad, E 12.5,2 X, 7 H T H E T A=, ., 12.5,2 X, 7 H N$
118 FORMAT ( $2 X, 7 H T R F C T=, E 12.5,2 X, 7 H U E=, F 12.5,2 X, 7 H C / T=, E 12.5,2$ 118 FORMAT $2 X, 7 H R F C T=$, I2, $5,2 X, 7 H U=, 2 X, 7 H C M E G A=, E 12.5,12 X, 7 H R V W A$
 $4=, 512.5,2 \mathrm{X}$, THSWANS $=$, E12.5,2X,7HXD $=$, E12.5) END

Subroutine TURBLNT.- Subroutine TURBLNT calculates the eddy viscosity, its derivatives, and the intermittency distributions required for the solution of transitional and turbulent flows. The flow diagram for subroutine TURBLNT is as follows:



$\infty \quad \underset{\sim}{\infty}$

u. u
$u$
$4 u$

4.4u4
 $X M F=X M F /((X L M 11(N) * * 2) *\{T P(N) * * 3))$ $X M F=X M F * R E * R E * U E * U E *(R M I * * J) /(X N U E * E P S * S O R T(2 * * X))$
$X M F=X M F /((X L M 11(N) * * 2) *(T P(N) * * 3))$
$X M F=S Q R T(X M F) /(X T 2 * A * E P S)$
$F C 4=X M F$
 $F C I=R E * R E * U F * U E *((R M I * R A T O P(N)) * * J\} * A B S(F Z(N))$
$F C I=F C 1 /(((E P S * T P(N)) * * 3) * A * A * X N U E * S Q R T(2 * * X) * X L M 11(N))$

$D A N P=1 .-E X P(-F C 2 * F C 3 * F C 4)$
DANP = 1. $-E X P(-F C 2 * F C 3 * F C 4)$
IF (KOOVIS.EQ.2) GO TV 4

$$
\begin{aligned}
& \operatorname{VARB}(N)=D A M P \\
& X M \mid X L=X T 1 * F C 3 * D A M P
\end{aligned}
$$

EPI =1. +TRFACT*FCI*(XMIXL**2)*YINTER

$$
\begin{aligned}
& 1 * X 1)!
\end{aligned}
$$

The program listing for subroutine TURBLNT is as follows:

CALCULATE STREAMWISE INTERMITANCY
CALCULATE EOחY-VISCOSITY

$$
\begin{aligned}
& \text { SURROUTINE TURRLNT (TP, XLMII,FZ,XN,RATOP,OY,EP } \\
& \text { 1RA,VARB,VARC,VARI,VARE,JK) }
\end{aligned}
$$


 н u 4 4 4

$\mu$
$\qquad$

 ции山и


かoñスNN
4.4

чи и и и и
1.

U． 4

$V A R D(N)=E D 2$
$I F(I F C . E Q .1)$ GC TO 8
$I F(I P 1 . L E . E P 2 . A N O . I F C . E O . O)$ GO TO 7
$I F C=1$
$J D C I N T=N$
$G \cap T O B$
ค TO 8

## mixing length model



| $X M I X L=0 . J 8 * F P S * A * X N(E T A E D G)$ |  |
| :---: | :---: |
|  | 5． $\mathrm{F}(\mathrm{N})=1 .+$ TRFACT＊FC1＊（ C （XMIXL |
|  | $G \mathrm{G}^{\text {T }} 9$ |
|  | CP（N）$=$ FPL |
|  | GOTO 9 |
|  | FO（N）＝EP2 |
|  | CONTINUE |

n 0

$$
r
$$

$\infty \quad \sigma$

> OBTAIN THE THREE PNINT MEAN AND
THE DERIVATIVE OF EODY－VISCOSITY
> CALCULATE TURRIJLENT PRANDTL NUMAER


COATINUE
OO $15 \mathrm{~N}=2$
$E E P M(N)=\{E E T M(N+1)-E E T M(N-1)) /(D Y(N)+D Y(N-1))$
$E E P M(1)=\{-W W 1$ कEFTH（1）＋WW2＊EETM（2）－WW3＊EETM（3）＋WW4＊EETM（4）） $E E P M(1)=E E P M(1) /($ WW5＊DY（1））

OO $16 \mathrm{~N}=2$ ．IEDGF．
IF（EP（N）．LT．1．O）EP（N）＝1．O
IF（VARA（N）．EO．O．O）VAQAIV）＝
VARE
RETIT
SGOPT

$\cdots$
$m$
$\underset{+}{+}$
$n$
$\stackrel{0}{-}$

Subroutine VARENT.- Subroutine VARENT reads the variable-entropy input in tabular form, computes $\mathrm{dr}_{\mathrm{S}} / \mathrm{dz}$, and then writes the input and the derivatives. The flow diagram for subroutine VARENT is as follows:



The program listing for subroutine VARENT is as follows:


Subroutine TABLE.- Subroutine TABLE reads tabular input for body geometry, nondimensionalizes the input if necessary, distributes the values according to specified steps, and computes the derivatives. The flow diagram for subroutine TABLE is as follows:

The program listing for subroutine TABLE is as follows:


$000108 \angle 8$ 00000628 00000188 $00000 \varepsilon 88$
00000288 00000588
00000488 00000988 00000888 00000068
00000688
 00000468
$00000 \varepsilon 68$
00000268 00000968
00000568
00000768 00000868 00000668 8 $000000 \varepsilon 06$
00000206
00000106 00000906
00000506
$00000 \geqslant 06$ 옹 00000606
00000806 응


|  | IF (SS(2).GT.DSt.000001.0R.SS(2).LT.DS-.000001) G0 Th 11 |
| :---: | :---: |
|  | IF (SS(3).GT.DSt.000001.0R.SS(3).LT.)S-.000001) GO TO 11 |
|  | GT T\% 12 |
| 11 | WRITE (6,20) SS(1),SS(2),SS(3),DS |
|  | STCD 77 |
| 12 | continue |
|  | TEMP $=0$. |
|  | $2013 \mathrm{I}=1$, IEND |
|  | SS(I) $=$ TEMP 5 SS(1) |
| 13 | TEMP $=$ SS(1) |
|  | on $14 \mathrm{I}=1$, IENOI |
|  | $\mathrm{S}=\mathrm{nS*I}$ |
|  | IF (SSI2).NF.0.) SD=SS(I) |
|  | CALL FTLUP (SD,ZEOII),L,NUMBER,S,L) |
|  |  |
| 14 | CALL FTLUP (SD,PI(I),L, NUMREP,S,DE) |
|  | TWOOS=2.*DS |
|  | ก) $19 \mathrm{I}=2, \mathrm{IENOL}$ |
|  | S) $=0 \mathrm{~S}$ (1 |
|  | If (SS(2).NE.0.) SD=SS(I) |
|  | IF (KCDWAL.EO.1) GO TO 15 |
|  | C.ALL FTLJP (SC,OWM,L,NUMRER,S,OW) |
|  | G\% TO 16 |
| 15 | continue |
|  |  |
| 16 | continue |
|  | CALL FTLUP (SO,PVWALDI, L, NUMBER,S,RVWALD) |
|  | IF (I.EQ.IENDI) GO TC 17 |
|  |  |
|  | IF (SS(2).NE.O.) TwODS=SS(I+1)-SS(I-1) |
|  |  |
|  | ¢刀 $\mathrm{T}_{1} 18$ |
| 17 | IF (SS(2).NE.0.) $\mathrm{COS}=$ SS(1)-SS(I-1) |
|  | DDEDSD $=10011$-Pn(I-1) )/DDS |
|  | DRCI= (RMIDD(I)-RMIDDII-1) //IED(I)-ZED(I-1) |
| 18 | WRITE (4) SD, DOIII,RYIDECII, TWD, TEDII, DPEDSD,RVWALDO, ORDI, OWO |
| 19 | ronntinue |
|  | REWIND 4 |
|  | retijen |

[^1]Subroutine SETUP.- Subroutine SETUP determines from the input where profiles and wall values are to be printed. The flow diagram for subroutine SETUP is as follows:



The program listing for subroutine SETUP is as follows:
SURROUTINE SETIID $(A, B, C, J, K)$
IMENSION B(J)
IF $14 . E Q .0$ ) FETURN
KPLUS $2=K+2$

OO $1 \quad I=K P L L S 2, J$
IF (E(I).GE.C) RETUPN
CONTINUE
RETURN

Function INTEGT.- Function subroutine INTEGT integrates by using the trapezoidal rule. The flow diagram for function INTEGT is as follows:

The program listing for function INTEGT is as follows:


Subroutine INUNIT.- Subroutine INUNIT converts International System dimensionalinput data to the U.S. Customary System of Units for calculations in the program. The subroutine then converts the data back to the International System before output. The flow diagram for subroutine INUNIT is as follows:


## The program listing for subroutine INUNIT is as follows:



$\rightarrow N M \pm \operatorname{ONOOONOM}$
OOOCOOOOONONO

c







CRNVEET WALL VALJES T? INTERNATITNAL STANDARD UNITS



The programs are run on the Control Data 6000 Series computer under the SCOPE 3.0 operating system. The CPU time required for running all three programs is approximately 0.003 second per mesh point.

## Array Dimensions

Program D2401 uses the variable-dimension capability of the preprocessor installed at the Langley Research Center to enable the user to use a minimum amount of storage for each case. If this capability is not available at the user's installation, the dimension statements at the beginning of program D2401 should be modified by inserting the following numbers in place of their equivalent designations:

JK maximum number of steps in $\eta$-direction plus 10
$\mathrm{JL}=1$, if case is considering only constant entropy maximum number of steps in X -direction, if case is considering variable entropy

JM maximum number of wall-value stations to be printed
JN maximum number of profiles to be printed
FORTRAN statements setting these values should also be inserted immediately following the NAMELIST statements in program D2401.

## Intermediate Data Storage

The output for the initial solution found in program D2390 is written on TAPE 9 as well as on the output file. Program D23901 will then read the data from TAPE 9, redistribute the points geometrically, and write the redistributed solution in place of the original distribution on TAPE 9 as well as on the output file. Program D2401 will then read the redistributed solution from TAPE 9. If redistributing the points is unnecessary, executing program D23901 may be eliminated and the solution from D2390 will be read directly by program D2401. Generally, TAPE 9 will be a disk file to be used only for a current run. However, if many cases are to be run with the same initial solution, a physical tape can be requested so that D2390 and D23901 need not be rerun for each case. When using TAPE 9 as either a disk file or a tape file, it is automatically rewound at the beginning of D23901 and again at the beginning of D2401.

## Input Description

Input for all programs is standard CDC NAMELIST. Program D2390 reads input listed under \$NAM1 and copies these input data as well as the output data onto TAPE 9.

Program D23901 then reads these data from TAPE 9 as input. No other input is required for D23901. Program D2401 requires the input from TAPE 9 (written by either D2390 or D23901) and the data found listed under \$NAM2. Subroutine TABLE (in program D2401) requires the data listed under \$NAM3. If the case being considered is using variable entropy, then subroutine VARENT (in program D2401) requires the data listed under \$NAM4.

Dimensional input and output may be in either the International System of Units (KODUNIT $=1$ ) or the U.S. Customary System of Units (KODUNIT = 0). The following listing of input and output data gives the units in the International System, followed in parentheses by the units in the U.S. Customary System. Where no units are given, the data are nondimensional.

The \$NAM1 input data for program D2390 are given as follows:

HPR $\quad$| $\eta$ increment for which values will be printed and stored on TAPE 9 |
| :--- |
| $($ Default $=0.1)$ |

XEND $\quad \eta_{\mathrm{N}} \quad($ see fig. 2) $($ Default $=10.0)$

H Runge-Kutta integration increment (Default $=0.01$ )

| PR | $\mathrm{N}_{\mathrm{Pr}} \quad($ Default $=0.7)$ |
| :--- | :--- |
| XKK | $\mathrm{S} / \mathrm{T}_{\mathrm{e}} \quad($ Default $=0.0)$ |
| BETA | $\beta \quad($ Default $=0.0)$ |
| ALPHA | $\alpha($ Default $=0.0)$ |
| XO | $\eta_{0} \quad($ Default $=0.0)$ |
| YO(1) | $\mathrm{V}_{\mathrm{W}} \quad($ Default $=0.0)$ |

$\mathrm{YO}(2) \quad \mathrm{F}_{\mathrm{W}} \quad($ Default $=0.0)$
$\mathrm{YO}(3) \quad\left(\frac{\partial F}{\partial \eta}\right)_{\mathrm{w}} \quad($ Default $=0.0)$
$\mathrm{YO}(4) \quad \Theta_{\mathrm{W}} \quad($ Default $=0.0)$
$\mathrm{YO}(5) \quad\left(\frac{\partial \Theta}{\partial \eta}\right)_{\mathrm{w}} \quad($ Default $=0.0)$

YO(6) $\quad\left(\frac{\partial^{2} \Theta}{\partial \eta^{2}}\right)_{w} \quad($ Default $=0.0)$
XK $k$ (If $k=1$, then program D23901 does not change data from D2390.) (Default =1.0)

IGAS $=1$ for air (Sutherland's viscosity constant)
$=2$ for power-law viscosity relation (Default $=1$ )

VISCON constant in power-law viscosity relation, newton-sec/m2 (lb-sec/ft ${ }^{2}$ )

VISPOW $\sigma$, exponent in power-law viscosity relation

KODUNIT $=0$ if all dimensional input and output are in the U.S. Customary System of Units
$=1$ if all dimensional input and output are in the International System of Units (Default $=0$ )

The \$NAM2 input data for program D2401 are given as follows:

XMA $\quad \mathbf{M}_{\infty}$
PT1 $\quad \mathrm{p}_{\mathrm{t}, \infty}$, newton $/ \mathrm{m}^{2} \quad\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$
TT1 $\quad \mathrm{T}_{\mathrm{t}, \infty},{ }^{\mathrm{OK}} \quad\left({ }^{\circ} \mathrm{R}\right)$
WAVE shock-wave angle at tip of sharp body or stagnation point of blunt body (Default $=90.0$ ), radians (degrees)
$\mathrm{XY} 1 \quad\left(\frac{\mathrm{p}_{\mathrm{e}}}{\mathrm{p}_{\infty}}\right)_{\mathrm{X}=0}$
$X Y 2 \quad\left(\frac{T_{e}}{T_{\infty}}\right)_{x=0}$
$X Y 3 \quad\left(M_{e}\right)_{x=0}$
$\mathrm{G} \quad \gamma \quad($ Default $=1.4)$

R
$R_{g}$, gas constant (Default $\left.=1716.0\right), \mathrm{m}^{2} / \mathrm{sec}^{2} \mathrm{O}^{\mathrm{O}} \mathrm{K} \quad\left(\mathrm{ft}{ }^{2} / \mathrm{sec}^{2} \mathrm{O}^{\mathrm{o}} \mathrm{R}\right)$

| SU | $S$ (Default $=198.6),{ }^{\circ} \mathrm{K} \quad\left({ }^{\circ} \mathrm{R}\right)$ |
| :---: | :---: |
| PR | $\mathrm{N}_{\operatorname{Pr}}$ (Default $=0.72$ ) |
| PRT | $\mathrm{N}_{\mathrm{Pr}, \mathrm{t}} \quad$ (Default $\left.=0.9\right)$ |
| IBODY | $=1$ for stagnation-point flows <br> $=2$ otherwise |
| J | j |
| W | $\begin{aligned} & =0 \\ & \text { if transverse curvature is neglected } \\ & =1 \quad \text { if transverse curvature is included (Default }=0) \end{aligned}$ |
| FT | $\begin{aligned} & =1.0 \text { for nonsimilar solution } \\ & =0.0 \text { for similar solution (Default }=1.0 \text { ) } \end{aligned}$ |
| KODE | ```=1 if both laminar and turbulent profile values are defined for diagnostic reasons after flow is fully turbulent =0 otherwise (Default =0)``` |
| KODWAL | $=1$ for specified temperature distribution <br> $=2$ for specified heat-transfer distribution (Default $=1$ ) |
| IENTRO | $\begin{aligned} & =1 \text { for constant entropy } \\ & =2 \text { for variable entropy (Default =1) } \end{aligned}$ |
| CONE | cone semiapex angle (Default $=0.0$ ), radians (degrees) |
| IEND1 | number of steps in X -direction |
| A | reference length (Default $=1.0$ ), meters (feet) |
| DS | initial step length in X -direction (Default $=0.01$ ), meters (feet) |
| KODVIS | $\begin{aligned} & =1 \text { for two-layer eddy-viscosity model } \\ & =2 \text { for mixing-length model (Default = } 1 \text { ) } \end{aligned}$ |
| SST | x -location at which transition occurs (Default $=1.0 \mathrm{E} 08$ ), meters (feet) |
| 80 |  |

SMXTR critical vorticity Reynolds number (Default $=1.0 \mathrm{E} 08)$

TLNGTH $\quad x_{t, f} / x_{t, i} \quad($ Default $=2.0)$
CORP coefficient in equation (38) (Default $=0.412)$

CONSTNT transition model (Default $=0.0$ )

XT1 $\quad \mathrm{k}_{1} \quad$ (See eq. (6).) $\quad$ (Default $=0.4$ )
$\mathrm{XT} 2 \quad \mathrm{~A}^{+} \quad($ Default $=26.0)$

XT3 $\quad \mathrm{k}_{2} \quad$ (See eq. (7).) $\quad$ (Default $=0.0168$ )
XT4 $\quad \mathrm{k}_{4} \quad$ (See eq. (10).) $\quad$ (Default $=0.78$ )
XT5 $\quad \mathrm{k}_{3} \quad$ (See eq. (8).) $\quad$ (Default $=0.0$ )

PROINC incremental $x$ value for which profile printouts will be made $=0$ if only certain specified profile printouts will be made
(Default =1.0), meters (feet)

PRNTINC incremental $x$ value for which wall-value printouts will be made $=0$ if only certain specified wall-value stations printouts are desired (Default =0.1), meters (feet)

IPRO number of specified profile printouts desired (other than those determined by PROINC) $($ Default $=0)$

PROVAL array of IPRO specific $x$ values for which profile printouts are desired meters (feet)

IPRNT number of specified wall-value printouts desired (other than those determined by PRNTINC) $($ Default $=0)$

PRNTVAL array of IPRNT specific $x$ values for which printouts are desired, meters (feet)

```
NAUXPRO = 1 if auxiliary profile printouts are desired (see output description)
    \not=1 otherwise (Default =0)
BLNGTH =0 if using constant step size in X-direction
    length of body if using variable step size in X-direction (Default =0.0),
        meters (feet)
NPUTYPE = 1 for dimensional input
    =2 for nondimensional input (Default =1)
KODPRT = 1 for constant N
    =2 for Rotta distribution
    =3 for tabular N}\mp@subsup{N}{Pr,t}{}=f(y/\delta)\quad(Default = 1
NUMB1 number of values read into PRTAR and GLAR arrays if KODPRT = 3
PRTAR turbulent Prandtl number array, used only if KODPRT = 3 (NUMB1 values)
GLAR y/\delta array corresponding to PRTAR, used only if KODPRT = 3 (NUMB1
    values)
KTCOD = 1 if transition extent is calculated from equation (37)
    =2 if transition extent is read in as TLNGTH (Default =2)
The \$NAM3 input data for program D2401 are given as follows:
NUMBER number of values read into \(\$\) NAM3 tables (Maximum \(=100\) )
L order of interpolation to be used for \$NAM3 table (Default = 1)
PE pressure-distribution array (NUMBER values), newton/m \({ }^{2}\) ( \(\mathrm{lb} / \mathrm{ft}^{2}\) )
Z axial-coordinate array (NUMBER values), meters (feet)
RMI body radial-coordinate array (NUMBER values) (Default \(=1.0\) ), meters (feet)
TW wall temperature-distribution array (NUMBER values), \({ }^{\circ} \mathrm{K} \quad\left({ }^{\circ} \mathrm{R}\right)\)
```

QW wall heat-transfer-distribution array (NUMBER values), watts $/ \mathrm{m}^{2}$ ( $\mathrm{Btu} / \mathrm{ft}^{2}-\mathrm{sec}$ )

RVWALD mass flux at wall array, $V_{w}$ (NUMBER values) (Default $=0.0$ ), newton-sec $/ \mathrm{m}^{3} \quad\left(\mathrm{lb}-\mathrm{sec} / \mathrm{ft}^{3}\right)$

S x-station array corresponding to above table inputs (NUMBER values), meters (feet)

SS
array of incremental values between adjacent x stations for computation (Maximum $=1000$ ), meters (feet)
The first three values for SS must equal DS for the starting procedure; that is, $\operatorname{SS}(1)=\mathrm{SS}(2)=\mathrm{SS}(3)=\mathrm{DS}$.

The \$NAM4 input data for program D2401 are given as follows:

NUMBER number of values read into \$NAM4 tables (Maximum =100)

RRS array of radial coordinates of shock wave (NUMBER values)

ZZS array of axial coordinates of shock wave (NUMBER values)

## Output Description

The output for programs D2390 and D23901 consists of printing and the intermediate data on TAPE 9 as discussed earlier in this section. In program D2390, the \$NAM1 input data are printed, followed by the initial profile consisting of the following values:

Initial profile

$$
\begin{aligned}
& \mathrm{ETA}=\eta \\
& \mathrm{YO}(1)=\mathrm{V} \\
& \mathrm{YO}(2)=\mathrm{F} \\
& \mathrm{YO}(4)=\Theta \\
& \mathrm{YO}(5)=\frac{\partial \Theta}{\partial \eta} \\
& \mathrm{YO}(6)=\frac{\partial^{2} \Theta}{\partial \eta^{2}}
\end{aligned}
$$

In program D23901 the output is printed in a form identical to that in D2390 except that the profile is redistributed. This same output is repeated in program D2401 for convenience. Next, the \$NAM3 input data are printed. If the particular case is considering variable entropy, this is followed by the \$NAM4 input data.

Next, the \$NAM2 input data and the \$NAM constants which consist of the following values are given:

P10 $\left(\frac{\rho_{\mathrm{t}, \mathrm{e}}}{\rho_{\mathrm{r}} \mathrm{u}_{\mathrm{r}}^{2}}\right)_{\mathrm{x}=0}$

T10

$$
\frac{\mathrm{T}_{\mathrm{t}, \infty}}{\mathrm{~T}_{\mathbf{r}}}
$$

G $\quad \gamma$, ratio of specific heats

REY

RT1 $\rho_{\mathrm{t}, \infty}$, kilogram $/ \mathrm{m}^{3} \quad$ (slug $/ \mathrm{ft}^{3}$ )

P1 $\quad p_{\infty}$, free-stream pressure, newton $/ \mathrm{m}^{2} \quad\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$

T1 $\quad \mathrm{T}_{\infty}$, free-stream temperature, ${ }^{\mathrm{O}} \mathrm{K} \quad\left({ }^{\circ} \mathrm{R}\right)$
R1 $\quad \rho_{\infty}$, free-stream density, kilogram $/ \mathrm{m}^{3} \quad$ (slug $/ \mathrm{ft} 3$ )

U1

$$
\mathrm{u}_{\infty}, \text { free-stream velocity, } \mathrm{m} / \mathrm{sec}(\mathrm{ft} / \mathrm{sec})
$$

AA1 $\quad a_{\infty}$, free-stream speed of sound, $\mathrm{m} / \mathrm{sec}(\mathrm{ft} / \mathrm{sec})$

TREF $\quad \mathrm{T}_{\mathrm{r}}$, reference temperature, ${ }^{\circ} \mathrm{K} \quad\left({ }^{\circ} \mathrm{R}\right)$

VISREF $\quad \rho_{\mathrm{r}}$, reference viscosity, newton-sec $/ \mathrm{m}^{2} \quad\left(\mathrm{lb}-\mathrm{sec} / \mathrm{ft}^{2}\right)$

R10

$$
\frac{\rho_{\mathrm{t}, \infty}}{\rho_{\infty}}
$$

Next, the profile values are printed according to the specifications in the input. These consist of the following:

Laminar-profile values
ETA
$\eta$
$\mathrm{Y} / \mathrm{YE} \quad \mathrm{y} / \mathrm{y}_{\mathrm{e}}$

U/UE F

T/TE $\quad \Theta$
$\operatorname{TT} / \operatorname{TTE} \quad T_{t} / T_{t, e}$
$\operatorname{CROCCO} \frac{T_{t}-T_{w}}{T_{t, e}-T_{w}}$
PT/PTR $\quad p_{t} / p_{t, r}$, total pressure ratio
M/ME $\quad \mathrm{M} / \mathrm{M}_{\mathrm{e}}$, Mach number ratio

FZ

$$
\left(\frac{\partial \mathrm{F}}{\partial \eta}\right)_{\mathrm{m}+1, \mathrm{n}}
$$

TZ

$$
\left(\frac{\partial \Theta}{\partial \eta}\right)_{\mathrm{m}+1, \mathrm{n}}
$$

VORTREY $(\chi)_{m+1, n}$, vorticity Reynolds number
XLM11 $\frac{(\rho \mu)_{\mathrm{m}+1, \mathrm{n}}}{(\rho \mu)_{\mathrm{e}}}$

Additional values for transitional and turbulent profiles
YPLUS $\quad \frac{\mathrm{yu}_{\tau}}{\nu}$
UPLUS $\quad \frac{\mathrm{u}}{\mathrm{u}_{\tau}}$
UDEF $\quad \frac{\mathrm{u}_{\mathrm{e}}-\mathrm{u}}{\mathrm{u}_{\tau}}$
VISEFF $\quad 1+\frac{\epsilon}{\mu} \Gamma$, effective viscosity parameter

## Auxiliary-profile values

V V (see eq. (27))

GRAD(U/UE) FZ

GRAD(T/TE) TZ

FC1
$\left(\frac{\rho}{\mu}\left|\frac{\partial \mathbf{u}}{\partial \mathrm{y}}\right|\right)_{\mathrm{m}+1, \mathrm{n}}$

DAMP
$\left(1-\exp \left\{-\left[\sqrt{\frac{\nu_{\mathrm{w}}}{\bar{\nu}}}\left(1+\mathrm{k}_{3}\right)-\mathrm{k}_{3}\right] \frac{\mathrm{y}}{\mathrm{A}}\right\}\right)_{\mathrm{m}+1, \mathrm{n}}$
EP1
$\left[\left(\frac{\epsilon}{\mu}\right)_{\mathrm{i}}\right]_{\mathrm{m}+1, \mathrm{n}}$ (see eq. (6))
EP2

$$
\left[\left(\frac{\epsilon}{\mu}\right)_{0}\right]_{\mathrm{m}+1, \mathrm{n}} \text { (see eq. (7)) }
$$

EP

$$
\left(\frac{\epsilon}{\mu}\right)_{m+1, n}
$$

MIXDEL

$$
\left(\frac{l}{\delta}\right)_{\mathrm{m}+1, \mathrm{n}}
$$

Next, the wall-value stations are printed according to the specifications in the input. These consist of the following:
$\mathbf{X}$ spatial coordinate, meters (feet)

XI $\xi$

RAD $\quad r_{0}$, body radius (see fig. 1)

Z axial coor dinate of body (see fig. 1)

BETA $\quad \beta$, pressure-gradient parameter (see eqs. (30))
TRFCT $\quad \Gamma$, intermittency distribution (see eq. (38))

RVWALD dimensional mass flux at wall (see eq. (35))
REDELT $\frac{\rho_{\mathrm{e}} \mathrm{u}_{\mathrm{e}} \delta^{*}}{\mu_{\mathrm{e}}}$, Reynolds number based on local displacement thickness
RETHET $\frac{\rho_{\mathrm{e}} \mathrm{u}_{\mathrm{e}} \theta}{\mu_{\mathrm{e}}}$
REX $\quad \frac{\rho_{e^{u_{e x}}}}{\mu_{\mathrm{e}}}$, local Reynolds number
PE $\quad \frac{\mathrm{p}_{\mathrm{e}}}{\rho_{\mathrm{r}} \mathrm{u}_{\mathrm{r}}^{2}}$, edge pressure, newton $/ \mathrm{m}^{2} \quad\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$
$T E \quad \frac{T_{e}}{T_{r}}$, edge temperature, ${ }^{o_{K}} \quad\left({ }^{\circ} R\right)$
RE $\quad \frac{\rho_{\mathrm{e}}}{\rho_{\mathrm{r}}}$, edge density, kilogram $/ \mathrm{m}^{3} \quad\left(\right.$ slug $\left./ \mathrm{ft}{ }^{3}\right)$
UE $\quad \frac{u_{e}}{u_{r}}$, edge velocity, $\mathrm{m} / \mathrm{sec} \quad(\mathrm{ft} / \mathrm{sec})$
ME $\quad M_{e}$, edge Mach number
MUE $\quad \frac{\mu_{\mathrm{e}}}{\mu_{\mathrm{r}}}$, newton-sec $/ \mathrm{m}^{2} \quad\left(\mathrm{lb}-\mathrm{sec} / \mathrm{ft}{ }^{2}\right)$
DPEDX $\quad \frac{\partial \mathrm{p}_{\mathrm{e}}}{\partial \mathrm{x}}$, pressure gradient
DTEDX $\quad \frac{\partial \mathrm{T}_{\mathrm{e}}}{\partial \mathrm{x}}$, temperature gradient
DUEDX $\quad \frac{\partial u_{e}}{\partial x}$, velocity gradient
DLTAST $\delta^{*}$, displacement thickness, meters (feet)
THETA $\quad \theta$, momentum thickness, meters (feet)
$\mathrm{D} / \mathrm{T} \quad \frac{\delta^{*}}{\theta}$, shape factor
TAUD $\quad \tau_{\mathrm{w}}$, wall shear stress, newton $/ \mathrm{m}^{2} \quad\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$
CFE $\quad \frac{\tau_{\mathrm{w}}}{\frac{1}{2} \rho_{\mathrm{e}^{\mathrm{u}_{\mathrm{e}}^{2}}}^{2}}$, skin-friction coefficient based on edge condition

CFW $\quad \frac{\tau_{\mathrm{w}}}{\frac{1}{2} \rho_{\mathrm{w}} \mathrm{u}_{\mathrm{e}}^{2}}$, skin-friction coefficient based on wall density
QSD heat transfer, watt $/ \mathrm{m}^{2} \quad$ (Btu/ft ${ }^{2}$-sec)
HD $\quad \frac{\mathrm{q}_{\mathrm{W}}}{\mathrm{T}_{\mathrm{W}}-\mathrm{T}_{\mathrm{aw}}}$, heat-transfer coefficient, watt $/ \mathrm{m}^{2}{ }^{-}{ }^{\circ} \mathrm{K} \quad\left(\mathrm{Btu} / \mathrm{ft}^{2}-\right.$ sec $\left.-\mathrm{O}_{\mathrm{R}}\right)$
NSTE $\quad \frac{\mathrm{h}}{\mathrm{c}_{\mathrm{p}}(\rho \mathrm{u})_{e}}$, Stanton number based on edge condition
NSTW $\quad \frac{h}{c_{p} \rho_{w} u_{e}}$, Stanton number based on wall condition
NUE Nusselt number based on edge condition

NUW Nusselt number based on wall condition

SWANG local shock-wave angle, degrees

ZSHK axial coordinate of shock wave

RSHK local radius of shock wave

ITRO number of iterations performed for variable entropy
TW/TT $\quad \frac{\tau_{\mathrm{w}}}{\mathrm{T}_{\mathrm{t}, \infty}}$
RFTRUE $\frac{T_{a w}-T_{e}}{T_{t}-T_{e}}$, recovery factor
ROUSE $\quad \chi_{\text {max }}$
$\operatorname{DSMXO} \quad\left(\frac{\partial \chi}{\partial \mathrm{x}}\right)_{\mathrm{m}}$
$\mathrm{XD} \quad \mathrm{y} \sqrt{\frac{\rho_{\mathrm{r}} \mathrm{u}_{\mathrm{r}} \mathrm{L}}{\mu_{\mathrm{r}}}}$
YE $\quad \delta_{\mathrm{e}}$, boundary-layer thickness, meters (feet)
UTAU $\quad u_{\tau}=\sqrt{\frac{\mathrm{T}_{\mathrm{W}}}{\rho}}, \mathrm{m} / \mathrm{sec} \quad(\mathrm{ft} / \mathrm{sec})$

PTR reference total pressure

YMP $\quad y_{m}$
P20 $\frac{\rho_{\mathrm{t}, \mathrm{e}}}{\rho_{\mathrm{r}} \mathrm{u}_{\mathrm{r}}^{2}}$
OMEGA $\left(\frac{\rho_{r} u_{r} L}{\mu_{r}}\right)^{-1 / 2}$

## Sample Cases

Two sample cases are presented in order to illustrate the input and output quantities in relation to the test conditions of the particular case being considered. These cases include laminar flow over a blunt axisymmetric body and laminar, transitional, and turbulent flow over a flat plate.

Case 1.- An example of laminar flow over a blunt, axisymmetric body is given in reference 21 . The body is a spherically blunted, $25^{\circ}$ half-angle cone. The wind-tunnel test conditions are as follows:

$$
\begin{aligned}
& \mathrm{M}_{\infty}=7.95 \\
& \mathrm{p}_{\mathrm{t}, \infty}=6.31 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} \\
& \mathrm{~T}_{\mathrm{t}, \infty}=7.83 \times 10^{2} \mathrm{o}_{\mathrm{K}} \\
& \frac{\mathrm{~T}_{\mathrm{W}}}{\mathrm{~T}_{\mathrm{t}, \infty}}=0.38
\end{aligned}
$$

The wall-boundary pressure distribution used in the numerical solution was obtained by the technique presented in reference 22 . (See ref. 7 for comparison of numerical results with experimental data.) This case requires $75 \mathrm{000}_{8}$ storage on the CDC 6000 computers. The listing of the variable-dimension data for this particular case is as follows:

$$
\begin{aligned}
& \mathrm{JK}=110 \\
& \mathrm{JL}=1 \\
& \mathrm{JM}=120 \\
& \mathrm{JN}=20
\end{aligned}
$$

The listing of the input data for case 1 is given as follows:

```
SNAM1
HDR=0.1,
XEND=10.0,
H=0.01,
PR=0.72,
XKK=0.14085,
RETA=0.5,
ALPHA=0.0,
X0=0.0.
Y(l)=0.0,0.0,0.77,0.39,0.28,0.0,
XK=1.0,
IGAS=1,
VISCTN=0.71735-C8,
VISPJW=C.647,
kMOUNIT T=0,
$
```

\$NAM2
$X M A=7.95$,
PT $1=131760.0$.
$T \mathrm{Tl}=1410.0$,
WAVE=9).J,
$r=1.4$,
$\mathrm{R}=1716.0$,
$S 11=198 . \epsilon$,
$P R=0.72$,
PRT $=3.9$,
I $\mathrm{Q} \cap \mathrm{C} Y=1$,
$J=1$,
$W=0$,
FT=1.0,
kñe $=0$,
KOTWAL $=1$,
IEVTRA $=1$.
CRUF $=25.0$,
TENO1=103,
$\Delta=1.0$,
DS $=0.0005$,
KñVIS $=1$,
SST=J. $1 E+09$,
SMXTR=0.1E+09,
TLNGTH $=2.0$,
CTRD=0.412,
CONSTNT $=0.0$,
XTI $=0.4$,
$X T 2=26.0$,
XT3 $=0.0168$,
$X^{\top} 4=0.78$,
$X T 5=0.0$,
PROINS = 0.1 ,
PENT!NS $=.005$,
! PRO $=1$,
PROVAL (1) $=0.345$,
IPRNT=1,
PRNTVAL(1) $=0.345$,
NAIIXPF $5=0$,
PLNGTH=C.O,
NDUTYOE $=1$,
KHOPRT $=2$,
$K T C O D=2$,
$\$$
\$NAM3
NIJMAFR=77,
$\mathrm{L}=1$,
PF( 1 ) $=1150.4,1149.43,1146.54,1141.72,1134.98,1126.32,1115.76,1103.29$, $1088.94,1072.74,1054.72,1034.89,1013.3,989.997,965.019,938.401$, $910.389,880.855,849.844,817.414,783.869,749.276,713.361,676.169$, 633.401,599.196,559.265,517.655,492.393,475.551,456.972,439.014, $421.517,404.537,388.006,371.935,356.335,341.208,326.529,312.31$, 299.539,285.218,272.305,259.829,247.761,236.107,231.92,231.678, 231.161,229.78,228.924,227.986,226.962,225.869,224.718,223.511, 222.252,220.957,219.634,218.288,216.896,211.374,207.75,205.714, 202.654,201.533,209.729,223.925,235.348,247.107,255.308,261.082, 264.994,264.131,262.866,262.141,262.049,
$7(1)=0.0,0.00001853,0.00006226,0.0001354,0.0002381,0.0003708,0.0005337$, $0.0 \mathrm{C07273,0.00C952,0.001208,0.001497,0.001819,0.002175,0.002565}$, $0.002591,0.003455,0.003957,0.004498,0.005082,0.005708,0.00638$, $0.007101,0.007873,0.008699,0.009584,0.01053,0.01155,0.01265$, C. 01401,0.01456,0.01512,0.01568,0.01624,0.0168,0.01737,0.01794, $0.01852,0.0191,0.01968,0.02026,0.02085,0.02144,0.02204,0.02263$, $0.02324,0.02384,0.02445,0.02505,0.02606,0.02813,0.02921,0.03031$, $0.03143,0.03259,0.03378,0.03501,0.03628,0.03759,0.03895,0.04036$, $0.04183,0.04943,0.0536,0.05718,0.06457,0.08496,0.1067,0.1268$, $0.1474,0.1699,0.1895,0.21,0.2511,0.292,0.3347,0.3799,0.4203$,
FMI (I) $=0.0 .0 .001243,0.002277,0.003356,0.004443,0.005546,0.006648$, $0.007751,0.008856,0.009962,0.01107,0.01218,0.01329,0.01439$, $0.0155,0.01661,0 . C 1772,0.01883,0.01994,0.02105,0.02216,0.02327$, $0.02437,0.02548,0.32659,0.02769,0.0288,0.0299,0.03116,0.03164$, $0.03211,0.03257,0.03301,0.03343,0.03385,0.03425,0.03464,0.03502$, $0.03539,0.03575,0.03609,0.03643,0.03675,0.03707,0.03737,0.03766$, $0.03795,0.03873,0.0387,0.03966,0.04016,0.04068,0.0412,0.04174$, $0.0423,0.04287,0.04346,0.04407,3.0447,0.04536,0.04605,0.04913$, $0.05154,0.05371,0.05665,0.06616,0.07631,0.08568,0.09528,0.1058$, C.1149,0.1245,0.1436,0.1627,0.1826,0.2037,0.2225,
$T W(1)=77 * 540.0$,
RVWALT111=77*0.0,
$S(1)=0 . C, 0.001243,0.002278,0.00336,0.004457,0.005563,0.006676,0.007797$, J. C09S24,0.J1006,0.0112,0.01236,0.01352,0.0147,0.01588,0.01709, $0.01831,0.01954,0.02079,0.02207,0.02336,0.02469,0.02604,0.02742$, $0.02893,0.03029,3.03179,0.03335,0.0352,0.03594,0.03666,0.03738$, $0.0391,0.03881,0.03951,0.04021,0.04091,0.0416,0.04228,0.04297$, $0.04365,0.04433,0.04501,0.04568,0.04636,0.04703,0.04771,0.04836$, $0 . C 4$ C48, $0.05177,0.05295,0.05416,0.05541,0.05668,0.058,0.05935$, $0.06075,0.0622,0.0637,0.06525,0.06688,0.07415,0.07986,0.08381$, $0.09196,0.1145,0.1385,0.1606,0.1834,0.2 \mathrm{C} 82,0.2298,0.2524,0.2977$, $0.3429,0.39,0.44,0.4845$,

\&


## SNAM

## $0.924903 C 8449337 E+00$,

## $0.14 E+C 1$,

$=0.397382212551 C 8^{5}+07$,
$=0.54456182115757 F-01$,
0.3961723846778 F •04,
$0.49833004361997 \mathrm{E}+03$,
$0.26132627103112 E+04$,
$0.107846573660365-05$,

## $0.59996819870952 \mathrm{~F}+01$,

11
Ul
AAI
TREF
VISREF


Case 2.- An example of planar flow is presented in reference 23. The wind-tunnel test conditions were as follows:

$$
\begin{aligned}
& \mathrm{M}_{\infty}=2.8 \\
& \mathrm{p}_{\mathrm{t}, \infty}=9.997 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \\
& \mathrm{~T}_{\mathrm{t}, \infty}=3.11 \times 10^{2} \mathrm{o} \mathrm{~K} \\
& \mathrm{q}_{\mathrm{w}}=0 \quad \text { (Adiabatic flow) }
\end{aligned}
$$

The location of transition was not reported in reference 23 ; therefore, for the present calculations it was assumed that transition occurred near the sharp leading edge of the flat-plate model. This case requires $120000_{8}$ storage on the CDC 6000 computer. The listing of the variable-dimension data for this particular case is as follows:

$$
\begin{aligned}
& \mathrm{JK}=310 \\
& \mathrm{JL}=1 \\
& \mathrm{JM}=750 \\
& \mathrm{JN}=40
\end{aligned}
$$

The listing of the input data for case 2 is given as follows:

```
$NAML
HPR=3.4,
XENO=120.0,
H=3.01,
PR=0.7,
XKK=3.911,
RETA=0.C,
AIDHA=3.135,
XO=0.0,
Y\cap(1)=0.0,0.0,3.452,2.43,-3.04,3.0,
XK=1.0?,
IGAS=1,
VISCON=0.7173C-08,
VISP.TW=0.647,
KODINNIT=0,
$
```

```
$NAM2
XMA=2.8,
PT1=21024.0,
TT1=550.0,
WAVE=0.0.
XY1=1.0.
XY2=1.0.
XY 3=2.8,
G=1.4,
R=1716.C,
SU=198.t.
PP=0.7,
PRT=0.95,
IMO\capY=2,
J=O.
b}=0\mathrm{ ,
FT=1.J.
KIODE=0,
KODWAL=2.
IFNTRO=1,
CONE=0.0.
IOND1=1000.
A=1.0,
DS=0.01.
KOMVIS=1,
SST=0.1E+09.
SMXTR=25CO.C.
TLNGTH=2.0,
COF P}=0.412
COVSTNT = 0.0.
XT1=0.4,
XT2=26.0,
XT3=0.0168.
XT4=0.78.
XT5=0.0,
PO\capINC=2.0,
PRNTINC=0.1.
IPPO=14,
DRRVAL|1I=0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.02,0.05,0.08,.06,.07,1.,
IPRNT=13.
PRNTVAL(1)=2.0,4.0,C.2,0.25,0.3,0.35,0.4,0.45,0.02,0.05,0.08,.06,.07,
NAIJXPRON=O,
BLNGTH=0.0,
NPUTYPF=1,
KODPQT=2.
KTC\D = 1,
$
```

\$NAM3
NUMRCQ=41,
$L=1$,
$p \mathrm{P}(1)=41 * 774.69861580563$,
$7(1)=0.0, C .5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4,5,5.0,5.5,6.0,6.5,7.0,7.5$,
$8.3,8.5,9.0,9.5,10.0,10.5,11.0,11.5,12.0,12.5,13.0,13.5,14.0,14.5,15.0$,
$15.5,16.0,16.5,17.0,17.5,18.0,18.5,19.0,19.5,20.0$,
RMI(1)=41*1.0,
$T W(1)=41 * 520.4439$,
OW(1)=41*0.0,
F.VWAL) (1)=41*0.0,
S $(1)=0.0,0.5,1,0,1,5,2.0,2.5,3.0,3.5,4.0,4,5,5.0,5.5,6.0,6.5,7.0,7.5$,

$15.5,16.0,16.5,17.0,17.5,18.0,18.5,19.0,19.5,20.0$,
$s S(1)=1000 * .01$.
$\$$
Sample outputs for case 2 for regions where the flow is laminar and turbulent are given as follows:

$=0.24725123499179 E+01$,
$=0.81887755107041 E+00$.
\$NAM
P10 0
$G$
$0.22275905912769 \mathrm{~F}-01$.
$=0.77469861580563 E+03$.
 $0.21417445482866 E+03$, $=0.21078994314355 \mathrm{E}-02$. RT1 P1 $r 1$

[^2] $\Rightarrow<\stackrel{H}{4}$ VISREF R10 SEND



## APPENDIX A

## DIFFERENCE RELATIONS

Three-point implicit difference relations are used to reduce the transformed momentum and energy equations (eqs. (28) and (29)) to finite-difference form. It is assumed that all data are known at the solution stations $\mathrm{m}-1$ and m . (See fig. 2.) Then, it is possible to obtain the unknown quantities at the grid points for the $m+1$ station. In the subsequent development the notations $G$ and $H$ are utilized to represent any typical variable.

Taylor-series expansions are first written about the unknown grid point ( $\mathrm{m}+1, \mathrm{n}$ ) in the $\xi$-direction as follows:

$$
\begin{equation*}
\mathrm{G}_{\mathrm{m}, \mathrm{n}}=\mathrm{G}_{\mathrm{m}+1, \mathrm{n}}-\Delta \xi_{2}\left(\mathrm{G}_{\xi}\right)_{\mathrm{m}+1, \mathrm{n}}+\frac{\Delta \xi_{2}^{2}}{2}\left(\mathrm{G}_{\xi \xi}\right)_{\mathrm{m}+1, \mathrm{n}}-\frac{\Delta \xi_{2}^{3}}{6}\left(\mathrm{G}_{\xi \xi \xi}\right)_{\mathrm{m}+1, \mathrm{n}}+\ldots \tag{A1a}
\end{equation*}
$$

and

$$
\begin{align*}
\mathrm{G}_{\mathrm{m}-1, \mathrm{n}}= & \mathrm{G}_{\mathrm{m}+1, \mathrm{n}}-\left(\Delta \xi_{1}+\Delta \xi_{2}\right)\left(\mathrm{G}_{\xi}\right)_{\mathrm{m}+1, \mathrm{n}}+\frac{\left(\Delta \xi_{1}+\Delta \xi_{2}\right)^{2}}{2}\left(\mathrm{G}_{\xi \xi}\right)_{\mathrm{m}+1, \mathrm{n}} \\
& -\frac{\left(\Delta \xi_{1}+\Delta \xi_{2}\right)^{3}}{6}\left(\mathrm{G}_{\xi \xi \xi}\right)_{\mathrm{m}+1, \mathrm{n}}+\ldots \tag{A1b}
\end{align*}
$$

where subscript notation has been utilized to denote differentiation; that is, $\mathrm{G}_{\xi} \equiv \frac{\partial \mathrm{G}}{\partial \xi}$, and so forth.

Equations (A1a) and (A1b) can be solved to yield

$$
\begin{equation*}
\left(\frac{\partial \mathrm{G}}{\partial \xi}\right)_{\mathrm{m}+1, \mathrm{n}}=\frac{\mathrm{X}_{1} \mathrm{G}_{\mathrm{m}+1, \mathrm{n}}-\mathrm{X}_{2} \mathrm{G}_{\mathrm{m}, \mathrm{n}}+\mathrm{X}_{3} \mathrm{G}_{\mathrm{m}-1, \mathrm{n}}}{2 \Delta \xi_{2}}+\frac{\Delta \xi_{2}\left(\Delta \xi_{1}+\Delta \xi_{2}\right)}{6} \mathrm{G}_{\xi \xi \xi}+\ldots \tag{A2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{G}_{\mathrm{m}+1, \mathrm{n}}=\mathrm{X}_{4} \mathrm{G}_{\mathrm{m}, \mathrm{n}}-\mathrm{X}_{5} \mathrm{G}_{\mathrm{m}-1, \mathrm{n}}+\frac{\Delta \xi_{1} \Delta \xi_{2}}{2}\left(1+\frac{\Delta \xi_{2}}{\Delta \xi_{1}}\right) \mathrm{G}_{\xi \xi}+\ldots \tag{A3}
\end{equation*}
$$

Terms of the order of $\Delta \xi_{1} \Delta \xi_{2}$, or smaller, are neglected. This produces truncation errors of the order of $\Delta \xi_{1} \Delta \xi_{2}$ instead of $\Delta \xi_{2}$ as in reference 9 where two-point

## APPENDIX A - Continued

difference relations are used. The $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{5}$ coefficients appearing in equations (A2) and (A3) are defined as follows:

$$
\begin{align*}
& \mathbf{X}_{1}=2 \frac{\Delta \xi_{1}+2 \Delta \xi_{2}}{\Delta \xi_{1}+\Delta \xi_{2}}  \tag{A4}\\
& \mathbf{X}_{2}=2 \frac{\Delta \xi_{1}+\Delta \xi_{2}}{\Delta \xi_{1}}  \tag{A5}\\
& \mathbf{X}_{3}=2 \frac{\Delta \xi_{1} \Delta \xi_{2}}{\Delta \xi_{1}\left(\Delta \xi_{1}+\Delta \xi_{2}\right)}  \tag{A6}\\
& \mathbf{X}_{4}=\frac{\Delta \xi_{1}+\Delta \xi_{2}}{\Delta \xi_{1}} \tag{A7}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbf{x}_{5}=\frac{\Delta \xi_{2}}{\Delta \xi_{1}} \tag{A8}
\end{equation*}
$$

Taylor-series expansions are next written about the unknown grid point ( $\mathrm{m}+1, \mathrm{n}$ ) in the $\eta$-direction as follows:

$$
\begin{equation*}
\mathrm{G}_{\mathrm{m}+1, \mathrm{n}+1}=\mathrm{G}_{\mathrm{m}+1, \mathrm{n}}+\Delta \eta_{\mathrm{n}}\left(\mathrm{G}_{\eta}\right)_{\mathrm{m}+1, \mathrm{n}}+\frac{\Delta \eta_{\mathrm{n}}^{2}}{2}\left(\mathrm{G}_{\eta \eta}\right)_{\mathrm{m}+1, \mathrm{n}}+\frac{\Delta \eta_{\mathrm{n}}^{3}}{6}\left(\mathrm{G}_{\eta \eta \eta}\right)_{\mathrm{m}+1, \mathrm{n}}+\ldots \tag{A9a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{G}_{\mathrm{m}+1, \mathrm{n}-1}=\mathrm{G}_{\mathrm{m}+1, \mathrm{n}}-\Delta \eta_{\mathrm{n}-1}\left(\mathrm{G}_{\eta}\right)_{\mathrm{m}+1, \mathrm{n}}+\frac{\Delta \eta_{\mathrm{n}-1}^{2}}{2}\left(\mathrm{G}_{\eta \eta}\right)_{\mathrm{m}+1, \mathrm{n}}-\frac{\Delta \eta_{\mathrm{n}-1}^{3}}{6}\left(\mathrm{G}_{\eta \eta \eta}\right)_{\mathrm{m}+1, \mathrm{n}}+\cdots \tag{A9b}
\end{equation*}
$$

Equations (A9a) and (A9b) can be solved to yield

$$
\begin{equation*}
\left(\frac{\partial^{2} \mathrm{G}}{\partial \eta^{2}}\right)_{\mathrm{m}+1, \mathrm{n}}=\mathrm{Y}_{1} \mathrm{G}_{\mathrm{m}+1, \mathrm{n}+1}-\mathrm{Y}_{2} \mathrm{G}_{\mathrm{m}+1, \mathrm{n}}+\mathrm{Y}_{3} \mathrm{G}_{\mathrm{m}+1, \mathrm{n}-1}+\frac{\left(\Delta \eta_{\mathrm{n}-1}-\Delta \eta_{\mathrm{n}}\right)}{3} \mathrm{G}_{\eta \eta \eta}+\ldots \tag{A10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial \mathrm{G}}{\partial \eta}\right)_{\mathrm{m}+1, \mathrm{n}}=\mathrm{Y}_{4} \mathrm{G}_{\mathrm{m}+1, \mathrm{n}+1}-\mathrm{Y}_{5} \mathrm{G}_{\mathrm{m}+1, \mathrm{n}}-\mathrm{Y}_{6} \mathrm{G}_{\mathrm{m}+1, \mathrm{n}-1}-\frac{\Delta \eta_{\mathrm{n}} \Delta \eta_{\mathrm{n}-1}}{6} \mathrm{G}_{\eta \eta \eta}+\cdots \tag{A11}
\end{equation*}
$$

The $\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{6}$ coefficients appearing in equations (A10) and (A11) are defined as follows:

$$
\begin{align*}
& \mathrm{Y}_{1}=\frac{2}{\Delta \eta_{\mathrm{n}}\left(\Delta \eta_{\mathrm{n}}+\Delta \eta_{\mathrm{n}-1}\right)}  \tag{A12}\\
& \mathrm{Y}_{2}=\frac{2}{\Delta \eta_{\mathrm{n}} \Delta \eta_{\mathrm{n}-1}}  \tag{A13}\\
& \mathrm{Y}_{3}=\frac{2}{\Delta \eta_{\mathrm{n}-1}\left(\Delta \eta_{\mathrm{n}}+\Delta \eta_{\mathrm{n}-1}\right)}  \tag{A14}\\
& \mathrm{Y}_{4}=\frac{\Delta \eta_{\mathrm{n}-1}}{\Delta \eta_{\mathrm{n}}\left(\Delta \eta_{\mathrm{n}}+\Delta \eta_{\mathrm{n}-1}\right)}  \tag{A15}\\
& \mathrm{Y}_{5}=\frac{\Delta \eta_{\mathrm{n}-1}-\Delta \eta_{\mathrm{n}}}{\Delta \eta_{\mathrm{n}} \Delta \eta_{\mathrm{n}-1}} \tag{A16}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{Y}_{6}=\frac{\Delta \eta_{\mathrm{n}}}{\Delta \eta_{\mathrm{n}-1}\left(\Delta \eta_{\mathrm{n}}+\Delta \eta_{\mathrm{n}-1}\right)} \tag{A17}
\end{equation*}
$$

For the case of equally spaced grid points in the $\xi$ - and $\eta$-coordinates, equations (A4) to (A8) and (A12) to (A17) reduce to the following relations:

$$
\left.\begin{array}{l}
x_{1}=3 \\
x_{2}=4 \\
x_{3}=1  \tag{A18a}\\
x_{4}=2 \\
X_{5}=1
\end{array}\right\}
$$

and

$$
\left.\begin{array}{l}
\mathrm{Y}_{1}=\frac{1}{\Delta \eta^{2}} \\
\mathrm{Y}_{2}=2 \mathrm{Y}_{1} \\
\mathrm{Y}_{3}=\mathrm{Y}_{1} \\
\mathrm{Y}_{4}=\frac{1}{2 \Delta \eta}  \tag{A18b}\\
\mathrm{Y}_{5}=0 \\
\mathrm{Y}_{6}=\mathrm{Y}_{4}
\end{array}\right\}
$$

where $\Delta \xi$ and $\Delta \eta$ represent the spacing between the grid points in the $\xi$ - and $\eta$-coordinates, respectively.

Equations (A2), (A3), (A10), and (A11) can then be written for constant grid-point spacing as follows:

$$
\begin{align*}
& \left(\frac{\partial \mathrm{G}}{\partial \xi}\right)_{\mathrm{m}+1, \mathrm{n}}=\frac{3 \mathrm{G}_{\mathrm{m}+1, \mathrm{n}}-4 \mathrm{G}_{\mathrm{m}, \mathrm{n}}+\mathrm{G}_{\mathrm{m}-1, \mathrm{n}}}{2 \Delta \xi}+\frac{\Delta \xi^{2}}{3} \mathrm{G}_{\xi \xi \xi}+\ldots  \tag{A19}\\
& \mathrm{G}_{\mathrm{m}+1, \mathrm{n}}=2 \mathrm{G}_{\mathrm{m}, \mathrm{n}}-\mathrm{G}_{\mathrm{m}-1, \mathrm{n}}+\Delta \xi^{2} \mathrm{G}_{\xi \xi}+\ldots  \tag{A20}\\
& \left(\frac{\partial^{2} \mathrm{G}}{\partial \eta^{2}}\right)_{\mathrm{m}+1, \mathrm{n}}=\frac{\mathrm{G}_{\mathrm{m}+1, \mathrm{n}+1}-2 \mathrm{G}_{\mathrm{m}+1, \mathrm{n}}+\mathrm{G}_{\mathrm{m}+1, \mathrm{n}-1}}{\Delta \eta^{2}}-\frac{\Delta \eta^{2}}{12} \mathrm{G}_{\eta \eta \eta \eta}+\ldots \tag{A21}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial \mathrm{G}}{\partial \eta}\right)_{\mathrm{m}+1, \mathrm{n}}=\frac{\mathrm{G}_{\mathrm{m}+1, \mathrm{n}+1}-\mathrm{G}_{\mathrm{m}+1, \mathrm{n}-1}}{2 \Delta \eta}-\frac{\Delta \eta^{2}}{6} \mathrm{G}_{\eta \eta \eta}+\ldots \tag{A22}
\end{equation*}
$$

Equations (A19) to (A22) are recognized as the standard relations for equally spaced grid points. (See, for example, ref. 11.)

Quantities of the form $\left(G \frac{\partial H}{\partial \xi}\right)$ that appear in the governing equations must be linearized in order to obtain a system of linear difference equations. Quantities of this type are obtained from equations (A2) and (A3).
The procedure used to linearize nonlinear products such as $\left(\frac{\partial G}{\partial \eta}\right)\left(\frac{\partial H}{\partial \eta}\right)$ is the same
as that used by Flügge-Lotz and Blottner (ref. 9) and is as follows:

$$
\begin{align*}
{\left[\left(\frac{\partial \mathrm{G}}{\partial \eta}\right)\left(\frac{\partial \mathrm{H}}{\partial \eta}\right)\right]_{\mathrm{m}+1, \mathrm{n}}=} & \left(\frac{\partial \mathrm{G}}{\partial \eta}\right)_{\mathrm{m}, \mathrm{n}}\left(\frac{\partial \mathrm{H}}{\partial \eta}\right)_{\mathrm{m}+1, \mathrm{n}}-\left(\frac{\partial \mathrm{G}}{\partial \eta}\right)_{\mathrm{m}, \mathrm{n}}\left(\frac{\partial \mathrm{H}}{\partial \eta}\right)_{\mathrm{m}, \mathrm{n}} \\
& +\left(\frac{\partial \mathrm{H}}{\partial \eta}\right)_{\mathrm{m}, \mathrm{n}}\left(\frac{\partial \mathrm{G}}{\partial \eta}\right)_{\mathrm{m}+1, \mathrm{n}}+0\left(\Delta \xi_{2}\right)^{2} \tag{A23}
\end{align*}
$$

where the terms $\left(\frac{\partial G}{\partial \eta}\right)_{\mathrm{m}, \mathrm{n}}$ and $\left(\frac{\partial \mathrm{H}}{\partial \eta}\right)_{\mathrm{m}, \mathrm{n}}$ are evaluated from equation (A11), but at the known station $m$. By equating $G$ to $H$ in equation (A23), the linearized form for quantities of the type $\left(\frac{\partial G}{\partial \eta}\right)^{2}$ is obtained; that is,

$$
\begin{equation*}
\left(\frac{\partial \mathrm{G}}{\partial \eta}\right)_{\mathrm{m}+1, \mathrm{n}}^{2}=\left(\frac{\partial \mathrm{G}}{\partial \eta}\right)_{\mathrm{m}, \mathrm{n}}\left[2\left(\frac{\partial \mathrm{G}}{\partial \eta}\right)_{\mathrm{m}+1, \mathrm{n}}-\left(\frac{\partial \mathrm{G}}{\partial \eta}\right)_{\mathrm{m}, \mathrm{n}}\right]+0\left(\Delta \xi_{2}\right)^{2} \tag{A24}
\end{equation*}
$$

where $\left(\frac{\partial G}{\partial \eta}\right)_{m+1, \mathrm{n}}$ is obtained from equation (A22).
The preceding relations for the difference quotients produce linear-difference equations when substituted into the governing differential equations (eqs. (43)) for the conservation of momentum (eq. (28)) and energy (eq. (29)), respectively, since terms of the order of $(\Delta \xi)^{2}$ are neglected.

## APPENDIX B

## COE FFICIENTS FOR DIFFERENCE EQUATIONS

Equations (43) are the difference equations used to represent the partial differential equations for the conservation of momentum and energy, respectively. These equations are repeated for convenience as follows:

$$
\begin{align*}
& \mathrm{A} 1_{\mathrm{n}} \mathrm{~F}_{\mathrm{m}+1, \mathrm{n}-1}+\mathrm{B} 1_{\mathrm{n}} \mathrm{~F}_{\mathrm{m}+1, \mathrm{n}}+\mathrm{C} 1_{\mathrm{n}} \mathrm{~F}_{\mathrm{m}+1, \mathrm{n}+1}+\mathrm{D} 1_{\mathrm{n}} \Theta_{\mathrm{m}+1, \mathrm{n}-1} \\
& +\mathrm{E} 1_{\mathrm{n}} \Theta_{\mathrm{m}+1, \mathrm{n}}+\mathrm{F} 1_{\mathrm{n}} \Theta_{\mathrm{m}+1, \mathrm{n}+1}=\mathrm{G} 1_{\mathrm{n}}  \tag{B1}\\
& \mathrm{~A} 2_{\mathrm{n}} \mathrm{~F}_{\mathrm{m}+1, \mathrm{n}-1}+\mathrm{B} 2_{\mathrm{n}} \mathrm{~F}_{\mathrm{m}+1, \mathrm{n}}+\mathrm{C} 2_{\mathrm{n}} \mathrm{~F}_{\mathrm{m}+1, \mathrm{n}+1}+\mathrm{D} 2_{\mathrm{n}} \Theta_{\mathrm{m}+1, \mathrm{n}-1} \\
& +\mathrm{E} 2_{\mathrm{n}} \Theta_{\mathrm{m}+1, \mathrm{n}}+\mathrm{F} 2_{\mathrm{n}} \Theta_{\mathrm{m}+1, \mathrm{n}+1}=\mathrm{G} 2_{\mathrm{n}} \tag{B2}
\end{align*}
$$

These equations are obtained from equations (28) and (29) and the difference quotients are presented in appendix $A$. The coefficients $A 1_{n}, B 1_{n}$, and so forth, in equations (B1) and (B2) are functions of known quantities evaluated at stations $m$ and $m-1$. (See fig. 2.) Therefore, equations (B1) and (B2) can be solved simultaneously without iterative procedures. The coefficients $A 1_{n}, B 1_{n}$, and so forth are as follows:

$$
\begin{align*}
& \mathrm{A1}_{\mathrm{n}}=\mathrm{Y}_{3} \mathrm{H}_{3}-\mathrm{Y}_{6} \mathrm{H}_{11}  \tag{B3}\\
& \mathrm{~B} 1_{\mathrm{n}}=\mathrm{X}_{1} \mathrm{H}_{1}-\mathrm{Y}_{2} \mathrm{H}_{3}-\mathrm{Y}_{5} \mathrm{H}_{11}+\mathrm{H}_{5}  \tag{B4}\\
& \mathrm{C} 1_{\mathrm{n}}=\mathrm{Y}_{1} \mathrm{H}_{3}+\mathrm{Y}_{4} \mathrm{H}_{11}  \tag{B5}\\
& \mathrm{D} 1_{\mathrm{n}}=-\mathrm{Y}_{6} \mathrm{H}_{4} \mathrm{FY}  \tag{B6}\\
& E 1_{\mathrm{n}}=\frac{Y_{5}}{\mathrm{Y}_{6}} \mathrm{D} 1_{\mathrm{n}}+\mathrm{H}_{6}  \tag{B7}\\
& \mathrm{~F} 1_{\mathrm{n}}=-\frac{Y_{4}}{Y_{6}} \mathrm{D} 1_{\mathrm{n}} \tag{B8}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{G1}_{\mathrm{n}}=\mathrm{H}_{1} \mathrm{~F}_{\mathrm{m} 2}+\mathrm{H}_{4} \mathrm{~T}_{\mathrm{Y}} \mathrm{~F}_{\mathrm{Y}}  \tag{B9}\\
& \mathrm{~A} 2_{\mathrm{n}}=-2 \mathrm{Y}_{6} \mathrm{H}_{8} \mathrm{~F}_{\mathrm{Y}}  \tag{B10}\\
& \mathrm{~B} 2_{\mathrm{n}}=\frac{\mathrm{Y}_{5}}{\mathrm{Y}_{6}} \mathrm{~A} 2_{\mathrm{n}}  \tag{B11}\\
& \mathrm{C} 2_{\mathrm{n}}=-\frac{\mathrm{Y}_{4}}{\mathrm{Y}_{6}} \mathrm{~A} 2_{\mathrm{n}}  \tag{B12}\\
& \mathrm{D} 2_{\mathrm{n}}=\mathrm{Y}_{3} \mathrm{H}_{10}-\mathrm{Y}_{6} \mathrm{H}_{12}  \tag{B13}\\
& \mathrm{E} 2_{\mathrm{n}}=\mathrm{X}_{1} \mathrm{H}_{1}-\mathrm{Y}_{2} \mathrm{H}_{10}-\mathrm{Y}_{5} \mathrm{H}_{12}  \tag{B14}\\
& \mathrm{~F} 2_{\mathrm{n}}=\mathrm{Y}_{1} \mathrm{H}_{10}+\mathrm{Y}_{4} \mathrm{H}_{12} \tag{B15}
\end{align*}
$$

and

$$
\begin{equation*}
G 2_{\mathrm{n}}=\mathrm{H}_{1} \mathrm{~T}_{\mathrm{m} 2}+\mathrm{H}_{8}\left(\mathrm{~F}_{\mathrm{Y}}\right)^{2}+\mathrm{H}_{9}\left(\mathrm{~T}_{\mathrm{Y}}\right)^{2} \tag{B16}
\end{equation*}
$$

The coefficients $Y_{1}, Y_{2}, \ldots, Y_{6}$ and $X_{1}, \ldots, X_{5}$ are functions of the grid-point spacing and are defined in equations (A12) to (A17) and (A4) to (A8), respectively. The coefficients $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{12}$ are defined as follows:

$$
\begin{align*}
& H_{1}=\xi_{m+1} F_{m 1} \frac{(F T)}{\Delta \xi_{2}}  \tag{B17}\\
& H_{2}=V_{m 1}-L_{m 1}\left(\bar{E}_{m 1} C_{m 1}^{\prime}+\bar{E}_{m 1}^{\prime} C_{m 1}\right)  \tag{B18}\\
& H_{3}=-\bar{E}_{m 1} L_{m 1} C_{m 1}  \tag{B19}\\
& H_{4}=H_{3} \frac{L_{m 1}^{\prime}}{L_{m 1}}  \tag{B20}\\
& H_{5}=\beta_{m+1} F_{m 1} \tag{B21}
\end{align*}
$$

$$
\begin{equation*}
H_{6}=-\beta_{m+1} \tag{B22}
\end{equation*}
$$

$$
\begin{align*}
& H_{7}=V_{m 1}-L_{m 1}\left(\hat{E}_{m 1} C_{m 1}^{\prime}+\hat{E}_{m 1}^{\prime} C_{m 1}\right)  \tag{B23}\\
& H_{8}=-\hat{\alpha}_{m+1} L_{m 1} \bar{E}_{m 1} C_{m 1}  \tag{B2̄4}\\
& H_{9}=-\hat{E}_{m 1} L_{m 1}^{\prime} C_{m 1}  \tag{B25}\\
& H_{10}=H_{9} \frac{L_{m 1}}{L_{m 1}^{\prime}}  \tag{B26}\\
& H_{11}=H_{2}+H_{4} T_{Y} \tag{B27}
\end{align*}
$$

and

$$
\begin{equation*}
\mathrm{H}_{12}=\mathrm{H}_{7}+2 \mathrm{H}_{9} \mathrm{~T}_{\mathrm{Y}} \tag{B28}
\end{equation*}
$$

The undefined quantities appearing in equations (B17) to (B28) are defined as follows:

$$
\begin{align*}
& F_{m 1}=X_{4} F_{m, n}-X_{5} F_{m-1, n}  \tag{B29}\\
& T_{m 1}=X_{4} \Theta_{m, n}-X_{5} \Theta_{m-1, n}  \tag{B30}\\
& V_{m 1}=X_{4} V_{m, n}-X_{5} V_{m-1, n}  \tag{B31}\\
& F_{m 2}=X_{2} F_{m, n}-X_{3} F_{m-1, n}  \tag{B32}\\
& T_{m 2}=X_{2} \Theta_{m, n}-X_{3} \Theta_{m-1, n}  \tag{B33}\\
& L_{m 1}=\sqrt{T_{m 1}} \frac{1+\left(\frac{S}{T_{e}}\right)_{m+1}}{T_{m 1}+\left(\frac{S}{T_{e}}\right)_{m+1}} \tag{B34a}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{L}_{\mathrm{m} 1}=\left(\mathrm{T}_{\mathrm{m} 1}\right)^{\sigma-1}  \tag{B34b}\\
& \mathrm{~L}_{\mathrm{m} 1}^{\prime}=\frac{\mathrm{L}_{\mathrm{m} 1}}{2 \mathrm{~T}_{\mathrm{m} 1}}\left[\frac{\left(\frac{\mathrm{~S}}{\mathrm{~T}_{\mathrm{e}}}\right)_{\mathrm{m}+1}-\mathrm{T}_{\mathrm{m} 1}}{\left(\frac{\mathrm{~S}}{\mathrm{~T}_{\mathrm{e}}}\right)_{\mathrm{m}+1}+\mathrm{T}_{\mathrm{m} 1}}\right]  \tag{B35a}\\
& \mathrm{L}_{\mathrm{m} 1}^{\prime}=(\sigma-1)\left(\mathrm{T}_{\mathrm{m} 1}\right)^{\sigma-2}  \tag{B35b}\\
& \overline{\mathrm{E}}_{\mathrm{m} 1}=\left(\bar{\epsilon}_{\mathrm{av}}\right)_{\mathrm{m}+1, \mathrm{n}} \tag{B36a}
\end{align*}
$$

where

$$
\begin{align*}
& \left(\bar{\epsilon}_{\mathrm{av}}\right)_{\mathrm{m}+1, \mathrm{n}}=\frac{\bar{\epsilon}_{\mathrm{m}-1, \mathrm{n}}+\bar{\epsilon}_{\mathrm{m}, \mathrm{n}}+\bar{\epsilon}_{\mathrm{m}+1, \mathrm{n}}}{3}  \tag{B36b}\\
& \hat{\mathrm{E}}_{\mathrm{m} 1}=\frac{\left(\tau_{\mathrm{av}}\right)_{\mathrm{m}+1, \mathrm{n}}}{\sigma}  \tag{B37}\\
& \overline{\mathrm{E}}_{\mathrm{Y}}=\mathrm{Y}_{4} \bar{\epsilon}_{\mathrm{m}, \mathrm{n}+1}-\mathrm{Y}_{5} \bar{\epsilon}_{\mathrm{m}, \mathrm{n}}-\mathrm{Y}_{6} \bar{\epsilon}_{\mathrm{m}, \mathrm{n}-1} \\
& \hat{\mathrm{E}}_{\mathrm{Y}}=\mathrm{Y}_{4} \tilde{\epsilon}_{\mathrm{m}, \mathrm{n}+1}-\mathrm{Y}_{5} \tilde{\epsilon}_{\mathrm{m}, \mathrm{n}}-\mathrm{Y}_{6} \tilde{\epsilon}_{\mathrm{m}, \mathrm{n}-1}  \tag{B39}\\
& \mathrm{~F}_{\mathrm{Y}}=\mathrm{Y}_{4} \mathrm{~F}_{\mathrm{m}, \mathrm{n}+1}-\mathrm{Y}_{5} \mathrm{~F}_{\mathrm{m}, \mathrm{n}}-\mathrm{Y}_{6} \mathrm{~F}_{\mathrm{m}, \mathrm{n}-1}  \tag{B40}\\
& \mathrm{~T}_{\mathrm{Y}}=\mathrm{Y}_{4} \Theta_{\mathrm{m}, \mathrm{n}+1}-\mathrm{Y}_{5} \Theta_{\mathrm{m}, \mathrm{n}}-\mathrm{Y}_{6} \Theta_{\mathrm{m}, \mathrm{n}-1}  \tag{B41}\\
& \beta_{\mathrm{m}+1}=\left(\frac{2 \xi}{u_{\mathrm{e}}} \frac{d u_{\mathrm{e}}}{\mathrm{~d} \xi}\right)_{\mathrm{m}+1} \tag{B42}
\end{align*}
$$

(See eq. (A11))
and

$$
\begin{equation*}
\alpha_{\mathrm{m}+1}=\left(\frac{\mathrm{u}_{\mathrm{e}}^{2}}{\mathrm{~T}_{\mathrm{e}}}\right)_{\mathrm{m}+1} \tag{B43}
\end{equation*}
$$

## APPENDIX B - Continued

The transverse-curvature terms are contained in the quantities $C_{m 1}$ and $C_{m 1}^{\prime}$ which appear explicitly in the $\mathrm{H}_{2}, \mathrm{H}_{3}, \mathrm{H}_{7}, \mathrm{H}_{8}$, and $\mathrm{H}_{9}$ coefficients. The transversecurvature term in the transformed plane (see ref. 7) may be written as follows:

$$
\begin{equation*}
\mathrm{t}^{2 \mathrm{j}}=1+\frac{2 \omega \mathrm{j}(\mathrm{~W}) \sqrt{2 \xi} \cos \phi}{\rho_{\mathrm{e}} \mathrm{u}_{\mathrm{e}}} \int_{0}^{\eta} \Theta \mathrm{d} \eta \tag{B44}
\end{equation*}
$$

where $t$ represents the ratio $r / r_{o}$ and is a known quantity for the $N-1$ grid points at station $m-1$ and $m$. Then, the extrapolated values at $m+1, n$ are obtained as follows where the parameter $C$ is used to represent $t 2 j$ :

$$
\begin{align*}
& C_{m 1}=X_{4} C_{m, n}-X_{5} C_{m-1, n}  \tag{B45}\\
& C_{m 1}^{\prime}=Y_{4} C_{m, n+1}-Y_{5} C_{m, n}-Y_{6} C_{m, n-1} \tag{B46}
\end{align*}
$$

Two quantities (symbols) as of now remain undefined. These are the code symbols $F T$ and $W$ which appear in equations (B17) and (B44), respectively. The code symbol $W$ appearing in equation (B44) is used either to retain or neglect the transversecurvature terms for axisymmetric flows; that is, $W=1$ or 0 , respectively. For planar flows, the transverse-curvature term does not appear since $j$ equals 0 . The code symbol FT (flow type) appearing in equation (B17) is used either to retain or neglect the nonsimilar terms in the governing differential equations; that is, FT = 1 or 0 , respectively. If FT is assigned a value of unity, the solution to the nonsimilar equations (eqs. (27) to (29)) is obtained. If FT is assigned a value of zero, the locally similar solution is obtained; that is, the following system of equations is solved:

## Continuity

$$
\begin{equation*}
\frac{\partial V}{\partial \eta}+F=0 \tag{B47}
\end{equation*}
$$

Momentum

$$
\begin{equation*}
\mathrm{V} \frac{\partial \mathrm{~F}}{\partial \eta}-\frac{\partial}{\partial \eta}\left(\mathrm{t}^{2 \mathrm{j}} l \bar{\epsilon} \frac{\partial \mathrm{~F}}{\partial \eta}\right)+\beta\left(\mathrm{F}^{2}-\Theta\right)=0 \tag{B48}
\end{equation*}
$$

Energy

$$
\begin{equation*}
\mathrm{V} \frac{\partial \Theta}{\partial \eta}-\frac{\partial}{\partial \eta}\left(\mathrm{t}^{2 \mathrm{j}} l \frac{\tilde{\epsilon}}{\sigma} \frac{\partial \Theta}{\partial \eta}\right)-\alpha l \mathrm{t}^{2 \mathrm{j}} \bar{\epsilon}\left(\frac{\partial \mathrm{~F}}{\partial \eta}\right)^{2}=0 \tag{B49}
\end{equation*}
$$

## APPENDIX B - Concluded

The governing equations for the locally similar system are obtained from equations (27) to (29) by neglecting derivatives of the dependent variables $F, \Theta$, and $V$ with respect to the streamwise coordinate $\xi$. The capability of obtaining locally similar solutions is desirable in that for a given test case the locally similar and complete nonsimilar solutions can be obtained for the identical program inputs and numerical procedures. Consequently, the effects of the nonsimilar terms on the boundary-layer characteristics for a particular case can be determined by a direct comparison of the results obtained for solutions for $\mathrm{FT}=1$ and 0 , respectively.

## APPENDIX C

## LANGLEY LIBRARY SUBROUTINE FTLUP

## Language: FORTRAN

Purpose: Computes $y=F(x)$ from a table of values using first- or second-order interpolation.
An option to give $y$ a constant value for any $x$ is also provided.

## Use: CALL FTLUP(X, Y, M, N, VARI, VARD)

X The name of the independent variable $x$.
$\mathbf{Y} \quad$ The name of the dependent variable $\mathrm{y}=\mathrm{F}(\mathrm{x})$.

M The order of interpolation (an integer)

$$
\begin{aligned}
& M=0 \text { for } y \text { a constant. VARD(I) corresponds to VARI(I) for } \\
& I=1,2, \ldots, N . \text { For } M=0 \text { or } N \leqq 1, y=F(\operatorname{VARI}(1)) \text { for any value of } x .
\end{aligned}
$$ The program extrapolates.

$\mathrm{M}=1$ or 2. First or second order if VARI is strictly increasing (not equal).
$\mathrm{M}=-1$ or $\mathbf{- 2}$. First or second order if VARI is strictly decreasing (not equal).
$\mathrm{N} \quad$ The number of points in the table (an integer).
VARI The name of a one-dimensional array which contains the N values of the independent variable.
VARD The name of a one-dimensional array which contains the N values of the dependent variable.

Restrictions: All the numbers must be floating point. The values of the independent variable $x$ in the table must be strictly increasing or strictly decreasing. The following arrays must be dimensioned by the calling program as indicated: VARI(N), VARD(N).

Accuracy: A function of the order of interpolation used.

References: (a) Nielsen, Kaj L.: Methods in Numerical Analysis. The Macmillan Co., c.1956, pp. 87-91.
(b) Milne, William Edmund: Numerical Calculus. Princeton Univ. Press, c.1949, pp. 69-73.

Storage: $430_{8}$ locations.

Error condition: If the VARI values are not in order, the subroutine will print TABLE BELOW OUT OF ORDER FOR FTLUP AT POSITION xxx TABLE IS STORED IN LOCATION xxxxxx (absolute). It then prints the contents of VARI and VARD, and STOPS the program.

Subroutine date: September 12, 1969.

## REFERENCES

1. Cebeci, Tuncer; Smith, A. M. O.; and Mosinskis, G.: Calculation of Compressible Adiabatic Turbulent Boundary Layers. AIAA Paper No. 69-987, June 1969.
2. Bushnell, Dennis M.; and Beckwith, Ivan E.: Calculation of Nonequilibrium Hypersonic Turbulent Boundary Layers and Comparisons With Experimental Data. AIAA J., vol. 8, no. 8, Aug. 1970, pp. 1462-1469.
3. Hixon, Barbara A.; Beckwith, Ivan E.; and Bushnell, Dennis M.: Computer Program for Compressible Laminar or Turbulent Nonsimilar Boundary Layers. NASA TM X-2140, 1971.
4. Patankar, S. V.; and Spalding, D. B.: Heat and Mass Transfer in Boundary Layers. Morgan-Grampian (London), 1967.
5. Herring, H. James; and Mellor, George L.: A Method of Calculating Compressible Turbulent Boundary Layers. NASA CR-1144, 1968.
6. Anderson, Larry W.; and Kendal, Robert M.: A Nonsimilar Solution for Multicomponent Reacting Laminar and Turbulent Boundary Layer Flows Including Transverse Curvature. AFWL-TR-69-106, U.S. Air Force, Mar. 1970. (Available from DDC as AD 867 904.)
7. Harris, Julius E.: Numerical Solution of the Equations for Compressible Laminar, Transitional, and Turbulent Boundary Layers and Comparisons With Experimental Data. NASA TR R-368, 1971.
8. Pletcher, Richard H.: On a Finite-Difference Solution for the Constant-Property Turbulent Boundary Layer. ALAA J., vol. 7, no. 2, Feb. 1969, pp. 305-311.
9. Flügge-Lotz, I.; and Blottner, F. G.: Computation of the Compressible Laminar Boundary-Layer Flow Including Displacement-Thickness Interaction Using FiniteDifference Methods. AFOSR 2206, U.S. Air Force, Jan. 1962.
10. Harris, Julius Elmore: Numerical Solution of the Compressible Laminar, Transitional, and Turbulent Boundary Layer Equations With Comparisons to Experimental Data. Ph. D. Thesis, Virginia Polytech. Inst., May 1970.
11. Davis, R. T.; and Flügge-Lotz, I.: Laminar Compressible Flow Past Axisymmetric Blunt Bodies (Results of a Second-Order Theory). Tech. Rep. No. 143 (Grants AF-AFOSR-62-242 and AF-AFOSR-235-63), Div. Eng. Mech., Stanford Univ., Dec. 1963.
12. Van Driest, E. R.: Turbulent Boundary Layer in Compressible Fluids. J. Aeronaut. Sci., vol. 18, no. 3, Mar. 1951, pp. 145-160, 216.
13. Bushnell, Dennis M.; and Morris, Dana J.: Shear-Stress, Eddy-Viscosity, and Mixing-Length Distributions In Hypersonic Turbulent Boundary Layers. NASA TM X-2310, 1971.
14. Rotta, J. C.: Heat Transfer and Temperature Distribution in Turbulent Boundary Layers at Supersonic and Hypersonic Flow. Recent Developments in Boundary Layer Research, Pt. 1, AGARDograph 97, May 1965, pp. 35-63.
15. Probstein, Ronald F.; and Elliott, David: The Transverse Curvature Effect in Compressible Axially Symmetric Laminar Boundary-Layer Flow. J. Aeronaut. Sci., vol. 23, no. 3, Mar. 1956, pp. 208-224, 236.
16. Hayes, Wallace D.; and Probstein, Ronald F.: Hypersonic Flow Theory. Academic Press, Inc., 1959, p. 290.
17. Morkovin, Mark V.: Critical Evaluation of Transition From Laminar to Turbulent Shear Layers With Emphasis on Hypersonically Traveling Bodies. AFFDL-TR-68-149, U.S. Air Force, Mar. 1969. (Available from DDC as AD 686 178.)
18. Dhawan, S.; and Narasimha, R.: Some Properties of Boundary Layer Flow During the Transition From Laminar to Turbulent Motion. J. Fluid Mech., vol. 3, pt. 4, Jan. 1958, pp. 418-436.
19. Moore, F. K., ed.: Theory of Laminar Flows. Vol. IV of High Speed Aerodynamics and Jet Propulsion. Princeton University Press, 1964.
20. Richtmyer, Robert D.: Difference Methods for Initial-Value Problems. Interscience Publ., Inc., 1957.
21. Bushnell, Dennis M.; Jones, Robert A.; and Huffman, Jarrett K.: Heat-Transfer and Pressure Distributions on Spherically Blunted $25^{\circ}$ Half-Angle Cone at Mach 8 and Angles of Attack up to $90^{\circ}$. NASA TN D-4792, 1968.
22. Lomax, Harvard; and Inouye, Mamoru: Numerical Analysis of Flow Properties About Blunt Bodies Moving at Supersonic Speeds in an Equilibrium Gas. NASA TR R-204, 1964.
23. Moore, D. R.; and Harkness, J.: Experimental Investigation of the Compressible Turbulent Boundary Layer at Very High Reynolds Numbers, $M=2.8$. Rep. No. 0-71000/4R-9, LTV Res. Center, Apr. 1964.

[^0]:    *For sale by the National Technical Information Service, Springfield, Virginia 22151

[^1]:    20 FRRMAT (1X,7HSS(1) $=, 59.4, / 1 X, 7 H S S(2)=, F 9.4, / 1 X, 7 H S S(3)=, F 9.4,11$

[^2]:    $0.20084661930434 E+04$.
    $=0.71720935465835 \mathrm{~F}+03$.
    $=0.67165109034267 \mathrm{~F}+03$.
    $=0.45404287741154 \mathrm{E}-06$.
    $=0.10567872 \mathrm{C}$,
    $=0961 \mathrm{~F}+02$.

