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ABSTRACT

There are numerous examples of research dealing with towed and
tethered bodies. Besides the classical problem of kites and towed gliders,
recent work has been done on towed decelerators for reentry bodies and towed
underwater devices.

Previous analytical treatment of the body~cable system has assumed a
rigid body problem, where the cable effect is accounted for by some force
condition at the attachment point. The present approach treats the system as
being essentially a cable problem, with the body dynamics giving end conditions.

The mathematical form of the first order problem is a nonhomogeneous
initial-boundary value problem in the partial differential wave equation. All
equations, including end and auxiliary conditions, are linear with constant coef-
ficients. Further, these equations uncouple to give a "lateral" problem and a
"longitudinal' problem —— as in first order airplane dynamics. The solution of
either problem takes the form of a transcendental characteristic equation for
the stability roots. These roots are extracted by using an electronic computer
and a roots locus plot.

A series of tests on a tethered wind tunnel model provided a comparison
of the theory with experiment. The equilibrium properties of the system were
found by force measurements and photographs for various wind speeds, but the
stability derivatives were found entirely from theory. This, along with the fact
that the model was flying near stall, gave rise to a certain amount of difference
between the theoretical and experimental results. Nevertheless, within the
estimated error limits, the comparison is good and provides a convincing argu-

ment for the theory.
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INTRODUCTION

The objective of this research was to devise a method by which one
could predict the dynamic stability of a cable-body system subjected to fluid
forces. Examples of such cable-body systems are numerous. Besides the old
examples of kites and towed gliders, current examples are towed decelerators
for reentering spacecraft (Fig. 15), towed underwater devices (Fig. 16), and
towed and tethered 'kite balloons' (Fig. 17).

Analysis of cable-body system dynamic stability was initially directed
toward kites and towed gliders, and the best examples of this work are given by
Glauert (Ref. 6), Sthne (Ref. 1 ), and Bryant, et. al. (Ref. 1), Current analy-
sis, however, has been directed toward a wider range of cable-body system
applications. For instance, besides towed glider research by Maryniak (Ref. 11),
towed nonlifting surveillance devices were studied by Etkin and Mackworth
(Ref. 5), Mettam (Ref. 12), and Hopkin (Ref. 8). Also, a stability theory for
towed underwater devices was developed by Laitinen (Ref. 9); and MacNeal
(Ref. 10) derived a stability eriterion for towed hypersonic decelerators.

The approaches taken toward the problem by most investigators

has been to consider the situation to be solely a body problem, with

the cable accounted for by some force condlition at the attachlment point.
This force condition takes the form of cable "stability derivatives",
and is derived from the assumption that the cable is in an Iinstantaneous
equilibrium configuration with respect to certain of its end conditions.
That is, the shape and tension of the cable are assumed to be either
functions of the body's position, (Ref. 1), or functions of the body's
position and velocity (Ref. ll). This assumption gives a good physical
model for a large class of cable-body problems, in particular, those
for which the cable is light and the system osclllations are slow.

These conditions are met by most towed gliders



and towed and tethered kite balloons. Further, the physical model has the merit
of yielding a first order problem composed of a system of second order ordinary
differential equations. These, in turn, give a polynomial for the stability roots.
The present approach considers the dynamics of the cable, that is, the
system is treated as a cable problem, with the body giving end and auxiliary
conditions. Mathematically this means that the body's ordinary differential
equations of motion provide end and auxiliary conditions to the cable's partial
di'fferential equations of motion. The result of the first order problem — as
shown in Chapter 3 — is transcendental equations for the stability roots. The
author feels that this physical model embodies the essential characterization of
the cable-body system because the assumptions — as shown later — relate
only to details about the cable construction, body construction, and fluid loads,

and not about the mechanical nature of the cable-body system. An extension
on the present approach is also included in reference 1T.



1. THE CABLE EQUATIONS OF MOTION

1.1 The Complete Cable Equations

The physical model of the cable considered is subject to the following
assumptions:

a. The cable is uniform along its length, perfectly flexible, inextensible, has
a round cross-section, and is totally immersed in a homogeneous fluid,
b. The Reynolds number of the cable's crossflow is subcritical.

The dependent variables of the cable are the coordinates of a point on it,
§,§, and {, and the tension, T, atthat point. The independent variables
are the distance along the cable, s, and time, t. The forces acting on an
element of the cable, ds, are now found. Considering first the tension force,

—

T, note that

- —~ - dT . , — 0n.
T=|T|n and T'= [T +5-ds|(n +ds),

thus,

so, one has

- 9 9 -~ 8 9y . > 9 98t
dT = -8-;(Tas)dsb1 + as(Tas)dse2 +5-S-(Tas)dsb3. (1. 1)
The gravity force, di«:g, on the element, ds, is given by
F_ = - pg(Cib, +84b,)ds. 1.2
ng pg(C:>zb1 +Sab3)ds (1.2)
Similarly, the buoyancy force, de, on the element is given by
- - ~ ~— 1.
dF g B(Cabl +Saib,)ds. (1. 3)
Treating now the fluid dynamic force, dl_?‘.f, on the element, ds, note first that
v -T-7,
r s



where ;:s is the cable element's velocity relative to the reference frame ®
(see Fig. 1). Note that ‘_r; is the relative velocity of the fluid to the cable

element. Considering the plane of F. and ;;r’ and introducing the cable

f
coefficients, Ca and Cb’ one obtains the components of the fluid force, dF—‘.f,
as defined in Fig. 2:
dFa =C,P Ivrl erds (1.4)
and
_ —> % — x -
Cbpvr (vr n)Rds. (1.5)
Now,
- 8t~ 0oy~ 8l
Vs T tgbl *5t°2 *5tPy
so,
V.= (UCK - 2)b, - o¥e, - (USF +32) b3 (1.6)

Further, as described in page 3.9 of Hoerner (Ref. 7),

C =C +K(1 - 0207)3/2 (1.7)
a a
o]
and
2\1 ~
Cb =K(1 - C a)Cx, (1. 8)
where
(V- 1)
Ch=—7 (1.9)
v |
r

Thus, (1.8), (1.9), (1.6), and (1. 7) into (1.4) and (1. 5) give the fluid-dynamic
forces on the element.

Equating all of the forces to the acceleration of the element, one has

— - — _ ._g—b at_,—b
dT+ng+dFB+dF +dF Fy = Porls +5-;1e2 5205) ds (1. 10)

so, (1.1) - (1. 8) into (1.10) give the complete cable equations of motion. Taking

components, one has, for the E;l direction,

4



2 .2
~?d ) ~
p—f 2T g>+pR<c +KS (UK - ag +<-a%’)
ot o
1/2 2
+(Us&’+al") ] (UCY - %té) - KSZ5C5eR X [{(LC&' ag
0 (1.11)
H 7wy s 20328 . 2523 &
oy HUSE +30) ) 2 - (WA - g - & )
L. d
- (Usz + 2925} x (e - 2] - (g - Bica.
Similarly, one has, for the e2 direction,
2y > oy
3—2——(TaZ)- PR(C, +KS s - at 91
ot o
1/2 2
+(USa +a§) ] gi_’ Ks 25CHpR x [{(UC - gf
(1.12)
.2
¥ ¢ 3
+‘at) +(Usa at> +{(wa - o3
3y, dy BE 1N
- (3903 ~ (US% 43¢ as}
And finally, one has, for the b3 direction,
22t 2t ag 2
”—7=as aS)- R(ca +KS a)[(UCa -
ot o
5 2 at 2 M2 3L,
( ) +(Us +30) (Us&+ ) - PRKS aCoz
(1.13)
L w2 2 t2 3t ~ 3.2t
x 1{wd -2+ +(usa )}g;+{(wa ae
114
(at)as - (us¥ + 2H22(usa + 2] - (B - bys.



1.2 The First Order Cable Equations

In order to simplify equations (1.10) —-(1.13), a small perturbation
analysis is performed such as to give the first order form of these equations.
Consider, now, the £ axis to be aligned through the end points of the cable's
equilibrium configuration (Fig. 3). Further, consider a perturbation from

equilibrium such that
E=£(5) +E(s,1), F=¥'(s,t) and L=1 (s) +L'(s, ), (1. 14)

where go(s) and Lo(s) are the equilibrium values and £'(s,t),y'(s,t), and
L' (s,t) are the perturbation values from equilibrium. Also,

T=T_ +7(s,t), (1. 15)

where T0 is the mean value of the equilibrium tension and T(s,t) is the
perturbation value from equilibrium. Note now the important assumption made
that the equilibrium tension is constant and equal to T0 over the cable' s length.
This approximation is closely realized for a large range of cable-body systems,

for example, towed reentry decelerators and towed and tethered bodies where
og - <T. .
(Pg - B)L < T, and C,PRL <T_ (1. 16)

Experimental evidence (Refs, 1,5,12 and Chapter 4) has indicated that unstable
modes of many such systems — if they are present —— occur within the cable
length where conditions (1. 16) are still satisfied.

Now, assume small perturbations from the equilibrium position such

that
'3 _ o), T 2E | opequ and (s, t) = O[e]T_ where e<<1.  (L.17)
5 ’ at 3t
Note that it follows that
E’-'—= 0[62] and == 0[62]U.

as ot
Proof:

Considering the special case of motion in the y, £ plane, one has

- - 2
dy = ds and dt'=edy, so, df=e¢ ds,
6



which gives
Y Also, 3 - Sat
Allowing for motion in the & direction gives the same results. At this point,

the assumption is introduced that the cable has a shallow curvature such that

oL aéo
aoﬁva, E—z 0, and —é—gz 1. (1.18)

This assumption is, in fact, consistent with conditions (1. 16).
Now, taking (1. 17) and (1. 6) into (1.9), and taking this, along with (1. 17)
and (1. 18), into the complete cable equations, and further, dropping terms of

0[62] and higher, one obtains the first order cable equations of motion. These

are
2., 2., '
ga & _ r 9 +pR[(C_ +KS 33y usacs - 2KUS3ECa”]at"
2 o_2 a ot
ot as (o)
(1.19)
+pRU2K[s2&c2&(3 - 8) - s3&(s?‘o7 - ZCZN)]i
2 2¢ o
~ o) ~ ~ 2~
pa_X =T oy _ pRU[C +K(s3oz +C2aszoz)]—a-z'+
2 o, 2 a ot
ot os o
(1. 20)
- pRKUZSZ50% ”gy ,
and
2, 2,, '
g‘a £ =T 8 b - pPRU[(C_ +KS a)(l +8 a)+KS ozC ]—73—
2 o. 2 a ot
ot as o
(1.21)

2~ 2
- pRKU [S ozCa(3Sa +1) - ZS aCo +2C3 S cv]"i

As an aside, the first order equilibrium equations are



2%

2 ~ ~ 2 ~ ~ ~
To ; +pRU Coz(Ca +KS3a) - pPRKU SsaCa +Ca(5 -pg)=0 (1.22)
os o
and
azc’o 2 3 23
T — - PRU s<a7(ca +KS“@) - pRKU"S font +Sa(b - pg) = 0. (1. 23)
9s o

Within the context of assumptions (1. 18), equation (1.23) is the defining equation
for the first order cable shape.

1.3 The Nondimensional First Order Cable Equations

Define the following factors:

2 2 .
8 _,2U0  ° _ 4U 2 o~y ~_EL,y,0,s
5 = (50> —3 = (5D, and £, 0,5 =2t (1. 24)

ot b

One can now obtain nondimensional forms of equations (1.19), (1.20), and (1.21).

In particular, define the factors:

2
; T b 2
é? E"_ZE' 5=8Bb and g= %5%. (1. 25)
4pU°L P P
Further, use these to define
k, =JIC, +Ks3&)s&c& _ 2KS ACH] (1. 26)
o
and
~ 2~ ~, ~, 2 ~,
k2 EJK[Szch a(3 - &) - S‘;oz(S o - ZCZaf)]. (1. 27)
Equation (1. 19) now becomes
DZE-ézﬁ-kDZ-ka—é= ) (1.28)
~2 1 208
os
Similarly, define
kg = 3(0a +Ks%a +KCPa5R) (1.29)

o]

and



k7 = JKC&SZE.

Equation (1. 20) becomes

2~ ~
2., *262 ~ _al_
Dy-C a§'2+k6Dy +k7a§—0.

And finally, define

ky = jr(ca +Ks3&‘)(1 + &%) +Ks2&‘c?‘&]
o
and
~ A~ ~ ~_ 2'\' ~
k, = TK[SZacH (388 +1) - o5 2acm(s’a - Cza)].

Thus equation (1. 21) becomes

2~ ~
2> ~23°L ~ =19
DL -C ag’z k3D§+k4a~—O

(1. 30)

(1.31)

(1. 32)

(1. 33)

(1.34)



2. THE BODY EQUATIONS OF MOTION

2.1 The Force and Moment Equations

The physical model of the body is considered to be subject to the fol-
lowing assumptions:

a. The body is rigid, symmetric with respect to the r_{ ,1_1; plane (see

Fig. 5), and completely immersed in a homogeneous fluid.

b. The cable is perfectly free to pivot at the attachment point.

c. The center of buoyancy is on the ﬁl axis,

It is important to note that the body equations will be expressed in terms
of x,y,z, andthe Eulerian angles ¥,8 and ¢ relative to ®. Although this is
different from airplane practice, these coordinates are necessary in order to
relate the body equations to the cable equations. However, the force and moment

—-

equations are derived relative to 1.1’1, n. and n, because fluid-dynamic effects

2 3

on a body are traditionally taken in these directions, But, by transformation
equations, these force and moment terms are eventually expressed in terms of
X,¥,2,%,0 and ¢.

The force-acceleration equations are, as in Etkin (Ref. 4),

F1 = m(ll +qw - rv), (2. 1)

F2 = m(V +ru - pw), (2.2)
and

F3 = m(W +pv - qu), (2.3)
And similarly, the moment-angular acceleration equations are

M, =L b- Ixz'r +q(L,r - L p)- rIyyq, (2. 4)

M, = Iyyq +r(Lp-1 1) -plI r-1 p), (2. 5)
and

M3 = Izz'r - Ixzb +Iyypq - q(Ixxp - Ixzr). (2. 6)

Note that u,v, and w are defined by the velocity of the mass center:

10



v, =un, +vn, +wn3. (2.7)
Also, p,q, and r are defined by the body's angular velocity with respect to ®&:

— — - —

©=pn, +qn, +rn,. (2.8)

Consider now the relations between gi and r-fl based on the Eulerian

angles as defined in Fig. 6. These are

e, = CyCon, +(CYS6S¢ - SYCH)n, +(CYSICH +SyS)n, (2.9)

é’z = swceﬁl +(SwSGS¢+Czer¢)xT2 +(SYS6S¢ - cws¢)ﬁ'3, (2.10)
and

6’3 = - serT1 +Cos¢ﬁ’2 +Cec¢ﬁ’3. (2.11)

These relations give, by virtue

v, = kel +jze2 +'ze3 (2.12)

and equation (2. 7), that

u = XCyCo +ySyCo - 280, (2.13)
v = X(C¥86S¢ - SYC) +y(SUSeS$ + CYCe) +2CoSe, (2. 14)'
and
w = X(CUSeCo + SYS¢) +V(SeSYC ¢ - CYS¢) +2zCHCP. (2. 15)
Similarly, resolving (2. 8) with (2. 9),(2.10), and (2. 11), one has
p=¢- Y56, (2.16)
= 9C¢ +§C0S¢, (2.17)
and
r = yCOCH - 8S¢. (2.18)

Equations (2. 13)—+(2. 18) into (2, 1)(2. 6) give the force and moment equa-~
tions in terms of x,y,z,¥,0, ¢, and their derivatives. These equations are non-
linear, but in the spirit of the stability analysis, a small perturbation is per-

formed, and linear, first order equations are derived.

2.2 The First Order Force and Moment Equations

Consider a perturbation of the Eulerian angles and their derivatives such
that
11



8=0+0, ¢=0 +8&, y=y +7 (2.19)

. . I . . A . . L

9=00+9’ ¢=¢0+¢, and ?If'-:'llfo'*'llfs - (2.20)
where the "o" quantities are reference values, and the " " quantities are the
perturbation values. Further, define the reference configuration of the body to

be that of static equilibrium, thus,

¢0=w0=w0=90=¢0=0, (2.21)

and 60 is a fixed value according to the condition that the 'il'l axis passes
through the attachment point and the mass center (see Fig. 5).

Now, assume small perturbations such that

8,7, %=0[), %X, ¥,z2=0[€]U, and 8,0, = 0[e}(U/b), where € <1, (2.22)
Substituting (2. 13)~(2. 22) into (2. 1)—~(2. 8), and dropping those terms containing
an 0[62] or higher, one obtains the first order form of the force and moment

equations. These are

F1 = m(iceo - 'z'seo), (2.23)

F2 = my, (2.24)

F, = m(ZCo_ +%86 ), (2. 25)

M, = Ixxi - (L, S0, +Ixzcoo)$, (2. 26)

M, = Iyy%a", (2.27)
and

M, = (1,,Co_ +1xzseo).%; - Ixzé' (2.28)

Finally, the dynamics of the body deals with its motion with respect to the inertial
reference frame, ®. However, the fluid dynamics of the body depends on its

motion relative to the fluid stream, ®', which is

— - — _ — = - -— + -— ) 2. 29
(vc)r Ve Ue1 urn1 +vrn2 wrn3 ( )

For motion subject to the small perturbation conditions, (2.19)—~2.22), equations

(2. 13)~(2. 15), and (2. 29) give

12



u_ = xCB0 - zSF)o - UCOO, (2.30)

r
v.=Up+y - Use 3, (2.31)
and
w_=2zCe_ +%S6 - USH - UCH 4. (2.32)
r o] (o] : (o] o

Now, considering again the equilibrium reference condition, one defines velocity
perturbations by

ur=-UCGO+u', Vr=V', and wr=—USG0 +w't, (2.33)

Thus, from (2.30)+2.32), (2.33) gives

u' = k%XCo - 286 _, (2.34)
o] (o]
v = Up+y - Useo$, (2. 35)
and
w'=2CH_ +%Se_ - UCo 8. (2.36)
(o) o (o]

Similarly, the body's acceleration with respect to the fluid stream is given by

R -
- dvc+(ﬂ'—>(ﬂ+ (R—»(R'x—»
a, = T a w A\~
T
which gives
R —
— ch - —_ —
a, = G - a;n; +a2n2 +a3n3. (2.37)

T
And, for the small perturbation case, (2.19)—~(2.22), equations (2.13)—~(2.15)
and (2.37) give

a; = th90 - zSBo, (2.38)

a, =¥, (2. 39)
and

a3 = sz)0 +xS€0. (2.40)

Note that the acceleration of the body with respect to the fluid stream, &', is

identical to that of the body with respect to the inertial reference frame, &.

13



Finally, one obtains the small perturbation forms of the angular accelera-

tion components by taking (2. 19)—~(2. 22) into (2.16)~(2.18). This gives

p= - ﬂiseo, (2.41) q= 5, (2.42) and r = cooiﬁ. (2.43)

2.3 The Nondimensional Form of the First Order Force and Moment Equations

The factors used to nondimensionalize the terms in the force and moment
equations are identical to those used in American airplane analysis, except that

no distinction is made between a "longitudinal' and "lateral' characteristic length,

Now define
_ F,,F,,F,B,mgT
Cys Cys Oy Bumig, T = 12 - 3 o @.44)
(pU S/2)
M.,M_,M
2
c,C ,C & —IT——3, (2. 45)
(pPU“Sb/2)
x’YQZ’R ’R
A A A ~ ~ B a A A A u', v’ w'
x,y,z,ZR,ZRa = ——m)———, u,v,w = —’—6’—-—, (2. 46)
8.8,,4, 5-1—2‘91——3, ,q,T = Z%%, (2.47)
(2U"/b)
2U 4m
= = m————— 2'
t=3+1 K= osp (2.48)
L’ Iyy’ Lz Ixz
Lot lyy? tzzt k2 B 3 ! (2.49)
pS(b/2)
bd 2 b2 g
D( )= 2—6’511;_)’ (2.50) and D°( )= ———2(—1 (2. 51)
4:U2 dt

Introducing these into the force and moment equations, (2.23)—(2.28), gives
C,, = uCé p%s - pse p%s (2.52)
X 0 s
24
Cy = uDy, (2. 53)

14



2A 2A
C,, = uS8 DX +uCé Dz,

.2 . . 2
C,=1i D ® - (i, 56, +i ,C6 )D D,

c =i D%,
m yy

and

o . 2~ . 2
C,=(i,,Co +i 86)D°F-i D P.

Further, equations (2.34)—(2.43) become

i = C6 Dx - S6 Dz,
o (0]

{; = Dg’ +$ - 5905,

w =56 Dx +C6H Dz - Co 0,
0 (8] (o]

4. = Co D% - 80 Dzﬁ,

1 o o

2.2= Dy,

a. =C6 D’s +S6 D’x,

3 o o

p=Do - seonﬂs,

q = D~s

and
T= C60D¢

2.4 The Force and Moment Coefficient Terms

Consider the forces, Fi’ and the moments, Mi’ (i=1,2,3) onthe

body. Rewrite these as

F,=F, +AF, and M, =M, + AM,, (i=1,2,3)
1 10 1 1 l.0 1

where Fi and Mi are the reference values, and AFi and AMi are the
perturbedoquantitiesc.’ Defining the reference condition to be that of static

equilibrium, one obtains

15

(2. 54)

(2.55)

(2. 56)

(2. 57)

(2. 58)
(2. 59)

(2. 60)

(2.61)

(2. 62)

(2. 63)
(2. 64)

(2. 65)

(2. 66)



1
(o] o

F. = Mi = 0. BSo, Fi = AFi and Mi = AMi. (2.67)
Now, in the spirit of small perturbations, AFi and AMi are assumed to vary
linearly in the perturbed velocity, the acceleration, and the angular velocity of

the body relative to ®'. Also, accounting for the body weight and buoyancy, one
assumes that AFi and AMi vary linearly with the perturbed Eulerian angles.
Finally, a cable force and moment contribution is accounted for by AFCi and
AMCi' Thus, the general expressions for the force and moment terms are:

oF, oF, oF, oF, oF,
AF, = tut o+ lv' +—w! +=—a +——ta
i ou' ov' ow' 8a1 1 8a2 2

oF, 9F, OF oF, OF

i i i i i
+833a3 * dp P aqq * or " Baﬁ (2. 68)

dF,  OF,
+ 550 +8—?b$ +AF, (1=1,2,3)

and
oM, oM, oM, oM, oM,
— 1] 1] 27 T
AM, = ot A5V tawr +aala1+aa2a2

oM, aM, oM, oM, oM,
r + ==t 2. 69

"Ba3 " op " Toq 1 or e (2. 69)

oM. oM,

i i
—_— i= 2
v %6 +AM . (i=1,2,3)
Further, when one defines the nondimensional parameters,

9F, 8F, OF,
N i i

2
= 2.70
Cri O Cri = Guseu v awn (279
u A w
o OM, BM, M,
= ) 2.71
Cmi_* Cui ’CMiw = (GUbs ou'* v ow'” @71

16



oF, 8F, OF
i i i

2
C.. aC . sC . E( ) » ) s (2-72)
Fl‘.1 Fli’ Flv.v pSbh 8a1 8a2 8a3
, oM, aM, oM,
C..,C..,C —y i 1 i (2.73)
P s s = ) ’ ) [] .
Mi,* "Mi,’ Mi. prZ Bal Baz 8a3
4 aFi BFi aFi
Cri *Cri *Cri_ = GUsp)op ' 3q ' Br ° (2.74)
P q r
oM, M, oM
C...,C..,C —2 1 _i_ 1 (2.75)
’ P} . = ; ’ s ’ .
Mi Mi M1r pUsz op’' 9q’ or
aFi 8Fi BFi
C. ,C_..,C.. =) == . (2.76)
270
Fl’b Fle F1¢ pU°S D’ 99 _53
oM. OM, oM,
C..,C.. ,Co. =(—2y—=t L 1 2.77)
PO ) s 9 . = 2 a F) Ny a -
M1¢ Mig’ “Mi, ey 0’8’ 99
2AFi ZAI""i
CFiC = C. C(le‘i), (2.78)
pUzS pUzLR
and
2AMi ZAMi
CMiC = C_ Q(.If-sli), (2.79)
oU%sb  pUZLRb
equations (2. 68) and (2. 69) become
Cri = Cpi W7 Cpi V*Cp W*Cpy 38 *Cpy 35 *Cpy 3
u v w u v w
P q F B 2,
+CFip+CFiq+CFir+CFiE+CFi 6+CFi 35+CFi (2.80)
p q r P ¢ C
(i=1,2,3)

and

17



Cmi=™Cmi “"Cumi V*Cmi ¥ *Cmi 21 *Cui %2 O, 23
u v 1] v w
*Cypy POy A+ Cyy FHCyy $4C, THCyyy B4Cy (2.81)
p q r ¥ o & C
(i=1,2,3)

Now, as in airplane stability analysis, cross derivative terms are dropped;
that is, fluid dynamic stability derivatives of symmetrical quantities with respect
to unsymmetrical variables are dropped. Thus,

Cm ’Cm.’cm ,Cm ,CX ’CX.’CX , and CX =0, (2. 82)
v ' P r v v o) T
Similarly, fluid dynamic derivatives of unsymmetrical quantities with respect to

symmetrical variables are dropped. So,

C C C C C C C C C c,6 ,C

Y Y'Y, Y.Y*z2 72,72 "2} L’
u v u w ] v v p r ‘u

w (2. 83)

,c, ,c ,c ,Cc ,C , and C =0.
. £ n n n. n. n
u w q u w u w q

Further, considering the gravity and buoyancy effects, one has
F +B= (B - mg)(;,; (see Fig. 7),
which, by (2.11),gives

Fg +B=(B - mg)(—SBn1 + C(}qun2 + C9C¢>n3).

Further, the perturbation value from equilibrium is found by using (2. 19)—>(2. 22),

and dropping terms of order 62 and higher. This gives

— — _ _ _ ~— - _ — 2.
A(Fg+B) (B - mg)(-C6_Bn, +ceo$n2 sooﬁn3). (2. 84)
Thus, (2.84) and (2. 76) give
c. ,C, ,C, ,C, ,C and C, =0 (2. 85)
X' XY’y z’ Z
vy 9y 8 Y ¢
and
- _ a _ ~ - a _ ~ ’ - _ A _ ~ S 2‘ 86
CXG (B - mg)Co_, CY¢ (B - mg)Co_, and Cze (B - mg)so_ (2.86)

18



Similarly, the moment about the mass center due to buoyancy effects is given by

M_=R_XB=R_B(m,

B B B X e,) (see Fig. T).

1 3
Using (2. 11), one obtains

My = RpB(-COC¢n, +CoS¢n,),

for which, again, the perturbation value from equilibrium is found by using

(2. 19)—(2. 22), and dropping terms of order €2 and higher. This gives

AM = RBB(SGO'an + ceoan3). (2. 87)
Thus, (2.77) and (2. 87) give
c ,c_ ,c ,c_,c,,c,, and C, =0, (2. 88)
m m n n £ £ L
¢ A T i)
c_ =Rise  and C_ = RBCS,, . (2. 89)

m, n ¢
Now, the cable effects on the body are considered. The cable terms in the
force and moment equations provide the mathematical link between the body's

motion and the cable’ s motion. The cable force is

Ta = "Tolas) €y *(5g) e *G55) e3l (2.90)
a a a
Using equations (2. 9)—~2, 11), one may resolve this into the: n, ,r_fz, and ﬁ;

coordinate directions. Further, consider a perturbation of the cable from

equilibrium such that

— ——

(as _(as) +(8S )a’ (as) —(as)a and (asa_(asa+(as)a’ (2'91)

where the "__'" quantities are the equilibrium values, and the primed quantities
are the perturbation variables., Consistent with the previous small perturbation
analysis, (1.17), the primed terms are said to be of order e. Thus, substituting
(2. 91) into equation (2, 90), and dropping terms of order 52 and higher, one

obtains the first order cable force. Now, the equilibrium cable force is
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7 - B o i+ (D 0+ co
= -T [{( ) Co, (as)aseo}nl 4 {(as)aseo +(as)aceo}n3, (2. 92)

and, subtracting this from the first order cable force gives one the expression
for the perturbation value of the cable force from equilibrium. Nondimensionalizing

by (2.78), one obtains the components of this expression:

o2 %! % 9%, -
C, =T [5) 86, - (50 €O+ {(Bs) S0 +(5) ceo}e], (2.93)
C a a a a
c, =-T [(Z5) {( ) 86, (ﬁ) CoNG - E_;Z) ] 2.94
Y ol as 59 C00? - G ¥, (2.94)
C a a
and
. 0¥ %! o% Y N
cZC = -1 I )ace0 + (o )ase0 + {(as)aceo - (as)aseo}e]. (2. 95)

In a similar fashion, the cable moment terms are derived. The moment

on the body due to the cable force is

=T XR n
MC Ta Ronl’ (2. 96)

where 'T‘. is given by (2. 90). Again, when one uses equations (2. 9)—>(2.11),

equation (2 96) may be resolved into nl, x and 1—1’3 components. And further,
as by (2.91), a small perturbation from equilibrium is taken, and terms of order
62' and higher are dropped. This gives the first order form of the cable moment,

Now, the equilibrium cable moment is

9% -
MC0= -R,T [( ) 86, (-é;)aceo]nz, (2.97)

and subtracting this from the first order cable moment gives one an expression
for the perturbation value of the cable moment from equilibrium. Nondimen-
sionalizing by (2.79), one finds that the components of this expression are

c, =0, (2. 98)
e
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PP A % o% o
c_ =-R T 5 80, +5) Co,+{iar) €O, - G0 seo}m, (2. 99)
C (o] a a a

and

Cn ™ R T ) +{<—) s6,, (—) ceo}qs < )wl (2. 100)

Finally, substituting (2. 82), (2.83), (2.85), (2.86), (2.88), (2.89), and
(2. 58)—(2. 66) into (2. 80) and (2. 81) gives one the force and moment expressions
in terms of the %,¥,Z,),0, P coordinates, namely,

2
Cy = [(Cy €O +C, 86)D° +(Cy CO_+Cy

. 86 )DI% +[(Cy CO_
u w u w w

2 .
- Cy 89 )D” +(Cy € - Cy S )DJ2 +[Cy D - cao{cX (2.101)
V] w u q w

+B-mgRFrC,
C

2
Cy=(Cy D" +Cy D)§ +[(C6,C,, - 86, C, )D+Cy 10
v v T p A
(2.102)
+[Cy D - {seocY - (B - mg)ceo}ﬂ +Cy s
P v c
2
c,=[(C, Co -C, 86)D" +(C, CO_-C, S0 )D]2
w u w u
2 .
+[(C, Co_ +C, S§)D" +(C, CO_+C, S0 )DJX (2. 103)
u w u w
+[C, D - {cz Cco_ +80 (B - mg)}]'5+CZ ,
q w C
2 R ~
C,=(C, D" +C, D)y +(C, D-C, 50)%
v \ P v
(2.104)

+[(C, Co - C, 80)D+C, I,
T o] v
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2
cC_ = - - 5
m=UC €8 -C_ 86 )D"+(C_ C6 -C  S6)DJ2
w u w u
+[(C_ Co_+C_ S6 )D2+(C Co +C_ S0 )DJR (2.105)
m, (o] m., (o] m o m o)
u u w
+1C_ D-{cm ceo-f{B S0 JaL; +C_
q w C
and
2 ~
C = -
n=(C D +C D+[C C6 -C 8¢)D+C 0
v v T P v
(2. 106)

+[CnpD +{RBCo_ - cnvseo}ﬂ +Cnc.
Thus, equations (2.93)—(2.95) and (2. 98)—2. 100) into equations (2. 101)—~2. 106)
and these, in turn, into equations (2. 52)—(2.57) constitute the complete force
and moment equations for the body, Note that the fluid dynamic force coefficient
terms, (2.70)-~2.75), may be directly related to the "stability derivatives' of

standard airplane notation. The transformation equations to relate one to the

other are given in the Appendix.

2.5 The End and Auxiliary Conditions as Given by the Force and Moment Equations

As mentioned in the introduction, the key to the solution of the cable-body
problem is to solve the cable equations, where the body equations of motion provide
end and auxiliary conditions. To this purpose, the body equations of motion must
be rearranged and combined so as to isolate the cable terms. First, note that

(2. 94) and (2. 100) combine to give an auxiliary condition:

C +RC, =0 (2. 107)
nc a YC

A second auxiliary condition is given by (2. 95) and (2. 99):
c_ -Rc, =o. (2.103)

mC a ZC

Also, a third auxiliary condition is given by (2. 98):

C!, =0, (2.93)
C
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Further, (2.94) gives an end condition:
C — —_

L ¥ Y o -~

oy! C b3} ~ 0

G =- -Gy G0.3-P - co 3. (2. 109)
a T a a

0

Similarly, (2.93) X SGO - (2.95) X C90 gives a second end condition:

A 0% ~
o) = co ) - () B (2.110)
a a

(C, S6_-C,

C C

|

X
o]

And finally, a third end condition is given by (2.93) X ceo +(2.95) X seo:
Co +C,_ 86 )+ QZ) [} (2.111)
o "€z 56y (Bs : :
C C a

ox%x'
( s’
a

(C

ks Il—l

X
o

Now, these conditions may be expanded into full form by using equations (2. 101)—
(2.106), (2.93)~(2.95), (2.98)—2.100) and the force and moment equations
(2.58)~2.66). Doing such, one finds that the auxiliary condition, (2.107), becomes

2 o . 2 2
(75 D7 + gD}y + (i D" +m, D +n24)?b +(my D 47, D +w27)$= 0, (2.112)

where
To1 = Ry -Cy ) -Cp s
v A\
“22 = —(Cn +RaCY )s
A"
Tog = ~(C, *R,Cy )
P p
Ty =86 (C +R C, ) - ceo[RB +R_(B - mg)],
v v
“25 = lzzcgo +1szBO,
Tog = Cn se0 - Cn ceo - Ra(ceocY - saocY ),
P r r p
and
Tor = =(C, +RaCY ).
v v
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Similarly, (2,108) becomes

2 - 2 -, 2 ~
("28D +1r29D)x +('rr30D +1r31D)z + (1ny +‘rr32D +'rr33)9 = 0, (2.113)
where
Tr28 = Ra[SOO(CZ . ) +CGOCZ.] - ((’Oocm. +Seocm .)’
V'Y a u w
Tr30 = Ralceo(cz . M) - SGOCZ.] +SeoCm. - Ceocm. ?
w u u w
"29 = Ra(CGOCZ +soocz ) - CeOCIn - SeoCm ,
u w u w
1131 = Ra(CeoCZ - SGOCZ ) '+Sé)0Cnr1 - C()OCm ,
w u u w
T3p = R Gy - Chy s
q q
and
Tag = Ceo(me - RaCZw) - SeO[RB +Ra(B - mg)].

Also, in the same fashion, (2.98) becomes

2 A 2 2
(CLD +c£ D)y-(lxxD -c£D+seocf )P +(m gD +T, D

20

v v P v @. 114)
+C, W=0,

yJ

v
where
=i i - S .
1719 = 1xxS00 +1XZC9o and 1'r20 = CerBO Cﬁp 90

Further, the end condition, (2.109), becomes

A AR 5 3 3 2.115
( B8 )a = ('rr7D +178D)y + (Tr9D +'n'10)¢ +('rr11D +w12)¢, ( )
where
(Cy, =™ Cy Cy
\'4 v p
1r7 = " s 11'8 = —A—', "9 =T
T T T
o o o

24



B 1 N a 2}5 0z
T10 = = UB-mgICo -86.Cy 1-80 (=) -Co (=) ,
T v
(o]
™. =—-(Co C. -S0C. )
11 =2 ( oY oY
T
(o]
and
Y, %
Tio= +('ég) .

(o}

Also, the end condition, (2.110), becomes

oz’

2 ~ 2 ~
(Es,—)a = (73D 47y D)X (7 DT 4y D)2+ (m D+ ), (2. 116)
where
1
Tig = T—[CGO(CGOCZ. +SBOCZ.) ~ SOO(CBOCX. +SBOCX. ),
T u w u W
o
-1
™, = 186,(Co Cy +89 C. ) -Ch (COC, +56.C, ),
T u w u w
o
1
'rr15 = —A——[seo(soocx. - CBOCX.) +Cf)o(C¢9oCZ - SOOCZ,) -1,
T u w w u
)
1
"16 = ﬁseo(SOOCX - CBOCX ) +Cé)o(C(9OCZ - S¢90CZ R
T u w w u
(o]
T, = 1 Co C S6 C_, )
17 T A (CO,C, -56,Cx )
T q
0
and
1 o%
Tig = :—CBO(SBOCX - CeOCZ ) - (as .
T w w a

(o]
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And finally, the end condition, (2.111), becomes

X!

vy )0, (2.117)
a

2 A 2 A
= (1r1D +1r2D)x +(TT3D +1T4D)Z + (trsD e

where

1
T, o= —[CBO(CQOCX - SGOCX )+ SGO(COOCZ - SGOCZ 1,
To w u w u

1
™ =—-('i‘ C6,Cy +56 C, ),
o q q
and
Mg =—=[C6 (CO C.. +S0 C. )+B - mp +3_—E)
6 =", o( o X o 2 - mg] (Bs'
T0 w w a

2,6 The Transformation of the End and Auxiliary Conditions to the Cable Coordinates

Note that the end and auxiliary conditions, (2.112)—~2. 117), are expressed
in terms of the X',¥' and Z' coordinates of the cable, and the ;E,S', and z
coordinates of the body's mass center. Thus, in order to apply these conditions
directly to the cable equations, (1.28),(1.31), and (1. 34), one must transform them
to the cable coordinates E,; and Z Consider now the following transformation

equations (see Fig, 8):
x = Caf(1,t) - sal(1,t) +RanbC0, (2.118)
y =¥ +R_5yC9, (2.119)
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and

z = Cab(1,t) +SxE(1,t) - R_So. (2.120)

Using the small perturbation assumptions for the cable (1. 14)—(1. 17), and the
small perturbation assumptions for the body, (2.19)—(2.22), one obtains the
transformation equations for the first order problem. Further, nondimensionalizing

by equations (1. 24), (2. 46), (2. 50) and (2.51), one has

(—-—)SaDL(l,t) - 2RaSBOD'5,

%% = -2, 1) - 2R se D23, (2.121)
b a o
2L~ A = ~
= ($HDF(L, 1) +2R_Co_DY,
0% = &Lyp% A
= (——)Dzy(l t) +23aceobzﬂ$, (2. 122)
p% = Eaapt,t) - 2k co DY
b ? a o '’
and
D27 = (%}‘-)c&ozt.,(l,E) - zﬁaceonzﬁ. (2. 123)

Note now that, at the attachment point, one has the following relationships:

% %, 9 9%, 9

<;;> = 52 ai( 1,9 - ) ai’(l b, (2. 124)
and

8%, _ 9%, 9L ot

(a_ 55 s =1, t) + (a —(1 ). (2. 125)

Multiplying (2. 124) by (E)E/%)s)a and (2. 125) by (Sﬁ/as)a and adding the two, one
obtains a relationship for the cable slope in the two coordinate systems. Using the
small perturbation relations, (1.14)—(1,17) and (2, 91), and nondimensionalizing

by (1.24), one obtains the relationship in the following form:
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o 0%, 0X' '
D= G G50 (as> &, . (2. 126)
a a

Now, when one uses equations (2, 121)—(2. 123) and (2. 126), the end and auxiliary
conditions (2. 112)~(2, 117) may be expressed in the cable coordinates, First,
(2. 121) and (2. 123) into (2. 113) give the auxiliary condition:

2 ~ s 2

(m D +n46D)§(1,t) +(m D +m D +1r33)'5 =0, (2. 127)
where

LT (——)(ﬂsoca = TgS)s
2L ~ ~

Ta6 = (5 (M3, % — TagS)s

Tyq = lyy - 2Ra(1728860 +1r3OCBO),
and

748 = T3 " 2Ra(1r29890 +1r31C60).

Similarly, (2.122) into (2. 112) gives an auxiliary condition:

2 ~. " . 2 2
(mygD" + g DIF(L,8) + (i DT 4, D +7y )3 + (7, D7 7D
~ (2.128)
where
2L L
T49 = o210 M50 = (a2
51 = 2R CO,Ta1 Tas AN Moy = Tog + 2R, T5C0%:
Further, equations (2. 122) into (2. 114) give another auxiliary condition:
2 ~ A . 2
(Mo D" 7 DIY(L,t) + (-1 D" +C JepD - 86 C Jzv)?ﬁ
(2.129)
2 ~
+ =
+(v55D 11'56D +C£v)z_b 0
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where

- 2L, _ 2L
Tss = G )sz’ Toq = ( b)C:,v’

Ter = Tig +2Racoo, and Tee = Tag +2Racoo.

Now, an end condition is given by (2. 121), (2. 123), (2. 116), and (2. 117) into

(2.126). This becomes

oL, o 2 5 s 2
L t) = (", oP +n41D)t,.(1,t)+(1r42D +7,.D +11'44)'§, (2.130)
where
21, ax 0%
0 = (b )[(as) ( 15 1T13 ) (BS) (Tl’ - SC!)],
2L 8x o7 ~
“41 = (_)[( ) ( 16 “14&) = (a ) (TI' - “zsa)]!
T —ﬁ[-a——z) TS0 +nce)-9—§ TS0 +m, _CO )
g2 = BlGgg) (456, +74Co, (as)a(13 o TT15C0)
T =[(§_;i) {v . -2R (v  S6 +w Cf )}-(9—2) {m - 2R _(v_S6
‘asa 17 a' 14 o 16 o asa5 a2 o
+11'4C0°>],
and
- ax E)E
4= as - Gs

Also, an end condition is given by (2. 122) into (2. 115):

~

P 2 o
5%(1,1;) = (D +T  DIY +(mgD 7 )3 + (m D +m D +m ), (2. 131)
where
2L 2L
51 = (5 )p M58 = (F)ge
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T _=2R Co and =

59 a o7’ +2RacaoTT ‘

60 = 11 8
Finally, to complete the set of end conditions, assume that the cable is fixed at the

origin of the ¥%,V,Z coordinate system. This gives

E(O,E) =0, (2.132), y(0,f) =0, (2.133), and Z(O,f) = 0, (2. 134)
Thus, (2.127)—(2.134) give the end and auxiliary conditions for the cable equations
(1. 28), (1. 31), and (1.34). The nature of the solution is such that initial conditions
need not be specified, that is, the general solution is sought. Therefore, the

problem statement is now complete.
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3. THE SOLUTION OF THE CABLE-BODY EQUATIONS

3.1 A Discussion of the Equations

Note the very important fact that the equations uncouple into two separate
problems. The cable equation, (1.34), along with the end conditions, (2.130) and
(2. 134), and auxiliary condition, (2. 127), constitutes a complete problem for the
general solution of Z(E,t) and 5(5). Similarly, the cable equation, (1.31), with
the end conditions, (2.131) and (2. 133), along with the auxiliary conditions, (2.128)
and (2. 129), gives a complete problem for the general solution of F(8,t), 3(f) and
ﬂ')(f). Physically, this means that the first order problem uncouples into two
distinct modes: lateral and longitudinal motions. Such uncoupling is, in fact,
observed by experiment (Chapter 4 and Ref., (1)). Further, these motions have
certain analogies to uncoupled airplane motion, although the comparison must not
be carried too far, since the two mechanical systems are fundamentally different.
Each of these problems is now treated separately.

Note finally that, consistent with condition (1. 15), the E(E', f) coordinate is

of no significance in the first order problem.

3.2 The Longitudinal Solution

The longitudinal problem is described by the following equations:
Cable Equation:

27 ~
2y ~287¢C ~ 8t _
DL -C — +k3Dt,.+ ky 55 = 0. (1. 34)
s
End Conditions:
92(1 fy=(r. D2+, D)1, +(r D2 +u D+m )3 (2.130)
9s "’ 40 41 ¢ 42 43 44’
and
Z(o,f) = 0. (2. 134)
Auxiliary Condition:
2 > 2
= 0. 2,127
(1745D +w46D){,(1,t)+(n47D +'n'48D +1r33)3 0 ( )
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These equations are linear, and have constant coefficients, Therefore, in the
spirit of linear differential equation theory, the solution is assumed to be of the
following form:

" ~

TG0 = 2@ and 7= ee”, 3.1)

where ® is a constant. Now, substituting this into the partial differential equa-

tion, (1.34), one obtains an ordinary differential equation for Z(s):

2
(or +k a)Z+k dz C2d Z = 0. (3.2)
4 ds ~2
ds
Also, by ordinary differential equation theory, the general solution of this is
2@) =z Bt D8 +Z oA - s, (3.3)
1 2
where
k4 k4 (cr2 +k30) 1/2
A’:"Té and QE[ .4 5 :] . (3. 4)
2C 4C C

Now, by the end condition, (2.134):

Z0)=0=2 +Z
91 %
Thus, (3.3) becomes
~ A5, QF -G8
Z@) = Z e S5 _ o), (3. 5)

Using this, and substituting (3. 1) into the end condition (2, 130), one obtains

e (e -e O)[‘wo 0" -A - O(e . n)]z +(1r42cr

+1r43o + 1r44)® 0. (3. 6)

Further, (3.5) and (3. 1) into the auxiliary condition, (2.127), give

A -0 2 2 _
e (e -e )(1r450 +1r460)zo+(1r47o +m o+1r33)®—0. 3.7

48
Equations (3. 6) and (3. 7) are two linear homogeneous equations in Zo and @.

Thus, it follows that an equation for ¢ (characteristic equation) may be obtained
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by putting these two equations into a determinant, and setting it equal to zero.

Doing this, one obtains

2 2
-N -
(11'400 +1r41cr {1 coth ), (1r420- +1r430 +1r44)
9 9 = 0, (3. 8)
(11-450 +1r460), (-rr47a +1r480' +1r33)
where
o -
coth O = (en e .
@ - e
Note that o is, in general, complex; that is,
o=0_ +jcrj, where j = (—1)1/2. (3.9)

Thus, the characteristic equation, (3. 8), is a complex transcendental function in
a complex variable. To facilitate finding the roots of this, one expands it into
two real characteristic equations in two real variables, crr and crj. To this end,

note first the expansion of  coth (i:

Q= Or +]Qj, (3. 10)
where
h h
nI‘ = —Azcv’ Q = _ESV’
C b ¢
ki 2 2 2 1/4
hz = [(—A-2-+o-r - oj +k3ar) +(2aro'j +k30'j) |
4C
and
2
-1 k
tan 4 2 2
V= —2—-[(20roj +k30j)/( 5 t0. crj +k30r)]-
4C
Thus,

Qcoth 0= Hy +jH,, (3.11)
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where

2 2
) Qr coth Qr(l +cot %) - Qj cot Qj(l + coth Qr)

H3’=

cothzn + cotzﬁ.
r J
and

Q1. coth O (1 +cot20.) +Q cot O (1 - cothzﬂ )
] r J r J r

H4E

cothzﬂ +cot20. .

r ]
Now, this and (3. 9) are substituted into the characteristic equation (3. 8).
Expanding this, and separating into the real and imaginary parts, one obtains
two simultaneous real characteristic equations in two real variables, o, and

crj. These are

Gr(ar,oj) = E1E7 - E2E8 - E5E3 +E6E4 =0 (3.12)
and
= - — = o 1
Gj(cr,aj) ElEs + E2E7 E5E4 E6E3 0, (3.13)
where
2 2
= - - (A
E1 = 1r40(crr crj) +1r410r ( +H3),
E2 = 27r4oor0j +'rr410rj - H4,
2 2
E3 = “42(01' - oj) +-rr43crr +1r44,
E4 = 21r420r0j +1T430j’
2 2
E5 = 1745(0r - oj) +ﬂ460r’
E6 = 2“450rgj +1r46crj,
2 2
Ep = Tyq(0p = 05) 7487 330
and
E8 = 21r47crraj +1T480'j.
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An electronic computer is used to solve equations (3. 12) and (3.13). This is

explained in detail in Section 3. 4,

3.3 The Lateral Solution

The lateral problem is described by the following equations:
Cable Equation:
2 2 5%
Dy - &° L 1k Dy+k7 =0, (1.31)

a~2

End Conditions:

0y, = 2 ~ 2
aetlsD) = (Mg D +T5gD)Y + (gD 47, ) + (Mo D™ +me D +w ) (2.131)

and
(0,9 = o. (2. 133)
Auxiliary Conditions:
(v Z. D)y (1, ) (=i D2 +m__D +, )'&5 7 D2 4w D
49 50 23 51 52
vr =0 (2.128)
and
(v pZ+m D)y (1,t) +(~i D2+C. D-86C )¢ +(w__D
53 54 XX I’p o .cv 55
+ D+C )‘pf—o (2. 129)

56

As in the longitudinal case, these equations are linear, and have constant coef-
ficients. Therefore, the solution is assumed to be of the form:

~a 8 ~ Af At At

y(s,t) = Y(S)e t, P =ve t, and ¢ = de , (3. 14)
where ¥ and ¢ are constants. Now, substituting this into the partial dif-

ferential equation, (1.31), one obtains an ordinary differential equation for Y(8):

2
2 dy ~2d adY
A - — .
(A" +k MY +k Sz - & - 0. (3. 15)

Further, the general solution of this equation is
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YE)=Y o , (3. 16)
1 2
where
1/2
k k2 (xz +k,A)
7 7 6
I‘—z—-‘\—z- and A = Tt T .o . (3.17)
2C 4C C
The end condition, (2.133), gives
Y(0)=0=Y +Y_ .
1 %
Thus (3. 16) becomes
~ I's, AS -AS
Y(8) = Yoe (e -e ). (3.18)

Using this, and substituting (3. 14) into the end condition, (2.131), one obtains

A -
+
e A A

T -
e (eA—e A)[v57)\2 +17
(e -e

58

0 (3.19)
A A A =

TR AT Q)BH (T gh AT AT )T = 0.

Further, (3.18) and (3. 14) into the auxiliary conditions, (2.128) and (2. 129), give

I A - 2 2
- A -i A A
e (e -e A)("49 TN Y, F(Fig A T gt tTo)2
0 (3. 20)
A A =
+ (1r51 + 'rr52 + 11'27)\11 0
and
r A - 2 2
- A A -i A A - ]
e (e e A)(Tr53 Ty )Yo+( L +C!, SGOCLv)nI)
p (3. 21)
2
A A =
+ (1\'55 +-rr56 + sz)\I! 0.

Equations (3. 19), (3. 20), and (3. 21) constitute a set of three linear homogeneous
equations in Yo’ ¥, and & Thus, as in the longitudinal case, a characteristic
equation for A is obtained by putting these into a determinant, and setting it

equal to zero, One then obtains
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2 2
A ~-r.
(-rr57 +1r587\. A coth A), (11-97\ 4+ (m_ A" +w A +'rr12)

10)’ 59 60

(1749}\2 +1r507\), (..ile2 +mT A4+T 7\2 +1_ A4

23 T Taq)r (Tgq 52" T Ta7) =0(3.22)

(Tsq

2 2 2
A A, (-i A - A
FregM (LA +C.¢p seoczv), ("ss +"56“sz)

where

A -
coth A = ‘('e;zi-e_A‘l.
O

Note that A is, in general, complex; that is

/2

A= Ar +j>xj, where j= (—1)1 (3. 23)

Thus, the characteristic equation, (8.22), is a complex transcendental function
in a complex variable, A, As in Section 3. 2, the equation is expanded into two
real characteristic equations in two real variables, Ar and 7\].. Note now the

expansion of A coth A:

A=A, +3Aj, (3. 24)
where
h1 hl
Ar = —:‘CU, A, = TSU,
C L
k 14
7 2 2 2 2
= [(——+A" - A AA A
by ST A - 4 FRkgA ) + @A A+ RA)T
4C
and
2
-1 k
tan 7 2 2
= AA — 4+ AT - A A,
v = 5 [(2 v j+k67\j)/( .\2+ i ; +k6 j)]
4C
Thus,
Acoth A=H, +jH,, (3. 25)
where
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and

This and (3. 23) are substituted into the characteristic equation (3. 22),

A coth A (1 +cot2A.) - A, cot A(1 - cochA )
T T j j j T

cotth + coi:2 A,
r )

A.coth A (1 +cot2A.) + A cot A (1 - coth2A )
J r J r J r

n:oth2 A+ cot2 A,
r J

Expanding

this, and separating into the real and imaginary parts, one obtains two simul-

taneous real characteristic equations in two real variables, Ar

are
A A= -
FLOAA) = B8181g = Bohog = Apyfg 4
and
A LA =
FAad) = Agh g *81850 = AoPar ~
where
2 .2
—m (A2 A -T-
A= Teqlhe = A) F gy Hy»
= A A A -
Ay = 2Tgah Ay T T5g" — Hys
2 .2
= -i - A A
Ag =l A = A T TR Moy
-2 AA A
Ay = =2 T ey
2 .2
N A
Ay = Moy (A = A+ gt F g
= om A A A
Ag = 2510 * Tea™ye
2 .2
A7 - lxx( T j)+CL T SQOCL !
P v
- 21 A A
A8 lex r j+C£ i,
p
2 2
(A2 oA A
Ag = Tog(A = M) +mgehy +sz’
= 2m A A
A0 = ZT55" 0 T M6y
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2
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A = 49“? - 7‘?) oMy

Ap = 2"49%}3 500y

Ayg =M T o0

A14 = 11'97\)_,

A15 = 9(7\3 - >\_2) +1'r607tj +1r12,
Aie = 2MsoM N F oy

Aig = “53()‘3 - A'z) gty

Arg = Mg YN

Alg=A A +AA ~A A -AA,
AL =AA, +AA -AA -AA

20 310 49 58 67

21 = A13%9 TA1688 " A1aP10 ~ A1sty

Mgy = AyghioTA148g ~Arshg ~Bighyp

03 = B1385 TA4B 15~ BigBe ~ AgByse

>
n

>
n

and

A24~A13A6 +A A A15A4-A16A3.

An electronic computer is used to solve equations (3. 26) and (3. 27). This is

explained in Section 3. 4.

3.4 The Computer Solution of the Characteristic Equations

Since equation set (3. 12) and (3. 13) and equation set (3.26) and (3. 27) are
mathematically similar, that is, both sets are two simultaneous nonlinear
transcendental equations in two unknowns, the method of root extraction applies
to both cases., This method is a roots locus plot, such as used by Dugundji and
Gareeb (Ref. 3). For example, consider solving for the A roots, Ar and hj
are systematically sequenced through a range of values, For each of these

values, Fr and Fj are calculated. Now, for each Xr,hj pair for which either
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Fr or Fj equals zero, this Ar’lj location is marked on a Ar'lj coordinate
system (Fig. 9). Thus, after sequencing 7\1_ and Aj through their full range
of values, one obtains a series of these zero points —— through which one may
draw Fr =0 and Fj = 0 curves (Fig. 9). The intersection of a Fr =0 curve
and a Fj = 0 curve defines a A root on the coordinate system.

Now, an electronic computer was used to find Fr and ', for sequenced
values of Ar and }\j (similarly Gr and Gj for o, and crj); but the plotting
and root extraction was done by hand, This was done in order to keep the
computer run time to less than one minute. However, the hand plotting was by
no means difficult and gave roots in less than five minutes. Also, the plots had
the virtue of showing trends, when compared with other plots in a series of runs.

Examples of roots locus plots are shown in Figures 18 and 19,
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4. A COMPARISON OF THEORY WITH EXPERIMENT

4.1 The Test System

For the test system, akite, as shown in Fig. 21, was chosen. This
choice was based on the fact that a kite contains all of the essential features of
the theory's physical model and is much more general than a nonlifting design,
such as tested by Etkin and Mackworth (Ref. 5). Further, the kite was inex-
pensive to construct, easy to test, and perfectly suitable for the Stanford low
speed open throat wind tunnel, which has a test section diameter of 7 ft. By
virtue of the tunnel design and low wind velocities, it was possible to study the
system's unstable motion without great risk of damaging it.

The system, however, has certain limitations. Aside from being repre-
sentative of only one cable-body application, wind tunnel test section size limited
the cable length such that cable dynamic terms were very small compared with
body terms. To offset this, a certain amount of outdoor testing at long cable
lengths was attempted. Although outdoor experimentation is difficult because
of atmospheric vagaries, as discovered by Bryant and coauthors (Ref, 1) and
NA SA researcher Tracy Redd (Ref.15) with his towed balloon experiments(fig.lT),
reasonable information was obtained, and the sum total gave a good spectrum of
the system's stability characteristics.

As for the body itself, note from Fig. 20 that its design was kept purposelr
simple to facilitate calculation and measurement of its properties. By virtue
of this, the moments of inertia were evaluated by a combination of theory and
compound pendulum tests., Their values with respect to the reference axes
(Fig. 20) are

() =2.57 X 1072 slug-ft. 2, (I_) =2.99 X 10”2 slug-ft. %,
xx (o] ¥y (o]

-2 2 -2 2
= - - = X -
(Ixz)o L177 X 10 7 slug-ft.”, and (Izz)o 5.50 X 10 = slug-ft. .

Further, the stability derivatives were calculated according to Campbell and

McKinney (Ref. 2), Etkin (Ref. 4), and Purser and Campbell (Ref. 14). A
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certain amount of difficulty was encountered in calculating the contribution of the
"y" tail to the stability derivatives., The theory of Ref. 14 is primarily for tails
with dihedral angles of 30 degrees or less. Moreover, no information on a "V
tail's contribution to CYp and C 2y was available, However, for lack of a
better method, (CY[B)T' (C%)T and (Cza)T were found from References 2 and
14; and (CYP)T and (C ZP)T were calculated based on assuming the section lift
curve slope to vary elliptically over the tail's span. An estimation of the error in
(CYB)T' (C!ﬁ)T’ and (CYp)T is given in Section 4.4, The primary motivation for
using a ""V'' tail, as opposed to a more conventional design (for which there is
much more information), is that a '"V' tail is much less susceptible to damage
in the case of thebody's tumbling, Further, a tethered lifting body often flies fully
stalled in certain conditions, for instance, during launching, and experience shows
that a "V'" tail gives superior directional stability for this situation,

In order to facilitate studying the tail's contribution to the lateral stability

derivatives, in particular, the effects of (CYﬁ) and (CYp)T, the

C
o Coghy
author wrote the lateral stability derivatives as functions of these terms. Note
also that these stability derivatives are with respect to the wind reference axes
of standard aircraft practice (see the Appendix).

The values calculated for the stability derivatives are

(Cg) =0,(Cy) =0,(C_) =0, (Cy) =0,
uo uo uo uo

(CZ.) =0, (Cm.) =0, (CX ) .223CL ,

u u a o
(o] o o

(C, ) =-4.12-Cp, (C
o o]

m) =26L(Cy) =0,
24 o
o] 0 o

(Cz ) =-1.58, (C_ ) =-3.41, (Cy ) =0

“o %o q
(C,) =5.42, (C_ ) =-17.10, (Cy ) =-.75,
qo qo ﬁT

) =-.05,C_, =(C,, ) +(C.,) ,
Y Y Y Y

P P ﬁT F-}w

w

(C
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2

(C_) =-.45(C_, ) +.225(C_ ) +.02C s
Y
n‘30 ﬁT YBW Lw
(CL) =-.154+.336ab, (CL) =-.127—.07CL R
ﬁT Bw w
(C,) =(C,) +(C,), (C,) =2(C_),
£ 4 2 Y n
6o ﬁT Bw I‘o o
_ 2
(Cn) ——.90(Cn) +.45(Cn) -.0230L -.30(Cd )y
r0 ﬁT ﬁw w w
(CL) =-.90(C£) +.45(C£) +.2GCL +.127,
ro BT Bw w
(CY) = -, 207 +.907ab, (CY) = -, 225,
pT pw
(CY) =(Cy ) +(Cy) s
po PT pw
(Cn) =—.45(CY) +.23(CY) -.OGCL +9.0(Cd ),
po pT pw w wa
2
(CL) =-.379—.13CD —.0012(3.78-16.6ab) ’
Po w
(CY°) =0, (C, ) =0, and (C.) =0,
B, 5 ",

where @ = the body's fuselage angle in radians (see Fig, 10), For these
equations, the subscript ( )w refers to the wing, Also, the cable used was

stranded nylon with the following properties:

p=1178Xx 1072 slug/ft., R =,0023 ft.,
and according to Hoerner (Ref. 7),

Ca =.,035 and K=1.15,
o

Now, the equilibrium configuration of the system for given wind speeds,
U, and cable attachment point, Ra’ is specified by the quantities @, ’1‘0, and
68 . Values for these were obtained directly from the experimental investigation

of a large number of equilibrium situations. A beam balance was used to
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measure the vertical component of the cable tension, Tosin a, and a 3 degree
inclined manometer measured the velocity, U. Also, the angles & and 00
were found directly from photographs of each test (Fig. 21). From these data,
values for "i‘o were calculated from

. 2(Tosin a)

ToT T Al - *.1)

pU S sina

Graphs of ’i‘o,&, and 90 vs. U are given in Figures 22, 23, and 24, and the
estimated error in these values is given in Section 4.4 and shown in the graphs.

Also required, for the stability derivative equations, are the equilibrium
values: CLo’CDo’ CLW, CDW’ de, (de)a’ and Q. These are found by a

combination of theory and the experimental equilibrium quantities. CLo is

given by
CL = ToSa - mg, (4. 2)
o
and CD is calculated from
o
CD = TOOx. (4. 3)
o
o was measured directly from the photographs; and, from the geometry of the
body, one has that
o]
@, =ap +4.5. (4. 4)

Now, in order to obtain the wing properties, the author used the experimental
curves by Pinkerton and Greenberg (Ref, 13) for a rectangular wing with the
same airfoil, but of aspect ratio 6. The angle of attack of a wing of aspect

ratio 6 such as to give the same CL as a wing of aspect ratio 4. 83 is given by

((1+(Cp ) /6T)

? o

= = .97 . 4.5
%~ (€ ) /4 Bana.83 " H % (4.5)

«

00

So, this equation and the experimental curve of CL versus o gives CLw for

each oy value. Similarly, the angle of attack for a wing of aspect ratio infinity
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is related to «_ by
w

A, =. 727aw. (4. 6)

This equation, with the experimental curve of de versus o, gives de
for each o (and thereby CLw) value, Further, the slope of the curve at that
point gives (de)a. Finally, CDW is calculated from
2
C =C +.066CL . “4.7)

D d
w w w

It is important to note that for all equilibrium quantities except &, the
effects of the cable weight and drag are ignored. This is by virtue of the fact
that a cable length of 4 feet or less was used during the equilibrium measure-
ments, and cable weight and drag were very much less than cable tension and body
drag — for the wind velocities, U, considered. This gave an essentially

straight cable which directly yielded

9% ~ oz ~
(3S = Co and (g-s- =Sa
a a

(4. 8)

Also, since most stability measurements were made at a cable length of 4 feet
or less, the assumption of constant equilibrium parameters for a given U and
Ra’ and varying L, is very good. However, for the case where L = 100 ft,,
note again that the cable weight is still much less than T0 for the range of U

and Ra values considered, that is,

gL = 0[10"2]lb, and T, = 0[1]ib, (4. 9)

But, the cable drag is of the same order as the body drag:
pImUzL = 0[10'2] and D= 0[10‘2]. (4. 10)

Its only contribution, though, is to give the cable a bow, and to lower the cable

mean angle, @&. The cable slope at the attachment point remains unchanged.

Thus, the equilibrium quantities for the L = 100 ft. case are the same as for

L = 4 ft. or less, with the exception that & is different.

In order to find the change in &, note first that (4. 9) and (4. 10) satisfy
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conditions (1. 16). So, the cable bow is shallow. Also, for this particular model,

the o value is very high (7 0° or more), so that one has for the angle decrease,

This now completes the set of parameters and equations necessary to describe the
equilibrium configuration of the system., These parameters, along with the
inertial properties, stability derivatives, and characteristic dimensions give all

the information needed by the theory to define the stability roots,

4,2 The Stability Tests

For a given free stream velocity, U, and attachment point position,

Ra’ the stability quantities measured were the cable's critical length and the
system's lateral and longitudinal oscillations. The cable's critical length is
that value of L at which the system went unstable, This appears to be an
important phenomenon of cable-body systems, and has been observed by Bryant,
et al. (Ref. 1) and Etkin and Mackworth (Ref. 5). As for the oscillations, the
properties recorded were the frequency and qualitative damping of the lateral
and longitudinal motions, Finally, a very qualitative measure of the system's
stability at long cable lengths was made.

The methods of testing were very straightforward and direct, which was
one of the virtues of using a low speed kite system. Critical cable length was
measured in the wind tunnel by slowly unreeling the cable until unstable oscil-
lations occurred., The cable was then marked, and the critical length, Lcr’
was directly measured. To produce the lateral oscillations, Ajexp’ and the
longitudinal oscillations, Ujexp’ at L < Lcr’ the cable was perturbed a given
amount by hand and then suddenly released (Fig. 12). For this system, it was
very easy to produce almost pure lateral or longitudinal motions by this method.
Frequency was then measured by using a stopwatch and counting integral numbers
of periods. Damping measurement was somewhat more qualitative, and involved

counting the number of periods until equilibrium was essentially reached.
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Stability studies for the long cable case involved outdoor flying, which thereby
restricted quantitative measurements. However, it could be determined
whether the system were indeed stable or not, and if so,

it was. Moreover, the system was stable during rapid unreeling of the cable.

So it was possible to test unstable motions for values of L much larger than Lcr'
Now, for those properties for which quantitative measurement was
possible, Lcr’ xjexp
values given (Figs. 25 and 26) are based on the average of several runs. The

, and Ujexp’ the repeatability was very good, and the

largest estimated error in Lcr is 1 .2 ft.; and for and the

A O
Jexp Jexp’
largest estimated error is ¥ .01. Further, the maximum estimated error in U,
for the velocity range considered, was 6%. Somewhat large tunnel turbulence
precluded an accurate damping measurement. This was the reason why a movie
camera was not used. It was actually more meaningful to measure the damping

as described, and to make a qualitative judgment. Insofar as comparisons of

damping from one test to the other were concerned, this was quite adequate.

4.3 The Computer Examples

For the experimental cases, the wing lift coefficient, CLw’ is no less
than .70. Moreover, for a wing operating at a high CLw’ the stability deriva-
tives may be strongly modified by partial flow separation. Thus, since the calcu-
lation of the wing's contribution to the stability derivatives is based largely on
the assumption of attached flow (Ref. 2), the lowest value of U that was
selected for the computer examples is 25. 0 ft. /sec. Nevertheless, CLW was
still higher than desired, and it is felt that this introduced a certain amount of
error in relating the theoretical results to the experimental results. This is
discussed further in the next section.

For the lateral stability study, the particular examples chosen are
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U = 25.0, 28,0, 30, 0 ft. /sec. <

and

R =,948 ft,
a

R =1,

R =1,

09 ft,

24 ft.

o o o o o o o
1
W N M W ON M N

U = 30, 0 ft, /sec., Ra =1.09 ft., L =100, 00 ft.

. 00 ft.
. 00 ft,
. 00 ft.
. 00 ft,
. 00 ft,
. 00 ft,
. 00 ft.
. 00 ft,
. 00 ft,

For the longitudinal stability study, the particular examples chosen are

U = 25. 0, 28, 0 ft. /sec.

R =1,
a

R =1
a

09 ft.,

24 ft.,

L=2,

L=1

35 ft,

76 ft.

The equilibrium data for these examples is obtained from Figures 22, 23, 24,

and 27, and equations (4. 2)—(4. 7).

The values obtained are tabulated below:

U 25,0 28. 0 30,0
(ft. /sec.)
Ra(ft. ) . 948 1,09 1,24 . 948 1. 09 1.24 . 948 1, 09 1,24
'i'o . 972 . 650 . 460 . 938 . 592 . 407 . 903 . 564 390
Oo(rad) -.541 | -.532 |-,497 |-.576 |-.562 [-,523 |[-,592 |[-,579 J-.541
ab(rad) . 134 . 040 0 . 100 .020 |-,028 .078 |-.010 (|-, 052
CLO 1.21 . 898 .700 1,13 .790 . 600 1, 07 .730 . 960
CD0 . 176 .111 . 091 . 151 . 099 . 086 . 138 . 093 033
CLW 1.42 1, 03 .94 1,31 .97 .82 1,27 .92 T4
CDW . 159 . 088 . 075 . 137 . 079 . 059 . 110 . 072 . 049
de . 026 . 018 . 016 . 024 . 017 . 014 . 023 . 016 . 013
(de)oz . 0022} ,0019| ,0017 | ,0021{ ,0018| .0015 | ,0021 ] .0017 | .0013
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For L less than 5 ft.,

U 25,0 i 28,0 30,0
(ft. /sec.)
Ra(ft. ) . 948 1. 09 1.24 . 948 1.09 1.24 . 948 1, 09 1.24
&'(rad) 1.380 1,405 | 1.3641,412 1.408 | 1.358 [1.422 1,406 |1.351

and for L = 100, 00 ft., the previous & values and equation (4. 11) give

U 30.0
(ft. /sec.)

R (it.) |1.09

a(rad) . 958

4.4 Computer Results and Comparison of Theory with Experiment

Using the method described in Section 3.4, one directly obtains values
of ?xr, Aj and or,oj for the computer examples listed in Section 4,3, Further,
for the lateral case, the range of L values went through a critical length,

Lcr’ at which the system had theoretical neutral stability, In order to obtain
Lcr and }‘jcr’ the following technique was used. On a Ar' Aj versus L
coordinate system (Fig. 13), points of }\r and Aj are plotted and curves are
drawn through them, thus giving a Kr(L) curve and a Kj(L) curve, Further,
the intersection point of the Kr(L) curve with the L axis gives Lcr‘ Finally,
the Aj value corresponding tc Lcr(Aj) is chr.

Now, for the lateral case, the theoretical and experimental results are

listed on the next page.
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U R L L A A, )
exp Ccr cY

(ft. /sec.) (ft.) (ft.) (ft.) exp

1.24 1.30 1,83 . 397 . 306

25,0 1,09 1,82 2,38 . 400 .284
. 948 2,28 4. 00 . 426 | .284
1.24 1,40 1,92 . 380 .278
28,0 1. 09 2,00 2,44 . 378 . 270

. 948 2,50 4.40 . 407 .270

1,24 1.85 1,94 . 345 . 268
30,0 1,09 2,17 2,45 . 362 . 268

. 948 2,58 4,50 .390 .268

U R L A A
a T j
(ft, /sec.) | (ft.) | (ft.)
30, 0 1,09 | 100.00|.046 |, 057

And, for the longitudinal case,

U R L o, o, o qualitative
a J J r .
exp experimental
(ft. /sec.) | (ft.) (ft.) damping
1.24 1.76 . 472 . 437 -. 072 lightly
25.0
1. 09 2,35 . 465 . 458 -.110 moderately
28. 0 1.24 1,76 .450 . 435 -. 058 | lightly
1,09 2,35 . 447 . 442 -. 095 moderately

Notice that the theoretical results are somewhat different from the
experimental values. L _ is uniformly less than Lgp and A;  is con-
cr exp Jer
sistently greater than (7\3- ) . In order to investigate the reasons for this,

exp
the author studied the effect of the input data on Ar and A, Considering first

]
the equilibrium values, the author found the significant parameters to be To,
90, U, and a. So, starting from the U=30,0, L. = 2,0, Ra =1,09 case (as a

representative example), a finite difference study using the computer gave
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BA_ oA_ oA aA_
r

—— =-.15, 7/—=.25, —==.01, —==.06,
ot 86_ 8y o

0]
oA, oA oA, A,
—L - 10, a—ol-= .19, —,a-é= .01, and a—&l= . 03,
ot

Also, the estimated error in the equilibrium values gives

AT, =.08, A0 =.06, AU=1.8, and AN =, 06,

o
So, from
axr ahr BAr 87\r
A= — AT — A — — Ay
Ar A ATo * o0 00 " BUAU * o
oT o]
o
and
oA, oA, oA, oA,
o= | =LAt |+ | gtae |+ | 5aau |+ | Aad ],
) BTO ° o

one obtains

A7\r =.,034 and A7\j =, 021,

Thus, whereas errors in the equilibrium values have a small effect on Aj’
they have a significant effect on Kr’ and thereby, Lcr'
A second source for error was the stability derivatives. One problem,
as mentioned before, was that the wing was operating near stall for the test cases
considered, This was unanticipated as it was originally planned to test at a much
larger U, and, consequently, at a much smaller CLw. But the body's structure
was dangerously strained at U greater than 31.7 ft. /sec., so the test speeds were
lower. Further, the airfoil chosen has very gentle stall characteristics; thus the
body could fly well, even though a significant part of the wing's flow was separated,
Under such conditions it is not only difficult to assess the wing's contribution to
the stability derivatives, but one also encounters the question of nonlinear effects,
Nevertheless, for lack of other methods, the wing's stability derivatives were

calculated using Ref. 2. Note, however, that one of the wing's stability
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derivatives that is most affected by partial stall is (Cnp) . For the U= 30,0,
w
Ra =1,09, L =2,0 case,

oA oA
— = -
56 ) .3, and EIE_AT' 2.0,
n n
pW pW

Thus, even though it is difficult to give a value to the error in (Cnp)w, it is seen
that relatively small changes in its nominal estimated value of . 03 can make
large changes in Xj'

Another source of error in the stability derivatives was the "V" tail.
Its area is large (ST/S = ,48), and thus it gives a major contribution to the
stability derivatives, Unfortunately, the study of wings of very large dihedral
has never been a very popular research topic, and the only report available for
estimating some "V'" tail properties is Ref. 14. However, it was desired to
use a '""V'" tail for this body, for the reasons mentioned earlier; thus the tail's
stability derivatives were calculated as best as was possible. The significant

tail stability derivatives are (Cy ﬁ) and (CYP)T. For the long tail

T, (Czﬁ)T'

moment arm of the body, the other tail stability derivatives, such as (C, 5)T’
come directly from the previous ones. Now, the estimated error in these
values is
= =. =, 02,
A(CY ) .3, A(C"'ﬁ) 04, and A(CY ) 0
B T P

Further, the partial derivatives for the U= 30. 0, Ra =1,09, L =2,0case are

oA axr aAr
r = ——— - ——— 3
5C. ) " .10, 5C ) . 20, 5C. ) o,
Y‘3 zp Y
T T P
9\, A, A
— 1 __ —1 d —— =.12,
5C_ ) .18, 5C ) .30, an 5C.)
Y zﬁ Y
P T Pr
So, from

52



A = ‘
AL 3(Cy ) A(CYB) 3(C, ) A(Czﬁ) N EC MCy ) b
B T T B T T Pr P
and
oA oA i oA
R R R 1 — 1 .
A 3(Cy ) A(CY[S) 8(C, ) A(Czﬁ) 3(Cy ) ACy )
Py T B T Py T

one obtains

Alr =,042 and AK]. =.062.

Thus, errors in the estimation of the tail stability derivatives are seen to have
a significant effect on 7\]_ and Lcr (through Ar).

Note, though, that even with all of the sources of error combined in the
worse possible way, the theoretical results should still be at least within the
same order of magnitude as the experimental data, Indeed, this is not only so,
but even better, for the error in Ajcr from experiment is no greater than 40%,
and for Lcr’ the error is no greater than 80%. More important, the theory
predicts the essential features shown by the experiments. For instance, not only
does it predict an Lcr for lateral motion, but it shows the correct variation of
Lcr with U and Ra' Moreover, for the U range considered, both theory and
experiment show a decrease in Ajcr with U. Note, however, that the variation
of (;\jcr)ex
mental data; but the theoretical results likewise show no conclusive trend.

with Ra is difficult to assess within the error limits of the experi-

Similarly, for the longitudinal motion, both theory and experiment show no definite
variation of oj with U and Ra’ for the cases considered. But otherwise, the

Uj values compare very well, with an error no greater than 1%. This is most
likely due to the fact that the model —— being very "long-~coupled'" —— experienced
negligible pitching; and further, the high cable angle allowed little motion in the

7 direction compared with motion in the X direction, So, the aerodynamic forcing
effects, which were derived from theory, were small compared with the cable

tension, which was directly measured. Thus the frequency, crj, was largely
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determined by T0 and m, which gave, consequently, less error. Note also
that for the motion described, aerodynamic damping is largely due to the body's
drag: so it would therefore be expected that for a given U, damping would
increase with a decrease in Ra' This is, in fact, borne out by the comparison
of the quantitative experimental damping with o This type of motion therefore
has an analogy in airplane long mode 'phugoid'' oscillations,

Finally, the theory qualitatively bears out the fact that the system is
laterally unstable at L = 100 ft. and that it was observed to have a low lateral

frequency.

4,5 Conclusion

Within the limits of the assumptions listed at the beginnings of Chapters 1
and 2, the present theory provides a method for predicting the first order motion
of a large variety of cable-body systems. The key assumptions are that the cable’s
curve must be shallow and that its tension must be essentially constant along its
length, Otherwise, there are no restrictions on the cable's motion, i.e., no
"jnstantaneous equilibrium' physical model. Thus the theory may be as readily
applied to a high frequency system, such as a towed cone in hypersonic flow, as
to low frequency systems such as towed balloons or the present experimental
model,

The essential feature of the theory is that the cable-body system is treated
as a cable problem, with the body providing end and auxiliary conditions. This
physical model can lend itself readily to a variety of further applications. For
instance, the problem of two bodies connected by a cable may be treated by re-
placing the fixed end condition at s = 0 with a set of end conditions similar to
those at § = 1, only that these conditions would pertain to the body at that end.

Another variation could allow for varying cable shape and tension by
assuming the cable to be composed of finite cable segments — each with a given
:I‘o and @. The equations for each segment are then matched, one to the other,

through the end conditions of displacement and slope; whereas the end condition

of the final segment is given by the body equations —— as before. Similarly,
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a further application would be to consider a finite body midway along the cable.
In this case, the end conditions on the two adjacent cable segments are found from

the equations of motion of the midcable body.
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APPENDIX I

The Relation of the Stability Derivatives to the Stability
Derivatives of Standard Aircraft Convention

Due to the fact that most information available on stability derivatives
is based on the X Y2, "wind axis" coordinate system, (Fig. 14) it is

profitable to give the relations between these and the stability derivatives defined

in Chapter 2, which are based on the n, ,ﬁ;,ﬁ; coordinate system. These are
C. =(C.)c% +(.)s20 -[(C.) +(C., ) ]S6 C8
x = %) o €z o~ [Cx €z o "o
u u o o u
o o o o

Cy = (e/D)(Cy ) 0290 +(Cy ) s2eo - [(Cy ) +(C, ) 186, CO I,
u o (83 u

X
u (o] 0 (o] o]
Co. =(C.)C% -(C,)8% +[(C.) -(C, )1S6.C6
X X o Z o X Z o o
w o o u o u o o o
2 2
CX_ = (C/b)[(CX.) C 60 - (CZ.) S 90 +[(CX.) - (CZ.) 1590090].
w o u u a
(o] (o] (o] (o]
CX =‘(C/10)[(CZ ) C90 +(CX ) 500],
q q, a,
C = (C )
Y Y
v (30
C, =(C_ ),
. Y.
Y, b
C, =-(Cy) CO_+(Cy ) 86,
p P, r
C, =-(Cy) Co - (Cy) 86,
T T p
o] 0]
c. =(C )029 -(C )sze -[(C, ) -(C. ) 186 Cé
Z Tz ) X o Z X o o
u u o a u

o] (] (o] (o}
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2 2
C, =(e/D(C, ) CT0 - (Cy ) 876 +[(Cy ) - (Cy ) 150,CO),
u u (a4 o

o o o 0
C., =(C,) c?e +(C., ) %0 +[(C. ) +(C. ) 186 Co

VA Z o X ) Z X o o

w o u u o

o o o o
2 2

CZ. = (c/b)[(CZ.) C 00 +(CX.) S 90 +[(CZ.) +(CX.) ]SBOCOO].

w o u u

o o o o

C, =-(C, ) Co +(C_) Se,

zv 260 o n‘30 o
C, =-(C, ) Co_+(C_) 8¢,

Lv LBO o] n-Bo (o)

2 2
C‘e _(CL)C90+(Cn)Seo [(Cn) +(C£)]Seoceo,
p p r o) T

(o] (o] (o] (o]
c =(.yc% -(_ )s? +[C,) -(C_)ISe Co
L = J) o~y o L n o o
r r p P r
(o] o o] (o]
cm = -(c/b)[(crrl ) ceo +(cm ) seo],
u uo o o

2
Ch. = ~(e/b)"C_ ) CO_+(C_ ) 8O]

u u a
(o] (o]

Ch ° -(e/D)C ) CO_+(C ) 86T

w [¢] u
(o] o

2
Cm. = -(c/b) [(Cm.) ceo +(Cm.) SBOI,

w o u
(o] 0

2
Ch, = (e/b)y(C_ ),

q q
o

c =-(C, ) Co, ~(C, )80,

v B, Bo
C =-C ) Co -(C.) se ,
n{’ nb0 o .2[30 (o]
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2 2
€, =(c_)C0 -(,)s 0,+1C, ) ~(C ) 186 Co,
p p0 rO pO r
o

and

2 2
C, =(C, ) Co +(C,)s% +[C_) +(C, ) 1S6,_Co_.

r r r
o pO p0 o
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Fig. 1 Cable coordinate system and non-fluid-dynamic forces acting on a cable element.

dF, dF,
-\-; N -
[ 4 - d o
\ %
0‘

Fig. 2 The fluid-dynamic forces acting on the cable element,
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= NIC

DISPLACED POSITION

EQUILIBRIUM POSITION 9
= X

Fig. 3 Coordinates for the displaced cable,

EQUILIBRIUM

e -
- ds

Fig, 4 A perturbation of the cable element in the ¥, plane.
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Fig, 5 The body's coordinate systems.
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Fig. 6 The Eulerian angles,
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Tig. 7 Cable, buoyancy, and gravity forces on the body.
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Fig. 8 Coordinate transformation,
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Fig., 9 Sample lateral roots locus plot,
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Fig. 10 System equilibrium coordinates,

Fig. 11 Cable displacement due to cable drag.
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Fig. 12 Producing longitudinal and lateral oscillations.
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Fig. 13 Plot for finding L and A ,
cr cr

Fig. 14 Thesis coordinates and the standard airecraft coordinates.

69



Fig, 16 Towed underwater device.
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Fig. 17 Towed balloon tested at NASA Langley.
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Roots Locus Plot for the Lateral
Case; U =28.0, Ra =1.09, L=2.00

( )‘root)z Fj =0

-0l

Fig, 18 A lateral roots locus plot.
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Roots Locus Plot for the Longitudinal
Case; U =25.0, Ra =1.24, L=1.76

Gj =0 +0.5

%root
+0.4

-0 0o 0.1

Fig. 19 A longitudinal roots locus plot.
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Tethered Lifting Body Model

//\\l ! i
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'\/' oy
5
S

| i~
§-=24.5in , T=15.0.in., C=10,15in.
= = i . 1 = i .
.(_:T 8.0 in., IT 22 in., W lolm
h=7.124n., T =7.4° T, =49°,
e (o] _(.:.) (o] T
1w=14.8 , 1T=4.6 .

wing airfoil: Sikorsky GS-M
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