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ABSTRACT

Numerical experiments are performed to examine the effects of line shape

and band structure on the radiative equilibrium temperature profile in planetary

atmospheres. In order to accurately determine these effects, a method for calcu-

lating radiative terms is developed, which avoids the usual approximations. It

differs from the more commonly used methods in that it allows arbitrary dependence

of the absorption coefficient on wave number, without requiring tedious line by line

integration and without the constraints of band models. The present formulation is

restricted to homogeneous atmospheres but the concept can be extended to the more

general case. The numerical experiments reveal that the line shape and band struc-

ture of the absorbing gases have a large effect on temperatures in the higher layers

of the atmosphere (corresponding to the stratosphere and mesosphere). The more

non-grey the spectrum - i.e., the higher the peaks and the deeper the troughs in

the spectrum - the lower the temperature.
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THE INFLUENCE OF LINE SHAPE AND BAND STRUCTURE

ON TEMPERATURES IN PLANETARY ATMOSPHERES

1. Introduction

Theoretical studies have shown that radiative exchange plays an important

role in the structure and general circulation of the stratosphere and mesosphere.

(See, for example, Murgatroyd and Goody (1958); Leovy (1964); Kuhn and London

(1969)). In the Mars atmosphere, radiation may even play a dominant role (Goody

and Belton (1967)). Because of the complexity of molecular absorption and emission

processes, however, all calculations are based upon approximate treatment of various

aspects of the radiative transfer problem. The effects of these approximations,

especially in the calculation of transmission functions, have not been adequately

explored. The purpose of this paper is twofold: 1) to describe a method for calcu-

lating transmission functions and radiative terms in which the approximations are

eliminated, or at least subject to control; 2) to study the effects of line shape and

band structure on radiative equilibrium temperatures in planetary atmospheres.

The approximations usually made in radiative transfer problems fall into

four categories:

1. Numerical approximations in replacing integration over height by a

quadrature formula.

2. Treatment of the angular distribution of the vertical flux.

3. Transmission function calculations for a given composition, tempera-

ture, and pressure.
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4. Transmission functions over inhomogeneous paths.

Numerical approximations are unavoidable due to the nature of the problem

and the limitations of our computational tools. The errors, however, are subject to

control and in the end, one balances the desired accuracy against the computational

costs.

The last three categories of approximations represent more fundamental

obstacles. Our lack of knowledge concerning molecular absorption and emission,

combined with the enormous complexity of infrared spectra, have inhibited attempts

to do accurate calculations. The angular distribution of vertical flux is usually

taken into account by the use of a diffusivity factor (see, e.g., Goody, 1964, sec.

6.2; also, Kondratyev, 1969, sec. 1.3). This approximation is satisfactory for paths

of optical thickness -1 but leads to substantial errors for longer paths. In the

methods and calculations presented here this approximation is not necessary; the

angular distribution of the vertical flux is fully taken into account.

Until recent years, the lack of data on high resolution infrared spectra of

atmospheric gases has made it necessary to use laboratory measured transmission

functions. Their principal drawback is the limited range of pressure, temperature,

and absorber thickness for which measurements are available. To fill the gap,

theoretical band models were developed, based upon highly idealized representations

of the distribution of lines within a spectral interval. The parameters for the band

models were chosen to obtain the best fit to the laboratory measurements. Although

it is not always recognized in the literature, the band models are little more than

2



interpolation formulas, whose validity is restricted to the range of conditions and

absorber thickness within which the band models agree with laboratory measurements.

Extrapolation beyond this range can lead to appreciable errors.

During the last decade an enormous effort has gone into determining

fundamental molecular properties from which the positions, intensities, and half-

widths of spectral lines for several atmospheric gases have been compiled (see, e.g.,

Drayson and Young (1967), Benedict and Calfee (1967)). With suitable assumptions

concerning the line shape, one can calculate from these data the absorption coeffi-

cient versus wave number, k (v), for a given temperature and pressure.

In principle, one can directly employ k (v) in the radiative transfer equa-

tions and obtain numerical solutions. The only drawback is the complicated nature

of the function k (v). A typical band will contain anywhere from several hundred

to several thousand lines that must be included to obtain reasonable accuracy. The

half-widths are usually sufficiently smaller than the line spacing that k becomes a

rapidly varying function of v. As a result, integration over v (line by line) becomes

a time consuming and costly chore.

For homogeneous atmospheres, where the line parameters are assumed to be

independent of height, one can achieve the same results as line by line integration,

but in a much simpler way. In its present application, the method emerged from a

private discussion with H. C. van de Hulst and E. Spiegel in 1963 and was presented

by Arking (1968). The basic idea, however, is quite old. It is described in a treatise

on atmospheric radiation by Kondratyev (1969) with reference to a 1939 Russian

3



paper by A. I. Lebedinsky. It has also seen recent use in calculating line-blanketing

effects in stellar atmospheres (Strom and Kurucz, 1966).

The method makes use of the fact that for a homogeneous atmosphere, the

transmission within a relatively wide spectral interval is independent of the ordering

of the value of k with respect to v, but depends upon the fraction of the interval

that is associated with a particular value of k. This latter quantity is the distribution

of k-values within the spectral interval and is referred to as the k-distribution

function.

Use of the k-distribution function considerably simplifies the calculation

of transmission functions for homogeneous atmospheric layers. In the calculations

presented below, it is used to determine radiative equilibrium temperatures in arti-

ficial atmospheres with highly idealized forms of k (v), but it is equally applicable

to real atmospheres, provided one has the means to generate k (v).

The last remaining approximation in calculating radiative terms is to take

full account of inhomogeneity in the atmosphere. This introduces a new dimension

of complexity into the problem. If the atmosphere is horizontally homogeneous, one

can extend the method of the k-distribution function by defining a separate k-

distribution function for each layer in the atmosphere. Such a method is feasible only

if one severely restricts the number of levels in the atmosphere or if one can find a

way to parametrize the dependence of the k-distribution function on height. The

problem of inhomogeneous atmospheres will be deferred to a later study.
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The method is applied below to the problem of calculating the vertical

temperature profile in a planetary atmosphere under conditions of radiative

equilibrium. Numerical solutions to the resulting equations are obtained by a

generalized Newton-Raphson scheme, which converges quadratically with each

iteration. The atmosphere is assumed to be homogeneous (horizontally and

vertically). The absorption versus wave number is permitted to take one of a number

of highly idealized forms and the calculated temperature profiles are compared.

The results reveal that the temperatures near the top of the atmosphere (corresponding

to the stratosphere and mesosphere) are sensitive to the detailed characteristics of

the infrared spectrum of the absorbing gases.

The assumptions of the model and the resulting atmospheric structure equa-

tions are presented in section 2. The k-distribution functions and transmission func-

tions are calculated in section 3. The method of solution of the equations is

described in section 4. The numerical results are discussed in section 5. A summary

is presented in section 6.
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2. Equations of Atmospheric Structure.

We make the following assumptions:

1. Steady state conditions.

2. The atmosphere is plane parallel and uniform in the horizontal

plane.

3. Radiation is the only means of energy transport and it obeys

Kirchoff's Law--i.e., the ratio of the spontaneous emission

coefficient to the absorption coefficient (already corrected

for induced emission) is equal to the Planck function

2hcv 3

B (T) = hcv/kT
e -1

where T denotes temperature and v denotes wave number.

The vertical parameter will be the "mass level", denoted by p and defined

as the mass per unit area above a given level in the atmosphere. (In an atmosphere in

hydrostatic equilibrium, it is approximately the pressure divided by the acceleration of

gravity.) The object of the calculation is to obtain the vertical temperature profile, T(p),

under the-above assumptions.

The conservation of energy at each level requires
co co

4rJ k BVT(p))dv=4ir f kI(p)dv+Q(p) (1)
0 0

where kv is the mass absorption coefficient at wave number v, Q(p) is the heating

rate per unit mass due to solar radiation, and I is the specific intensity of infrared

radiation, I , averaged over all directions

2 r 1

o 1IP)4? S SI~p~~-]~ r
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where pI is the cosine of the solar zenith angle and p0 is the corresponding azimuth

angle. The term on the left side of Eq'. (1) represents infrared radiation emitted

by the atmosphere; the first term on the right, the absorbed infrared radiation;

the second term on the right, the absorbed solar radiation.

The specific intensity is obtained from a solution to the radiative transfer

equation

dI
I~ dp` - k Iv kk B (T) (2)

with the following boundary conditions: no downward radiation at the top of the

atmosphere

Iz(0, ) = 0 <p 0

and a blackbody surface at temperature T (to be determined below) at the bottom

of the atmosphere

IV (Ps'p) = BV (T) p > 0

where ps is the atmospheric mass above the planetary surface. Solutions to

Eq. (2) are found in standard textbooks on radiative transfer (see, for example,

Kourganoff, 1952).

With the boundary conditions given above, the solution is averaged

over 4n steradians and inserted into Eq. (1) to yield

o p
k (P) { 2 Bs (T (p)) - Bi[P" ) E2 ( k (p') dp'

- f B (T(p"))E1 j lP k (p')dp')kv(p")dp" (3)
P V

o p

where the dependence of k on p is explicitly indicated and
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where En(x) is the exponential integral
x

n-2
E (x) f e 

P
i dp

o

In addition to the temperature profile T(p), the surface temperature

TS is an unknown quantity, but it can be obtained simultaneously with the

temperature profile by applying energy balance considerations to the surface-

atmosphere interface

P Xco
Bs = a Te4 - Q(p) dp+jf 2r. Iy(p, I ) udpdv (4)

o o -1

where rrB =-aT4 is the infrared radiative flux emitted by the planetary surface; aT4
S S e

is the net solar radiative flux absorbed by the surface and atmosphere together

(i.e. the solar flux incident at the top of the atmosphere minus what is reflected

back to space) thereby defining the "effective temperature" of the planet, Te;

a is the Stefan-Boltzmann constant. The second term on the right is that part

of the net solar radiative flux that is absorbed by the atmosphere and the last

term is the atmospheric infrared flux incident on the planetary surface..

Substituting the solution of Eq. (2) into Eq. (4) yields

rBs = rT- 4 s sQ(p)dp +2 i 's B(T(p ))
o 00 

(5)

E2 /( s k y (p') dp') ky (p ) dp dv

The wave number range of interest--i.e., where Bv (T) is appreciably.different

from zero--extends from about 100 to 2500 cm- 1 for Earth atmospheric temperatures.

In this range B(T) is a smoothly varying function with a single maximum (in the

8



vicinity of 500 cm
-

for Earth). In contrast, ky is a rapidly varying function

whose structure depends upon composition, pressure, and temperature. Under

typical conditions, the details in k require a resolution in space of - 10
- 3 cm

-
1

or less. To avoid the' storage and manipulation of such large amounts of data,

one works instead with transmission functions which are pre-computed for a set

of wave number intervals spanning the spectrum. The intervals in V -space are

suitably chosen so that the variation of Bv (T) within the interval can be neglected

and the terms containing kv can be replaced by mean values within the interval.

.thDividing V -space into m intervals, with the t interval extending from vi-1 to

v., and the concatenation of the m intervals extending from v = 0 to v = %, the

transmission functions are defined as follows:

Intensity transmission

Pa
1 -' Sf k (p)dp

Ti(P1 , P2) J e dV Pi d Pp (6)
-v.

Isotropic flux transmission and its derivates

Tj(Pl, Pa)= 2: T (ilP p d p

0 (7)

._ , . SJ' E3 (J' k)(p)dp)dv
, i-I i- PP

lo d

9



0. d
-; (P Pa)=- d ri (Pl Pa) (9)

T (Py P2) d - iT PI) (10)

The intensity transmission is what one usually measures in a laboratory

beam experiment. The isotropic flux transmission is the fraction of the radiative

flux from an isotropic source which is transmitted through the layer (p1, p; ). Of

course, the transmitted flux is no longer isotropic and the multiplicative property

of transmission functions, which holds for the intensity transmission under a wide

variety of conditions (see, for example, Goody, 1964,Sec. 4.1) does not apply,

strictly speaking, to the isotropic flux transmission.

The derivatives of the transmission functions appear in

the atmospheric structure equations, (3) and (5), which can now be written:

m P
E {4ki() i(P)-B 'ri ' 0°(p, P) - fS B.(p') rill(p, p')dp'
i = I P

(11)

- f Bi(p') -ri (p',p)dp' = Q(p)
0

P ~ m p
irB =aT 4 - Ps Q(p)dp+ir . BiB(p )'l 0(p , p)dp (12)

o i=1 o

where we have defined

V.

B.(p) = ' B(T(p))dv 1 i Mi -

V.

BSi I BV(TSd-1< i <m
I-1

10



V

k.(p) = 1 1' k (p)dv = io(p p) 
ki(P) -V.. v i 'C1(P' P) l (p P)

I I-1 V.-1

The vertical temperature profile and planetary surface temperature can now

be calculated from Eqs. (11) and (12), subject to the prior determination of the

transmission functions which are in themselves dependent upon pressure and

temperature.

3. Transmission Functions.

In this paper we restrict our considerations to homogeneous atmospheres,

where the absorption coefficient is assumed independent of pressure and temperature.

In that case, Eqs. (6) through (10) reveal that it is only the distribution of k-values

within the interval which determines the transmission, the ordering of the values

having no bearing whatsoever.

We can, therefore, proceed to calculate the transmission functions using

distribution functions, hi(k), which are normalized to unity, to represent the

.thfrequency of occurrence of absorption coefficient value k within the i wave

number interval. The transmission functions can be written in terms of hi(k) by

replacing

11



k -. k
V

f ' ... dv -. .... h.(k)dk
I-1 V. 0

and noting that k
v

or k is independent of p.

Thus,

o

ri(PI, P2) = ek(P2) h.(k) d k (13)

Ti(pl,pa) = 2f E3 (klp2 -p 1)h;(k)dk
0

10 01 o
'i (PeP2) = (P1 ' P2) = 2 E2 (kIp2 -p1 l)khi (k)dk

0

(P Pi ) = 2 J E1 (k IP2 - p11 )khi(k) d k

Given the function k within a wave number interval (v1 , v2 ), thev

k-distribution function can be calculated as follows. Divide the interval (vl,v2 )

at all local minima and maxima of k so as to have sub-intervals over which
v

kv is monotonic. Label the sub-intervals I = 1, 2, .... L and denote the

length of the Ith sub-interval by A vl. Within each sub-interval, invert the

function k and denote it by v l(k). The k-distribution function is then given

by

_ 1 L dv

-h(k) 11 dkI (14)

In practice, one can obtain the k-distribution function numerically

by a simple statistical procedure: Evaluate k at a number of points chosen at

random within the (vi, v2 ) interval and calculate the frequency distribution of

the k-values. The accuracy of the h(k), determined in this way, depends upon

the number of points in the sample. For complicated k functions, such as are

12



found in the spectra of infrared active gases, this method can result in an

enormous saving of computer timecompared to line by line integration.

The k-distribution functions for some highly idealized cases, in

which h(k) takes on particularly simple forms, are presented below, followed by an

example showing the k-distribution for a portion of the C02 15 V band.

A. Grey case (GR)

kyV = k independent of v; the corresponding k-distribution is given by

h(k) = 6 (k - ')

where 6 (k) is the Dirac delta function with normalization JP 6 (k)dk = 1.
0

B. Regular Band of Non-overlapping Lines

The spectrum is constructed from a series of identical, non-overlapping line profiles,

equally spaced, with separation d along the v--axis. The line shapes to be considered

are square (SQ), triangular (TR), Lorentz (LO) and Doppler (DO). A characteristic

half-width is defined for each shape and its ratio to the line spacing is denoted by a.

The square and triangular profiles have finite widths less than or equal to the line

spacing; between the lines,we assume a background absorption level with the value k1 ;

at the center of each line, the absorption has a maximum value k2 . For the

Lorentz and Doppler shapes, the profile of each line is cut off at the points

13



midway between the peaks so that there is no overlapping; the absorption at

the peaks is k2 and the minimum absorption, at the cut-off points, is k .

The absorption coefficient, the corresponding k-distribution function and

the mean absorption are described below for each line shape. k can be specified

in each case by giving the value of k over an interval d corresponding toV

the separation between lines, but if we assume the line is centered at V = 0 and

take the symmetry of the line shape into account then it is sufficient to specify k
V

donly in the range 0 s v 2

For the various line shapes, we have

SQ: k2 0'< v s a d

kv= k ad < v < d/2

h(k) = (1-2a) 6(k-k1 ) + 2a6(k-ka)

k = kl + 2a(k -k l )

TR: vk 9 (k- k0) O v s 2ad

k1 2ad < v < d/2

4a
h(k)= .(1-4a) 6 (k-ki) + 1 k l-k, kl k <k,

0 k < k1 or k > k

k = k1 + 2a(k2 -k l )

14



LO:

k 1(v

h(k) k 2 a
k3 / 2 (k2 - k)

k = 2a k, tan
-l 22a

k2

k, I-~(a-)

DO:

0 < v d/2

k1 •k~k 2

h ad(a

h.(k) = 1
k (on k2/k)A

0 < v < d/2

k1 • k < ka

k =/ a k2 erf( a)

(1 >2

kl = k2 e

C. Regular Barid of Overlapping Lines

Here we consider equally spaced Lorentz or Doppler line profiles which are permitted

to overlap. The absorption coefficient is obtained by summing the contribution of

each line, extending from -a to +Xo. With Lorentz profiles, referred to as the

Elsasser band model, the resulting function has an analytic form (see, for example,

15



Goody, 1964, sec. 4.4.1). For the Elsasser model, the absorption coefficient,

the corresponding k-distribution function, and the mean absorption are expressed

either in terms of k., the value at the peaks, and the minimum value k1 , midway

between the peaks, or in terms of k2 and ca, as follows:

EL: kEL: cosh 2ra - 1
k = k

2kv 2 cosh 2rrc - cos 27rv/d

= 2kk: 0 S9< d/2

1 k+ k
1
kk,

k1 +k 2 -(k2 - k1) cos 2w/d

h(k) = k k) k < ka

[ = (k ka)2 ka tanh tvc

k = k2 tan:h2 ra

For Doppler line profiles, h(k) does not have a closed form but can be

obtained numerically by the procedure which led to Eq. (14). The appropriate

functions and related parameters can be expressed as follows:

v - nd)2
co -ad

DR: Z e
k = k2 n=- 0 vd/2

1+2 e
n=1

k a k2

1+2 E e
n=1
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a2k a
ki , F e

/ir a n=l

D. Randomly Distributed Lines

The k-distribution function for lines which are randomly distributed, allowing

overlap, can be calculated from the k-distribution function for individual lines

by applying probability theory.

A particularly simple case of randomly distributed lines occurs when the

line shapes are square. For example, if one line contributes an absorption k

over an interval 2ad, where d is the mean line spacing, then the permitted values

are k = nk , where n is a positive integer, and the k-distribution function is the

Poisson distribution

(2 a)n -2a
hR(k = n k

o) = ( 2 a )
n

n = 0,1,2 ... (15)

with k = 2ak

For small values of a, there would be little difference between randomly

or regularly spaced lines and, indeed, the above expression for randomly distributed

squares approaches the expression given above for regularly spaced squares

as a - 0.

The general expression for randomly distributed lines of arbitrary shape

is a compound Poisson distribution (see, for example, Feller, 1950, chap. XII).

17



If h(k) is the k-distribution function for an individual line defined over a finite wave

number interval, s, then the k-distribution function for a random distribution of lines

with mean spacing d, is given by

co n

hR(k)=e-X -._ CkXh] (16)R n=O n= k (16)

where X = ~' and Ck h f is the n-fold convolution of the function h with

itself

Ck{h} = 6(k)

n-1

Ck{h} = Ck{h Ck{h}

where Ck{hl, h2 } is the convolution of the functions h1 (k) and h2(k)

k
Ck{hl h2 } = ' hl (k')h a (k-k')dk'

0o

The mean absorption in this case is X times the mean absorption for the

individual line

o
k = X f h(k) kdk

For large values of X, hR(k) approaches the normal distribution with

mean value k, as given above, and dispersion

1
= x f h(k) (k-k)2 dk +-kT

0

18



For the special case of randomly distributed squares, given by Eq. (15),

a2 =2ak 2 .
0

When hR(k), as given by Eq. (16), is inserted into Eq. (13), the intensity

transmission takes on a simple form (Goody, 1964, §4.5.2)

T(p 1 , p2 ) = exp(-w/d)

where w is the equivalent width of a single line

co

w s [i I-ek(- P)] h(k)dk

A similar expression is obtained for the isotropic flux transmission.

Examples of the function kV with the corresponding h(k) are exhibited in

Fig. 1. For each case, k and a were fixed at 2 and .25, respectively. It is seen

that the realistic line shapes such as Lorentz, Doppler, and Elsasser yield U-shaped

k-distributions, compared to triangular profiles, which have flat distributions. The

square profiles yield h(k) functions which may be considered the opposite extreme to

the grey case. The grey case is characterized by a 6-function at a single value of k,

whereas the square case yields two 6 -functions, one at each end of the k-range.

From the point of view of "non-grey effects", the k-range is more important than the

shape of the h(k) function; the wider the range, the more non-grey the atmosphere.

The effect of randomly distributing the lines is to cause the h(k) function to

change from concave upward to concave downward. An example is shown in Fig. 2,
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where the formula given by Eq. (16) was applied to series of non-overlapping

Lorentz lines to yield the k-distribution for randomly distributed Lorentz line

profiles (labelled RLO in the figure). This was done for two values of a: .25

(corresponding to the case shown in Fig. 1) and 2.0 (a situation in which the lines

extensively overlap).

For comparison, the k-distributions for series of regularly spaced Lorentz

lines (the Elsasser case, labelled EL in the figure) are also shown. For a = 2, the

k-distribution for regularly spaced lines is essentially a 6- function and is rep-

resented by a vertical line at k = 2, whereas for randomly spaced lines the k-dis-

tribution has an appreciable width, as shown in the figure.

E. Spectra of Actual Gases

In an actual gas, the situation is complicated by the fact that although the

line shapes may be assumed identical--and for some bands, the half-width is approxi-

mately the same for each line--there is usually a wide range of line strengths within

the band. As a result, the highly idealized forms of h(k) do not appear in practice.

An example is shown in Fig. 3, where the k-distribution is presented for the portion

of the 15 CO2 band in the region between 675 and 715 cm , calculated at a temper-

ature of 250 K and at three different pressures: 1, .1, and .01 atm. An interesting

feature of these particular k-distributions is that each curve has two parts, each of

which fits a power law

h (k) c k - n

where n = .75 for small k and n = 1.5 for large k. Also, the minimum k is proportional

to p and the maximum k is inversely proportional to p. These features appear throughout

the 15 pCO2 band and will be the subject of a separate study.
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4. Solution to Atmospheric Structure Equations

The vertical temperature profile and planetary surface temperature are

determined from a numerical solution to Eqs. (11) and (12). For the case in which

Ps= o=--and hence, Eq. (12) and the term involving B in Eq. (11) are dropped--

methods for solving Eq. (11) have been developed by Krook (1963) and Stone (1963).

The former method is not easily adapted to the case in which Ps is finite. The latter

method has been extended by Grossman (1964) to the finite case, yielding solutions

for mildly non-grey atmospheres. Both methods are iterative, even for grey atmospheres.

For the present problem, a Newton-Raphson scheme (Scarborough, 1958) was

developed. It has the property that it is direct (non-iterative) for grey atmospheres

and non-grey atmospheres with a single wave number interval (0, co). With multiple

wave number intervals--i.e., where the transmission function is different in each wave

number interval--the scheme becomes iterative.

The procedure begins with an initial guess B(O)(p), B (). (For this purpose,
s

we used the Eddington approximation, in which B(p) is linear in p.) Insertion into

Eq. (11) yields an error which is used to generate a correction: B(1)(p) = B(°)(p)+AB()(p)

and B (1) B(O) +AB (o). The process is repeated until AB(p) is sufficiently small. For

conditions under which the scheme is direct, AB 1 )(p) = 0. In the general situation,-as

expected with the Newton-Raphson scheme, AB(p) decreases quadratically with each

iteration.

To simplify the equations, we assume the variables are in the following units:

P: Ps
T: Te

B(T): Te

Q(p): O T4
Ps e

k: 1/ps
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Based upon Eqs. (11) and (12) we define two functionals

[: lB(p), Bs p = +4kj Bi(p)- B. r(p,1)

I (17)

- i B(p')Tll(p't p)dp' - B (p')T(pp')dp' -Q(p)
o P

1 1
32 [B(p), B B -=B 1+ f Q(p)dp - j Bi(p) T 10 (p,1)dp (18)

o I o

and we seek the function B(p) for which

3a, B(p), Bs P = 0 O p 1

32 [B(p), Bs3 = os

If B(p), B is a close approximation to the true solution, then we seek

corrections AB(p), AB such that

31 4B(p) + AB(p), B + AB s P3 = 0 (19)

a2 [ B(p) +AB(p), B +ABs] = 0 (20)
5 S

The relationship between the 3 's and the B's is linear when there is only one

wave number interval, and non-linear when there are more than one wave number

intervals. In either case, Eqs. (19) and (20) are linearized by formally expanding

the 3:'s in a Taylor series, retaining only linear terms. -This yields two integral

equations which are linear in AB(p) and ABs:
S
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m P
1 - -{4i [Ci(p)AB(p)+ Bi(p)] -S [ij(p')AB(p' ) + B(p ' ) ]T (p',p)dp'

o

- Sl [ri(p')AB(p') +Bi(p')]' l(pp')dp' - [C;isBs + BisJ]1o (p,l)}
P

-Q(p) = (21)

m 1 1
ZS J5 [(p)AB(p) +B.(p)J' 10 (p,l)dp-/B -B + 1 -] Q(p)dp=° (22)
i=l o o

where, in our non-dimensional units,

15 X3
B.(p) ] B(p) dx

i(P) 9i/T (p) ex -]

B(p) = T4 (p)

aBi(P) Bi(P) v i
4

4
15 1

(BP) (p) = 4r4B( Vp) [A it v; 1/T(p) ]
e -1 e -1

with similar expressions for B 

Numerical solutions to Eqs. (21) and (22) are obtained by replacing the

integrals over the variable p by a sum over a set of discrete values of p. We

choose n+l points in the p interval (0,1), Pi for j = 0,1,2, ....n, such that

Po = 0 < P1 < P ... Pn = 1. We assume that B(p) is a straight line between

each pair of successive points and denote Bj(pj) and C i(pi) by Bij and ii,

respectively. Eqs. (21) and (22) then take the form
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m

* {4k. i.AB. +B..1 BIj r,- I Bk. Bik+ +B - BTBik-llTpoiPiT (P,-l Pi)
-i ' ' kk ik'+ iI (1k-1i k-1..1kkPiik-1 iI

=1 I(24)

n

-s ABs +B.] lo 1 - p Q( p') = O

:' 2] [VC'iiaei +B..+-~.. ('ijlA~~l+ij-]F'i(Pip-'Pn)-

(24)

-AB -B + 1- Q(p)dp = 0
O

Eqs. (23), (24) are linear with respect to the n + 1 ABj values and ABs. It can be

proven that a solution exists for the case of one wave number interval (0, o). This

set of equations is solved using a Gaussian elimination scheme with partial pivoting

(see, for example, Isaacson and Keller, 1966). Experience with this calculation

shows that the truncation error (the difference between the true and computed
1

values) is proportional to .
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5. Numerical Results

The numerical solutions presented here are for a homogeneous atmosphere -

i.e., the pressure and temperature dependence of the absorption coefficient is neg-

lected. The infrared absorption spectrum is assumed to have a grey or non-grey

character corresponding to one of the ideal situations discussed in Section 3. The

characteristic form of the nongreyness is assumed to hold throughout the infrared

spectrum so that we need consider only one wave number interval (0, CO). The solar

heating term Q (p) is taken to be zero - i.e., the atmosphere is assumed to be com-

pletely transparent to incident solar radiation.

With these conditions, a grey atmosphere has only one parameter: k (in

units of 1/ps) represents optical thickness of the atmosphere at all wave numbers.

The radiative equilibrium.temperature profile for the grey case is shown in Fig. 4

for k ranging from 0.5 to 8. The results illustrate the well-known greenhouse effect,

a property of planetary atmospheres which are transparent to solar radiation but

opaque in the infrared. The temperature increases with increasing mass level (or

depth) approaching a maximum at the surface, with a temperature discontinuity be-

tween the surface and the atmosphere immediately above. As the optical thickness

of the atmosphere increases, the temperature throughout increases, except in the

vicinity of p = 0, the top of the atmosphere, where the temperature is practically

independent of optical thickness. This last result, that T (0) is practically independent

of k, is a consequence of the approximately one-to-one relationship between the

outgoing infrared flux (which is fixed by the value of Te) and the temperatures in
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the uppermost layer of the atmosphere (k < 1); therefore, the temperatures in that

layer are a function of Te, more or less independent of optical thickness.

Making the atmosphere non-grey, but keeping the mean optical thickness

k the same, reduces the temperature at all levels. This is simply the effect of

punching holes in the greenhouse while at the same time thickening the walls to

keep the mean thickness constant; in that situation the greenhouse is less efficient,

inasmuch as the holes permit radiative energy exchange over longer paths. This is

illustrated in Fig. 5 for a regular array of square line profiles for which a = .25,

k1 = 0, and k ranges from 0.5 to 8. Because the outgoing infrared flux is now influ-

enced by temperatures deep within the atmosphere, the temperature at p = 0 is no

longer independent of optical thickness. In this particular case, the temperature at

p = 0 actually decreases with increasing k, although the temperatures for p > .25

increase with increasing k.

Fi'gure 6 illustrates how the non-grey effects become more pronounced as

the atmosphere is made increasingly non-grey. The spectrum is again a regular array

of square profiles, with k1
= 0 and k2 taking on the values 2, 4, 10, and 100; a varies

with k2 to keep k fixed at 2. Near the surface, the non-grey effect saturates qui~ckly

for large k2 , while at p = 0, T - 0 as k2 Co. An interesting example of the ex-

treme case where T = 0 at p = 0 is described by Goody (1964, Sec. 8.2.2). (In that

example, the absorption is represented by a Lorentz profile with halfwidth propor-

tional to pressure, so that at the center of the line k - co as p - 0.)
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The temperature in the upper part of the atmosphere is extremely sensitive

to kl, the absorption coefficient between the lines. This is illustrated for the square

case in Fig. 7. The absorption in the center of the lines, k2 , is fixed at 20 and the

absorption between the lines is varied from 0 to 0.2. The half-width ratio a is

approximately 0.05, varying slightly to keep k fixed at 2. Although the variation

in T/T is no larger than .05 in the lower part of the atmosphere, it is greater than

0.2 in the upper part. The reason why temperatures at small optical depths are par-

ticularly sensitive to the absorption between lines is that the temperatures are low

and hence, are greatly influenced by the parts of the spectrum that facilitate radi-

ative exchange over longer paths - viz., between the lines, where the absorption

coefficients are small.

The effect of the shape of the line profiles on the temperature distribution

is illustrated in Fig. 8 where we compare temperatures for the following line shapes:

grey, square, triangular, Lorentz, Doppler, and Elsasser. The parameters are fixed

at a = .25, k = 2, and (for SQ and TR only) kl = 0. These results confirm what one

would predict from an examination of the k-distribution functions in Fig. 1. The

Elsasser profile, which has the narrowest k-distribution, yields a temperature distribu-

tion closest to the grey case, whereas the square profile, which represents the extreme

in non-greyness (for fixed k and a), yields temperatures with the greatest departure

from the grey case. The Lorentz (non-overlapping) profile is very close to the

Elsasser profile, which takes into account the overlapping of the Lorentz lines.

The Doppler (non-overlapping) profile, with its fairly sharp peaks and rapid
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drop-off away from the center, is intermediate between the Elsasser and square

profi les.

The effect of randomly distributing the line profiles, in contrast to a

regularly spaced array, is shown in Fig. 9. The Elsasser profile (regularly spaced

Lorentz lines, including overlap) is compared with randomly distributed Lorentz

lines for k = 2 and a = .25. Although they both have the same line shapes, half-

widths, and number of lines, the random distribution produces deeper and wider gaps,

yielding a wider k-distribution function (Fig. 2). As a result, the random Lorentz

case is more non-grey than the Elsasser case and gives rise to lower temperatures

throughout the atmosphere. Also shown in Fig. 9 is a comparison of regularly spaced

and randomly distributed square profiles for the same parameters; the effect of ran-

domization is the same as in the Lorentz case, except it is not as pronounced.

6. Summary

A. Method

A method for treating non-grey radiative transfer problems in homogeneous

planetary atmospheres has been presented. The method is general and, except for

the assumption that the atmospheric parameters are homogeneous, no approximations

are made. It lends itself readily to numerical computation yielding solutions with

accuracy limited only by the finite differencing scheme and the spacing of points.

It differs from other methods in that it allows arbitrary dependence of the

absorption coefficient on wave number, k (v), without requiring tedious line by line
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integration and without the constraints of band models. To derive the transmission

functions, the method employs the distribution of k-values within relatively wide

spectral intervals. This distribution can be specified with much fewer parameters

than it is necessary to specify k (v), but contains all the information necessary for

an exact solution of the homogeneous case.

To solve for the vertLcal temperature distribution in a planetary atmosphere

under conditions of radiative equilibrium, a generalized Newton-Raphson scheme is

used. The procedure yields a direct solution (without iteration) when the same

k-distribution function applies throughout the spectrum. In the more general case,

where the k-distribution function is different in different regions of the spectrum,

the scheme is iterative but rapidly converging.

Although the method is restricted to homogeneous atmospheres - a serious

limitation for practical applications - it is possible to extend it to limited cases of

inhomogeneity. In the homogeneous case, the ordering of k-values with respect to

wave number is of no consequence to the problem; hence, the k-distribution function -

carries all of the necessary information. In the inhomogeneous case, one cannot

discard the ordering information and it would seem necessary to resort to a line by

line integration over wave number. However, in at least one important type of situ-

ation it seems likely that one can avoid the expense of line by line integration: the

case where inhomogeneity is due to pressure broadening. Figure 3 reveals a marked

consistency among k-distribution functions at different pressures. If one exploits the
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consistency of these patterns, one might be able to handle such problems using the

Curtiss-Godson approximation together with k-distribution functions containing

pressure dependent parameters.

B. Numerical Results

Using the method outlined here, numerical experiments were performed to

examine the effects of line shapes and band structure on the radiative equilibrium

vertical temperature profile in planetary atmospheres. The experiments were per-

formed for a grey atmosphere and non-grey atmospheres with relatively simple

absorption coefficient patterns: lines of a particular shape and strength either

equally spaced or randomly distributed throughout the spectrum. The line shapes

considered were square, triangular, Lorentz, and Doppler, for which the k-distribution

functions are shown in Fig. 1 and 2. The results are as follows:

1. In a grey atmosphere, the temperature increases with increasing optical

thickness (k) at all points except at the top of the atmosphere (p = 0)

where the temperature is practically independent of k. (Fig. 4)

2. In a non-grey atmosphere, the temperature increases with increasing

k below a certain height and decreases with increasing k above that

height. There is no lower limit to the temperature at p = 0; it ap-

proaches zero as the line-widths approach zero for fixed line strengths.

(Fig. 5)

3. Non-grey effects are enhanced as the k-distribution function that

characterizes the infrared spectrum is spread out in k-space. The
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more non-grey the atmosphere, the lower the temperature at all points

in the atmosphere. Of the cases considered here, the randomly dis-

tributed square line profile is the most non-grey and yields the lowest

temperatures, for fixed k and a. The Elsasser model (evenly spaced

Lorentz profiles, including overlap) has the narrowest k-distribution

and yields the highest temperatures of the non-grey cases. The Doppler

profile yields results intermediate between the square and Lorentz

profiles. (Fig. 6, 8, and 9)

4. The absorption between the lines of the spectrum has a marked effect

on temperatures in the upper part of the atmosphere but a small effect

in the lower part. Increasing the absorption between the lines raises

the temperature in the upper part. In contrast, increasing the absorp-

tion at the center of the lines lowers the temperature throughout the

atmosphere. (Fig. 6 and 7)

5. For fixed line strengths (equivalent to fixed k, which was set equal to

2 in these experiments) the temperature in the atmosphere varied over

a range which was 12% near the surface and 25% near the top of the

atmosphere (p = 0), depending upon the line shape and on whether the

lines were evenly spaced or randomly distributed. (Fig. 8 and 9)

The most significant practical feature of these results is that temperatures

near p = 0 (which correspond to the stratosphere and above) are sensitive to the de-

tailed characteristics of the infrared spectrum of the absorbing gases. The radiative
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heating (absorption) terms depend strongly on the relative distribution of k-values

between the peaks and the troughs of the spectrum, whereas the radiative cooling

(emission) terms depend upon the mean absorption coefficient, k. Raising the peaks

or lowering the troughs, depresses the stratospheric temperature. It is therefore

important to determine the absorption spectrum and to correctly treat the non-grey

effects when calculating radiative terms in the stratosphere and layers above.
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Figure 1. The k-distribution functions for some artificial bond models with evenly spaced lines.
The curves along the left-hand column show the absorption coefficient as a function of
the ratio of wave number to line spacing for each case. The curves on the right are
the corresponding k-distribution functions (see text for explanation). GR = grey; $SQ-
square; TR = triangular; LO = Lorentz; DO = Doppler; EL = Elsasser. (Note that
the grey distribution function is a delta function represented by a vertical dashed line
at k = 2, and the square distribution function is the sum of two delta functions, repre-
sented by vertical dashed lines at k = 0 and 4.)
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Figure 2. The k-distribution functions for randomly distributed Lorentz line profiles (RLO) and

for the Elsasser bond -(EL), which consists of evenly spaced Lorentz profiles. (Over-

lap of lines is included in both cases.) They are shown for two values of the ratio of

half-width to mean line spacing: a -- .25 and 2.0. For the Elsasser case with a = 2,

the distribution function is so narrow that it is indistinguishable on this scale from a

delta function and is represented by a vertical line at k = 2.
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Figure 3. The k-distribution function for the portion of the CO2 15$p band from 675 to 715 cm-
1,

at a temperature of 2500 K and pressures of 1, .1, and .01 atm. It is based upon
Lorentz profiles with a constant half-width of .08 cm- 1 times the pressure. The line
parameters were taken from Drayson and Young (1967).
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Figure 4. The temperature, in units of the effective temperature, versus pressure, in units of the
surface pressure, for a grey atmosphere with optical thickness .5, 1, 2, 4, and 8.
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Figure 5. Temperature versus pressure for an atmosphere with evenly spaced square line profiles
for the same values of mean optical thickness (k) as in Fig. 4. k1 is the optical thick-
ness of the atmosphere between the lines, k2 is the optical thickness within the lines
and a is the ratio of half-width to line spacing.
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Figure 6. Temperature versus pressure for an atmosphere with evenly spaced square line profiles
as a function of k2 . (See captions for Figs. 4 and 5 for explanation of symbols.)as a function of k2 , (See captions for Figs, 4 and 5 for explanation of symbols.)
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Figure 7. Temperature versus pressure for an atmosphere with evenly spaced square line profiles

as a function of k
1
. (See captions for Figs. 4 and 5 for explanation of symbols.)
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Figure 8. Temperature versus pressure for various band models (see caption for Fig. 1 for an
explanation of symbols) for an atmosphere with mean optical thickness k = 2 and a
ratio of half-width to line spacing a = .25.
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Figure 9. Comparison of temperature versus pressure for atmospheres with randomly distributed
lines (RLO = randomly distributed Lorentz line profiles; RSQ = randomly distributed
square line profiles) with atmospheres that have evenly spaced lines at the same mean
optical thickness k = 2 and ratio of half-width to mean line spacing a = .25. EL =

the Elsasser band, which consists of evenly spaced Lorentz line profiles; SQ = evenly
spaced square line profiles. Overlap of lines is included in all cases.

44


