

CASEFILE COPY

ENTRY TRAJECTORY, ENTRY ENVIRONMENT,

 AND ANALYSIS OF SPACECRAFT MOTION IOR THE RAM C-III FLIGHT EXPERIMENTby William L. Weaver and John T. Bowen
Langley Research Center
Hampton, Va. 23365

National aeronautics and space administration - Washington, d. C. - june 1972

ENTRY TRAJECTORY, ENTRY ENVIRONMENT, AND ANALYSIS OF SPACECRAFT MOTION FOR THE

RAM C-III FLIGHT EXPERIMENT

By William L. Weaver and John T. Bowen
Langley Research Center

SUMMARY

The RAM C-III flight experiment was launched from NASA Wallops Station on September 30,1970 , to study the problem of radiofrequency blackout at an entry velocity $7.407 \mathrm{~km} / \mathrm{sec}$ ($24300 \mathrm{ft} / \mathrm{sec}$). The flight is described, and data for the entry trajectory and environment, which include the effects of actual temperature measured the day of launch, are presented. An analysis of entry spacecraft motions was performed. This analysis included the determination of wind angles from measured accelerations and estimates of wind angles at high altitudes from gyro-measured rotation rates. The maximum wind angles were found to be less than 5^{0} to the point of pitch-roll resonance (an altitude of 35.052 km (115000 ft)), where the total wind angle increased to 8.5° and the roll rate started decreasing. A plausible cause for the decrease in roll rate was shown to be a combination of trim angle and an offset center of gravity.

INTRODUCTION

RAM C-III was one in a series of flight experiments conducted by Project RAM (Radio Attenuation Measurements) at the Langley Research Center to study the problem of radiofrequency blackout associated with high-speed entry into the earth's atmosphere. Some results of previous flight experiments are reported in references 1 to 7 , and a summary of the RAM Program is presented in reference 8.

The RAM C-III spacecraft was launched from NASA Wallops Station, Wallops Island, Virginia, by a Scout vehicle September 30, 1970. Several experiments were included with the objectives of comparing the effectiveness of electrophilic liquids with that of water in reducing radiofrequency blackout and of obtaining measurements of ion and electron concentrations in the plasma sheath. Some results of this flight are presented in references 9 to 12 .

In the present paper the RAM C-III flight is described, and comprehensive data for the entry trajectory and environment are presented. The results reported will serve as
a base-line source for trajectory and environmental data required in the continuing analyses of flight data. All of the experimental data showed effects of spacecraft rotational motions and wind-angle changes. This paper contains an analysis of these data which can be used in the evaluation of the experimental data.

The analysis includes determination of the wind angles from measured accelerations in the region of substantial aerodynamic effects and the determination of inertial rotations and estimates of maximum wind angles from gyro-measured rotation rates in the high-altitude, low-density region. A computer simulation was used to demonstrate a plausible cause for the significant decrease in spacecraft roll rate.

SYMBOLS

Measurements and calculations were made in the U.S. Customary Units. (See appendix for further explanation and factors for conversion to SI Units.)
$\mathrm{a}_{\mathrm{N}} \quad$ normal acceleration, $\quad-\mathrm{a}_{\mathrm{Z}}$
$a_{X},{ }^{a}{ }_{Y}, a_{Z}$ accelerations along body axes (nondimensionalized by earth gravitational acceleration)
$\mathrm{C}_{\mathrm{m}, \mathrm{o}} \quad$ static pitching-moment coefficient at $\alpha=0$
$\mathrm{C}_{\eta} \quad$ slope of pitching-moment coefficient at $\quad \eta=0$
$C_{n, 0} \quad$ static yawing-moment coefficient at $\alpha=0$
C_{N} normal-force coefficient
$\mathrm{C}_{\mathbf{Y}} \quad$ side-force coefficient

D diameter of base of spacecraft, $0.67 \mathrm{~m}(2.2 \mathrm{ft})$
f() function of quantity in parentheses
$I_{l} \quad$ lateral moment of inertia, $\left(I_{Y}+I_{Z}\right) / 2$
$\mathrm{I}_{\mathrm{X}}, \mathrm{I}_{\mathrm{Y}}, \mathrm{I}_{\mathrm{Z}} \quad$ spacecraft moments of inertia

L geodetic latitude; angle between the equatorial plane and the altitude vector (positive north)
$\mathrm{p}, \mathrm{q}, \mathrm{r} \quad$ rotation rates about $\mathrm{X}_{-}, \mathrm{Y}-$, and Z -axes
$\mathrm{q}_{\infty} \quad$ dynamic pressure, $\frac{1}{2} \rho_{\mathrm{m}} \mathrm{V}^{2}$
$\mathrm{S} \quad$ area of base of spacecraft, $0.35 \mathrm{~m}^{2}\left(3.8 \mathrm{ft}^{2}\right)$
t
time interval defined in equation (15)
magnitude of earth-relative velocity vector, $\sqrt{u^{2}+v^{2}+w^{2}}$
$V^{\prime} \quad$ magnitude of lateral velocity, $\sqrt{\mathrm{v}^{2}+\mathrm{w}^{2}}$
W spacecraft weight
$\mathrm{u}, \mathrm{v}, \mathrm{w} \quad$ components of relative velocity along spacecraft $\mathrm{X}-, \mathrm{Y}-$, and Z -axes
$X, Y, Z \quad$ spacecraft body axes
$\mathrm{X}_{\mathrm{b}} \quad$ axis defined in figure 9
$\mathrm{x}_{\mathrm{b}}, \mathrm{y}, \mathrm{z} \quad$ measurements along $\mathrm{X}_{\mathrm{b}^{-}}, \mathrm{Y}-$, and Z -axes in figure 9
$\Delta y, \Delta z \quad$ displacements of center of gravity from X-axis of spacecraft
$\alpha, \beta, \eta \quad$ wind angles (angle of attack, angle of sideslip, and total wind angle)
$\delta \quad$ angle between gyro spin axis and spacecraft roll angular velocity vector
η^{\prime}
uncertainty in direction of relative velocity with respect to inertial frame at 405 seconds
longitude; angle between Greenwich meridian and the spacecraft meridian (positive east)
$\rho_{\mathrm{m}} \quad$ atmospheric density computed on basis of temperature measurements the day of launch
$\rho_{0} \quad$ atmospheric density based on 1962 Standard Atmosphere model (ref. 13)
$\tau \quad$ resultant inertial angle in ψ, θ plane, $\sqrt{\psi^{2}+\theta^{2}}$
$\phi^{\prime} \quad$ angle between negative Z -axis and V^{\prime} (positive clockwise looking forward), $\tan ^{-1}\left(-\mathrm{a}_{\mathrm{Y}} /-\mathrm{a}_{\mathrm{N}}\right)$
$\psi, \theta, \phi \quad$ inertial or Euler angles
$\dot{\Omega} \quad$ total angular rate of change of earth-relative coordinates with respect to inertial frame
$\omega_{\mathrm{O}} \quad$ spacecraft natural oscillation frequency
$\Delta \omega \quad$ modified roll frequency
$\omega_{0} / \Delta \omega \quad$ resonance parameter

Subscripts:
$\max \quad$ maximum value
$0 \quad$ value for beginning of integration

A dot over a quantity represents differentiation with respect to time.

NOMENCLATURE

Altitude magnitude of geodetic altitude vector; geodetic height above earth

Earth range
great-circle distance along earth between launch site and projected spacecraft position

Flight azimuth	angle between spacecraft meridian and projection of relative velo ity vector onto spacecraft horizon (positive clockwise from nor
Flight elevation	angle between spacecraft horizon and relative velocity vector (positive up)
Mach number	ratio of spacecraft velocity to velocity of sound
Radar azimuth \quadangle between radar meridian and projection of range vector on radar horizon (positive clockwise from north)	
Radar elevation \quadangle between radar horizon and range vector (positive up)	
Radar range	magnitude of range vector from radar to spacecraft

A photograph of the RAM C-III launch vehicle on the launch pad at Wallops Station is shown in figure 1. The vehicle was launched at 20:06:29.1 GMT September 30, 1970. The lift-off was vertical, and the vehicle was pitched down on a flight azimuth of 109°. Table I lists some of the important flight events, and figure 2 shows plots of flight parameters. The time scale is based on time elapsed after lift-off. The plots show the overlapping of the data from the principal tracking radars.

The second-stage motor was ignited at zero angle of attack, and during the long coast between second burnout and third ignition (see fig. 2(a)), the vehicle was pitched down; the third stage was ignited just prior to apogee at a negative angle of attack. Therefore, the trajectory for the data period was uprange about 185 km (100 nautical miles) from that of a nominal ballistic trajectory. The indicated roll-up took place after third-stage burnout and just prior to fourth ignition. The purpose of rolling the spacecraft was to minimize anomalies due to separation and thrust misalinement for the unguided fourth stage. A few seconds after fourth-stage burnout (an altitude of about 141.732 km (465000 ft)), a command signal from Bermuda initiated the start of an onboard programer which controlled several subsequent spacecraft events (separation, liquid injection, probe retraction, etc.). Separation of the fourth-stage motor case from the spacecraft was produced initially by a spring-loaded device. This system was augmented by a system of two small rocket motors designed to produce permanent separation.

ENTRY TRAJECTORY AND ENVIRONMENT

The Bermuda AN/FPS-16 radar which was tracking the C-band beacon in the spacecraft lost signal because of plasma at about 400 seconds; the Bermuda AN/FPQ-6 radar, however, switched to the skin-track mode at onset of attenuation and tracked throughout the entire period of interest. Trajectory data obtained by the two radars prior to loss of signal by the FPS-16 (see fig. 2(c), for instance) are in very good agreement. All the data for entry trajectory and environment presented or used in this paper are taken from the FPQ-6 radar. The coordinates of the FPQ-6 radar at Bermuda are

Latitude, 32.348°

Longitude, -64.654°

Radar data showing the spacecraft position relative to Bermuda are shown in figure 3.
Entry-trajectory parameters (altitude, latitude, longitude, earth range, velocity, flight azimuth, and flight elevation) are presented in figure 4. All parameters except flight azimuth and flight elevation vary smoothly and indicate no anomalies. The behavior of these parameters after about 420 seconds probably reflects inaccuracies in differentiating the position data obtained by the radar. It can be seen in figure 3 , for instance, that the elevation angle from Bermuda is quite low at 420 seconds. Table \amalg gives the entrytrajectory parameters in 0.1-second intervals.

Dynamic pressure and Mach number are plotted in figure 5. In computing these parameters, the atmospheric density was corrected for the temperature measured at Bermuda within a few hours after the entry. The temperatures to 182.88 km (60000 ft) were obtained with a radiosonde, and above that altitude they were obtained with an Arcasonde. The variation in density from the 1962 Standard Atmosphere (ref. 13) is given in figure 6, and the actual correction factor used is also shown. The velocity of the wind relative to the earth was not considered in the computations. During the data period the spacecraft velocity is large, and wind effects could be expected to have a negligible effect on dynamic pressure. At the lower altitudes the effect may be more significant. Table III presents atmospheric density, dynamic pressure, and Mach number for the entry trajectory in 0.1 -second intervals. For convenience the spacecraft altitude and velocity are also tabulated.

SPACECRAFT DESCRIPTION AND INSTRUMENTATION

The spacecraft consisted of a hemispherical nose with a radius of 15.95 cm (6.28 in .) faired into a cone frustum with a half-angle of 9°. A sketch of the geometry is
shown in figure 7(a). The fins at the base of the spacecraft contained the probe rakes used to measure electron and positive-ion densities. They were retracted at $401.3 \mathrm{sec}-$ onds (an altitude of about 60.808 km (199 500 ft)) to prevent adverse aerodynamic and heating effects on the spacecraft at lower altitudes. The nose of the spacecraft was covered with phenolic-graphite (see sketch in fig. 1), a hard, charring ablative material which permitted the drilling of holes for liquid injection. The remainder of the frustum was covered with teflon, and the base was protected by cork. Figure 7(b) lists the preflight-measured weight and moments of inertia of the spacecraft, and figure 7(c) shows plots of the preflight-computed histories of the weight and moments of inertia. The computations accounted for mass loss due to ablation and liquid injection. The sketches of figure 8 illustrate the axis systems and nomenclature employed.

A list of the performance instruments is shown in table IV. Shown also are the response of each instrument, its Inter-Range Instrumentation Group (IRIG) channel assignment, and the range and estimated error of each instrument. Note that the total ranges of the accelerometers measuring normal and side accelerations are divided into three subranges to improve the accuracy of their measurements at the lower end of the scale. The locations of the instruments on the spacecraft are shown in figure 9.

MEASURED SPACECRAFT-MOTION DATA

Spacecraft rotation rates measured by the gyros are presented in figure 10, and lateral (side and normal) accelerations measured by the accelerometers are presented in figure 11. All data have been smoothed. The data from 315 to 325 seconds are presented to illustrate the effects at roll-up, and the data from 370 to 380 seconds are presented to show the effects at separation of the fourth stage. From 380 to 440 seconds the acceleration which was due to the displacement of the accelerometers from the spacecraft center of gravity has been removed. The most significant component of that acceleration is shown in figure 11(a) and results from displacements of the lateral accelerometers from the spacecraft X-axis. (See fig. 9.) Figure 11(b) shows that separation of the fourth stage leaves this rotational component of measured acceleration essentially unchanged.

DETERMINATION OF WIND ANGLES FROM ACCELERATION DATA

Wind angles were determined from the following relationships:

$$
\begin{equation*}
C_{N}=\frac{W a_{N}}{q_{\infty} s} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{C}_{\mathrm{Y}}=\frac{\mathrm{Wa} \mathrm{Y}^{\prime}}{\mathrm{a}_{\infty} \mathrm{S}} \tag{2}\\
& \alpha=\mathrm{f}\left(\mathrm{C}_{\mathrm{N}}\right) \tag{3}\\
& \beta=\mathrm{f}\left(\mathrm{C}_{\mathrm{Y}}\right) \tag{4}\\
& \eta=\sqrt{\alpha^{2}+\beta^{2}} \tag{5}\\
& \phi^{\prime}=\tan ^{-1} \frac{-\mathrm{a}_{\mathrm{Y}}}{-\mathrm{a}_{\mathrm{N}}} \tag{6}
\end{align*}
$$

The quadrant of ϕ^{\prime} was determined by testing the sign of the numerator and denominator of equation (6). The values of a_{N} and a_{Y} used in equations (1) and (2) were those shown in figure 11; values of W were taken from figure $7(b)$; and values of q_{∞} were taken from table III. Aerodynamic-force coefficients were obtained in wind-tunnel tests from Mach 1.5 to Mach 20.3. Typical curves of the coefficients as a function of wind angles are shown in figure 12. All acceleration was assumed to be due to static aerodynamic forces, and cross coupling between α and β was considered negligible.

Wind angles determined from the acceleration data and equations (3) to (6) are presented in figures 13 and 14 from 400 seconds to 440 seconds. Wind angles determined by this method are not considered reliable prior to 400 seconds because of the very low measured accelerations. The maximum possible error in the absolute values of the wind angles from 400 to 405 seconds based on the instrument errors of table IV is about 3°. The consistent behavior of the angles, however, suggests that the errors are probably less than the maximum possible values. Between 405 and 410 seconds the maximum error in wind angles based on instrument measurement error goes to about 1.0°. The reason for presenting the roll rate with the total wind angle and phase angle is the relationship between these three quantities during the period when roll rate was decreasing.

INERTIAL ROTATIONS AND WIND ANGLES AT HIGH ALTITUDES

Integration and Analysis of Gyro Data

The data periods for most of the experiments began prior to 400 seconds, and additional analysis was required to determine spacecraft motions and to estimate maximum wind angles in the high-altitude, low-dynamic-pressure region. In reference 7, measured spacecraft rotation rates were used in the equations for the force-free motions of a sym-
metrical gyro to determine inertial rotations of the RAM C-I and C-II spacecraft. These were then utilized to estimate maximum wind angles on the assumption that the X -axis of each spacecraft was alined with its velocity vector at fourth-stage separation. In the present analysis measured spacecraft rotation rates were numerically integrated to obtain inertial rotations of the spacecraft. These rotations and the uncertainties in the direction of the relative velocity vector were used to estimate conservative maximum wind angles from 380 to 410 seconds.

Inertial rotations were determined from the following relationships:

$$
\begin{align*}
& \psi=\int_{t} \dot{\psi} d t+\psi_{0} \tag{7}\\
& \theta=\int_{t} \dot{\theta} d t+\theta_{0} \tag{8}\\
& \phi=\int_{t} \dot{\phi} d t+\phi_{0} \tag{9}\\
& \dot{\psi}=\frac{q \sin \phi+r \cos \phi}{\cos \theta} \tag{10}\\
& \dot{\theta}=q \cos \phi-r \sin \phi \tag{11}\\
& \dot{\phi}=p+q \tan \theta \sin \phi+r \tan \theta \cos \phi \tag{12}
\end{align*}
$$

The lateral (pitch and yaw) gyros are measuring components of the roll angular velocity, as can be seen from figure 10(a). These components are due to misalinements between the gyro axes and the roll angular velocity vector. The values of angular misalinement required to produce these measured values were found to be

$$
\begin{aligned}
& \left.\delta=0.35^{\circ} \quad \text { (yaw gyro }\right) \\
& \delta=0.02^{\circ} \quad \text { (pitch gyro) }
\end{aligned}
$$

Whether these misalinements were due to an inertial unbalance (principal-axis misalinement) of the spacecraft or to a geometric misalinement of the instruments cannot be precisely established. However, the fact that values of roll rate measured by the lateral gyros were essentially the same after fourth-stage separation as before suggests an instrument misalinement. This was concluded since it is improbable that the same
inertial unbalance would have been present in the fourth-stage-spacecraft configuration as in the spacecraft alone because of the significant differences in their moments of inertia.

Inertial rotations of the spacecraft obtained by integrating equations (7) to (9) over two different time intervals are shown in figure 15. Over each of these time intervals a comparison is made between the rotations obtained by using rotation rates corrected for the roll components (instrument misalinement) and the measured rotation rates (assumes inertial misalinement). The inclusion of the roll components can be seen in figure 15(a) to produce nutation and to increase the rotation angles over those obtained with the modified rotation rates. The differences are not as apparent from 405 to 410 seconds (fig. 15(b)), probably because of the increased effect of aerodynamics. Because the main use of the inertial rotations will be to estimate conservative maximum wind angles, inertial rotation obtained by using the measured lateral rotation rates will be employed.

In figure 8 it can be seen that the total wind angle η is the angle between the direction of the relative wind velocity and the spacecraft X -axis. Figure 16 illustrates the relationship between the total wind angle and the resultant inertial angle τ. For simplicity the X -axis of the spacecraft, the X -axis of the inertial frame, and the relative velocity vector are shown in the same plane. It can be seen in figure 16 that if the inertial X -axis and the relative velocity vector have the same direction, then $\tau \equiv \eta$. Thus, values of η determined from inertial rotations will be in error because of the uncertainty in the direction of the relative velocity vector with respect to the inertial frame. This uncertainty results from two factors: (1) the initial misalinement between the relative velocity and the inertial frame at the time that integration of the gyro data is started, and (2) the change with time in the direction of the relative velocity vector due to the rotation of the earth.

Figure 15(b) indicates conelike angular motion of the spacecraft from 405 to 410 seconds. When the cross plot of α and β over the same time interval in figure 17 is compared with the inertial rotations, it is apparent that the relative velocity vector was inside the inertial cone. The proximity of the relative velocity vector to the angular momentum vector at this time make it a good time to initiate integration of the gyro data to obtain inertial rotations. The origin of the inertial coordinate system was chosen as the approximate center of the rotation in figure $15(\mathrm{~b})$ and integration was started at 405 seconds. Equations (7) to (9) were integrated forward to 410 seconds and backward to 380 seconds. Plots of the inertial rotation in 5 -second intervals are shown in figure 18. The arrows indicate the direction of rotation and the solid circular symbols approximate the average direction of the angular momentum vector during the time interval. These plots show that the variation in inertial angle increased from about 3° in the interval from

380 to 385 seconds to about 6.5° in the interval from 405 to 410 seconds and that the average direction of the angular momentum changed about 1.0° from 380 to 410 seconds.

Determinations of Conservative Maximum Wind Angles

First a resultant inertial angle τ was determined from each 5 -second-interval plot by graphically measuring the distance from the origin to the outside rotation along a line passing through the angular momentum vector. A maximum value of η was then determined by adding linearly to this value of τ the initial uncertainty of the relative velocity assumed at 405 seconds η^{\prime} and the total angular change in the relative frame with respect to the inertial frame. The equation for $\eta_{\max }$ is

$$
\begin{equation*}
\eta_{\max }=\tau_{\max }+\eta^{\prime}+\dot{\Omega} \Delta t \tag{13}
\end{equation*}
$$

where

$$
\begin{align*}
& \dot{\Omega}=\sqrt{\dot{L}^{2}+\dot{\lambda}^{2}} \tag{14}\\
& \Delta t=405-t_{p} \tag{15}
\end{align*}
$$

An initial uncertainty of 1° was assumed on the basis of the error in the determination of wind angles at 405 seconds. The rotation of the relative frame was nearly constant over the entire time interval:

$$
\begin{aligned}
& \dot{L}=-0.028 \mathrm{deg} / \mathrm{sec} \\
& \dot{\lambda}=0.068 \mathrm{deg} / \mathrm{sec} \\
& \dot{\Omega}=0.074 \mathrm{deg} / \mathrm{sec}
\end{aligned}
$$

Figure 19 graphically illustrates the technique for obtaining conservative maximum total wind angles from the inertial plots. Figure 20 is a plot of the values of $\eta_{\max }$ from 380 to 410 seconds. The values were plotted at a time halfway through the time interval of the inertial-rotation plot. Shown also in this figure are the maximum total wind angles determined from acceleration data. It was shown in reference 7 that the cyclic changes in ion density measured by the electrostatic probes on the RAM C-I and C-II spacecraft were due to changes in the angle of attack. The locations of the RAM C-III probes relative to the angle-of-attack plane were identical with the probe locations on the RAM C-I and C-II spacecraft, and hence, the cyclic changes in ion density measured during the RAM C-III entry (see ref. 12) can be attributed to changes in angle of attack. The varia-
tion in angle of attack was shown in reference 7 to be $\alpha= \pm \eta_{\max }$. The maximum wind angles are seen to be less than 5° prior to resonance.

PITCH ROLL RESONANCE AND ROLL ANOMALY

Determination of Pitch Roll Resonance

It can be seen in figures 13 and 14 that the spacecraft continued to cone about the velocity vector until about 413 seconds, when the motions started to amplify. The resonance parameter

$$
\begin{equation*}
\frac{\omega_{0}}{\Delta \omega}=\frac{\sqrt{\frac{-\mathrm{C}_{\mathrm{m}_{\eta} \mathrm{q}_{\infty} \mathrm{SD}}^{\mathrm{I}_{l}}+\left(\frac{\mathrm{pI}_{\mathrm{X}}}{2 \mathrm{I}_{l}}\right)^{2}}{p\left(1-\frac{\mathrm{I}_{\mathrm{X}}}{2 \mathrm{I}_{l}}\right)}} \text {)}}{\text { 的 }} \tag{16}
\end{equation*}
$$

was computed by using q_{∞} from table III and the measured roll rate p. The plot of the resonance parameter in figure 21 indicates that resonance amplification should have started at 415 seconds. The actual onset of amplification occurred 1 to 2 seconds prior to 415 seconds, as can be seen in figures $10,11,13$, and 14 . This early occurrence may have been because the total wind angle η was greater than zero for several seconds prior to resonance, and the effective moment coefficient may have been greater than $\mathrm{C}_{\mathrm{m}_{\eta}}$.

After 415 seconds both the oscillation and trim are greater in the β-plane than that in the α-plane. (See fig. 13.) It can be seen in figure 14 that the orientation of the lateral velocity ϕ^{\prime} is essentially oscillating between 270° and $360^{\circ}\left(0^{\circ}\right.$ to $\left.-90^{\circ}\right)$. That is, the spacecraft is presenting only its fourth quadrant to the wind vector. The times of maximum roll deceleration can be seen in figure 14 to correspond to the times when η is about maximum and when ϕ^{\prime} is increasing. At around 425 seconds, the spacecraft was undergoing small oscillations about a trim angle of approximately 2°. Thus the spacecraft X -axis coned about the relative velocity vector while the spacecraft presented only a few degrees of its circumference to the wind vector. The maximum wind angle of 8.5° which occurred at about 414.7 seconds is slightly greater than the maximum values reached during the resonance periods of the RAM C-I and C-II spacecraft.

Computer Simulation of Roll Anomaly

Unpublished studies by the authors indicated that the changes in roll rate which occurred during and after resonance conditions on the RAM C-I and C-II entries could be
attributed to a combination of an aerodynamic trim and an offset center of gravity. Therefore, a set of equations in six degrees of freedom were computer-programed with the capability to simulate an aerodynamic trim and an offset center of gravity. Because the location of the center of gravity and an aerodynamic trim could have varied as a result of unsymmetrical ablation of the heat shield, a period of time after most of the ablation had occurred was chosen for simulation of the RAM C-III spacecraft motions. The simulation period was 433 to 440 seconds. Angular motions were small during this period. (See figs. 10, 11, 13, and 14.) The trim angle was slightly greater than 1°, and the changes in orientation of the lateral velocity vector were small. It is during this period that the roll rate passes through zero. (See fig. 14.) Figure 22 shows the computed simulation of roll rate and the wind angles compared with the flight-measured roll rate and the accelerometer-inferred wind angles. Values of static moment coefficients at $\alpha=0$ and center-of-gravity displacement required were

$$
\begin{aligned}
& C_{m, o}=-0.0030 \\
& C_{n, 0}=0.0025 \\
& \Delta y=1.22 \mathrm{~mm}(0.004 \mathrm{ft}) \\
& \Delta z=0
\end{aligned}
$$

The average value of roll is simulated well even though the small oscillations are not. The wind angles are simulated in magnitude and frequency at certain times, but the main point is that the general trends in the angles are matched up fairly well. This type of simulation demonstrates the plausibility that a combination of trim angle and offset center of gravity caused the roll deceleration experienced by the spacecraft.

CONCLUDING REMARKS

The RAM C-III flight experiment was launched from NASA Wallops Station September 30,1970 , to study the problem of radiofrequency blackout at an entry velocity of $7.407 \mathrm{~km} / \mathrm{sec}(24300 \mathrm{ft} / \mathrm{sec})$. The flight is described, and data for the entry trajectory and environment, which include the effects of actual temperature measured the day of launch, are presented. An analysis of entry spacecraft motions was performed. This analysis included the determination of wind angles from measured accelerations and estimates of wind angles at high altitudes from gyro-measured rotation rates. The maximum wind angles were found to be less than 50 to the point of pitch roll resonance (an altitude of $35.052 \mathrm{~km}(115000 \mathrm{ft})$), where the total wind angle went to 8.5° and the roll rate started
decreasing. A plausible cause for the decrease in roll rate was shown to be a combination of trim angle and an offset center of gravity.

Langley Research Center,
National Aeronautics and Space Administration, Hampton, Va., May 9, 1972.

APPENDIX

WORKING UNITS AND CONVERSION TO SI UNITS

The RAM C-III spacecraft was designed and fabricated to specifications in the U.S. Customary Units. All measurements (ground and flight) pertinent to the present paper were made in the U.S. Customary Units, and all data reduction and computations were made in that system. Graphical data were therefore plotted in the U.S. Customary Units. The final data were converted to SI Units, and a secondary SI scale is presented on each of the graphical figures. In other cases where numerical data are presented or discussed the value of each quantity is presented first in the SI Units followed by its value in the U.S. Customary Units. A list of the conversion factors used is given below. The conversion factors were taken from or derived from values given in reference 14.
($1 \mathrm{n} . \mathrm{mi} .=6080 \mathrm{ft}$ herein.)

Physical quantity	U.S. Customary	Conversion factor (*)	SI Unit
Length Velocity Pressure Density Weight Moment of inertia	$\left\{\begin{array}{l} \text { feet } \\ \text { feet } \\ \text { inches } \\ \text { inches } \\ \mathrm{ft} / \mathrm{sec} \\ \mathrm{lb} / \mathrm{sq} \mathrm{ft} \\ \text { slugs } / \mathrm{ft}^{3} \end{array}\right.$	$\begin{aligned} & 3.048 \times 10^{-1} \\ & 3.048 \times 10^{-4} \\ & 2.54 \\ & 25.4 \\ & 3.048 \times 10^{-4} \\ & 47.88 \\ & 515.379 \\ & 4.536 \times 10^{-1} \\ & 1.357 \end{aligned}$	```meters (m) kilometers (km) centimeters (cm) millimeters (mm) kilometers per second (\(\mathrm{km} / \mathrm{sec}\)) newtons per square meter (\(\mathrm{N} / \mathrm{m} 2\)) kilograms per cubic meter (\(\mathrm{kg} / \mathrm{m} 3\)) kilograms (kg) kilogram-meters \({ }^{2}\) (kg-m2)```

*Multiply value given in U.S. Customary Units by conversion factor to obtain equivalent value in SI Units.

REFERENCES

1. Sims, Theo E.; and Jones, Robert F.: Flight Measurements of VHF Signal Attenuation and Antenna Impedance for the RAM A1 Slender Probe at Velocities Up to 17,800 Feet Per Second. NASA TM X-760, 1963.
2. Schroeder, Lyle C.; and Russo, Francis P. (With appendix by Francis P. Russo and Aubrey E. Cross): Flight Investigation and Analysis of Alleviation of Communications Blackout by Water Injection During Gemini 3 Reentry. NASA TM X-1521, 1968.
3. Cuddihy, William F.; Beckwith, Ivan E.; and Schroeder, Lyle C. (With appendix A by Ivan E. Beckwith, Dennis M. Bushnell, and James L. Hunt; appendix B by Ivan E. Beckwith and Sadie P. Livingston; and appendix C by Ivan E. Beckwith): Flight Test and Analysis of a Method for Reducing Radio Attenuation During Hypersonic Flight. NASA TM X-1331, 1967.
4. Akey, Norman D.; and Cross, Aubrey E. (With appendix A by Thomas G. Campbell; appendix B by Fred B. Beck; and appendix C by W. Linwood Jones, Jr.): Radio Blackout Alleviation and Plasma Diagnostic Results From a 25000 Foot Per Second Blunt-Body Reentry. NASA TN D-5615, 1970.
5. Grantham, William L.: Flight Results of a 25000 Foot-Per-Second Reentry Experiment Using Microwave Reflectometers To Measure Plasma Electron Density and Standoff Distance. NASA TN D-6062, 1970.
6. Schexnayder, Charles J., Jr.; Huber, Paul W.; and Evans, John S.: Calculation of Electron Concentration for a Blunt Body at Orbital Speeds and Comparison With Experimental Data. NASA TN D-6294, 1971.
7. Jones, W. Linwood; and Cross, Aubrey E. (With appendix B by Lorraine F. Satchell and appendix C by William L. Weaver): Electrostatic-Probe Measurements of Plasma Parameters for Two Reentry Flight Experiments at 25000 Feet Per Second. NASA TN D-6617, 1972.
8. Akey, Norman D.: Overview of RAM Reentry Measurements Program. The Entry Plasma Sheath and Its Effect on Space Vehicle Electromagnetic Systems, Vol. I, NASA SP-252, 1971, pp. 19-31.
9. Schroeder, Lyle C.: Flight Measurements at 25000 Feet Per Second of Blackout Alleviation by Water and Electrophilic Injection. The Entry Plasma Sheath and Its Effects on Space Vehicle Electromagnetic Systems, Vol. II, NASA SP-253, 1971, pp. 77-100.
10. Swift, C. T.; Beck, F. B.; Thomson, J.; and Castellow, S. L., Jr.: RAM C-III S-Band Diagnostic Experiment. The Entry Plasma Sheath and Its Effects on Space Vehicle Electromagnetic Systems, Vol. I, NASA SP-252, 1971, pp. 137-155.
11. Weaver, William L.: Multiple-Orifice Liquid Injection Into Hypersonic Airstreams and Application to RAM C-III Flight. NASA TM X-2486, 1972.
12. Schroeder, Lyle C.; Jones, W. Linwood, Jr.; Swift, Calvin T.; and Cross, Aubrey E.: Radio Blackout Alleviation by Fluid Injection and Plasma Measurements During the RAM C-III Reentry at 25000 Feet Per Second. NASA TM X-2563, 1972.
13. Anon.: U.S. Standard Atmosphere, 1962. NASA, U.S. Air Force, and U.S. Weather Bur., Dec. 1962.
14. Mechtly, E. A.: The International System of Units - Physical Constants and Conversion Factors (Revised). NASA SP-7012, 1969.

TABLE I.- TRAJECTORY EVENTS

Event	Time, sec
Launch .	0
First-stage burnout	76.70
Second-stage ignition	81.40
Second-stage burnout	123.50
Heat-shield ejection	262.40
Third-stage ignition	264.00
Third-stage burnout	299.00
Fourth-stage roll-up	319.60
Fourth-stage ignition	325.00
Fourth-stage burnout	359.00
Command signal to programer	362.24
Fourth-stage separation.	372.56
Begin liquid injection	389.24
Begin VHF blackout .	390.10
Probe retraction.	401.30
End liquid injection	413.46
End VHF blackout	419.80
Impact . . .	520.00

 $\stackrel{0}{2}$

 N
0
\vdots

0 | 4 |
| :---: |
| |
| |
| |

 N
0
0
0
0

0 $\begin{array}{cc}n_{0}^{4} \\ 0 \\ 0 \\ \vdots \\ 0 & 0 \\ 0 & 0\end{array}$ シ | n |
| :---: |
| |
| |
| N |
| 0 | 0

+

0
0
0

FI．IGH：

OEG
m
0
0
0
0
0
0
4
0
1
1
1 0
0
j
j
1 Ω
\mathbf{N}
$\mathbf{4}$
0
1 x
4
5
5
0
0
1 n
n
\vdots
\vdots
0

i | ∞ |
| :--- |
| |
| |
| |
| 5 |
| 0 |
| 0 |
| 1 |

 M
N
0
0
0
0 $\begin{array}{lll}\infty & 0 \\ \infty & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1\end{array}$

 n
n
n
0
0
0
1 $\begin{array}{cc}n & \infty \\ \underset{x}{\infty} & = \\ 0 & 0 \\ 0 & 0 \\ 0 & \\ 0 & 0 \\ 1 & 1\end{array}$

 0
\ddagger
\ddagger
\ddagger
j
0
i
1
 N
N
N
N

i | $n \rightarrow 0$ |
| :--- |
| \sim |
| \sim |
| + |
| |
| 10 |

 x
x
6
\vdots
0
1 $\overrightarrow{0}$
0
0
\dot{t}
0
0
1 0
0
0
0
0 $\begin{array}{ll}0 & \text { on } \\ 0 & 0 \\ 0 & \\ 0 & j \\ 0 & 0 \\ 1 & 0\end{array}$ n
j
j
j
j
j
i
i

\square
n
n
0
0
5
5
7
7

 ∞
t
5
0
0
0 $\begin{array}{cc}0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$ 35
30
0
0

0 N | \approx |
| :--- |
| |
| |
| 0 |
| \sim |
| \sim |

 m
0
0
か
v
 10
0
0
0
 Ω
0
0

 -1
-0
\sim
\sim
0
0
\sim
N
N
N
N

 3
n
0
0
0
0 3
0
0
0
0
0
0 $0 ?$
0.
n
n 0 33
0
0
0
0 3
\vdots
0
0
n 30
0
0
0
n
n 3
5
0
0
0
n 30
0
0
0
0
n へじ08 3
2
3
0
0 3.3
0
0
0
0
0 3
\bullet
-0
0

0 | $3 ?$ |
| :--- |
| \vdots |
| $\stackrel{0}{0}$ | 3

\rightarrow
n
n 3
n
\vdots
0
n
n $3 \geq$ 3
-2
-2

0 | 3 |
| :--- |
| |
| 0 |
| 0 |
| m | 32

0
0
0
0

n | 3 |
| :--- |
| |
| 0 |
| 0 |
| 0 |
| 0 | 3

0
0
0
0
n 3
5
0
0
0
0
0
0 3
0
0
0
0 2
$\stackrel{2}{3}$
0 30
0
0
0
0
0 3
0
0
0 3
0
0
0
7 3
y
0
0
0 5
5
0
0 3
0
0
0 3
5
0
0 33
0
0
0
0
0 32
30
00
安

FLIGHT ELEVATIUN

 $\underset{x}{x}$
DtG
4.646

N

FLIGHT
ELEVATION

 $\stackrel{\sim}{\sim}$

 U-

 $\left.\begin{array}{l}0 \\ 0 \\ 0 \\ 4 \\ \sim\end{array}\right)$

 \begin{tabular}{c}
\sim

0

\multirow{2}{*}{}

\dot{N}

$\underset{\sim}{n}$

0

\circ

\sim

\sim

\vdots

\vdots

\hline
\end{tabular}

\pm	m
	0
0	0
	0
0	0

0
\vdots
0
0 -10
\sim
\sim
0
0
0
 ∞
\cdots
0
9
9 $\begin{array}{ll}0 & n \\ N & m \\ N & n \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$
 0
∞
∞
∞
0
0
0 0
0
0
0
0
0
0
0
o
t
0
0

0
\vdots
\vdots
0
0

 ∞
$\underset{\sim}{n}$
$\stackrel{y}{n}$
0
0
 $\vec{\sigma}$
\vdots
\vdots
\vdots
\vdots

 0
0
0
0
0
\vdots
\vdots
0
0
0

N
0
0
\vdots

time

 n
n
n
n
0
 No
nin
in
0 0
0
4
0
0 in
N
N
n $+N$
σ
0
0
0
N
0
0
0 $\begin{array}{cc}0 & 0 \\ N & N \\ N_{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$

 ∞
0
n
n
0
0
0
0

0 | n |
| :---: |
| α |
| |
| |
| 0 |
| 0 |
| 0 |
| 0 | n

0
0
0
0
0
0
0 N
0
N
$\dot{1}-1$
0
0号 σ
α
$\dot{\alpha}$
$\dot{\sim}$
0
0 0
$\underset{0}{i n}$
\vdots

0 | 0 |
| :--- |
| 0 |
| 0 |
| |
| |
| 0 |
| 0 |
| 0 |

$\underset{\sim}{\bullet}$

 $\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 1$

 $\underset{x}{x}$

FLIGHT ELEVATION

20
0
0
$=1$
-1 $0 M$
0
3
3
3 10
02

30 | N |
| :--- |
| m |
| |
| 0 | 0

\pm
\vdots
\vdots
\vdots 3
0
0
0
3
3
 $\begin{array}{cc}0 & -1 \\ 0 & 0 \\ N & 0 \\ 0 & \text { a } \\ \text { a }\end{array}$ 3
0
2
4
0 40
mo
$0 \rightarrow 0$
m
m $\begin{array}{ll}0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1\end{array}$

 $\begin{array}{cc}+ & n \\ 0 & n \\ 4 & n \\ 0 & 0 \\ 0 & \infty\end{array}$ 4
4
4
4
0
0 $\begin{array}{ll}n & \infty \\ m & n \\ 0 & \vdots \\ \infty & \infty\end{array}$ $\begin{array}{ll}0 & \pm \\ & \pm \\ 0 & \vdots \\ 0 & 0\end{array}$ $\begin{array}{ll}5 & n \\ t & \Omega \\ t & 0 \\ 0 & \Omega\end{array}$

 ذ

 -10
0
\vdots
0
0
0

 n
in
$i n$
$i n$
0
0
i $-\infty$
0
0
0
0
0
0
0
0
1
1 1

 Nホ
テ
ज
N N
0
0

FLIGHT
LEVATIUN

FZIMUTH

 $\underset{x}{x}$

\dot{B}
$\stackrel{y}{2}$
$\stackrel{5}{3}$
$\frac{1}{z}$

0

\sim
\sim
\sim
\sim

 \begin{tabular}{l}
0

\multirow{2}{\circ}{}

\multirow{2}{*}{}

\circ

\multirow{2}{*}{}

\hdashline

N

0

\multirow{2}{*}{}

\hline
\end{tabular} MM

000
0

5
0
0
0
0
0

0
0
-1
-1
 오N우N $\stackrel{\sim}{\circ}$

 に \div

DEG

11

[^0]$\stackrel{\text { 装 }}{2}$
F
NFWTUNS /M**2

$\stackrel{\leftarrow}{4}$

$\underset{x}{2}$

告
F

 PRESSURE

 F U
TABLE III.- ENTRY-ENVIRONMENT PARAMETERS - Continued

$\stackrel{L}{2}$

个人
1
1
1
u
0
0
0
0

 $\underset{\star}{5}$ U$\underset{x}{x}$
\square
 -00 0
1
1
4
0
0
0
0
0
∞
∞
∞ 0
1
1
0
0
0
0
0
∞
∞ 0
1
1
ω
∞
i
i
∞
∞
∞
∞
∞ 00
10
1
0
0
0
0
0
0
0
0 00
10
1
4
4
m
in
0
0
0

$$
\begin{array}{ll}
1 & 1 \\
4 & 4 \\
\infty & 0 \\
0 & 1 \\
0 & 6 \\
0
\end{array}
$$

\qquad 0
1
4
4
4
m
m
m
0
0
0
\cdots

dynamic pressurf	
NEWTONS/M**2	LBS
19460.35	406.44
19915.69	415.95
20374.86	425.54
20845.52	435.37
21324.32	445.37
21816.52	455.65
22349.43	466.73
22892.86	478.13
23457.37	489.92
24021.87	501.71
24601.70	513.92
25204.99	526.42
25815.94	539.18
26445.56	552.33
27086.67	565.72
27744.07	579.45
28416.78	593.50
29108.17	607.94
29822.06	622.95
30537.39	637.79
31273.78	653.17
32037.47	669.12
32814.08	685.34
33609.84	701.96
34423.33	718.95
35258.35	736.39
36108.70	754.15
36981.55	772.38
37884.57	791.24
38789.50	810.14
39715.50	829.48
40699.44	850.03
41763.33	872.25
42855.47	895.06
43980.65	918.56
45131.69	942.60
46313.85	967.29
47525.69	992.60
48783.97	1018.88
50050.88	1045.34
51358.48	1072.55
52720.19	1101.09
54101.05	1129.93
55525.48	1159.68
56985.82	1190.18
58480.63	1221.40
60020.45	1253.56
61599.54	1286.54
63233.68	1320.67
64885.54	1355.17
66575.22	1390.46

$$
\begin{array}{cc}
\therefore \\
\stackrel{y}{3} \\
i n
\end{array}
$$

VFLOCITY

 N
N
0
0
0
 \sim
0
\sim
0
0
0
0
0
 0 in
0
0
0
0
0
0

 ○ N
0
5
0
0
0
0
0 ت
N
N
in
in $\infty 0$
in
in
in
n
 $m g$
m
\sim
N
n
n
n
 ∞
0
0
0
0
0
0
0
0

 0
on
in
士
士
a

[^1]
DEN

$\stackrel{\rightharpoonup}{2}$
 $\underset{r}{x}$

w \sim \sim \sim \sim \sim \sim α a	 $\stackrel{\infty}{\square}$
$\xrightarrow{2}$	 $\underset{z}{2}$

\section*{| 0 |
| :---: |
| N |
| 0 |
| 0 |
| 0 |
| \vdots |
| -1 |}

にOn

-

$\underset{\sim}{2}$
$\stackrel{2}{2}$

$\stackrel{\rightharpoonup}{y}$
$\stackrel{y}{4}$
$\stackrel{u}{>}$

 ALT:TUN:

[^2]

DYNAMIC PRESSURE

 \sum_{x}
\square
華


```
Uのルート
```



``` ト
```


 0
0
0
0
0 46665
46564 $\begin{array}{cc}m \\ c \\ 0 \\ 0 & \\ 0\end{array}$ $n m$
0
0
n
0
0
0 m
0
0
0
0 46063
45964 n
0
0
n
n
 0
0
n
n
n

 にへ | \circ |
| :--- |
| 0 |
| 0 |

告
 ぶ 5
0
0
0
0 8
0
0
9
9 し $\stackrel{+}{0}$
 $\sim_{\rightarrow}^{\infty}$
 －
 $\underset{\sim}{c}$定 ∞
0
0
0
n
0
志志 $\underset{\sim}{\sim} \stackrel{ \pm}{\sim}$

[^3]TABLE IV.- SPACECRAFT PERFORMANCE INSTRUMENTS

Instrument	Measurement	Response, Hz	IRIG channel number	Range	Error
Sun sensor	Roll frequency	20.0	5	0 to $26 \mathrm{rad} / \mathrm{sec}$	$\pm 0.26 \mathrm{rad} / \mathrm{sec}$
		8.4	2		
Gyro	Roll velocity, p	26	6	3 to $-3 \mathrm{rad} / \mathrm{sec}$	$\pm 0.06 \mathrm{rad} / \mathrm{sec}$
Gyro	Pitch velocity, q	11	3	3 to $-3 \mathrm{rad} / \mathrm{sec}$	$\pm 0.06 \mathrm{rad} / \mathrm{sec}$
Accelerometer	Axial acceleration, ${ }^{a} X$ Axial acceleration, ${ }^{a} X$	59	9	1 to -2	± 0.03
Accelerometer		160	12	25 to -60	± 0.85
Accelerometer	Side acceleration, ${ }^{\text {a }}{ }_{Y}$	45	8	$\left\{\begin{array}{l}(1) 1 \text { to }-1 \\ (2) \pm 1 \text { to } \pm 5 \\ (3) \pm 5 \text { to } \pm 30\end{array}\right.$	± 0.06
					± 0.24
					± 1.50
Accelerometer	Normal acceleration, a_{N}	35	7	$\left\{\begin{array}{l}(1) 1 \text { to }-1 \\ (2) \pm 1 \text { to } \pm 5 \\ (3) \pm 5 \text { to } \pm 30\end{array}\right.$	± 0.06
					± 0.24
					± 1.50

Figure 1.- Boost vehicle and spacecraft for RAM C-III flight.

${ }^{38}$ Second ignition
O WALLOPS, FPS-16 RADAR
BERMUDA, FPS-16 RADAR
\diamond BERMUDA, FPQ-6 RADAR
高

Longitude, deg
(b) Ground track.
Figure 2.- Continued.

RADAR AZIMUTH

Figure 3.- Spacecraft position relative to AN/FPQ-6 radar at Bermuda.

(a) Altitude vs time.

Figure 4.- Entry trajectory parameters.

(c) Velocity.

Figure 4.- Continued.

FLIGHT AZIMUTH

(d) Flight azimuth and elevation angle.

Figure 4.- Continued.

LONGITUDE, deg
(e) Ground track.
Figure 4.- Concluded.

Figure 5.- Dynamic pressure and Mach number.

Figure 6.- Variation of computed atmospheric density from standard. (ρ_{o} from 1962 Standard Atmosphere; ρ_{m} based on temperature measured the day of launch.)

(a) Sketch of RAM C-III spacecraft. (Dimensions in cm and parenthetically in inches.)

W		I_{X}		I_{Y}		I_{Z}	
kg	lb	kg-m ${ }^{2}$	slug-ft2	kg-m2	slug-ft 2	kg-m ${ }^{2}$	slug-ft ${ }^{2}$
135	298	4.7	3.5	21.2	15.6	21.3	15.7

(b) Preflight-measured weight and moments of inertia at entry.

Figure 7.- Spacecraft geometry, weight, and moments of inertia.

Moment of inertia

Figure 7.- Concluded.

Axis system

p, rad/sec

r, rad/sec

p, rad/sec

p, rad/sec

p, rad/sec

q, rad/sec

(e) 400 to 410 seconds.
Figure 10.- Continued.
p, rad/sec

r, rad/sec

(f) 410 to 420 seconds.
Figure 10.- Continued.
p, rad/sec

r, rad/sec

(g) 420 to 430 seconds.
Figure 10.- Continued.
p, rad/sec

r, rad/sec

Figure 11.- Measured side and normal acceleration.

Figure 11.- Continued.

Figure 11.- Continued.

Figure 11.- Concluded.

$\boldsymbol{\alpha}$, deg

η, deg

(a) 400 to 410 seconds.
Figure 13.- Wind angles determined from acceleration data.
$\boldsymbol{\alpha}$,deg

$\boldsymbol{\alpha}, \mathrm{deg}$

α, deg

β, deg

$\sqrt{7, \text { deg }}$
(d) 430 to 440 seconds.
Figure 13.- Concluded.
p, rad/sec

Time, sec
(a) 400 to 410 seconds.
Figure 14.- Roll rate, total wind angle, and phase angle.
p. rad/sec

p, rad/sec

n, deg

(c) 420 to 430 seconds.
Figure 14.- Continued.
p, rad/sec

Roll component of lateral
rates removed
(a) 380 to 385 seconds. $t_{0}=380$ seconds; $\psi_{0}=\theta_{0}=\phi_{0}=0$.
Figure 15.- Comparisons of inertial rotations determined with different rotation rates.

ψ, deg
(b) 385 to 390 seconds.
$\psi_{0}=3.0^{\circ} ; \quad \theta_{0}=-1.3^{\circ} ; \quad \phi=0$.
$\theta, \operatorname{deg}$
$t_{0}=405$ seconds;

Figure 18.- Inertial rotations.
Θ, deg

80
0
0
0
 ψ, deg
(c) 390 to 395 seconds.
$\Theta, \operatorname{deg}$

ψ, deg
(f) 405 to 410 seconds.

$$
\begin{aligned}
\eta_{\max } & =\tau_{\max }+1^{0}+\dot{\Omega} \Delta \mathrm{t} \\
\dot{\Omega} & =0.074 \frac{\mathrm{deg}}{\mathrm{sec}}
\end{aligned}
$$

Figure 22.- Comparison between simulated and flight spacecraft motions.

[^0]:
 为

[^1]: $\stackrel{4}{2}$

[^2]:
 E

[^3]: 山in
 $\stackrel{+}{9}$品
 $\sim_{m}^{\infty} \sim_{n}^{\infty} \infty_{\infty}^{\circ}$

 $\stackrel{\circ}{9}$ $\stackrel{+}{\infty}$ ${ }^{\circ}$ $\stackrel{+}{\circ}$

