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ABSTRACT

An analytical and experimental study was done on the per-
formance of cooling pads attached to a human thigh. Each cooling
pad consisted of a long, water cooled tube formed intc a serpen-
tine shape with uniform spacing between the parallel sections.

The analytical work developed a cylindrical model for the hu-
man thigh. The transient times predicted by this model ranged
from 25 to 80 minutes, which is reasonabl& close to the experiment-
al results. Calculated and measured steady, state temperature pro-
file; were in fair agreement.

Three cooling pads with different cooling tube sizes and spac-
ings were constructed and tested. These pads were equipped with
thermocouples to measure the temperature profiles between adjacent
tubes on the skin surface of a thigh of a male subject while he was
performing various activity schedules. The pad with the highest‘ ‘
tube density removed the greatest amounts of heat with the least
temperature variations. on the skin. Also, the transient times for
this pad were the shortest.

The transient times associated with a change from a high meta-
bolic rate of 1800 Btu/hr (528 w) to a low level of 300 Btu/hr (88 w),
were found to be about 120 minutes. A change from 900 Btu/hr (264 w)
to 300 Btu/hr (88 w) resulted in 90 to 100 minute transients. How-
ever, the transient times for a change in metabolic rate in the oppo-
site direction from 300 Btu/hr (88 w) to 1800 Btu/hr (528 w) were
40 to 60 minutes. When an intermediate step of 900 Btu/hr (264 w) was
introduced between the last two metabolic ratés, the transient times
associated with the individual steps varied from 40 to 80 minutes.
However, the overall transient times for each double step were approxi-

mately the same in either direction.
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NOMENCLATUREt

a half distance between cooling tubes, [L]

A total skin surface area, [sz

b depth of tissue layer, [L]

c, specific heat of blood, [L2 67217 ] or [QM T ']

c, specific heat of tissue, [LZB_ZT—IJ or [QM—IT_IJ

f heat flux, [M6_3] or [QL-ZO_I]

F,F_ uniform heat flux, (M™% 7 or [QLTZG_IJ

h height, [L]

Ii modified Bessel function of the first kind of order i

% Bessel function of the first kind of order i

k thermal conductivity, [MLG—sT_IJ or [QL_IG_IT-IJ

% modified Bessel function of the second kind of order i

q, rate of heat transported by blood, defined by Eq. (2.1),
677 or [ 6]

Q defined by Eq. (2.13), [L72r]

%n,Q internal heat generation rate per unit volume, ML o737 or [QL_36_¥]_

Q. total metabolic rate, (267 or [Q6™ 1

T radial coordinate, [L]

R radius of inner core in cylindrical model, [L]

R, radius of interface between skeletal muscle and skin layer
in cylindrical model, [L]

R, radius of the skin surface in cylindrical model, [L]

tUnits in brackets are: M, mass; L, length; O, time; T, temperature;
Q, heat [MLZ672].



time, [6]

characteristic time, [6]

tissue temperature, [T]

arterial blood temperature; [T]

constant temperature at inner core, [T]

volume, [LSJ

blood perfusion rate per unit volume, [ML-SG_I]
defined by Eq. (2.12), [L™]

weight, [MLB—Z]

Bessel function of ‘the second kind of order i

coordinate, parallel to the axis of the cylinder, (L]

thermal diffusivity, [L?O—l]

-1
defined by Eq. (2.17), [L T]
ratio..of width of cooling tube to cooling tube spacing
defined by Eq. (2.22), (L1

defined by Eq. (2.15), (L™

ratio of heat fluxes of the uncontacted to the contacted

skin

defined by Eq. (2.11), [T]

defined by Eq. (2.16), [L ']

dummy variable of integration, [L]
defined by Eq. (2.21), [L7']
specific demsity of tissue, [ML™]

defined by Eq. (2.20)

angular coordinate

defined by Eq. (2.19)

combination of modified Bessel functions, defined by Eq. (2.10)
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Subscripts

1 pertaining to skin layer or initial state

2 pertaining to skeletal muscle or final state
b bloed

i,j,k,L,n integer

m metabolic
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1. INTRODUCTION

1.1 BACKGROUND

There are many instances in which it may be desirable to regu-
late the micro-climate of an individual who is exposed to a thermally
hostile environment. One may consider, as examples, the necessity to
protect the fire fighter from high temperatures or the need to.pro-
tect the deep sea diver from low temperatures. Both require some
sort of thermal assistance to be able to perform efficiently in their
respective environments. In the case of space travel, the astronaut
must be protected from a hostile environment for reasons other than
strictly thermal ones. Here too, the thermal micro-climate of the
astronaut must be controlled in response primarily to his metabolic
heat generation rate, a variable which changes with his activity
level,

Several attempts have been made at solving the problem of
regulating the micro-climate of an individual. One method that has
been developed to regulate the thermal micro-climate of the human
body is to provide for removal or additioﬁ of heat by means of liquid
filled cooling or heating tubes in contact with the skin surface.
So-called thermal suits have been designed [1]* which consist of in-
dividual cooling pads. These cooling pads contact the skin surface
of the various major parts of the body, e.g., legs, arms and trunk.
Each individual cooling pad consists of tubes held in some geometric
pattern.

In general, it is not practical to provide an individual with

such a cooling or heating suit if, in doing so, his ability to

“*Numbers in brackets refer to entries in REFERENCES.



function efficiently is seriously hindered. Thefefore, for most
applications, the weight and size of the suit become critical fac-
tors. One of the design objectives then would be to minimize the
weight and bulk of the suit while maintaining an adequate cooling
capacity. When considering the parameters of weight and size as
variables governing the efficiency of a man weafing such a suit,
weight seems to be most significant. With respect to weight,
‘there will be some optimum combination of cooling tube size and
spacing that will provide an adequate cooling or heating capacity.

To date little work has been done on the problem of defining
an optimum relationship between cooling capacity, tube size and
spacing. A potential contribution to the solution of this prob-
lem would be to develop an analytical model of human tissue in
contact with a network of cooling tubes. Such a model should fa-
cilitate the prediction of heat fluxes and temperature distri-
butions in the tissue. The validity of such a model could be
verified by experimental methods.

The purpose of this work was to obtain a solution for such
a model [1] and then to compare the calculated results with ex-

perimental data.

1.2 REVIEW OF RELATED STUDIES

For the past few decades studies have been conducted dealing
with the problem of analytical modeling of the human thermal sys-
tem and with the measurement of thermophysical properties of human
tissue. The results of some comprehensive work donelin the area of
analytical modeling is presented in a report by Shitzer, Chato and

Hertig [1]. In their work, the authors develop the so-called



biothermal model for various geometries.

Some experimental work has been done in an attempt to provide
a thermally controllable micro-climate for an individual. The con-
cept of a water cooled suit was first suggested in 1958 by Billing-
ham [2] and a prototype suit was constructed at the Royal Aircraft
Establishment in 1964 by Burton and Collier [3]. Their primary in-
terest was protection of crewmembers in hot environments such és
sunlit aircraft cockpits, but it was realized that practical personal
cooling would have many possible applications. In general, the suit
was thought of as a form-fitting heat exchanger in which water ab-
sorbed heat from the pilot's body as it passed through tubes over
the skin. The heat was then dissipated by an external heat sink.

By analogy with the circulation, the process is generally called con-
vective cooling [3] although other investigators refer to it as
"conductive cooling" [4,5].

A prototype water cooled garment (WCG) was built [3] of 40 PVC
tubes sewn to a suit of cotton underwear. Water was piped to the
ankles and wrists where manifolds distributed it to smaller tubes
which ran back over the limbs to the outlet manifolds at the mid-
thorax. The head and neck were not cooled. Preliminary tests in-
dicated excellent thermal coupling between the skin and water stream
[3]. The suit was comfortable even when high heat loads necessi-
tated low water temperatures and despite the existence of wide dif-
ferences in skin temperatures when comparing sites directly be-
neath the cooling tubes with sites lying between the tubes [6,7].

Following a demonstration of the British WCG at Houston [3],

development of similar garments in the United States was undertaken



for the National Aeronautics and Space Administration (NASA), [8,9].
A series of suits was designed with the distribution of tubing pro-
portional to body mass and with water flow from the extremities
toward the torso. Experiments demonstrated the practicality of the
WCG as a sole heat sink for men working at metabolic rates up to
2000 Btu/hr, which was the expected activity level rate for lupar

surface activity. Cooling virtually eliminated sweating, and for

any given work rate subjective comfort included a surprisingly
wide envelope of water flow and temperature combinations. Other
results showed that heat output rose sharply over working muscle
groups, e.g., leg versus arm work [8], and that the interposition
of any material between skin and tubing caused significant re-
duction in cooling efficiency [91].

Direct comparison of air and water cooling in pressure suits
showed the latter to be far more effective in reducing signs of
heat stress such as sweat rate and rectal temperature rise. Sub-
jective comfort was also much improved by the WCG., These findings
applied whether the heat stress was due to a hot environment [10,
11] or high work rates [12,13].

The Apcllo water cooled garment is a system of clear plastic
tubes sewn inside a suit of stretch underwear with an added nylon
slip layer between tubing and skin [4,5,9]. Cooling is provided
for the torso and legs but excludes the head and neck. Water flows
through 40 tubes in a loop pattern which begins and ends in mani—
folds located at mid-torso. Flow rate is fixed at 237.6 1lb/hr

(1.8 liters/min) with manual operation of a diverter valve to
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produce water inlet temperatures of 4u4.1°F (6.7°C), 59.9°F (15.5°C),
or 71.6°F (22°C). The external heat sink is located in the back
pack where water from a separate supply is sublimated to space. It is
designed to handle continuous loads of 1600 Btu/hr (463 w) with peaks
to 2000 Btu/hr (586 w). Plans for lunar extra vehicular-activity (EVA)

have been tailored to this limit. Lunar surface activities on Apollo 11

and 12 averaged 800 to 1200 Btu/hr (234 to 352 w) [4]. In the case
of Apollo 14, actual levels of 2500 Btu/hr (720 w) were attained,
exceeding the design limit. The resulting heat storage caused noticea-

ble signs of heat strain and much discomfort [14].

At least one group of researchers [7] has considered the problem
of an optimum relationship between cooling tube size and spacing. In
this study experiments were performed in which the tube spacing was con-
sidered as the only variable. The experimental work indicated that the
temperature differences on the skin were of the order of 8°F (4.45°C)

"~ with 1-in. spacing of 1/8-in. 0.D. cooling tubes and 3.5°F (1.94°C)
with 0.5-in. spacing of the same tubes. The temperature profile oﬁ
the skin was found to develop approximately three times as fast with the

closer spacing.

1.3 SPECIFIC STATEMENT OF THE PROBLEM
Consideration of the biothermal model of human tissue in con-
tact with a network of parallel cooling tubes [1] led to the follow-
ing three basic objectives of this study:
1. To obtain the solution of the biothermal model for the
steady state and transient cases in cylindrical coordinates.
2. To construct three different cooling pads and to perform

experiments with them. It is hoped that the results may be



used to gain sﬁme insight into the validity of the biothermal
model and its solution, and
3. To compare experimental data for the three cooling pads,

each pad having a different combination of cooling tube size

and spacing.
The solution of the biothermal model should predict the temperature
profile on the skin surface between adjacent cooling tubes. The ob-
jective of the experimental scheme, then, was to construct a cooling
pad and to measure the temperature distribution between the tubes
corresponding to various activity levels. Three different cooling
pad configurations were tested. The corresponding measured results
were then compared to each other and related to the analytical pre-

dictions.

1.4 SCOPE OF THE STUDY AND LIMITATIONS

Experimental measurement of the temperature distribution be- .
tween cooling tubes were limited to data taken on the skin surface
of the human thigh. Measurements were taken for three different cool-
ing pads at four metabolic activity levels. In general, the four
activity categories and associated metabolic rates were:

1. Standing, 300 Btu/hr (88 w);

2. Mild work, 600 Btu/hr (175 W),

3. Moderate work, 900 Btu/hr (264 w); and

4, Heavy work, 1800 Btu/hr (528 w).
The metabolic levels associated with mild, moderate and heavy work
were attained by the subject as he rode on a variable load bicycle

ergometer. During the individual experiments the transient temperature



distribution was also measured as the subject's metabolic rate
changed from one level to another.

Since the experimental measurements of the température dis~
tribution was limited to the thigh only, the solution to the
biothermal model was obtained in c¢cylindrical coordinates. En-
gineering judgment, as applied to thermal systems, suggested the
modeling of the leg as a cylinder of finite length. There were,
however, a number of assumptions and limitations to be considered
when modeling the human body. The thermophysical properties of
human tissue and their detailed relationship to the formulation

of the analytical model will be discussed later.



2., THEORETICAL ANALYSIS

2.1 THE BIOTHERMAL MODEL WITH DEVELOPMENT OF THE GOVERNIﬁG PARTIAL

DIFFERENTIAL EQUATION

The problem of developing an analytical expression to describe
the thermal behavior of living human tissue is indeed very complex.
At this time, even the most basic of the mechanisms that govern
heat transfer in living tissue remain unexplained, i.e., the exact
nature of blood perfusion and metabolic heat generation rates have
yet to be described and measured in detail. The problem is fur-
ther complicated by the lack of accurate data on the thermophysical
properties of living tissue. Thus, several assumptions had to be
made before an analytical model could be developed.

1. The thermophysical properties of the tissue were assumed
to be constant in time and space and the tissue to be homo-
geneous and isotropic.

2. The temperature of the 5lood leaving the tissue was as-
sumed to equal the temperature of the tissue.

3. The temperature of the blood flowing into the tissue was
assumed constant and equal to the temperature of the
artery.

4, Blood perfusion rates and metabolic heat generation rates
were assumed uniform and constant throughout the entire
layer of tissue [15].

The values associated with these rates were considered as average
values.

The storage, conduction and production of heat within the

tissue could be represented by well known expressions in heat

transfer. An additional term was needed to represent the heat



transported by the blood stream. It was assumed that the amount

of heat gained by the tissue due to blood perfusion was [1]
q, = wbcb(Ta -T) (2.1)

Equation (2.1), when substituted into the heat equation, yields

the general form which describes the biothermal model:

oT _
mpsg-ka+v%%(g—T)+qm (2.2)

Equation (2.2) is a mathematical statement of the first law of
thermodynamics describing the "in vivo" relationship between the
various modes of heat transfer, storage, and production within
biological tissue. It was referred to as the "bio-heat'" equation
[1]. Similar forms have been obtained by Pennes [16], Hertzman
[17], Wissler [18], Perl [19], Chato [20], Trezek [21] and Keller

and Seiler [22].

2.2 GEOMETRY, BOUNDARY AND INITIAL CONDITIONS
2.2.1 Geometry

The experimental phase of this study was concerned
with the removal of metabolic heat produced in the thigh muscles
as the human subject engaged in various levels of activity. The
experimental cooling pads have been designed such that the cool-
ing tubes were in direct contact with the skin surface. The cool-
ing pad was placed around the thigh with the axis of the tubes
perpendicular to the axis of the leg, as illustrated in Fig. 2.1.
Consequently, the geometry of the thigh was approximated by a circu-
lar cylinder,

The living tissue that composes the thigh can be divided into
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Skeletal
Muscle

Figure 2.1 Representative section of the cylindrical model
with the cooling tubes on the skin running per-
pendicular to the axis of the cylinder.
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three layers:

1. A skin layer composed of epidermis, dermis, and subcut-
aneous fat. The total thickness of these layers varies
from 1 to 6 mm [23]. In the model all excess metabolic
heat was assumed to be removed at the contact areas be-
tween ' the epidermis and cooling tubes,

2. A layer of skeletal muscle, and

3. An inner core layer consisting of bone and all the in-
ternal members. At steady state this layer was assumed
to be at a constant temperature.

For steady state conditions the first two layers were treated

separately [1], but for the transient cases it was assumed that
theée layers could be approximated by a single, combined layer with

averaged properties,

2.2.2 Boundary and Initial Conditions

The temperature of the interface between the skeletal
muscle and the inner core was assumed constant and uniform and
equal to that of the inner core. At the skin surface, a heat flux
corresponding to the amount of heat removed by the cooling tubes
was assumed. No heat was considered to be removed from the remain-
ing areas of the skin which were not in contact with the cooling
tubes. A representation of the leg as a cylinder covered with
equally spaced cooling tubes running perpendicular to the axis of
the cylinder, Fig. 2.1, rendered the problem geometrically symmetri-
cal. Consequently, the lines of symmetry running through the tubes
and one-half the distance between the two adjacent tubes could be
considered as adiabatic planes.

Gradients along the cooling tubes were assumed to be negligibly
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small when: compared to those occurring in a direction perpendicular

to the tubes. In mathematical terms

3 .y (2.3)

¢

and the problem becomes . two-dimensional in r and z.

The steady state temperature distribution in the tissue at a
given metaboiic rate was assumed’to be the initial condition. for. .
the transient state. The geometry and associated boundary condi-.
tions for this problem are shown in Fig. 2.2.- In the analysis pre-
sented below, the skin and skeletal muscle were considered.to.con-

stitute a combined region. The problem as formulated then becomes

2
198 19 20\ o%6 2
(I' —a;->+-——w26 + Q2 (2.’4)

2
3z .
such that

R f_r_i R

. ,» 05z<aj; t2>0

with the boundary and initial conditionms:

at
r=R , =0 (2.5)
at
f (z)
00 _ "2
'E;— X 9 Oiz<8a
r=R, s (2.6)
20 0 Ba < z <
N S . z <a
at
z=0, 8.9 (2.7)
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oT _ _ f(2) 9T 5
or / k or
s 77777 '/ -» Z
Combined
Tissue
oT | oT _
4z =0 9z =0
Ro
* T:T*
Rl - a >
r Inner Core
- N

Figure 2.2 Geometry and boundary conditions for the cylindrical
model with the cooling tubes on the skin running per-
pendicular to the axis of the cylinder. Skin layer
and skeletal muscle are considered as a combined region.
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at
z=a, 3;% =0 (2.8)
at .
2 1
Ql IL'c)l(wlr) Bf; 1:¢bo(wir)
t<0, 0= - 1 - R - kJ 3
Yy l‘[)01(""1}?’1) . 1p()’l(wlRl)
oo 1
a ¢y (g r)
_ Z 22700 T cos (A 2) (2.9)
n=1l C1¢’01(ClR1)
where

j - k+&
Yo (g 2 L(gr) K(gR) - (D77 I(gR) K (gr)
(2.10);
L and K are the modified Bessel functions of the first and second

kind, respectively, of order i. The other parameters appearing in

Eq. (2.9) are defined by

6 = T(r,z) - T, (2.11)
W, .G
w o= b’k‘ = (2.12)
Q +tw e (T -T)
Q =g' L/ERL AT - (2.13)
i - k
Ba
!
fai 7 E'gf £, (&) g (2.14)
0
CZ =wi2 £ A2 (2.15)
nm

A= == (2.16)
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£ (E)

(VRN

cos (AnE) dg (2.17)

Ba
o . = f
n,i.
0
The special function sz(Cfr)'was defined to simplify the mathe-
matical derivation of Eq. (2.9) [1]. It is a combination of modi-
fied Bessel functions of the first and second kinds which was found.

to recur in the solution many times.

Solution to the above set of equations and boundary and initial
conditions was obtained by employing the technique of separating

the variables to yield

2 1
Q ¥ owr) | BE , ¥ Gur)

T(r,z,t) = T + —z 1- 21' 2 - k;,z. go 2
Yy Yoy (W Ry ) 2 Yy, Gi,R)

oo 1
a Y (g r)
- Zg: n,z.oo 2 cos (Anz)
CZIPOI(CZRI)

n=1
Q, Q £ £
2 1 a, 2. a, 1
w 2| 5 - |t PG (MR |- —3
or €, € € €]
k 2
n=1 On(unRz) - 4

. x£(unr) exp [—aezt]

(o] foe]
Ofn,z Oan, 1. uncn(unR2)
+o2m 2 )\2 T T2 )\2 z(
_€2 + m €1»+ m Gti 1‘lnRZ) - b

m=1 n=1

. xn(uhr) cos (Amz) exp {—a[€§++ X;]t}

" (2.18)
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where
X, (W) = I (W r)Y (WR D - J (WRIY () (2.19)

J° and Yo are the Bessel functions of the first and second kind,

respectively, of order zero.
o (u Ry) = ™ RIX (W R)) (2.20)

un% are the roots of

Jo(Uan)Yl(UnRQ) - Jl(Uan)Yo(Uan) =0 (2.21)
and

e =12+ (2.22)

1 n 1

The first fifteen eigenvalues, W, were computed using Newton-Raphson's
method: Results are present in TABLE 2.1. As the ratio RZ/R1 ap-
proaches unity (rectangular model), or as n increases, the eigenvalues
approach those of the rectangular model, u -~ [(2n - 1)7W]/2b, as

is to be expected.

Numerical values of transient temperature distributions.in the
tissue and on the skin surface were obtained with the aid of a digi-
tal computer.

Figures 2.3 and 2.4 show results obtained for a one-dimensional
model (uniform cooling of the skin). Step changes iﬁ activity level
were assumed from low (290 Btu/hr, 85 w) to high (2600 Btu/hr, 760

w) and reversed, respectively. The substanfial changes in the



17

0809T €29 | 80SGHT €29| ST6BET 629 | +ZeZET €29 | LSBSOT 629| OELELO°EZ9| €8Z0HO°ETY ST
0ZHET 08S | 08HL9T 085 | Z869GT 086 | LTZLHT'08S| 8STHTT 08S| 8HZHOT 08G| 66THG0"08S HT
65L0Z°LES | €5HE8T LES| ©9908T LS | SHITLT LES | 6S6LST LES| hE0TZT'LES| $68930°LES eT
860SC “Hi6h | S0ZOTZ h6h| 66H00Z h6h | STTEET W | LESSLT h6h| 86HGET heh| 69€8LO HEN A
8EHGZ"TSH | 260622 *TGh| 0000SZ *TGH| SETETZ TSh| 0SHOBT TSh| L9ETST TGh| 8TOE60°TGH T
LLLLZ 80h | ZTSEHZ ‘80| TTZThZ 80+H | 8LTZEZ 80W| 9THTOZ 80| 88SCST 80H| $8ZT60°80H 0T
9TTOS *S9E | 66L892°G9| 6848SZ°G96 | SBENHZ S9E | TSOLZZ S9E| HBSELT G9E| HBEE60°G9E 6
GShZEZTE | 86GL8Z°7CE| 0ZE8LT ZZE| 8TNEIZ TTE | nETONZ TZE| ZEBBLTZTE| £5GT60°ZZE 8
S6LNE'6LZ | BB9NOS 6LZ| LSNEEZ 6LT| €SOBLZ'6LZ| 9SLEHT 6LZ| ZE66LT 6LZ| SEHSLO'6LT L
HETLE '9EZ | 6086TE"982| TOGHOE 96T | HG0062 962 | 0L92SZ°967| SEBELT9ez| 086050°9¢Z| 9
CLHEE €6T | 90NTEE €6T| 6H89TE €6T | ZTZS6Z E6T | hZehhZ “€6T| 0628ST €6T| LhIE00 €6T g
€T8TH 0ST | 88296€°0ST| 68G9TE 0GT | H00S8Z*0ST| OhLIEZ 0ST| HELOT OST| 08LHTE'6HT h
ZoThh LOT | 665926 L0T| SZOTOE LOT| L9985Z°L0T| 06898T°LOT| TS6S00°LOT| ZZTLEL' 90T e
TEhOh hO | 696ZLZ O | 20T6ZZ°HO | LLETIT'HI | TBLLEO'HO | 9ZG9EL'E9 | 989E6Z €9 z
0£88H°TZ | HTS868°0Z | TZZHOL"0Z | HSE0SG 02| SZS9ST*0Z 1| Z86HBT 6T | 0S8LZ8 LT T
u
cot- 05°0 0H°0 0e*0 0Z°0 0T*0 500 (1) W
00°T ST'T 6T°T W T 18" T gL T oh°T Y/ %

OILOLJWASY JHL SIATD "NWITTOO "LSORLHOTY "JHL

T.,¢C
(7300W IVINONVIOEI) T <« I/ ¥ ANV o <« am Sy ‘[dz/u(T - ug)] ‘sSanIva

dII00 THL JO OILVY JHL J0 NOIILONAI V SV (TZ°Z) 03 J0 SI00Y ST IS¥Id

T°¢ TTdVL

* Ygy7 & ¢ 7300W TVOTYANTTAD JHL 40 IIAVY JINNI OL




-

1.0

0.9

0.8

0.7

0.6

b 0.5
04
0.3
0.2
0.1

0.0

18

™ | |

92 93 94 95 96 97 98 99 100 101

Figure 2.3

T, °F

Temperature distributions in the tissue for the one-
dimensional, cylindrical model. Step change is from
low (290 Btu/hr, 85 w) to high (2600 Btu/hr, 760 w)
activity level. Constant temperature of 99,7°F (37.7°C)
at the inner core, R = 0.15 ft (4.6 cm), A and b are
constant.
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Temperature distributions in the tissue for the one-
dimensional, cylindrical model. Step change is from
high (2600 Btu/hr, 760 w) to low (290 Btu/hr, 85 w)
activity level. Constant temperature of 99.7°F (37.7°C)
at the inner core, R = 0.15 ft (4.6 cm), A and b are
constant.
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temperature of the tissue were found to occur during the first 5 min-
utes from the onset of the change from low to high activity level.
When the change is reversed, substantial temperature variations.occur
during the first 25 minutes, approximately. The final steady state
temperature profile is attained after 25 (low to high) and 80 (high. .
to low) minutes. The ratio of these time constants was supported
by the experimental results.

In Fig. 2.5 temperature variations on the skin of the .cylindri-
cal model are shown. Time constants associated with this two-dimensional.
geometry were found to be identical to those obtained for ‘one-dimensional:

.configurations .[1].. .
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Figure 2.5 Temperature distributions on the skin surface for the

two-dimensional, cylindrical model. Step change is from

low (290 Btu/hr, 85 w) to high (2600 Btu/hr, 760 w)

activity level. B = 0.1, constant temperature of 399.7°F,

(37.7°C) at the inner core, R1 = 0.15 ft (4.6 cm), A and
b are constant.
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3. EXPERIMENTS

3.1 OBJECTIVES

The basic objective of the experimental phase of the study was
to measure the temperature distribution on the skin surface between
adjacent tubes of cooling pads placed around a human thigh. This
temperature distribution was measured during activity levels corre-
sponding to low, mild, moderate and high metabolic rates. Also,
the temperature distribution was monitored during the transient
.periods between those activity levels. A secondary objective was
to evaluate the effect that various cooling tube sizes and spacings
have on the temperature distribution and the overall cooling ef-
ficiency. Three cooling pads with different tube size and spac-
ing were tested on a human subjecf while performing various experi-
mental activity schedules. Figure 3.1 is a schematic diagram of the
experimental setup showing the water supply, cooling pad and tempera-

ture measuring equipment.

3.2 EXPERIMENTAL APPARATUS

3.2.1 The Individual Pads

Three different cooling pads were built and tested.

These pads were specifically designed to fit over the right thigh of
the test subject. All three pads were constructed of a flexible,
elastic sheet of 1/8-in. gum rubber. Tygon tubes were affixed in a
parallel configuration to one side of the pads using Eastman Kodak
910 adhesive. The diameter and spacing of tubes were constant for
each individual pad, but varied from pad to pad. TABLE 3.1 gives

the pertinent data on the individual pads. Figure 3.2 shows a view
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Skin Temperatures and
Water Temperature Inside
the Tubing

12 Point Speedomax W
Recorder

Tygon Coolnng
Tubes

Thermocouples
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Thermally Insulated
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Figure 3.1(a) Schematic diagram of cooling pad and water supply system
with temperature measuring points indicated.

Cooling Tube

Thermocouples
d—c —

Cooling Tube
Gum Rubber Pad

Figure 3.1(b) Cross section A-A showing details of thermocouple

placement.
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of one of the individual cooling pads.

Number 30-gauge copper-constantan thermocouples were used to
measure cooling water temperatures and skin temperatures between
the two adjacent tubes. The thermocouples were equally spaced on’
a 30 degree diagonal between adjacent cooling tubes. The thermo-
couples were also located such that they were pressed against the
skin surface to insure good thermal contact when the pad was
fastened to the thigh. Figure 3.2 illustrates one of the cooling
pads and thermocouples.

A Leeds and Northrup Speedomax W, 12-point potentiometer-
recorder was used for continuous monitoring and recording of the
temperature of the cooling water and the skin temperatures between
adjacent tubes. The water supply temperature and the difference
between the water outlet and inlet temperatures were continuously
recorded by a Brush Mark 280 recorder. Thermopiles consisting of
five copper-constantan thermocouples connected in series and a
Brush pre-amplifier were used to increase the sensitivity of the
reading of the differential water temperature for the pad. The
water supply lines leading to the pad were thermally insulated with

rubber tubing which provided an air-gap type of thermal barrier.

3.2.2 The Water Supply
The source for the water supply was the cold water line
in the léboratory. Before each experiment the cold water was run
continuously until an equilibrium temperature was reached and the in-
let water temperature became constant at 54,.5°F (12.5°C). Figure 3.1 shows

the water supply system along with the instrumentation used to record
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the experimental data.

The flow rate was maintained constant by a pressure regulator
and controlled by a needle valve. The flow rate was measured by a
Fischer and Porter Rotameter. All flow rates were maintained con-

stant at 40.5 1lb/hr (18.4 kg/hr).

3.2,3 The Metabolic Measurements

For metabolic measurements, expired air samples were
taken with a collecting apparatus and stored in metalized Douglas
bags [24]. These bags were placed inside a sealed Plexiglas cham-
ber whose pressure was maintained at -5 mm Hg. [25]. Air was in-
haled and exhaled through a mouth piece while the nostrils were
blocked with a noseclip, Two sets of one-way rubber flap valves
insured separation of the two streams. The expired air was di-
rected through a l-in. I.D. rubber hose into a mixing chamber,
One minute sampling was achieved by opening a one—wa§ stopcock
valve thus exposing a previously evacuated metalized bag to the ex-
haled air., The vacuum in the Plexiglas chamber facilitated the
filling of the Douglas bags as positive exhaled air pressure existed
at the inlet to the bag, and negative chamber pressure surrounded
the bag structure.

Air volumetric flow rates were measured by means of a Parkin-
son-Cowan dry gas meter, Inlet and outlet air temperatures were
measured by a Yellow Springs Instrument, Co., Tele-Thermometer and
two No. 401 interchangeable, multipurpose thermistofs. Figure 3.3
shows the system used to collect air samples.

Once collected in the individual Douglas bags, the air samples

were analyzed for CO2 and O2 content. A Godart-Mijnhardt CO2 thermal-
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conductivity meter, Pulmo Analysor Type 44-A-2 and a Beckman Para-

magnetic O, analyzer, Model C2 were used. The results of this analy-

2
sis were combined with other data to calculate the metabolic heat
generation rate of the subject [26] which is a measure of the energy
expenditure. Various levels of energy expenditure were obtained by

the subject pedalling a Monark bicycle ergometer at a-constant pre-

set speed and load.

3.3 EXPERIMENTAL PROCEDURE AND TEST SCHEDULES

At the beginning of each experiment the ambient temperature,

" pressure and humidity were recorded. The test subject was weighed
and his blood pressure and oral temperature were recorded.‘ During
the experiments the test subject wore a sweat shirt, track shorts
and tennis shoes. The ear canal temperature was continuously moni-
tored and recorded throughout the duration of the experiment. At
the end of thg experiment the subject's weight, blood pressure and
oral temperature were again measured and recorded.

Figure 3.4 shows the work programs for the experiments. In ex-
periments 1, 2, and 3 the temperature distribution on the skin sur-
face was measured using pad No. 2. Temperature distributions were
recorded for these experiments corresponding to activity levels of
sitting, standing and mild work, respectively.

Experiments 4, 5, and 6 were conducted using pads No. 1, 2,
and 3, respectively. In these experiments the steady state tempera-
ture distribution was recorded for a moderate work activity level
of 900 Btu/hr (264 w). In experiments 4, 5, and 6 the work load,

inlet water temperature and flow rate were maintained at an equal
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level and held constant for each experiment.

In experiments 7 and 8, cooling pads No. 2 and 3 were used to
measure the course of change of the skin temperature distribution
resulting frém a change in activity level. The temperature distri-
bution was recorded for a change from a steady state level at 300
Btu/hr (88 w) to an elevated level at 1800 Btu/hr (528 w). The
change in activity levels during experiments 8, 9 and 10 was
achieved by varying the load on the bicyle ergometer, Figure 3.5
shows the test subject pedaling the bicycle ergometer. The test
subject continued work at the 1800 Btu/hr (528 w) level until a
steady state skin temperature was achieved. At this point the
subject stopped working and the resulting transient temperature
profile was monitored as he returned to the 300 Btu/hr (88 w)
level.

\ Experiments 9 and 10 were also run with pads No. 2 and 3.
Here a similar approach was taken: The temperature distribution
was monitored for changes from 300 Btu/hr (88 w) to 900 Btu/hr
(264 w) and from 900 Btu/hr (264 w) to 1800 Btu/hr (528 w). The
skin temperature profile was recorded again as the test subject
decreased activity from 1800 to 900 Btu/hr and finally from 900 to

300 Btu/hr (528, 264, and 88 w, respectively).

3.4 THE TEST SUBJECT
The test subject was a caucasian male student of the University
of Illinois at Urbana-Champaign. The subject was in excellent physi-

cal condition, TABLE 3.2 illustrates his personal characteristics.



o%]
(]

s

Input for Metabolic Rate
Measuring System

Recording
Instruments

Test Subject and
Bicycle Ergometer

w

Figure 3.5 General view of the set-up used for the experiment
with the individual cocling pads. A test subject
is shown pedalling the bicycle ergometer.
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TABLE 3.2 CHARACTERISTICS OF SUBJECT TEK

Subject Age Height Weight Surface Area
cm in, kg. 1b. m? ft?
TEK 19 189 | 74.5 79.7 1175.5 | 2.02 21.7

3.5 RECORDED AND CALCULATED QUANTITIES

3.5.

1 Recorded Quantities

During the course of the experiments the following quanti-

ties were recorded using the corresponding instrumentation:

1.

Temperature distribution on the skin surface between adjacent
tubes was measured with No. 30 copper-constantan thermo-
couples with ice water reference junction and a Leeds and
Northrup Speedomax W Potentiometer Recorder.

Differential temperature measurement for cooling pad

(T

inlet—Toutlet) was made by thermopiles constructed of five

copper-constantan thermocouples in series mounted in special
plexiglas connectors and a Brush Mark 280 strip chart recorder
with high senstivity Brush Pre-Amplifier.

Inlet water supply temperature was taken with one copper-
constantan thermocouple with ice reference junction and a
Brush Mark 280 strip chart recorder with a high sensitivity
Brush Pre-Amplifier.

Ear canal temperature was measured with an ear thermistor
No. 510 and Yellow Springs Instrument Co. Tele-Thermometer
with a Brush Mark 220 recorder.

Flow rate was measured with a Fischer-Porter No. 48 Rota-
meter type flow meter.

Expired air flow rate was measured with a Parkinson-Cowan
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dry gas meter. This flow was measured and collected con-
tinuously during transient conditions and periodically dur-
ing steady state conditions.

7. Oxygen content in expired air was obtained by a Beckman
ParamagneticO2 analyzer, model C2.

8. CO2 content in expired air was analyzed with a Godart-

Mijnhardt o, thermal conductivity type pulmo analyzer.

3.5.2 Calculated Quantities

1. Total metabolic rate was calculated from the volumetric flow
rate of the expired air and the oxygen and CO2 content: ob-
tained from the analysis of this air. The caloric value of
oxygen was assumed at 5.0 Kcal/lit [27]. This value, al-
though slightly high, was confirmed by Shitzer, et al., [1] with
respiratory quotients found in their experiments. Maximum
deviation from the actual caloric value was assumed to be
at about 4 percent.

2. The rate of heat removed by each pad was taken as the prod-
uct of the difference between inlet and outlet temperatures
and the coolant flow rate. The specific heat of water was
assumed at 1 Btu/1b-°F or 1 Kcal/kg-°C.'

3. For the determination of the rate of heat loss by respir-
ation; flow rate, temperature and enthalpy of expired air,

assuming it to be saturated, were used.
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4, RESULTS AND DISCUSSION

4.1 GENERAL RESULTS

The equipment functioned well throughout the research and the
test subject, although overstressed in experiments $ and 10,
was able to complete all of the pre-designed test schedules. TABLE
4,1 outlines the experimental data pertaining to the test subject,
the environmental conditions, and each of the variations in the ten
experiments. As TABLE 4.1 indicates, the experiments were performed
in an environment with the following average conditions:

Pressure 29.35 Hg.

Relative humidity 42 percent

Temperature 71.5°F
Throughoﬁt the duration of the ten experiments (approximately six
weeks) the test subject maintained an average weight of 176 1lb (79.9 kg)
although a weight reduction of 1.5 to 3 pounds (0.68 to 1.36 kg)
were observed during each of the ten experiments due to loss of
body fluid. The test subject's blood pressure and oral temperature
remained normal before and after each of the experiments.

The test subject's thigh was cooled with a constant flow (40.5
lb/hr, 18.4 kg/hr) of water at 54.5°F (12.5°C) during all experiments.
TABLE 4.2 shows the performance of each test pad for the various experi-
mental conditions. The test subject's metabolic rate shown is the
maximum steady state work load that was achieved for each of the
experiments. The heat removed by the cooling pad given in the table
corresponds to the maximum heat removed from the thigh at the highest
steady state work load. The steady state condition was assumed to

exist when the temperature profile on the skin surface between the
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cooling tubes was fully developed and did not change as a function

of time.

4,2 TEMPERATURE DISTRIBUTIONS FOR SITTING, STANDING AND MILD WORK

Cooling pad No. 2 was used for experiments 1, 2, and 3. The
objective of these experiments was to investigate the nature of the
human thigh's response to cooling by a pad with a constant
‘water temperature and flow rate but for three activity levels.
Figure 4.1 illustrates the results of experiments 1, 2, and 3. For
each experiment there is one set of data consisting of two
lines. These approximately parallel lines represent the highest and
lowest temperatures which occured on the skin surface between two
adjacent cooling tubes., The higher temperature line represents a
point on the skin surface equidistant between the cooling tubes, and
the lower temperature line represents a point on the skin surface im-
mediately adjacent to the cooling tube. The difference between the
input water temperature and the temperature of the water that leaves
the pad is also plotted.

TABLE 4.3 summarizes the information which is presented in Fig.
4,1, As illustrated, a steady state condition was never achieved
in experiment No, 1. After three hours the temperature on the skin
surface of the thigh was still decreasing at a fairly steady rate of
1.35°F (0.75°C) per hour. The metabolic rate of the sitting test
subject remained constant at 200 Btu/hr (59 w). It should be noted
that this measured value of 200 Btu/hr (59 w) is about 75 to 100
Btu/hr below average for a sitting individual.

In experiment No. 2 all of the experimental parameters remained
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the same as in experiment No. 1 with the exception of the test
subject's metabolic rate.The standing position was employed and
the resulting metabolic rate was 320 Btu/hr (94 w), 120 Btu/hr
(35 w) higher than in the case of sitting. This time the tempera-
ture distribution on the surface of the thigh did reach a steady
state in approximately 130 minutes, During the steady state con-
dition a maximum temperature difference of 3.4°F (1.,9°C) was ob-
served on the skin surface. At the same time a total temperature
rise of 3.6°F (2.0°C) was recorded for the water supply. At a
work load of 320 Btu/hr (94 w) this temperature difference corre-
sponded to a heat removal rate of 142 Btu/hr (41 w).

An assumption was made that a mild work activity level would
correspond to twice the metabolic rate of standing. This mild
work was simulated by an.éctivity level of 600 Btu/hr (176 w).
During experiment No. 3 the test subject reached a steady state
temperature distribution in 90 minutes while working at 600 Btu/hr
(176 w). The maximum temperature difference on the skin surface
during steady state was 4.5°F (2.5°C). At steady state the heat
removed from the thigh by the cooling pad was 185 Btu/hr (54 w)
corresponding to a water temperature rise of 4.7°F (2.6°C). It
should be noted that the highest temperature recorded between ad-
jacent tubes rose from 67.1°F (19,5°C) at 320 Btu/hr (94 w) in ex-
periment No. 2 to 74,3°F (23.5°C) at 600 Btu/hr (176 w) in
experiment No. 3.

At the beginning of experiments 1, 2, and 3 the cooling pad
was strapped on the subject's thigh while cooling water was flow-
ing through the pad. In later experiments the pad was placed on

the thigh and the subject was then allowed to rest for 30 minutes.
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During this time the thigh came to equilibrium with no flow in the cool-
ing pad. Cooling fluid was introduced only after the thigh had reached
a steady state without cooling. Thistprocedure was instituted in order
to gain some additional insight as to the course of change of the skin
temperature on the surface of the thigh during the onset of cooling.
4.3 COMPARISON OF THE SURFACE TEMPERATURE TRANSIENTS FOR THE

THREE PADS '

During experiments 4, 5, and 6, cooling pads 1, 2, and 3 were
tested, respectively. During each of these experiments the inlet
water temperature was maintained constant at 54.5°F (12.5°C); the
flow rate was maintained constant at 40.5 1b/hr (18.u4kg/hr) and
the activity level of the test subject was monitored and regulated
at 900 Btu/hr (264 w).

Figure 4.2 illustrates the result of experiments 4, 5, and 6
and these‘results are also summarized in TABLE 4.4, As is shown,
the cooling pad was placed on the test subject at t = 0. He was
allowed to rest for the first 30 minutes after which the cooling
fluid was introduced. The temperature profile on the skin surface
decreased afterward. The transient times to reach steady state were
90 minutes for pad No., 2 and 100 minutes for pads No. 1 and 3. It
is interesting to note that at steady state the temperature distri-
butions for pads No. 1 and 3 almost coincide while the temperature
profile for pad No. 2 is noticably lower by about 3.56F (2°C). This
observation can be accounted for by the fact that pad No. 2 has a.
higher cooling tube density than pads No. 1 and 3. This high tube

density is also reflected in a skin temperature differential of
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only 3.6°F (2°C) for pad No. 2 while the differences between.the high
and low skin temperatures for pads No..l.and 3 are:5.67°F.(3.15°C)
and 5.76°F (3.2°C), respectively. Consequently,: while!pad No. .
2 provided a lower skin temperature in general, it also provided a
more uniform skin temperature profile between the tubes.  With-a work
load of 900 Btu/hr (264 w), pad No. 3 removed the highest amount of
heat; i.e., 208 Btu/hr (61 w) corresponding to a cooling fluid tem-
perature difference of 4,95°F (2.75°C).
4,4 COMPARISON OF THE STEADY STATE SKIN SURFACE TEMPERATURE DISTRI-
BUTIONS FOR THE THREE PADS
Steady state temperature distributions on the skin correspond-
| ing téhaéfivif§ ievels ;f'ébo ﬁtu/ﬁr kéébwj, 900 Btu/hr (264 w), and
1800 Btu/hr (528 w) are shown in Figs. 4.3, 4.4, and 4.5, respectively.
The results for pad No. 1 are shown in Fig. 4.4 alone-$ince this pad
was used during experiment No. 4 only (mild work, 900 Btu/hr, TABLE
.2, : O e : - o
All profiles shown in these figures resemble bell-shaped curves.
The same qualitative results have been obtained by Chate and co-workers
[7]. In general, the profiles obtained from pad No. 2 were the flat-
test and also lowest in temperatures. These results are due.to the
higher tube density of pad No. 2 as compared to the other two pads.
Temperatures immediately underneath the cooling tubes could not
be accurately obtained with the present measuring technique. Thus,
only measured skin temperatures in the region not in contact with

the cooling tubes, i.e., B < z/a-< (2 - B), are shown in Figs. 4.3,
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Figure 4.4 Steady state temperature distribution for pads 1, 2,
and 3 under constant experimental conditions and
constant metabolic rate at 900 Btu/hr (264 w).
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4,4, and 4.5. The profiles in these figures were extrapolated into
the areas covered by the cooling strips, too. The extrapolated values.

could not be verified and should be treated as estimates only.
4.5 COMPARISON OF THE STEADY STATE SURFACE TEMPERATURE DISTRIBUTIONS.

WITH ANALYTICAL RESULTS '

Analy%ical expressions for the steady state temperature distri-
bution on the skin surface between adjacent cooling tubes for the
tissue modeled as a rectangular slab or a cylindrical shell are given
in Ref. [1] by Egs. (5.1) and (E.2) (with r = Rz), respectively.
Following is a list of parameters appearing in those equations that

affect the temperature distribution:

"
3
-

(1) Temperature of the inner core an@ the arterial blood,Tl‘

(2) Specific heat of blood, ¢, ,

(3) Thermal conductivity of the tissue, k,

(4) Ratio of cooling tube width to cooling tube spacing, B,

(5) Cooling tube spacing, 2a,

(6) Average heat flux at skin surface, f;,

(7) Number of terms used in‘the series computation, n,

(8) Depth of tissue, b,

(9) Shape of the flux function, f(z),

(10) Average rate of heat generated per unit volume of tissue,
S

(11) Average blood perfusion rate per unit volume of tissue,
W and, in the cylindrical model only due to the additional

degree of freedom, -

(12) Radius of cylindrical shell, R or R,.
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The first eight of these parameters and the radius of the cylin-

drical shell could either be measured or estimated with a fair degree
of accuracy. The remaining-three, i.e., f(z), Qs and w, , were not
measured . in the present work and were left to be estimated by the
method of fitting theoretical curves to the experimental data. Curve.
fitting was done with the aid of a digital computer. Equations (5.1)
and (E.2) of Ref. [1] were programmed and temperature profiles were -
computed for various combinations of the above three parameters.
The computer output was then analyzed to determine that combination
of ‘parameters which yielded curves fitting closest with the experi-
mental data. Simultaneously, the parameters and the corresponding
temperature profiles were checked against the following criteria:

(1) The lowest temperature on the skin (immediately underneath.
the cooling tube) should not be below the temperature of
the cooling water; in all experiments coolant temperature
was .maintained at 54.5°F (12.5°C).

(2) Blood perfusion and heat generation rates per unit volume
of tissue should not exceed values found in the literature..

(3) Only temperatures measured on the skin away from the cool-
ing tubes were considered for the comparison.

In ‘addition, the following two assumptions were made:

(1) An estimated 25 to 30 Btu/hr (7.3 to 8.7 w) of the total
heat removed by the cooling pads were gained from the en-

vironment.
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(2) Some heat was removed through the air gap along the areas
not - in contact with the cooling tubes. A parameter, n,
denoting the ratio of heat fluxes at the uncontacted to
that .at the contacted areas was introduced. This ratio
was usually assumed at about 10 percent.

A large number of combinations of the above parameters over a
wide range were considered. Results for pads No. 2 and 3 at the high
metabolic rate of 1800 Btu/hr (528 w) are shown in Figs, 4.6 and 4.7,
respectively. In these figures comparison is made between the experi-
mental results and both the cylindrical and rectangular models. The
agreement between experimental and theoretical results is. quite good,
particularly for pad No. 2. Also, as can be observed, no significant
differences exist between the cylindrical and rectangular models.

It should, however, be noted that the curves presented in Figs. 4.6
andA4.7’ape not unique; nor are the parameters that yielded those.
curves to be regarded as representing the true physiological values.
The only objective that we had in mind while attempting the fitting
of analytical curves to measured data was to explore whether a rea-
sonable correspondence could be obtained. Anything beyond this-spe-
cific objective is not implied. Improved techniques for measuring
the unknown parameters and skin temperatures are required to render
the comparison between measured and analytically predicted results

more meaningful.
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Figure 4.6 Comparison of analysis with experimental results for

cooling pad No. 2. Metabolic rate 1800 Btu/hr (528 w).
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4.6 RESULTS OF TRANSIENT EXPERIMENTS

In experiments 7 and 8 the transient response due to a large
and sudden increase in metabolic rate was studied. As shown in
Fig. 4.8, the test subject stood for about three hours in order to
reach a steady state temperature distribution on the skin surface.
With the flow rate and input water temperature held constant, the
metabolic heat generation rate was then raised from 300 Btu/hr
(88 w) to 1800 Btu/hr (528 w). As can be seen, the transition in
metabolic rate from low to high activity level occurréd in about
five minutes. The test subject maintained the 1800 Btu/hr (528 w)
activity level for 90 minutes. At this time he was allowed to rest
and his metabolic rate returned to 300 Btu/hr (88 w) in about ten
minutes.

The transient response of the skin surface temperature profile
corresponding to sudden change in the total metabolic rate was re-
corded for pads No. 2 and 3 in experiments 7 and 8, respectively.
Figures 4.9 and 4.10 show the results of experiment 7. Figure 4.9
shows the course of change of the temperature profile on the skin
surface between adjacent cooling tubes. The lowest curve at t = 0
represents the fully developed temperature profile at 300 Btu/hr
(88 w) and the highest curve at t = 40 min represents the fully de-
veloped profile corresponding to an activity level of 1800 Btu/hr
(528 w). The curves at t = 10 min and t = 20 min are plotted at the
intermediate stages and show the nature of the development of the

temperature profile.
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Figure 4.9 Development of temperature profile on the skin for pad
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No. 2 resulting from an increase in metabolic rate from
300 to 1800 Btu/hr (88 to 528 w).
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Figure 4.10 shows the course of change of the temperature profile
as it changed with a decrease in metabolic rate from 1800 Btu/hr
(528 w) to 300 Btu/hr (88 w). In this case the highest curve at t = 0
represents the fully developed temperature profile at 1800 Btu/hr
(528 w). The lower curve at t = 120 represents the temperature pro-
file at steady state corresponding to a metabolic activity rate of
300 Btu/hr (88 w). The intermediate values at t = 20, 40, 60 and 80
‘minutes show the nature of the development of the lower temperature
profile.

In the case of the increasing metabolic rate the temperature
distribution reaches a steady state in 40 minutes for pad No. 2.
However, a decrease in the total metabolic rate over the same range
results in a transient time of 120 minutes to reach steady state for
the same pad. Thus, it takes about three times as long to reach steady
state when changing from a high to a low metabolic rate as compared
to changing from a lower to a higher rate for pad No. 2.

The results of experiment 8 (using pad No. 3) are shown in
Figs. 4.11 and 4.12. In these figures the same scheme was used to
present the data as in Figs. 4.9 and 4.10. Figure 4.11 represents
the change in the temperature profile for an increasing metabolic
rate and Fig. 4,12 represents the change for a decreasing metabolic
rate. Again, the metabolic rates ranged from 300 Btu/hr (88 w)
at the low end to 1800 Btu/hr (528 w) at the high end. TABLE 4.5
summarizes the results of experiments 7 and 8 and can be used to
compare the performance of pads No. 2 and 3.

The temperature profile develops slightly faster for pad No. 2

at 40 minutes as compared with a time of 60 minutes for pad No. 3
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TABLE 4.5

Results of Experiments 7 and 8

(Flow rate and water temperature remained constant)

Change in Change in Time to Reach
Experiment | Pad { Metabolic Rate | Metabolic Rate | Steady State
Btu/hr w Profile, Min.
7 2 300 » 1800 88 + 528 4o
8 3 300 - 1800 88 - 528 60
7 2 1800 —+ 300 528 -~ 88 120
8 3 1800 - 300 528 - 88 120

for an increasing metabolic rate. The time for the temperature
profile development was equal for both pads in the case of a de-
creasing metabolic rate. Comparison of Figs. 4.9 and 4.11 re-
veals that the temperature profile is both lower and flatter for
pad No. 2 as compared with pad No. 3. Also, the profile was shifted
about 12,5°F (7°C) for pad No. 2 compared with a 16°F (9°C) shift for
pad No. 3, for the case of increasing and decreasing metabolic
rates.

In general then, pad No. 2 provided a lower, more uniform
temperature distribution. This temperature distribution also
proved to be more stable and did not shift as much as in the case
of pad No. 3 under identical conditions of change. This probably
is the major factor in accounting for a smaller time constant for
pad No. 2 as compared with pad No. 3.

The results for experiments 9 and 10 are shown in Fig. 4.13.

As illustrated in Fig. 4,13, the skin temperatures were monitored
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for pads No. 2 and 3 for several transient metabolic conditions.
The transient intervals analyzed were as follows: increasing meta-
bolic rates for pads No. 2 and 3 from:

1. 300 Btu/hr (88 w) to 900 Btu/hr (264 w),

2. 900 Btu/hr (264 w) to 1800 Btu/hr (528 w)
and reversed sequence of decreasing metabolic rates for pads No. 2
and 3 from.

3. 1800 Btu/hr (528 w) to 900 Btu/hr (264 w)

4., 900 Btu/hr (264 w) to 300 Btu/hr (88 w).

Again, it can be noted that the test subject required very little
time to reach a steady metabolic rate for each new activity. This
fact supports the initial assumption that changes in metabolic .rates .
can be regarded as step functions as compared to changes in tempera-
ture.

There are relatively short duration increases in temperature
occurring at the beginning of some of the work loads, particularly
after a reduction in metabolic rate. The rapidity of this change .
indicates a physiological response of some kind, such as a sudden
reduction in blood flow.

Figure 4.14 shows the course of change for the temperature pro-
file reacting to changes from low to moderate and to high metabolic
activity levels for pad No. 2. Figure 4.15 shows the nature of the
temperature distributions as the metabolic rate decreases from high

to low.
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The results of experiment 10 are shown in Figs. 4.16 and 4.17.
In this case pad No. 3 was tested and the temperature distributions
were measured in accordance with changes in metabolic activity. from
low to high and from high to low. The results of experiments 9 and
10 are presented in summary form in TABLE 4.6. It can be seen that.
both pads No. 2 and 3 required a time of 80 minutes to reach a steady
state temperature distribution in accordance with an increase in meta-
bolic activity: from 300 to 900 Btu/hr (88 w to 264 .w). Similarly,
pads No. 2 and 3 also required an additional time of sixty minutes
to reach steady state with an increase in metabolic rate from 900

Btu/hr to 1800 Btu/hr (264 w to 528 w).

TABLE 4.6
Results of Experiments ¢ and 10

(Flow rates and input water temperatures held constant)

Change in Change in Time to Reach

Metabolic Rate Metabolic Rate | Steady State

Experiment | Pad Btu/hr W Profile, min.
9 2 , 300 - 900 88 - 264 80
10 3 300 - 900 88 -+ 264 80
9 2 900 - 1800 264 = 528 60
10 3 900 ~ 1800 264 +.528 60
9 2 1800 = 900 528 - 26k 40
10 3 1800 = 9S00 528 —» 264 : 80
9 2 900 » 300 264 - 88 80
10 3 900 > . 300 264 - . 88 60




(°F)

Temperature

85

80

75

65

67

30 T ] T T T ] T T T
B | Pad No.3 ]
i B =0.175
i 281~ Metabolic Rate 7]
i A. 300— 900 Btu/hr
- B. 900 — 1800 Btu / hr
g 26 7
-
- G - -
- 2
— 241" Time in Minutes 7
“ _J

- @ g
- = 0 t=140 )

- B (=) <
- R 221 t=110 o -
- £ ’z=8c;,

(<D -
L = 5 P ]
N t =40 o
L 20F A9 t-20 .
B i t=10 o i
— “ =O

18} _
- 16 | | | 1 1 ! J I
0] 0.2 0.4 0.6 0.8 1.0
Distance BetweenTubes, z/a

Figure 4.16 Development of temperature profile on the skin for pad

No. 3 resulting from increases in metabolic rates from
300 to 900 Btu/hr (88 to 264 w) and from 900 to 1800
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In response to a decrease in metabolic activity, it was noted
that pad No. 3 required 80 minutes to reach steady state, whereas
pad No. 2 required only 40 minutes to reach the same level.

For the transition from 900 Btu/hr (264 w) to 300 Btu/hr (88
w), it can bé seen that pad No. 3 required less time (60 minutes)
than did pad No. 2 which required 80 minutes to reach steédy state.
It should be noted, however (see Fig. 4.15), that, in the case of
pad No. 2, the lowest temperature was reached in approximately 40
minutes. During the remaining 40 minutes of the development of the
steady state temperature profile, only the middle or warmer portion
of the distribution was affected.

Again, some general comments can be made with respect to pad
No. 2 in that it provided a lower, more uniform temperature distri-
bution than did pad No. 3. Also, there was.less of a range of tem-
perature variation in the .case of pad No. 2 as compared with pad No.
3. All of these observations can be accounted for by the higher tube
density of -pad No. 2 and the corresponding increase in cooling effec-

tiveness.
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5. SUMMARY AND CONCLUSIONS

Three separate cooling pads with different cooling tube sizes
and spacings were constructed and tested. These pads were equipped
with thermocouples and were used to measure the temperature profiles.
on the skin surface of the right thigh between adjacent cooling tubes.
All pads were tested under the same experimental conditions with equal
coolant flow rate and temperature. Pad No. 2 which consisted of 5/32. .
in. tubes spaced at 5/8 in. intervals provided the best cooling ca-
pacity. Pad No. 2 removed 15 percent of the total heat generated
at high metabolic rates and much higher percentages.at low metabolic
rates. Pad No. 2 provided the lowest and most uniform skin tempera-
ture profiles:throughout.the tests. Also, the.temperature profiles
on the skin did not shift as much with changes in metabolic rate for
pad No. 2 than with pads No. 1 and 3. The time constants for surface
temperatures associated with changes. in metabolic rate were also small-
est for Rad No. 2. In general, it can be concluded that pad No., 2
provided a lower, much more uniform and stable temperature distribu-
tion on the skin surface than was attainable with pads No. 1 and 3.

Times required for reaching a steady state from the cnset of
a change in activity level were also recorded. When an increase. in
metabolic rate was introduced, the times involved were found to be
between 40 to 60 minutes, the shorter periods pertaining to pad No, -
2 with the higher density of tubes. When the change in activity level
was reversed, i.e., high (1800 Btu/hr, 528 w) to low (300 Btu/hr,
88 w), times for reaching a steady state temperature profile were

about equal for pads No, 2 and 3 at 120 minutes. Thus, a ratio of



71

about 2-3 was.found between the lengths of time required for. the de-
velopment of temperature profiles for extreme, opposite changes. in

levels of activity. When intermediate changes were used .(experiments. . .
9 and 10) ;the. ratics of transient times were found to be of the or-

der of 1-1.5. Overall transient times for these.double—step changes

were of the same order (~ 140 min) for both increasing and decreas-

ing metabolic rates.

It is .clear that both tube size and spacing have a noticeable
effect on overall cooling efficiency. In order to.optimize the re-
lationship between these two parameters then, a definition of maxi-
mum metabolic rate should be secured. Once obtained, a cooling pad
can be designed that will remove heat from the body at any predeter-
mined rate.

A time dependent analytical solution has been obtained for the
biothermal model in cylindrical coordinates. Equation (2.18) is the
solution as a function of r, z, and t and was used to predict the tran-
sient temperature distributions on the skin surface between adjacent
cooling tubes and for the one-dimensional geometry (uniform cooling
of the skin).

A comparison between steady state measured and analytical results
was.attempted. The comparison was made with both thevcylindrical
and rectangular models of Ref. [1]. Agreement between measured and
predicted results was found to be fair, particularly for pad No. 2.
Improved techniques for measuring skin temperatures and physiologi-
cal gquantities, e.g., blood perfusion and metabolic heat generation

rates, are required to render the comparison more meaningful and reliable.
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