DIFFERENTIAL CROSS SECTIONS AT FORWARD
 ANGLES FOR HYDROGEN AND HELIUM
 PARTICLES FROM 62-MeV PROTONS INCIDENT ON ${ }^{60} \mathrm{Ni}$

R. W. Peelle
F. E. Bertrand

SECA-CR-127473) DIFFERENT AT PORGARD ANGLES POR HYDROGEN AND HELIUM PARTICLES FROM 62 MEV PROTONS

OAK RIDGE NATIONAL LABORATORY
operated by
UNION CARBIDE CORPORATION
for the

U.S. ATOMIC ENERGY

COMMISSION

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Contract No. W-7405-eng-26
Neutron Physics Division

DIFFERENTIAL CROSS SECTIONS AT FORWARD ANGLES FOR HYDROGEN AND HELIUM PARTICLES FROM $62-\mathrm{MeV}$ PROTONS INCIDENT ON ${ }^{6}{ }^{0} \mathrm{Ni}$

R. W. Peelle and F. E. Bertrand
NOTE
This Work Funded by
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Under Order L-12, 186

JUNE 1971

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by UNION CARBIDE CORPORATION
for the
U. S. ATOMIC ENERGY COMMISSION

DIFFERENTIAL CROSS SECTIONS AT FORWARD ANGLES FOR HYDROGEN AND
HELIUM PARTICLES FROM $62-\mathrm{MeV}$ PROTONS INCIDENT ON ${ }^{60} \mathrm{Ni}$

R. W. Peelle and F. E. Bertrand

Abstract

Tabulated differential cross sections are presented for the production, at angles of $15,20,25$, and 40 deg , of proton, deuteron, triton, helium-3, and alpha particles from ${ }^{60} \mathrm{Ni}$ bombarded by $62-\mathrm{MeV}$ protons. Continuum cross sections are listed in $\sim 1-M e V$ bins for energies above lower cutoffs which range from 4 to 15 MeV for the different types of exit particles. For a considerable energy range within each spectrum, only the integral cross section is known. The proton-, deuteron-, and alpha-particle cross sections are the same in the continuum region above the evaporation peak as those cross sections previously observed for ${ }^{54} \mathrm{Fe}$ and ${ }^{56} \mathrm{Fe}$, but the corresponding yield of tritons is higher from ${ }^{60} \mathrm{Ni}$ and ${ }^{56} \mathrm{Fe}$ than from ${ }^{54} \mathrm{Fe}$.

INTRODUCTION

Differential cross sections are tabulated in this report for proton, deuteron, triton, helium-3, and alpha particles produced in the range 15 to 40 deg in a target of ${ }^{60} \mathrm{Ni}$ under bombardment by $61.7-\mathrm{MeV}$ protons. The lower limit on the energy of the outgoing particle was determined by the energy of a particle just stopped in the first ΔE detector ($\sim 100-\mu$ silicon). A flaw in the experimental setup, involving an errant piece of drafting tape between adjacent detectors, makes the data here less precise than that presented elsewhere for neighboring elements in that each spectrum includes a region for which only the average magnitude is known. The details of the experimental and data analysis system have been reported, ${ }^{1-3}$ and the results for ${ }^{54} \mathrm{Fe}$ and ${ }^{56} \mathrm{Fe}$ used for comparison have been tabulated elsewhere. ${ }^{4}$ The tabulated
values for other targets from this experiment may be found in reports cited in ref. 5.

METHOD AND DATA ANALYSIS

Momentum-analyzed protons from the Oak Ridge Isochronous Cyclotron were focussed to an $\sim 8-\mathrm{mm}$ spot on a target of ${ }^{60} \mathrm{Ni}$. The charged reaction products were detected by a semiconductor telescope spectrometer with $\sim 180 \mathrm{keV}$ resolution mounted within a $1.2-\mathrm{m}$-diam evacuated scattering chamber. The telescope consisted of two silicon surface-barrier ΔE detectors, 100 and 500μ in thickness, and a planar Ge(Li) stopping detector. ${ }^{6}$ For each event, data were obtained from three analog-to-digital converters and written onto compatible magnetic tape by an on-line PDP-8 computer for later analysis on the Laboratory's central computer. Secondary particles were identified by a twofold $\Delta E \times E$ method over the energy range from a few MeV (set by penetration of the $100-\mu$ detector) to 62 MeV . The ${ }^{54} \mathrm{Fe}$ data shown in the figures has a lower energy cutoff since time-of-flight particle identification was used for those particles which stopped in the $100-\mu$ detector.

Table l gives a list of the factors by which counts in the various runs were multiplied to give laboratory-system cross sections in millibarns/steradian. These factors are based on the foil thickness and geometry, the detector solid angle, and the electric charge collected by a carefully constructed Faraday cup. (See ref. I, pages 46 and 81.)

The $>99 \%$ isotopically pure ${ }^{60} \mathrm{Ni}$ target was fabricated by the Isotopes Division of the Oak Ridge National Laboratory. The average surface density was $3.8 \mathrm{mg} / \mathrm{cm} ;^{2}$ a 4% uncertainty was assigned because a detailed scan for uniformity could not be performed.

Table 1. Conversion Factors for the ${ }^{60} \mathrm{Ni}$ Experimental Runs.

Laboratory Angle (deg)	Run Number	Factor $\left(\mathrm{mb} \cdot\right.$ ster $^{-1} \cdot$ count $\left.^{-1}\right)$
15	5003	$4.74(-3)^{\mathrm{a}}$
20	5004	$2.53(-3)$
25	5005	$1.295(-3)$
40	5006	$7.89(-4)$
a Read as 4.74×10^{-3}		

The data tabulated in this report have been corrected to remove in first order the effects of energy loss of scattered particles in the target, penetration of the edges of the detector collimator, multiple scattering of secondary protons by the ΔE detectors, the "dead" layer covering the germanium detector, and nuclear reactions of hydrogen particles in the Ge detector. The correction techniques are described in refs. 1 and 2. The dead layer over the Ge detector was normally about $3 \mathrm{mg} / \mathrm{cm}^{2}$ of nickel, but for the data presented here a protective layer of masking tape was inadvertently left in the same region between the $\Delta \mathrm{E}$ detectors and the stopping detector. On-line diagnostic graphics clearly showed the effect of this layer; there was insufficient time to repeat the runs which led to the data presented here. Moreover, the surface density of the tape was not measured when the mistake was discoveren, since at that time there was no intention to study the continuum data from this target. The appropriate dead layer for the analysis was determined by weighing a "typical" piece of masking tape, and also by performing our standard dead layer correction with a few different thicknesses of plastic (Mylar) to represent the masking tape and requiring internal consistency among the diagnostic outputs available. The layer was finally taken as $15 \mathrm{mg} / \mathrm{cm}^{2}$ mylar, with an uncertainty of $<5 \mathrm{mg} / \mathrm{cm}^{2}$.

The effect of the dead layer is to l) leave empty a portion of the spectrum corresponding to the energy region in which particles stop in the dead layer, 2) to place spurious "fold back" counts at lower energies corresponding to the energy actually lost in the ΔE counters, and 3) to
displace events which did count in the stopping detector to an incorrectly low value. Counts are conserved within the affected region, so for the data presented here this entire region is represented by one broad histogram block. The third difficulty is corrected in first order by the standard correction program. The largest uncertainty from this effect is in the cross sections presented for the energies just above the broad blocks, and is about 7% based on a $5 \mathrm{mg} / \mathrm{cm}^{2}$ uncertainty in the thickness of the dead layer. A fourth difficulty was that some alpha-particle events were shifted by the dead-layer correction to an impossibly high energy, indicating an overcorrection. The results in this region are presented as a broad histogram block.

Data tables and graphs below show statistical uncertainties propagated from the Poisson uncertainties in the experimental counts. To obtain the full uncertainty on a given cross section, the statistical uncertainties must be combined with an overall systematic uncertainty and a few special systematic uncertainties, described below, which affect limited regions of the spectra. The overall systematic uncertainty is estimated to be $\sim \pm 7 \%$ for these data, including uncertainties in foil weight, detector solid angle, number of incident protons, and dead time fraction.

Systematic uncertainty is increased to $\sim 10 \%$ for areas of low cross section, such as most of the ${ }^{3} \mathrm{He}$ data, because the lines in $\Delta E \times E$ space which distinguish events among the particle types are derived empirically on the basis of observed events. Scattered counts are not always detected in the diagnostic computer outputs which exhibit the fit between the data and the imposed "discrimination lines."

The magnitudes of the "tail" correction for nuclear reactions in the $\mathrm{Ge}(\mathrm{Li})$ detector and for collimator edge penetration are both dependent upon the number and spectral distribution of the recorded counts. The reaction correction has two components; l) a correction at each channel to add back the counts lost and 2) a correction to remove at each channel the counts added by reactions of higher energy events. Both of these effects have been corrected. The latter reaction correction and the collimator edge correction are significantly large only for protons at scattering angles <30 deg, where the spectra are dominated by strong elastic scattering, and the corrections generally fall rapidly with angle within that range. The uncertainty in the correction for collimator penetration is taken as 20% of the correction, which is approximately proportional to pulse height. This uncertainty is significant only for the data at 15 deg, as shown in Table 2. The reaction-tail correction (type 2) rises from zero to its full value between 35 and 45 MeV and then remains roughly constant up to the elastic peak. The cross section uncertainty in the standard reaction-tail correction, taken as 25% of that correction, is given in Table 2.

RESULTS
No results are given here for excitation of specific levels of the residual nuclei, since too few angles are included to allow generally meaningful results. Some results from this work have been published for excitation of the $1.33-\mathrm{MeV}$ level of ${ }^{60}{ }^{\mathrm{Ni}}$ (ref. 7).

To illustrate the results for ${ }^{60} \mathrm{Ni}$, comparisons are shown with data for ${ }^{54} \mathrm{Fe}$ and ${ }^{56} \mathrm{Fe}$ (ref. 4). Figures 1 and 2 show comparisons between targets of ${ }^{54} \mathrm{Fe}$ and ${ }^{60} \mathrm{Ni}$ for secondary protons and for alpha particles,

Table 2. Systematic Uncertainties in Secondary Proton Cross Sections at 45 MeV from ReactionTail and Collimator-Tail Corrections.

Laboratory Angle	Uncertainties in Corrections Applied	
	$\frac{\text { "Collimator Tail" }}{\mathrm{mb} \cdot \mathrm{ster}^{-1} \cdot \mathrm{MeV}^{-1}}$	"Reaction Tail" $\mathrm{mb}^{\text {mbter }}{ }^{-1} \cdot \mathrm{MeV}^{-1}$
15	0.14	0.52
20	0.026	0.10
25	0.007	0.02
40	0.004	0.01

Fig. 1. Proton Spectra from $62-\mathrm{MeV}$ Protons on ${ }^{60} \mathrm{Ni}$ at 25 deg and ${ }^{54} \mathrm{Fe}$ at 27 deg. The broad dashed bin near 10 MeV in the otherwise-solid line represents the average cross section for ${ }^{60} \mathrm{Ni}(\mathrm{p}, \mathrm{xp})$ in the region where cross sections were affected by the unusually thick dead layer.

but for angles smaller than 25 deg proton comparisons are ambiguous. Figure 3 shows data for all three targets for protons at \sim_{0} deg. Note that the ${ }^{56} \mathrm{Fe}$ data is really at 37 deg and that a gap in existing data appears for ${ }^{54} \mathrm{Fe}$ in the region between 6 and 15 MeV . For the cases in Figs. l-3, it appears that cross sections above the evaporation region are strictly comparable, while in the evaporation region other factors determine the cross section. For example, one would expect relatively more proton than neutron evaporation for the proton rich ${ }^{54} \mathrm{Fe}$, as shown in Fig. 3.

Figure 4 shows the comparison of deuteron spectra observed at 20 deg for the three targets. The results at 15 deg are similar. The importance of the level structure leads to a confusing picture at the higher energies, but the results show that the cross sections overlap in the medium energy and low energy regions. This result does not hold for tritons for which the ${ }^{60} \mathrm{Ni}$ results (and those for ${ }^{56} \mathrm{Fe}$) are 50% higher than the ${ }^{54} \mathrm{Fe}$. The difference can be partially explained on the basis of the indirect pickup reaction mechanism and the availability of nucleons.

In the figures, the data which has been averaged into bins of width 0.4 to 2 MeV does not show significant structure effects. At the high energies the plot is made directly from the $50 \mathrm{keV} / \mathrm{ch}$ annel results.

Table 3 shows the energy-integrated laboratory cross sections in units of millibarns/steradian, and the average energies in MeV , at each angle. Note that the average is performed over only the observed portion of the spectrum, that above the listed low-energy cutoffs. Tables $4-8$ list for each angle the laboratory cross sections [millibarns/(steradian-MeV)] for proton-, deuteron-, triton-, helium-3-, and alpha-particle production

Fig. 3. Spectra from the (p, xp) Reaction for $62-\mathrm{MeV}$ Protons on ${ }^{56} \mathrm{Fe}$ at 37 deg and on ${ }^{54} \mathrm{Fe}$ and ${ }^{60} \mathrm{Ni}$ at 40 deg. The broad dashed bin near 10 MeV in the otherwise-solid line represents the average cross section for ${ }^{60} \mathrm{Ni}(\mathrm{p}, \mathrm{xp})$ in the region where cross sections were affected by the dead layer. A gap is shown in the ${ }^{54} \mathrm{Fe}(\mathrm{p}, \mathrm{xp})$ curve from 6 to 15 MeV ; beyond this energy the curves are difficult to distinguish.

Fig. 4. Spectra from the (p, xd) Reaction for 62-MeV Protons on ${ }^{56} \mathrm{Fe},{ }^{54} \mathrm{Fe}$, and ${ }^{60} \mathrm{Ni}$ at 20 deg. The broad dashed bin near 12 MeV in the otherwise-solid line represents the average cross section for ${ }^{60} \mathrm{Ni}(\mathrm{p}, \mathrm{xd})$ in the region where cross sections were affected by the dead layer.

Table 3. Energy-Integrated Differential Cross Sections
and Average Energies for $62-\mathrm{MeV}$ Protons on ${ }^{60} \mathrm{Ni}$. a

$\begin{gathered} \text { Lab } \\ \text { Angle } \\ \text { (deg) } \\ \hline \end{gathered}$	Proton ${ }^{\text {b }}$			Deuteron			Triton		
	$\begin{gathered} \sigma \pm \delta \sigma \\ (\mathrm{mb} / \mathrm{ster}) \\ \hline \end{gathered}$	$\begin{gathered} \overline{\mathrm{E}} \\ (\mathrm{MeV}) \\ \hline \end{gathered}$	$\begin{gathered} \text { COE } \\ (\mathrm{MeV}) \\ \hline \end{gathered}$	$\begin{gathered} \sigma \pm \delta \sigma \\ (\mathrm{mb} / \text { ster }) \end{gathered}$	$\begin{gathered} \bar{E} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} \text { COE } \\ (\mathrm{MeV}) \\ \hline \end{gathered}$	$\begin{gathered} \sigma \pm \delta \sigma \\ (\mathrm{mb} / \text { ster }) \\ \hline \end{gathered}$	$\begin{gathered} \overline{\mathrm{E}} \\ (\mathrm{MeV}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{COE} \\ (\mathrm{MeV}) \\ \hline \end{gathered}$
15	479 ± 2	27.6	3.6	41.2 ± 0.4	36.5	4.6	4.38 ± 0.14	27.0	5.7
20	292 ± 1	28.1	3.6	34.7 ± 0.3	35.3	4.6	3.90 ± 0.10	27.1	5.7
25	250 ± 1	26.9	3.6	25.6 ± 0.2	32.1	4.6	3.40 ± 0.07	25.0	5.7
40	170 ± 0.4	23.1	3.6	15.5 ± 0.1	27.5	4.6	2.08 ± 0.04	22.1	5.7
Lab	Helium-3			Alpha					
Angle (deg)	$\begin{gathered} \sigma \pm \delta \sigma \\ (\mathrm{mb} / \text { ster }) \end{gathered}$	$\begin{gathered} \bar{E} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} \mathrm{COE} \\ (\mathrm{MeV}) \\ \hline \end{gathered}$	$\begin{gathered} \sigma \pm \delta \sigma \\ (\mathrm{mb} / \text { ster }) \\ \hline \end{gathered}$	$\begin{gathered} \bar{E} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} \mathrm{COE} \\ (\mathrm{MeV}) \\ \hline \end{gathered}$			\because
15	3.07 ± 0.12	33	12.5	10.4 ± 0.2	26.1	13.8			
20	2.63 ± 0.08	32	12.5	9.97 ± 0.16	25.4	13.8			
25	2.22 ± 0.05	31	12.5	9.29 ± 0.11	24.6	13.8			
40	1.29 ± 0.03	28	12.5	6.72 ± 0.07	23.0	13.9			

$a_{\text {These }}$ integrals cover the entire spectrum above the experimental cutoff energy (COE). The uncertainties shown were derived from counting uncertainties and are generally unimportant compared to the overall systematic uncertainty.
${ }^{\mathrm{b}}$ Elastic proton scattering has been excluded.
from $62-\mathrm{MeV}$ incident protons on ${ }^{60} \mathrm{Ni}$, generally averaged over bins from 0.4 to 2 MeV in width. The listed bin energies are at the centers of the indicated bins. A very broad bin is shown in each table for the region affected by the extra "dead layer." Elastic proton scattering is excluded from Table 4.

ACKNOWLEDGMENTS

The authors wish to acknowledge the essential contributions of T. A. Love, N. W. Hill, and W. R. Burrus, who shared the development of the data-acquisition and analysis systems as well as the long hours of experimental runs. We also acknowledge the help of E. Beckham in setting up equipment, C. O. McNew for assistance with development and maintenance of electronic equipment and with data acquisition, P. M. Aebersold and D. I. Putzulu for imaginative work on the data analysis programs, and J. D. Drischler for help in revision of the analysis programs and in analysis and compilation of the data. We thank the ORIC operation crews for their cooperation.

REFERENCES

1. F. E. Bertrand et al., Differential Cross Sections for the Charged Particles Produced by $60-\mathrm{MeV}$ Protons on Carbon, Iron, and Bismuth, ORNL-4274 (1968).
2. F. E. Bertrand and R. W. Peelle, Tabulated Cross Sections for Hydrogen and Helium Particles Produced by $62-\mathrm{MeV}$ Protons on ${ }^{89} \mathrm{Y}$, ORNL-4450 (1969); and F. E. Bertrand and R. W. Peelle, Tabulated Cross Sections for Hydrogen and Helium Particles Produced by $62-$ and $29-\mathrm{MeV}$ Protons on ${ }^{120} \mathrm{Sn}$, ORNL-4471 (1970).
3. N. W. Hill and W. P. Albritton, Nucl. Instr. Methods 75, 18 (1969).
4. F. E. Bertrand and R. W. Peelle, Tabulated Cross Sections for Hydrogen and Helium Particles Produced by $61-\mathrm{MeV}$ Protons on ${ }^{56} \mathrm{Fe}$, ORNL-4456 (1969); and F. E. Bertrand and R. W. Peelle, Tabulated Cross Sections for Hydrogen and Helium Particles Produced by 62-, 39-, and $29-\mathrm{MeV}$ Protons on ${ }^{54} \mathrm{Fe}$, ORNL-4469 (1970).
5. F. E. Bertrand and R. W. Peelle, Cross Sections for Hydrogen and Helium Particles Produced by $62-$ and $39-\mathrm{MeV}$ Protons on ${ }^{209} \mathrm{Bi}$, ORNL-4638 (1971).
6. F. E. Bertrand, et al., "A Total Absorption Detector for $60-\mathrm{MeV}$ Protons Using Lithium Drifted Germanium," IEEE Trans. Nucl. Sci., NS-13, 279 (1966).
7. F. E. Bertrand, J. K. Dickens, and T. A. Love, Phys. Letters 24B, 653 (1967).

Table 4
PROTCN FROM $A=60$ BOMBARDED BY 62 MEV. PROTONS.

15 DEG - RUN 5003			20 DEG - RUN 5004			25 DEG - RUN 5005			40 DEG - RUN 5006			ENERGY (MEV)	SIGMA ERROR (MB/SR-MEV)
ENERGY (MEV)	SIGMA (MB/SR	ERROR -MEV)	ENERGY (MEV)	SIGMA IMB/SR	$\begin{aligned} & \text { ERROR } \\ & - \text { MEVI } \end{aligned}$	ENERGY (MEV)	SIGMA (MB/SR-	ERROR - MEVI	ENERGY (MEV)	$\begin{aligned} & \text { S I GMA } \\ & \text { IMB/SR-1 } \end{aligned}$	$\begin{aligned} & \text { ERROR } \\ & \text {-MEVI } \end{aligned}$		
(MEV) 3.78	(MB/SR-	-MEVI	(MEV)	(MB/SR-	-MEVI								
3.78	14.34	0.41	3. 78	11.81	0.27	3.78	12.19	0.20	3082	10.55	0.14		
4.18	15.22	0.42	4.18	13.46	0.29	4.18	13.33	0.21	4022	12.09	0.15		
4.58	17.38	0.45	4.58	14.51	0.30	4. 58	14.02	0.21	4.62	12.63	0.16		
4.98	17.26	0.45	4.98	14.20	0.30	4.98	14.90	0.22	5.02	12.89	0.16		
5.38	17.60	0.46	5.38	15.08	0.31	5.38	14.41	0.22	5.42	12.88	0.16		
5.78	17.92	0.46	5.78	14.70	0. 30	5.78	14.36	0. 22	5082	12.22	0.16		
6.18	17.49	0.45	6.18	13.88	0.30	6.18	14.03	0.21	6.22	11.64	0.15		
8. 88	14.87	0.12	8.89	9.94	0.07	8.8E	8.98	0.05	8.92	7.01	0.03		
11.89	10.59	0.22	11.89	5.91	0.12	11.89	4.80	0.08	11.92	3.21	0.05		
12.89	10.24	0.22	12.89	5.33	0.12	12.89	4.49	0.08	12.92	2.89	0.05		
13.89	9.67	0.21	13.89	4.83	0.11	13.89	4.07	0.07	13.92	2.62	0.05		
14.89	9.61	0.21	14.89	4.48	0.11	14.89	3.67	0.07	14.92	2.46	0.04		
15.89	9.10	0.21	15.90	4.42	0.11	15. 89	3.51	0.07	15.92	2.35	0.04		
16.89	8.74	0.20	16.90	4.03	0.10	16.89	3.33	0.07	16.92	2.22	0.04		
17.89	8.62	0.20	17.90	4.00	0.10	17.89	3.13	0.06	17.92	2.22	0.04		
18.89	8. 36	0.20	18.90	3. 80	0.10	18.85	3.04	0.06	18.92	2.19	0.04		
19.89	8.43	0.20	19.90	3. 79	0.10	19.89	2.90	0.06	19.92	2.13	0.04		
20.89	8.02	0.19	2C. 90	3.60	0.10	20.89	2.97	0.06	20.92	2. 23	0.04		
21.89	8.09	0.20	21.90	3.4 C	0.09	21.90	2.81	0.06	21.92	2.13	0.04		
22.90	7.97	0.19	22.90	3.62	0.10	22.90	2.84	0.06	22.92	2. 14	0.04		
23.90	7.54	0.19	23.91	3.53	0.09	23.90	2.86	n. 06	23.92	2.18	0.04		
24.90	7.65	0.19	24.91	3.54	0.09	24. 90	2.74	0.06	24.92	2.21	0.04		
25.90	7.37	0.19	25.91	3.49	0.69	25. 90	2.83	0.06	25.92	2.17	0.04		
26.90	6.98	0.18	26.91	3.25	0.09	26.90	2.67	0.06	26.92	2.18	0.04		
27.90	6.95	0.18	27.91	3.44	0.09	27.90	2.89	0.06	27.92	2. 21	0.04		
28.90	6.51	0.18	28.91	3.40	0.09	28.90	2.90	0.06	28.92	2.19	0.04		
29.90	6.53	0.18	29.91	3.36	0.09	29.90	2.98	0.06	29.92	2.17	0.04		
30.90	6.59	0.18	30. 91	3.43	0.09	30. 90	2.87	0.06	30.92	2. 20	0.04		
31.90	6.41	0.17	31.92	3.40	0.69	31.90	2.78	0.06	31.92	2.15	0.04		
32.90	6.47	0.17	32.92	3.28	0.09	32.91	2.84	0.06	32.92	2.17	0.04		
33.91	6.14	0.17	33.92	3.40	0.09	33.91	2.84	0.06	33.92	2.14	0.04		
34.91	6.24	0.17	34.92	3.32	0.09	34.91	3.02	0.06	34.92	2.04	0.04		
35.91	6.26	0.17	25.92	3.39	0.09	35.91	2.92	0.06	35.92	2.15	0.04		
36.91	6.77	0.18	36. 92	3.45	0.09	36.91	2.93	0.06	36. 92	2. 14	0.04		
37.91	6.93	0.18	37.92	3.62	0.10	37.91	3.00	0.06	37.92	2. 04	0.04		
38.91	6.21	0.17	38.92	3.31	0.09	38.91	2.92	0.06	38.92	2.01	0.04		
39.91	6.94	0.18	35. 93	3.60	0.10	39.91	3.06	0.06	39.92	2.00	0.04		
40.91	6.99	0.18	40.93	3.93	0.10	40.91	3.13	0.06	40.92	2.10	0.04		
41.91	6.99	0.18	41.93	4.08	0.10	41.91	3.20	0.06	41.92	2.10	0.04		
42.91	7.13	0.18	42.93	4.42	0.11	42.92	3.50	0.07	42.92	2.09	0.04		
43.91	7.80	0.19	43.93	4.38	0.11	43.92	3.55	0.07	43.92	2. 20	0.04		
44.92	7.76	0.19	44.93	4.79	0.11	44.92	3.88	0.07	44.92	2.19	0.04		
45. 92	7.80	0.19	45.93	4.68	0.11	45. 92	3. 70	0.07	45.92	2.06	0.04		
46. 92	7.39	0.19	46.93	4.43	0.11	46.92	3.38	0.07	46.92	1.97	0.04		
47.92	6.51	0.18	47.94	3.84	0.10	47. 92	3.19	0.06	47.92	1.86	0.04		
48.92	6.76	0.18	48.94	3.84	0.10	48. 92	3.13	0.06	48. 92	1.80	0.04		
49.92	6.33	0.17	49.94	3.50	0.109	49.92	2.87	0.06	49.92	1.64	0.04		
50.92	5.24	0.16	50.94	3.27	0.09	50. 92	2.93	0.06	50.92	1.57	0.04		
51.92	5.41	0.16	E1.94	3.45	0.09	51.92	2.75	0.06	51.92	1.49	0.03		
52.92	5.75	0.16	¢2.94	3.38	0.09	52.92	2.78	0.06	52.92	1.33	0.03		
53.92	5.34	0.16	¢ 3.94	3.44	0.09	53.93	3.08	0.06	53.92	1.74	0.04		
54.92	4.96	0.15	54.95	3.65	0.10	54.93	3.40	0.07	54.92	1.26	0.03		
55.93	4.62	0.15	55.95	3.69	0.10	55. 93	3.46	0.07	55.92	2.43	0.04		
56.93	3.58	0.13	56. 95	3.37	0.09	56. 93	3.64	0.07	56.92	1.58	0.04		
57.93	7.997	0.195	57.95	9.033	0.151	57. 93	8.839	0.107	57.92	0.698	0.023		
58.93	1.484	0.084	¢8.95	1.640	0.064	58. 93	1.730	0.047	58.92	0.465	0.019		
59.93	7.02	0.18	59.95	11.82	0.17	59.93	7.65	0.10	59.82	4.51	0.07		
60,63	31.364	0.609	60.60	15.774	0.365	60. 51	7.706	0. 258	0.0	0.0	0.0		

Table 5
OEUTERON FROM A $=60$ BOMBARDED BY 62 MEV. PROTONS.

15 DE	- RUN	5003	20 DE	- RUN	5004	25 DE	- RUN 5	5005	40 DE	- RUN	5006		
ENERGY	SIGMA	ERROR	ENERGY	SIGMA	ERROR	ENERGY	SIGMA	ERROR	ENERGY	S IGMA	ERROR	ENERGY	SIGMA ERROR
(MEV)	(MB/ SR	-MEVI	(MEV)	(MB/SR-	-MEV)	(MEV)	(MB/SR-	-MEVI	(MEV)	$1 \mathrm{MB} / \mathrm{SR}$	-MEVI	(MEV)	(MB/SR-MEV)
5. 13	0.345	0.040	5. 13	0.343	0.029	5. 13	0.357	0. 021	5. 12	0.357	0.017		
6.13	0.441	0.046	6. 13	0.477	0.035	6.13	0.487	0.025	6.12	0.427	0.018		
7.13	0.505	0.049	7.13	0.516	0.036	7. 13	0.497	0.025	7.12	0.443	0.019		
8. 13	0.537	0.050	8. 14	0.484	0.035	8. 13	0.498	0.025	8.12	0.465	0.019		
9.13	0.509	0.049	9.14	0.487	0.035	9.13	0.513	0.026	9. 12	0.445	0.019		
12.14	0.493	0.021	12.14	0.477	0.016	12. 14	0.441	0.011	12.12	0.377	0.008		
15.14	0.414	0.044	15.14	0.398	0.032	15. 14	0.426	0.023	15.12	0.325.	0.016		
16. 14	0.487	0.048	16.15	0.468	0.034	16. 14	0.409	0.023	16.12	0.339	0.016		
17.14	0.414	0.044	17.15	0.404	0.032	17.14	0.429	0.024	17.12	0.297	0.015		
18.14	0.380	0.042	18.15	0.455	0.034	18.14	0.364	0.022	18.12	0.296	0.015		
19.14	0.507	0.049	19.15	0.425	0.033	19. 14	0.419	0.023	19.12	0.322	0.016		
20.14	0.396	0.043	20.15	0.468	0.034	20. 14	0.419	0.023	20.12	0.310	0.016		
21.14	0.407	0.044	21. 15	0.360	0.030	21.14	0.412	0.023	21.12	0.304	0.016		
22.15	0.480	0.048	22.15	0.453	0.034	22. 15	0.432	0.024	22.12	D. 296	0.015		
23.15	0.456	0.046	23.15	0.472	0.035	23.15	0.425	0.023	23.12	0.312	0.016		
24.15	0.548	0.051	24. 16	0.458	0.034	24. 15	0.433	0.024	24.12	0.320	0.016		
25.15	0.516	0.049	25.16	0.466	0.034	25.15	0.432	0.024	25.12	0.317	0.016		
26. 15	0.604	0.053	26. 16	0.429	0.033	26. 15	0.480	0.025	26.12	0.303	0.015		
27.15	0.546	0.051	27.16	0.474	0.035	27.15	0.458	0.024	27.12	0.297	0.015		
28.15	0.536	0.050	28.16	0.566	0.038	28.15	0.440	0.024	28.12	0.286	0.015		
29.15	0.705	0.058	25.16	0.492	0.035	29.15	0.470	0.025	29.12	0.285	0.015		
30.15	0.656	0.056	30.16	0.511	0.036	30.15	0.413	0.023	30.12	0.273	0.015		
31.15	0.588	0.053	21.16	0.524	0.036	31.15	0.447	0.024	31.12	0.278	0.015		
32.15	0.570	0.052	32.17	0.489	0.035	32.16	0.420	0.023	32.12	0.281	0.015		
33.16	0.660	0.056	33.17	0.583	0.038	33.16	0.416	0.023	33.12	0.249	0.014		
34.16	0.698	0.057	24.17	0.588	0.039	34. 16	0.441	0.024	34.12	0.261	0.014		
35.16	0.661	0.056	35.17	0.572	0.038	35.16	0.422	0.023	35.12	0.248	0.014		
36. 16	0.776	0.061	36.17	0.598	0.039	36. 16	0.427	0.024	36.12	0.274	0.015		
37.16	0.800	0.062	37.17	0.700	0.042	37.16	0.422	0.023	37.12	0.278	0.015		
38.16	0.886	0.065	38.17	0.617	0.040	38. 16	0.422	0.023	38.12	0.242	0.014		
39.16	0.766	0.060	39.18	0.629	0.040	39.16	0.468	0.025	39.12	0.273	0.015		
40.16	0.958	0.067	40.18	0.840	0.046	40.16	0.508	0.026	40.12	0.257	0.014		
41.16	0.950	0.067	41.18	0.689	0.042	41.16	0.510	0.026	41.12	0.308	0.016		
42.16	1.549	0.086	42.18	1. 235	0.056	42.16	0.683	0.030	42.12	0.323	0.016		
43.16	1.157	0.074	43.18	0.827	0.046	43.17	0.610	0.028	43.12	0.288	0.015		
44.17	1.200	0.075	44.18	0.837	0.046	44.17	0.550	0.027	44.12	0.423	0.018		
45.17 46.17	1.702	0.090	45.18	1.390	0.059	45.17	0.892	0.034	45.12	0.231	0.013		
$\text { 46. } 17$	1.589	0.087	$44_{4.18}$	1.587	0.063	46.17	0.827	0.033	46.12	0.399	0.018		
47.17	1.315	0.079	47.19	1.049	0.052	47.17	0.560	0.027	47.12	0.342	0.016		
48.17	1.330	0.079	48.19	1.225	0.056	48.17	0.708	0.030	48.12	0.223	0.013		
49.17	1.810	0.093	49.19	2.118	0.073	49.17	1.403	0.043	49.12	0.568	0.021		
50.17	2.200	0.102	50.19	1.271	0.057	50.17	0.577	0.027	50.12	0.199	0.013		
51.17	0.919	0.066	51.19	0.850	0.046	51.17	0.534	0.026	51.12	0.432	0.018		
52.17 52.97	5.165	0.156	¢2.19	3.434	0.093	52.17	1.926	0. 050	51.94	0.366	0.021		
52.97	0.022	0.013	E3.09	0.026	0.009	52.90	0.015	0.007	0.0	0.0	0.0		

Table 6
TRITCN FROM A $\mathbf{~} 60$ bombarded iy 62 MEV. PROTONS.

15 DEG	- RUN 5003	
ENERGY	SIGMA	
(MEV) ERROR		
6.68	(MB/SR-MEV)	
8.68	0.103	0.016
10.68	0.110	0.016
14.69	0.104	0.016
18.69	0.107	0.016
20.69	0.100	0.015
22.70	0.075	0.013
24.70	0.096	0.015
26.70	0.097	0.015
28.70	0.081	0.014
30.70	0.098	0.015
32.70	0.095	0.015
34.71	0.134	0.018
36.71	0.148	0.019
38.71	0.109	0.016
40.71	0.134	0.018
42.71	0.111	0.016
44.72	0.070	0.013
46.72	0.021	0.007
48.72	0.084	0.014
0.0	0.0	0.0

un 5004
25 DEG - RUN 5005
40 DEG - RUN 5006

Table 7
HELIUM-3 FROM A = 60 BOMBARDED BY 62 MEV. PROTONS.

ENERGY	SIGMA	ERROR
$(M E V)$	$(M B / S R-M E V)$	
13.49	0.060	0.012
15.49	0.038	0.009
17.49	0.073	0.013
19.49	0.064	0.012
21.49	0.067	0.013
23.50	0.050	0.011
25.50	0.055	0.011
31.50	0.099	0.007
37.51	0.108	0.016
39.51	0.068	0.013
41.51	0.118	0.017
43.51	0.134	0.018
45.52	0.120	0.017
47.52	0.064	0.012
49.02	0.035	0.013

20 DEG	- RUN 5004	
ENERGY	SIGMA	ERROR
IMEVI	IMB/SR-MEVI	
13.49	0.051	0.008
15.49	0.057	0.008
17.50	0.065	0.009
19.50	0.046	0.008
21.50	0.055	0.008
23.51	0.052	0.008
25.51	0.054	0.008
31.52	0.086	0.004
37.52	0.097	0.011
39.53	0.067	0.009
41.53	0.108	0.012
43.53	0.090	0.011
45.53	0.079	0.010
47.54	0.056	0.008
49.14	0.048	0.004

25 DEG - RUN 5005

40 DEG - RUN 5006

ENERGY	SIGMA (MEV)	ERROR (MB/SR MEVI	ENERGY (MEV)	SIGMA (MB/SR-MEVI	
13.49	0.050	0.006	13.52	0.038	0.004
15.49	0.056	0.006	15.52	0.045	0.004
17.49	0.052	0.006	17.52	0.041	0.004
19.49	0.044	0.005	19.52	0.043	0.004
21.50	0.057	0.006	21.52	0.039	0.004
23.50	0.055	0.006	23.52	0.036	0.004
25.50	0.058	0.006	25.52	0.036	0.004
31.50	0.077	0.003	31.52	0.046	0.002
37.51	0.073	0.007	37.52	0.030	0.003
39.51	0.049	0.006	39.52	0.023	0.003
41.51	0.070	0.007	41.52	0.029	0.003
43.52	0.063	0.006	43.52	0.028	0.003
45.52	0.054	0.006	45.52	0.018	0.003
47.52	0.041	0.005	47.52	0.007	0.002
49.02	0.008	0.003	48.64	0.000	0.001

ENERGY SIGMA ERPOR
(MB/SR-MEV)

Table 8
ALPHA FROM A $=60$ BOMBARDED BY 62 MEV. PROTONS.

15 D	- RUN 5	5003	20 DE	- RUN	5004	25	- RUN 5	5005	40 DE	- RUN	5006		
ENERGY	SIGMA	ERROR	ENERGY	SIGMA ERROR									
(MEV)	(MB/SR	-MEVI	(MEV)	(MB/S R	-MEVI	(MEV)	(MB/SR-	-MEVI	(MEV)	(MB/SR	-MEVI	(MEV)	(MB/SR-MEV)
14. 29	1.25	0.08	14.29	1.20	0.06	14. 29	1.15	0.04	14.37	0.95	0.03		
15. 29	0.886	0.065	15. 29	0.952	0.049	15. 29	0.923	0.035	15.37	0.750	0.024		
16. 29	0.727	0.059	16.30	0.760	0.044	16. 29	0.747	0.031	16.37	0.610	0.022		
17.29	0.595	0.053	17.30	0.660	0.041	17.29	0.639	0.029	17.37	0.477	0.019		
18. 29	0.533	0.050	18.30	0.515	0.036	18. 29	0.541	0.026	18.37	0.392	0.018		
19.29	0.495	0.048	19.30	0.410	0.032	19.29	0.420	0.023	19.37	0.338	0.016		
20. 29	0.382	0.043	20. 30	0.414	0.032	29. 29	0.405	0.023	20.37	0.298	0.015		
21.29	0.333	0.040	21. 30	0.400	0.032	21. 29	0.339	0.021	21.37	0.255	0.014		
22.30	0.317	0.039	22.30	0.280	0.027	22.30	0.299	0.020	22.37	0.247	0.014		
23.30	0.348	0.041	23.30	0.286	0.027	23. 30	0.266	0.019	23.37	0.222	0.013		
24.30	0.253	0.035	24.31	0.325	0.029	24.30	0.256	0.018	24. 37	0.193	0.012		
32.30	0.173	0.007	32.32	0.154	0.005	32.31	0.146	0.004	32.37	0.100	0.002		
40. 31	0.145	0.026	40.33	0.126	0.018	40.31	0.121	0.013	40.37	0.064	0.007		
41.31	0.154	0.027	41.33	0.127	0.018	41.31	0.117	0.012	41.37	0.063	0.007		
42.31	0.166	0.028	42.33	0.116	0.017	42.31	0.096	0.011	42.37	0.052	0.006		
43.31	0.129	0.025	43.33	0.104	0.016	43.32	0.088	0.011	43.37	0.047	0.006		
44.32	0.086	0.020	44.33	0.098	0.016	44.32	0.080	0.010	44.37	0.043	0.006		
45.32	0.115	0.023	45.33	0.103	0.016	45. 32	0.094	0.011	45.37	0.045	0.006		
46.32	0.122	0.024	46. 33	0.113	0.017	46. 32	0.091	0.011	46.37	0.036	0.005		
47.32	0.087	0.020	47.34	0.095	0.015	47.32	0.060	0.009	47.37	0.028	0.005		
48.32	0.054	0.016	48.34	0.090	0.015	48. 32	0.056	0.009	48.37	0.034	0.005		
49.32	0.111	0.023	49.34	0.078	0.014	49.32	0.041	0.007	49.37	0.017	0.004		
50. 32	0.126	0.024	50. 34	0.064	0.013	50. 32	0.054	0.008	50.37	0.021	0.004		
51.32	0.090	0.021	51. 34	0.054	0.012	51.32	0.052	0.008	51.37	0.011	0.003		
52.32	0.061	0.017	52.34	0.066	0.013	52. 32	0.043	0.007	52.37	0.011	0.003		
53. 32	0.048	0.015	¢3.34	0.058	0.012	53.32	0.026	0.006	53.37	0.009	0.003		
54. 32	0.045	0.015	54.34	0.036	0.010	54. 33	0.026	0.006	54.37	0.004	0.002		
55. 33	0.020	0.010	55.35	0.019	0.007	55. 33	0.010	0.004	55.37	0.003	0.002		
56.33	0.014	0.008	56.35	0.013	0.006	56. 33	0.012	0.004	56. 37	0.003	0.002		
57.33	0.015	0.009	¢7.35	0.012	0.006	57. 33	0.007	0.003	57.37	0.002	0.001		
58.33	0.024	0.011	58.35	0.022	0.007	58. 33	0.012	0.004	58.37	0.001	0.001		
59.33	0.024	0.011	ES. 35	0.022	0.007	59.33	0.012	0.004	59.37	0.001	0.001		
60.33	0.024	0.011	60. 35	0.022	0.007	60.33	0.012	0.004	60.37	0.001	0.001		

