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INTRODUCTION

The Willow Run Laboratories of The University of Michigan participated
in the Corn Blight Watch Experiment by collecting multispectral scanner
data on a biweekly basis over thirty segments in western Indiana and by
routinely processing data from fifteen of these segments. In addition to
these major efforts, we also undertook a more detailed study of selected

multispectral scanner data sets. A brief description of this study and the
results achievedtherein are the subject of this paper.

A detailed interpretation and analysis of selected corn blight data
sets was undertaken in order to better define the present capabilities and
limitations of agricultural remote multispectral sensing and automatic
processing techniques and to establish the areas of investigation needing
further attention in the development of operational survey systems. While
the emphasis of this effort was directed toward the detection of various
corn blight levels, problems related to the more general task of crop iden-
tification were also investigated. The goals of this effort were to:

1) investigate and define improved data preparation and processing tech-
niques and approaches; 2) determine the relative characteristics of crop
signatures and their discriminability; and 3) examine the usefulness of
signatures on data sets other than those from which they were extracted.

Since the analog recognition computer (SPARC) was fully committed to
the more routine aspects of processing and since the detailed interpreta-
tion and analysis required more in the way of quantitative informatiom,
our CDC 1604 digital computer was employed for this investigation.

% The work reported in this paper was supported by NASA under
Contract NAS 9-9784.
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Three segments in the intensive study area of Western Indiana over
which multispectral scanner data were being gathered on a biweekly basis
were selected as potential sites to be included in this investigation. To
support this investigation, ground information, in addition to that pro-
vided by the county agents, was gathered throughout much of the scanner
data collection period. This information included the location of fields,
the crop planted therein, as well as the condition of the crop.

DATA PREPARATION AND PROCESSING

As already mentioned, one of the goals of this study was to investi-
gate and define improved data preparation and processing techniques. The
need for such an effort is dictated by information we have gained through
our close association with multispectral scanner systems and experiences
we have had in processing multispectral data. Our experiences have shown
that potentially many problems may exist in each and every data set which,
if not corrected, could significantly reduce the accuracy of recognition
results for that data. Some of these potential problems are instrument-
related while others are associated with the radiation environment and the
scene being scanned. These problems include: 1) level shifts and gain
changes in the recorded data resulting from instabilities in system elec-
tronics and tape speed; 2) misregistration of data between spectral bands
due to unequal resolution in all the bands, the lack of optical alignment,
either by design or otherwise, of the detectors in all bands, or the imper-
fect alignment of the tape recorder record and playback heads; 3) noisy
data resulting from a combination of insufficient radiation input and lack
of detector sensitivity; 4) variations in signal levels as a function of
scan angle due to nonuniform angular sensitivity of the scanner, the effects
of atmospheric scattering, and bidirectional reflectance effects; and 5)
changes in the scene illumination level during the data collection mission.

All of the above problems could seriously affect one's ability to
generate accurate classification maps and extract useful information. With-
out going into much detail here*, we would like to present one of our
approaches to the solution of these problems. Prior to digitizing the data,
problems of misregistration or skew are eliminated by aligning the data
through the use of electrical delay lines. The reference signal used for
alignment is one which is recorded in each band during data collection as
the scan mirror views a reference source in the scanner. Level shifts are
eliminated by clamping the data for each scan line in each band to the dark
level signal (that signal which is generated when scanning the dark interior
of the scanner housing and which produces zero radiance input to the system).

* More details will be included in the Corn Blight Watch Final Report.
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Any gain changes and variations in scene illumination which would produce
the same effect as changing the gain are accounted for by scaling the data
in each band to the 'sun sensor' signal. The sun sensor, which is scanned
once for every revolution of the scan mirror, monitors the level of radia-
tion incident upon a flat opal glass plate atop the aircraft. The problems
with system noise, as well as those due to misregistration of data in the
flight direction, can be significantly alleviated by taking advantage of
the fact that in many cases successive scan lines overlap. Rather than not
digitizing and processing all scan lines (a common approach), the lines
containing largely redundant information are combined by averaging.

All of the above operations can be carried out without specific refer-
ence to the video, the data which is generated when scanning the scene. We
have chosen to designate such operations as data preparation. One other
operation in this category can be carried out. If the angular responsivity
of the scanner is nonuniform, and this nonuniformity is known and fixed, the
effect of the nonuniformity can be removed from the data. Depending, how-
ever, on what other operations are planned for eliminating angle effects,
the removal of this effect may be accomplished simultaneously with the re-
moval of the other angle effects. As mentioned earlier, these other effects
are due to scattering in the atmosphere and bidirectional reflectaunce. We
have chosen to designate as preprocessing those operations which are meant
to reduce or eliminate effects on the data which originate outside the
scanner.

One simple form of preprocessing which we have found to be useful
assumes that the scene, over its entirety, contains an approximately equal
distribution of all objects of interest at all angles. (It is felt that
this assumption is valid for most areas devoted to farming.) In this
approach, the average signal variation as a function of scan angle is com-
puted for each spectral band. The average signal variation includes the
nonuniform angular responsivity of the scanner if it has not already been
eliminated.

The effects of scanner angular responsivity, atmospheric transmittance,
and bidirectional reflectance are all multiplicative in nature, That is,
the radiation incident on an object being viewed at a given angle is multi-
plied by its reflectance, the transmittance of the atmosphere between the
object and the sensor, and the scanner responsivity at that particular angle
of view to form the radiation incident on the detector. In the absence of
significant path radiance (radiation scattered into the receiver by the
atmosphere), which is an additive effect, much of the angular variation in
the signal can be eliminated by dividing each scan line of data by the
normalized averaged signal variation. Since the data about which we are
concerned was gathered under relatively clear atmospheric conditions, path
radiance effects would be minimal, thereby justifying this preprocessing
approach.
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In order to illustrate the importance of properly preparing and pre-
processing the data, we now present some examples from data gathered over
Segments 203 and 212. The importance of clamping the data to the dark level
can be seen in Figure 1 where two histograms, one for the first minute and
the other for the second and third minutes of data collection for a parti-
cular run, are presented. It is seen here that the dark level varied on
the order of +37 during each of the two periods examined. This variation
in itself could seriously affect the ultimate discrimination capability in
processing the data. Here, however, an additional shift in the mean dark
level of about 5% also occurred during the run.

In Figure 2, examples are shown of the average angular signal varia-
tion for two data sets (43M 203 and 43M 212). It is clear on examining
the figure that significant variations in the average angular signal
occurred for both data sets with more variation present in Segment 203
data. This may be explained by examining the location of the sun during
the two data collection flights. For Segment 203 data, the solar elevation
was less and the solar azimuth was more easterly than that during the collec-
tion of Segment 212 data. With the sun, both lower in the sky and more
nearly perpendicular to the north-to-south aircraft flight path, a larger
variation of reflectance with scan angle resulted.

A more specific example of the effects of the angular signal variations
is shown in Figure 3. Here, we see histograms in two spectral bands of
many samples of soybeans and trees plotted as a function of their location
in the scene with respect to the data collection aircraft. The effect on
both soybeans and trees is a very obvious shift to higher signal value as
the scan mirror rotates from east to west. An important result of this
shift that is especially noticeable in spectral band 10 is the similarity
of signal levels for soybeans on the east and trees on the west side of the
aircraft. Obviously, this similarity would create problems in discriminat-
ing between and properly classifying both soybeans and trees independent of
their location in the scene. These similarities become even more important
when it is realized that of the four major object classes in this data set
(corn, soybeans, pasture, and trees), éoybeans exhibits the highest average
signal level in all bands while trees exhibit the lowest average signal
levels. Therefore, the signals for both corn and pasture fall between
these extremes and one can imagine the confusion that exists between the
four object classes and the effect that could be expected on the classifi-
cation accuracy of the unpreprocessed data set.

The effects of preprocessing the data on the range of signal means
for corn are shown in Figure 4. It is seen that a significant reduction
in corn signal range was accomplished by preprocessing. Although not
illustrated here, similar reductions were achieved for soybeans, pasture,
and trees with the result that these crops now exhibited more unique and
more easily discriminable signatures.
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We have attempted, in the foregoing discussion, to illustrate the
importance of careful data preparation and preprocessing in order to per-
mit the extraction of the maximum amount of information from any multi-
spectral scanner data set. Upon further research, the approaches and
techniques described may prove not to be the best. Even so, we believe
that the application of relatively simple techniques can significantly
improve the ability to extract useful information from multispectral
scanner data.

SIGNATURE CHARACTERISTICS AND DISCRIMINABILITY

The second goal of this study was to determine the relative character-
istics of crop signatures and their discriminability. While the character-
istics of signatures of the various levels of corn blight were of prime
importance, the signatures of other major crops and ground covers were also
important since they might affect the recognition accuracy of corn.

One of the data sets which was studied and will be reported on here
was gathered during Mission 43M over Segment 212. This data set was chosen
because it included the first occurrences of high levels of corn blight and
fairly complete ground information was available. More manpower was used
in gathering ground information at this time since this data set was selected
by the personnel of WRL and LARS as a study set to enable a check of the
routine recognition processing being carried out at the two facilities,

At the time of data collection (August 17), healthy corn plants were
approximately 7' - 8' tall with an estimated ground cover in most corn
fields of 90 - 100%. The soybean plants were predominantly 3' - 4' tall
with a ground cover of 75 - 90%. Hay fields in the segment were at various
stages of maturity, with some having been cut just before the mission.

Some fields surveyed early in the yeatr as winter wheat were being used to
grow hay or as pastures. Others of the fields had recently been disked.
The remaining acreage within the segment consisted of farmsteads, woodlots,
and pasture, with a small number of fields planted to oats.

The preparation of this data set for processing and analysis followed
the approach described in the previous section. Having prepared and pre-
processed the data, the next step was to extract signatures of the various
crop and crop-condition classes for analysis. It was decided, for this
analysis, to include only fields which appeared to be relatively uniform
in the aerial photography and scanner imagery and to further limit the
fields to those for which ground information was available, A large number
of fields or portions of fields satisfying these criteria were selected,

The signatures from a number of the corn fields were examined using
a clustering procedure (this procedure separates data points into groups
or clusters and assigns data points exhibiting similar multispectral
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characteristics to a single cluster). If there was to be any hope of
discriminating among levels of blight, the data points from fields of

equal blight level should be clustered together. This, however, was not
the case. Table I depicts the results of the cluster analysis with the
data being assigned to six clusters. There seems to be no correlation
between blight level and cluster assignment. However, a weak correlation
does exist between the clusters and the location of each field in the seg-
ment (east, middle, or west) and the orientation of the rows within each
field. As seen in Table I, clusters 5 and 6 include all the selected
fields which were located on the East side of the segment, while clusters

3 and 4 include all those fields planted in a North-South direction. These
facts seem to suggest that the angle correction applied to the data did not
totally eliminate the angle effect present in scanning fields of corn and
that this residual effect along with the variable effects of other stresses
overshadow any detectable differences in radiation due to levels of corn
blight in the range 0 - 3.

In order to check this result, additional analysis of corn blight
level signatures were carried out. For this analysis, additional signa-
tures, including some from fields of corn blight levels 4 and 5, were
extracted., The mean signal values for each of the signatures (a total of
45) in each of the twelve spectral bands were plotted. Here, too, it was
clear that discrimination among levels 0 - 3 would not be possible since
the ranges of mean signal values overlapped almost completely in each band.
This is illustrated in Figure 5 where the values in five of the spectral
bands are depicted. The one somewhat promising indication offered by
Figure 5 is the partial separation of blight levels 4 and 5 from levels
0 - 3 in spectral bands 8 and 9. This suggests that levels 0 - 3, 4, and
5 may be separable.

While it is necessary to have unique blight level signatures to in-
sure the ability to discriminate among blight levels, the uniqueness among
blight level signatures may not be a sufficient condition for accurate recog-
nition if the signatures of other object classes in the scene are not also
distinct. To determine whether distinct signatures existed which would
permit the generation of accurate crop recognition maps, signatures were
extracted from selected fields of soybeans, pasture, hay, and trees. The
ranges of the mean signals in each spectral band for each of these classes
was determined. This information along with that for corn is plotted in
Figure 6. Upon examining this figure, it is clear that, with the exception
of hay and pasture, the signal ranges for every pair of object classes
exhibits no overlap in at least one spectral band. The uniqueness of the
signal ranges is a good indication that a fairly accurate crop recognition
map could be produced if training signatures encompassing the appropriate
ranges were utilized.

A crop recognition map, a portion of which is illustrated in Figure 7,
was generated. (The field identifications are shown in Figure 8). In the
remainder of this section, the signatures used to train the computer and
the results of the recognition process are discussed.
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As previously mentioned, it was necessary that the training signa-
tures for each object class encompass the range of variability of that
class. To satisfy this requirement, a single signature was generated for
each class by combining the two individual signatures for that class which
fell at the upper and lower extremes of the signal range. The combined
signatures, then, had a mean which was the average of the means of the
extreme signatures and which included those means within *1 standard devia-
tion of the combined signature distribution.

Combined training signatures were calculated for corn (blight levels
0 - 3), soybeans, pasture, hay, trees and an object class designated sparse
vegetation. The latter class included a wide range of sparseness from bare
soil to a fairly high percentage (50%) vegetative cover. In addition to
the combined signatures, the signatures from two corn fields were used to
train the computer for corn blight levels 4 and 5.

It was decided that the same number of spectral bands (six) would be
used in generating this recognition map as were being used in the routine
processing of the Corn Blight Watch data. Six spectral bands were selected
(2, 6, 8, 9, 10, and 12) which seemed to provide adequate separation between
the eight object classes.

An analysis was carried out of the recognition results achieved in
identifying corn fields or areas in corn fields containing specific levels
of blight. The best that could be said for these results is that they were
disappointing. Although most fields which were called out by the observers
in the field as exhibiting high levels of blight were recognized as such,
many other fields were improperly identified as containing high blight
levels. The reasons for the misidentifications were many and varied, ranging
from the existence of other plant deficiencies and diseases to one example
of a field planted to popcorn which resembled fields containing high levels
of blight. A general conclusion regarding this effort is that at this time
in the growing season, enough natural variability exists in corn to prevent
reliable detection of specific blight levels.

The results achieved in identifying the various object classes in
the scene were very much better. The number of acres classified as belong~
ing to each of seven categories are listed in Table II. For soybeans, the
number of acres recognized was approximately 857 of the acres planted. The
majority of non-soybean classifications in soybean fields were sparse vege-
tation. In almost all cases, these classifications were judged to be
correct since they occurred in regions of the fields where the plants were
stunted due to soil drainage problems. Therefore, on a point by point
basis, the recognition accuracy for soybeans was actually much better than
85%. 1In fact, if the recognition results were interpreted on a per field
basis, with all fields in which more than 50% of the points were classified
as soybeans being considered 100% accurate, the accuracy of recognition
exceeds 987%.
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The point by point recognition accuracy for corn was significantly
lower than that for soybeans. Approximately 607% of the acreage planted
to corn was classified as being corn. In this case, too, the largest
majority of non~corn classifications were sparse vegetation. Since the
corn training signatures were extracted from uniform areas of relatively
high ground cover, regions of lower cover would likely not be recognized
as corn, If information concerning the likely yield of corn was required,
the above approach would be reasonable. However, for a determination of
the number of acres planted to corn, it is clear, at this time, that the
signatures should have been extracted from areas containing a larger
variety of crop conditioms.

Of all the corn fields in the segment, 37 were poorly recognized.
There was no apparent correlation between soil type, topography, or loca-
tion of the fields in the segment but the planting density in at least 32
of these fields was lower than most of the corn fields in the segment.
This is further indication that signatures should have been extracted
from other areas to optimize corn recognition.

The interpretation of the corn recognition results on a per field
basis improved the accuracy of a significant amount. Whereas only 60% of
the corn acreage was recognized on a point by point basis, 80% was recog-
nized on a per field basis. These results suggest that, in the future,
automatic per field classification techniques should be developed.

SIGNATURE EXTENSION

One of the primary goals of the efforts being undertaken in remote
sensing is the development of techniques which will enable large-area
crop surveys without the need for expending a significant amount of man-
power gathering ground information. If the amount of necessary ground
information can be reduced, cost-effective remote crop survey systems
will become a reality. To accomplish this goal, the effectiveness of
spectral signatures must be extended in time and space.

The discussion which follows describes a relatively successful attempt
at applying object class spectral signatures derived from one data set to
another set of data gathered on a different day at a different location.

In particular, data from Segment 203 of the Intensive Study Area were pro-
cessed using signatures from Segment 212.

The conditions which prevailed during the two data collection flights
are listed in Table III, The position of the sun in the sky, the soil types,
the ground moisture, and the visibility were different for the two sets
of data. Taken together, the existing conditions were different enough to
produce large changes in the magnitude and spectral makeup of the scene
radiance. It is changes of this sort that prevent the useful application
of signatures over large areas.
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The data from Segment 203 were prepared and preprocessed as described
in the previous section. The preprocessing included the stabilization of
the data by the sun sensor signal and the elimination of angle effects.
Since both data sets included a similar distribution of objects having the
same basic spectral properties, the differences in the angle-corrected
signal levels were used to quantify differences in scene irradiance and
atmospheric transmittance at the two locations. This information was then
used to adjust the spectral signatures determined from Segment 212 data
so that they could be applied to the Segment 203 data set.

As a preliminary test of this approach, the average signal level was
determined for each spectral band in the angle-corrected data for both data
sets. The ratios of these signals were then computed. It was felt that
these ratios could be used to make the adjustment described above. To check
whether this would indeed work, signatures were extracted from a limited
number of fields in Segment 203. On comparing the means of these signatures
to those extracted from similar object classes in Segment 212, it was found
that the ratios of the mean signatures for all objects were essentially equal
to the ratios of average signal levels in each channel. Based on this
limited substantiation of the approach, a recognition map was generated
for Segment 203 using the adjusted signatures from Segment 212,

The spectral bands which were used in producing this map were the same
as were used in processing Segment 212 (2, 6, 8, 9, 10, and 12). Figure 9
shows the ranges of the mean signals of the various ground cover types in
Segment 203 for each of these bands. With the exception of band 9, the
choice of spectral bands for Segment 212 appears to be also suitable for
Segment 203.

A detailed analysis was made of the recognition results in all the
fields in a 2-mile portion of Segment 203. The recognition map for this
area is shown in Figure 10. The field identifications for this area are
included in Figure 11. Rather than presenting the detailed analysis here,
we will indicate the general results achieved in generating this recogni-
tion map.

The accuracy of the recognition results for Segment 203 data using
signatures from Segment 212 data is somewhat less than that achieved on
Segment 212 data. For corn, the detection rate was 45% while the false
alarm rate was 10%. These figures for soybeans were a detection rate of
50% and a false alarm rate of 15%.

The hayfields were most poorly recognized. Only 4.6% of the area
categorized as hay was correctly recognized as hay. Approximately 77%
of the hay area was recognized as pasture or sparse vegetation. The
recognition of trees was also not very accurate. These results were not
too surprising since the tree recognition accuracy on Segment 212 was not
very good. Once again, most of the false alarms were sparse vegetation.
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It seems that the signature for sparse vegetation was too broad and that
some modification of the signatures would have produced significant improve-
ments in recognition accuracy for both data sets.

Considering the fact that the signals generated when viewing the two
scenes were quite different, it is felt that the application of signatures
from Segment 212 to recognize objects in Segment 203 was a reasonably
successful effort. We believe that these results give reason for optimism
regarding the feasibility of operational remote sensing crop survey systems.



TABLE I. -CLUSTER ANALYSIS RESULTS FOR 43M SEGMENT 212

1 2 3
Location Location Location
Blight in Row Blight in Row Blight in Row
Field Level Segment Dir Field Level Segment Dir Field Level Segment Dir
EE15 2 M E-W RR4 0 M E-w

EE9 2 W E-W RR3 1 M E-W NN2 0 M E-W

EE8 3 . W E-W uu? 1 M E~-W uus8 1 M E-W

uue6 1 W E-W ZZ7 2 W E-W

*UUL 3 W N-S

N1 3 M N-S

N-S

4 5 6
Location Location Location

Blight in Row Blight in Row Blight in Row

Field Level Segment Dir Field Level Segment Dir Field Level Segment Dir

RR5 0 oW N-$ $$s2 0 E E-W $ss1 0 E E-W

uu4 1 W N-S I11 1 E E-W

EE11l 3 W N-§
RR2 3 M N-S
uu10 3 M E-W
*UUL 3 W N-S

*Half of this signature clustered in Group 3 and half in Group 4.

TT-0ET
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TABLE II. -CROP CLASSIFICATION TOTALS FOR 43M SEGMENT 212

CLASS ACRES
CORN 979
SOYBEANS 898
PASTURE 721
HAY 291
SPARSE VEGETATION 2541
TREES 534

NOT CLASSIFIED 220



TABLE III., -SUMMARY OF CONDITIONS PREVAILING IN
TWO STUDY AREAS USED FOR SIGNATURE EXTENSION ANALYSIS

Latitude

Longitude

Date of Flight

Time of Flight

Solar Azimuth

Solar Elevation

Drainage Conditions

Days Since Last Precipitation
Amount of Last Precipitation
Visibility

Cloud Cover

Ground Temperature

Relative Humidity

Dew Point

Flight Direction

Segment
203

41.5°N

87°W
8/13/71
1053 est
139°
57°
Poor

3
1.60 in.
9 miles
< 10%
74°F
647
61°F
N-S

Segment

212

40.0°N
87°W
8/17/71
1120 est
150°
60°
Good

7

.49 in.
13 miles
< 10%
76°F
48%
55°F
N-S
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FIGURE 4. RANGE OF SIGNAL MEANS FOR CORN
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Key: Cn = Corn with n the Designated
Blight Level

S = Soybeans

WW = Winter Wheat

DA = Diverted Acres
P = Pasture
T = Trees
H = Hay
O = Oats

FIGURE 8. SCANNER IMAGERY OF SPECTRAL BAND
1.0-1.4 ym FOR SEGMENT 212, MISSION 43. FIELD
BOUNDARIES AND COVERS ARE INDICATED.
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FIGURE 10. DIGITAL RECOGNITION MAP OF A PORTION OF 1971 CORN BLIGHT WATCH
SEGMENT 203 (MISSION 43)
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FIGURE 11.

Key: Cn = Corn with n the Designated
Blight Level

S = Soybeans
WW = Winter Wheat
DA = Diverted Acres
P = Pasture
T = Trees
H = Hay
I =1Idle
O = Oats
NF = Non Farm

SCANNER IMAGERY OF SPECTRAL BAND 1.0-1.4 um FOR SEGMENT 203,
MISSION 43. FIELD BOUNDARIES AND COVERS ARE INDICATED.
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