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ABSTRACT

APPLICATIONS OF SYMBOLIC COMPUTING METHODS TO THE DYNAMIC ANALYSIS
OF LARGE SYSTEMS

By Carl F. Lorenzo and John P. Riehl

Lewis Research Center
Cleveland, Ohio 44135

The dynamic analysis and control of very large systems yet

remains a problem for the analyst. The tools currently available to

him rely largely on matrix methods. Analysis of such problems in

the missile field, specifically the Pogo problem, which includes the

structural, fluid, engine, and control dynamics of large multi-stage

booster vehicles, was the source of a somewhat different approach to

pn the analysis of large systems. In general, it is recognized that

most man-made systems, either physical or otherwise, tend to be not

highly interactive. That is, most of the elements are connected

only to other elements near to it rather than inter-connected with

all other elements which compose the system. The use of matrix

techniques to analyze such problems is found lacking because a large

number of matrix elements are zero.

A new approach to the problem lies in the use of symbolic

computer methods applied directly to the system equations. This

study will discuss some approaches to application of symbolic

computing methods to the analysis of very large physical dynamic

systems. The nature of the symbolic approach together with the

achieved and potential benefits will be discussed.

This paper further studies two specific techniques applied to

the analysis of large dynamic systems. Since the symbolic computing

language is very well suited to the operations with algebraic equa-

tions, both techniques use the transfer function concept as a tool

for the analysis of large linear dynamic systems. Also, both
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techniques have been coded in the experimental symbolic computer

language FORMAC. (Formula Manipulation Compiler). The first of

these approaches, REDUCE I, establishes the techniques and a

computer program to symbolically reduce arbitrary block diagrams

associated with large systems for desired transfer functions.

Symbolic closed form solutions are determined in several forms

including an expanded form in terms of the driving frequencies

and system constants. Along with this first technique, programs

are also written to numerically evaluate the symbolic solutions.

The program has been applied to several research problems which

include both lumped and distributed parameter systems. The dis-

tributed parameter forms are built into the program, and are

handled automatically.

A second computer program, REDUCE II, is also based on the

use of symbolic computing methods and has been written to accom-

modate large engineering systems. REDUCE II symbolically

calculates the transfer functions of any linear block diagram

output variable to any or all input variables. The solution

using this technique is presented in the compact form of a set

of nested functions. The program can handle systems as large as

600 equations (of essentially any order) and is intended as a

tool for the analysis of complex control and dynamic systems. A

sister FORTRAN program evolved to numerically evaluate solutions

formed by REDUCE II is used to obtain amplitude ratio and phase

angles as function of frequency.

The advantage of the symbolic approach to large systems

over the matrix approach is entailed in the fact that the stor-

age required in the symbolic approach is proportional to the

number of variables, hence, the number of equations, as opposed

to being proportional to the square of the number of variables

as in the matrix methods. Applications of both techniques

discussed above are presented in the subject paper. The paper

also projects other areas of application of the symbolic method.

ii



1.

APPLICATIONS OF SYMBOLIC COMPUTING METHODS TO THE DYNAMIC
ANALYSIS OF LARGE SYSTEMS

By Carl F. Lorenzo and John P. Riehl

INTRODUCTION

The dynamic analysis and control of very large systems remains a

problem for the analyst. Indeed, in addition to the increased complexity

and size of most physical systems, there is an increasing awareness of

large system problems in the "softer" sciences. Some of the current and

projected applications of the systems approach in these areas include:

(1) Management systems; (2) Various Physiological Systems; for example,

circulatory, respiratory, etc.; (3) Urban Dynamics and Planning; (4)

Economic Systems; (5) Industrial Dynamics; (6) Environment Pollution;

(7) Population Growth (where the entire world is considered as a system

considering such states as number of people, food, resources, and waste)

and of course the various distribution systems; (8) Transportation,

Communications and Power Networks. Hence, little justification is needed

to study the large system problem.

Any serious approach to the large systems problem will center around

the computer, with its ability to handle routine tasks quickly and to

hold large quantities of information available in memory for ready

access. Accepting this premise, the central problem then becomes

determination of the best way in which to utilize the computing power

available at any given time.

In this paper a somewhat unconventional approach to the analysis

of the dynamics of large systems will be considered. The basis of this
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approach is the use of symbolic computing methods which are applied

directly to the system equations.

The scope of the paper will include a brief discussion of the large

system problem, some background on symbolic computing methods, and two

programs applying the symbolic technique to dynamic analysis of systems

will be considered. Further, some attempt will be made to project

additional areas of application for the method.

THE LARGE SYSTEM DYNAMICS PROBLEM

Most large systems and physical large systems in particular, have a

number of properties which are important in determining how they should

be treated. Large systems are complex. They are complex because: (1)

the elements that compose them are complex. (2) The elements that compose

them are many, that is, the systems are by definition, large, and (3) the

arrangement of the elements may be complex. In addition, the mathematical

description may increase or decrease the apparent system complexity.

Large systems are usually nonlinear. In most physical cases they are

distributed. If our knowledge about them is incomplete they are non-

deterministic. Finally, a very important property, large systems

generally are not highly interactive; that is, the elements usually do

not communicate with all the other elements of the system but rather

only a few, generally those which are nearby.

The fundamental dynamics problem can be described as: Prediction

of the response of any desired system state to any control or disturbance

input or combination of inputs. This differs from the controls problem

which is to determine what can be done to certain available inputs to



3.

achieve desirable behavior in all parts of the system. It differs also

from large systems considerations which seek to determine the desired

communication paths between the elements,for example, the layout of a

telephone system. Fundamentally, the dynamics problem assumes a system

arrangement and seeks to describe it in a concise manner.

General mathematical descriptions of most physical system dynamics

are provided by systems of nonlinear partial differential equations.

The analyst nearly always linearizes, usually applying perturbations

methods. Also each partial differential equation is usually approxi-

mated by a system of ordinary differential equations (lumping). This

has the effect of introducing intermediate states which increase systems

size and complexity of arrangement.

At the heart of systems problems is the question of organization;

that is, the functional interrelationship of the elements forming the

system. The analysis part of the dynamics problem is to determine the

relationship of any desired output state to any or all input states,

regardless of arrangement and nature of the elements and independent of

the remaining system states. In the frequency domain, this is the

determination of the desired transfer functions. Thus, the transfer

function can be considered as a basic large systems tool which determines

the relationship of the desired state to a particular input. The systems

problem mathematically, is a topological problem and for linear Laplace.

transformed systems the dynamics problem is an algebraic one.

How the system analysis is done, of course, depends on the mathe-

matical tools available. In general, in dealing with systems of any
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size at all, the use of the computer is a must. The traditional tools

which have been used are based on two fundamental ideas. The first of

these is simulation. Simulation has the advantage of great generality

in the systems which can be handled. Both linear and nonlinear systems

can be handled and approximations to distributed systems can be made. One

can be certain that a solution to a large systems problem can be achieved

if enough equipment or computing time is available. The weakness of the

simulation process, however, is that it is very difficult to generalize

the results.

The second approach to systems analysis entails a wide variety of

methods centered around the use of matrix techniques. The matrix approach

supplies a fundamental system organizational tool. The approach has the

advantage of a significant theoretical background which can be applied

to solving the systems problem. However, the matrix method is not really

designed for large systems. This can be argued by referring to figure 1.

Figure l(a) shows a schematic diagram of sixteen elements arranged in a

four by four array. The elements are allowed to communicate with each

other on a vertical and horizontal arrangement. Using matrix techniques

to describe this communication, a matrix of the form of figure l(b) is

obtained. In this matrix, the ones indicate communication of the column

elements with the row elements. Communication in both directions is

assumed and self-communication is not considered. In this particular

case, namely a four by four arrangement (M = 4) it can be seen that the

matrix is rather sparse. Indeed, since no element communicates with

more than four other elements it is apparent that as the system size
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increases the relative number of zeros in the matrix will increase. This

is shown by the graph (fig. l(c)) which plots the number of zeros in the

matrix divided by the number of matrix elements as a function of system

size. In the limit, as system size increases to very large systems,

this ratio approaches one. In particular, less than one percent of the

elements are non zero for M = 20. If diagonal communication is allowed,

each element communicates with as many as eight other elements. The

situation becomes somewhat worse in that M = 30 is required to achieve

one percent non zero elements in the communications matrix. The agrument

posed here is that mentioned earlier, namely, that most physical systems

and most man-made systems in particular are not highly interactive. One

can of course describe very large systems using matrices and then resort

to sparse matrix methods to analyze them. However, serious questions

arise as to the value of using the matrix format in the first place.

Indeed, if one is to consider a system composed of a thousand elements,

he must be ready to handle matrices, with a million elements, and to

manipulate them and calculate with them. Admittedly, many short cut

procedures have been arranged for the matrix methods. However, it may

be that a different approach is required or at least desirable.

Another approach to large system analysis lies in the direct use

of the algebraic equations (frequency domain). In working directly

with the algebraic equations, we are working with a system of N elements

or at least proportional to N elements rather than proportional to N

elements, as in the case of the matrix approach. This can be done by

hand, and classically has been done in this manner; that is, the manual
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reduction of block diagrams. However, for very large systems, this becomes

a very tedious and error prone task. With the emergence of symbolic

computing languages, this process can be done in an automated manner using

the digital computer, allowing elimination of a routine task and potential

errors. In addition it allows the use of a new organizing tool, the

symbolic language itself.

In the work that follows, direct solution of the system equations

(frequency domain) for desired transfer functions will be referred to as

block diagram reduction. The block diagram is important because it

gives a visual picture of the relationship between the important variables;

hence, the elements of the system. Before discussing the question of

linear block diagram reduction it is appropriate to discuss at least

briefly, the nature of the symbolic computing languages.

SYMBOLIC ALGEBRAIC MANIPULATION

Computer algebraic manipulation means: the use of a computer to

operate on mathematical expressions in which not all the variables are

replaced by numbers, and in which some meaningful mathematical operation

is to be done, ref. 1. The purpose of a manipulative language is to

eliminate tedious mechanical algebra and the errors that can result in

such algebra. Most manipulative languages are written as supersets of

some other compiler level language. This gives algebraic languagesthe

benefits of their subsets.

FORMAC may be taken as a typical example of an algebraic manipulation

language. Originally, it was written as a superset of FORTRAN, and later

as a superset of PL/I. FORMAC permits operations of addition, subtraction,
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multiplication, division, and exponentiation to be applied symbolically.

Limited trigonometric functions and analytic differentiation are also

provided. The processes of substitution, removal of parentheses, auto-

matic simplification, comparison of expressions and more can be

performed (details, ref. 2).

FORMAC functions as a translator from FORMAC notation into FORTRAN

notation and FORTRAN subroutine calls. It builds symbol tables of

expressions and tables relating FORMAC to FORTRAN variables. Certain

additional nonexecutable FORTRAN statements are also created.

The FORMAC symbol table consists of two words. The first is the

BCD name. The second word may be a FORTRAN variable or encoded informa-

tion to the supporting subroutines if the symbol is algebraic. This

encoded information identifies a variable as either atomic or let and

supplies a pointer to the location (atomic) or expression (let)

associated with the symbol. FORMAC expressions are encoded in delimited

forward POLISH notation. The expression table is packed with an end of

expression marker, and every expression begins a new word. Constants

appear literally.

The limitations of FORMAC include: lack of integration capability

and trigonometric identities. Further,expressions are not always as

simplified as the user might like. This can lead to expressions that

are intractible for large problems. The FORMAC operating system tends

to be somewhat slow in comparison to normal FORTRAN programs. It should

also be noted that for very large programs, storage (in terms of free

list available to the FORMAC system) becomes a premium. The techniques
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in this paper were written in FORTRAN - FORMAC for the IBM 7094 - 7044

D.C.S. running under IBSYS. In spite of these limitations the symbolic

computing approach forms a powerful tool which can be applied to a wide

variety of problems. In the following sections FORMAC will be applied

to reduction of block diagrams.

TOTAL SYMBOLIC REDUCTION PROGRAM - REDUCE I

A program (called REDUCE I) has been written in FORMAC, to symbolically

reduce linear controls and dynamics block diagrams, ref. 3. The program

symbolically manipulates the equations representing the block diagram to

solve for the transfer function of a desired output variable to a desired

input variable. The REDUCE I program performs four major steps: (1)

reduction of the system of equations (of the block diagram) to one

equation containing the two variables of the desired transfer function.

(2) Solution of this equation for the transfer function in terms of the

G functions (component transfer functions), (3) Substitution of the

component information for the G functions. (4) Expansion of this equation

and collection of terms of the real and imaginary parts.

The fundamental structure of the program is indicated by the simpli-

fied flow chart presented in figure 2. The user input into the program

is minimal requiring first an indication of the numbers of: variables,

equations,and inputs. A check is made of this information to assure

that the size limitations of the program are not exceeded. The user

must further specify the transfer function desired, the inputs of the

block diagram,and the algebraic equations representing the block diagram.

The block diagram variables are specified as subscripted X's. Other than
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this, the form is any linear combination of the X's and coefficients,

namely, the G's or transfer functions of the individual components. If

expansion of the G's is desired the component information must also be

supplied. The G's are expressed in terms of the Laplace variable S and

the various time constants and natural frequencies of the system. These

data are sufficient to allow reduction to a symbolic form.

Before the actual reduction can take place, the order in which the

variables are to be eliminated and equations to be used for the elimina-

tions are determined by an algorithm built into the program. The first

variable to be eliminated is solved for in the equation indicated by the

order determination. This variable is then substituted into all other

equations of the set containing that variable, thereby eliminating it.

This process is continued for all the remaining variables except the two

variables involved in the desired transfer function. The final equation

contains only the variables of the transfer function and the G functions

representing the system components.

The reduction method used in the program can be depicted using the

sample system as in table I. The result of the reduction for the

example is,

X1 G1G3 + G2G 3

X2 1 + G 2G 3 (1)

This is the so-called G-form of the transfer function solution. The G

functions can be expressed as G
i

= Ni/Di. This ratio is substituted

into equation (1) which results in

X1 D1 N 2N 3 + D2 N1 N 3

X2 D1D2D3 +D1N2N 3 

for the example taken. In this form, the component information is easily
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introduced into the result. Assuming that G1 = S G2 = 0, G3 = SINH (1).

These G functions are then substituted into equation (2), thus

X1 SINH (1)
(3)

X
2

urS + 1

This is the S form solution of the transfer function (unexpanded). From

this form numerical evaluation is possible or further symbolic reduction

can be done. For the symbolic result, S is replaced by iw and powers of

i are simplified to give

X1 _ ReS I N H (1) + i ImS I N H (1)

X2 1 + i rw

This is called the complex rational form. That is, the form

a A + iB

Xb C + iD ()

where A, B, C, and D are functions of the excitation frequency and the

system parameters T's, No's, K's, etc. Availability of this symbolic

form of the transfer function is very important in many research studies.

The transfer function can also be numerically evaluated from this form.

A numerical evaluation program also has been written which can be

applied either to the S form or the complex rational form to generate

frequency response curves; amplitude ratio, phase angle as function of

frequency.

The REDUCE I program capability is demonstrated with the following

distributed dynamic application. The physical system to be analyzed

is shown schematically in figure 3A. This system is composed of a main

feed line feeding three subsidiary ducts. The dynamic problem is to

determine the response of pressure in the subsidiary ducts, to pressure

disturbances at the far end of the feeder duct; for example, to determine

the frequency response of P /P . The system block diagram is shown inc 0
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figure 3(b). The contents of the blocks, because each line is a distri-

buted system, are hyperbolic functions of square root arguments. The

form of these G's represents "four" terminal network solutions to the

wave equations for each section of line.

The system equations are

X2-GX
1

= 0 X -G6X
q
=0 X 14-G X =-X-X 0

X3-G2X20 = 0 X7-G7X15 = 0 X -G12X12 =0 X8-X7-X = 0

X
1 9

-G3X =0 Xs-G8X
4

=0 X -G X 0 X10-X-X3 = 0
3 Lj34= 8 8 4X 16 13 13 10 9 13

X18-GX17 = X -G9X 16 = 0 X2-X3-X = X14+X 15+X 16-X17 =0

X5-G5X14 =0 X1 0 -G10X4 = 0 X19+X18-X20 = 0

where the block diagram input is X 1, and X12/X
1

is the solution required.

The component information is indicated on the block diagram (fig. 3(b))

where

2 1 2n Rn
=fn LC S +R C S Z = (S _+_S)and Z = m

Yn = I~n n n n on S n Z = C S + 1on S nn m m m

The transfer function solution for P to P in the G form is presented as
c o

equation (Al) in Appendix A. The transfer function in the S form with

the component information substituted in for the N's and D's is equation

(A2). These equations are presented to give an appreciation for the

nature of a symbolic solution of a fairly sizable problem. This particular

problem was solved in about one minute of computing time. The printed

solution shown here is in FORTRAN notation. A deck of punched cards is

also output which contains the symbolic solution. Typical numerical

use of such information by evaluation for a set of conditions, for example,

-those shown in table II, is indicated in figure 3(c) where the transfer

function has been evaluated for various values of the terminating

characteristics of line B.
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The advantages of this technique are: (1) the results are given

in three symbolic forms G, S, and complex rational, and (2) the input is

extremely simple and is in normal algebraic language (arrays and matrix

manipulations for each frequency point are not required); (3) the symbolic

solution need be generated only once and then re-evaluated for different

frequencies or different component parameters. Also both distributed or

lumped systems can be handled with ease. The computing time is small,

even for large systems, and the user preparation time is minimal.

The most serious limitation of the work is the computer storage

required. Symbolic transfer functions about twice the size of this

example are the limit of the IBM 7094 - 7044 D.C. system. The FORMAC

routine itself requires a large amount of storage and as system size

increases the transfer function equations grow very large, burdening

storage capabilities. Further, one of the main values of a symbolic

solution, that of being able to look at the terms and make judgments

concerning the solution, diminishes as the system size grows. For

these reasons an attempt was made to handle very large systems for engi-

neering problems using a somewhat different conceptual basis. This is

the REDUCE II program.

REDUCTION OF VERY LARGE SYSTEMS USING THE REDUCE II PROGRAM

The basic philosophy of the REDUCE II program (ref. 4) is to avoid

any steps which promote significant expansion of the forms within the

computer and to handle the equations in such a manner that the system

collapses rather than grows in the computer. That is, as variables are

eliminated in the reduction process, the coefficients of the remaining
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variables will become combinations of the original coefficients (G's).

As this occurs, the combinations will be replaced by single element

coefficients (called super G's) and the mathematical equations defined

by the substitution will be immediately output from the computer.

Mathematically, through the reduction and substitution process, a

set of linear equations in the variable X with coefficients (G's) (con-

sidered to be constant) is transformed into an equation defining the

transfer function (in terms of super G's) and a set of equations defining

the super G's (called the solution set). Even within this framework, a

large number of ways exist to proceed since the form of the equations

composing the solution set has not been stipulated.

Some constraints on the form of the solution set equations can be

projected from the intended use however. Such considerations dictate

the following desirable properties of the solution set: (1) the super

G's formed should be nested, that is, each G should depend only on the

G's which preceed it and the original G's of the block diagram. (2) The

likelihood of a zero divide occurring when the solution set is evaluated

should be minimal. (3) The solution set should not require scaling. (4)

The solution set should be of minimal size. Consideration of these

properties, in particular (2) and (3), strongly suggest that a most

desirable form for the super G's composing the solution set, should be

ZTTG 
it I T UG, or as close to this form as possible. This form is

characterized by the fact that if the G terms in the numerator and

denominator are of the same order the super G will approach either zero

or one as frequency increases. Also because of the unity term in th2

denominator the possibility of a zero divide condition (by allowing any
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G = O) is null. The G = 0 special case is important since it is a primary

method of simplifying block diagram topology. It appears that super G's

with the unity additive term in the denominator can always be made to

occur if the block diagram is reduced by loops. In addition, the general

form approaches that desired. That this kind of solution form is possible,

even for loops embedded in large block diagrams (ref. 4), has been used as

a fundamental premise in the structure of the REDUCE II program.

The logic and flow of the REDUCE II program is illustrated in the

flow chart of figure 4. The program inputs are: the solution form

desired; the variables which are the block diagram inputs; the transfer

functions desired; the symbolic equations of the block diagram; and an

order string indicating when each variable is to be eliminated and when

a substitution is to be performed. Counts of numbers of variables,

equations, and G's, are made and compatibility checks are performed to

insure in as much as possible that the equations of the system are solvable.

Following these checks a variable to be eliminated is determined from

the order string. An appropriate equation containing the variable is

found by the program and the algebra involved in eliminating that variable

is performed symbolically. After all the variables of the particular sub-

string of the order string have been eliminated the super G substitution

procedure is performed. In making the super G substitution, the coef-

ficients of the X's of all the affected equations are searched for the

form +ti1 GT. If the form occurs the equations are divided through

by it forming super G's of the type indicated earlier (called Natural

form). If the form does not occur (for example, if reduction by loops
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is not used) it can be artifically introduced by adding 1 to an appropriate

coefficient to achieve super G's with denominators of the L'ET& form.

This is a separate program option (called Artificial form). Following

this division by the appropriate coefficient, the new coefficients of

the X's have super Gssubstituted for them and are output from the program as

they occur. This is repeated until all substrings have been eliminated.

When this is done, the reduction is complete and the transfer function(s)

can be formed. In this program, the transfer function for any output to

all the block diagram inputs are formed simultaneously. When all the

individual transfer functions have been formed, a check is made to assure

the resulting equations are empty. That is, that there are no residual

terms left in the equations which would indicate an error in the formula-

tion of the system equations.

The user does not specify which equations are to be used in the

reduction, but merely which variable is to be eliminated in a given step.

The simplest equation (fewest variables) containing the variable to be

eliminated is used to eliminate it. If the variable due for elimination

occurs in more than two equations an algorithm attempts to identify the

equations associated with block diagram loops containing either: first

the variables involved in the order substring or second, any other

variable yet to be reduced. If neither of these is possible then the

simplest equation is used.

A numerical evaluation program (EVAL II) geared to the REDUCE II

output has also been written. The program takes the solution set

generated by REDUCE II, supplies the component information in the form
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of the normal G's and uses complex arithmetic to evaluate the super G's

and transfer functions. The output of EVAL II consists of a tabulation

of the transfer functions for each frequency point. Plot routines are

also included.

The program function is best demonstrated by a simple application.

The block diagram of figure 5 represents a system for control of the

position of a shock wave in a supersonic inlet for a jet engine using

engine fuel flow. Using "modern" control techniques a controller was

designed to minimize the occurrence of inlet unstarts in the presence

of a stoichastic disturbance. The control designer wishes to obtain

specific transfer functions from which system frequency domain behavior

could be studied. Since a PADE' approximation to the inlet plant dead

time had been made for control design purposes, it was important to

determine the effect of this approximation on dynamic performance.

Transfer functions X
7
/X 1, X 7

/X2, X
7
/X

3
were obtained for this reason.

The partial results of the reduction (using the Artificial form

solution) are given in the solution set A3. From these results,

evaluations with different plants and controllers can be made. Essentially,

any simplification of the topology and any complication of the components,

is possible. The time required to execute this reduction was 25 seconds.

A numerical evaluation for the .G's (component information) of Table

III was made using the EVAL II program. The frequency range of interest

was from 0.01 to 4.0 Hertz (due to user scaling, frequency x 100) by

steps of 0.01 Hertz. The execution time required to evaluate these 400

points plus an additional 600 points for the automated plot routine for
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all three transfer functions was 32 seconds. Plots of typical results

for the X7/X 1 transfer function are presented in figure 6. The difference

in the plots is of course the effect of the PADE' approximation at the

higher frequencies. Systems similar to this with 10
t
h order plants and

controllers have also been analyzed.

Program capability was studied by reducing two and four terminal

ladder networks. Systems as large as 600 equations were reduced in this

study. The reduction rate is sensitive to the problem size as shown in

figure 7.

Aside from storage and time limitations, the only problem encountered

with the approach has been occasional numerical evaluations difficulties

(for wide frequency band) for large highly interactive systems. These

can generally be eliminated by proper selection of the reduction order string.

CONCLUSIONS AND PROJECTIONS

Two programs have been written to symbolically reduce controls and

dynamics block diagrams. The first of these programs, REDUCE I, generates

a total symbolic solution, and is applicable to derivational and research

problems, where such solutions are needed for further analysis. The

solution forms are: the G form, the S form, and the complex rational

form. The program is capable of handling arbitrary linear block diagrams,

but is limited to systems involving 30 equations and as many as 63

variables. The computing time required is modest for systems of these

sizes and the user preparation time is minimal. The system can be either

lumped or distributed parameter.

A second program, REDUCE II, was written to handle very large block
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diagrams as would be encountered in engineering applications. With this

program transfer functions can be determined for any output variable to

any or all input variables. The solution is determined as a set of non-

linear algebraic equations. These equations, called super G's, are

defined in terms of the original system G's and the super G's which pre-

ceed it. The solution set relations are output from the computer as they

are formed thereby minimizing the critical problem of computer storage.

The nested form of the solution set allows direct numerical evaluation.

The premise of the program, is reduction of the block diagram by loops,

which alleviates scaling and zero divide problems. The advantage of this

program over previous techniques, is that the arrangement of the input

data in the form of arrays and the matrix manipulations for each frequency

are not required. The symbolic solution set need be generated only once

and then evaluated for desired frequencies and G's.

The REDUCE II program allows solution of systems involving up to 600

equations with a total of 1200 G's (normal plus super G's). The input

information required is nominal and the manner in which the reduction is

performed is controlled by the user in stipulating the order string. The

computing time required for the program varies with the size of the prob-

lem being solved. Typical rates are 0.6 of a variable per second for

small problems to an initial rate of 0.1 variable per second for larger

problems.

The symbolic computing technique appears to have significant

potential for dealing with large systems dynamic problems. The symbolic

approach supplies an organizing function. This can be used to advantage
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by allowing storage, proportional to the number of variables to be handled

rather than the number of variables squared as is usually the case in

matrix methods. Further, the symbolic method allows human knowledge and

experience to be readily applied to the large system problem (i.e.,

reduction order string for REDUCE II).

One of the most important aspects of the symbolic computing method

is the fact that once a topology is solved it is not necessary to solve

it again, and it can then be evaluated for any specialized set of com-

ponent information to generate desired sub-applications.

The weaknesses of the symbolic method lie in the pattern recognition

area. That is, the ability to factor and the ability to integrate.

Further, with current computers, the storage required for the program

itself and the memory required for computed solutions are a limitation.

However, as computers grow, this limitation should be reduced.

Extensions of the work presented in this paper would take the form

of pre and post processing programs. Two preprocessing programs in

particular would be of interest. It should be possible to write a symbolic

program to automatically linearize a wide variety of nonlinearities. Such

a program would accept the symbolic equations defining a system together

with a nominal operating point and transform these into a linear system.

A second program could be written based on graph theoretical concepts

to determine best strategies for the block diagram reduction for complex

diagrams. This would likely be a non-matrix approach using tree struc-

tures. The result would be in terms of an order string to guide the

reduction process. Further research would be required into the question
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of best solution form.

The post processing possibilities are even more interesting since

the symbolic solution forms are available. Programs can be written to

determine stability as a function of several system parameters. Using

the transfer functions as generated by REDUCE II, determination of the

zeros of the denominator and the infinities of the numerator would be

required.

Symbolic programs can be written to examine the influence of key

parameters on system dynamics. This would be done by numerically special-

izing all parameters but those of interest; the resulting expression

would be one of an influence function character.

Programs to determine transient response might also be feasible.

This would require an augmented block diagram to be generated and reduced

and numerical inversion of the frequency response.

In the area of optimum controls the organizational aspects of the

symbolic method should be useful. The differentiation capability of

the language could be used to generate the Euler-Lagrange Equations in

an automated manner. Integration of the resulting boundary value problem

for a general case would be very difficult. However, special cases where

the system characteristics are restricted might be handled by specially

written symbolic integration algorithms.
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APPENDIX: Solutions of Applications

X 1 2 /X1' -

THE NOJM_2 RATOR
G(14*GI5s*G( S)4u$9)*G{( 4L~G(131+G Gl!*G(51*G(8)*G(11)+G(1{*G(8)+G(1
)*G(8)*G(9)*G(13)

THE DENOMINATOR
J(Z)*G(3)1 G(2+G( 21*G(3)* 5 (7G( 9)*G( G( 9*G11*G(12)*( 13 3(2)*G3*G(5 (A
j*G(7)*G(11)*G( 2)12+G(2)*G(3)*G(5)*3(9)lG(11)*G(13)+G(2)*G(3)*G(5)*
G(11)+( Z)*J( 31 *G(7) *G(),G9g( 12*G(13)+( 2)G(3)*G(7)*(12)+G(2)*G(
3) 3(9)*G(13)+G( Z)*(4)*G5})*G(7)*G(10)*G(11)*G(12)*G(13)+G(2)*G{4
)*G(5)*G(8)*G(9)*G(11)*G(12)*G(13)+-G(2)*G(4*G(5)*G(8)4*(11)*3(12)
sG(2)*G(4J*G(5)*G(1)*G(11)*G(13)+G(2)lG(4)*G(6)*G(7)*i(9)*G(11)*G
(12)*G(13)+3(2)*G(4)*G(6)eG(7I*G(11)*G(12)+G(2)*G(4)*G(6)*G(9)*G(
11)$G(13)+G(2)*G14)*G(6)*'$(11)+4G(2*G(4)*G(7)*G(!1)*G(12)*G(13)+G(
L*( 4)*GG( 8I*G(9)*G(12)*G(13)+G(2)*G(4)*GI(8)*G(12)+G(2)*C4(4)*G(10)
*'(13)+G(5) *(7)*G(9)*G(11)*G(12)*G(13)+G(5)*G(7) G(11)4*(12)+G(5)
*G(9)*G(11)*G(13)+G(5)*G(11)+G(7)*G(9)*G(12)*G(13)+G(7)*G(12)4+G(9)
*G(13)+i.O

X1 2 /X 1=

THE NJMERATOR
CJSHF (1 ) *(COSHF( 2 *K(1)*(ST(1)+1.)*SRTF(2)+S*SINHF(2)J*COSHIF(3)

(CDSHF(4)K( 3*( S* ( 3+1. O)*SRTF( 4 ) +SSIIHF(4) )*S**2 *SINHF(2) *
SINHF(4)*SO~rF(1)*SaRTF(2)*SQRTF(3)*SQaTF(4)+COSHF(1)*(COSHF(2)*K(
i)*(S*r (l) +.)*SQRTF(2)+S*SINHF(2) )*CSHF(3)*S**3 *SINHF(2)*
SwRFF(1 )*SORTF(2)*SQRTF(3)*SQRTF(4)+COSHF(1)*COSHF(3)*(COSHF(4)*K(
3) (S*T(3)+1.O)*SQRTF(4) +S*SINHF(4) )*S('*3 *SINHF(4)*SQRTF(1)*
SQRTF(2)*SQRTF(3) *SQRTF(4) +COSHF(1)*COSHF(3)*S**4 *SQRTF(1)*SQRTF
(2)*SJRTF(3) SQRTF 41

THE DENOMINATOR
CO 1 CHF(2 COS() HF2HF(2)*K )*(S*T(1)+.D*SQRTF(2)4S*SINHF(2))
*(,OSHF(3)*<(2)*IS*ir2)+1.n)*SQRTF(3)+S*S[NHF(3))*(COSSHF(4)*K(3)*(
Ž,*r(3)+1.Q)*SQRTF(4)+S*SIHF(4)I*S*SINHF(1)*SINHF(3)*SINHF(4)*
SJRTF(1)**2 *SQRTF( 3)*SQTF(4) +COSHF(1)*COSHF(2)*(COSF(2)*K(!)* (
S*F(il)+l1.O)*SQRTF(2)+S*S! IHFt2) )*(COSHF(3)*K(2)*(S*T(2)+I.O)*SQRTF (A2
(3)+S*SI NHF(3))*S**2 *SI'JHF(1i *SINHF(3)*SQRTF(1)**2 *SQRTF(3)*
SJqTF(4)+COSHF(I)*COSHF(2)*(COSHF(2)*K(1)*(S*T(1)+1.l.*SQRTF(2)+S*
SNH1F(2) H*(COSHF(4I)*K(3)*(S*T(3)+1.0)*SQRTF(4)+S*SINHF(4) )*S**2 *
SiNiF(1) *SINHF(4I*SRTF(1)**2 *SQRTF(3)*SQRTF(4)+COSHF(1)*COSHF(2
) (COSHF(2)*K(1)*(S*T( 1 ) +I.C)*SQRTF(2)* S*SI[NHF(1)
-SQ2TF(1)**2 *SQRTF(3)*SQRTF(4) +C)SHF(1)*(COSHF(2)*K(1)*(S*T(i!)
1.j)) SQRTF(2)+S*SINHF(2))#COSHF(3)*(COSHF(3)*K(2)*(S*T(_)+1.C)*
SgRTF(3)+S*SINHF(3))*(COS- F(4)*K(3)*(S*T(3)+1.c)*SQRTF(4)+S*SINHF(
4))*S*SINHF(1)*S1NHF(2)*SINHF(4)t*S}TF( 1)**2 *SQRTF(2)*SQRTF(4)+
DOS-HF(l)*(CJSHF(2)*K(1)*(S*T(1)+1.0)*SJRTF(2)+S*SINHF(2))*COSHF(3)

·(C3SHF(3)*K()*(S*T( 2)+1..nA)*SRTF(3)+S*SINHF () )*S**2 *SINHF(1l*
SL\HF(2))SQ1TF( L)**2 *SQQ.F( 2)*SQTF(4 1+COSHF(1)(*(COSdF(21*K(1)*(
S*41)+1) 1.0)*SkRTF(2)+S*S!IHF(2))*(COSHF(3)*K(2)*(S*T(2)+I1.)*SQRTF
(3)+S*SINHF(3))*COSHF(4)*(COSHF(4)*K(3)*(S*T(3+!.l)*,S)RTF(4)+S*
SINHF(4))*S*SINHF()F1)SHF2*SINHF(3)*SQRTF(1)**2 *SQRTF(2)*
',rFF(3)c+COSHF(1)*(COSHF(2)*K(1)*(S*T(1)+1.r)*SQRTF(2)+S*SINHF( ))

S CCJS H F( CSH4)*K( 3)*(S*T(3) +1. n)*SQRTF(4) +S*SINHF(4))*S**2 *
SINNHF (1)ISINHF(2)*SQRTF( 1)**2 *SQTF(2)*SQRTF(3)+ COS HF(L)*COSHF(3
)*(COShF(3)*K(2)*(S*T(2)+1.0)*SQRTF(3)*+S*SI'HF(3)*(COSHF(4)*K(3)*
( S*(3) +1.) *SRTF(4)+S +S[NHF(4) )*S**2 *SIIHF(1)*SINHF(4)*SQRTF(F
)**a .SWRTF(2)*SQRTF(4) +COSHF( 1I*CSHF(3)*(COSHF(3)*K(2·*(S*T(2)+
i.' )*SQRT F3) +S*S INHF(3) )t*S*3 *SI NHF( 1 ) *SRTF( I1)**2 *SQRTF(2) :-
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THE DENOMINATOR (continued)

SDR[F(4)+COHF(1) *(COSHF( 3)*K(2)* (S*T(2) 1.)*S;PTF( 3)+* SNHF( 3)
*CDSHF(4)*(COSHF(4*4K(3)*(S*T(3)+1.0)*SRTF(4)+S*SINHF(4 )*S**2 *
SI\HF(1i)*SIHF(3)*SJRTF( 1)**2 *SQRTF(2)*SQRTF(3)+COSHF(1)*COSHF(4
)*(COSHF(4)*K(3)*(S*T(3)+1.0)*SQRTF(4)+S*SINHF(4) )*S*3 *SINHF(1i
4S;RTF(1)**2 *SQRTF(2)*SJ2TF (3)+(COSHF( 2)*K(I)*(S*T(1)+l.)*SQRTF
(2)+S*SINHF(2))*(COSHF(3)*K(2)*(S*r(2)+1.0)*SQRTrF3)+S*SINHF(3))*(
COSHF(4)*K(3)*(S*T 3)+1.0)*SQRTF(4)+S*SINHF(4))*S*SINHF(1)**2 *
SI\HF(2)*SINHF(3)*SlINHF(4)*SRTF(1)*SQTF(2)*SQRTF(3)*SQRTF(4)+(
CDS1F(2)*K(l)*(S*T(1) .1.)*SORTF(2)+S*SINHF(23)*(COSHF(3!*K(2)*(S*
T(2I-1.0 i*SaRTF(3)fS*SINHF(31 )*(COSHF(4)*K(3)*(S*T(3)+1.J)*SQRTF(4
)4S*SINHF(4))*S*SINHF(2)*SINHF(3)*SINHF(4)*SQRTF(1)*SQRTF(2)*SQRrF
(3)4*SRTF(4)+(COSHF(2)*K(1i)*(S*T(1I+1.?)*SQRTF(2)+S*SINHF(2))*(
LOSHF(3)*K(2) (*s( 2 )+1.O)*SQRTF( 3 +S*SINHF(3) )*S**2 *SINHF(1)**
2 4SINHF(2)*S[NHF(3)R*S;RTF(1)*SQRTF(2)*SQITF(3)*SQRTF(4 +(COSHF(2
)((1 )*(S*T(1) +1.O)*SQRTF(2)+S*SINHF(2))*(COSHF(3)*K(2)*(S*T(2)+
1.3)*SQRTF(3)+S*SINHF3) )*S**2 *SINHF(2)*SINHF(3)*SQRTF(1)*SQRTF(
2)*SQRTF(3)*SQRTF(4)4(CDSHF(2)*K(1)*(S*T(1)+1.0)*SQRTF(2)+S*SINHF(
2))*(COSHF(4)*K(3)*(S*T(3I+1.0)*eSQITF(4)+S*SINHF(4)})S**2 *SINHF(
1)**2 *SINHF(2)e*SINHF(4)*SQR TF1l*SQRtF(2)*SQRTF(3)*SQRTF(4)f(
COSHF(2)*K(1)*(S*T(1l)+1.O )*SQRTF(21+S*SINHF(21)*(COSHF(4)*K(3*(S*
T(3)+1.0)*S)RTF(4)+S*SINH:(4))*S**2 *SINHF(2)*SINHF(4)*SQRTF( 1)*
SORrF(2)*SURTF(3*SR;RTF(4)+(OSHF(2)*K(1)*(S*T(1)+1.!)*SQRTF(2)+S*
SlNAF(2))*S**3 *SINHF( 1**2 *S[NHF(2)*SQTF(1)*SQRF(2QRTF*SRTF(3)
*S;rFT(4)+(CGOSHF(2)*((1)*(S*T(1)+1.0)*SQRTF(2)+S*SINHF(2 )*S**3 *
SINHF(2)*SRTF(1)*S;RTF( 2)*SQRTF(3)*sQIrF(41+(COSHF(3)*K(2)*(S*T(2
J+l.2)*SQRTF(3)+S*SI.JHF(3 ))*(COSHF(4)*K(3)*(S*T(3)+41.r)*SQRTF(4)+S
*SiNHF(4))*S**2 *SINHF(1)**2 *SI[HF(3)*SINHF(4)*SQQR T F2*SRTF
)*S3RTF(3)*SQRTF(4)+(COSHF(3)*K(2)*(S*T(2)+1.O)*SQRTF(3)+S*SINHF(3
))*(COSHF(4)*K(3)*(S*T(3)+1.0)*SQRTF(41*S4S[JHF(4) *S**2 *SINHF(3
)*SINHF(4)*SQRrF(1)*SQRFF(2)*S;RTF(3)*SQRTF(4)+(COSHF(3)*K(2)*(S*T
(i1fl.3)*SQRTF(3) S*SINHF(3))*S**3 *SINHF(1)**2 *SINHF(3)*SQRTF(
1)*SJRrTF(2)*SQrTF(3)*SQRTF(4)+(COSHF(3)*K(2)*(S*T(2)+1.0)*SQRTF(3)
tS*S[NHF(31)*S**3 *SINHF(3)*S RTF( 1)*S;RTF(2)1SQRTF(3)*SQRTF(4)+ (
CUSHF(4)*K(3)*(S4T(3)+1.O)*SQRTF 4)+S*SINHF(4) *S**3 *SINHF(1)**
2 *SINHF(4) *SRTF(1)*S;RTF( 2)*SQRTF(3)SQRTF(4)+(COSHF(4)*K(3)*(S
*T( 3)+1. r)*SQRTF(4)*S*SINHF(4))*S** 3 0SINHF(4)*SQRTF(1) *SQRTF(2)*
SrFT(3)1SQRrTF(4)+S**4 *SINHF(1)**2 *SQRTF(1)*SQRTF(2)*SQRTF(3)*
SUTF(4J1+S**4 *SQRTF(I1)*SRTF(2)*SQRTF(3)*SQRTF(4)



* * * r!UTPiJT FROM REDUJCE II * * * A3

DENOMf )= -6( 3})*G(2 2- G 1 )+1.-

G( 2 )= -G, 3)*GC 2) -G (21 )

Gl 27)= GC(3)*G(S)*G(21 
G({ 27 1=( 27) 2 DE/ NOMD ( 1)

2 2 )= -G(3*Gr( 16)
G( 222 8)=( 8 ) /)E NM ( I

G( 29)= -G(3)*G(17)
G( 2q)=r( ?9)/l)E NOEN( 1)

c,( 3l'= -G(3)*G(18)

G( 3' )=G( 3' )/OE NOM ( I)

G( 31)= -G(3k*G(lq)
G( 31 )=G( 31 )/DENFM ( 1)

( 32)= G 3)
G( 2 )= n 3 2 ) /DE NOM 1)

· O d, · I 'Cc , O

., * . * 4' * *

r,( 4 )= -G()
OG 94 )=( P 4) /r1EN M( 17)

(A3)
G( o5)= -S(91)
G( 95 )=CG( 95)/C)ENOb( 17)

Tp ANSFE: FLNCTION X 7) /X( 1)

THE Nl UM :R A TnR
-G(q3)

THE DENOMIN ATR
-G( 1.)*Gf 95)-c ( 93)

TPRANISFF ? FL'NCTI'IN X( 7) /X( 2)

THE NUMFRATOR
G(1 )*G (9 )

THr n lEN.HMI NA TOR
-r. ) *( T 95 )- ( ( 93 )

T Q A rdFFr F C T I 1b ( 7) /X( 3)



TABLE I. - STEP USED BY FORMAC PROGRAM TO SOLVE HEAD RESPONSE

BLOCK DIAGRAM FOR TRANSFER FUNCTION X 1 /X 2

Equa- Step

tion
0 1 2 3 4

1 - X 1 + X 2 X6 = X 1 + X 2

-X 6 =

2 G
1
X

2 G1 G3 X2 - X1 G1G3X 2 - X1 -G 2 G3 X 1

- X 3 = 0 + G 2 G 3 X 6= + G 2 G
3
X

2
0

3 G 2 X 6 X 4 = G 2 X 6

-X
4

=0

X1- G 2 G3 X 6

4 X3 +X 4 X3 + G2 X6 G
3
X3 + G2 G

3
X6 X3 = 

G 3

-X 5 =0 -X 5 =0 -X 1 =0

X 1
5 G3 X5 X

5

G3

-X 1=0

TABLE II. - NUMERICAL DATA FOR DUCT DYNAMICS

Line Length Line inductance per Iine capacitance per Line resistance Resistance. Resistance

unit length. unit length, per unit length, R
m

times comn-

in . cnl Ln Cn pliance

R Cm
2 3 2 33 3 2 2 C n

sec2 /in.3 se 2 /m in. m sec in. Isec m3 sec in.2 sec m 2 sec

A 197 5.0 2. 73x10- 5 1.66 12.38,<10
-

5 31.44 10 - 7 0 --- -----

B 72 1. 83 13. 14 8. 018 .94 2. 388 Var. Var. 0. 0697

C 75 1.90 6.71 4.094 1.78 4.521 2.61 4.045x103 .0212

D 32 .813 6.71 4.5094 1.78 4. 521 2.61 4.045 0212

TABLE III. - COMPONENT DATA JET ENGINE INLET CONTROL

846.7 (-0.833x10 -
2 S3 + 0. 1 S2 - 0. 5 S q 1.0)

S6 e 18.28 S5 + 155.4 S4 + 743.9 S3 + 2038 S2 . 2823 S + 846. 7

7 n06 -1.0 S
G

1
_ = Exact. G2 846.7. G3 - -

S3 + 6.33 S2 + 20.01 S + 7.06

G4 . G5 , .... G
9

2. 041662. -0. 3595. -2. 54. + 8. 723, -1. 5025. -146. 932

G
1 0

. Gll.... G 1 5 - 846.7. 2823. 2038. 743.9. 155.4, 18.28

G1 6 . G
1 7

... G
2 1

= 998.9. 600.97, 155. 18, 20.745, 1.300. 0.038

1
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Figure 2. - Simplified flow chart of REDUCE.
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Figure 3. - Numerical solution for line dynamic response.
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Figure g. - Simplified flow chart of REDUCE II program.
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Figure 5. - Block diagram jet engine inlet control.
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Figure 6. - Typical transfer function results jet engine inlet con-
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