@ https://ntrs.nasa.gov/search.jsp?R=19720022849 2020-03-23T08:27:44+00:00Z

= =
| =z
NASA CONTRACTC gg/

LOAN COPRY: RETURN Yo
AFWL (pouL) @
KIRTLAND AFB, N, M.

1
v“,‘;
i

o,

[
4

NASA CR-2057

Al

TENSILE FAILURE CRITERIA
FOR FIBER COMPOSITE MATERIALS

by B. Walter Rosen and Carl H. Zweben

Prepared by
MATERIALS SCIENCES CORPORATION

Blue Bell, Pa. 19422
for Langley Research Center

i R . DR i
= s Mo i iy i A e

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION - WASHINGTON, D. C. - AUGUST 1972



TECH LIBRARY KAFB, NM

1 imA RA BANS WAL IMAL |MARL

LT L

0061157
1. Report No. 2. Government Accession No. 3.7Eecipient's Catalog No.
NASA CR-2057

4. Title and Subtitle ' 5. Report Date

TENSILE FAIIURE CRITERIA FOR FIBER COMPOSITE MATERIALS Auguet 1972

6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

B, Walter Rosen and Carl H, Zweben None

10. Work Unit No.

9, Performing Organization Name and Address
Materials Sciences Corporation

TFP? LInVib o Dand 11 Oantrant ar (2eans R

L[ waLedi [oat i, Contract or Grant ivo.

Blue Bell, PA 19422 NAS1~1013%4

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report

National Aeronautics and Space Administration

Wachdinotan. N O ongh& 14, Snonsorinag Anencv Code

Washington, D,C, 20546 4. oponsoring Agency Loce

15. Supplementary Notes

pry
o

. Abstract
An analytical model of the tensile strength of fiber composite materials has been developed.

The anelysis provides insight into the failure mechanics of these materisls and defines criteria
which serve as tools for preliminary design material selection and for material relisbility assess—
ment. The model incorporates both dispersed and propagation type failures and includes the in—
fluence of material heterogeneity. The important effects of localized matrix damage and post~failure
matrix shear stress transfer are included in the treatment. The model is used to evaluate the
influence of key parameters on the fallure of several commonly used fiber-matrix systems.

Analyses of three possible failure modes have been developed, These modes are the fiber break
propagation mode, the cumulative group fracture mode, and the weakest link mode,

Application of the new model to composite material systems has indicated several results which
requlre attention in the development of reliable structural composltes, Promlnent among these are
the size effect and the influence of fiber strength varisbility.

17. Key Words (Suggested by Author{s)) 18. Distribution Statement

Composite Materials, Fibers, Filaments,

Failure, Feilure Mode, Leminates Unclassified — Unlimited

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22, Price*
Unclassified Unclassified 166 $3.00

'For sale by the National Technical Information Service, Springfield, Virginia 22151







TABLE OF CONTENTS

SUMMARY ., et eceaccoscocsccsosnsnccossssassossscsascsocceasss 1
INTRODUCTIONG: e e eeeccoccssvasossccscsossasosassccacscscss 2
LIST OF SYMBOLS . e eecevossocesssnsoossasossnrossssnocssasnsss 4
I BACKGROUND. ..ecccsccvecsascccocscasnscsacsosscccoconscs 7
Weakest Link Failure.....eevesecesccsnecoscssass 8
Cumulative Weakening Faillure...ceeececessasccass 10
Internal StreSSeS.....ceeeercenscenscsscsscscancsss 12
Fiber Break Propagation Failure......cecceeeceaas. 14
ClosSing REMATXKS. s cveecenssssassassosscscanscsanes 16

IT DEVELOPMENT OF FAILURE MODELS........ ceeescerseson 19
Internal Stresses........... e eeeseseesearneeeens 19
Weakest Link MOAE..uiieeenesansaceasacscncaneaa .o 22
Fiber Break Propagation Mode..... Ceseseceesens . 24
Cumulative Group Mode of Failure......coeeecee.. 28
Probability of Failure€...e.eeceseeasesaesenees 31

Elastic Cumulative Group Mode...veeeeenoaens 32

Critical Group Size€........ Ceeeerenc e eanan 32
Inelastic Cumulative Group Mod€.....eeeseees 33

ITITI APPLICATION TO COMPOSITE SYSTEMS .. s eeeecncecnoocs 34
Fiber Break Propagation Mode.....cevveveccoacanes 34
Cumulative Group Failure Mode.....-cevteerccresas 43
Changes in Failure Mode.....iieseesosenscneconcns 48

Iv IMPLICATIONS OF THE FAILURE ANALYSIS. .. :ieseceecees 50
Variability of Fiber Strength..........c.iiuco... 50
Inelastic EffectS. et erecsnccanocsnsacnss 51
Energy Considerations.........cceeeeeeess e e 53
Damaged CompoSitesS....ceeeecscoss s e s eseseanasaan 54
Laminates....... chee e cee e e rseeeas e aan 54
CONCLUDING REMARKS...vececncaass eeeesenos e e eec s 56

iii







Ty

TABLE OF CONTENTS CONTINUED

APPENDIX A - EXPRESSIONS FOR PROBABILITIES
ASSOCIATED WITH FIBER FRACTURE..... ceeeeccesassencasna 61
Two Dimensional Fiber Array..ceccceccececsccesccecacennse 62
Transitional Probability..secceseesscesnssscnanas. 62
Probability of a Crack of Size I...i¢ve0veeeeeeeas. 65

Fiber Group Strength Distribution........... cess. 66
Three Dimensiocnal Fiber Array..c.cceeecssecss cecenseannn 67
Transitional Probabilities.....evieetorieencsensn 68
Probability of a Crack of Size I........... ceseea 70
Fiber Group Strength Distribution...e..e.ceieee.. 70
APPENDIX B - EFFECTS OF MATRIX INELASTICITY ON LOAD
CONCENTRATION FACTOR AND INEFFECTIVE LENGTH.....¢.e... 72
BaCKgrOoUNA. e e v eevsnseresoacansossoscsssess et eer e 72
Description of the Model. ... ..ttt iiereeeesnneonssons 73
Two Dimensional Model.......viieonovesacsonnnnnas 73
Three Dimensional Model......ecetcieenvencensnesns 77
Shear Load and Inelastic Length....eceeeecenceoesaanes 81
2D Approximate Model..... ceeesesnan see e re e 81
3D Approximate Model. .. .ieeeertanoneeseessossasnsas 83

APPENDIX C - EFFECT OF THE LONGITUDINAL VARIATION IN
FIBER LOAD CONCENTRATION ON THE PROBABILITY OF

FAILURE OF AN OVERSTRESSED FIBER: .. : et ccetceosssenscascs 87
Linear Stress Distribution...... e eaens ce e reeans se... 88
Exponential Stress Distribution........ ceeae e ..... 88

Discussion and ConcluSioOnN...sceeceecscesececsessssseas 89
APPENDIX D - STRESS CONCENTRATIONS IN NON-ADJACENT

FIBERS. ..t ceesocsscsacscnsoasccnccscesns ceesesseeaas ee. 92
APPENDIX E - ELASTIC STRAIN ENERGY..:.:ecveeaacsassscnsses 94
Fiber Energy Change........ A

Matrix Energy Change. .. ..cceveesessensossssscsaasoasas 95

Net Energy Change....ceescececcsnccacoscsassssccssassos 96
APPENDIX F - ANALYSIS OF THE CUMULATIVE GROUP MODE

OF FAILURE........ ¥
REFERENCES .ttt tceceasencosososcassaaassnasssancsssssansessssel02
FIGURES.: st ovvvssonosecoencssssasasaseseasssasascsesnsssas.l08

v



R

TENSILE FAILURE CRITERIA FOR
FIBER COMPOSITE MATERIALS

By B. Walter Rosen and Carl H. Zweben

Materials Sciences Corporation

SUMMARY

An analytical model of the tensile strength of fiber com-
posite materials has been developed. The analysis provides in-
sight into the failure mechanics of these materials and defines
criteria which serve as tools for preliminary design material
selection and for material reliability assessment. The model
incorporates both dispersed and propagation type failures and
includes the influence of material heterogeneity. The important
effects of localized matrix damage and post-failure matrix
shear stress transfer are included in the treatment. The model
is used to evaluate the influence of key parameters on the
failure of several commonly used fiber-matrix systems.

Analyses of three possible failure modes have been de-
veloped. These modes are the fiber break propagation mode,
the cumulative group fracture mode, and the weakest link mode.
In the former, adjacent fibers fracture sequentially at posi-
tions which are within a short distance of a planar surface.
Eventually the propagation becomes unstable and the plane be-
comes the fracture plane. In the cumulative group mode dis-
tributed fiber fractures increase in size and number until the
damaged regions have weakened one cross-section so that it can
no longer carry the applied load. 1In the weakest link mode, an
initial fiber fracture causes an immediate propagation to failure.

Application of the new model to composite material systems
has indicated several results which require attention in the de-
velopment of reliable structural composites. Prominent among
these are the size effect and the influence of fiber strength
variability.



INTRODUCTION

At the present stage of development of composite materials
and their applications, there are many new and improved high
pPerformance fiber and matrix materials. At such a time the
desire to utilize reliable, high-strength composites makes the
need for an understanding of the tensile failure of fiber
composite materials self-evident. However, despite widespread
attempts to use limited experimental data to substantiate simplis-
tic concepts of the failure process, it is equally evident that
this failure process is extremely complex.

The primary facteor contributing to the complexity of
this problem is the variability of the fiber strength. There
are two important consequences of a wide distribution of in-
dividual fiber strengths. PFirst, all fibers will not be stressed
to their maximum value at the same time. Thus, the strength of
a group of fibers will not equal the sum of the strengths of the
individual fibers, nor even their mean strength value. Second,
those fibers which break earliest will cause perturbations of
the stress field resulting in localized high interface shear
stresses, and in stress concentrations in adjacent fibers. Thus,
progressive damage may well result. In earlier studies, approxi-
mate models of different possible failure modes have been
formulated. These include an assessment of the failure resulting
from fracture of the weakest link; of the fiber break propaga-
tion resulting from internal stress concentrations; and of the
failure resulting from the cumulative weakening effect of dis-
tributed fiber fractures. The present study utilizes statistical
analyses to assess the effects of the occurrence of damage at
scattered locations within the material followed by an increase
in the size and number of these damaged regions as the stress
level is increased.

The results of this study provide an integrated approach to
the definition of the mode and level of tensile failure for fiber

composite materials. The new failure model includes the limiting
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effects of matrix or interface strength and thereby enhances
the understanding of crack arrest mechanisms within a composite.
The results are not only of value for assessing the relative
merits of different constituent properties, but also provide
a basis for evaluating material reliability and assess%yg
damage tolerance for fiber composite materials.

In an attempt to present clearly the major concepts
introduced in this paper, all details of the analyses have
been relegated to a series of six appendices. Thus, following
a brief outline of the background to the present problem, the
body of the paper is composed of three descriptive sectior
The first, the development of failure models and failure
criteria; the second, the results of the application of the
new analysis to both real and idealized composite systems; and
the final, the implications of the results of this
study.

The approach taken in this paper is consistent with the

new materials engineering concepts. Thus, one may expect

’
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that materials will be tailored to suit th t

requirements of
their application. Choice of constituents is a new freedom
which will be exploited by the designer in time to come.

Thus, the analytical understanding of material behavior must
be adequate to assess a priori the relative merits of various
potential combinations of constituents. The required analyses
should be viewed as preliminary design tools for this selection
process. Final determination of material properties for the
actual design will be obtained experimentally after this
analytical screening process. The present definition of
criteria for tensile failure of composites is consistent with

this philosophy.



LIST OF SYMBOLS

Cross-gectional area of an individual fiber

Fiber extensional modulus

Fiber strength distribution

Matrix shear modulus

Number of adjacent broken fikers

Fiber index denoting position of fiber relative to
last broken fiber

Specimen length

Fiber gage length in strength test

Influence coefficient definint force in fiber n due
to a unit displacement of fiber 0.

Number of axial layers or links = L/S§

Number of fibers in a typical cross-section
Applied load on a fiber at infinity = O oA
Probability of having a crack of size I in a
composite (see Eqg. A.1l4)

Applied load when matrix failure occurs
Transitional probability (see Eq. 2.4 for example)
Probability of failure of a group of I fibers

(see Egq. A.16)

= Displacements of core of broken fibers, intact

fiber, and average material, respectively used in
approximate model (see Appendix B)

Half length of inelastic zone

Effective fiber spacing parameters used in 3D model
for load concentrations (see Fig. B.5)

Subscript indicating fiber

Number of intact fibers surrounding I broken fibers
Surface energy

Effective load concentration factors associated with
exponential and linear stress variations, respectively

(see Appendix C)
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LIST OF SYMBOLS CONTINUED

Load concentration factor associated with I
broken fibers

Number of fibers in approximate model of Ref. B.2
Subscript indicating matrix

Number of broken fibers in core

Parameters used in calculating QI (see Eg. 2.5)
Probability that a crack will initiate in a given
layer and grow to size I (see Eq. Al2)
Probability of failure of overstressed fibers
(see Egs. A.4 and A.5)

Probability that one d fibers will break

Radii used in 3D model for load concentrations
(see Fig. B.5)

(rbdl)/(radZ)

Nondimensional axial displacements of core, intact
fiber, and average material used in approximate
model (see Appendix B)

Fiber volume fraction

Coordinate parallel to fiber axis
Avf + Avm
Energy required to open a crack that will extend

to next fiber

Elastic energy released when an isolated fiber breaks

(Egq. El1)

Elastic energy released when matrix fractures (Eqg.E6)

Nondimensional half length of inelastic zone
Weibull distribution parameter

Weibull parameters used in Cumulative Group Mode of

Failure Analysis



LIST OF SYMBOLS CONTINUED
,1/8

Ineffective length
Elastic ineffective length defined in Eg. 1.4

Ineffective length associated with I adjacent

broken fibers

Ineffective length associated with a group of g
broken fibers

Representative ineffective length used in calculating

PI (see Appendix A)

Post-failure shear stress parameter

Fraction of undisturbed fiber stress ¢,, param~ter

= 27/n in Appendix B, exponent parameter in Appendix C
2n/g

Nominal fiber stress

Statistical mode of cumulative weakening failure mode
stress
Non constant stress in the intact fibers adjacent to

I broken fibers

Undisturbed fiber stress(at a large distance from site
of a fiber break)

Fiber stress

Expected fiber stress level for first fiber break

Matrix shear stress
Nondimensional matrix shear failure stress (seeEq. B.3Db)
Matrix shear fajilure stress = 71

Y
Matrix shear failure stress

Angle between layer fiber axis and laminate axis

Nondimensional coordinate along fiber axis
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I BACKGROUND

The major factor motivating the present study is the
non-uniform strength of most current high-strength filaments.
This statistical fiber strength distribution is generally
attributed to a distribution of imperfections along the length
of these brittle fibers. In a composite, one can always ex-
pect some fiber breaks at relatively low stresses. The
problem of composite tensile strength is the problem of de-
termining effects subsequent to these initial internal breaks.
Because the relative importance of the multiplicity of pos-~
sible modes of subsequent internal damage depends upon local
details of the stress field, the problem of composite tensile
strength is extremely complex.

At each local fiber break, several possible events may occur.
In the vicinity of the fiber break the local stresses are highly
non-uniform (fig. 1.1) This may result in a crack propagating
along the fiber interface or across the composite. In the
former case the fibers may separate from the composite after
breaking and the composite material may be no stronger than a
dry bundle of fibers. 1In the second case, the composite may
fail due to a propagating normal crack or due to a fiber break
propagation and the strength of the composite may be no greater
than that of the weakest fiber. This latter mode is defined
as a "weakest link' failure. If the matrix and interface
properties are of sufficient strength and toughness to prevent
or arrest these failure mechanisms, then continued load increase
will produce new fiber failures at other locations in the material,
resulting in a statistical accumulation of internal damage.

In actuality, it is to be expected that all these effects
will generally occur prior to material failure. That is, frac-
tures will propagate along and normal to the fibers and these

fractures will occur at various points within the composite.



Previous treatments of these various failure modes will be
reviewed briefly in this section.

The imperfection sensitivity of contemporary filaments
affects fiber tensile strength in two important ways. First of
all, at a constant gage length there is a significant amount
of dispersion in fiber strength. Thus some fibers fail at low
stress levels and the average stress at failure of a bundle of
fibers will be less than the average strength of the fibers.
Second, because the probability of finding an imperfection of
given severity increases with gage length average fiber strength
increases with decreasing gage length. Thus the question of
average fiber strength can be res©lved only by determination of
the important characteristic length in the composite. PFig. 1.2
(Ref.l.1l) shows the strength variation of single fibers. Because
of this important variability it is not possible to define a
unique quantity called "fiber strength", despite the fact that
this term is often found in the literature. Generally, what is
meant by the term "fiber strength"” is mean fiber strength at
a certain test gage length.

Because fibers are generally much stiffer than matrix
materials, they carry the bulk of the axial load if the fiber
volume fraction, Ver is not very small. Therefore the study of
the tensile strength of composite materials centers on the
behavior of the fibers and what happens when they break at
various locations as a composite is loaded. 1In this report,
attention is directed to the axial load carried by the fibers.
(Composite strength is expressed in terms of the average fiber
stress at composite failure.) There can be little doubt of the
validity of this assumption for resin-matrix composites. In
the case of metal matrix composites it is necessary to superpose
a contribution of the matrix to axial load-carrying capacity.

This will not affect the results of the present study.

Weakest Link Failure

When a unidirectional composite is loaded in axial tension,




scattered fiber breaks occur through the material at various
stress levels. It is possible that one of these fiber breaks
may trigger a stress wave or initiate a crack in the matrix
resulting in localized stress concentrations which cause the
fracture of one or more adjacent fibers. In turn, the failure
of these fibers may result in additional stress waves or matrix
cracks, leading to overall failure. This produces a catastropic
mode of failure associated with the occurrence of one, or a small
number of, isolated fiber breaks. This is referred to as the
"weakest 1link" mode of failure. The lowest stress at which this
type of failure can occur is the stress at which the first

fiber will break. The expressions for the expected value of the
weakest element in a statistical population (see e. g. Ref. 1.2)
have been applied to determine the expected stress at which the

first fiber will break by Zweben (Ref. 1.3). Assuming that the
fiber strength is characterized by a Weibull distribution of the
form

F(o) = l-exp (- aLOB ) (1.1)
the expected first fiber break will occur at a stress

1/8
= B-1
v T (NLaB ) (1.2)

where o and B are parameters of the Weibull distribution, L

is the length of the fiber and N is the number of fibers in the
material. Thus, (l.2) provides an estimate of the failure stress
associated with the weakest link mode.

It should be pointed out that the occurrence of the first
fiber break is a necessary, but not a sufficient condition for
failure. That is, the occurrence of a single fiber break need
not precipitate catastrophic failure. 1Indeed, in most materials
it does not. This is fortunate because, as shown by eq. (1.2)
the weakest link failure stress decreases with increasing
material size (length and number of fibers). For practical
materials in realistic structures, O is quite low. Other
conditions that must be satisfied if the weakest link mode of

failure is to occur, are discussed in Section II.

9



Cumulative Weakening Failure

If the weakest link failure mode does not occur it is
possible to continue loading the composite and, with increasing
stress, fibers will continue to break randomly throughout the
material. When a fiber breaks there is a redistribution of
stress in the vicinity of the fracture site.(Fig. 1.1.) This
stress perturbation is the origin of important mechanisms in-
volved in composite failure. When a fiber break occurs, the
broken surfaces displace axially inducing stresses in the matrix
and large shear stresses at the fiber-matrix interface. The
interface shear stress acting on the broken fiber localizes
the axial fiber dimension over which the stress in the broken
fiber is greatly reduced. Were it not for some form of
interfacial shear stress a broken fiber would be unable to carry
any load and the composite would be, in effect, a bundle of
fibers from the standpoint of resisting axial tensile loading.

An important function of the-matrix is to localize the
reduction of fiber stress when one breaks. The axial dimen-
sion over which the axial fiber stress is significantly reduced,
which will be referred to as the ineffective length, 6, is

a significant length parameter involved in the failure of fiber
composite materials. The magnitude of § depends on the stress
distribution in the region of the fiber break. This distribu-
tion is quite complex and is influenced by fiber and matrix
elastic properties as well as any inelastic phenomena, such as
debonding, matrix fracture or yield, etc., that may occur. Ob-
viously, the definition of § is somewhat arbitrary since the
stress in the broken fiber is a continuously varying quantity
that asymptotically approaches the average stress in unbroken
fibers.
The concept of representing this variable stress field
and a fiber composite material having distributed fractures, by
an assemblage of elements of length, §, was introduced by Rosen
(Ref. 1.4). 1In this model as shown in fig. 1.3 the composite

is considered to be a chain of layers of dimension equal to

10
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the ineffective length. BAny fiber which fractures within

this layer will be unable to transmit a load across the layer.

The applied load at that cross-section is then assumed to be

uniformly distributed among the unbroken fibers in each layer.

The effective load concentrations, which would introduce a non-

uniform redistribution of these loads, are not considered

initially. A segment of a fiber within one of these layers

e considered as a link in the chain which constit
is then a bundle

of such links and the composite itself a series of such bundles

utes an

individual fiber. Each layer of the composite

fiog. 1.3. Treatment of a fiber as a chain of links

as shown in g. 1. 1t of a fiber a chain of link

is appropriate to the hypothesis that fracture is due to local

imperfections. The links may be considered to have a statistical

strength distribution which is equivalent to the statistical

flaw distribution along the fibers. The wvalidity of such a

model is demonstrated by the length dependence of fiber strength.
For this model it is necessary to define the link dimension,

§; the probability of failure of fiber elements of that length;

and then the statistical strength distribution of the assemblage.

This analysis leads to the "cumulative weakening" mode of failure.

The definition of ineffective length is discussed further below.

The determination of the link strength distribution is treated

in Ref. 1l.4. When these are known, the relationship of the

strength of the assemblage to the strength of the elements, or

links, can be treated bv the methods of Ref. 1.2. The result,

for fibers having a st:=ngth distribution of the form (1.1)

is given in Ref. 1.4 as:

F = (aspe) ~L/B 1.3

*
where ¢ is the statistical mode of the composite tensile
strength based on fiber area.
As pointed out above, the cumulative weakening model

represents the varying stress near a fiber break by a step

11




function in stress. The model also neglects the possibility of
failures involving parts of more than one layer. More importantly,
the overstress in unbroken fibers adjacent to the broken fibers

has not been considered. This stress concentration increases

the probability of failure for these adjacent elements, and creates
the probability of propagation of fiber breaks. This combination
of variable fiber strength and variable fiber stress can be ex-
pected to lead to a growth in both the number of damaged regions
and in the size of a given damaged region. This is represented
schematically in fig. 1.4, wherein the cross hatched regions at
the ends of cracks represent the ineffective lengths of the
broken groups.

In this situation described above, there exists the possibility
that one damaged group may propagate causing failure, or that the
cumulative effect of many smaller damaged groups will weaken a
cross—-section causing failure. The latter possibility is dis-
cussed in Section II. The former possibility, which was proposed
by Zweben (Ref. 1.3), is reviewed briefly below. First a dis-
cussion of the stresses in the vicinity of a broken fiber is in

order.

Internal Stresses

The stress field around a broken fiber has been studied by
many authors. Among the early studies are those of Refs. 1.5
and 1.6. These, or similar stress distributions were used in
Refs. 1.4 and 1.7 to define ineffective lengths. More recently
the studies of Refs. 1.8 - 1l.11 have defined stress distribu-
tions in two and three-dimensional unidirectional fiber com-
posites. These results can be used to determine the stresses in
unbroken fibers required to assess the probability of propagation.

The nature of load concentrations in filamentary composites
was studied analytically by Hedgepeth and Van Dyke (Refs. 1.8,
1.9 and 1.11l). The results of these investigations showed that

elastic load concentrations in two-dimensional (planar) arrays of

12



parallel fibers in axial tension are large and increase drasti-
cally with the number of broken filaments. This conclusion was
supported by a series of experiments performed by Zender and Dea-
ton (Ref. 1.12). Elastic load concentrations for three-dimensional
(square and hexagonal) arrays of parrallel fibers are much less
severe.

The effects of fiber debonding, or matrix cracking, and
matrix plasticity for the case of one broken fiber was studied
in Refs. 1.8 and 1.9. It was found that inelastic effects such
as complete debonding and matrix plasticity can significantly
reduce load concentration factors. This would serve to reduce
the likelihood of fiber break propagation.

The definition of ineffective length for the case of an

elastic, perfectly-bonded matrix which was proposed in Ref. 1.7

is utilized in the present report. Friedman defined the ineffective

length by equating the area under the curve of stress versus the
axial distance from the fracture surface, to a stress distribu-
tion in the form of a step function that is zero over the in-
effective length and equal to the applied stress everywhere else.
The result for a single brokem fiber is:
op = (ZF /2 (Lve 1/2)1/2d (1.4)
G £

\2veg 1/2 . :
The effects of an elastic-perfectly plastic matrix and

interfacial failure on the perturbed region adjacent to a single
broken fiber were studied by Hedgepeth and Van Dyke (refs. 1.8
and 1.9). They found that, if there is a finite interfacial
strength and with no post-failure shear transfer across the inter-
face, broken fibers will debond completely when the load is in-
creased only slightly above the fiber fracture load. Experience
with real materials indicates that complete debonding is rarely
observed and thus the assumption of no post-failure shear
transfer appears to be unrealistic. The results for the elastic-
plastic matrix material predict a more gradual extension of the
perturbed region with increasing stress. For real materials the
post—-failure shear transfer probably lies somewhere in between
the extremes of zero stress transfer and perfect plasticity

(constant shear stress).
13




Generally, the size of the ineffective length, even when
inelastic effects are present,is not greater than 100 fiber
diameters. For groups of adjacent broken fibers, Fichter
(Ref. 1.10) studied the variation of the length of the perturbed
region with the number of adjacent broken fibers in a two-dimensional
{(planar) array of fibers with an elastic matrix. He found that
the ineffective length of the affected region grows with the
number of broken fibers in the group. The effect of inelasticity
in the matrix or failure of the interface on ineffective length
for groups of arbitrary size had not been studied before this
report. The indicated size of the ineffective length appears to
be generally orders of magnitude smaller than the linear di-
mensions of a realistic structure, or even a laboratory test
coupon. This is significant since mean fiber strength is
length dependent. At these short ineffective lengths, mean fiber
tensile strengths are greater than mean strengths at the gage
lengths commonly used to evaluate fiber strength (usually 1
or 2 in.). Also, at the length of fibers in practical structures,
the mean fiber strength is less than that obtained in the
standard fiber test. These effects are discussed further in

Section II.

Fiber Break Propagation Failure

The effects of stress perturbations on fibers adjacent to
broken ones are of significance. When a fiber breaks, equili-
brium requires that the net load on the cross section con-
taining the broken fiber be unchanged. Therefore, the average
stress in the remaining fibers must increase. Because of the
matrix, the stress redistribution is highly non-uniform. The
shear stress that arises in the matrix when a fiber breaks
results in localized increases of average stress in the fibers
surrounding the break. In order to differentiate this increase
in the average stress over a fiber cross-section from the increase
at a point the term "load concentration”" is used for the former

and the conventional term "stress concentration" for the latter.
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The load concentration in the fibers adjacent to a broken
one increases the probability that one oxr more of them will
break. When such an event occurs the load concentration in
neighboring fibers intensifies increasing the probability of
additional fiber breaks, and so on. From this description, it
is not difficult to identify the propagation of fiber breaks as
a mechanism of failure. The probability of occurrence of this
mode of failure increases with the average fiber stress because
of the increasing number of scattered fiber breaks and the in-
creasing stress level in overstressed fibers.

The fiber break propagation mode of failure was studied
by Zweben, (Ref. 1.3) who proposed that the occurrence of the
first fracture of an overstressed fiber could be used as a
measure of the tendency for the fiber breaks to propagate and
hence as a failure criterion for this mode, at least for small
volumes of material. The effects of load concentrations upon
fiber break propagation in 3D unidirectional composites, as
well as upon cumulative weakening failures, was treated in Ref.l.13.
In Ref.l.14,%2weben reviewed experimental data available for wvarious
fiber-matrix systems to support the contention that the first
multiple break is a lower bound to strength. Although the first
multiple break criterion may provide good correlation with ex-
perimental data for small specimens and may be a lower bound
on the stress associated with fiber break propagation it gives
very low stresses for large volumes of materials, which ap-
pears to conflict with practical experience with composites.
However, there does not appear to be any available reliable data
shedding light on the influence of material size on strength.

The approximate model of Ref. 1.13 for including effects
of load concentrations into the cumulative weakening model was
also of limited success. The resulting mathematical expression
for composite strength is a sequence in which each term corresponds
to a group of broken fibers of increasing size. A very large
number of terms is required for convergence This is in conflict

with experimental data in which groups of large size are generally

15



not observed.

Closing Remarks

In this discussion of composite failure mechanics, three
basic modes of failure have been described, including two
associated with propagation effects. Yet, in the discussion
of the analytical treatment of these modes, no mention has been
made of "classical" fracture mechanics. Since there exists a
large well-developed body of knowledge dealing with the failure
of "homogeneous" materials it is instructive to examine the
possibility of applying classical fracture mechanics techniques
to analyze the failure of composite materials. We consider
the basic principle of classical fracture mechanics to be that
a crack will advance when the energy regquired to extend a crack
a given amount is equal to the change in strain energy in the
body resulting from that crack advance. This is a necessary
condition to satisfy the first law of thermodynamics. Its im-
plications for the analysis of the three modes of failure treated
earlier are discussed below.

First, consider the weakest link mode of failure in which
a single fiber break triggers catastrophic failure. If failure
results from a crack that propagates in a continuous manner
through both phases, fiber and matrix, it is reasonable to expect
that the fracture mechanics approach can be used to describe the
process; although it may be necessary to consider propagation
through the two phases separately. Additionally when the crack
size becomes large with respect to fiber diameter and inter-
fiber spacing distance, it seems reasonable to expect that the
material can be adequately treated as a homogeneous, anisotropic
material.

However, failure does not always occur by a propagating
planar crack. Failure may result from a propagating stress
wave that travels through the material fracturing fibers in its
path while leaving the matrix relatively undamaged. There is

evidence from a recent study by Herring (Ref. 1.15) that this
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A multiplicity of internal planes of weakness creates the
possibility for various failure modes in composites. It appears
that the heterogeneity must be considered in the development of
failure criteria. After an understanding of failure modes is ob-
tained, it may be possible to formulate "effective fracture
mechanics" parameters for some composites under some, as yet

unknown, loading conditions.
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II DEVELOPMENT OF FAILURE MODELS

In this section the analytical models used to determine
internal stresses and failure modes are developed. First, the
models used to evaluate internal stresses are described since
these results are required in the treatment of the various
failure modes. This is followed by treatment of the weakest link
mode of failure, the fiber break propagation mode and finally,
the cumulative group mode. The details of the analyses are left
to the appendices while the basic concepts involved are dis-

cussed in the body of the report.

Internal Stresses

Variability of fiber strength results in scattered fiber breaks
throughout a fiber composite material when there is a tensile
load parallel to the fibers. The nature of the stress distribu-
tion in the vicinity of the broken fiber elements is basic to the
development of models for describing the types of failure mechanisms
that can occur. Of particular interest are the effects of in-
elastic matrix behavior including both material yielding, fracture
and interface debonding, because it has been shown, (Refs. 2.1
and 2.2) for a single broken fiber, that debonding and yielding
can significantly alter the magnitude and the region of stress
perturbation.

The assumption of perfect plasticity or complete debonding
does not appear to represent the behavior of most materials. It
is reasonable to believe, particularly for resin-matrix systems,
that there is some shear stress transfer after matrix or inter-
facial failure has occurred and that the magnitude of this
shear stress lies somewhere between the maximum shear stress
achieved prior to such failure, and zero, which is the shear
stress implied by complete debonding. In addition, it is necessary
to determine the stress distribution for a crack of arbitrary

size, in the presence of inelastic effects. This includes the
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need for evaluation of stress variation along a fiber and of the
load concentrations for other fibers in the cross-section of the
crack. These problems are considered in this section.

The influence function method used by Hedgepeth and Van
Dyke (Refs. 2.1 and 2.2) to study a single broken fiber cannot
be applied to study the inelastic behavior of a crack of arbitrary
size because of the requirement to superpose inelastic stress
fields. The general problem of a crack of arbitrary size in an
infinite array of fibers with an elastic-plastic matrix is quite
formidable. Therefore, the reasonable approach was deemed to be
one which utilized approximate models that would attempt to pre-
dict relative effects. The result is a relatively simple analysis
that provides excellent agreement with the more rigorous ap-
proach, for those cases in which the latter can be used. The
details of the analysis and comparisons with previous results
are presented in Appendix B.

The approximate models were developed for 2D and 3D arrays
of parallel fibers but the basic features of both models are
similar. In the model, the central core of I broken fibers is
replaced by a single fiber whose area is IAf where Ag is the
area of a single fiber. In the 2D case (Fig. B.l) this core
is flanked by two adjacent unbroken fibers. On the outside of
the two intact fibers is the effective homogeneous material.
Matrix material exists between the core and the intact fibers and
between the intact fibers and the average material. In the 3D
case (Fig. B.5) the adjacent unbroken fibers are represented by
a circular cylinder surrounding a central core of broken fibers.
The effective homogeneous material is an infinite body sur-~-
rounding the two concentric cylinders. Again, matrix material
fills the region between the two cylinders and between the outer
cylinder and the average material.

Results obtained from the approximate analyses are compared
with those arising from the infinite array - influence functions
models of Refs. 2.1-2.4 for multiple fiber breaks in an elastic
material and for single broken fiber with inelastic effects. These
comparisons are presented in Figs. B.2-B.4 and B.6-B.9 as well as

Tabl B.1 d B.2.
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The models were used to study the effects of matrix or
interface failure and post—failure shear stress transfer on the
tent of the in-
elastic region. The ratio of post-failure shear stress to the
matrix failure stress Ty is designated by n, the post-failure
shear stress parameter, and o is the nondimensional inelastic
length. ILoad concentrations were evaluated at the cross-section
of the crack and the end of the inelastic region. These points
are denoted by £=0, and &=¢, where & is the nondimensional length.

In Figs. 2.1-2.6 the load concentrations and inelastic
lengths as a function of load ratio P/Py for cracks of size 1, 10

and 100 in a 2D material are presented. The load ratio P/Py is

b P | ~ mam =1 [ I, gy

defined as the ratio of P, the load on the material, to P_ the
load on the material that initiated the matrix failure. It should
be noted that because shear load concentrations increase with the
number of broken fibers the magnitude of PY varies inversely with
crack size, so that PY for I = 100 is much smaller than Py for
I=1l, where I defines crack size (number of broken fibers).

The results show that post-failure shear transfer has an
important effect on both internal stresses and the perturbed
length. It is particularly significant to note that even rela-
tively small wvalues of n can be expected to eliminate the com~-
plete debonding that is predicted when there is no post-failure
shear transfer. The influence of n on load concentrations can
be seen to be significant. For high values the reduction is
gradual while for low values of m the reduction is precipitous.
In general if the post failure shear transfer parameter is small,
the inelastic length o grows rapidly with load ratio and the load
concentration factors drop sharply. If n is large then the
growth of o is more gradual as is the reduction in load concen-
tration. As crack size increases the inelastic length grows at a
faster rate while the rate of reduction in load concentration
does not appear to change significantly.
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Figure 2.7 shows the variation of ineffective length with
load ratio for a group of two broken fibers. This will be used
to analyze failure later on in this report.

The behavior of three-dimensional materials is studied in
Figs. 2.8-2.11. The cases considered are cracks of size 1 and 9
in a square array. Comparison with the results for 2D materials
shows that the rate of reduction in load concentration with P/PY
is about the same, but the growth of inelastic length is slower
for all values of n in the 3D case.

The variation of elastic fiber load concentrations in the
plane of the crack with distance from the last broken fiber, J,
is studied in Appendix D. The ratio of the stress increment in
each fiber to the first adjacent fiber, J = 1 is presented in
Fig. 2.12. It can be seen that the relative stress drops quite
sharply. However, as cracks grow, the magnitude of load concen-
trations in fibers close to,but not adjacent to, the crack end
becomes significant and, because of the variability of fiber
strength, this effect may be important.

Based on the results of these studies, the conclusion is
that as a crack grows the effect of load concentrations on non-
adjacent fibers may be important. Matrix in-
elasticity can be expected to reduce the high load concentration
in the fibers immediately adjacent to a crack and result in a
region of more uniform overstress. This has significant im-~
plications for failure mechanics and will be discussed in

greater detail later on.

Weakest Link Mode

The weakest link mode of failure was discussed in Section I.
It was noted that it is possible that a single fiber break can

initiate a propagating stress wave,or a crack that can causa a

catastrophic failure of the material. An expression for the stress

level at which the first fiber break is expected is given by (1.
(see Ref. 2,5).
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problem is to consider the fiber stress level required to re-
lease sufficient energy to open a crack to the next fiber. A
fiber volume fraction of 0.5 is used in this example which treats

a 2D glass—-epoxy system with Ye = 0.04 1b./in.,Ym = 1.26 1b./in.,

Ep = 10.5 x 106 psi and G, = 0.1778 x lO6 psi. For a fiber of
diameter 0.0035 in., AVf = 1.59 x 10_5 in./1b. The corresponding
elastic strain energy released is AV (2D) _ 2.08 x 10_1402.

Therefore, the fiber failure stress required to open a crack to

the next fiber is o, = 27 ksi which is a relatively low stress
level. For a smaller diameter fiber of df = 3.5 X 10_5 in., the
corresponding critical stress level is ¢ = 265 ksi which indicates

that the use of smaller diameter fibers can drastically reduce
the probability of a weakest link failure mode.

For a typical boron-epoxy system the fracture energies are
about the same as for glass-epoxy. A typical fiber diameter is
0.004 in. and E, = 60 x 10°, G_ = 0.2 x 10°. The critical fiber
stress level is found to be about 58 ksi which is well below re-
corded strength levels. As in the case of the large diameter
glass fibers there is probably some mechanism, such as local
fiber debonding that is eliminating this mode of failure.

The general relation for critical stress for crack propa-

gation is of the form
E, g 1/2

f™m
Af ) (ym + Cyf) (2.3)

02 =

Where C is a constant dependent on geometry. Therefore, the
probability of a weakest link mode of failure can be decreased by
reducing fiber area or increasing constituent fracture energies

or moduli.

Fiber Break Propagation Mode

The basic concepts involved in the fiber break propagation
mode are that because of variability in material strength scattered

fiber breaks occur throughout a filamentary composite when it is
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loaded in axial tension and when this happens fibers adjacent to
the broken ones are subjected to load concentrations which increase
the probability that the surrounding fibers will break. Since
load concentrations intensify with increasing numbers of broken
fibers the continued fracture of additional fibers becomes more
probable. Therefore, as the load on a material is increased,two
mechanisms contribute to the increasing probability of fiber
break propagation: the increasing number of scattered damage
sites and the growth in size of these fracture groups or cracks.
Naturally, the increasing average stress level also raises the
probability of occurrence of the fiber break propagation mode.

The key problem in the analysis of the fiber break propagation
mode is the determination of the probability that a group of an
arbitrary number of broken fibers, I, will grow at a specified
level of nominal stress, o. This probability is designated as
the transitional probability, QI(O). There are a number of
factors governing this probability including the number of over-
stressed adjacent fibers and the load concentrations to which they
are subjected, as well as ineffective length and fiber strength
distribution. However, the major difficulty in determining the
probability that a crack will grow is that the probability that
an adjacent fiber will fail as a result of being subjected to an
overstress depends on the previous stress level to which it was sub-
jected. This means that to be rigorous it is necessary to consider
all possible sequences of fiber breakage.

To illustrate this problem, consider a two-dimensonal (planar)
array of fibers in which there exists a group of nine adjacent
broken fibers and it is desired to determine the probability that
the damaged region will grow by fracturing at least one of the
two overstressed adjacent fibers. It is assumed that only those
fibers immediately adjacent to a broken one are subjected to a
load concentration, and all other fibers are at the nominal stress
level 0. The load concentration factor associated with I broken
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fibers is designated kI' Therefore, in the case under consideration,
there are two fibers subjected to a stress intensity kgc. The
probability that at least one of them will fail due to the load
concentration depends on the stress intensity to which it was sub-
jected immediately before the level was raised to k90. The dif-
ficulty lies in the fact that the group of nine broken fibers
could have arisen in two ways; by the fracture of a single fiber
adjacent to a group of eight broken fibers or the simultaneous
fracture of two fibers adjacent to a crack of size seven (size
refers to the number of broken fibers in the crack, or group, and
the matrix need not be fractured between the broken fibers). In
turn, there are two ways in which each of the groups of sizes
seven and eight could have originated, and so on. The situation
is significantly more complex in three~dimensional arrays of
parallel fibers where the possible sequences and combinations

of fiber breaks increases drastically with crack size.

Presumably, it is possible to construct rigorous eXxpressions
for transitional probabilities including all possible growth
patterns. However, this is a time-consuming approach and it
seems more reasonable to use approximate expressions for transitional
probabilities. Therefore, each increment of damage growth is
assumed to occur by the fracture of one of the overstressed fibers
surrounding a crack. That is, fibers break one at a time. This
eliminates the basic problem of treating the large number of pos-
sible crack paths in determining the QI' However, it is still
convenient to use the expressions for the probabilities of crack
growth that are based on failure of at least one of the over-
stressed fibers. This is more fully explained in Appendix A in
which the details of the development of the expressions for the

transitional probabilities, Q are presented.

'
As was pointed out earliir, the stress in the fibers adjacent
to a fracture group varies with the axial distance from the cross-
section containing the crack. However, for simplicity, it is
assumed that the stress 1is constant over the ineffective length

and equal to the maximum stress intensity ho in computing
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transitional probabilities. In Appendix C the effect of axial
stress variation on the probability of failure is studied. The
conclusion is that, the assumption that the stress is constant is
sufficiently accurate for the purposes of this study.

For a two-dimensional (monolayer) material the resulting
expression for transitional probability is (A9)

B

=1 - - B B -
Q; =1 exp [-ad 0" (2k ky_1-D1 (2.4)

where o and B are parameters of the Weibull distribution which
has the form F (o) =1 —exp@aGos), and the term SI represents
the elastic ineffective length associated with a crack of size I.
For a three dimensional array of parallel fibers

B8
QI(O)

1-exp{-aso® n (e Pk B ) + n ke B 0 (2.5)

where ny (1) = g (1-1) -1
n, (I) g(I) - g(I-1) +1

and g(I) is the number of adjacent overstressed fibers surrounding
a group of I broken fibers. In the 3D case the wvariation of §
with crack size is neglected. These expressions provide an estimate
of the likelihood that a crack of a given size will grow at a
specified stress level. 1In order to define a fiber break propa-
gation failure criterion, it is necessary to determine an expression
for the probability that a crack of given size will exist in a
material.

The fiber composite material contains N fibers whose length
is L. The material is considered to contain M layers of length §,
where M = L/§, as shown in Figure L.3. The choice of § is dis-
cussed in Appendix A. The determination of the probability of
having a crack of a given size in the material has three parts.
First, the probability of having one broken fiber in a single
cross—section is determined. Next, the probability that this

crack will grow to a given size, say J, is determined using the
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transitional probabilities, QI' Finally, the influence of com-
posite length is determined by evaluating the probability that
there exists a crack of size J in the M layers. The details of
the analysis are given in Appendix A. The resulting expression
for PI’
3D composite is (Aal2-14):

the probability of having a crack of size I in a 2D or

P(0) =1- (1 - p (o)1 (2.6)
where

P (6) = py(0) Q (0)Q,(0) """ @ _, (o) (2.7)
and N

p;(0) =1 - [1 - F(0)] (2.8)

Throughout the remainder of this report PI will be referred to as

the crack, or group probability.
In Section III, these expressions for determining the

probability of having a crack of a given size in a material of
known volume will be used along with the expressions for deter-
mining the probability that such a crack will extend, to establish

failure criteria for composite systems.

Cumulative Group Mode of Failure

The model for this failure mode is formulated to incor-
porate the following three effects, which are deemed to be of
importance in the tensile failure of high strength fibrous
composites:

1. The variability of fiber strength will result in

distributed fiber fractures at stress levels well

below the composite strength.

2. Load concentrations in fibers adjacent to broken

fibers will influence the growth in size of the crack

regions to include additional fibers.

3. High shear stresses will cause matrix shear failure

or interfacial debonding which will serve to arrest

the propagating crack.



Thus, as the stress level increases from that at which
fiber breaks are initiated, toward that at which the composite
fails, the material will have distributed groups of broken fibers.
Each group will have an ineffective length which increases with
group size and after matrix failure, with stress. This situation
may be viewed as a generalization of the cumulative weakening
model of Ref. 2.6, wherein the effect of the isolated breaks was
modeled by a "chain of bundles" model such as that used in Ref.2.7.

In the present situation, the problem is complicated by the
presence of bundles of various sizes. That is, both the number of
broken fibers in a bundle and the ineffective length of that
bundle vary. Thus the basic problems of defining the required
input information for the analysis of the "chain of bundles"
model are of increased complexity for the present case. The
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probability of failure of that element can be determined.
It has been shown earlier in this report, that at stress
levels above those required to cause some number of isolated
breaks in the composite, there is an increasing probability of
occurrence of multiple adjacent breaks as a result of stress con-
centrations. Thus, at moderate stress levels it will be usual to
have a non-negligible probability of existence of a crack con-
taining I broken fibers, for many values of I. For each crack
size I, there is a different elastic ineffective length and
also different values of both shear load concentration and fiber
load concentration factors. Thus for different size cracks
there are different stress levels at which matrix failure initiates
and differing distances over which it propagates. (See Appendix B).
The statistical problem represented by the state of affairs
described above is exceedingly complex and an analysis including
all these effects does not appear to be warranted. The approach
which has been used is based upon the definition of a characteris-
tic group size. The composite is treated as an assemblage of

groups of this size. For a group of I fibers, the group length is
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the ineffective length, 6I appropriate to that group size and to
the applied stress level. The stress level will influence the
group length when there are inelastic effects.
Two-Dimensional Model

Consider, first, the two-dimensional elastic case. Here
the stress analysis follows the methods of Refs. 2.3 and 2.4, in
which the usual shear lag assumptions are made. The ineffective
length is taken as a measure of the distance over which the
stress field is perturbed. Thus it may be the distance from the
fiber break to the point at which the stress field attains some
fraction, ¢, of the undisturbed stress magnitude,oo Alternatively,
it may be defined as the distance from the fiber break to the
starting point of a step function stress distribution of magnitude,
o which has the same area under it as the actual stress dis-
tribution has. The former definition was suggested in Ref. 2.6
and utilized by Fichter (Ref. 2.4) with a value of ¢ = 0.9 to
show that the elastic ineffective length varies with the size of
the group of broken fibers. The latter definition of ineffective
length was presented in Ref. 2.8 and has also been used in the
present studies to confirm the variation of ineffective length.
The latter results are plotted in Fig. 2.13 for crack sizes up
to 4 broken fibers. The best fit straight line yields the same

relationship as do the results of Ref. 2.4, namely

_ 0.6
GI—GlI (2.9)

If a characteristic group of size I is considered, the
composite is modeled as a chain of layers having a thickness
GI.
the probability of failure of the groups is known as a function

Each layer consists of a bundle of groups of size I. If

of stress, then the failure analysis is directly analagous to
the cumulative weakening analysis of Ref. 2.6. Thus, the group
Of size I, replaces the individual fiber link; the group
ineffective length GI replaces the link ineffective length,S§;
and the probability of failure of the group RI(O), replaces the
probability of failure of the fiber link element F(o).
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Probability of Failure

The probability of failure, R, (o) of a group of I fibers

I
is taken to be the probability that a crack initiates anywhere

within the group over the length, § and grows to size I. Ex-

’
pressions for RI(O) are derived in ippendix A. This derivation
utilizes the known Weibull distribution function for the individual
fiber strength values to determine the probability that a fiber
will break somewhere within one group. Then the product of the
transitional probabilities is used, as described earlier in the
discussion -of growth of crack size, to determine the probability
that a single fiber crack will grow to a size equal to the.group
size. This appears to be a reasonable approximation of the
probability that a given group of I fibers will fracture. It
does neglect combinations of small fracture groups, since the
hypothesis is that load concentration factors are the primary
contributor to the existence of a broken group.

The result of this derivation is the definition of wvalues
of RI(O) for various values of stress, o0(e.g. see eq. Al6). It is
desired to fit a smooth distribution function to these computed
Points so that the data may be introduced into the chain of
bundles failure model. The first (and successful) attempt was
to utilize a Weibull function for the data fitting. This was
chosen because the Weibull function, when used in the failure
model, yields a closed form analytical expression for the com-
posite strength. As outlined in Appendix F, logarithmic functions
of RI(G) and o were plotted and a best fit straight line was used
to define the parameters of the effective Weibull distribution
for group strength. The data plotted very close to a straight
line for a wide stress range up to and including the composite
failure stress, thus supporting the choice of this distribution
function. The above computations were made for a series of wvalues
of the group size, I. The Weibull parameters were determinedi for
each size. These results are shown in Table F.l for the glass/

epoxy composite, used as a typical example. (see page 100)
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Elastic Cumulative Group Mode

If it is assumed that the matrix shear stresses remain
elastic up to failure, certain estimates of composite strength
can be made. These are based upon the approximation that the
entire material is composed of groups of a single size. Within
this framework the probability of group failure is introduced as
the expression governing element strength into the model for an
assemblage of elements as discussed above. The approximations
of this approach are the neglect of the probability of a failure
involving groups in different layers and the neglect of interactions
of multiple small cracks within a given group.

The results of such a series of computations is illustrated
by the curve labeled "Cumulative Group Mode®” on Fig. 3.16, etc. The
stress in the fibers at composite failure is seen to decrease
as group size increases. This is not a large change and it may be
real or perhaps only a reflection of the increasing influence of
the approximations discussed above. The relative location of
this curve and others in Fig. 3.16 are used to define the critical

group size.
Critical Group Size

As discussed earlier the increase in shear stress associated
with an increase in crack size leads to a situation where a
matrix failure or an interface debonding may occur and arrest
the growth of a fiber break propagation. The stresses computed as
described at the beginning of Section II, are used to define the
fiber stress at which such a matrix failure will occur. For the
example considered, the occurrence of this arrest mechanism
is shown by the curve labeled "Debond" in Fig. 3.16. Also shown
in this figure is the transitional probability curve used to
define fiber break propagation. When the "debond" curve is lower
than the "propagation" curve, it is expected generally that a
propagating crack will be arrested before the growth becomes an
unstable propagation.

At low stress levels, the debond crack size will be large
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and the probability of having such a crack will be guite small.

As the stress is increased the debond crack size decreases and

the probability of having such a crack increases. Some statistical
measure of characteristic crack size appears to be warranted.
However, since the intent is to understand the failure mechanism,

a less precise but much simpler definition was used and the effect
of change in critical group size was studied. The size chosen is
the smallest group size which debonds prior to composite failure.
This is justified by the argument that the probabilities build up
rapidly with decreasing crack size. In order to determine this,

it is necessary to choose a group size, compute the failure stress,
change the group size and repeat the calculation, etc. This will

be treated in Section III.
Inelastic Cumulative Group Mode

With the group size chosen, the hypothesis is that a crack
will: initiate within the group; grow until it reaches the
group size; cause a matrix failure or debonding. Thus the growth
in crack size will be due to elastic stresses, as described
earlier. When the group fails, there exists the likelihood of
inelastic growth of the group ineffective length. This is
determined by using the results of the approximate inelastic model
of Appendix B which defines the inelastic group length as a
function of the ratio of existing load to the load which first
produced the debonding. Typical results are shown in Fig. 2.2
for various values of the ratio,n, of the "post-failure" stress
to the stress at which matrix "failure" occurs. These can be
translated into a plot of total ineffective length (elastic plus
inelastic) as a function of nominal fiber stress level. Also,
for an assemblage of groups in which the probability of failure
is a Weibull distribution function, the variation in composite
strength with group length is readily determined. This curve is
plotted in Fig. 3.l6 and the intersections of this curve with
those of the growth of ineffective length for various values define
the inelastic composite failure stress in the cumulative group
mode. 33



III APPLICATION TO COMPOSITE SYSTEMS

In this section the models that have been developed in
section II are used to study the effects of major parameters on
composite strength. First the fiber break propagation and cumu-
lative group modes are considered separately. Since a change in
material properties can result in a change in the mode of failure,
the effect of parametric changes on the relative likelihood of
occurrence of these two modes of failure is also considered.

In addition to the general parametric study, fiber-matrix
parameters that are appropriate for real materials are considered.
The difficulty of obtaining reliable data for this type of analysis
has motivated the use of glass-epoxy as a referance material.

In particular the data for the series B specimens reported in Ref,
3.1 are used. Those specimens were 2D (monolayer or planar)
materials and such geometries will receive emphasis in the study

of the fiber break propagation mode. Load concentration factors
and transitional probabilities are more clearly defined for the 2-D
case so that assessment of the influence of material parameters

is more easily studied for that case. The results obtained
generally are valid for large diameter fiber composite materials.
For example, Boron composite laminates generally utilize layers
containing only a single sheet of fibers.

On the other hand, commercial glass and carbon fiber
composites aenerally contain 3-D arrays of unidirectional fibers
(as contrasted with 2D or planar arrays of fikers). For these
materials, load concentration factors are lower and increase less
rapidly with increasing crack size than for 2-D materials. For
3-D materials it will be seen that the cumulative group mode is

of relatively greater importance.

Fiber Break Propagation Mode

In section II analytical expressions were developed for the
probability, Py of having a crack of size I, and the probability,
QI’ that a crack of size I will grow. These expressions were
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designated crack or group probability and transitional probability,
respectively. In this section, the effect of the major composite
system parameters on the behavior of these probabilities is in-
vestigated and the results of this study are used to establish
failure criteria for the fiber break propagation mode.

' The glass fibers in the reference material have a diameter.
of 0.0035 in. and a Young's modulus, E_. of 10.5 x 106 psi. The

f
Weibull parameters that characterize fiber strength are f = 8.4
and o, = a_l/B = 181.5 for which the stress reference units are

1
ksi. The matrix has a shear modulus Gm of 178 ksi and a shear

strength of 10 ksi. The interfacial strength and post—failure
shear parameter,n, are unknown. The elastic ineffective length
associated with one broken fiber for this material, as given
by (B23), is GIE = 0.01225 in.

Figure 3.1 shows the variation of the fiber distribution
function F and transitional probabilities QI for I =1, 2 and
10 with nominal stress, 0 for this material. This figure
graphically illustrates the significance of load concentration
factors in a 2D material on the probability of failure of over-
stressed elements. F (o) represents the probability that a fiber
of length §, subjected to a stress o will fail. This probability
can be seen to be guite low in the stress range shown. The curve
for QI is the probability that at least one of the fibers adjacent
to a single broken fiber will fracture because they are subjected
to a load concentration. That is,QI defines the probability that
a crack or group of size Iwill grow. This probability is
significantly higher than F(og) over a wide stress range. The
probabilities that groups of size 2 and 10 will grow are even
greater.

To further illustrate the significance of these curves,
consider the probability that a crack of size 1 will grow at a
stress ¢ = 100 ksi. PFig. 3.1 shows that this probability is
guite small, less than 1%. On the other hand, at the same stress,

it is a virtual certainty that a crack of size 10 will grow. This
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figure also shows that the higher order transitional probabilities,
that is, those associated with larger cracks, rise more sharply
with increasing stress. The dashed curves illustrate the effect
on transitional probabilities of changes in ineffective length.
It can be seen that a 100% increase in the ineffective length ¢,
only changes the QI by about 10%, which indicates a relative
insensitivity to this parameter.
It was mentioned earlier that the elastic ineffective
length 61 increases with the number of broken fibers, I. The
effect of the growth of6I on transitional probabilities is
shown in Fig. 3.2. The dashed curve represents the QI when GI
is held constant at the initial wvalue 61, while the solid curve
corresponds to a SI that is governed by the relation 61 =61 IO'G’
For I = 1 the curves are identical, but the growth of 6I has
an increasing effect as crack size increases. A variable GI
is used for all 2D calculations while GI = 61 is used for the
3D results since the variability of 61 with I for the 3D case
is not known. However, it is reasonable to assume that the
growth will be less in the 3D material than it is in the 2D
case. Furthermore, the effect of variable GI on QI and PI
for small values of I, which are of most interest, are not great.
For a given fiber, the ineffective length,§, is a function
of matrix properties and volume fraction. The influence of § does
not appear to be of great significance for the propagation proba-
bilities. However the ineffective length is important for assessing
fiber strength parameters.
Emphasis has been given to the fact that there are several
significant length parameters in a fiber composite material.
These include the ineffective length and the specimen length.
However, fibers are usually tested at a length that is different
from both of these. Since fibers are commonly characterized by
their mean strength and dispersion at a fixed gage length Lg’ it
is informative to study the relation between these parameters and

the transitional probabilities, QI’ which are dependent on the
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ineffective lengths, § the latter are usually at least one order

II
of magnitude, and often several, less than Lg‘ As an exampl

stren

e,
1wgth,
170 ksi, at a 1 in. gage but different dispersions; namely,

=5 and B=15 which bound the range of dispersions for most fibers
of interest. The fiber strength distribution is assumed to be

adequately described by a Weibull distribution. (For a practical
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This fact enables the strength distribution
at any length to be related to that obtained at the reference

to the inverse of B .

These assumptions lead to the curves for F (o) and transi-
tional probabilities Ql(o) and Qlo(c) shown in fig. 3.3, the
solid curves correspond to B=15 which represents a much narrower
dispersion that does B= 5, the results for which are shown as
dashed lines. Note that for ¢ greater than about 170 ksi the
probability of failure of a fiber of length ¢ F(o), for B =15

ll
is higher than the corresponding probability for B=5.
The reason for the unexpected result lies in the fact

that for the Weibull distribution the variation of mean fiber
strength with length is steeper for small B values than for
large. This means for reference lengths smaller than Lg’ the
fiber with the smaller value of B will have a higher mean
strength. The significance of the difference in transitional
probabilities for the two fibers in relation to failure by fiber
break propagation will be discussed at greater length later in
this section.

It should be noted that if two fibers have the same dis-
persion at a given gage length, then the one with the higher mean
strength will be stronger at any gage length, assuming that it
can be described by a Weibull distribution. Also, the material
with the higher mean strength will have lower transitional
probabilities at any stress level.

The effect of mean strength level on transitional probability

is indicated by considering the behavior of a fiber-matrix system
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with properties characteristic of boron-epoxy. For this case,

the fibers have an extensional modulus of 60 x 106 psi and

Weibull parameters ul=470 and B=8.82. The matrix has a shear
modulus of 200 ksi and a shear strength of 6.5 ksi. The corres-
ponding inefective length, based on a fiber diameter of 0.0004 in.
is 0.025 in. Using these properties, the transitional proba-
bilities for a 2D boron-epoxy material are shown as solid curves

in Fig. 3.4. Comparison with the reference material shown in

Fig. 3.1 shows that despite the fact that the boron-epoxy has a
longer ineffective length the transitional probabilities of the
glass—-epoxy become significant at a much lower stress level. The
small difference between the two values of § does not produce a
significant effect on the QI' Figure 3.4 also shows the difference
in transitional probabilities for 2D and 3D materials (sgquare array),
the latter designated by the dashed curves.

Figure 3.5 compares the 2D and 3D transitional probabilities
for the reference material. The radical difference is illustrated
by the fact that the 2D transitional probability for two broken
fibers is significantly greater than the 3D transitional probability
for ten broken fibers. This is a reflection of the significantly
lower load concentrations in 3D materials.

Having studied some of the major features of transitional
probabilities, it is now appropriate to consider the question of
failure associated with a crack of a given size. The goal is to
define the stress at which a crack of a given size will begin to
propagate in an unstable manner. Obviously, because of the statis-
tical nature of fiber strength,unlike the case of uniform strength
fibers, there is not a unique answer. Transitional probabilities
increase with crack size at a given stress. Therefore, if a fiber
breaks at some high level of QI then it is reasonable to expect
that fiber break propagation to failure will occur. On the basis

of this fact it is possible to use the stress at which the transitional
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probability QI reaches a prescribed level as a critical stress
for propagation. Figure 3.6 shows a series of curves which
represent the stress at which QI attains a given value as a
function of crack size for the reference 2D material. Values
of QI equal to 0.1, 0.5, 0.8, 0.9 and 0.99 are used. For
this material, the curves for QI = 0.8, 0.9 and 0.99 are
fairly close together. This is not necessarily true of other
materials, particularly in 3D arrays where there is a much
greater spread between the curves. In this study QI = 0.99
is selected as the criterion for unstable propagation. This
choice is somewhat arbitrary but provides a simple criterion
for which propagation is virtually assured and which enables
relative effects of constituent properties to be assessed easily.
With the failure criterion defined in terms of the

transitional probabilities, Q consideration can be given to

’
the crack probabilities, PI wiich reflect the probability of
having a group of broken fibers of a given size. Figure 3.7 shows
curves of PI against 0 for I = 1,2 and 10 for the reference
material. The solid curve corresponds to a material containing
lO4 layers and lO2 fibers. The dashed curve represents a material
with lO4 fibers that is lO2 layers long so that the total number
of elements is the same for both materials. The curves show

that the probability of having a single broken fiber increases

to significant levels at relatively low stress levels, whereas
multiple fiber breaks are not expected to occur until a much
higher stress is reached. Moreover there is relatively little
spread in the curves for two and ten broken fibers both of which
curves rise sharply. It is interesting to note that the ex-

pressions for P_ predict that for materials with the same number

of fiber elemenis MN, the longer one is more prone to failure by
fiber break propagation.

Crack probability curves for 3D boron-epoxy are shown in
Figure 3.8. The material and geometric parameters were chosen
to reflect real test coupons. Failures for this system generally

occur between 360 and 440 ksi which is in a stress range for
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which crack growth would be expected in a 3D material. Most
test specimens contain a relatively small number of layers,
usually about eight, which is not enough for the material to
be considered truly three-dimensional although it is too many
to be considered two-dimensional.

For large volumes of material which are characteristic

of real structures the curves of P_ rise quite sharply over

a relatively small stress range. %his is of significance in

the definition of a failure criterion. The transitional proba-
bility criterion defines the stress at which a crack of a given
size will propagate in an unstable manner. The evaluation of PI
as a function of o defines, for any critical probability level,
the stress level at which a crack of arbitrary size will reach
that probability level. The fact that the P, curves rise
sharply means that the critical stress level for the existence
of a crack is not sensitive to the choice of probability level.
That is, for a reasonably large volume of material, such as
might be expected in a real material, the stress level asso-
ciated with a probability of 0.99 is not significantly higher
than the stress level associated with 0.1 probability. There-
fore, a probability level of 0.99 is chosen to define the stress
at which a crack will exist.

Fig. 3.9 presents a series of curves that show, for the
reference glass-epoxy material, the stress at which the
probability for cracks of size I will reach a level of 0.99.

It is assumed that there are 100 fibers in the cross section
and various lengths are considered. Also shown is a curve that

defines the stress at which the transitional probability for

a crack of size I reaches a level of 0.99. The point at which
the curve of PI = 0.99 crosses the curve of QI = 0.99 can be
considered to be failure. This intersection identifies a crack

size that has a 99 percent probability of existence and a 99
percent probability of propagating at the corresponding stress
level. Since crack size is a discrete variable it is not

strictly correct to draw straight lines between the points
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indicating P, = 0.99, however the lines have been drawn for
the purposes of clarity. The actual failure stress level should
be the stress corresponding to P_ = 0.99 for the next larger

I

crack size beyond the intersection of the P. and QI curves.

The significance of the other curves on theIfigure will be
discussed below.

Figure 3.10 shows the effect of an increase of 100
percent in the ineffective length. The curves of PI = 0.99
are shifted downward about 10 ksi and the curve of QI = 0.99 is
lowered about 5 ksi. As a percentage of the reference material
values the shift is not great indicating a relative insensitivity
to §.

The effects of changes in fiber strength properties are
shown in fig. 3.11. The fibers considered have the same average
strength as the reference material at a length of 1 in. but a
much larger dispersion. The curves of PI = 0.99 for various
numbers of layers are spread farther apart and shifted upward
varying amounts as is the curve of QI = 0.99. This indicates
that failure by fiber break propagation is less likely than
in the reference material.

The influence of geometry is illustrated in fig. 3.12
which shows the behavior of a 3D material with the same properties
as the 2D reference material. The curves of PI = 0.99 are not
as flat as in the 2D case and are shifted upward significantly.
The curve of QI = 0.99 is raised to a range that does not show
on the graph. This reduced probability of fiber break propaga-
tion is a reflection of the lower load concentrations in 3D
materials.

Curves presenting the same information for 2D boron-epoxy
and boron-aluminum curves are shown in figs. 3.13a and 3.13b
respectively. In regard to fig. 3.13 it is significant to :note
that many boron-aluminum materials fail at a fiber stress of
200 ksi which is well below expected stress levels for multiple

breaks and indicative of a weakest 1link failure.
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The fiber break propagation of 3D boron epoxy is con-
sidered in fig. 3.14. Again as for the reference material it
can be seen that propagation is less likely than in the 2D
material. The significant differences between 2D and 3D
results for the fiber propagation mode indicate that this
mode is likely to be of importance only for 2D materials. This
conclusion is based upon the results for the particular systems
considered and is discussed further in section IV.

I+t was noted above, that the probability of failure by
fiber break propagation increases with increasing material size.
This is illustrated in fig. 3.15 which shows the variation in
critical stress for fiber break propagation with numbers of
layers M for three 2D materials, each of which contain 100
fibers. Material 1 has the same average fiber stress as the
reference material at a gage length of 1 in. but a larger
dispersion. Material 2 is the reference material and
material 3 has the same properties as the reference material
except that the ineffective length is twice as great. It is
significant that the curve for material 1 is substantially
higher than the reference material for small volumes but the
difference decreases rapidly with material size. Therefore,
on the basis of tests on small laboratory specimens one might
conclude that material 1 were significantly stronger than the
reference material, whereas in a real structure the increase in
strength would be much less. These conclusions assume that the
changes in constituent properties studied do not result in a
change in failure mode. All failures are assumed by fiber

break propagation.
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Cumulative Group Failure Mode

The sequence of failure in this mode has been described
above as an accumulation of distributed fiber breaks throughout
the composite; a continual increase in the number and in the size
of such damaged regions; an initiation of matrix failure or
interface debonding causing the damaged regions to grow along
the length of the fiber; and finally a collapse at one weakened
cross section due to the accumulated damage. This sequence
involves several types of local failure and is analyzed by
computing certain elastic "failure" stresses prior to the
inelastic computation of the actual failure level. This method
was described in Section II and will be applied in this section
to the actual and idealized composite systems studied.

The critical elastic stresses for the reference glass/
epoxy system are presented in Fig. 3.16. As with all computa-
tions in this study, the stresses shown are based on fiber area.
Net composite section stresses are found by multiplying the
fiber stresses by the fiber volume fraction and, where ap-
propriate, adding the contribution of the axial stress in the
matrix material. The relative location of the "debond" curve -
the notation used to define interfacial debonding or axial

shear failure, by yielding or fracture, of the matrix - is
lower than the propagation curve, QI = 0.99, and hence the crack
arrest mechanism followed by cumulative group fracture is pre-
dicted. A critical group size of two is selected. For this
case, the variation of the cumulative group railure stress with
ineffective length is plotted as the continuous curve in Fig.
3.17. The peak value of 189 ksi is the elastic wvalue, which
would be achieved only for a higher matrix failure stress, Ty.
For the two matrix failure stress values shown, the variation
of inelastic ineffective length with stress is found from Fig. 2.7.
The curve intersections define the predicted failure stress
levels for this case, for each combination of debond stress, Ty,
and post—-failure shear stress ratio, n. These results are re-
plotted in Fig. 3.18 which summarizes the influence of matrix

43



strength upon the glass/epoxy composite strength.

Increases in matrix strength will yield increases in
composite strength up to the level at which the critical bundle
size debonds at the elastic cumulative group failure stress
resulting in immediate failure. The effect of changes in critical
bundle size are discussed below. The magnitude of the change in
composite strength associated with a change in matrix strength
varies with the post-failure shear stress ratio n. For low
values of n, there is an increased sensitivity to Ty. The cross-
plot of constant post-failure shear stress,T = nTy, shows the
influence of the actual magnitude of this load transfer, rather
than of the ratio.

The choice of critical group size was somewhat arbitrary and
hence the influence of this choice should be examined. This is
done by preparing curves similar to those of Fig. 3.17 for
othear values of group size. The results of this study are
shown in Fig. 3.19, for group sizes of 2,3 and 4. There is some
variation in failure stress but there does not appear to be any
qualitative difference. Hence the original choice of bundle size
is considered to represent the failure mechanism.

Another influence of matrix properties to be considered is
the change in elastic ineffective length resulting from a change
in the matrix shear modulus. The reference glass fibers were
considered in a matrix for which the elastic ineffective length
was doubled. For this case, it can be seen from Appendix B,
that the shear stress is reduced by a factor of two. The results
are shown in Fig. 3.20, wherein it is seen that relatively small
changes occur in the cumulative group and fiber propagation
modes, but that a large change in the debond levels results. For
the case shown this change would yield a change in fracture mode
to the Ffiber break propagation mode. However, if the debond stress
Were lower, e. g. 6 ksi, then the mode would be unchanged but
the failure level would change. This is illustrated in Fig. 3.21
where the lower two curves show the effect of changing ineffective

length for the lower debond stress of 6 ksi. At high n values,
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the increased ineffective length causes a small reduction in
composite strength. More interestingly, the material with the
higher ineffective length is less sensitive to changes in n
(since it debonds at a higher stress) and thus at low n values
the relative strength of the two materials is interchanged. The
third curve on this figure will be discussed shortly.

When fiber properties are changed, it is necessary to
consider both mean stress and coefficient of variation. The
example chosen is to consider a glass fiber having a different
coefficient of variation but the same mean strength as the
reference glass fiber when both are tested at a one inch gage
length. It has beenpointed out earlier that this means that if
both fibers have Weibull strength distribution functions, the
fiber of higher dispersion (lower value of B) will have a higher
mean strength at lengths less than the one inch gage length; in
particular at the lengths equal to the ineffective lengths of
interest. This results in significantly higher strength values
for the cumulative group and fiber break propagation plastic
failure modes shown in Fig. 3.16. The change in fiber strength
properties does not have any effect on the debond stress. The
rYesult is that for the higher dispersion fiber the inelastic
effects become more significant. This is shown in Fig. 3.22
where the inelastic cumulative group failure stress is plotted
as a function of the total ineffective length ratio. For this
example a debond strength of 6 ksi was used to provide direct
comparison with the other two curves. This results in a critical
bundle size of two. The sharp reduction in strength with in-
creasing length is evident, particularly in comparison with the
reference curve of Fig. 3.17.

The changes in failure stress are determined by the inter-
sections of the group mode curve of Fig. 3.17 with the curves of
inelastic length growth obtained from Fig. 2.2. These resulting

strength values are plotted in Fig. 3.21. The sharp drop in

strength for the high dispersion material shows that the large

strength improvement predicted on the basis of elastic (or
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or inelastic with high n values) stresses is substantially
reduced for the lower (and probably more realistic) values of
post failure shear stress.

Finally with regard to fiber properties, changes in the
elastic modulus influence strength through the resulting changes
in ineffective length with interface shear stress. This be-
havior is inverse to the influence of matrix shear modulus.

That is, both ineffective length and maximum shear stress are
functions of the ratio of these two moduli.

Next, the influence of 3D geometry is examined. The elastic
failure curves for the reference glass/epoxy material are shown
in Fig. 3.23. Two important distinctions can be made when these
are compared with the 2D case of Fig. 3.16; namely, the propa-
gation curve is so high for the 3D case as to be off scale in
Fig. 3.23, and the elastic cumulative group mode is insensitive
to critical bundle size. Thus for the three-dimensional case,
which is the practical one for small diameter fibers such as
commercial glass and carbon fibers, the cumulative group mode
is the governing failure mode.

Influence of the debonding upon the actual failure stress
level is studied in Fige. 3.24 and 3.25 for two different
critical bundle sizes. It is seen in both of these curves that
the change in failure stress with ineffective length, for this
material, is gradual and that the influence of n is small. There
is little difference between the results of Figs. 3.24 and 3.25.
It must be emphasized however that the influence of n would be
increased if the critical debond stress were lowered.

The next case to be considered is that of boron/epoxy
composites. The analysis follows the same procedure and the
results for the 2D elastic failure modes are shown in Fig. 3.26.
Here it 1s seen that the debond stresses are low relative to
the elastic group mode stresses and hence the critical bundle
size is low and inelastic effects are important. This is 11-

lustrated in Fig. 3.27. Thus for a moderate value of n = 0.1,
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the strength prediction of 426 ksi compares with the previous
cumulative weakening theory prediction of 498 ksi. If the
debond stress is taken as 6.5 ksi, which is an experimental
shear strength value for this composite, the prediction will be
reduced still further. For that case, and for n = 0.1, the
predicted strength is 408 ksi. These inelastic effects appear
to reflect the mechanisms of failure far more accurately than.

the previous elastic estimates. Note that all failure stresses

are based on fiber area only.

For the 3D boron/epoxy material the elastic cumulative
group mode stress (see fig. 3.14) is again insensitive to
group size as in the case of glass/epoxy (fig. 3.23). For this
case the critical group size is one, when the realistic debond
stress of 6.5 ksi is used,and the fiber break propagation mode
is unlikely to occur. For this material, the predicted varia-
tion of strength is shown in Fig. 3.28 (based on the inelastic
cumulative group mode). For comparison, the strength at n = 0.1
is 427 ksi. Agreement with experiment would be obtained with
lower values of n. The importance of this parameter requires

that experimental attention be directed towards its evaluation.

As the final example, a 3D composite of graphite/epoxy is
studied using the experimentally obtained values shown in Fig.
3.29. The cumulative weakening analysis (Ref. 3.1) yields a value
of 547 ksi. (It is well to repeat that the cumulative weakening
analysis is the same as the cumulative group analysis when
the stresses are elastic and the critical group size is one.)
The debond stress for Ty = 4.0 is 167 ksi. Clearly the critical
group size is one and clearly there will be significant in-
elastic effects. This is shown in Fig. 3.29, wherein it is
seen, for example that the failure stress for n = 0.1 is reduced
to 362 ksi, or only two thirds of the previous prediction.

The applications discussed herein, of the application of
the cumulative group failure mode to practical materials has
demonstrated the likelihood of a crack arrest mechanism in 3D

composites and the important influence upon predicted failure
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stress of the subsequent inelastic growth of the affected region.
The magnitude of the shear stress transfer after matrix failure
or interface debonding generally is of prime importance.
Definition of appropriate magnitudes for this variable requires
experimental consideration. However the computations indicate
that it is unlikely to be close to one, else the load concentra-
tion would not be reduced and fiber break propagation at low
stress levels would not be arrested; and it is unlikely to be
close to zero, else very extensive matrix fracture or debonding

would be observed in most experiments.

Changes in Failure Mode

The implications of change in constituent properties upon
failure stress level have been discussed separately for the two
major failure modes. In the case of the 3D composites considered,
(It should be emphasized that this nomenclature refers to a uni-
directional fiber composite material having many fibers distri-
buted throughout the width and thickness directions - A 2D
composite is one in which only a single layer of parallel fila-
ments is embedded in the matrix material) , the probability of
fiber break propagation is generally very low at the stress
levels associated with the cumulative group mode of failure.
Changes in material properties of the type considered are un-
likely to produce a change in the failure mode.

On the other hand, for the 2D composites, it has been shown
that failure levels for both modes are reasonably close together.
Indeed changes in specimen size alone have been shown to lead to
a change in the failure mode. Thus fer these materials, it is
possible that constituent property changes could lead to a
mode change. This is of importance only partly because of its
influence upon the level at which failure occurs. Equally im-
portant is the influence of the nature of damage prior to
fracture upon the assessment of the reliability of a component in
service. This is a factor which is influenced by the nature
of available non-destructive test techniques and by gquestions

of desirability of "fail-safe" design techniques.
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For the 2D composites, changes in constituent moduli result
in changes in the maximum shear stress. This and changes in the
shear stress failure level determine the relative location of
the debond mechanism. This is a sensitive variation and can
easily result in a change from one mode to another as the rela-
tive location of debond and propagation curves is altered. The
other important constituent property which influences the mode
of failure is the"post~failure" shear stress ratio, n.

For low values of the stress transferred across the damaged
matrix, there will be a significant reduction in load concentra-
tion and hence a reduction in the probability of fiber break
propagation. These aspects of this problem are discussed further

in the following section.
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IV IMPLICATIONS OF THE FAILURE ANALYSIS

The results described in the preceding section have
implications for the selection of constituents and for design
with composites, which require further discussion. The re-
sults which are discussed further in this section include the
following: The failure model described in the preceding
sections indicates the importance of the variability of fiber\
strength and of the inelastic effects in the matrix or at
the interface. Failure criteria for the model are based upon
internal stresses, in contrast to the energy methods of
fracture mechanics of homogeneous materials. The understanding
of the progress of growth of damaged regions within the com-
posite provides some insight into the effects of pre-existing
damage of the composite. Finally, although the analysis is of
unidirectional fiber composites, there are implications for
laminated composites.

Variability of Fiber Strength
The high average tensile strength of many contemporary

fibers is a principal factor in their increasing utilization.
In recent years it has become recognized that chairacterization
of high strength fibers requires a definition of at least the
coefficient of variation of the strength of the fiber popula-
tion and the gage length at which the tests were performed, in
addition to the mean fiber strength. The present model shows
that this variabilitv of fiber strength has a strong influence
upon composite failure mode and strength. Thus, the model
indicates that a statistical treatment is required for evalua-
tion of failure.

The implications of fiber strength variability are fre-
quently ignored, despite the fact that their potential im-
portance is readily demonstrated. Thus, although a high
percentage of fibers tested at the commonhly used one inch gage
length fall close to the mean strength value, some small
(perhaps very small) percentage of those fibers are at un-

desirably low strength levels or perhaps at unusually high
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strength levels. Since fiber strength varies from point to
point along the fiber length, the preceding statement means that
in a one inch length there is a low probability of encountering
a point weaker than some specified low strength. Clearly for
a length much longer than one inch the probability of having
such a point, and hence a weak fiber, is significantly higher.
Since the length of fibers in practical structures is large,
there are undoubtedly distributed weak points which will
fracture at low composite stress levels.

Tﬁe occurrence of fiber fractures at low stress levels
creates the possibility of a weakest link failure, enhances
the probability of getting fiber break propagation to larger
size cracks distributed throughout the material, and establishes
sites at which high shear stresses can cause matrix yielding
or failure or interface debonding.

The importance of this stems from the facts that:
changes in matrix and interface properties can have important
effects upon the way these early damage regions grow; and the
possibility of interactions among these many damaged regions
makes gquestionable the treatment of this failure by a model
which studies the propagation of a single crack. These

factors are discussed below.

Inelastic Effects

The failure analysis has shown that for three-dimensional
composites, the high axial shear stresses in the matrix
material are likely to lead to some type of matrix failure at
relatively low stresses. This failure may be yielding or
cracking of the matrix, or debonding and slip at the inter-
face. For two-dimensional, or planar, composites this
matrix failure may or may not occur prior to a fiber break
propagation failure, depending, to a large degree, upon the

size of the specimen. In this latter 2D case, small changes
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in constituent properties may well cause a change from one mode
of failure to another. In the 3D case, the cumulative group
mode is likely to be the dominant failure mode and the effect
of changes in constituent properties will be to change the
failure stress level.

In either case an understanding of these inelastic
effects is required. In the present study, the post-failure
shear stress ratio has been treated as a parameter of unknown
magnitude. The concept here is that the matrix shear stress
in the vicinity of one or more adjacent broken fibers will
reach a high value at a moderate composite stress. This will
result in some damage or failure, perhaps in the form of inter-
face debonding, perhaps as a crack in the matrix, perhaps as
inelastic deformation of the matrix, etc. If the damaged
matrix no longer transfers any shear between fibers, then the
high shear stresses will exist at the end of the damaged
region at only slightly reduced values. In this case, small
increases in the applied stress will result in continued
matrix failure and the ineffective fiber region will continue
to grow. This does not appear to f£it the experimental ob-
servations and hence it is postulated that some shear stress is
transferred across the damaged region. A small amount of
shear stress can prevent a rapid increase in the fiber in-
effective length. At the same time there will be a reduction
in the load concentration in the adjacent fiber.

A limiting case occurs when the matrix exhibits an elastic-
plastic behavior. Here when the matrix stress reaches its
limit, it continues to transmit that same stress as the strain
increases. Although the growth of ineffective fiber length is
curtailed, the load concentration will not drop off signi-
ficantly in this case and fiber break propagation would have a
higher probability of resuming.

Recognition of the likelihood of occurrence of those

inelastic effects should motivate attempts to assess the magnitude
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of this post—-failure shear stress transfer for practical composite
systems. For boron fiber composites, the two-~dimensional model

is frequently the appropriate geometry. For this case transi-
tion of failure mode must be considered, as well as the

failure level.

Energy Considerations

The failure criteria utilized in this analysis are pre-
dicated upon the concept that a fiber will fail when it is sub-
jected to a load greater than the strength of the fiber at
that point. Thus, fibers may fail at relatively low stresses
due to a local imperfection despite the fact that other fibers
which are subjected to higher loads do not fail. Also,
fibers may fail due to load concentrations resulting from
adjacent broken fibers whether or not the matrix between
them has fractured. This results in the continued accumula-
tion of fiber breaks in a fashion very different from the
continual growth of a crack associated with the classical
fracture mechanics concepts. In either case, it is reasonable
to expect that a failed region will grow when the stress
level is high enough and when, at the same time, the energy
released by the strain changes as the crack grows exceeds the
energy required to create the crack surface. For a crack in
a homogeneous medium, there is a sufficiently high stress con-
centration, so that the energy balance becomes the limiting
Condition. On the other hand, for a fibrous composite the
surface energy required for a crack in a single fiber be-
comes less than the strain energy released by a fiber breaking
at a relatively low stress level. Thus for small cracks, where
the number of fibers affected is small, the fiber strength
variability is important and the stress level provides the
limiting condition.

Furthermore, in a composite, the multiplicity of potential

failure modes is of greater importance than in a polycrystalline
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material, because of the preferred orientation of the planes
of weakness in the former. Thus even in the case when the
crack size becomes large, the inelastic matrix effects can
change the mode of failure to a cumulative mode rather than a

propagation mode.

Damaged Composites

In the practical case of a composite structure which has
received some macroscopic damage in gervice, it is desired to
determine the residual strength of the material, and hence
its ability to continue in service. 1In general, the damage
can be expected to involve a large number of fibers and hence
the elastic stress concentrations would be very large. For-
tunately, the inelastic effects discussed in the present failure
model can be expected to mitigate these concentrations and
produce a very different stress distribution.

The beneficial effect of the inelastic matrix behavior is
illustrated in Fig. 4.1. Here a large pre-existing crack is
shown. When the composite is subjected to load, there will
be a region of matrix damage involving several fibers at the
crack tip and progressing a large distance along the fibers.
This matrix failure region will change the high local stress
concentrations to more moderate values distributed over a much
larger region, as indicated schematically in the figure. The
overstressed region is thus of sufficient size so that cumulative
as well as propagation modes are possible. This may mitigate the

probability of having a propagating crack.

Laminates

In many applications the unidirectional composite is used

in layered plates or shells to provide improved resistance to

loads in several directions. In failure analysis of such laminates,
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it is common to determine the state of average stress in an
indidivual layer and to use those stress components in a
failure criterion. One shortcoming of this approach is the
gquestion of constraint provided by adjacent layers when

local failure is imminent. If the individual layers contain
many fibers through the layer thickness, as is the case for
commercial glass and carbon fibers, then the 3D failure model
is likely to be wvalid without significant influence of adjacent
layers.

For two-dimensional arrays, such as boron fiber laminates,
each fiber is close to the adjacent layers and hence inter-
action effects are potentially more significant. Here it
can only be said that the relative orientation of the adjacent
layers will determine the importance of this interaction.

For example in a 0°, 90° laminate the low transverse stiff-
ness of a unidirectional layer would tend to minimize the
interaction effect. On this basis, simple laminates, of

large diameter fibers, such as + 8 laminates are probably
insensitive to adjacent layer constraints. On the other hand,
laminates having three and four directions of the layers are
likely to show interaction effects. 1In such cases, stacking
sequence may be expected to show an influence upon failure

levels.
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CONCLUDING REMARKS

Practical fiber composite materials contain fibers which have
a high but variable strength. This variation of fiber strength,
coupled with the existence of a relatively weak matrix material
and large interfacial areas creates a material in which there are
a multiplicity of potential failure paths. Thus, cracks across
fibers, in the matrix, and along the interface can contribute in
a variety of ways to produce material failure. It is concluded
that attempts to represent this material as a homogeneous
(albeit anisotropic) continuum for the study of tensile failure
are unrealistic. Instead, improved analyses of possible failure
modes have been developed.

It is postulated that the variability of fiber strength,
coupled with possible non-uniform stress distributions, will
cause one or more isolated fiber breaks to occur when the com-
posite is subjected to axial load. After the occurrence of this
initial damage, three possible paths to composite failure have
been studied. Analyses have been developed for the fiber break
propagation failure mode, for the cumulative group failure mode,

and for the weakest link failure mode.

Fiber break propagation failure mode - Initial fiber breaks cause

increased loads to exist in the fibers adjacent to the fiber break.
This load concentration increases the probability of failure of

the adjacent fibers. When one of these fibers breaks, the load
concentrations in the fibers surrounding the multiple fiber break
is increased still further, and so on. The continual increase in
the probability of failure of additional adjacent fibers creates
the mechanism for a propagation of fiber breaks across the material

section and hence, for material failure.

Cumulative group failure mode - When fiber breaks occur, shear

stresses are induced in the matrix in the region adjacent to the
breaks. As the fiber breaks propagate, the magnitude of this

shear stress increases. Depending upon constituent properties,
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this shear stress may become large enough to cause some non-
elastic effects; for example, yielding of the matrix or failure
of the bond across the fiber/matrix interface. These non-
elastic effects can arrest a propagating crack after the group of
broken fibers has reached some finite size. If this crack growth
and arrest occurs at many regions within the composite the cumu-

lative weakening effect can cause composite failure.

Weakest link failure mode -~ One of the early fiber breaks may

initiate a stress wave which fractures adjacent fibers, or it

may initiate a crack in the matrix resulting in localized stress
concentrations which cause the fracture of adjacent fibexs. These
initial failures may trigger additional failures leading to an
overall failure initiated by the occurrence of one, or a small
number, of isolated fiber breaks.

The importance of the various failure modes is sensitive
to specimen geometry. Thus a large volume of material having a
two-dimensional or planar array of fibers is susceptible to a
propagation failure. A two-dimensional array is the situation
found in a boron fiber tape or layer. On the other hand when
many fibers exist through a layer, such as when carbon or glass
fiber rovings are used, the material is considered three-dimen-
sional. 1In that case, the material is much less susceptible to
propagation and more likely to fail as a result of an accumula-
tion of damaged regions.

The newly developed analyses have demonstrated the im-
portance of non-elastic matrix behavior. That is, after some
amount of fiber fracture, the resulting high matrix shear stresses
may well produce an interface fracture or cause the matrix to
yeild or fail on a surface more or less parallel to the fiber axis.
After this onset of matrix damage, experimental results indicate
that there is likely to be a continued transfer of stress across
the weakened surface. The magnitude of this "post-failure" shear
stress will be some fraction of the average matrix stress at the
onset of matrix damage. The result of this effect is that when

a crack starts to propagate, it may reach a size for which the
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high shear stresses will cause localized debonding or matrix
damage. When this occurs, the load concentration in adjacent
fibers is reduced, and further growth in crack size is prevented.
Thus matrix strength and "post-failure" stress transfer have a
direct and important influence upon the mode of failure as well
as upon the strength level.

Application of the new model to composite material systems
has indicated several results which require attention in the de-
velopment of reliable structural composites. Prominent among
these are the size effect and the influence of fiber strength
variability. It is shown that as one varies the size of the .
material considered, from a laboratory specimen to a practical
structure, it is possible to change the mode of failure from a
cumulative mode to a propagation mode and with mode change, a lower
failure strength results. Failure to understand this lack of
correlation between laboratory and field experience may cause signi-
ficant difficulties in the development of reliable, fail-safe
structures.

The new model also accentuates the difficulties resulting
from conventional fiber test techniques. It is shown that the
important characteristic length of fiber in a practical com-—
posite is a small fraction of an inch. It is the properties of
the fiber strength distribution function for a fiber of that short
length that are of interest. For these short length fibers,

a high mean stress and a low coefficient of variation are de-
sirable. However, when the data are measured on the more common
test length of one inch, the conclusions are different. For ex-
ample if the fiber has a Weibull strength distribution function,
an increase in coefficient of variation for a fixed mean strength
at the longer length is shown to be desirable.

The failure model permits the qualitative assessment of the
influence of various constituent properties upon composite tensile
strength. These results are summarized below. The results pro-
vide a means for assessing the tensile strength of candidate

materials during the preliminary design phase; for understanding
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the relationship between laboratory tests and structural behavior;
and for preparing the understanding necessary to assess damage
tolerance and reliability of composite structures.

The present studies have considered the basic unidirectional
composite., Two—-dimensional, or planar arrays of fibers, such as
a monolayer boron fiber composite, have been treated as well as
three-dimensional arrays, such as multilayer boron composites ox
those utilizing glass or carbon rovings are reinforcement. In
most practical structures the unidirectional composite will be
only a portion of the load-resisting structure. Thus an all-com-
posite structure will generally be a laminate of unidirectional
layers oriented to different directions or the unidirectional ma
material may be used to provide selective reinforcement of metallic
structures. In such cases, the influence of adjacent layers upon

the behavior studied herein.
The effects of individual constituent properties are briefly

summarized as follows:

Matrix Modulus - A lower modulus means a higher ineffective length

and a lowexr shear stress. Thus the results will be a lower elas-
tic cumulative group mode stress in a higher composite stress
at which matrix or interface damage occurs; and a lower stress
for the fiber break propagation mode.

If the failure mode is unchanged, the lower modulus means a

lower failure stress in each mcde

Matrix Strength -~ Higher strength increases the cumulative group

mode strength up to the elastic value. Increases above this have
no effect. Decreases cause reductions of a magnitude which is

strongly influenced by the non-elastic shear stress transfer.

Post—-failure Matrix Stress Transfer - When the values of the ratio,

n, of non-elastic shear stress to the maximum elastic shear stress
are less than unity, there are beneficial reductions in the load

concentration factors. This enhances the prospects for crack
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arrest. As long as these values of n are not too low, there will
be a stable growth of the matrix failure region which will yield

strong (and probably touch) composites.

Fiber Modulus - This influences ineffective length and shear

stress. Higher fiber modulus has the same effect as lower matrix

modulus; namely, lower shear and longer ineffective length.

Fiber Mean Strength - For a given variability, higher fiber

strength yields higher composite strength in all modes.

Fiber Strength Variability - Higher coefficient of variation means

greater sensitivity to many parameters. Thus, for a given aver-
age strength, higher variability generally results in lower com-
posite strength. However the required fiber properties are gen-
erally not measured at the correct length. For 1" gage length,
high variability at a given strength is beneficial because it im-

plies a higher mean strength at the lengths of interest.
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APPENDIX A
EXPRESSIONS FOR PROBABILITIES ASSOCIATED WITH FIBER FRACTURE

The probability expressions associated with fiber fracture
that are used in this report are derived in this Appendix. These
expressions initially are developed assuming only that the
probability of failure of a fiber of length § that is sub-
jected to a stress distribution ¢ (x) can be represented by a
functional F[ o(x)]. Later it is assumed that the stress dis-
tribution over the length § is constant and that the strength
distribution function can be represented by one of the Weibull
form. The effect of variable stress is treated in Appendix C.
As a result of the latter two assumptions, the probability of
failure F(ko) of a fiber element of length § subjected to a

constant stress o(x) = ko is given by

F(ko) = 1 - exp (-a&kBGB) (A1)

where o and B8 are parameters of the distribution, B8 being an
inverse measure of dispersion. We will also use the term

178

o (A2)

which is a form of reference stress level. This can be seen

by writing the distribution in the form

F(ko) = 1 - exp [-6kP (TP
%y (A3)

There are three types of expressions that are of interest.
The first can be expressed as follows: Given a crack geometry
in which there exist I adjacent fibers that are broken in the
same cross-sectional layer, what is the probability that the
crack will extend by breaking at least one of the adjacent,
unbroken fibers? This type of probability will be called a
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transitional probability because it defines the probability of
transition to a larger crack size. Transitional probabilities
will be denoted QI(O).

The second type of expression of interest is the probability
of having a crack of a given size in a known volume of material.
This gquantity is determined by the probability of a crack
initiating and then growing to a given size. It is designated
P; (o).

Finally, we need to know the distribution functions for
bundles of a given size for use in the model for the cumulative
group mode of failure. Size, of course, means number of fibers.
This involves the determination of the probability that, in a
bundle of given size, a crack will initiate and grow until
every fiber in the bundle is broken. This expression, denoted

R is a special case of P

I
Expressions for QI’ PI and RI will be derived separately

for 2D and 3D square arrays of fibers.

II

(I) Two—~Dimensional Fiber Array

(A) Transitional Probability, QI

Consider a planar (two-dimensional) array of fibers sub-
jected to a nominal stress level o. Let there be a cross-
section containing I broken fibers as shown in Fig. A.l. The
matrix between the fibers may or may not be broken. Furthermore,
no assumption is made regarding the nature of stress transfer
between broken fibers. We only assume that the two adjacent,
intact fibers are subjected to a load intensity OI(x). We
also assume that the ineffective length varies with I, the
number of broken fibers. This variation is reflected implicity
in 01 (x).

It was shown in Ref.A.l that the possible sequences of
fiber break extension are guite complex because adjacent fibers
can break singly or in pairs. In order to.obtain a manageable
general expression we assume that cracks extend by breaking

only one of the two adjacent overstressed fibers. To be
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consistent with this assumption we should calculate transitional
probability QI as the probability that one , and only one, of

the overstressed fibers will break. However, this would neg-
lect a significant contribution to the probability of crack
extension in certain stress and crack size ranges. Therefore,
we calculate QI on the basis of the probability that at least
one of the overstressed fibers will break. This compromise
approach leads to expressions for Qq that approach unity for
large values of I and ¢, which is physically satisfying.

That is, as the stress increases in a material with a crack

of a given size it seems reasonable to assume that, regardless
of how few fibers may be broken, there will be some wvalue of o
for which the crack will extend. Similarly, since load con-
centrations factors (at least for the elastic case) increase
he number of broken fibers, a
stress level there can be found a crack of sufficient size to
assure that propagation is a virtual certainty.

We consider a crack of size I-1 for which there are two
intact, adjacent fibers subjected to a stress distribution
GI_l(x). It is assumed that the two intact fibers flanking
these two overstressed fibers are at the nominal stress level
o. That is, we neglect load concentrations in "next nearest
neighbors” and consider only fibers immediately adjacent to the
crack. This subject is discussed further in Appendix D.

When one of the two overstressed fibers breaks there are
now two overstressed fibers subjected to the stress distribu-
tion OI(X). Consider the fiber that was previously at a stress
level © (x) and did not fail. The probability that it will

I-1
now fail at a stress level OI(X) is

F(og) - Flo;_4)

94 = A4
1 1 - Flop_;) (ad)
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The term in the denominator reflects the fact that the fiber

survived a stress level GI. This term was not included in

previous analyses.
The second overstressed fiber was previously at a stress

level o and is now at OI(X). The probability that it will

fail is
F(c5I ) —F (o)

1 -F(o)

92 = (a5)

Using (A4) and (A5) we obtain this transitional probability:

Assuming that the fiber strength can be adequately represented
by a Weibull distribution of the form F(o) = 1 - exp (—aGGB)
and that the stress GI(X) is constant over the ineffective

length GI (which increases with I) we find:

exp(—ouSI__l k%_los)—exp(—aélkgos)
q =
exp (“G.(SI_lk?:_lO'B) (A7a,b)
exp(—ados) -exp (—aéIkIOB)

q -
2 exp (—aGOB)

If we neglect the relatively small differences between GI

and 61_1 , as compared to the differences between kI and kI—l’
_ _ B _ B B
q; = 1 - exp [ ad_ (kI = ky_4)07]
d, = 1 - exp [—aGI(ki - l)GB] (A8a,b)
and
— _ _ B B
0) = 1 -expl-as (2k? - kf_ -1)0% (29)

Throughout this report, (A9) will be used.
The growth of elastic ineffective length with crack size

for a 2D fiber array was studied by Fichter (A.2). His results
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are plotted in fig. 2.13. Using a best fit straight line, it
was possible to obtain an approximate expression for 61 as a func-
tion of crack size. The relation is

- 0.6
6 = g1 (A10)
This expression is the equation for the straight line in figure

2.13and is used throughout the report in evaluating crack growth

in composites containing 2D fiber arrays.
{B) Probability of a Crack of Size I, PI(G)

Composite size is defined by the length L and the number
of fibers, N (see fig.1.3) We want to consider the probability
of having a crack of size I in this material. We note that the
ineffective length increases with the number of broken fibers and
therefore, the number of cross-sectional layers, M, changes with
(M = L/GI).

and the maximum crack size, and therefore, the ineffective length,

crack size However if the material is reasonably long
is not too large the variation in M for a fixed length, L, will

be small compared to the variations in M considered for evaluation
of size effect. Therefore specimen size is considered to be
determined by the number of layers, M, defined as

M = L/(So (Al1l1)
where 60 is some representative ineffective length. In this
report we use 60 = GlE’ the elastic ineffective length associated

with a single broken fiber. Note, however, that although we
do not consider the effect of variable GI on M we do take into
account the variability of GI in considering the probabilities
associated with crack growth.

The probability of having a crack of size I in a composite
is developed in three steps. First the probability of a crack
initiating in a layer is computed. Next the probability that
this crack will grow to size I is evaluated. Finally, the effect
of the number of layers is taken into account.
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The probability that a crack will initiate in a layer con-
taining N fibers subjected to a stress o is

py=1-1[1-F (0)1V (A12)

The probability that a crack will initiate in a layer and

grow to size I is

pp (0) =p; 0;(0) Q) (0).eneetnn.Qy 4 (o) (A13)

where the QI(O) are the transitional probabilities defined
above.

Finally, the probability that there will exist at least
one layer with such a crack is

This last expression represents the probability that there

will exist a crack of size I in the material
(C) Fiber Group Strength Distribution, RI(O)

The cumulative group mode failure model is based on the
fact that shear load concentrations result in matrix or inter-
face failure for groups of fibers of various sizes (numbers of
fibers). If the nominal stress o is increased after matrix
failure has occurred the inelastic length o, and therefore the
total ineffective length, can increase significantly. Therefore,
the wvariation of group ineffective length is partiecularly signi-
ficant in the case of matrix failure. The method of determining
the group ineffective length as a function of stress is discussed
in another section.

For the present analysis, we assume that the ineffective
length of the group, 6g’ is known. This quantity defines the
longitudinal dimension of the group. It is equivalent to the

layer dimension used to calculate p, in (A12) .
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The probability that the group will fail is defined as
the probability that a crack will initiate in one of the I
fibers of length Gg and grow to size I. The probability that
the crack will initiate in one of the I fibers is

rp =1 -[1-F(o6 )17 (A15)

where we have included the ineffective length dg explicitly
in the argument of the fiber distribution for clarity. If the
group size for debonding at stress level ¢ is larger than one,
then, when a single fiber breaks, the stress will be perturbed
over an axial distance equal to the elastic ineffective length for
one broken fiber. By an extension of this argument it can be
seen that until the critical crack size for debonding is reached,
crack growth is governed by elastic load concentration factors
and elastic ineffective lengths. Therefore, the distribution
for the strength of groups of fibers of size I is

RI(G) = rI(Olﬁg)Ql(OlGl)Qz(olGZ).....QI_l(olGI_l) '(Al6)
where the transitional probabilities have been written as
explicit functions of ¢ and the elastic ineffective lengths
Gl - 61_1.

The expression (Al6) clearly shows that the group strength
distribution depends upon the elastic load concentration factors
and variable elastic ineffective lengths which appear in the QI’
as well as the strength and post-failure shear transfer of the

matrix which determines the group ineffective length, Sg.

(II) Three-Dimensional Fiber Array

The problems involved in developing expressions for proba-
bilities associated with crack growth (i.e. fiber breakage) in
a two-dimensional fiber array are gquite complex. However, they
are trivial in comparison to the difficulties involved in simi-

lar calculations for three-dimensional fiber arrays. The source
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of the complexity is the many possible sequences of fiber breaks
that can occur. Therefore, we adopt the philosophy that we
will consider "dominant" terms that provide a measure of the

probability of crack growth.
(A) Transitional Probabilities, QI(U)

In this section we will dispense with the considerations of
the axial variability of fiber stress and the growth of the
elastic ineffective length with crack size which were considered
in the 2D analysis. The latter simplification is a result of
the lack of information regarding the effect of crack size on
ineffective length. Furthermore, it is fnlt that the growth of
ineffective length in 3D arrays will be significantly slower
than in the 2D case. We also assume that the fiber strength is
described by -a Weibull distribution.

We first derive an expression for transitional probability
that is valid for any fiber geometry. For the purposes of
numerical computation, it is necessary to assume a fiber geometry.
A random array is extremely difficult to handle, therefore hexagonal
or square arrays are the obvious choice. Since a hexagonal array
is highly structured the square array will be used since it is
felt to be more representative of a real material.

It will be recalled that in the 2D model the expression
for the probability of crack extension is equal to the probability
that at least one of the two overstressed fibers breaks. How-
ever, because of the many possible sequences of fiber breaks it
is assumed that only one of the fibers fractures. In the 3D
model we use the same hypothesis.

Consider a group of I-1 broken fibers surrounded by g(I-1)

intact fibers subjected to a stress intensity k We assume

o.
I-1
that crack growth takes place by the fracture of one of the
g(I-1) overstressed fibers. There are now I broken fibers in
the group and these are surrounded by g(I) broken fibers which

are subjected to a load concentration kI. Of these g(I) fibers
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g(I-1)-1 were previously at a stress level kI—lo while the
remaining g(I) - g(I-1) + 1 fibers were formerly subjected to the
nominal stress o. The probability of crack growth is equal
to the probability that at least one of the g(I) overstressed
fibers will break. There are two sets of fibers to be considered.
The first were originally at a stress level kI—lG while the second
were only subjected to the nominal stress, 0.

The probability that a fiber in the first set will break is

F(ko) - F(kI_lc) (A17)

1 - F(kI_lc)

while the probability of failure of a fiber in the second set is

F(ho) - F (o)
(A18)

1 - F (o)

Therefore, the probability that at least one of the fibers

will break is

F(k.0)-F(k. o) | "1 F(k._0)-F(o) |™2
QI(G) - 1- |1 - I I-1 1 i
where nl(I) = g(I-1) - 1

n, (I) g(I) - g(I-1)+1

If we now assume that F (o) can be represented by a Weibull
distribution of the form F(c) =1 - exp(—aSOB) we find that this
expression reduces to the result for the 2D case given in (A9).

For I=1 we define

glo) =k =1

vValues of g(I), n (I), n2(I) and kI for the square fiber

array are dgiven in Table A.1. The values of kl were obtained
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from the approximate 3D model. Those designated by an asterisk

were obtained by interpolation.

(B) Probability of a Crack of Size I,PI(G)

The expressions for the probability of a group of size I
in a material are given by (Al2-14).
(C) Fiber group Strength Distribution RI(O)

These expressions are also given by the 2D equivalents

(Al15,16).
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Table A.l

Geometric Parameters

Group Number of Load
Size Adjacent Concentration
I g%gfrs nl(I) n2(I) Fa;;or
1 4 special case 1.143
2 6 3 3 1.184
3 8 5 3 1.222%*
4 8 7 1 1.259
5 9 7 2 1.280%
6 10 8 2 1.301
7 11 9 2 1.322%*
8 12 10 2 1.342%
9 13 11 2 1.362
10 14 12 2 1.376*
11 15 13 2 1.390%
12 16 14 2 1.404

*Obtained by interpolation.
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APPENDIX B

EFFECTS OF MATRIX INELASTICITY ON LOAD
CONCENTRATION FACTOR AND INEFFECTIVE LENGTH

Background

In Refs. B.l and B.2 it was shown that matrix plasticity
and fracture or complete fiber debonding can have a significant
effect on the load concentration factors and ineffective lengths
associated with the fracture of a single broken fiber in two and
three-dimensional arrays of broken fibers. Because ineffective
length and load concentration factors are basic parameters in-
fluencing fracture behavior, it is important to determine how
these quantities for an arbitrary number of broken fibers are
affected by important inelastic matrix behavior such as plasticity,
fiber debonding and matrix failure. In Refs. B.1l and B.2 it was
assumed that matrix failure or fiber debonding resulted in a
complete loss of shear stress transfer in the failed region. It
is reasonable to believe that in a real material there will be
some post-failure shear stress transfer and this was studied.

It is found that even a relatively small amount of post-failure
shear stress can have a significant effect.

In Refs. B.l - B.4 methods were developed for evaluating
average fiber and matrix stresses surrounding fiber breaks.

The composite material was modeled using a shear lag approach in
which fibers are assumed to carry only extensional stress while
the matrix supports only shear. Stresses and displacements for
multiple broken fibers were determined using an influence function
technique. This approach was also used by Hedgepeth and Van Dyke
(Ref. B.1l) to study inelastic effects for a single broken fiber.
However, the influence function approach cannot be extended to
analyze an arbitrary number of broken filaments when inelastic
matrix effects are present, since this would reguire super-

position of inelastic stress fields. 1In an alternate approach,
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Van Dyke and Hedgepeth studied the inelastic effects for a
finite array of fibers. (Ref. B.2). Sample calculations were
made for five and seven fiber models for the case of a single
broken fiber with debonding or matrix failure. Agreement

between the finite fiber and infinite models was not particu-

larly good. In the approximate method of Ref. B.2 it is necessary

to solve a set of m/2 (m even), or (m+l)/2 (m odd) simultaneous
differential equations where m is the number of fibers in the
model. For cracks containing a large number of fibers with in-
elastic zones of varying size between the broken fibers the
problem becomes complex.

Since the objective of this investigation is to determine
trends and influences rather than obtain detailed failure pre-
dictions and exact analyses of internal stresses ,it was decided
to use an approximate analysis to determine relative effects
of inelastic matrix behavior. It will be shown that this
approximate model gives reasonably good agreement with the

infinite array analysis for a wide range of cases.

Description of the Model

1. Two Dimensional Model (Monolayer, Unidirectional)
In this model (fig. B.l) which we will call the approxi-

mate 2D Model, we assume that there is a central core of n

broken fibers flanked by an unbroken fiber on each side. The unbroken

fibers are flanked by the homogeneous effective material that is
strained uniformly throughout. It is further assumed that the
central core of broken fibers can be treated as a single fiber
whose area is nAf, where Af is the area of a single fiber.

The axial distance from the plane of fracture is denoted by x
and the half length of the zone of inelastic matrix behavior is
a. The axial displacements of the broken fiber, intact fibers

and average material are denoted, respectively, by Uo’ U U

ll
There is obvious symmetry about the x-axis and the plane of

2"

fracture. The usual shear lag assumptions are made: the fibers
carry axial stress while the matrix supports shear only.
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It is assumed that in the inelastic region between the
broken and intact fibers the shear stress is constant and is
equal to nT, where Tm is the maximum shear stress that the
matrix can support. The post failure shear stress ratio, n,
is a parameter that describes the behavior of the matrix when
Tm is reached. For example, n = o corresponds to complete
debonding; n = 1 represents an elastic, perfectly plastic
matrix while values of n between 0 and 1 imply some post-
failure shear transfer.

The equations of equilibrium, which have been nondimen-

sionalized using the approach of Refs. B.l1 and B.2, are

< <
0 <t=a , (Bla;b)
d“u, _
n -2n7_ = 0
dgz m
d2ul
-u, + £ -nT.=0
dgz 1 m
o< & , (B2a,b)
d u,
n + 2(u,-u,) =0
dzg 1
d2u
1
5 - Zul + u, + £ =0
dg
where 1/2 . 1/2
d -
U, = P[——— ]u, T =P = _j T
* E,AG h™ 1 [ EfAfdh] (B3a;d)
E.Ad1l/2
iy 3 G,
Af = Fiber cross—sectional area
Ef = Fiber extensional modulus
Gm = Matrix shear modulus
P = Load in fiber at infinity = GOAf
a = half length of inelastic zone
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22 R

= fiber spacing

= material thickness

= nondimensional axial displacement

= half length of nondimensional inelastic zone

= nondimensional axial coordinate

A me £ 5 o
|

= matrix shear stress

= nondimensional shear stress

a Al
|

= fiber stress at infinity

The boundary conditions are

du,
(0) =0 u; (0) = 0 (B4)
dg
du, dul
As £ » o = — =1
dg g

In addition we require that displacements and forces be

continuous at &£=o and also

ul(a) - u, (a) = - T (B5)

The solution to this set of equations is

0< & < a

nt 5
Uo = 4~ &7+ Cy (B6)
u, = C eg—(C +nt )e=€+ £ +nT
1 2 2 m m
a < g

2 -k. & 2 -k £
u, = &+ (2-k])Bje 1% +(2-k3)Bye 2

(B7a,b)

where ]& 2=[n+l + (n2 + 1)1/211/2n—l/2

and Cl, C2, Bl and B2 are unknown constants determined from the
continuit*y conditions.

In practice for the inelastic case, values of o and n are
assumed and the four equations enforcing continuity of displace-

ments and forces at o = o, along with (B5) are solved for
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Cl’ C2, Bl' B2 and ?m' For the elastic case o= o , and the
displacements are given by (B7). The constants Bl and B2
are determined using (B4).

The load concentration factor associated with n broken

fibers is given by
du, (&)
k () = ——— (B8)
ag
For the elastic case the nondimensional shear stress

between the broken filaments and the intact fibers is given by
T(E) = uy(§) -u, (&)
(B9)
In order to determine the accuracy of the results obtained
with the approximate 2D model, comparisons were made between
the fiber load concentration factors established in Ref. B.5
and the shear force concentrations of Ref. B.3. Results for
various numbers of broken filaments up to 500 are presented in
Table B.1l.
The results indicate a maximum disagreement of about 20%
in the range of comparison which is reasonable for the purpose
of determining trends and the relative influence of constituent
properties.
Next, the 2D model was compared with the results obtained
in Ref. B.1l for a perfectly plastic matrix ( n= 1.0). Fig. B.2
shows the variation of load concentration factors with load
ratio P/Py obtained from the approximate and infinite array
models. EY is the load at which the maximum matrix shear stress
is reached.
The variation of plastic zone parameter, o, with load ratio
are virtually identical for the two analyses and are not plotted.
The effect of complete debonding after T is reached (n = 0)
was studied in Ref. B.2. Figures B.3 and B.4 shows how the
approximate analysis results compare. In Fig. B.3 the load con-
centrations are presented for both £ = 0, adjacent to the end
of the broken fiber, and at £ = o which is the end of the plastic

zone. The agreement is generally better than that obtained in
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in the same reference using a seven fiber model to represent
the infinite array. For the purposes of the present study

the results are of sufficient accuracy.

2. Three Dimensional Model (Multilayer Unidirectional)

The approximate model for a planar (2D) array of fibers
was used as the basis for a model of a material consisting of a
three dimensional array of parallel (unidirectional) fibers.

The latter will subsequently be referred to as the 3D model
which is shown in Fig. B. 5.

It is assumed, as in the 2D model, that the core of
n broken fibers can be represented by a single fiber of radius
r, whose area is nAf, where Af is the area of a single fiber.
Surrounding the n broken fibers there are g unbroken adjacent
fibers, where g depends on the geometry of the array, e. dg.
hexogonal or square, and the number of broken fibers. Only the
intact fibers closest to the broken fibers are counted. It is
assumed that the g nearest neighbors can be represented by a
cylinder of area gAf and average radius r, surrounding the
broken fibers. The rest of the material is assumed to be a
third cylinder of average material surrounding and concentric with
the core of broken fibers and the cylinder of intact fibers. As
in the 2D model, the shear strains in the average material, re-
sulting from the broken fibers ,are neglected. However, the strains
in the cylinder of adjacent fibers are affected by the core of
btroken fibers. The area between the three cylinders is filled
with cylinders of matrix material whose respective thicknesses are
dl and d2 as shown in the figure.

The equations of equilibrium for the cylinders representing
the n broken fibers and g intact fibers are obtained using a shear
lag analysis. As in the 2D model it is assumed that there is an
inelastic region whose half-length is a. In the 3D case, the
inelastic region is in the form of a circular cylinder of matrix
material between the broken fibers and the cylinder of intact

fibers.
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In a model consisting of concentric cylinders, the axial

shear stress must vary in intensity in the radial direction in

order to satisfy equilibrium.

s

Therefore we use radii T,

and

which lie respectively, between the broken and intact fibers,

and the intact fibers and average material.

The equations governing equilibrium are:

0 <x<a d2U°
nAE 5~ 2ﬂran1'= 0
dx
a’u .
gAE > + 2ﬂrb 3 (Uz—Ul)
dx 2
a < x dZU° o
nAFE + 2mr_ = (U, - U,)
de a dl 1
a’u .
gAE + 2Tr, = (U.-U.) =
dX2 b d2 2 1
where U, Ul and U2 are,

(Bloa,b)

(Blla,b)
0

respectively, the displacements of the

broken fiber-, intact fiber-, and average material cylinders.

Further, we have the condition that U

dimensionalize the equations. Let
dl 1/2
=P Dgmer ! W
Gr 1/2_
rT=P[Em—-] T
1
d = 2m Yy = 2m
n g
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The nondimensional equations of equilibrium become

0 <& <u

dzuo -
dgz - dnTm =0
(B13)
2
d Uy -
5 - ‘i’tul + W(nrm + t&) =0
ag
a < g
d2u°
+ d{u;, - u,) =0
dEz 1
d2u1 (B14)
5 - ¥Y(1L + t) u, + ¥Y(u, - t&) =0
1
dg
The boundary conditions are given by (B4). As in the 2D case,
displacements and forces must be continuous at & = a and (B5)
must hold.

The displacements resulting from the solution of this set of
equations are given by

0< & <a dn;

_ m .2
u, = _2 ET + cl _ (B15)
nt nTt
— m BE _ -BE
ul = —x + £ + c2e (02 +f§$e
where B =/V¥1
m 2 -m, & m 2 -m, &
« < & _ 1 1 2 2
- U, = & + (l+t -—F-)Be +(1+t -——)Bye (B16)
-m_ £ ~-m, &
_ 1 2
ul = { +Ble + B2e
1/2 1/2
where m = (f=) {g+n (1 +¢&) [g2+2ng (1-t) + n?(1+t)211/2)

As before, for the inelastic case values of o and n are assumed and

the continuity conditions and (B5) are used to find Cl’CZ’Bl’BZ’ and
To* For the elastic case a = 0 and the displacements given by (B1l6),
abd B, and B, are determined by using the boundary conditions (C4).
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The fiber load concentrations predicted by the 3D model
are compared with those obtained from the infinite array model
[Ref. B.l] for square and hexagonal arrays in Table B.2. For
the hexagonal array, there are two different load concentrations
representing the minimally and maximally stressed fibers among the
adjacent group of fibers. The results for the square array agree
to within about 12% while, for the hexagonal array, the 3D model
gives load concentration factors that are between the extremes
predicted by the infinite array model.

Results obtained for the case of fiber debonding (n = 0)
were obtainef for a single broken fiber in square and hexagonal
arrays in Reference B.2.

Figure B.6 shows a comparison of the predictions of the exact
infinite array with the approximate 3D models for variation of in-
elastic lengths with load ratio. The variations of load concentra-
tion factors with P/PY for hexagonal and square arrays are com-
pared in Figs. B.7 and B.8. The last three figures show that the
approximate model gives remarkably good agreement with the results
of the infinite array.

The variation in load concentration factor for a single
broken fiber in a square array when the matrix is elastic-
plastic is shown in figure B.9. The results for the infinite
array model were obtained in Ref. B.2. The results for a hexagonal
array of fibers are quite similar. In both cases the variations
of inelastic length with load ratio predicted by the approximate
and infinite array models are virtually identical.

In general, the agreement between the approximate and infinite
array models is reasonably good, particularly for the elastic and
debonding cases. For the elastic~plastic matrix, the predictions
for the inelastic length are virtually identical while the approxi-
mate model gives consistently lower predictions of load concen-

tration factors.
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Shear Load and Inelastic Length

In order to use the results of the approximate models to
analyze materials it is necessary to be able to evaluate shear
stress or force, and inelastic length in dimensional form. It
should be noted that while the concentration factor for exten-
sional fiber load is independent of material properties, the
concentration factor for shear load depends upon volume fraction

as well as constitutent elastic properties.

1. 2D Approximate Model
The shear stress between the broken and intact fibers is

defined as

G
_ m
T = I (Ul - U,) (B17)
Using (B3a) we obtain
G 1/2 1/2
- = S (B18)
O, Eg hd T
where T = Uy T Y (B19)
If we define Af
Ve T A +hd (B20)
we find that
T Gm L2 Vf L2 -
- = (=2 (——) T (B21)
g Ef 1 vf

which provides a relation between the nondimensional shear
stress T and the dimensional shear stress T which is normalized
with respect to Oy the fiber stress at infinity.
The expression for inelastic length, a, in terms of non-
dimensional inelastic length,a, is given by (B3d):
a = (£./6 )% (aa/n)1/?

which by virtue of (B20) can be written

o

1/2 (B22)




where the inelastic length is normalized with respect to fiber
diamater, df.

Since elastic ineffective length is an important parameter,
it is useful to have an expression relating a to this quantity.
For convenience we use the elastic ineffective length defined

by Friedman (B.6) since this relation has been used in previous

work.
5 E, 1/2 l_Vfl/2 1/2
E = () ( -———7r-) (B23)
d. S ov 172
f £
Using (B22) and (B23) we find that
1/2
oy 3/2
a _ £ a
°p (1-v,) (l—vfl72) (B24)

The total ineffective length,d, is the sum of the elastic

ineffective length SE plus twice the inelastic length a, so that

§ = 6_ + 2a (B25)

Note that the ineffective length is directly proportional

1/2
to (Ef/Gm)

quantity. Therefore if we double the ineffective length by
1/2

while the shear stress varies inversely with this
varying the term (Ef/Gm) the maximum shear stress is halved.
The shear lag analysis predicts a maximum shear stress at
the end of the broken fiber. This is incorrect because at the
free edge of the fiber, the shear stress must be zero. There-
fore, the elastic shear load concentrations predicted by the
shear lag analysis predict matrix damage at composite stresses
that are too low. In a real material the shear stress starts
out at zero at the end of the broken fiber, increases to a
maximum and then decay almost to zero over the ineffective
length. In view of this steep variation of computed shear stress
with distance, a significant reduction should be made in the
computed shear load concentration. Arbitrarily,a factor of two

was used in calculating the stress at which shear failure occurs

in the matrix. 82




2. 3D Approximate Model

The relation between the shear stress, T, acting

- PR -~ Ta _—

o

etween the core of broken fibers and the ring of i
and the corresponding nondimensional shear stress T is
1/2
T Gm / Af =
- T & T (B26)
° £ 17a
where, T = w, - U,

(B27)

As before, we would like to express the geometric parameters
in (B26) in terms of volume fraction alone. The manner in which
this is done is somewhat arbitrary. However there are some
rational assumptions that can be made. For a single fiber
surrounded by matrix material the outer radius of matrix material
can be related to the fiber radius and volume fraction by the
relation

(B28)

The clear spacing between fibers is equal to twice the thick-
ness of the cylinder of matrix material surrounding the fiber.
Using this fact we define dl’ the distance between the central
core of broken fibers and the intact ring as

1-v 1/2
( £

=2r T B29
S 172 ( )

a, = 2(rm - xr £

1

The second term that must be evaluated is r, . which repre-

£
sents the reference radius that is used to define the shear
force acting between the core of broken fibers and the ring of
intact fibers. This quantity is defined by assuming that the
central core of broken fibers in the cylinder of radius r,

has the same volume fraction as the average material. That is,

2 2 (B30)
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Using (B29) and (B30) we find that

1/2 ", 1/2 (B31)

1/2 T

T = (gﬁ)
g Eg 2n'/% (1-v 1/

Using {B12d), (B29) and (B30) the inelastic length, a, can

be related to the nondimensional inelastic length,o , by the rela-

tion
1/2
1/2 n(l-vfl/z)

Eg
=5 1 ]
Gy anl/2 ¢ (B32)

Q-alm

£

In turn, a can be expressed in terms of the elastic inef-

fective length defined in (B23) as follows:

—_—t /2
a £
q; = [ —5175—] o (B33)

The total ineffective length is given by (B25) in which a

is defined by (B32).
As in the 2D case, the shear load concentration factor

used to determine matrix failure is half the maximum value

arising in the shear lag model.
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APPENDIX C

EFFECT OF THE LONGITUDINAL VARIATION IN FIBER LOAD
CONCENTRATION ON THE PROBABILITY OF
FATILURE OF AN OVERSTRESSED FIBER

The increase in load intensity in fibers adjacent to a
series of broken fibers varies with x, the distance, along the
length of the fiber. It is desirable to know what effect this
variation in either stress level has on the probability of failure
of an overstressed fiber.

Consider a fiber subjected to a symmetric stress ¢ (x) over
the region - §/2 < x < §/2. Assuming that the strength of the
fiber can be described by a Weibull distribution, the probability
that the fiber element will fail can be found from the general
form given in Ref. C.l. It is given by:

6/2 8
Flo(x)] = 1 - exp [-20f 0" (x) ]ax

(c1)

For a constant stress, o(x) = ko, the probability of
failure is

Flo(x)] = 1 ~ exp [-0d80PkP) (c2)

This expression is very simple to work with, and through-
out most of the report it is assumed that the probability of
failure can be represented by it, using the maximum stress in-
tensity in the overstressed fiber to define k. This fact pro-
vides further motivation for determining the influence of stress
variation on the probability of failure.

In this section we show that for a number of stress distri-
butions it is possible to write expressions for the probability
of failure in the form of (C2) with the only difference being
that the load concentration factor k is replaced by an effective
load concentration factor k. The actual elastic load distribution
in the fiber adjacent to a single broken fiber was computed in
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Ref. (C.2) using the results of Ref. C.3. This load distribu-
tion is shown in Fig. C.1 . For the approximate analysis used
in the present study, the load distribution is the sum of two
decaying exponentials. For the purpose of assessing the effect
of this variation in stress, an exponential variation was con-
sidered. Also, a linear distribution which is representative of
constant matrix shear stress was treated. 1In both cases, the
average fiber stress is ¢ and ko is the maximum stress level in

the overstressed fiber.

Linear Stress Distribution

o(x) = ko - 2(k=-1)ox/§ (C3)
This stress starts out at ko and drops to ¢ at x = §/2.
We find that the probability of failure of the overstressed

element is B 8
Flo(x)] = 1 - exp [-ad0o (kf )71 (c4)
*
where k B+1 1/8
S Sy Sl (C5)
(g+1) (k-1)

N *
values of kL for various values of k and B are shown in
Table C.1l.

Exponential Stress Distribution

0(x) = o[l +(k-1) exp (-9%x)] (Co6)

We assume an exponential distribution that starts out at a
stress ko and decays to 0 as x goes to infinity. We define the
exponent ¢.by requiring that the total stress increment integrated
over the fiber is equal to the total stress increment resulting
frbm a stress o(x) = k acting over a length §/2. That is

o(k—l)% = (k=1)o fTe ~9X g4 -

¢_2.
8

This gives
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In order to study the effect of exponential stress we must
evaluate an integral of the form:

= f8/2 - - 4% B
1=/ 1+ (k-1) e ™]"ax (©8)

This integral does not appear to have a closed form solution
except for integral values of B for which case it is possible to
expand the integrand and integrate term by term. Again it is
possible to express the probability of failure in the form
F(o) = 1 - exp [-0dc k. B]

E
(C9)

where the terxm k; is the effective load concentration factor
associated with an exponential stress distribution of the form of
(C6). Values of k; for various values of B are tabulated in
Table C.l.

Discussion and Conclusion

Table C.l shows that the effective load concentration factors
associated with practiced values of B do differ measurably from
the maximum values. However, especially for small numbers of
broken fibers the difference is not dramatic. TFor example,
consider k = 2.03 which is the elastic load concentration factor
associated with four broken fibers in a 2D array. For B= 10,
which is representative of many practical fibers, such as boron,
the effective load concentration factor corresponding to an ex-
ponential stress distribution is 84% of the maximum value. For
the purpose of determing trends and relative effects of various
parameters this difference is not of great significance and the
use of the constant stress distribution based on the maximum stress
level is justified.

For a hundred broken fibers in a 2D array, k; is only about
20% less than the maximum value k = 8.92. Therefore even for
large crack sizes the use of constant stress distributions and
maximum load concentrations seems justified at this time. Should
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future analyses require greater accuracy a method of including
the effects of stress variability on failure probability has
been provided.
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Table c.1

Effective load concentration factors for linear
and exponential stress distributions for various

values, of the Weibull parameter B

Maximum
Load 5

Concentration x %

k kL kg
1.146 1.076 1.094
1.333 1.182 1.217
1.600 1.344 1.397
2.03 1.621 1.695
2.97 2.25 2.36
6.34 4.59 4.78
8.92 6.38 6.64

B = 10
K * Kg*
1.080  1.095
1.120  1.224
1.389  1.419
1.711  1.743
2.44 2.47
5.08 5.14
7.10 7.18
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APPENDIX D

STRESS CONCENTRATIONS IN NON~ADJACENT FIBERS

Previous work has centered mainly on the load concentrations
in the fibers immediately adjacent to a group of I broken fibers
since these fibers are subjected to the highest increase in
stress. However, because of the variability in fiber strength
it is important to know the stress intensity in other fibers
in the vicinity of the crack. Therefore, we compute the elastic
load concentration factor in the plane of the crack for fibers
at various distances from the end of the crack.

We consider a 2D array of fibers with a crack containing
I fibers (fig. A.l) We indicate the position of the intact
fibers by the index J. The first fiber adjacent to the crack
corresponds to J = 1, the next fiber to J = 2 and so on. Pre-
viously, we have only concerned ourselves with fiber J = 1.

It was shown in Ref. D.1l that load concentration in an
arbitrary fiber in the plane of the crack is given by

I-1
K =1+ 22 u L (D1)

n —
m=p W n-m

where u is the nondimensional displacement of the broken fiber

m and L_ is the influence coefficient defining the force in the

nth fiber associated with a unit displacement of a fiber n units

away. That is, Ll is the force in a fiber when the next fiber

is displaced a unit amount, L2 is the force in the second fiber,

etc. The general expression for the influence coefficients is

_ 4 (D2)
m(4n" ~ 1)
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The unknown displacements Un are found from the requirement that
the broken fibers be force-free in the plane of the break. This

gives the following I simultaneous equations for the Un:

I-1

1+ Eo u Ln—m =0 n=20,,2 ... I-1 (D3)

This problem has been programmed in FORTRAN IV so that it
is possible to obtain the load concentrations in any fiber
associated with the break of an arbitrary number of fibers. The

results obtained are discussed in the body of the report.
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APPENDIX E
ELASTIC STRAIN ENERGY

Determination of the energy available to initiate ad-
ditional damage requires knowledge of the strain energy re-
leased when a fiber breaks. The strain energy before fracture
is simple to obtain since the stress, o, is constant, assuming
adjacent fibers are intact. The stress distribution after
fracture is more complicated, depending on interfacial and
matrix properties, as shown elsewhere in this report.

The initial elastic strain energy stored in the matrix is
neglected because the axial strain is the same as the fiber
strain and the modulus is much lower. This is consistent with
the shear lag assumption in which the matrix carries only shear.
However ,energy absorbed by the matrix due to localized shear
stresses when a fiber breaks 1is to be accounted for.

Fiber Energy Change

The general expression for the energy released when a

fiber breaks is

A
e = -2 {ﬁf:? s [0%- 6% (x)] dx } (E1)

where X is the axial coordinate measured from the point of

AV

fracture, Af, if the fiber cross-sectional area, Ef its Young's
modulus, ¢ is the constant stress before fracture and o (x)
is the stress in the fiber after fracture.

The fiber is assumed to be perfectly bonded to the matrix
which remains elastic after the fiber breaks. A further
assumption is that the stress distribution in the fiber is
adequately described by the approximate 3D models described in
Appendix B.

Under this assumption (El) becomes

1/2 °
1/2, .3
2(1-v )A . (E2)
AV (3D) g 2 [ £ f ] f[l _ (du)ZJ ae

£ dg
Eme °
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where Ve is the fiber volume fraction, Gm.is the matrix shear
modulus, & is the nondimensional axial coordinate and u is the
nondimensional fiber displacement for an elastic matrix given
by (Bl6) for n = 1, since a single broken fiber is being
considered.

Performing the indicated integration it is found that

. 1/2,,3 2 2
. (3p) _ 2 2W-ve U TR 2By 2B, 2B3B, BT ByU o (pgy
BV ¢ - l—_=< = "5 *3a¥ =n T ]
f m 1 2 1 72 1 2
whexre B, = m, [1 + t - m2 /Y1 A B, = m,[1+t - m 2 /Y ]A and VY
1 1 1’ 2 2 2

my, M, and A are defined in Appendix B.
Considering a square array of fibers for which n =1, g = 4,
and letting t= 1, we f£ind that

1/2,. 3 /2
AV = 1.06 ol 1 (E4)
Eme
The equivalent result for a 2D fiber array is
3 1/2
v Af
av?P) 21333 62 [(—E) ] (55)
1-v E_G
£ £ m

Matrix Energy Change

It is assumed that the only stress in the matrix is the
shear stress that arises when a fiber breaks. Therefore, the

amount of energy absorbed by the matrix is, for the 3D model,

2m1r_d
a

_ 1l ,0 2
AVm = '—-G_ .!; T dx (E6)
m
which yields 3 1/2
AV. = 0.237 (1-v l/2)1/2 (fg__) o2 (E7)
m ° £ GﬁEf °

The corresponding equations for the 2D model are

_ 2hd o 2
AV, = “5— { 7 ax (E8)

g
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which is found to be

Ve 1/2 3 1/2 (E9)

= 0.381 (:—o— ) (
1-ve mE £

It is interesting to note that for both the 2D and 3D cases
the ratio of the energy change of the fiber to that of the matrix
is independent of elastic properties and volume fraction.

Net Energy Change

The amount of energy available to initiate stress waves or
fracture surfaces is the sum of the energy changes in the fiber

and the matrix:

AV = AV

e + AV (E10)

For the 2D and 3D cases we find

3 1/2
1/2 A (E11)
(3-D) _ _ . 1/2 f 2
AV = -0.823 (1-vg ) (g ) Oo
fm
. /2,3 1/2
(2D) f £ 2
AV = - 0.947 (——) ( )
1-ve E:Cp %o (E12)
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APPENDIX F

ANALYSIS OF THE CUMULATIVE GROUP MODE OF FAILURE

The motivation fo the model defining the cumulative group
mode of failure has been presented in the body of the test the
analysis of the model is outlined in this appendix. In a basic
sense, the model is very much like that of the cumulative weak-
ening model of Ref.F.l that is the material if represented as
a series (or chain) of layers; each layer is a bundle of
elements. The difference is that each element is now in itself
a group of fibers and the length of the layer is the ineffective
length of a broken group of that size. When that length is known
and the probability of failure for each group is known, then the
analysis is the statistical analysis of a chain of bundles
originally studied by Gucer and Gurland (Ref.F.2 ). Thus, the
statistical analysis requires no new developments. Only the
definition of the characteristic dimensions and the probability
of failure functions, for proper representation of the fiber
composite material, require development.

The basic element is defined as a group of I fibers having
a length equal to the total ineffective length SI. The probability
of failure of this element RI(G) is approximated by the probability
that a crack will initiate within this volume of material and
propagate to a crack of size I. The probability that a crack
will initiate within the group, GI(C), is defined as

_ - - I
Gi(o) =1 (L - F (8;,0)] (F1)

where F(GI,U) is the cumulative probability function for failure

of a single fiber of length, § at stress, o.

II
The probability that this crack will grow to size I is

determined by the transitional probabilities, Q., that a crack

I
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of size I will grow to size I + 1. Thus

RI(O') = GI(O')Qle c e e s Q0 (F2)

where Q; is defined by eq. (Aa9).

Group failure probabilities have been evaluated for fibers
which are assumed to have a Weibull strength distribution function
of the form of egq. (Al). For the two dimensional case, the
transitional probabilities were evaluated including the effect
of the variation in elastic ineffective length with number of
broken filaments. The assumption here is that the stress field
is elastic until the critical group size is reached and interface
or matrix failure occurs. Thus the transitional probabilities are
based on elastic ineffective lengths; however, the probability
of crack initiation, GI(U), is based on the total group ineffective
length, including inelastic effects. This is done because a
crack which initiated anywhere along that length and grew to
group size would be a cause of group failure when the ineffective
length reached that length.

The ineffective length for the group in the presence of
inelastic effects is evaluated by the model of Appendix B. The
group size is determined after certain computations are made for
various group sizes.

With 61 and RI(o) known, the strength analysis can be
completed following the results of Ref.F.2 as was done in Ref. F.1.
When the RI(G) values are known only numerically the statistical an
alysis becomes tedious. Thus an attempt was made to fit the data for
probability of failure of a group with a Weibull distribution

function for RI(O) in the form:

Rp(0) =1 - exp (~ao®) (F3)

o8




For this distribution
oob = - m[1-R;(0)]
(Fa)

oxr

™I

nos= ln{—ln[l—RI(c)]}—ln o (F5)

Thus if the data for RI(C) follow a Weibull distribution
(F3), then a logarithmic plot of ¢ vs {-1n[l - Ry (0)]} will be
a straight line of slope B. Further the value of ¢ at the
intersection of this straight line with the point

ln[l—RI(c)] = -1 (F6)
== (1/8)

defines the value of o
Plots of the R, (0) values computed for the elastic

ineffective length, 6IEY in the manner described above yielded

straight lines with very little if any scatter. Indeed the

consistent linearity of the data over a range of nearly two

decades of the logarithm of the probability function seems to

suggest that an analytical derivation of the Weibull parameters is pos-

sible. However, attempts to accomplish this were unsuccessful. ‘
Having established that the individual elements have a

Weibull strength distribution with parameters o and B, it follows

immediately from the analysis of Ref.F.l, that the statistical

*
mode of the composite strength, O wr is given by:

N =
oy = (aBe) /P (¥7)
This value of strength is given a subscript, e, to denote
that it is based upon the elastic ineffective length. However,
since the element strength has been shown to be well represented

by a Weibull distribution, the length correction is accomplished
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simply as follows:
s "'l/é
o =0 (=) (F8)

This follows from the results of Ref. F.1,
Typical results for the group failure probability are

shown in the following table F.l1 for the reference glass/epoxy
materials:

TABLE F,1
I o "1/B B
1 181.5 9.4
2 235 17.9
3 219 ' 20.8
4 213 21.8
7 204 22.7

Note that the values for I = 1 are the input data; that is,
they are the data determined experimentally for single fibers.
The sharp drop in dispersion (increase in B) for I = 2 is char-
acteristic of all the results obtained as is the leveling off
of E with increasing I.

The elastic failure stresses for the cumulative group
mode are computed from these data using eq. (F7) and plotted
in fig. 3.16. Next the average fiber stress at interface de-
bonding or matrix failure is computed from the shear stress
concentrations of Ref.F.3 . This debond stress is found by
setting T = Ty, the specified maximum shear stress, in
eq. (B2l) for 2D composites and (B3l) for 3D composites. If
the debond stress curve is lower than the computed propagation
curve, QI = 0.99, (see body of paper) it is assumed that crack
propagation will be arrested forming groups of broken fibers
surrounded by a damaged or failed matrix region.
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A critical bundle size is selected. In this study, it
has been taken as the lowest bundle size which debonds prior to
cumulative group mode failure. In the example of fig. 3.16 for
the reference glass/epoxy composite, a critical bundle size of two
is selected. Then eq. (F8) is used to plot the decrease in
predicted failure level as a function of increasing total in-
effective length. This curve is shown in fig. 3.17. Similarly the

growth in total ineffective length with increasing stress above

the debond stress is found from eq. (B25) using the inelastic length,

a, given by eq. (B24) for the 2D composite and (B33) for the 3D
composite. The required non-dimensional inelastic length o is
found from curves such as those of fig.3.17, as a function of the
ratio of actual load to debond load for a given value of the
ratio,n, of post-failure shear stress to failure shear stress.

This defines all the information required to plot applied stress

as a function of total ineffective length. This is shown as a
series of short curves for various n values on fig. 3.17. The
intersection of each of these curves with the decaying cumulative
group strength curve defines failure. That is, the intersection
defines the point at which increased stress above the debond stress
has resulted in a total (elastic plus inelastic) ineffective length
which is long enough to cause the assemblage of groups to fail

at that increased stress.

In the example of fig. 3.17, this stress is below the
debond stress for a single fiber. Repeated computations can be
made for assumed larger critical group sizes. This is discussed
in the main text.

The procedures for 2D and 3D composites are identical; only
the numbers change. BApplication of these methods of analysis for
this cumulative group mode of failure are described in Section
III of the report.
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1.1 Perturbation of stresses in the vicinity of a

Fig.

broken fiber end.

104



0s

(T°T *Fo¥ woiy ejep 1sqly UOIOg)

*sanTeA yYlrbusiis I9qr3

TenpTATPUT JO oHuel pue uesw JO uorIeTIEA T°T *H1d

0¢

"Nl * HLONT1 399

01

S

Ll

001

00¢

00¢

00¢

009

IS “ HLONIYLS FTISNIL

105



STATISTICAL TENSILE FAILURE MODEL
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tensile failure model.
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3.6 Variation with crack size of the stress required

for a given transitional probability.
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FIBER STRESS, ¢, KSI

— 2D
\ \ al=181.5 B=9.40

5=10. 01225 IN.
N=100

CUMULATIVE GROUP MODE

210

190

P -0.99 M
ﬁ 2
17 \__ MATRIX FAILURE 10
( T =20.0KSI
y
< 10°

150

130

110

MATRIX

10 FAILURE ~
T =10.0KSI - N
y -~
m 1 1 | 1 | i 1 1 J
1L 2 3 4 5 6 7 8 9 10
CRACK SIZE, |
Fig. 3.9 Stress levels for various events contributing to
composite failure. (2D reference glass/epoxy composite).
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FIBER STRESS, o , KSI
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Fig. 3.10 Stress levels for various events contributing
to composite failure. (2D glass/epoxy with increased

ineffective length).
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Fig. 3.11 Stress levels for various events contributing
to composite failure. (2D glass/epoxy with fibers having

a grecater dispersion of strength).
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3.12 Stress levels for various events contributing
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FIBER STRESS, o , KSI
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Fig. 3.13 a Comparison of critical stress levels for

boron fibers in metallic and polymeric matrices

a. LCpoxy matrix
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FIBER STRESS, o , KSI
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Fig. 3.13 b Comparison of critical stress levels for
boron fibers in metallic and polymeric matrices.

b. Aluminum matrix.
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Fig. 3.14 Stress levels for various events contributing

to composite failure. (3D boron/epoxy composite).
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Fig. 3.15 Change in stress level for fiber break
propagation mode with sample size for various glass/

polymer composites.
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Fig. 3.16 Average fiber stress for various elastic

failure events (2D glass/epoxy composites).
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Fig. 3.19 Influence ot characteristic group size upon
computed failure stress in the cumulative group mode.

(2D reference glass/epoxy composite).
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3.20 Average fiber stress for various elastic failure

events. (2D glass/polymer composites).

141




*(esxe I19qT3 uo psseq) yabusizs o3Tsodwod

uodn satjaadoad XTIjew pue I9qII JO SOUSNTIUT 1z2°c *b1a

A .
Lie =W ‘OILYY SSTULS ¥VIHS FWNTI V4 1SOd
80 9°0 70 20
r I T T ) T T T ]
2z10°0 =°To
. O .
ha0°0= -0 6=

76=¢ G T8T -0

221070 = 1o
0°¢ ¢
O .ow.ﬂ = Q\—ld

04l

091

0.1

081

061

00¢

0T¢

02¢

(SN ‘HLONIYLS 3LISOdWOI

142




* (yzbuaaazs go uotsaadsTp Is3e0xb ©

putaey saaqry UYaTm Axods/sselb dqg) °S3I02IID @0vII93UT
pue XTIjew OTISETOUT HUTPNTOUT Spou dnoxbh sATIERTOUND
ay3 IO0I $S°I3}S DANTTRF JO UOTIeUTWIdAISd TT'E *HTd

9y g ‘OrLYY HLONTT IAILOTHANI
o ¢

19

£
ISYOT = &
9
22100 = 19 -
069 6%z, o
0T=L

I=u

04l

00¢

04¢

ISY ‘SSULS

143




CRITICAL STRESS, KS|

240

220

200

180

160

140

120

_ 3D
o—B= 181.5

B=9.4
610 =0, 0122 IN.

FCUMULATIVE GROUP MODE

GROUP SIZE

Fig. 3.23 Average fiber stress for various elastic failure

events. (3D reference glass/epoxy composite).
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Fig. 3.26 Average fiber stress for various elastic failure

events.

(2D boron/epoxy composite)
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Fig. B.l Approximate model for the evaluation of stresses

in a 2D composite with inelastic matrix effects.
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Fig. B.2 Comparison of load concentration factors from the

approximate 2D inelastic model with those for the infinite

Aarray.
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Fig. B.3 Comparison of load concentration factors from

the approximate 2D inelastic model with those for the

infinite array in the case of no post~failure shear stress

transfer.
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Fig. B. 4 Comparison of inelastic length variation from
the approximate 2D inelastic model with those for the
infinite array in the case of no post—-failure matrix

shear stress transfer
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Fig. B.5 Approximate model for the evaluation of stresses
in a 3D model of a unidirectional composite with inelastic

matrix effects.
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Fig. B.6 Comparison of inelastic length variation from the
approximate 3D inelastic ~odel with those for the infinite
array in the case of no post-failure matrix shear stress
transfer.
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Fig. B.7 Comparison of load concentration factors from
the approximate 3D hexagonal array inelastic model with
those for the infinite array in the case of no post-
failure matrix shear stress transfer.
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Fig. B.8 Comparison of load concentration factors from the
approximate 3D square array inelastic model with those for
the infinite array in the case of no post-failure matrix

shear stress transfer.
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Fig. B.9 Comparison of load concentration factors from the
approximate 3D square array inelastic.model with those for
the infinite array.

161



*I9qT3 usyoxq o1burs © 03 jusdelpe
I9qT3 usyoxqun 3ISITI UT PeOT JO UOTIeTIBA T°D °b1g

343914 ONOTV IONVLSIC
Al A 01 80 90 b0 ¢0

LB | 1 T 1 T T

—

My . _»

9
Tg >35> 0 ¥04 QYO 39VHIN

60

01

A

€T

Al

( 9) L ‘4314 NINOUENN 1SYIA NI YO

CR-2057

18

162



