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Preface 

This report summarizes some preliminary results obtained in the course 

of examining the behavior of genetic operators as used in function 

optimization. The companion to this report [Bosworth, Foo and Zeigler, 

"Comparison of Genetic Algorithms with Conjugate Gradient Methods", University 

of Michigan Technical Report No. 00312-1-T, 19721 presents the actual 

implementation of such operators. Here we present some theoretical properties 

of two operators, namely crossover and inversion. 

This investigation has raised more questions than it has answered. 

Time has not permitted us to pursue them further. 

Numerous discussions with Bernard P. Zeigler have crystallized many 

concepts which would otherwise have remained hopelessly opaque. We have 

also followed his suggestions in many places as to the mode of presentation. 

John H. Holland originally conceived of the idea of genetic operators in 

a more general setting and we thank him for this inspiration. Roger Weinberg 

implemented a computer program for genetic operators in 1970 [Weinberg, 

"Computer Simulation of a Living Cell: Interdisplinary Synergism" University 

of Michigan Technical Report No. 01252-3-T, 19701 which suggested that 

our proposed enterprise was at least feasible. 



Section 0 

Basic Concepts 

We begin by setting forth the basic concepts of crossover and inversion 

as an intuitive basis for the mathematical development to come. We urge 

the reader to consult our paper (Bosworth,et al., 1972) for illustration -- 

in the context of an actual optimization system. 

Both crossover and inversion are operators on "strings". A "string" 

is an ordered n-tuple with an associated permutation of {l,...,nj. 

Crossover acts on two strings to yield two new strings which are the two 

original strings with some corresponding corrdinates exchanged. E.g., 

crossover on (al,a2, 3 a > and (bl,b2,b3) might yield (b2,a2,a3) and (bl,al,b3), 

The associated permutation is the rule for correspondence of coordinates. 

Inversion acts on a string by reordering the ordered n-tuple and changing 

the associated permutation in the same way. E.g., inversion might act on 

(al,a2,a3,a4) with (2,1,4,3) to yield (a3,a2,al,a4) with (4,1,2,3). 

This interpretation of crossover and inversion is motivated by natural 

and artificial genetics. In natural genetics a string corresponds to a 

chromosome. The order of alleles in a chromosome is arbitrary but no matter 

where an allele appears in the chromosome the character it expresses is 

unambiguous. In artificial genetics, chromosomes must be represented 

by ordered n-tuples of numbers. Here the character expressed by a number 

(allele) means the part which the particular number takes in the evaluation 

of the string. A function is used to evaluate strings so in general a 

correspondence must be set up between the artificial "chromosomes" and 

points in the domain of the function. The associated permutation is the 

needed correspondence. We will call this permutation the "inversion 

pattern" of the string and denote it by an n-tuple (il,...,i,). We will 



call the domain of the evaluation function the function space, say S. 

The correspondence of coordinates in the function space is as follows: 

If j is the ith coordinate of its inversion pattern then the ith coordinate 

of the string is the jth coordinate of the point in the function space. 

E.g., (a l,a2,a3,a4,a5) with (2,5,3,4,1) corresponds with (a5,alJa3,a4,a2) ES. 

These interpretations lead to the consideration of strings with associated 

inversion patterns as an extension of the function space. If S is the function 

space, a set of n-tuples, and T is the set of permutations of {l,...,n) 

then a strings, S, with associated inversion pattern, r, may be considexed 

as a pair (s,r) E S x T. A point in S x T is evaluated by applying the 

function to the corresponding point in S. 

Normally, for computational reasons, crossover is applied to (sl,rl) 

and (s 2,r2) only when r 1 2' =r In section 6 we will see that for some 

functions this may be relaxed with no added work. 

We summarize the development as follows: 

Section 1 presents an algebraic picture of crossover, which is 

complemented by the geometric interpretation in Section 2. In Sections 3 

and 4, two different but related approaches to the stochastic properties 

of heuristics are discussed. Sections 5 and 6 examine some algebraic and 

geometric aspects of inversion. Finally, Section 7 rounds off the discussion 

with a brief and tentative look at one approach to the evaluation of genetic 

strategies. 



SECTION 1 

The Algebraic Structure of Crossover 

Let S be a set, n E N and 0 < i I n. 

def: ci:~sn,snl + {sn, S"> such that ci({(al,...,an),(bl,...,bn))) = 

C(al,...,ai_l'bi'ai+l,...,an),(bl,...,bi-l,ai,bi+l,...,bn). 

def: If 0 < i -< j -< n then c.. = 
11 kii 'k 

def: C = {k/k = .; c 
J=l ij 

where r E N and for all j -< r, i. E N) = set of 
7 

all crossover operators. 

def: e = clcl' 

Lemma 1.1 

If 0 < i 5 n then cici = e. This follows directly from the definition 

of ci. 

def: K = CC, function composition> 

Notation: function composition will be treated like multiplication since 

it is associative. 

Lemma 1.2 

e is the identity of K. 

Proof: cie({(al,...,an),(bl,...,bn)l) = Cicl(~(bl,a2,-~-,an),(al~b2~~~-~bn)~) = 

ci({(a,,...,a,),(b,,..., b,))), therefore tie = c.. 1 
tie = ci(cici) = (cici) ci = eci = ci. k E C => k = cik'cj for some 

ci,k',cj E C therefore ek = ecik'c. = cik'c. = cik'cje = ke = k therefore 
7 J 

e is the identity of K. 

4 



Let GF(2) = iIO,l),+;>, V = the n-dimension vector space over 

a~V=>a= (a 1 ,-..,an) where ai E {O,l). 

Definition 

g:v -+ P({l ,...,nl) by g(a) = iilai = 1) this is obviously a 1 to 1 

onto map. 

Definition 
II ci if a # 0 

f:V + K by f(a) = ieg(a) 
e if a=0 

Lemma 1.3 

f is well-defined. 

Proof: 

a,B E V and a = B + g(a) = g(B) so if C.C. = C.C. for all 1 5 i, 1 J Ii 
jsn, TI c.= II 

ieg(a) ' Wit(B) 
'i' 

If i = j C.C. = cii = c.. = c... 
17 13 11 

Ifi#j cicj(I(al,...,an),(bl,...,bn)l) = ci({(al,...,b.,...,an), J 
(bl,...,aj,...,bn)l) = (I(al,...,b.,...,bj,...,an),(bl,...,a.,...,aj,...,bn)~) 

1 1 

= cjci(t(al....,an),lb,,...,bn)l). 

Therefore C.C. = c.c.. 
11 Ii 

Therefore f(a) = f(B), therefore f is well-defined. 

Theorem 1.1 

f is a homomorphism. 

Proof: 

Let e,B E V and a+$ # o 

f(a+f3) = II c.. 
iEg(a+f3) i 



c. c. . . . c. c. . . . ci = c. . . . 
3 ll 'r '2 r I2 

ci c. . . . ci 
r '2 

= e therefore by 
r 

induction k E K => kk = e therefore K is a 2-group. Q.E.D. 

def: R = I{a,BIla = Il,...,nI-61. 

Theorem 1.2 

There is a one-to-one correspondence between K and R. 

Proof: a E R => a = Ia,B) where a = {l,...,n}-8. Let f:R+ Kbe 

defined by f(a) = II ciifi# 0 
isa 

eifa=$ 

a=@=> llci= TIci. Let a = (1 ,...,n)-f3, a = fl => 
i&a i&B 

II ciC{(a,,...,an>. 
i&B 

(bl,...,b,)I) = ((bl,..., bn),(al,...,anII = e(((al,...,an>,(b,,...,bn)}). 

Let {il,...,i,I = a, Ij,,...,jsI = B then II ci.l[ c. = II c. = e. 
iEa j&f3 ’ i&:(1 ,...,nI a 

Since inverses are unique, R ci = II ci, therefore a = b => f(a) = f(b) 
isa ief3 

therefore f is well-defined. Let k E K. Thenk = c. . . . c for some 
ll i r 

r E N, 0 < i 1 ,...,i r < n. Let a = {j Ij = iL and there are an odd number 

of i L such that i L = j}; then k = f(a) where a E a E R. Therefore f 

is an onto function. IP(Il,... ,nI)l = 2" therefore 1~1 = 2n-1. IKI = the 

number of different crossover operators = number of different pairs of points 

which may result from crossover on a pair of points. 

There are 2n ordered pairs of such points so that without order this 
n-l is2 . Since 1~1 = (R[ < ~0 and f is onto, f is one-to-one. Q.E.D. 

Remark: R may now be used as a meaningful index set for K. 

Notation: ka E K means k a = f(a) where a E a E R. 

6 



If i E g(a)n g(S) then i j g(a+B) and ci occurs in f(a) and in f(B). 

Thus f (a)f (B) has exactly two occurences of c.. 
1 

ci commutes with all 

c. ; 
J 

therefore, f(a)f(B) = c. c. C.C. = c. 
J1'"" Jr 11 

c. e = c. ,...,c. . 
J1'"" Jr Ii lr 

Therefore, f(a+B) has the same effect in the ith place as f(a)f(fi). 

If i E (g(a) - g(B)) U(g(f.3) - g(a)). ci occurs only once in f(a)f(B) 

and once in f(a+B). 

Therefore, f(a+f3) = f(a)f(B) = f(B+a) = f(B)f(a). Q.E.D. 

Lemma 1.4 

f is onto and has kernel I(O,...,O)l~,(l,...,l)~xn). 

Proof: 

By the definition of the ci operators e = II c.. 
ie{l,...,nI ' 

Therefore, f((O,...,O)) = f((l,...,l)) = e. 

Therefore, f has kernel at least I(O,...,O),(l,...,l)I. f is onto because 

k E K is e or may be written as k = cici ,...,c. where no ci occurs twice 
2 2 l!L 

since c. = k and C.C. = c.c.. 
1 13 Jr 

Suppose a # 0 and a # 1_ , f(a) = II c.. - 

a#i=> 3j3 a. 
iEg(a) ’ 

a # F => there is 

an i 3 a. = 1. .th 

but not ln the jth. 
J 

= 0 then f(a) acts on the 1 coordinate 

Therefore, f(a) f f(F). 

Therefore, ker f = Ia,i>. 

Therefore, K = V/ker(f) 

Notice: ker(f) is isomorphic to the two element group. 

Corollary 

K is a commutative group. 



Proof: 

V is a 

commutative 

commutative group and f is a homomorphism, therefore K is a 

group by a homomorphic theorem. 

Notation: ka E K means f(g-'(a)) if a E P(il,...,n)). 

Corollary 

K is a 2 group. 

Proof: 

CrEV => f(a+a) = f(F) = f(a)f(a) = e. 

The group structure on K does not seem to answer any questions which 

are being presently asked. However, these results show a very specific 

structure about which many things are known. Therefore in the future 

they may prove to be very useful. 

The notation developed in this section will be used throughout this 

paper. 

8 



SECTION 2 

Generalized crossover operators act on sets of points to yield new 

sets of points. There are some interesting properties of the geometry 

of these point sets which will now be investigated. In what follows the 

set S as defined in Section 1 is identified with IR, the set of real numbers, 

although this restriction may be relaxed later. 

Notation: I I I I is the Euclidean norm in IRn, and <,> is the inner product 

in Euclidean space IR? 

That is, IIxI[= 2x; 3 ( ) i=l 

<x,y> = ~ xiYi 
i=l 

Notation: If x(l),x(2) E lRn , then denote the pair k ({x(~),x(~)}) by a 
{yw ,y(21 ) E IRnx I$ where ka is a generalized crossover operator 

as previously defined in Section 1. 

Remark: As should be clear from earlier discussions, the pairs above 

are not necessarily ordered unless some convention is adopted which associates 

.(i> with y(j). There is no a priori reason why any one convention is 

"best" in an obvious way. 

Notation: In Section 1, if a E P{l,2,3,...,n) then a = Iil,i2,i3 . . . im) 

where Ii,) are the indices of coordinates which get crossed-over when 

k, is applied. 

Let a = {1,2,...,n)-a. 

Using this notation we may specify the result of a k, operator as 

follows: 

9 



If k a {x(~),x(~)} = {y(1',y(2)) then 

,I11 = x(jl where j = ’ if i E a 
i i 

I 2 if i.ECL 

I 

2 ifica 
where j = 

1 if ic6 

Remark: We have no reason for naming the product points y (11 , YC2) 

in any unique way. 

Lemma 2.1 

(a) IlX(11 - y(l)1 1 = 1 lXc2) - y(2)II 

(b) 1 IX(~) - yc2) 1 1 = 1 1,(21 - y(l) ( 1 

(c) 1 )x(l) - x@) 1 1 = 1 ly(1) - y(2) 1 1 

Proof: 

1 lxC1) - y(1) 11 = 2 (x;1) - y;1))2 y 
[ 1 

1 

i=l 

= 2 (x;ll _ x;jl12 

[ 

+ 
i=l I 

= 2 (x;ll - .y 
[ 1 + 

isa 
1 

1 lx(2) _ y(2) 11 = i$l (x;2) _ x/j)l2 I- I y 

1 
1 

= 2 (x;2) - ,11))2 z 
[ i&a 

The proofs for (b) and (c) are similar. 

Lemma 2.2 

For all Z c.lRn. 

I lxC1) - zl l2 + l lxC2) - zl l2 = l l,(l) - z/ 12 + l ly(2) _ zll2 

10 



Proof: 

IIxC1) - z/l2 + (Ix(2) - z/l2 = fl (xy - Zi)2 + 2 (xi21 - Zi)2 
i=l 

+ c (xjl) - Zi)2 
i&a 

Corollary 2.2 

(a) I lx(l) - x(~) 

@I 

Proof: 

= c (xp - Zi)2 + Ida (x~2) - zi)2 
i&a 

+ z (xi21 - Zi)2 
iea 

,03 - zl I2 + 1 lyC2) - ZI I2 

112 = 1 l,(l) - .@I 112 + 1 l,(1) _ xwl 12 

= 1 l,(2) - x(2) 112 + I I,(21 _ ,(ll~ 12 

Let Z = x(~) in the lemma: 

1 lx(l) - x(2) 1 I2 = 1 l,(l) - ,(2)1 12 + 1 ly121 _ ,(2) 112 

= 1 Iy(l) - x(2) 112 + 1 l,(l) _ ,CllI~2 

by Lemma 2.1(a). 

The proof for (b) is similar. 

Remark 1: This corollary is symmetric in x and y and we can quite happily 

exchange their roles. 

Remark 2: The result in Corollary 2.2 suggests, from an elementary theorem 

in geometry, that possible loci for y (11 and Y(~) are on the surface of 

an n-sphere with (x(1) + x('))/2 as center and diameter I lx(l) - x(~)I I. 

This is in fact the case. In order to establish it a lemma is needed. 

-- 



Lemma 2.3 

<(yci) _ x(1)), (ylil - xc2))> = 0, i=1,2. 

Proof: 

For any component c; of the inner product 

C. 
J 

= (y;l’ - x;l)) (y;‘) - xf2)) 

If j J! a, the first,term is zero, and if j E a, the second term is zero. 

Hence in any case cj = 0, and the result follows. 

The proof for y(2) is similar. 

Theorem 2.1 

If k a {x(~),x(~)} = {y(l),~(~)) then y(l) and y(2) lie on the surface 

of an n-sphere centered at x0 = (x (11 + x(2))/2, with radius I Ix (11 - x(2)l l/2. 

Moreover, y(l) and y(2) lie on extremeties of a diameter of this 

n-sphere. 

Proof: 

For the first part it suffices to show that y (11 (o* ,(z) - since 

the proof is similar) satisfies the equation of an n-sphere as above, 

i.e., 

or 

x(u + x(2) xcl> - x(2) 
lb- 2 II=II 2‘ II 

11 (Z - .(I)) + (Z - xC2)) 1 I2 = 11,(l) - x(2)l I2 

The L.H. S. expands to 

1 Iz - x(l) 1 I2 + 

I 
1 Iz - d2)l I2 + <(Z - x(l)),(Z j x(2)),. 

Let Z = y(l). Then by Lemma 2.3, the inner product term vanishes, and 

the L.H.S. reduces to I Iy (11 - x(l)( 1.2 + 1 ly(l) - x(')( I2 which, by 

Corollary2.2 (a) is equal to the R.H.S., thus proving the first part. 

12 



The second part is suggested by Lemma 2.1 (c) and may be shown 

directly by observing that 

,(I) _ ( x(l) + X(2)) = -[y(2) _ (X(1) + X(2)), 
2 2 

which is easily verified. 

Remark: Theorem 2.1 has a very simple interpretation. Suppose we begin 

with two points in lRn. Then crossover constrains the two new points to 

lie on the surface of a hypersphere with the mid-point of the original 

points as center, and their distance apart as diameter. So, if 

"daughter" points are subject to crossover their products are again constrained 

to lie on the same hypersphere. The metric properties in Lemmas 2.1, 

2.2, and corollary 2.2 are obvious properties following from this theorem. 

For further development the notion of a minimal bounding sphere is 

required. Intuitively, suppose a set of points SCIIP is given; we seek 

a "smallestl' n-sphere which can contain all of these points of S. 

Clearly , at least one such covering n-sphere exists. So as a first 

attempt at this formalization: 

Definition 2.1: Sk is an admissible bounding n-sphere for S if ScSk. 

Definition 2.2: Let {Sk) be the set of all admissible bounding n-spheres 

for S. Then let rk = i diam(Sk). The minimal bounding'n-sphere (M.B.S.) 

of S is Sm where m = inf{r,lt, 
k 

= + diam(Sk)). 

Remark: The above definitions have to be "tightened up" later - for 

instance, there is the question of characterization of a M.B.S. in terms 

of the points which it bounds. This was not investigated. However, Zornls 

Lemma and the symmetry of n-spheres, suggests that the M.B.S. is unique. 

13 



The question naturally arises as to how fast crossover enables an 

initial point set ScIRn to "search" a space. This is, in a sense not 

yet fully defined, equivalent to asking how quickly the M.B.S. for the 

point set S can expand. To this end a theorem is proved: 

Theorem 2.2 (Refer to Figure 2.2) 

Let SO be the M.B.S. for SCIRR) r0 its radius, and x0 its center. 

Then the maximal M.B.S. Sl for kcr(S) has x0 as center and radius &- r0. 

Remark: Before proving the theorem a comment about "maximal" M.B.S. is 

in order. Since ko(S) is different, in general, for different ~1, and it 

is clear that diam(k,(S)) has some upper bound, by the maximal M.B.S. 

we mean the bounding sphere for the largest possible expansion rate over 

one crossover generation; i.e., we are looking for a 1.u.b. We always 

assume that S is a bounded set. 

Proof: 

Since the proof is entirely algebraic, its geometric motivation will 

be more transparent if occasional reference is made to Figure 2.2. None 

of the arguments below, however, rely on geometry as such. We can proceed 

as follows: 

Let r be a (radius).vector centered at x0. Let h = pr, 0 5 1-1 5 1. 

For a unit vector u orthogonal to r, <u,r> = 0. Let xo+h 4 xl then the 

equation of a line passing through xl is 

Z = xo+h+Xu, x E in. 

The equation of the So being 

I IZ - x01 I = roj (where 1 jr-1 1 = ro) 

we have that the line intersects the surface of So when 

Hz - x01 I = r. = 1 Ih+bII 
14 



i.e., rfj = 1 lFlr-1 I2 + I IAul I2 + 2<Xu,W? = u2ri + A2 since <u,r> = 0 

and 1 IuI I2 = I. Therefore A = +-rOJ1T;2. 

By Theorem 2.1, Z, and zb are the two points on So for these Values 

of ?,, generalized crossover will produce two points Z,, and zbl which lie 

on an n-sphere centered about 'a+'b with radius I Iz,-zbl l/2. 
2 

It is easily verified that 1 IZa~Zbl L = row and 

za+zb = Xo+h = xl. 
2 

The equation of the n-sphere about xl with radius r,m is 

IlZl - x11\ = roJ1'T;2. 

Consider the triangle inequality: 

I/z1 - x011 s 1 IZ' - x11 1 + 1 Ix1 - x011 = r0G2 + rOp. 

The bound on the R.H.S. attains a maximum at P = _ 1 by simple differentiation; 

and with this value of p, I IZ' - x01 I = J2r0 
4T showing that the upper 

bound on 11~' - x01 I is in fact attainable. 

Moreover, this is attained when Z' - xl is in the direction of 

r (or hl, since in this case (Z* - xl) + (Zl - x0) = g r + g r = a r 
2 2 

To complete the proof, observe that a choice of h' = -pr leads to exactly 

the same conclusion on the diametrically opposite end of the n-sphere So. 

Corollary 2.2 

Let n be any normal on the n-sphere So. Then maximal expansion in this 

direction can only occur if the intersection of the hyperplane 

4, [Z - (xo+g r f;)]> 
2 O 

= 0 

and so, Il~-x~l I = r. has at least two points of S on the end points of 

a diameter of the intersection (which is a hypercircle). 

15 



Figure 2.1 
General Crossover constrains products to lie on a hypersphere. 

Figure 2.2 
The motivation foi searching for a maximal 

rate of expansion of the M.B.S. in one generation of crossover. 

16 
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Proof: Immediate from the theorem. 

The next question is whether crossover, or more accurately, a sequence 

of crossovers, leads to a bounded or unbounded set of points. The following 

theorem answers this question: 

Theorem 2.3 

Let So be a M.B.S. for bounded SCIRn, and x0 its center with radius 

r . Then if {ko)oeo 0 (where u is a countable index set) is a sequence of 

generalized crossover operators, the maximal M.B.S. for 

(ke. ko. 
il l2 

. . . ko. . ..)(S) has x0 as center with radius fi ro. 
1 m 

However, first we prove a useful lemma: 

Lemma 2.4 

If So is a M.B.S. for S and 

% = max{x.p I,(i) E S} 
max 

Xkmin 
= min{xLi)Ix(i) E S1 

then it is not possible that 

Cal Xk < xok for some k 
max 

@I Xk ’ x0 for some k. 
min k 

Proof: 

It suffices to prove (b), since the proof for (a) is similar. 

Assume the contrary. Then 3k + 

Xkmin - xOk = Ek ' " (2.4.1) 

17 



Let Z. be the point obtained as follows: 

=x ZOi oi ifk 

=x k i=k 
min 

Then ] IX(~) - ZoI I2 = 2 (xii) - z. )2 Vi 
j=l j 

= jgl (xjo - x0 )2- 2(xki) - x0 ) (Ek) 
j k 

2 + E 

= 1 Ix(i) - x0/ I2 - 2(;i) - XOk)Ek + c;. 

Consider the term 2(xii) - xok) ~~ - c:. 

By hypothesis 

G-1 , x 
Xk - kmin ' xOk' and so (xii) - xok) > 0 

In fact from (2.4.1) and the definition of xk , 

(xii)- x 
min 

)>E 
Ok k 

so the term satisfies 

2(xLi) - xOk)~k - ci 2 cz therefore ] IX(~) - zo] I2 5 ] IX(~) - x0] ] - E: 

2 2 <r -E 0 k 

But this implies that an n-sphere centered at Z. with radius 

&Tg2< r. 
U 

will be an admissible bounding sphere for S, which is a 

contradiction. 

Proof of Theorem 2.3: 

The notation here is as explained in Lemma 2.4. 

Let y(i) be any point of (k k 
al a2 

. . . ) (S) . Clearly, there exists an n-tuple 

Ji whose coordinates are picked from {1,2,...,m}, where IS] = m, such that 

18 



for j = (Ji)k. 

(All that this says is that all crossover products have coordinates which 

are selected from coordinates of the initial set of points). 

1 [YCil - x01 I2 = 5 (Yk(i) - XOk12 
k=l 

= kkl (XLj) - xok)2 
= 

j = (Ji),. 

By hypothesis xk s x.p 5 Xkmax so that 
min 

Xkmin - xok sxp-x <Xk 
Ok 

-X 
max Ok 

Now, O 5 smax - xok -< r. 

and 
by Lemma 2.4 

osx 
Ok - Zmin 5 r. 

so that Ixk - xOkl -< r. and Ixk - xok( 5 roe Denote the sets 
max min 

I = {kl Ixk - X0 ( Z 
max k 

Ixk 
min 

- XOkll 

Then from the inequality above: 

Ixf’ - x okl 5 lx, 
max 

- x0 l for k E I and lxij) - x0 I 5 Ixk - x 
k k 

I 
min Ok 

for k j I so that 

1 lYCi) - x01 I2 = gIlxkj) - XOk12 < Cri + Cri = nri 
ke1 kkI 

That this bound is indeed attainable is seen by choosing xk - x0 =r 
max k ' 

andx k -x 3-r o for all k. 
min Ok 
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In such a case two points of (k k al a2" . )(S) will be 

(x 0, 
-rO,xO,-r. . . . xon-ro) and (xol+r,, . . . xon+ro) 

I P 

and verification of the claim is straightforward. 

Remark 1: In the proof of the theorem use was made of the fact that 

5c - x 5 rO (and a 
max Ok 

because otherwise xk 
max 

any point containing xk 
m 

similar relationship for smin). This is clear, 

-x >r. 
Ok ' 

Then taking inner products between 

as its kth component and the radius vector 

in the kth axis will yieZ <x(i)-xo,r> = <x(i)-xO,ekrO> 

= (x k -x )r > r2 
max Ok0 0 

so that r. cannot be the radius of a bounding sphere. Contradiction. 

Remark 2: Attainability as above does not mean that starting from any 

arbitrary population bounded by So the upper bound is attainable. For a 

counterexample, consider the case when xk =r o except for some 
max 

subset of indices. 

Remark 3: We proceed to generalize Theorems 2.2 and 2.3, and exhibit in 

the process some alternative (and simplified) methods of proof. 

Suppose a theorem was true for the case when a M.B.S. was centered 

about x 0' with radius r 0' Then by a translation of axes we may move the 

origin to x 0' Then it is clear that the theorem is also true for a M.B.S. 

centered about 0 with radius r 0' The converse is also obvious. We state 

this as a lemma: (which merely says that translation is an isometry). 

Lemma 2.4 

It suffices to prove all results with respect to a M.B.S. centered 

about the origin. 
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[Note: rotations are not allowed, since they do not leave the crossover 

space invariant.]: 

Definition: Let So be a M.B.S. in Rn centered about 0, and r. its radius. 

Then a basis set for So is ~rOel,rOe2,...,r0en1 where {el,e2,...,en) is 

the standard basis for R". The reflection of a basis set is 

1-r e 0 1' -roe2,..., -roe,). 

From now on, unless otherwise mentioned, we assume that So is centered 

about the origin. This does not restrict the validity of the results since 

(by the preceding remarks) So may be translated to a center at arbitrary x0. 

In this vocabulary we may restate the remarks following Theorem 2.3 as 

Lemma 2.5 

The maximal $ bound on SCSoCRn is attainable if and only if S 

contains a basis set and its reflection. 

The "if" part is clear from the example following Theorem 2.3. It 

remains to show necessity, but first the notion of quadrant and some 

preliminary results are discussed. 

Definition: Let a E P(N) where N = I1,2,3,...,n). Then by a quadrant in 

Rn is meant a set of the form ((xl,x2,...,xn)l xi > 0 iff i E al, denoted 

Qa’ 

As an example in R3, the set of all (x1,x2,x3) such that all xi are 

positive constitutes the quadrant QIl 2 3). Clearly, in n-space there , , 
are precisely 2n quadrants. 

Definition: Two quadrants Sl and S2 are diametricaZZy opposed if 

s1 = 1(x1,x2,..., Xn) I xi > 0 iff i E a), S2 = {(x1,x2,. . . ,xn) I xi > 0 

iff i E G) for some a. 

Suppose in each quadrant contained in S we consider the norm of each 

point, and then select the minimum and maximum norms. 
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A convenient way of looking at crossover is to consider each point 

of S expressed as a linear combination of the basis elements, i.e., 

x(l) = 5 x.(l)ee 
i=l 11 

Then if a E P((1,2,...,n)), k,(x('),x(')1 = Iy(1',y(2)3 where 

y(ll = Cx(l)e. + Cx!2)e. 
ica ii if!a 11 

y(‘) = C xil)ei + Cxj2)ei 
if!a isa 

Theorem 2.4 

The maximal radius of the M.B.S. achievable after m successive generations 

is min(&r o, @Qol. 

Proof: 

(By induction) 

Basis: The bound after one crossover is fire. 

Proof: Let x(l) and x(~) be any two points in S. Then 

gx.(u2 2 
i=l ’ 

5r 0 ’ 2 x.(2)2 < 2 
i=l l rO 

If {y(1) ,y(21] = k (x(11 ,x(213 2 yc112 + $y(2)2 

"1 i=l l i=l l 

so that 2 ,0d2 
i=l l 

5 21-i k = 1,2. 

Induction: Assume the assertion true for m 5 log2n generations. Let 

x(l> and x(~) by any two points in (k k al a2 " ' m ka 1 @I. Then by hypothesis 
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By the same argument as above, if Iy (l) ,y(2)) = k 
am+l 

{x(1),x(2)j, 

2 ,(W2 5 urn + 2m)ri = 2 m+l 2 
i=l i rO' 

For m 5 log2n, the bound established in Theorem 2.3 clearly holds. 

Corollary 2.4 

The bound is attainable if S contains a basis set and its reflection. 

The proof is similar to that following Theorem 2.3. 

Remark: The result in Theorem 2.4 is seen in more intuitive terms by 

observing that the crossover operators acting on the basis and reflection 

set yields upper bounds. Thus, if x(l) and x(~) are any two points in 

S, then for all Iy (l) ,yc2)] = k,, {x(l) ,xc2)}, we have that 

IIy(j)/l 5 2:: = IlrOei + rOeklI 

for j = 1,2, any i,k, and clearly ro(ei+ek) is simply a result of kCi) 

action on lroei,roek). The extension to the general case is clear. 

Effectively, then, the proof of Theorem 2.4 reduces to the successive 

pairing of elements of (el,e2,...,en). We now establish the dual 

of Theorem 2.4: 

Theorem 2.5 

The minimal radius of the M.B.S. achievable after m successive generations 

is max (sp %) 

Proof: 

We use Theorem 2.4. 

Suppose the initial set S(l) is bounded by an M.B.S. S 0 with radius 

rO' In m generations suppose the set of crossover operators employed to 

achieve the minimal radius is {k k k 1 aI a2 .** am ai03 where u is an index 
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set. Let the minimal M.B.S. radius be rm. Now apply the inverse of the 

set {k k (ml 
ai a2’ ’ ’ ’ ka ' a eo, on the points of S such that the original 

mi 
points of S(l) -- are generated in exactly the reverse order, generation 

by generation. 

By theorem 2.4, the maximal radius for the M.B.S. of S (2ml is 

r2m = mini& rm, @I rm). so GrmLro,ox @rmZro 

rO >- ‘0 
rm or r 2 - 

Ai- m JF 

and the result follows. 

Remark: The minimal bound is in fact attainable. This may be shown by 
rO considering the set of points {- (+el,fe2,...,?en))CS 
hi 

(11, and crossing 

these over with the origin (O,O,...,O) for m = 1; then crossing over S (2) 

with the origin for m = 2; etc. Note that the set of points are,simply a 

rotated version of the basis and reflection set. As an easy consequence 

of Theorems 2.4 and 2.5 we have 

Corollary 2.5 

(i) If S(l) contains a basis and reflection set the maximal & r. 

bound is attainable in a minimum of log2n generations. 

(ii) If S(l) contains rO {?el,fe2,...,?en), the minimal 2 bound 
z J;; 

is attainable in a minimum of log2n generations. 

Proof: 

From Theorem 2.4, on the m th generation the M.B.S. radius is 

min(&i ro, J27lr ro). Hence the minimum m for which @ > 6 is simply 

m = log2n . The second case is similar. 

As a generalization fo Corollary 2.5, we look at the case when the 

maximum and minimum of coordinates in S (1) are not necessarily fro, 
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i.e., some basis and reflection points may be missing. (We consider expan- 

sion theorems only, since contraction theorems are similar). Further, a 

single point may contain more than one minimum or maximum coordinate. 

We partition the set f1,2,....,n 1 of subscripts as described in the 

flow-diagram: 

I’ 
STOP 

0 $3 
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Thus, we end up with 

cardinality of which 

a partition Ial,02,...,o11 of 11,2,...,n), the 

is l, as indicated. 

Corollary 2.5(a) 

With a partition obtained as above, the minimum number of generations 

required to attain a maximal M.B.S. is lw# 

Proof: 

. 

Without loss of generality we may assume that {al,a2,...,aa1 are ordered 

such that 

c XI 
ioa. max 

2 xx; 
ica 

J k max 
ifjzk 

Clearly the optimal expansion rate is obtained by crossing over using 

the scheme 

m-2 _-_ 
I 

1 --- S_^___ -a.- 

m% ---- 3 
. '7 -------- Gs"' 

1 I I 
I 1 

where ci,ai,ai, . . ..a. now represent the points whose a l,a2ja3se l . JaaB sub- 

Scripts are coordinate - maximal or minimal. 

The scheme exhausts all of {1,2,...,n1 when m = log21 . 

Remarks: A similar result holds for contracting M.B.S. It is observed 

that it is entirely possible for the maximal or minimal M.B.S. to be achieved 

in 0 generations, are indicated by setting & = 1. 

As a consequence of lemma 2.2 we have an interesting theorem whose 

proof is obvious. 
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Theorem 2.6 

Under the crossover operators the mean square 

from the center of the initial M.B.S. is constant. 

Corollary 2.6 
7 

distance of points 

If o* is the variance of the distance of points from the center of 

the M.B.S., and xis the mean distance, 

2 + sr2 is constant. 

Remark: The theorem clearly holds for distances from any arbitrary point, 

since the proof of lemma 2.2 was free from any positional restriction. 

However our interest is mainly in the result of Theorem 2.6. 
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SECTION 3 

Crossover - A Markov Chain Model 

Consider the following situation. One is given m points, {x (i)), 

(il each having n>2 coordinates such that x. 
J 

# x(i'l 
J 

for all i # i' and 

O<j<n. The m points were randomly selected. Random crossover will 

occur replacing the m points with m new points on which crossover will 

again take place, etc. Only the ci operators will be used. One will only 

consider a particular point as follows: without loss of generality this 

point is x (l) = x(t = 0). x(t+l) is the point of ci(Ix(t),yl) which 

has most of the x(l) occurring in x(t), i.e., x(t+l) 
j 

is the point which 

has the most coordinates in common with x(t). Let y = (x. cil), ...,x(in)) 
Jl In 

I.e., a point which may be obtained from the initial m points 

by crossover. 

Problem: What is the expected time for x(t) = y. 

This problem may be stated in terms of a Markov Chain as follows: 

x(t) is in state L if x(t) has exactly L coordinates in common with y. 

Then if x(t) is in state 1, x(t+l) must be in state e-1, 1 or l+l since 

a ci operator was applied to x(t) and another point to obtain x(t+l). 

Let E i , j be the event that x(t) is in state i and x(t+l) is in state j. 

Then P(E i,i-l) = the probability of choosing a cj such that x(t) has 

coordinate j in common with y since if c. 
3 

is chosen there is no point among 

the m points at time t other than x which has that coordinate value. There 

are i such cj operators so P(Ei i 
, - 

1) = i/n. P(Ei i) = the probability 
, 

of choosing a cj such that x(t) does not have coordinate j in common with 

y and a point which also differs at j from y. There are n-i such c. operators. 
I 

Having chosen such a cj there is exactly one point which agrees with y at 

j. Thus, any of the other m-2 points differs at j from y. Therefore 
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P(Ei,i) = (G)*(s). 

E i i+l is the same as Ei except that the one point which agreed 3 , i 

with y at j was chosen so that P(Ei i+l) = (y)*&). , 

None of the transition probabilities depend on more than the present state. 

Therefore this is a finite Markov Chain. Thus one may use Markov terminology 

to derive facts about the system as follows. 

All states cosmnmicate since if i and j are two states there is a 

path from i to j with nonzero probability, Therefore the chain is irreducible. 

All states are aperiodic since there exists no r > 1 for state i such that 

any path from i to i has length sr for some s E N. By Theorems 1 and 4 

pages 391 and 392 of Feller (1967) all states of the chain have the same 

type and this is neither null nor transient therefore all states are 

ergodic. (Q By the theorem on page 393 (Same book) the limits uk = ;E pj 

exist and are independent of initial state j. Also uk > 0, Cu, = 1 and 

k 

uj = cuipi,j and uk = ljpk where 
i 

\ is the mean recurrence time of state k, p. 
l,j = P(E. .) and p(l) is 

i>J id 
the probability of going from state i to state j along some path of length C. 

Since p. l,j is given for each i and j, one can solve for the Tc* Let 

” = (“o”l*..UnI 9 Ps = [Pi,jI (n+l>x(n+ll then Uj =~u~P~,~ <=> Ups = U. The 
i 

general Ps matrix is in appendix 3.3. Thus U(Ps-I) = 0 and cu. = 1 
1 

so we have to solve i 

1 
u Ps-I : [ 1 = (0 ,...,O,ll . 

' (n+l)x(n+2) 
lx(n+Z) 

Therefore the mean recurrence time for i may be found given n and m. 

The expected time from state i to state j may be determined as in appendix 3. 
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Let pi denote the.probability of starting in the ith state. Then 

n-i 
pi 

= (5) (y(!g)n-i = (p?p therefore E[i] = ekpk = n i. 

k=O 
n(m-1) E[(i)2] = n2Q2 + ni - n(k)' therefore a2 = n:(y) = ,2. 

n-l 
E[time to n] = c pi E[i to n]. 

i=O 

It is obvious that increasing the number of goal points decreases 

the expected time till a goal point is reached by the point which is under 

consideration. However, since the probabilities of reaching two different 

goal points are not independent, it is not immediately obvious how to cal- 

culate the expected time. It is also obvious that a point not being con- 

sidered may reach a goal point before the point under consideration. Thus 

a more general problem is to determine the expected time till a point of 

the m points reaches a goal point. The probabilities involved in this 

problem become extremely complex but may be approximated in the near future. 

30 



SECTION 4 

Crossover - Special Heuristics 

Having examined the deterministic bounds on crossover in Section 2. 

the next logical step is to examine the probabilistic properties of some typical 

heuristics employed in implementing crossover. A natural question corresponding 

to Theorems 2.4 and 2.5 is the following: If r(il*. 

x from the origin, what is p(r(i) 
x x 

) and o(r(i);? 

is the distance of point 

x x Clearly, the answer 

depends on how the initial (Oth) generation of points are distributed. 

Notation: A uppercase letter, say Z, denotes the random variable Z; 

lower case letter, say z, denotes its value. Fz and fz are the 

distribution and density functions of Z respectively. p(rx(i)) is 

the expectation of rx (i> 
X 

over all points x. 

4.1 Volume - uniform distribution 

In the case of a volume-uniform distribution of points within a 

hypershere if we assume high dimensionality of the space Rn, then by the 

"sphere-hardening" property it is a very good approximation to simply 

scatter points randomly about the surface of the hypersphere. One way 

of doing so is by generating points after the fashion: 

Let {Yil i=l,...,n, be a sequence of independent random variables 

with uniform probability density 

fy (a) = + -lScr<l 
i 

= 0 elsewhere 

Define xi = yi 

then X = (X1,X,,..., Xn) will be such that 11x1 I2 = 1, i.e., lie on the 

surface of a hypersphere of unit radius. 

*The superscript (i) refers to the i th generation of crossover. 

31 

l- 



A sequence of such points X, generated by the above process (the 

Yi’S may be approximated by some suitable random number generator), will 

approximate a high dimensional volume-uniform distribution of points 

in a hypersphere of unit radius. 

4.2 Coordinate-bounded distribution 

In this case a point X is generated by letting each of its coordinates 

be the value of a uniformly distributed random-variable Xi, bounded in 

the interval [-a,a], a > 0. Clearly, this is not a volume-uniform distribution. 

However this is the method which was used in the practical implementation 

of the genetic algorithms. 

4.3 Monte Carlo simulations 

Partial analytical solutions of the questions posed at the beginning 

of this chapter are postponed to the next section. Here we shall present 

results of Monte Carlo simulations as an indication of the kind of answers 

one might expect using the distributions discussed in 4.1 and 4.2. 

The type of crossover heuristic which-is conceptually the simplest 

pairs off random points and randomly chooses the segment (i.e., sequence 

of coordinates) that is to be crossed-over. Care has to be taken in the 

program to ensure that the pairing is unique, so that every point is 

crossed-over once and only once every generation. 
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In order to observe the effects of (i) initial distribution and 

(ii) dimension of the space on the effectiveness of crossover as a 

search operator two simulations were undertaken. The number of points 

used was 100, and unit radius was employed for the initial distribution 

of 4.1, while the initial coordinate-bound of 4.2 was set to [-l,l]. 

At the end of each generation of crossover the maximal, minimal and 

average distance of the 100 points from the origin was computed. The 

standard deviation was also computed. 

Graphs 4.1 and 4.2 show some typical results. Both cases indicate 

that an asymptotic value for maximal and minimal distances (which 

approximate bounding radii corresponding to Theorems 2.4 and 2.5) are 

reached within a few generations. The conclusion is that while 

Theorems 2.4 and 2.5 do yield theoretical bounds, uith these heuristics 

the bounds are not realistic. In other words, the probability that an 

initial distribution of points will be chosen together with a probable 

succession of crossovers so as to approach these bounds, is very small. 

The search space of successive crossover generations is thus constrained 

to lie approximately between two hyperspheres which is not appreciably 

different from that region demarked by the first few generations. 

An interesting feature of the coordinate-bounded results is that the 

standard deviation is almost constant though increasing generations as 

well as increasing dimensions. This is not the case in the volume-uniform 

distribution where increasing dimension reduces the standard deviation. 

Average distances in both cases were remarkably constant in successive 

crossovers. 
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4.4 Partial result for uniform distribution 

We present an outline of the analysis for the first generation only. 

Recall from 4.1 that for two typical points X (1) and X(2) we have: 

x0) = ,Cll x(2) = y(2) 
i i i i (1) 

te > 
(112 + 

=l 'j (,l > 
5ym2 ; 
-= j 

Suppose a segment of k coordinates was selected randomly and crossed between 

x(l) and X(2). 

Write: 

(2) 

where 11=2 for k subscripts and e=l for the remaining n-k subscripts. 

There are (F) ways of choosing these subscripts in the case of 

generalized crossover, and n-k+1 ways if crossover is restricted to 

consecutive coordinates. 

Since crossover operates on pairs of points it is desired to find 

lJ = Expectation [Wk(Rk+Rnmk >/a 
02 = Variance [Wk(Rk+Rn-k)/2] 

(3) 

(4) 

where the expectation and variance runs over all possible pairs of k, n-k 

segment lengths. Depending on whether we restrict crossover to connected 

segments or allow disconnected segments (generalized crossover), the 

relative weights Wk to be attached to each pair will be different. To 

fix attention, n-k+1 we choose connected segments, so that 'Wk= - 
n ' 

k=l ,...,n-1. Then, (3) and (4) reduce to 
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u = 

02 = 

= 

= 

'k l Expectation (Rk+Rnmk) 

$ Variance (Rk+R ) 
4 n-k 

W2 + {Expectation [(Rk+Rn-k)2] - p2} 

Wfi {1-1121 
4 

(51 

(6) 

since by Theorem 2.6 the mean square distance of points from the origin 

is constant. Hence it is sufficient to determine IJ. We indicate one 

possible development without claiming that it is the simplest or the most 

straightforward. 

From (5) and the linearity of expectation, 

?J = 'k [Expectation @k)+Expectation (Rn-,)I (7) 
2 

so that it is sufficient to find the expectation of a typical Rk. To this 

end we look for a distribution function for R k' Now, 

F 
Tc 

(a> = &Irk i; a) 

= PrIri 5 a2} = F 2(a2) 
% 

showing that it is enough to consider F 2 (Bl = F 
% Rk 

(61 

Since 

F 2 (6) % 

@I 

= i&l-B)Y:z)2} (9) 
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it is evident that to evaluate F 2(f3) it is necessary to determine the 

density functions of Skl) and ' SE2) , where these are the random variables 

whose values are on the left and right side of the event space in (9). 

Clearly, by the way the yi') and y12) are generated, SL1) and Sk2) 

are independent, so that the joint density function 

fS s CaBI = fs (aIfS (81 

kl k2 kl k2 

which will be useful when it has to be integrated to yield an expression 

for (9). 

The forms of SL1) and SL2) are similar, so that we will consider 

a typical 

s = E(l-B)y: 
1=1 - ig+lf4 (111 

First, observe that the mean + and variance 0; of y; are (from the 

uniform density of Yi in 4.1) given by pY = i 
2 4 

, ay =43, as may be easily 

verified. 

Next, split S into two random variables Tk and Tnmk, where 

Tk = ifp)yI = 56'Yf (121 
i=l 

n 
T n-k = (131 

and then S = Tk-Tnsk. Now appeal to the Central Limit Theorem to yield 

approximate densities for Tk and Tn k, namely, 

(141 
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-.. 

and 

fTn-k 
(a) b ev [- (a-vn-k) / 2ui_kl (151 

where pk = 6'k/3, pn-k = B'(n-k)/3, oi = k/45 and 0:-k = 4(n-k)/45. Observe 

that Tk and Tnmk are independent from the way the yirs are generated, so 

that S = Tk-Tnsk has an approximately normal density function given by 

fs(a) -I ' 
CpT 

exp [- (a-v,) 2/20il 

where 0: 2 2 = uk+unvk and p's = !++~n-k' In principle we have obtained 

densities fS (a) and fS (a), so that from (9) 
kl k2 

F 2 (6) = 
Rk 

fS s (n,c) d&E 
A kl k2 

(161 

Cl71 

where A = f(n,C)( n 5 51, and by (10) the integral may be factored into 

fs (Wfs (El- With the obvious notation, (17) may be rewritten 
kl k2 

F 2(f3) = 
% 

5 
exp [-(E-P, )2/2u$, I exp ]dn (18) 

1 1 
[-(n-us 

2 
)2/20g 

2 

s1 
12/2a2 I 

s1 
erf[(E-u 

s2 
)/~fi u 

s2 
]dE (19) 

where erf is the error function. However, to determine the density of 

< it is necessary to differentiate either (18) or (19) with respect to 

f3, recalling that in fact us ,IJ 1 S2~uSl~uS2 are functions of B. 

The analysis was terminated at this point. 
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4.5 Partial results for coordinate-bounded distribution 

In this case we have almost exactly the same development as in 4.4 

up to equation (8), and we observe that in this heuristic the weights 

Wk may be regarded as equal. 

where 

so that 

and 

5 = iglx: 
fx (a) = 2; 

i 
I 0 

I 
Ai 

FX2 (a) = a 
i 1 

fx2 (a> = 
i 

I 

,& 

0 

-as a< a 

otherwise 

O<aSa2 

a>a 2 

(20) 

(21) 

(221 

O<a< a2 

2 a>a,a<O 
(23) 

From here, we may proceed as before. (An alternative route would 

be to consider characteristic functions, but the transforms are not easy 

to evaluate.) The mean ~~2 and variance uX2 
i i of (23) are a2/3 and 

4a4/45. Then 

fR2(a) ; --L 
Ufi 

exp [-(a-u)2/2u2] (24) 

where p = na3/3 and u2 = 4na4/45. The analysis is clearly simpler in 

this case than in 4.4. 
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SECTION 5 

The Algebraic Structure of Inversion 

5.1 

The genetic process of inversion shown schematically in Figure 5.1 

may be interpreted, as pointed out by Zeigler, as a change of basis 

transformation. Representing the loci as a basis set (fil%l, a string 

may be represented as (X1,X2,X3,..., Xn) where Xi is the allele at locus 

i. Then an inversion on such a string from locus k through R may be 

represented as 

x1 
x2 . 
. 

i-1 

xL 
X R-1 
. 
. 

ic 
X R+l 
. 
. 

Xn 

\ 

1 

L 

1 . 

J 

- - 

-- 

k R 
+ G 

1 I ’ 
1 1 0 ' 

9 ' 
0 

‘IO I 

IO 1 ’ 
O 11 0’ 

- l- -0 

0 

0 

.- 
( 

x1 
x2 
. . 
. 

'k-1 

xk 
xk+l 
. . . 

xJ1 
xSL+1 
. . 

i 

y = TX 

and it is seen that T is a change of basis transformation, in fact one 

that "reverses" the ordering of the subset {filizk 

An alternative description is possible. Let the Euclidean space 

with ordered basis (fl,f2,,..,fn) be denoted VSTR. Then a chromosome 

is simply a point in VSTR-space, and an inversion e!x a maps VSTR into 

VSTR. In fact, if we denote by ,a&, c1 = (i, i+l,...,k), the operator 
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locus 

allele 

locus 

allele 

12 3 4 5 6 7 8 9 10 1112 

abcdef 

1 2 3 4 9 8- 7 6 5 10 11 12 

abcdihgfej k L 

Fig. 5.1 - Inversion on substring 5-6-7-8-9. 

VSTR 
space 

X space 

Fig. 5.2 - The process of inversion. 
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which maps a point (X1,X2,...,Xn) E: VSTR into (yl,y2,...,yn) E VSTR defined 

as follows: 

yi = Xk 

Y- 
1+1 = 'k-1 

yk = xi 

and y. 
J 

= Xj otherwise, 

then sa faithfully represents the action of inversion over segment 

(i ,...,k) of the coordinates of a point in VSTR. 

Examining the action % :VSTR + VSTR more closely, we quickly see 

that it is isomorphic to a permutation of a special kind, namely, a 

product of disjoint transpositions: 

ga 5 (i,kl Ci+l,k-11 . . . Cp,ql 
where p = q = (i+k)/2 if k-i is even 

1 
P = (i+k)/2 - - 2 J 9 = p+l k-i is odd. 

so that igalaEa * the collection of all inversion operators is isomorphic 

to a subgroupofthe group of permutations. (That it is actually a subgroup 

is clear, if one allows the null inversion to be regarded as an identity). 

Generalized inversion, defined like its counterpart generazized crossover 

in Section 1, is then seen to be isomorphic to the group of permutations 

itself. From this it is clear that {#a)a,a is noncommutative, admits a 

composition, and has precisely n! generalized operators if dim(VSTR) = n. 

We now link this up with Zeigler's interpretation. A point (Xl,X2,...,Xn) 

in VSTR after a few inversions Sal0 4 
2 

0 . . . 04k, will be 

*a is the power set of {1,2,...,n). 
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(xil ‘xi 2 
,...,Xi ) where (il,i2,...,in) = (1,2,3,...,n) so OS, o...o$ 

F 12 "k 
where each sa. is regarded as permutations as above. We may represent 

the inversion pitter-n of (X 
5 

,X 
i2 

,...,Xi ) very vividly as a matrix @ in 
n 

the fashion: 

0 = (+grn> 

where 4 Rm =l if im=R 

= 0 otherwise 

So,‘ for example, (X4,X1,X5,X3,X2) will have a matrix of 

i 
010 0 0 
0 0 01 0 

0 = 0 0 010 1 10 0 0 0 
0 010 0 

By the nature of its construction each row and column of 0 can have 

only one 1. An inversion operator, represented as a T matrix earlier on, 

operating on a @ matrix by post multiplication will yield a new @ matrix 

which represents the new inversion pattern of the point. For example, 

if @23 is the inversion operator, its T matrix is 

10 0 0 0 
0 010 0 

T = [ 010 0 0 
0 0 010 
0 0 0 01 1 

and 0 010 0 

0 0 0 01 
@T = [ 0 0 010 

10 0 0 0 1 % (x4Jx5~x1~x3~x2)~ 

010 0 0 

The proof for this algorithm is obvious but very awkward to write out, 

and is best left to the reader. Thus, the CP matrix is obtainabZe by successive 

post mdtiplications of the T, matrices corresponding to each 4, 
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beginning with the identity matrix corresponding to the natural ordering 

of coordinates. 

5.2 

In nature, when a chromosome undergoes inversion each locus nevertheless 

is intrinsically identifiable, i.e., the map that interprets the alleles 

associates each of them with the correct functional locus. In the case 

of our model, this is equivalent to saying that when a point in VSTR-space 

is to be evaluated, we must permute its current inversion "state" back to 

the natural ordering of the coordinates. So, in the last example there 

should be a map such that 

(x4Bx5sx1,x3,x21 + (x1~x2~x3~x4~x~l 

In fact we already have a representation for such maps associated with 

each point. It is simply the # matrix itself. For example, in the case 

discussed when (X4,X5,X1,X3,X2) was the current inversion pattern, if we 

multiply 0 and (X4,X5,X1,X3,X2), i.e., [ 0 010 0 0 10 010 0 0 0 010 0 0 0 01 0 0 0 

1 x4 
xs 

x1 
x2 [I il x1 = x3 

x3 
x2 

x4 
xs 

which recovers the natural ordering of the coordinates. That this is true 

in general follows from the easily verified fact that the 0 matrix is 

also isomorphic to the inverse permutation of the inversion pattern which 

it represents. 

It is emphasized that cross-over is carried out in VSTR space only 

between points which have the same inversion pattern. This is so because 
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each coordinate represents a locus and only two chromosomes (points) 

whose loci (coordinates) are in the same order (inversion pattern) may 

have corresponding subsegments (substrings of coordinates) interchanged 

in a meaningful fashion. 

If a real function is defined on an Euclidean space X, then f:X + IR. 

In order to exploit genetic algorithms each point x E X is represented 

as a list of n coordinates in VSTR-space, which is some permutation of 

its natural representation in X-space. Then we may view the inversion 

process pictorially as in fig. 5.2. Given x E X, the embedding map takes 

it into VSTR (with its natural ordering preserved, of course), so that 

y is an isomorphic copy of x. Inversion operators Sal sa 
2 

,...,e 
r 

operate on y and move it around in VSTR space. As described previously, 

these operators are also representable as matrices T T ,...,Tcl . 
"1 "2 

Finally, 
r 

when we wish to evaluate f(x), we map the y' point in VSTR back to X 

via map 0, which is the matrix associated with the inversion pattern of 

Y' - Observe that in the realization of genetic algorithms in the companion 

of this report: @ is preciseZy the ISTR vector. 

5.3 

The concept of genetic linkage suggests an interesting measure of the 

"inversion distance" between two points in VSTR-space as distinct from 

the Euclidean distance between them. We define the 

Inversion distance between y and y' in VSTR space as the minimum 

number of simple (non-generalized) inversion operators which must be applied 

to the inversion pattern of y in order to yield the inversion pattern of 

Y' - Denote this by dI(y,y'). 

*Bosworth, et al., 1972. -- (NASA CR-2093). 
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Clearly, dIhy') = dI(y',yl 

and dI(Wl 5 dIbv") + dIW',y'l 

for all y" in VSTR. 

Also dI Cy,y> = 0 trivially. 

So we have that (VSTR, dI) is a metric space. 

The importance of this concept is evident, say, when we try to assess 

the effectiveness of genetic-like algorithms with respect to a parameter 

which controls inversion strategies. Suppose we know the optimal inversion 

pattern (in the companion to this report* we cite several examples of functions 

where we do know this) in advance. Then an ordering of algorithms may be 

obtained by examining how quickly the mean inversion distance is decreased 

between the initial points I(X) = Y and that of an optimal point. 

It is easily verified that if dim(VSTR) = n, then dI(y,y') 5 n-l 

for all points y,y' in VSTR. We have had partial success in looking for 

an algorithm which yields dI(y,y'), given y,y', but limitations of time 

did not permit us to pursue it to its conclusion; so this is still open. 

The main point, however, is that with (VSTR, dI) as a metric space, it 

is meaningful to ask questions which have to do with rates of inversion 

pattern "convergence". 

Remarks: It is clear that the above discussion can be more elegantly treated 

as an exercise in group representations, precisely as the subgroup of 

permutation matrices embedded in the general linear group. However it is 

felt that the intuitive approach is more suggestive of the programs developed. 

*Bosworth, et al., 1972. 
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SECTION 6 

Inversion - A Geometric Interpretation 

In Section 0 and again in Section 5 we lookedhriefly at inversion. 

Here we describe one other interpretation. The VSTR - space of Section 5 

may be regarded as the Cartesian product of an Euclidean space Y and a group 

of permutations T. One may visualize inversion as carrying the space Y 

through "permuted" copies of itself, each copy being labelled by an element 

of T. The crucial observation is that if we project Y x T + Y, and examine 

the effect of inversion by observing the effect on projected points in Y, 

some interesting properties are revealed. It may help to refer to fig. 6.1 

to help clarify the above remarks. 

The results of this section are concerned solely with inversion as 

observed on the space Y. Referring to fig. 6.1, x' is an "inverted" image 

of x, and we project x1 to xk' in E2x(1,2) - it is clear that it does not 

matter in which "layer" of Y x T we choose to work. 

Fig. 6.1: Example of Y x T where Y = E 2, T - {(1,2),(2,1)) 
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Definition 6.1 

Let x = (x1,x2,..., xn) be a point in Y. Then the inversion orbit, 

denoted O(x), is the set of points resulting from some inversion of x, 

i.e., permutations of the x.. 
1 

Definition 6.2 

A p&me polytope is one which lies entirely in a hyperplane. 

Theorem 6.1 

Let x = (x1,x2,...,xn) E Y. O(x) forms a plane polytope with 
n 

centroid f3(1,1 ,...,l) where B = i cxi and the plane of the polytope is 
1=1 

orthogonal to the radius vector (l,l,...,l). The vertices of this polytope 

lie on a hypersphere with the centroid as center. 

Proof: 

Let O(x) = 1p1,p2,...,pm). In the coordinate representation of x, 

if a coordinate value is repeated; denote the number of times it is repeated 

by r. 

Then m = n! 
, if k coordinate values were repeated, 

rl!r21,...,rk! 

rl'r2,"'srk times respectively. m = n! if and only if no coordinate values 

are repeated. 
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The ith coordinate yi of the centroid is given by 

yi = ~ j~l(Pj)i 

where (P~)~ is the ith coordinate of pj. In O(x), each x11 appears in a 

given coordinate i exactly mrQ times. 
n 

Hence 

Yi = i ix n i=l i 

For any p., 
J 

the coordinates of p. 
J 

are some permutation of 

(x 1,X2,...,Xn). 1 ;x SO (Pj)i - 6 = Xki-nizl i for some ki. 

The vector qj joining p. 
J 

It is sufficient to show 

that ill ‘Pj > i - 6 = 0. 
n 5- 

to the centroid has 1 'th coordinate (~1) - B. 
J i 

that < gj, (l,l,...,ll > = 0 for all j, or equivalently, 

But from the above this sum reduces to 

k;,lXki 
ln - n*-- C x. = 0. n i=l 1 

So O(x) does form a plane polytope orthogonal to (l,l,l,...,l), with 

centroid S(l,l,...,l). 

The points of O(x) are equidistant from the centroid, since by the 

generalized Pythogoras Theorem, supposing p E O(x) 

a constant for any p E O(x) 

and I IWJ,. ..,)I I2 = nB2 a constant for O(x), 

so that r o = I Ip - 8(1,1,...,1)1/ is a constant. The conclusion is that 

the plane polytope formed by O(x) is circumscribed by a hypersphere of radius 

rO' 

Corollary 6.1 

The inversion orbits {O(X))~ E x partition x. 
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Corollary 6.2 

diam O(x) = max 
Pl >P2E0 (XI 

I IP1-P21 I 5 21 IP-~CLL...,~Il I 

Corollary 6.3 

All points in an inversion orbit yield the same function value. 
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SECTION 7 

Metrics on Sets of Strategies 

In dealing with genetic algorithms to optimize functions we note that 

there are at least countably many heuristics. Each of these heuristics may 

be said to be a strategy. The question naturally arises as to how we are 

to compare strategies. There is an (indefinite) intuitive notion, for 

instance, of the "nearness" of two strategies. 

In this section we propose one measure to compare strategies, and 

couch its development in a game-theoretic vocabulary so as to give it 

an interpretation. 

Notation: Let 

g be the set of all strategies; 

3% be the set of all game configurations enumerated from all 
possible game trees, possibly with repetitions; 

@, be the set of all distinct game configurations. 

Remarks: We assume that both Band@ can be effectively enumerated. 

Clearly,ssB, and a given element b et% may be enumerated several 

times over insI. For a finite game I#'[ < QD. Each element of g, 

say f E g maps 3B1 + s'. 

Intuitively we would want two functions to be identically equal 

iff they map any b' ES ' to the same next game configuration: i.e., two 

strategies are said to be equal if 

flW) = f2(b') vb' E@'. 

To get at the notion of the "nearness" of two strategies, it is 

possible to define a function d:f x f + lRas follows: 

d(fl,f21 = PrIblfl(b) # f2(b)) 

where Pr is a probability measure on a. This is intuitively satisfactory 

on several counts. For game configurationswhich appear "often", their 
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enlrmeration in St is repeated, so that they contribute proportionately 

to the measure. In games with large numbers of configurations the above 

definition can serve as the basis of a "Monte Carlo" type estimate of 

the (difference) distance between two strategies. 

Theorem 7.1 

d as defined above is a metric. 

Proof: 

01 d(fl,f) = PrIb]fl(b) # fl(b)) = Pr(0) = 0 

(ii) d(f f ) = d(f 1' 2 f ) L 0 is obvious. 2' 1 
(iii) we have to prove the trangle inequality 

W,,f,l -< d(fl,f31+W3,f21. 

For any f3 cg 

Ib 1 fl @I = f2(b)3Z(blfl(b) = f2(b) = f,(b)) 

= {blfl(b) = f3(b)1n{blf2(b) = f3(b)) 

Take complements: 

{blfl(W # f2CWlEIblfllbl # f3@H 

UO-+2(W # f3W3 

which implies 

Wblfl@) # f2(bl 1 L Pr(blfl(b) # f3@))+PrIblf2(b) # f3(b)) or 

d(flsf2) s d(fl,f31+W3,f21 

Remarks: In a finite game, /@I < 03, so that the probability measure 

Pr is simply a counting measure after this fashion: if nb is the number 

ofoccurrences of b ES which satisfy Pred(b), then 

nb Pr{blPred(b)) = - I*I 
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Some unsatisfactory points are now observed. It is not entirely 

clear how one could modify the definition of the metric (by using weighted 

metrics) to account for the fact that some game configurations are "more 

critical" than others. Even the same configurations appearing at different 

levels of game trees may have to be differently weighted. Again, supposing 

d(fl,f2) = d(fl,f3), and let 

&2 = iblfl(bl # f2(bll 

d3 = iblfl(W # f3(bH 

then even though l62l = l&31 it may be that the set 62 has most of its 

elements appearing early in the game trees, while 63 has most of its 

elements appearing late. 

These second order effects are not yet considered. 

Corollary 7.1 (g,d) is a metric space. 

Adaptive Plans and Optimal Strategies 

Suppose there is a strategy which is optimal in the sense that it 

assumes a win for any tree. A good adaptive plan is one which, despite 

false starts, eventually picks on such an optimal strategy. 

To formalize this, an adaptive plan P is a function which maps strategies 

into strategies, i.e., P:g+ g and the set of all adaptive plans is 

denoted by 9. 

However, in most implementations of adpative plans, there is involved 

a payoff or penalty function. We choose to use a penalty function. 

For a fixed p E 3 let f. be the original choice of a strategy. If 

PO is the initial penalty then the aim of p will be to reduce Gun) to 

zero as quickly as possible by judicious choices of If,>. So more accurately, 

p:gxu+&@- 
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where U is the set of penalty functions associated with strategies. 

Obvious choices of penalty functions are (i) monotonic functions 

of metrics (ii) cumulative density functions of metrics. 
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APPENDIX 2.1 

A simple numerical example to illustrate the spherical bounds on 

crossover: 

Let x(l) = (1,2,3,4) 

xc2) = (3,2,1,0) 

Suppose we crossover coordinates 1 and 4. 

y(u = (3,2,3,0) 

,w = (1,2,1,41 

Now the mid-point of x(l) and x(~) is (2,2,2,2) = x0. 

1 lx(l)-xol I2 = 12+02+12+22 = 1 lx(2)-xoI I2 

1 lp-xol I2 = 12+02+12+22 = lly(2)-xol 12 

Also, note that y(l)-x0 = (l,O,l,-2) and Y(~)-x~ = (-l,O,-1,2) = 

- (y(l)-x0). 
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APPENDIX 2.2 

In the definition of a minimal bounding sphere (M.B.S.), it was 

stated that time did not permit refined proof and arguments on details. 

However it was asserted that at least one bounding sphere exits. This 

appendix presents a method for finding one such sphere. 

Let S be a bounded set of points CX 
(11 

,...,XCrn) 1 (as usual we assume 

S in finite). 

Let xk 
max 

= my {tii) (xcil E Sl 

Xkmin 
= min {xLi) IXci) E Sl. 

i 

Let x0 = (xk +xk )/2 for all k. Define a center point 
k max min 

x0 = (xo1’xo2....,xokl. Then let rLi’ = xji)-xok = xLi)- xk -Xk 

max min 

and r = max rki), 
k i 

= ; (x;iL x 
k ) t 3 (xii)- Xk ) 
max min 

1 - 
Then define a radius rD = Ckgl $I2 . These define a bounding sphere. 
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APPENDIX 3 

3.1 Given u,,...,u,, the expectation of the time to go from state i to state 

i, E[i to i] = Pi = l/ui. pi j is known (transition probability from state 
, 

i to state j). 

pn,n-l = 1 therefore E[n to n] = E[n-1 to n]+l =-> E[n-1 to n] = E[n to n]-1. 

E[n-1 to n-l] = pnS1 n-2*(E[n-2 to n-l]+l)+pn-l n-1+pn-l,n*2 => , , 

E[n-2 to n-l] = E[n-1 to n-11-p n-l,n-2-Pn-l,n-l . These values suggest 

Pn-l,n-2 

an algorithm. Let 0 < i < n-l, 

E[i to i] = pi,i-l*(E[i-l to i]+l)+pi i+pi i+l*(E[i+l to i]+l) where the 9 J 

P* l,j 
's and E[i to i] are given and 

E[i+l to i] = pi+l,i+pi+l,i+l*(E[i+l to i]+l)+pi+l,i+2*(E[i+2 to i+l]*E[i+l to i]) 

where it is assumed that E[i+2 to i+l] has been previously calculated. 

Thus the expectations, E[i-1 to i], may be calculated for each i such that 

O<i<n. 

Given E[A? to j] for both k? = i and k? = i+l where 0 < i < j-l 

E[i to j] = pi i-l , 
*@[i-l to j]+l)+pi,i*(E[i to j]+l)+pi,i+l*(E[i+l to j]+l) 

and E[i to i+l] = pi,i-l*(E[i-l to i+l]+l)+pi i*(E[i to i+l]+l)+pili+, , 

for each 0 5 i c n. Therefore E[i to j] is determined for each i and j 

such that 0 < i < j 5 n. 
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A NUMERICAL EXAMPLE 

3.2 Letn=m= 3 012 3 

.so that IJ p,-1 1 [ 1 = 0 => 
i 

1 1 1) zllo = JUl 

2) L.l - ;u1+;u2 = 0 
2 0 

3) f u1 - ;u2 + u3 = 0 

1 4) gU2 - u3 = 0 

5) u. + u1 + u2 + u3 = 1 

1) => Ul = + u. 

3) + 4) => u 1 
2 = z"l 

and 4) => u3 = 1 u 6 2 

sou =L 3 ,?u adu ~3 
8"O'u2 4 0 1 2 u. 

3 3 1 8 12 6 5)=~uo+zuo+Tuo+~uo=1=~uo=2~ therefoe ul=~~~=~7, 

1 
u3 = T7 

27 therefore p. = 8 , ~1 = g, p2 = g and v 3 = 27. 

Using the algorithm described in Appendix 3.1, one obtains the following: 
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E[2 to 31 = 27-l = 26 

E[2 to 21 = p2 1 (E Cl to ~+U+P~ 2+2~2 3 , , , 

27 12 2 

E[2 to l] = 3 + $, l (E[Z to l]+l) + + (E[3 to 2]+E[2 to 11) 

=> E[2 to 1](1 - $- $) = ++ ; + $ = 1 => E[2 f-0 l] = 1-t = ; 

E[l to l] = $(E[O to l]+l) + $ + $E[2 to l]+l) 

27 1115 g -e-.-z 
=>E[Otol]=E-T-3 3 2 9 03 = - 

1 -ii 4 
5 

E[2 to 31 = $(E[l to 3]+1)+$(E[2 to 3]+1)+$ = 26 

=> E[l to 31 = ;(26 - 3 - g - ;) = 31 

E[l to 31 = +(E[O to 3]+1)+ +(E[l to 3]+1) + +(E[2 to 3]+1) = 31 

1 => EIO to 31 = 3(31 - 5 - q - 9) = 33. 

60 NASA-Langley, 1972 - IS CR-2099 


