
https://ntrs.nasa.gov/search.jsp?R=19720023249 2020-03-23T08:31:12+00:00Z

NJ 2-30899

UMBILICAL CONNECT TECHNIQUES IMPROVEMENT TECHNOLOGY STUDY

Donald C. Valkema

Convair Aerospace Division General Dynamics San Diego, California 92112

2 June 1972

Final Report 1 July 1971 – 2 June 1972

LIBRARY COPY

AUG 2.9 1973

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION John F. Kennedy Space Center Kennedy Space Center, Florida 32899

2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle UMBILICAL CONNECT TECHNIQUES IMPROVE- MENT-TECHNOLOGY STUDY		
Donald C. Valkema 9. Performing Organization Name and Address Convair Aerospace Division of		
	11. Contract or Grant No. NAS_10-7702	
2112	13. Type of Report and Period Covered	
53	Final Report	
National Aeronautics And Space Administration John F. Kennedy Space Center Kennedy Space Center, Florida 32899		

^{16.} Abstract The objective of this study was to develop concepts, specifications, designs, techniques, and procedures capable of significantly reducing the time required to connect and verify umbilicals for ground services to the Space Shuttle. The desired goal was to reduce the current time requirement of several shifts for the Saturn V/Apollo to an elapsed time of less than one hour to connect and verify all of the Space Shuttle ground service umbilicals.

The study was conducted in four phases: (1) literature and hardware examination, (2) concept development, (3) concept evaluation and tradeoff analysis, and (4) selected concept design. The final product of this study was a detail design of a rise-off disconnect panel prototype test specimen for a LO_2/LH_2 booster (or an external oxygen/hydrogen tank for an orbiter), a detail design of a swing-arm mounted pre-flight umbilical carrier prototype test specimen, and a part 1 specification for the Umbilical Connect and Verification Design for the vehicles as defined in the Space Shuttle Program RFP No. 9-BC421-67-2-40P.

17. Key Words (Selected Space Shuttle Umbilicals Disconnects Rise-offs	sy Author(s) Swing-a Coupling Carrier	rms gs	18. Distribution St Unclassif	otement fied-Unlimited	l
19. Socurity Classif. (of Unclassified	this report)	20. Security Class	ssif. (of this page) ified	21. No. of Pages	22. Price

•

TABLE OF CONTENTS

.

į

: : : :

Section			Page
1	INTR	RODUCTION	1-1
2	REQ	UIREMENTS FOR SERVICING DISCONNECT CONCEPTS	2-1
	2.1	BOOSTER SERVICING DISCONNECT PANEL REQUIREMENTS	2-1
	2.2	BOOSTER DESIGN REQUIREMENTS	2-1
	2.3	ORBITER SERVICING DISCONNECT PANEL	
		REQUIREMENTS	2-3
	2.4	ORBITER DESIGN REQUIREMENTS	2-4
3	LITE	RATURE AND HARDWARE REVIEW	3-1
4	CAN	DIDATE CONCEPT DEFINITION	4-1
	4.1	BOOSTER UMBILICAL HANDLING CONCEPT NO. 1, FIXED EVALUATION	4-25
	4.2	BOOSTER UMBILICAL HANDLING CONCEPT NO. 2,	4.05
	4 0	SPRING MOUNTED - LOCKED TO VEHICLE	4-25
	4.3	BOOSTER UMBILICAL HANDLING CONCEPT NO. 3, TAIL SERVICE MAST (TSM) TYPE	4-25
	4.4	ORBITER UMBILICAL HANDLING CONCEPT NO. 1,	
		RETRACTABLE BOOM	4-26
	4.5	ORBITER UMBILICAL HANDLING CONCEPT NO. 2,	
		COUNTERBALANCED BOOM	4-26
	4.6	ORBITER UMBILICAL HANDLING CONCEPT NO. 3, PLATFORM MOUNTED RETRACTING ARM	4-26
5	CON	CEPT EVALUATION AND TRADEOFF ANALYSIS	5-1
	5.1	CRYOGENIC COUPLINGS (UNWEIGHTED)	5-1
	5.2	CRYOGENIC COUPLINGS (WEIGHTED)	5-1
•	5.3	HIGH PRESSURE PNEUMATIC AND HYDRAULIC	0-1
		COUPLINGS (UNWEIGHTED)	5-1
	5.4	HIGH PRESSURE PNEUMATIC AND HYDRAULIC	
		COUPLINGS (WEIGHTED)	5-1
	5.5	LOW PRESSURE PNEUMATIC, H ₂ O GLYCOL,	
		AND JP-5 COUPLINGS (UNWEIGHTED)	5-1
	5.6	LOW PRESSURE PNEUMATIC, H ₂ O GLYCOL,	
		AND JP-5 COUPLINGS (WEIGHTED)	5-9
	5.7	LOCKING AND RELEASE DEVICE EVALUATION	
		(UNWEIGHTED)	5-9

TABLE OF CONTENTS, Contd

Section			Page
	5.8	LOCKING AND RELEASE DEVICE EVALUATION	
		(WEIGHTED)	5-9
	5.9	ELECTRICAL CONNECTOR EVALUATION	
		(UNWEIGHTED)	5-9
	5.10	ELECTRICAL CONNECTOR EVALUATION (WEIGHTED)	5-14
	5.11	DEBRIS PROTECTION (UNWEIGHTED)	5-14
	5.12	DEBRIS PROTECTION (WEIGHTED)	5-14
	5.13	DEBRIS PROTECTION METHOD COMPATIBILITY	5-14
	5.14	BOOSTER UMBILICAL CARRIERS (UNWEIGHTED)	5-14
	5.15	BOOSTER UMBILICAL CARRIERS (WEIGHTED)	5-14
	5.16	BOOSTER UMBILICAL HANDLING CONCEPTS	
		(UNWEIGHTED)	5-14
	5.17	BOOSTER UMBILICAL HANDLING CONCEPTS	
		(WEIGHTED)	5-22
	5.18	ORBITER UMBILICAL CARRIERS (UNWEIGHTED)	5-22
	5.19		5-22
	5.20	ORBITER UMBILICAL HANDLING CONCEPTS	
		(UNWEIGHTED)	5-23
	5.21	ORBITER UMBILICAL HANDLING CONCEPTS	
		(WEIGHTED)	5-23
	5.22	HANDLING SYSTEM/COMPONENT COMPATIBILITY	5-23
6	SELEC	TED CONCEPT REQUIREMENTS DEFINITION	6-1
	6.1	SELECTED BOOSTER CONCEPT DEFINITION	6-1
		Handling Concept	6-1
		Carrier Concept	6-5
	6.1.3	Screw Jack Elevating Mechanism	6-6
		Protective Blast Door (Ground)	6-6
	6.1.5	Protective Door (Vehicle)	6-6
•	6.1.6	Cryogenic Couplings	6-6
	6.1.7	High Pressure Pneumatic Couplings (Gaseous Helium	
		and Gaseous Hydrogen)	6-8
		Fuel (JP-5) Coupling	6-9
		Vehicle Cavity Purge GN ₂ Coupling	6-9
		Hydraulic System Pressure and Return Couplings	6-9
	6.1.11	Electrical Ground Power Connector	6-9
	6.1.12	Data Bus Electrical Connector	6-9
	6.2	SELECTED ORBITER CONCEPT DEFINITIONS	6-10
	6.2.1	Handling Concept	6-10

TABLE OF CONTENTS, Contd

Section

.

6.2.2	Carrier Concept	6-11
6.2.3	Leak Detection System	6-12
6.2.4	Flexible Hose Installation	6-13
6.2.5	Ball-and-Cone Coupling, 2 In., Dual Seals	6-13
6.2.6	Pressure Balanced Coupling, 1 In., High Pressure	6-14
6.2.7	Ball-and-Cone Coupling, 1 In., Dual Seals	6-14
6.2.8	Ball-and-Cone Coupling, 1 In., Dual Seals,	
	Vacuum-Jacketed	6-14
6.2.9	Ball-and-Cone Coupling, 1/2 In., Single Seal	6-14

Appendix

Α	LIST OF BOOSTER UMBILICAL DISCONNECT DETAIL DRAWINGS	A-1
в	LIST OF ORBITER UMBILICAL DISCONNECT DETAIL DRAWINGS	B-1
С	CALCULATION WORK SHEETS	C- 1

LIST OF FIGURES

Figure		Page
4-1	Ten Inch Cryogenic V.J. Ball and Cone Dual Seal	4-1
4-2	Ten Inch Cryogenic V.J. Slip Coupling-Self Forming Lip Seals	4-2
4-3	Ten Inch Cryogenic V.J. Slip Coupling-Chevron Seals	4-2
4-4	Ten Inch Cryogenic V.J. Pressure Balanced Slip Coupling	4-3
4-5	Partial Pressure Balanced Cone Seal	4-3
4-6	Three Inch Ball and Cone Coupling	4-4
4-7	LH ₂ - V.J. (1 in.)	4-4
4-8	Pneumatic Slip Coupling (1 in.)	4-5
4-9	Pneumatic Pressure Balanced Coupling (1 in.)	4-5
4-10	Pneumatic Coupling, 150 psi (4 in.)	4-6
4-11	150 psi (1 in.)	4-6
4-12	Pneumatic Coupling, 5 psi (3 in.)	4-6
4-13	Two Inch	4-7
4-14	One Inch	4-7
4-15	One-Half Inch	4-7
4-16	Ball Lock	4- 8
4-17	Toggle Lock	4-8
4-18	Finger Lock	4-8
4-19	Latch Release Mechanism	4-9
4-20	Rectangular Electrical Connector, Ground Half	4-9
4-21	Rectangular Electrical Connector, Airborne Half	4-9
4-22	Typical Deadface Electrical Connector	4-10
4-23	Booster Electrical Disconnect	4-10
4-24	Cone Seal With Internal Actuated Poppet Closures	4-11
4-25	Butterfly Valve	4-11

NAS 10-7702

LIST OF FIGURES, Contd

•

.

,

Figure		Page
4-26	Poppet Valves, External Mechanical Actuated	4-12
4-27	Poppet Valves, Internal Mechanical Actuated	4-12
4-28	Disconnect, Balanced Poppet, Vacuum Jacket	4-13
4-29	Debris Valves, Flexible Cone and Poppet	4-13
4-30	Booster Rise-off Ground Umbilical, Concept A	4-14
4-31	Booster Rise-off Ground Umbilical, Concept A (Section AA)	4-14
4-32	Booster Rise-off Airborne Umbilical, Concept A	4-15
4-33	Booster Rise-off Airborne Umbilical, Concept A (Section AA)	4-15
4-34	Booster Rise-off Umbilical, Ground and Vehicle	4-16
4-35	Booster Rise-off Ground Umbilical, Concept B	4-16
4-36	Booster Rise-off Ground Umbilical, Concept B (Section A-A)	4-17
4-37	Booster Rise-off Ground Umbilical, Concept C	4-17
4-38	Booster Rise-off Ground Umbilical, Concept C (Section A-A)	4-17
4-39	Booster Umbilical Handling Concept No. 1, Fixed Elevation	4–18
4–40	Booster Umbilical Handling Concept No. 2, Spring Mounted and Locked to Vehicle	4–19
4-41	Booster Umbilical Handling Concept No. 3, Tail Service Mast (TSM) Type	4-20
4-42	Orbiter Umbilical Handling Concept No. 1, Retractable Boom	4-22

NAS 10-7702

,

LIST OF FIGURES, Contd

Figure		Page
4-43	Orbiter Umbilical Handling Concept No. 2, Counterbalanced Boom	4-23
4-44	Orbiter Umbilical Handling Concept No. 3, Platform Mounted, Retracting Arm	4-24
5-1	Booster Umbilical System Selection	5-2
5-2	Orbiter Umbilical System Selection	5-3

LIST OF TABLES

Table		Page
2-1	Servicing Disconnect Panel Requirements	2-1
2-2	Typical Orbiter Integrated Umbilical Carrier Coupling Requirements	2-2
3-1	Umbilical Carriers	3-3
3-2	Cryogenic Couplings	3-6
3-3	Pneumatic and Hydraulic Connectors	3-8
3-4	Electrical Connectors	3-10
3-5	ECS Connectors	3-12
3-6	Rationale for Suitability of Existing Hardware for Space Shuttle Umbilicals	3-14
3-7	Umbilical Connect and Verification Procedure Review	3-21
3-8	UCR Summary	3-26
4-1	Booster Riseoff Umbilical Carrier Concepts	4-21
5-1	Cryogenic Couplings (Unweighted)	5-4
5-2	Cryogenic Couplings (Weighted)	5-5
5-3	High Pressure Pneumatic and Hydraulic Couplings (Unweighted)	5-6
5-4	High Pressure Pneumatic and Hydraulic Couplings (Weighted)	5-7
5-5	Low Pressure Pneumatic, H ₂ 0 Glycol, and JP-5 Couplings (Unweighted)	5-8
5-6	Low Pressure Pneumatic, H ₂ 0 Glycol, and JP-5 Couplings (Weighted)	5-10
5-7	Locking and Release Device (Unweighted)	5-11
5-8	Locking and Release Device (Weighted) ix	5-12

NAS 10-7702

•

LIST OF TABLES, Contd

Table		Page
5-9	Electrical Connector (Unweighted)	5-13
5-10	Electrical Connector (Weighted)	5-14
5-11	Debris Protection (Unweighted)	5-16
5-12	Debris Protection (Weighted)	5-17
5-13	Debris Protection Method Compatibility	5-18
5-14	Booster Umbilical Carriers (Unweighted)	5-19
5-15	Booster Umbilical Carriers (Weighted)	5-20
5-16	Booster Umbilical Handling Concepts (Unweighted)	5-21
5-17	Booster Umbilical Handling Concepts (Weighted)	5-24
5-18	Orbiter Umbilical Carriers (Unweighted)	5-25
5-19	Orbiter Umbilical Carrier (Weighted)	5-26
5-20	Orbiter Umbilical Handling Concepts (Unweighted)	5-27
5-21	Orbiter Umbilical Handling Concepts (Weighted)	5-28
5-22	Handling System/Component Capability	5-29
6-1	Weighted Evaluation Summary of Tradeoff Matrices	6-1

x

SUMMARY

The original Space Shuttle concept envisioned a minimum size fleet of fully reusable first and second stage rocket powered launch vehicles to carry a large number of payloads to orbit each year. This concept, entirely different than previous launch vehicles, imposes new requirements on the servicing disconnects (umbilicals).

First of all, the umbilical hardware must be reusable. This includes protection from the environments of engine exhaust and reentry heating as well as from contamination carried by the air. It also includes design features making refurbishment rapid and inexpensive.

Secondly, the umbilicals must be easily and rapidly engaged. This includes reducing the number of servicing disconnects to a minimum, combining them into a minimum number of integral carriers, reducing the weight and complexity of the carriers, and providing built-in handling means to allow rapid engagement without additional equipment, and with a minimum of personnel. This rapid engagement with a minimum of personnel is necessary in order to minimize impact on the rapid ground turnaround and minimum crew size inherent in the basic Space Shuttle concept.

Thirdly, and again to minimize ground turnaround time and ground crew, the engagement of umbilicals must be easy to verify. This includes visual checks, leak checks of fluid and gas couplings, and continuity checks of electrical disconnects.

And last, but not least, the inherent reliability of the umbilicals must be increased. At this point in time this last item must be judged on a qualitative basis. Certainly, reducing the number of disconnects, using a minimum number of carriers, and making the maximum number of disconnects pre-flight (rather than in-flight) are steps in the right direction on a qualitative analysis basis.

For this study, a specific Space Shuttle configuration was chosen for definition of umbilicals; i.e., the B9U booster configuration of the Convair Aerospace Division of General Dynamics and the 161C orbiter configuration of North American Rockwell. Both of these vehicles were fully reusable fly-back stages using LO_2/LH_2 main propulsion propellants. More specifically, the study centered on the booster fuel disconnect (umbilical) panel and the orbiter integrated umbilical carrier that contained 20 servicing couplings, all of which could be disconnected prior to engine start. The booster fuel disconnects are required to be connected to maintain ground control and to drain propellants in the event of an on-pad abort. Rather than introduce an additional failure mode associated with having to re-engage the disconnects remotely, they are to be disconnected by vehicle motion at liftoff.

Since the orbiter services being considered need not be connected in the event of an abort, this umbilical carrier has been defined as a preflight umbilical. By disconnecting and verifying disconnect prior to committing to flight, a critical failure mode is eliminated.

This study was conducted in four basic phases: 1) literature and hardware examination; 2) concept development; 3) concept evaluation and tradeoff analysis; and 4) selected concept design.

The concept selected for design for the booster fuel panel incorporates the following salient features:

- a. The couplings are riseoff type and separate in the direction of flight as a direct result of vehicle motion.
- b. The couplings incorporate dynamic slip seals to accommodate vertical relative motion of the vehicle due to wind, propellant loading, engine firing, and cutoff (abort).
- c. Hazardous fluid couplings incorporate dual seals to enable leak verification and to conduct primary seal leakage to safe disposal.
- d. The ground carrier is powered up and down with screw jacks to allow retraction during vehicle erection onto the launcher and to rapidly engage the carrier, including all of the couplings and disconnects, after vehicle erection.
- e. The carrier has built-in lateral freedom of motion with guide pins to align it to the vehicle carrier during engagement. The lateral freedom also allows tracking of vehicle horizontal relative motion due to wind, propellant loading, engine firing, and cutoff (abort).
- f. The ground carrier has a pneumatically actuated blast shield to protect it from engine exhaust during launch.
- g. The couplings have individual debris protection poppets to limit the contamination from particles borne by the air to the immediately accessible portion of the disconnect for ease in refurbishment.
- h. The couplings and adjacent lines incorporate provisions for automation of the leak check verification task.

The concept selected for design for the orbiter integrated umbilical carrier incorporates the following salient features:

- a. The couplings are ball and cone (seal design) type and separate in a direction perpendicular to the direction of flight.
- b. All couplings are contained in a single carrier that is attached to the vehicle by a single locking device. None of the couplings incorporate individual locking devices.

- c. The locking device is a collet designed to allow it to be locked with the carrier held far enough away from the vehicle so that the couplings are not touching.
- d. A manually operated gear-driven system translates the locking device and four corner guide pins to maintain the ground carrier in alignment with the vehicle carrier while the carrier and <u>all</u> couplings are engaged simultaneously.
- e. A spring counterbalanced boom system provides support of the dead weight of the ground carrier, couplings, and attached hoses during manual engagement of the buide pins and collet locking device.
- f. The counterbalanced boom also supplies pneumatically derived forces to retract the ground carrier away from the vehicle after collet release and carrier ejection. Ejection is by pneumatic cylinders in the carrier guide pins.
- g. The couplings have individual debris protection poppets to limit the contamination from particles borne by the air to the immediately accessible portion of the disconnect for ease in refurbishment.

The detail design goal has been to reduce the time required to engage and verify all of the Space Shuttle umbilicals to an elapsed time of less than one hour, while at the same time reducing the number of personnel required to a minimum.

SECTION 1

INTRODUCTION

This document reports the activities of a technology study conducted by the Convair Aerospace Division of General Dynamics Corporation (GDCA) and funded by the Kennedy Space Center of the National Aeronautics and Space Administration (NASA KSC). This study contract, NAS10-7702, was entitled Umbilical Connect Techniques Improvement, and covered the period from 1 July 1971 through 1 May 1972.

The stated objective of this study was to develop concepts, specifications, designs, techniques, and procedures capable of significantly reducing the time required to connect and verify umbilicals for ground services to the space shuttle. The desired goal was to reduce the current time requirement of several shifts for the Saturn V/ Apollo to an elapsed time of less than one hour to connect and verify <u>all</u> of the space shuttle ground service umbilicals.

The study plan for this task was divided into four phases:

- Literature and Hardware Examination
- Concept Development
- Concept Evaluation and Tradeoff Analysis
- Selected Concept Design

The literature and hardware examination phase consisted of detailed reviews of drawings, specifications, procedures, unsatisfactory condition reports, and hardware. Primary emphasis was placed on Saturn IB/Apollo, Saturn V/Apollo, Atlas/Centaur, and Titan IIIC. In addition, interviews were conducted with operations personnel directly associated with umbilical hardware on the above mentioned programs.

These reviews were conducted with the purpose of understanding the good and bad features of current and past umbilical hardware. With this understanding, the following three phases of the program were enhanced. The results of these reviews are presented in tabular format in Section 3, Literature and Hardware Review.

The concept development phase generated candidate umbilical concepts for the following categories of components, subsystems, and handling systems:

• Couplings

Cryogenic High Pressure Pneumatic and Hydraulic Low Pressure Pneumatic, H₉O Glycol and JP-5

- Locking and Release Devices
- Engaging Mechanisms
- Electrical Connectors
- Booster Umbilical Carriers
- Booster Umbilical Handling Concepts (3)
- Orbiter Umbilical Handling Concepts (3)

In order to provide a baseline for these concepts, a requirements document was prepared based on the North American-Rockwell/General Dynamics - Convair Space Shuttle configuration that was current as of the beginning date of the study contract. The particular vehicle designators used were B9U for the booster, and 161C for the orbiter. One of the initial program ground-rules established was that this study plan would not respond to perturbations or variations in space shuttle evolving configurations.

The requirements further reflect a narrowing of scope to a consideration of only a fuel (LH_2) umbilical disconnect panel for the B9U booster and an integrated preflight umbilical disconnect panel (including both LO_2 and LH_2) for the 161C orbiter. While the handling and carrier concepts were generated for these two applications only, other applications and transferability of results were kept in mind to avoid deadended configurations.

The particular umbilical requirements which were generated for use are presented in Section 2, Requirements for Servicing Disconnect Concepts. The candidate concepts generated for evaluation are presented in Section 4, Concept Development. The concepts presented do not contain detail dimensions or analyses. They were developed only to the extent necessary to allow evaluation and tradeoff.

The concept evaluation and tradeoff analysis phase examined the various concepts generated in the concept development phase. This comparison was accomplished in matrix fashion by establishing the evaluation parameters (criteria) and weighting factors. Each of the concepts were evaluated on a comparative basis and the evaluation factors were totaled to arrive at final recommendations for the concepts. The results of this analysis are presented in Section 5, Concept Evaluation and Tradeoff Analysis.

Section 6, Selected Concept Requirements Definition provides a summary of the evaluation factors determined in Section 5, and indicates the various concepts selected for more detailed design. This summary illustrates the optimum design features that should be attained in the design. This section also provides an amplification of the salient features of each of the selected concepts. While this report does not contain the detail design drawings completed during the selected concept design phase, Appendices A and B list the numbers of the drawings which are available under separate cover. Appendix C contains pretinent calculation sheets.

GDCA was assisted in this study effort by the Florida Operations of Chrysler Corporation under Subcontract Number PO-70-00004. This subcontract covered the same period as the NASA KSC study contract.

SECTION 2

REQUIREMENTS FOR SERVICING DISCONNECT CONCEPTS

2.1 BOOSTER SERVICING DISCONNECT PANEL REQUIREMENTS

The services required in a typical booster fuel servicing disconnect panel are presented inTable 2-1.

Item No.	Description	Nominal Size	Nominal Operating Conditions
1	LH ₂ Fill and Drain	10 in.	90 psig
2	Hydrocarbon Fuel Fill and Drain	2 - 3 in.	150 psig
3	GH ₂ Fill (attitude Propulsion System Accumulator & Prepressurization)	1 in .	1000 psig
4	GH _e Fill	1 in.	3700 psig
5	GN_2 Ground Purge Vehicle Cavities	4 in.	150 psig
6	Electrical Ground Power LH Recirculation		24 kW 115V 400 Hz 3 phase
7	Data Bus	12 - No. 12	
8	Electrical Ground Power Avionics		40 kW 115V 400 Hz 3 phase
9	Hydraulic Pressure	2 in.	2300 psig
10	Hydraulic Return	2 in.	2300 psig

Table 2-1. Servicing Disconnect Panel Requirements

2.2 BOOSTER DESIGN REQUIREMENTS

The following are design requirements that apply to a typical booster fuel servicing disconnect panel:

- a. Temperature. (maximum, during boost and reentry). Base heat shield area = 2210°R; tail area, fuselage above wing = 1110°R.
- b. Redundancy. After lift-off initiation Fail Operational/Fail Operational for critical functions. Prior to liftoff Fail Operational/Fail Safe with failure detection.

- c. Alignment. Uncertainty in location and alignment of airborne disconnects with respect to fixed launcher base prior to umbilical system engagement, ± 2.0 inches and $\pm 1/2$ degree in any direction.
- d. Relative Motion. Movement of the airborne disconnects with respect to the fixed launcher base after system engagement and during transport, wind, propellant loading, engine start and cutoff, ± 1.0 inch in any direction. This amount of relative motion is based on the baseline B9U booster configuration with a short, stiff load path between the airborne umbilical carrier and the booster holddown and release arms. The holddown arms and the support pedestal also are stiff structures. It is recognized that other booster configurations might result in a requirement to accommodate larger relative motions. Accommodating these larger values can easily be done simply by scaling up the length of the disconnects and allowing greater sidewise freedom in the parallelogram linkage for the panel carrier.
- e. Disconnect pressures. Internal fluid pressure and electrical power removed before disconnect. (Except for hydraulic disconnects.)
- f. Leakage. Provide leak detection of primary dynamic seals. Provide disposal of H_o and JP dynamic seal leakage.
- g. Icing. Cryogenic connector critical areas shall be protected to prevent icing. This may be accomplished either by insulating the coupling adequately to raise the exterior surface temperature above the freezing point of the water vapor condensate, by purging the cold surfaces with an inert, dry, and non-condensable gas (such as nitrogen or helium), or a combination of these. The intent of this requirement is to avoid the build-up of an accumulation of solid ice which has a tendency to prevent coupling or carrier separation. It is further intended that none of the couplings/carriers will require reconnect shortly after ejection. It is therefore not required to prevent ice build-up on a coupling/carrier after ejection.
- h. Purges. Provide inert environment in electrical connector.
- i. Reusability. Provide heat and debris protection. Debris valves are not required to provide fluid shutoff function.
- j. Ease of connection and verification. Provide the design features necessary to allow the fuel servicing disconnect panel to be engaged and verified in less than one hour and with a minimum of operating personnel. Verification includes a visual check of the proper engagement, a leak check of all fluid and pneumatic couplings and a continuity and contact resistance check for electrical connectors.

2.3 ORBITER SERVICING DISCONNECT PANEL REQUIREMENTS

.

The services required in a typical orbiter integrated umbilical carrier are presented in Table 2-2.

Item No.	Description	Nominal Size (in.)	Nominal Operating Conditions (psig)
1	Power Generating System (PGS) LH ₂ Vent No. 1	2	5
2	PGS LH ₂ Vent No. 2	2	5
3	PGS LH ₂ Fill No. 1	1	30
4	PGS LH ₂ Fill No. 2	1	30
5	Fuel Cell (FC) GH ₂ Purge Vent	1	5
6	JP-5 Fill	2	90
7	JP-5 Tank Pressure	1	150
8	FC H ₂ O Vent	1/2	5
9	Environmental Control/Life Support System (EC/LSS) Primary Heat Exchanger (PHX) Supply (H ₂ O/Glycol)	1	150
10	EC/LSS PHS Return	1	150
11	PGS LO ₂ Vent No. 1	1	5
12	PGS LO_2 Vent No. 2	1	5
13	PGS LO ₂ Fill No. 1	1	150
14	PGS LO ₂ Fill No. 2	1	150
15	GO ₂ Vent Aux Prop System Accumulator	1	150
16	GH Fill	1	3500
17	FC GO ₂ Purge Vent	1/2	5
18	FC GO_2 Purge Vent	1/2	5
19	EC/LSS SHX Supply	1	150
20	EC/LSS SHX Return	1	150

Table 2-2. Typical Orbiter Integrated Umbilical Carrier Coupling Requirements

2.4 ORBITER DESIGN REQUIREMENTS

The following are design requirements that apply to a typical orbiter integrated umbilical carrier:

- a. Temperature. The maximum thermal protection system skin temperature expected during boost and reentry is approximately 1110°R.
- b. Redundancy. After lift-off initiation (In-flight disconnect) fail operational/fail operational for critical functions. Prior to lift-off (pre-flight disconnect) fail operational/fail safe with failure detection.
- c. Alignment. Uncertainty in location and alignment of airborne disconnects with respect to swing-arm structure prior to umbilical carrier engagement, \pm 3.0 inches and \pm 2 degrees in any direction.
- d. Relative motion. Movement of the airborne disconnects with respect to the swingarm structure after umbilical carrier engagement and during transport, wind, and propellant loading: \pm 10 inches in either horizontal direction, + 2 inches up and -8 inches down.
- e. Disconnect pressures. Internal fluid pressure removed before disconnect.
- f. Leakage. Provide leak detection of primary dynamic seals. Provide disposal of hazardous cynamic seal leakage.
- g. Icing. Cryogenic connector critical areas shall be protected to prevent icing.
- h. Purges. Provide purges to separate carrier compartments to provide effective separation of couplings carrying incompatible fluids and gases.
- i. Insulation. Cryogenic connectors (LH₂) shall be insulated to prevent the formation of liquid air.
- j. Reuseability. Provide heat and debris protection. Debris values are not required to provide fluid shutoff function.
- k. Ease of connection and verification. Provide the design features necessary to allow the integrated umbilical carrier to be engaged and verified in less than one hour and with a minimum of operating personnel. Verification includes a visual check of the proper carrier locking and engagement and a leak check of all fluid and pneumatic connectors.

2-4

SECTION 3

LITERATURE AND HARDWARE REVIEW

A literature and hardware review was conducted and is contained herein as Tables 3-1 through 3-7. This data is self-explanatory and considered adequate as presented, therefore, very little effort was made to amplify on it.

The data presented in Tables 3-1 through 3-5 represents hardware design considerations and reflects input from visual hardware examination, drawing and specification reviews, as well as discussions with NASA KSC launch operations personnel. Table 3-6 presents the rationale used to determine the useability for the Space Shuttle of the hardware listed in Tables 3-1 through 3-5. The data contained in Table 3-7 represents installation and checkout procedure considerations and reflects input from written procedure reviews as well as discussions with NASA KSC launch operations personnel. Field trips were taken to launch complexes 36A and 36B (Atlas/Centaur) and 40 and 41 (Titan 3C) to discuss umbilical disconnect hardware and procedures.

An unsatisfactory condition report (UCR) summary tabulation for umbilical carriers and fluid couplings was derived from a review of data recorded since October of 1966 for Saturn IB and Saturn V vehicles and ground support equipment (GSE). This tabulation is presented in Table 3-8. The recorded data lists defects and/or failures classified as one of seven types. Each type is depicted in a separate column. The seven types of defects/failures are: malfunction, material, documentation, assembly, damage, contamination, and dimensional. The parameters of each are as follows:

- a. Malfunction. Leakage, failure of poppet to close, or failure of coupling to function properly.
- b. Material. Material defect, expired lifelimitation of component, or expired cure data of seal material.
- c. Documentation. Cure date missing, name plate missing, quality control paperwork missing, or record of previous usage not attached.
- d. Assembly. Incorrect assembly of component by manufacturer.
- e. Damage. Damage incurred by component during fabrication, assembly, handling, or usage.
- f. Contamination. Component was contaminated when received from vendor or after usage. Has resulted in damage to component in many cases.
- g. Dimensional. Component parts out of tolerance.

A total of 275 defect/failure reports are included in the tabulation. The majority are minor in nature. However, many are repetitive to the extent that during review and tabulation of the data it becomes quite evident that improvements are mandatory in certain areas to assure more efficient, economical, and reliable operations. The discrepancies considered most serious are described in the following paragraphs.

Contamination of most of the fluid couplings has been a repetitive defect both upon receipt from the vendor and in use, and has often resulted in damage to sealing surfaces. The internal configuration of some couplings has provided a trap for foreign particles, particularly under seals, thus resulting in seal leakage. Good initial cleaning and handling procedures and conformance to packaging specifications along with proper quality control are obvious methods for preventing contamination. Attention should also be directed toward internal design configurations that minimize contamination traps. The simplest design with the fewest parts, particularly moving parts, will provide a better coupling design.

A large number of defects are attributed to the method of assembly. Positive retention of all component parts is of prime importance. Staking of retainer rings for retention has been a problem area for a significant number of couplings and is not considered a satisfactory method of retention.

The number of scratched and damaged sealing surfaces appearing as defects are attributed to two primary causes. One is adequate protection during handling and the other is a design configuration that allows the sealing surface to contact another metal surface during mating of the coupling halves, possibly due to misalignment. A coupling design that prevents contact of the sealing surface against another metal surface during mating and requires minimum engagement will preclude most damage.

TIPE	P/1 & MER.	USED ON	LOCETHG DEVICE	RELEASE & EJECTION	SERVICES NUMBER & SIZE	SIZE & WT. APPROX.	DESTRABLE FRATURES	UNDESTRATIS FLATURES	CONNECT FEATURES	SUTT ABLE FOR SHUTTLE
ULTIPLE MTERATED DORED TO VIEL	75H02840 75H02841 ESC	S-TB AFT SCH 2 & 4	BALL LOCK	NECH CAN RELEASE WITH SPRING EJECTION, ACTUATION BY VEHICLE LIFTORY	. 8-SHELL SIZE #40 KLECT. COMU. . 8-FRED COMU. 1/4, 3/8 & 1/2	15 I 15 I 5 WT. 10 LBS WITHOUT COM- MELTORS	LIGHT MEIGHT RASE OF MATING SIMPLICITY MIN. AJUSTMENT MIN. MAINTEMENT MIN. MAINTEMENT MESICAED FOR HIGH "G" VIBALTION LAPHIS LOW DISCOMMENT FORCE MIN. ERCADOMENT SUPPORTED BY MAST RO ADDITIONAL EQUIPMENT REQUIRED FOR INSTALLATION	DISCOMMENTS PERFERICULAR TO VEHICLE MOTION COMMENTERS MOST BE REMOVED HERCHE CARPLER INSTALLATION NOT SUITABLE FOR ADTO COMMENT	CARRIER MATED TO VERICLE WITH ELECT. & PHEN. CORN. EENOVED. CONDECTORS THEM MATED DEDL- VIDUALL. ERCENSIVE THME RE- QUINED FOR MATING TO TRELCLE, HOMEVER CHLY AFFROIR. 1 HOUR.	POSIBIL, I SEPARTE UM BILICALS US FOR FROPEL- LATTS.
MULTIPLE INTRUEATED LOCHED TO YEE.	75102049 1550 65864005 1630	S-18 740 S-10 740	BALL LOCK	PRIMARY SYS PODJ RELEASE PREJ CILDER BJECTON SECONDARY SYS MEDE CAM HID CILDER RECONDARY SYS MEDE CAM STATID LAFTARD ACTUATED	. 8-SHELL SIZE 440 ELECT. COMM. . 8-PHED COMM. 1/4, 3/8 1/2 & 3/4 . 2 - 4° DIA ECS COMM	15 I 30 I 5 WT. 57 L28	. LIGHT MEIGHT RASE OF MATING SIMPLICITY MIN. ADJUSTMENT MIN. ADJUSTMENT HIGHLY RELIANTS HIGHLY RELIANTS UPDATION LEVEL LOW DISCOMMENT PORCE NOT DISCOMMENT REQUIRED FOR INSTALLATION	DISCOMPLETS PREPENDICULAR TO VERICLE MOTION COMPLETORS MOST DE REMOVED HEFORE CARELE HORALLETIN NOT ADATIANCE FOR AUTO COMPLET		B O
NII IVI PETERATO ACCED TO VEL.	8037-820030 NBC X.R.	5-13 5.M. 5.27 5 5.M		. FRUMARY SYS FHED RELEASE FHED CELLINGR LINCY TOP SECONDARY SYS HECH CAM HECH CAM RED CELLINGR ATU ATED ST RELE LAFFARD ACTUATED	- 4-SURIL SIZE #40 RLECT COMU. - 6-PHERI COMU 1/4, 3/6 4 3/4 - 1 - 4" DIA BOS COMU	12 I 24 I 5 WT. 25 LBS	LIGHT MEIGHT LASS OF METHO SIDFLIGITY KIJ, MAUSTHEAT HUL, MAUSTHEAT HUL, MAUSTHEAT HULLANLE HOMLY RELIANCE LON DISCOMMENT FORCE HOL DISCOMMENT FORCE HOL ADDITIONAL REGISTMENT REGISTMENT	DISCOMMENTS PERPENDICULAR TO VERTLE MOTION COMMENTORS MOST DE EXAMPLE HERTORE CARELER INFERIALATION HERTORE CARELER INFERIALATION COMMENT		
ADIFICI DETROLATED LOCIED TO VEL. (NO DEGLICAL DEGLIGS MODIFED EI GRE CARLINA, 	S-IV3 P40 1477953 I.U. 11200001 NSFC NAC/DAC	S.f. B S.f. 5	BALL LOCK	. PRIMARY STS PHOT RELEASE PHOT CLLINER LJDCTION SECONDARY STS MECH CAN HTD CLLINER ACTUATED STATUC LANTARD ACTUATED	I.U. 16-SHELL SIZE #40 ELECT 0000 6-PHEU COMM 1/4, 3/8 & 3/4 6- DIA RCS COMM 5-TV-8 PHD 8-SUBLL SIZE #40 ELECT COMM 1 - 6" DIA GE2 VENT	23 I 72 I 5 VT, 240 L26	REUSARIE HIGHIY RELIARIE HIGHIY RELIARIE DESIGNE FOR HIGH "G" YTRAFIGH LAYEL LOW DISCONDECT FORCE NUM DISCONDECT FORCE	IDSOURCES PERPENDICULAR TO VERICLE NOTION COMMETTORS MUST BE REPOYED INFORME CARDER DESTAILATION LARCE SIZE ADJUSTMENTS REQUIRED FOR UNS. HOUSING ALLOHDERT	C	1 0
NULTIPLE DATE: AND LOOKED TO YEE.	65880001 NEFC BAC 65880002 NEFC BAC 65880003 HEFC BAC	TSH #1 S_IC	LOCKING FINCERS (COLLET)	NECH CAN PELEASE PROU EJECTION	- 8-SHELL SIZE 440 MILECT COMM 11-PHOT, HTD & CRID- CHRIC COMM - 1 - 6" DIA LOX COMM - 8-SHELL SIZE 440 MILECT COMM - 10-PHOT, HTD & CRIO- CHRIC COMM - 10-PHOT COMM - 10-PHOT COMM - 2 - 4" DIA LOX COMM	24 I 28	. REUS AND R . RELIANCE	BOT EDAPTASLE FOR ANTO COMMENT CHITICAL ADJUSTMENT RE'QUES. INSUFFICIENT SPACE METHODS COMMENTATION SPACE METHODS MECHANISM FOR KASE OF COM- RECTORS EXTREMITION ENTREMITION ENTREMITION UNDERSIGNATION OFFICE COMMENTION AND ADJUSTMENT	CARDINE METED TO VINICIE MITH CONSECUTES MERCURED, ADJUSTIMITS MADE, THEN CONSECUTES INSTALLED.	IC

•

Table 3-1. Umbilical Carriers

NAS 10-7702

•

Table 3-1.	Umbilical	Carriers	(Cont)
------------	-----------	----------	--------

TPS	P/H & MPR.	USED OMI	LOCKING DEVICE	RELEASE & EJECTION	SERVICES NUMBER & SIZE	SIZE & WT. APPROX.	DES IRABLE FEATURES	UNDES IR ABLE FE ATURES	CONTECT PERFURIES	-, SUIT HELE FOR SHOTTLE
INDIVIDUAL	G7-820065 NSFC KAR G7-820064 NSFC KAR	S-II SE. 5	BALL LOCK	PRIMARY STS PREU. RELEASE SECONDARY STS MECH RELEASE LARYARD ACTUATED	1 - 8" DIA LOX CORN 1 - 8" DIA LH2 CORN	21 X 72 250#	REUSABLE RELIARLE	. NOT ADATTABLE FOR AUTO CONNECT . RECESSIVE WEIGHT	MANUAL INSTALLATION	Jaco - Ja
TRUIVIDU AL. RISE OFF	75M02130 KSC 75M02129 KSC	S-IB AFT	NORE (CON- PRESSION SEAL)	VERICLE MOTION (LIFT OFF) RECTANTED BY PRED. CILIDDER	1 - 6" DIA LOX CORN 1 - 6" DIA RP-1 CORDS	100#	 ETTROSE RELIABILITY CAPABILITY FOR REDOTE AUTO RECONNECT NUTION ADJUSTMENT REQ'D MELGET SUPPORTED BY MAST 		SIBAG-ADTO CONNECT	NO, INCREAS SIZE TO LO FUER AND O HERITOR MOD CHANNE MOD CHANNE AND OF METION DATE THE CONCEPT.
DEDIVIDUAL RISE OFF LOCKED TO VER.	75102882 K3C	S-IB AFT	LOCKING FINGERS	VEHICLE MOTION ACTUATED MECH. LURKAGE RELEASE	4 - 6" DIA AIR/H2O COM	20#	. RELIABLE . SIMPLICITY	NOT ADAPTABLE FOR ADTO CORRECT	MANUALLI RETRACT LOCK RING, ENGAGE COUPLING, RELEASE LOCK RING.	3 0
MILTIPLE RISE COP	27-20418	ATLAS	NCH25	VEHICLE HOTION (LIFT OFF)	1/4 PROD (3) 3/8 PROD (3) 1/2 PROD (3) 5/4 PROD (3) 1/8 PROD (2)	200	- RIGHLY EXCLASUR - REUSARLE - NETS ARLE - MIS- ADJUSTMENTS - ADATABLE FOR ADTO COMMENT - INFER MELICIT - PHOFINES FOR VERICLE - INFERIORS - LEURCHER SUFFORTED		DESTALLED MANDALLY IN USE AT ATER. ALIGNED AND COM- EXCITED STULY AND COL HISSILA MARKED VIEW MERCYCR. FOR FIELD USE.	BASIC CONC AD ATANIX SUIT MELE I PRESENT CO FIGURATION
NULTIPLE INTERACTED LOCKED TO VER.	1474896 HSPC HAC/DAC	SAT. 1B S-IV-B AF SAT. 5 S-IV-B AF	1	PRIMARY SIS PRED RELEASE PRED CLINER LECTION SECONDARY SIS NECH CAM HED CLINER ATTURED RECORDARY SIS NECH CAM STATIC LANTARD ATTURED	. 6-SHELL SIZE \$40 ELECT COMM - 14-FREU COMM 1/4, 3/8, 1/2 4 3/4 - 1 - 10" DIA ECS COMM 2 - 4" DIA LOX 4 LE2 FILL COUPLINGS	44-1/2 I 57 I 12 VT. 300 LBS	REUSARLE HIGHLY RELIABLE DESIGNED FOR HIGH "G" VISAULIN LAVEL LOW DISCOMMENT FORCE	DISCONDUCTS PERFERDICULAR TO VER. MOTION CONNECTION MUST DE REPORTED DESCRET CARDINE INSTALLATION LARGE SIZE & HEAVY VERGET NOT ADATABLE FOR ADTO CONNECT	CLERIDE MATED TO VEHILLE WITH SERVICE COMMERCIES RENOTED. SERVICE COMMERCIES TURS THEM MANJALLY. LA2 CONTROL MENUALLY. LA2 CONTROL INSULATED AFTER COMMERCIES. EXCESSIVE TIME REQUIRED.	CI CI
MILY DILE INTROLATED LOCKED TO VEH.	07-420041 165P0 344R	SAT. 5 S-II AFT	DOUBLE BALL LOCK	PREDURT SIS PREU RELLASE PREU RELLASE PREU CELDINER LIVETUD SECONDART SIS NECH CAN PREU CELDINER ACTURED RELINIDART SIS NECH CAN SI ATLO LANTARD ACTURED	. 12-SHELL SIZE #40 ELECT CORD	71-1/2 I 79 I 12 WT. 500 LBS.	· ·			
MULTIPLE INTEGRATED LOCKED TO VEH.	07-820042 NSFC NAR	SAT. 5 S-II FMD	DOUBLE BALL LOCK	PRIMARY SIS PNEU RELEASE PNEU CILINEER LEDETION SECONDARY SIS MECH CAMPER ACTUATED REDNRDARY SIS MECH CAM STATIC LAWARD ACTUATED	. 8-SHELL SIZE #40 ELECT CONN 13-PREU CORN 1/4, 1/2, 3/4, 1 & 1-1/2 2 - 7" DIA LH2 YEAT CONN 1 - 4" DIA ECS CONN	65 X 72 X 12 WT. 499 LBS.		· .		BO

-

TIPE	P/I & HTR.	USIED Chi	IOCEING DEVICE	RELEASE & EJECTION	SERVICES NUMBER & SIZE	SIZE & WT. APPROX.	DESIRABLE FEATURES	UNDES IR ABLE FEATURES	CONNECT FEATURES	SUIT ABLE FOR SHUTTLE
ILTIPLE, LOCKED O VER.	65B80036 HSFC BAC	SAT. 5 S-IC INT.	DATENAL PANLS	. PNEU RELEASE . PNEU RETRACT	2 - 6" DIA LOI CONN	15 X 31 WT. 150 LBS.	RENOTE RECONNECT CAPABILITY AFTER DITIAL MATING ADJUST- MENTS CONTAINS REMOTE CONTROLLED SELF VERIFICATION OF CORRECT MATING	. EICHSSIVE WEIGHT OF SUPPORT AND ACTUATING HECHATISM. EICESSIVE DITIAL CRITICAL ADJUSTMENTS REQUIRED WITH CLOSE TOLERANCES		NO
INDIVIDUAL, LOCKED NO VER.	55-06274 CD/A CRAT & BULLEULAD 676-440	CENTAUR	LOCKING DOGS	. PRIMARY STS ELECT RELEASE SPRING LIECT . SUCONDARY STS LANYARD RELEASE SPRING LIECT	1 ELECTRICAL CONN	3.82 DIA. WT. 3 LBS.	. LIGHTVEIGHT . RELIABLE	NOT ADAPTABLE FOR AUTO CONNECT.	MANUAL, 90# FUSH TO CONNECT.	Ю
Individual, Locked TO VIE.	CD/C 27-06172 CRUX & HUTECURD 562-700	ETLES	COLLET	. KLECT. SOLENOID PDI RELEASE, SPRING LOADED LIECT . LANTARD BACKUP	1 MIECT. COMF. 07 140 #16 PINS.	6" DIA. X 12" LONG WT. 400	. RELIANZ	NOT ADAPTABLE FOR AUTO CONNECT. REAVI.		SC .
INDIVIDUE., LOCKED TO VER. MATES MITH CANON RECEPTATIE 017070 VEE. PART.	CD/A 27-04992 CANCON 017069-1239 017069-1240 CANCON 017069-1241 CANCON 017069-1241 CANCON 017069-1242 CANCON 017069-1042 CANCON 017069-1043	<u>f</u> TLKS	COLLET	• KLECT. SOLEMOID RELEASE, SPEING EJECT • LANTARD BACKUP	1 ELECT. COMP. UP TO 124 - #16 CONTACTS, FIN & SOCIET, DEAD FACE TIPE.	3.6" X 6.2" W. 9.5#	. LIGHT WEIGHT, RELIABLE PROFIDES DEAD FACE OF ELFOSED CONNECTOR FOR VEHICLE AND GROUND PART ELFOSED DEAD FACE FLATE CONTACTS OF ACTS IS EASILY REPLACED . CONTACTS COLD FLATED	NOT ADAFTABLE FOR AUTO CONNECT.	MANUAL. ENCAGE COLLET AND TORUE BY HAND TO MATE COM- MECTOR.	NO KLECT. COM CONTAINED THIS CARRI IS SUITABL
DITECHATED, LOCKED TO THE.	CANNON GNLOCI24-5	POLARIS	CAN LOCK	LANIARD, CAN LEVER RELEASE, SPRING EJECT	1 - ELECT. CORN. OF 104 CONTACTS 2 - 1/2 H20 CONDECTORS	5" X 8" WT. 10#	LIGHT WEIGHT, RELIABLE, DEAD FACE CONNECTOR.	NOT ADAPTABLE FOR AUTO CONNECT.	HANTJAL.	NO ELECT . COM SUIT ABLE

Table 3-1. Umbilical Carriers (Contd)

TIPE	USED Ox	MFR. & P/M	SIZE	SBALS & Material	SELF SEALING (POPPETS)	OPR. PRESS. PSI	MEDIA	RET AINING METHOD	RELEASE & EJECTION	DESTRABLE FRATURES	UNDESTRABLE FEATURES	CONDECT FLATURES	SUITABLE FOR SHUTTLE
BALL & CORE	S-IB FILL S-IVB FILL L02 S-II FILL L02 S-II FILL L02 S-II FILL L02 S-II FILL S-IVF S-II REPLIS JUSTICE S-IVB FILL L02 S-IVB REPLIS S-IVB	ISC 75M0253 HSTC/DAC HSTC/DAC HSTC/MAR HSTC/MAR HSTC/MAR HSTC/MAR HSTC/MAR HSTC/MAR HSTC/MAC HSTC/DAC HSTC/DAC HSTC/DAC HSTC/DAC HSTC/DAC HSTC/DAC	6" 4" 8" 7" 6" 3" 8" 3" 1" 4"	PRESSURE LOADED RING SEAL, TEPLON	NOAR (DEERIS Valve)	0 TO 150	LO2 DH2 LH2 GE2 TBIT	CARRIER, MAST, OR ETTENAL BALL LOCK	CARRIER, PHEU.	. NO DISCOMPLET FORCE REQ'D SELF ALICETING LIGETWEIGHT EASILY ADAFTABLE FOR ADTONATED COMPLOT HIGHLY HELLEALE SDEVLICITY ENDSALLE NOT, ADUSTMENT HEQ'D NO DETRUMENTAL STFERTS FROM YERRATION NUN, ENGAGEMENT	THESE TO LEAK MEME FIRST INSYMILED. SPRING FORST OF BELIAUS CARSES COLD FILM OF TEFICM SKAL & SKOTHES MEDTE HERE- FROTENS AND SCHATCHES IN SKAL SUFFACE THES PROVIDING EXCHANGES SKALTER EXTENSION THE. WITH SKORT SHITLES TOAD FROM BELIAUS INT TO MEDIA PERSUNG INFOLES. THENES IND FLAT DE A PROBLEM.	NCETION TIME REQUD. SOME HANDLING DIFFICURTIES ENCOUNTMED UITH LAARE VI FURK RESS ATTACHED, S-DC INTERTAME COUNTRES AND CARDEN HAT REDURE COUNTRES AND CARDEN REQUERED FROMMENTS AND REQUERED FROM HITTAL ADJUSTMENTS AND RECEIPTOR CARDEN FROM RECTO CARDEN MATTIC TO VEHILLS AND THES COMMONTMENT SIDE LOW FILL MAST COUNTAINANT THES HANDER HITTAL ADJUSTMENT THES HANDER HEAD AND HEAD AND SIDELANTOWED RECEIPT.	TES
PRESSURE BALANCED, VACUUM JACLETED, BATCHET	RERYA TESTIDIG	LASL P/N UNDOOR	8"	LIP SEALS, TEPLON	NCHE	0 TO 900	LE2	CARRIER	CARRIER, HIDR. ACT.	MEDIA PERSUBE DAVORS NO SEPARETIM FORDES ADETARIA TO ANTOMETRO COMMENT. NO ADDITIONAL DESULA- TION REQUE	LEATE OF ENGLACEMENT. HERE'S ADDITION OF FERTION GUIDE RINGS TO PROFILE SOCHED OF SEALING SUR- PACES ON REMOVERS OF RIVER SURFACE.	NCH. TIME REQUID. ANTOMATICALLY COMMENTED BY REPORTS OF MARY DWG.	THS
BANNELT, VACUM JACKTED	CHERT AUR	AEROFLAX 55-21600	3/4*	LIP SEAL, EEL-F	NONE	0 TO 40	LHe	CARRINER	CAPRIER	NO ADDITIONAL INSULATION REQ'D	SEPALATION FORCE DUE TO NOTA PRESS, IMPOSES LAD OF CARENE LOCIDO DEFICE. FRENETS ALLUMMET FROM- LENG FOR ATTOMATED CONTENT.	MIN. TIME MEQ.D.	TRS
SELIP LOCKING SLIP COUPLING	S-IV GH2 VIDIT	STRATOS	8*	LIP SRAL, KKL-P	TES	0 10 25	GR2 Vient	SPLIT RING & COLLET	PHORU. ACT. & LANTARD REMUNDANT	LIGHTMEIGHT AND EASILI Haiteid	REFLATED FAILURES IN USE. PHOL. RELAKE & FUSE-OFF CLINERS FAILED. FORSI-OFF FAILED TO CLOSE. DESILA- TOM REGUISED. FAILS DUE TO ICS FORMETION. BOF SUTFABLE FOR ADTOMATED COMMENT.	ALICANEST CRITICAL AND DIFFICULE TO ATTAIN.	30
SHLP LOCKING SLIP COUPLING	JUPITER	CHRISLER	6*	LIP SEAL, KEL-F	MONE	0 TO 150	102	LOCKING DOGS, CAN ACTION	PICU. ACT.	0000 SEALTING FRATURES.	CRITICAL ATTAL ALIGNMENT REVOL FOR COMMENT AND DISCOMMENT, RELARSE MECHATISM NOT RELIANCE AT CRITCARTC THEMPERA- TURES DUE TO SHEVENAGE. NOT SUITABLE FOR AUTO- NATED COMMENT,	NAST NUMPED, RASILY CONNECTED AFTER ALIGNMENT.	D D

îipe	USIED Chir	ня. 4 р/н	SIZE	SEALS & Naterial	SELF SEALING (POPPETS)	OFR. PRESS. PSI	HEDIA	RETAINING METHOD	RELEASE & EJECTION	DESTRABLE FLATURES	UDESTRATE PROPURES	CONFECT VERTURES	SUIT A FOR SHUTT
BATCHET (SLIP)	ITLIS	GD/C 27-80279	1-1/4*	LIP, DEL-F	EXCH.	0 TO 25	LH2	LAUNCHER SUP- Ported	RISBOFF	SINFLICITY, FLORING, MUNT FOR ALIGNMET, DECEMBERING, NO NOTIME PARTS, SINGLE SELL, ALLONG FOR VERTICAL VEHICLE DEFLICTIONS. LIGHTMENGET. EXSILT MAIN- TAINED. ADAPTABLE FOR ADTO COMPLET.	LENDTH OF ENGLEDNERT EXCESSIVE FOR SEPTILE REQUIREMENT.	SLIPS TORTHER, FLORT DR NUMT NUMBERS SLIGNMET REQUIREMENTS.	115
BATCHET (SLIP)	ETLIS	GD/C 27-29006	6*	LIP, KEL-F	DEDRIS VALVE Adjacent	0 10 90	102, RF-1	LAUNCEUR SUP- PORTED	RISBOT	MUNICHUM ERGACHMENT, FLEI BLLITT HRWIDERD ET HELLANS. SUBLICITI, COOD SELLING FLEUDES, ADAPTAELE FOR ADTO COMMENT.	HIGH COMMENT FORCE (125#) FOR Namual Operation.	NAWAL COMMECTION, SLIPS TOTATHER.	IIS
SELP LOCKING	5-II	NSPC/HAR NE144-0011 ROYAL IND.	1"	LIP		1,250	GR2, GO2	LOCKING DOGS	CARRIER	RORE FOR SHUTTLE	SELF LOCKING FRATURE HOT COM- SIMPLED RELIABLE FOR SHUTTLE.	FISH TO COMMENT, 704 FORCE	100
BATWET (SLIP)	ATLAS DATERSTACE	GD/C SFEC. 27-02248 BOTAL IND. 310722 310723	11.	LTP (SELP FORMORG) KEL-F	FEMALE OFLY	117	102	VERICLE STRUCTURE	DITERTACE Separation	SDEFICITY, PROVIDES SELF ALIGNMET, MIN. ERGANDMENT, LIGHTWEIGHT. BIGHN ME- LIABLE, PARTES THRONGE 300-LARICHES. ADAPT MEL 700 AUTO COMPLEX. MART MELLAS COMPRESSION PROVIDES FOR VEHICLE DEFINITIONS.	ELGE SEPARATION FORCE DUE TO MEDIA PRESSURE.	PUER TO COMMENT.	185
BOLIND FLANDS	CHIEF ADR	ca)/c	4"	COMPRESSION	BOTH PARTS	100	LH2, 102	BOLTS	LANYARD RREARS RECRED-DOWN BOLTS IN THIS ION	SDPLE, RELIANCE	NOT ADAPTABLE FOR AUTO COM- NECT. TORGUE VERIFICATION OF BOLTS.	BOLIED TO VERICLE.	01

Table 3-2. Cryogenic Couplings (cor

.

TIPE & SIZE	MFR. & P/N	USED ON	SEALS & MATERIAL	SELF SEALING (POPPETS)	OFR. PRESS. PSI	MEDIA	RET AINING METHOD	RELEASE & EJECT	DES IRABLE FEATURES	UNDES IRABLE FEATURES	COMMECT FEATURES	SUTT ABLE SHUTTLI
SHIP LOCKING BATCHET 1/4, 3/8, 1/2, 3/4, 1 1-1/4	WIGGINS . 10C0137?	S-IB I.U. S-I JUPITER	D-RINGS BUNA-N	OPTIONAL	0 TO 3000 500	CH2 Geo GO2 AIR	LOCKING DOGS	CARRIER PNEU. ACT. WITH LANYARD BACKUP	HIGHLY MELIAELE NO LOADS INFOSED ON CARRIER LOCIING DEVICE DUE TO MEDIA PRESSURE CAR DE REFUREISHED LOW DISCOMMENT PORCE SUITABLE FOR HIGH LEVEL VIBRATION	NOT SUITABLE FOR SEMI- ADTOMATIC CORRECT EXCESSIVE TIDE REQUID WHEN MULTIPLE CORRECTORS USED IN A CARDER, DIFFICULT TO LEAK CHECK NOT BASILY MAINTAIRED	INSTALLED INDIVID- UALLY AFTER CARRIER DESTALLED	NO
PRESSURE BALANCED BARNET 1/2 3/4 1 1-3/4 2	PUROLATOR 65B64001 65B64002 65B64003	S-IC	COMPATIBLE W/NEDIA	TES	0 T0 3300 3200 3300 1700 1500 2300	CH2 GH2 NaNC2 in H2O RJ-1 RP-1 FNEON 12 MULH 5606 LO2 (GO2)	CARRIER	CARRIER	MAT. OF 1-1/4" ENGAGEMENT REFURBISHABLE LOW SEPARATION FORCES EXERTED ON CAREER LOCIDE DEFICE LOW DISCORDECT FORCE FASILT MAINTAINED ADATTABLE FOR AITO CONTECT. CAPABLE OF DISCORDECT UNDER FRESS.	. LANCE DIA. & VEIGHT	DESTAILED IEDIVID- UALLY AFTER CARRIER DESTAILED	¥IS
BATOUET 1/A 3/C 1	PUTROLATOR 65B64001 65B64002 65B64003	S-IC	COMP AT TELLS W/ARDIA	OFTICNAL	3300 750 1000	GETS	CARRIER	CARLIER	. HIN. ENGARDERT, 1-1/4" HARDEN: REFUSISIBARLE LON DISCORDER FORATE ADAPTABLE FOR ANTO OCCURECT	ETTER SEPARATION FORCE OF CARDER LOCING DEFICE DUE TO MEDIA PRESSURE	INST ALLED INDIVID- UALIN AFTER CASRIER INST ALLED.	TES
SELF LOCKIEG BATOLET 1/2 1/4, 3/6, 1/2 1/4 3/4	CALMEC 7351844 FUROLATOR 1449956 PUROLATOR 7851823 CALMEC	S-IVB	CONPACTIBLE E/AEDIA	TES OPTICINAL TES	3100 3200 3100	COLD CHO CHO, CH2 ZTHY. CLICOL CHO	COLLET COLLET COLLET	CARRIDER	ED LOADS INFORMED CE CARRIER LOADIES DEFICE DE FO MEDIA PRESSUES POSSIBLI ADAPTARIA FOR AUTO ODERECE	EXCLUSIVE THE RECTING POR DETAILATION II CARTER SOT MAILY MAINTAINED . HOT ANALY MAINTAINED . HOT ANALY MAINTAINED . OTHER ST.	INT ALLED INDIVID- UGLIX AFTER CASULT INT ALLED. BUT ATTER INT ARABES BY FLATE A TCD SCHEME, SC- CHEDIVI THE READ FOR INST ALLET RUE	1 120
SLIP COOPLING, VAC. 1/4	7851861 PUROLATOR 1841065			TES TES	500	GH3	COLLET	CARLER		LOW PRESS, CAPABILITY		
SELF LOCKING 1/2"	NSFC/NAR NE144-0010 SNAPTITE	S-II	CONTATIBLE W/NEDIA	TES	1000	CiHa	BALL LOCK	CARRIDER	NO SEP MATION LOADS EXERTED ON CARRIER	NOT SUITABLE FOR ADTONATED CORRECT. REINFLITE, NOT RASILY MAINTAIRED.	MANUAL, PUSH TO COMMENT, INSTALLED IN CAMPING AFTER CAMPING INSTALLED.	Ott
BAYORET (SLIP) 1/4, 1/2, 3/4, 1, 1-1/2	NSPC/MAR NE273-0055 CONSOLIDATED CONTROLS	S-II	CONPATIBLE W/MEDIA	OPTIONAL	LOW	GKe	CARRIER	CAPRIER	. LOW DISCOMMENT FORCE ADAPTABLE FOR ADTO COMMENT	LOW PRESS. RESIDE	MARUAL, DESTALLED TEDITIONALLY DE CAROLER, FORM TO COMMENT.	TES
BANDET (SLIP) 4"	MSFC/NAR ME273-0016 ROTAL IND.	S-II	LIP	OFTIONAL	5	AIR, GE2 GHe	CARLER	CARRIER	. MIN. ENGAGEMENT . ADAPTARUE FOR AUTO COMMENT	LOW PRESS. DESIGN	MERIAL, PUSE TO CERTECT.	TES

Table 3-3. Pneumatic and Hydraulic Connectors

NAS 10-7702

		USED	SEALS &	SELF SEALDIG	OPR. PRESS.			RELEASE				SUIT ABLE
TIPE & SIZE	MFR. & P/M	ON	MATERIAL	(POPPETS)	PSI	HEDIA	RETAINING METHOD	A BJECT	DESTRUBLE FLATURES	UNDESTRABLE FRATURES	CONNECT FEATURES	
ATORET H	NSFC/MAR ME273-0013 ROYAL IND.	S-11		OPTIONAL		œ,	CARRIDER	CARRIER	ADAPTABLE FOR ADTO COMMECT.	DUAL COMMECTIONS ON GROUND HALP.	PUSE TO COMMET	10
SLF LOCKING BATCHET /4"	cd/c 55-c2126 Viccins	CENTER	LIP DII_P-5500	OPT IONAL.	0 TO 460	Cie	LOCKIDR DOGS	LINTARD	LOW DISCOMMENT FORCE.	NOT RATILY MAINTAINED. NOT Suitable for any commet.	PLEH TO CONNECT Nanual	Date:
SELF LOCKING BATCHET 1/2", 3/4"	GD/C 55-08111 -1 THEO -23	CENTAUR	O-RING	TES	0 TO 3360	GRe	LOCKING DOGS	Lanyard	CAPARLE OF DISCONNECT UNDER PRESSURE	NOT SUITABLE FOR ADTO COMMECT. NOT RASILI MADITADNED.	MANUAL PUSH	жо
BAYONET 1/2"	GD/C 55-08111 -25 TRUN -31	CIENT AUX	O-RING	W0	0 10 3360	Cile	CARTER	CARRIER	CAPARLE OF DISCOMMENT UNDER FRESSURE 1.00 DISCOMMENT FORCE 2. EDATABLE FOR ATTO	EXERTS SEPARATION FORCE ON CARRIER DUE TO MEDIA PRESSURE.	NARO AL PUSA	THE
	CD/C 55-C2110 WIGCINS	CENT AUR	KE-F- 505 5500 505 800	ns	0 10 460	HYDROGEN PEROLIDE	LOCKING DOGS	LANTARD (RISBORT)	OONNEEST BIGELY RELIABLE			30
BATOMET (SLIP) 2*	co/c 27-08557	KTLIS	O-RING	ne:	500	HIR. FLUD.	CARRIER	CANRIER (RISBORY)	. AD APT ABLE FOR ADTOMATED COMMENT . STELF SEALING	MEDIA PRESSURE EXERTS LOAD ON CARRIER	MARTU AL	TIS
BARDNET (SLIP) 1/4 3/8	00/C 27-20416	ATLAS		жо	1000 1000	G112	CARTIER	CARRITER (RISEOFY)	ADAPTABLE FOR AUTOMATED COMMECT, VERY LOW COMMETT AND DISCOMMECT FORCE PROVEM RELIABILITY	MEDIA PRESSURE EXCRETS LOAD ON CARACTER	MANUAL INSUNTION MEN. TIME KNQ'D	115
1/2 3/4	27-20414 27-20415				1000							1
24	21-204.05				100							

Table 3-3. Pneumatic and Hydraulic Connectors (cont)

NAS 10-7702

TIPE	MFR. & P/N	USED ON	SIZE	SEALED AND/OR PURGED	RETAINING METHOD	RELEASE & EJECT METHOD	DES IRABLE FEATURES	UNDES IRABLE FEATURES	COMMENT FRATORIES	SUITABLE FO SHUTTLE
201 & SOCKET 74 - #20 CONTACTS 12 - #16 CONTACTS	GRAY & HULEGUARD 676-400 676-300	CENT AUR	2.40" DIA.	MIL-C-26500B NOT PURGED	LOCK DNG DOGS	LANTARD & SPRINGS	CRIMP-TIPE PINS LIGHTMEIGHT - 6 HIGHLY RELIABLE	NOT SUITABLE FOR ADTOMATED CONDECT .	METUAL, 905 MAX. FORCE FOR COMMECT OR DISCONDECT) MC
	CD/C 55-06272 CD/C 55-06273									1
PIN & SOCIET 52 - #16 CONTAITS 1 - BG115V COAX	GRAY & HOLECUARD CD/C 55-06785 CD/C 55-06786	CIERT AUR	3.00 DIA.	MIL-C-26500B NOT PURGED	LOCKTING DOGS	LANYARD & SPRINGS	LIGHTWEIGHT - 64 HIGHLY RELIABLE	NOT SUITABLE FOR AUTOMATED COMMECT	MANUAL, 754 MAX. FORCE FOR COMMENT OR DISCOMMENT	JKÚ
PDI & SOCIET 140 #16 AND OTHER VALIZION, THE DI YERICLE PART THE MATES WITH CO/C 27-05172, CRAI & HULSQUAD P/M 562-700 CARRIER	GRAY & HULRCUARD 562-600 GD/C 27-06171	E TLIS	4.0 DIA.	RO	VEHICLE PART	CARRIER, ELECT. SOLENOID WITH LANTARD BACKUP	CRINP-TYPE PIRS VARIETY OF CONTACT ANRANCEMENTS AVAILABLE	NOT SULTABLE FOR ATTO CONDECT. REQUIRES CLOSE TOLERANCE ALIGN- MENT	MARTUAL	R 0 2.
PDH & SOCHET 6 CONT ACTS 1 - #12 1 - RG62 4 - BG214	CANNON C3331064-40-745	S-IC S-II S-IVB	2.5 DIA.	DISERT SEAL	CARRIER	CARRIER	ADAPTABLE FOR AUTO CONNECT		MARUAL, 50# FORCE, COMMECTED AFTER CARRIER INSTALLATION	TIS
PIN & SOCIET 10 - #16 CONTACTS	MS3106R-18-1P	S-II	1.125 DIA.	INSERT SRAL	CARRIER	CARRIER		NOT SUITABLE FOR AUTO COMMECT.	MANUAL, COMMECTED AFTER CARRIER INSTALLATION.	30
PIN & SOCKET 29 COM ACTS 16 - #16 9 - #6 4 - #4	CANNOS CA3100R-40-105	S~I¥B	2.5 DIA.	INSERT SEAL	CARRIER	CARTER	ALAPTABLE FOR AUTO COMMENT	• ·	MARUAL, CONNECTED AFTER CARRIER INSTALLETION.	TRS
PIN & SOCKET	CANNON CA22520-5	S-IVB	2.5 DIA.	INSERT SEAL	CARRIER	CARRIER	ADAPTABLE FOR AUTO CONNECT		MANUAL, CONNECTED AFTER CARRIER DESTALLATION.	TIES
PIN & SOCKET 4 - 1/0 CONTACTS	CARDON CA22259-20	S-18	2.5 DIA.	DISERT SEAL	CARRIER, PLATE WITH SCREWS	CARRIER	ADAPTABLE FOR AUTO CONNECT		MANUAL, 504 FORCE, COMMENTED ATTER CARATER DESTALLATION, RETAINING PLAYE WITH SCHEMES.	TES
PIN & SOCKET 4 - ARG-63B/U	BENDIX SC3100E-40-66P	\$~IB	2.5 DIA.	INSERT SEAL	CARRIER, THREADED BUSHING ON BACK SHELL OF CONNECTOR	CARRIER	ADAPTABLE FOR ADTO CORRECT		MANUAL, COMMECTED AFTER CARRIER INSTALLATION, BUSELINGS TOROTED BY HAND	TES
PIN & SOCKET 4 - FRG63	40430668	S-IB	2.5 DIA.						FOR RETENTION.	
PIN & SOCKET 60 - #16 CONTACTS	40H30672 CANNON CA22511-0	S-IB	2.5 DIA.							

Table 3-4. Electrical Connectors

.

NAS 10-7702

TIPE	MFR. & P/X	USED ON	SIZE	SEALED AND/OR PURCED	RETAINING METHOD	RELEASE & LJECT METHOD	DESTRABLE FEATURES	UNDESIRABLE FEATURES	COMPLET FLATURES	SUITABLE I SHUTTLE
FIN & SOCKET 47 CONTACTS 1 - #8 22 - #18 24 - #16	NS3100E-40-9P	S-IB	2.5 DIA.	DISERT SEAL, CARRIER PURGED	CARRIER, THREADED BUSHDEC ON BACK SHELL OF CONNECTOR	CARRIER	. ADAPTABLE FOR ADTO COMMECT RELIABLE CAN BE ADAPTED FOR ADTO COMMECT INELFERSIVE	REQUIRES CLOSE ALIGNMENT TOLERANCES AND ADDITIONAL RAND- WARE FOR ADAPTATION TO ADTO COMMENT.	MANUAL, CONNECTED AFTER CARATER INSTALLY TON, BUSHING TONGTOD BY MAD FOR HETHER TON. IDD YIDIAL CONTINUTY & MEDGER TESTING.	7065
PDF & SOCKET 60 - #16 CONTACTS	CANNON Ca22259-25	S-19	2.5 DIA.							
PDF & SOCHET 60 - #16 CONTACTS	CA10000 CA22511-23P	S-IC S-II S-IVB	2.5 DIA.						•	
PIN & SOCKET 60 - #16 CONTACTS	CARNON CA22259-166	S-IC	2.5 DIA.							
PIN & SOCKET 60 - #16 CONTACTS	CANNON GH-100596-100	S-II S-IVB	2.5 DIA.							
PDH & SOCKET 6 - #20 CONTACTS	HENDIX PT06-10-65-365	8-IC	.859 DIA.	DESERT SEAL	CARRIER	CARRIER		NOT SUITARLE FOR ANTO COMMECT	MARTI AL	· 10
PDM & SOCKET, SPERING LAADED, DEAD FACED. UP TO 124 - #16 CONTACTS	DESERT FROM CAMOU 027069 SERIES CARRIER	<u>I</u> TLIS	3.6 I 6.2	NO NO	CARAIZR	CARAIDER PLUS SPRINKS IN COMMENTOR	ADAFTANLE FOR AITO COMMET. LIGHTANICHT, RELIABLE. PRO- VIDES DEADFACE OF ELFOCED VIDES DEADFACE OF ELFOCED VIDES DEADFACE FLATE COM- TAIDING CONTACTS IS REALLY REFLACED. CONTAINS COID FLATED. CONTAINS COID FINS FOR ASSURING ALIGNMET.		VLARTI AL.	THE
PIDE & SOCKET, SFRING LOADED, IRAD FACED, + 102 - #16 CONTACTS 2 - COAL CONTACTS WATES W/NECEPTACLE CHL00125-5	INSURT FROM CANNON GHLOOL24-5	POLARIS	L" X L"	SEALED	CARATER	CARRIER PLUS SPRING LOADED DEAD FACE				TES

Table 3-4. Electrical Connectors (cont)

TIPE & SIZE	HPG. & P/N	USED ON	SEALS & Material	SELF SEALING (POPPETS)	OPR. PRESS. PSI	MEDIA	RETAINING METHOD	RELEASE & EJECT	DESIRABLE FEATURES	UNDES IRABLE FEATURES	CONDECT FEATURES	SUIT ANLE SHUTTL
FLAT FACE 4" DIA.	KSC	S-IB FND.	COMPRESSION SEAL	VEHICLE PART ONLY	5.0	AIR, CH2	CARRIER	CARRIER	- ZERO ENGACHMENT MOIR ADJUSTMENT HICH RELIABILIT RASILT MAINTAINED	CONDECTION MADE AFTER METING OF CARLER. SEAL COMPRESSED BY MANUAL TOROTHE OF BUSHING.	Mantu al.	UK CH
SELF LOCKING 6" DIA.	KSC JACK & HEINZ	S-IB AFT	O-RING BUMA-N	. NO	150	AIR GH2 E20	LOCKTING DOGS	MECH. PULL RODS RISEOF7	. SERVES AS BOATTAIL CONDI- TICHING AND WATER QUENCH UNBILICAL HIGHLY RELIABLE	. NOT ADAPTABLE FOR AUTOMATED COMMENT BEATY REFLACED AFTER LAUNCE	KANTU AT.	ж
FLAT PACE 5" DIA.	NEFC/BAC 65880148	S-IC AFT TSM #3	COMPRESSION SEAL	NO	5.0	AIR, GM2	CARRIDA	CARRIER	. 2220 ENGACEMENT NON. ADJUSTMENT ETTRONG RELIANILITY EASILY MAINTAINED	. NOT SULTABLE FOR ADTOMATED CONDECT . NOT GUIDED, SKAL COMPRESSED BY NAMUAL TORQUING OF BUSEDING	HANUAL, AFTER Carrier Installa- Tion	JKO
FLAT FACE 4" DIA.	NEPC/BAC 65880060	S-IC Fid.	COMPRESSION SEAL	NO	5.0	AIR, GM2	CAVRIDER	CARRELER	- ZERO ERCANDART - MUR - ADVORTHERT - ERTRENS EXCLUSION - ERSILT MAINT ADRED	. HOT SUITABLE FOR ADTO COMBECT. MANUAL TOROTE OF BUSING TO COMPARESS SEAL.	Manual, Afric Campter Installa- Tion	no.
FLAT FACE 12 ⁴ dia.		S-II AFT	COMPRESSION SEAL	ж	1.0	AIR, CH2	CARRIER	CARRIER	- ZERO ENGADRERT - MIR - ADJUSTMENT - ETREDE BELLABILITY - EASILY NADITADED	NOT SUITABLE FOR AUTO CONNECT. CRITICAL ADJUSTMENT NOT READILY ACHIEVED OTHER THAN MANUALLY.	MANTAL MINT, TIME REQID.	ON CON
FLAT PACE 4" DIA.	NEFC/NAR G7-820600	S-II AFT	COMPRESSION SEAL	NO	1.0	AIR, CN2	CARRIER	CARRIER	. ZZRO ENGACEMENT MUL ALINETMENT EXTREME RELIABILITY RASILY MALITATINED	NOT SULTABLE FOR AUTO OCRUECT, CRITICAL ADJUSTNEET NOT READILY ACRIMEND OTHER THAN NAMUALLY.	MANUAL NCH. The REQ'D.	ло К
BATCHET (SLIP) 10"	HSFC/DAC 1479377	S-IVB AFT	ROUND HOLLOW SEAL	VEHICLE ONLY	1.0	AIR, GN2 CHe	CARRIER	CARRIER	. NUNTHUN ERGAGNERT - LIGHTWEIGHT - HIGHLY RELIABLE - EASLLY MAINTAINED	. NOT SUITABLE FOR ADTOMATED CONNECT . REQUIRES CLOSE ALIGNMENT	MANUAL, APTER CARRIER DESTALL.	Ю

Table 3-5. ECS Connecto

3-12

NAS 10-7702

TIPE & SIZE	MFR. & P/S	USED	SEALS & MATERIAL	SELF SEALING (POPPETS)	OPR. PRESS. PSI	MEDIA	RETAINING METHOD	RELEASE & EJECT	DES IR ABLE FEATURES	UNDES IRABLE FEATURES	CONNECT FEATURES	SUTTABLE SHUTTLE
BATCHER (SLIP) 5"	HSPC/IBH 11200001 F/N 33	m	NONE	VEHICLE HALF ONLY	1.5	AIR, GN2	CARRIER	CARRIER	- MINIDOM ENGAGEMENT - HIGHLY RELIABLE - RASILY NADITADORD	. NOT SUITABLE FOR AUTOMATED CONNECT . REQUIRES CLOSE ALL/GOMENT	MASUAL AFTER CARRIER DISTALL.	МО
BATONET (SLIP) RECTANGULAR 3 ⁹ X 4 ⁴	HSC/HAR 8G37-820001	SM	LIP RUBBER	VEHICLE ONLY	1.5	AIR, GH2	CAPRIER	CARRIER	. NOTION DEGASTORY LIGHTREGET - HIGHTREGET - EASLE NAMPATEDED - ADATABLE FOR ADTO CONDECT		MANUAL AFTER CARRIER INSTALL.	IIS
STELP LOOKING (DEFINET) 64	GD/C 27-80318	ITLIS	COMPRESSION TIPE HOLLOW GASKET	NO	2.0	AIR, GN2	SPRING DETRIT LECH	LANTARD	. LOW DISCOMMENT FORME SIMPLICITY HIGHLY RELIANT ADATABLE FOR ADTOMATED COMMENT LIGHTMATCHT FROWIDES GUIDING FEATURE	;	MANUAL, LOW FURCE REQ'D TO COMMENT. MUS. TIME REQ'D.	TES
SELF LOCKDR: BY SEAL DIFLATION 4° DIA.	(20/C 55-80043	CERTAUR	INFLATABLE SEAL	NO	1.5	AIR, GN2	SEAL COMPRESSION BY TOROTOR OF RING MITS AND SEAL INFLATION	LANYARD	GOOD SEALING FRATURES	MULTIPLE OPERATIONAL STEPS FOR CONNECTION. CRITICAL ADJUSTMENTS. SIZE AND MEIGHT OF CROOND PART ELESSIVE. REQUERES 25 PSI PHEN. SOURCE FOR SEAL DIFLATION.	Mercal Designton, Diflete Sall for Estimation.	I
GROMMET & GROOVE 6° DIA.	GD/C 57-08301	CENT AUR ATLAS	HOILOW	NO	1.0	AIR	RUBBER SEAL GROWET FITS DITO GROOVE VITH DATERFERENCE FIT	LANYARD	- SIMPLICITI - LIGHTWEIGH - RELIABILITY - EASILY MAINTAINED	NOT ADAPTABLE FOR AUTOMATED CONNECT DUE TO FLEXIBILITY.	MANTUAL, PUSH TO COMMENT.	жо
CROWET & CROOVE	GD/C 55-08312	CENTAUR	HOLLOW COMPRESSION	NO	2.0	AIR	RUBBER SEAL GROMMET FITS INTO GROOVE WITH INTERFERENCE FIT	LANYARD	. SDEFLICITY . LIGHTWEIGHT . RELIABILITT . RASTLY MAINT ADRED	NOT ADAPTABLE FOR ANTONATED CONNECT DUE TO FLEXIBILITY.	MARTUAL, PUSH TO COMMENT.	CH C
SELF LOCKING BY SEAL INFLATION 8"	GD/C 55-81005	SURVEYOF	R DIFLATABLE SEAL	мо	1.5	GN2	SEAL INFLATION	LAVTARD	LOW DISCONNECT FORCE	MULTIPLE OPERATIONAL STEPS FOR CONNECTION. REQUIRES 25 PSI PHEU. SOURCE FOR SEAL INFLATION.	MANUAL DESERTION, INFLATE SEAL FOR RETENTION.	во

Table 3-5. ECS Connectors (cont)

3-13

NAS 10-7702

/

Туре	Part Number and Manufacturer	Suitable for SS?	Rationale				
UMBILICAL CARRIERS							
Multiple Integrated Locked to Vehicle	75M02840 75M02841 KSC	No	Not large enough for amount of SS services required in integrated panel. Requires time reducing features.				
Multiple Integrated Locked to Vehicle	75M02049 65B64005 KSC	No	Not large enough for amount of SS services required in integrated panel. Requires time reducing features.				
Multiple Integrated Locked to Vehicle	8G37-820030 MSC NAR	No	Not large enough for amount of SS services required in integrated panel. Requires time reducing features.				
Multiple Integrated Locked to Vehicle	S-IVB FWD 1A77953 I.U. 11Z00001 MSFC MAC/DAC	No	Too large and complicated alignment requirements. Requires handling and time reducing features.				
Multiple Integrated Locked to Vehicle	65B80001 MSFC BAC 65D80002 MSFC BAC 65B80003 MSFC BAC	No	Too complex. Not adaptable for time reducing features.				
Individual Locked to Vehicle	G7-820065 MSFC NAR G7-820064 MSFC NAR	No	Too heavy. Not adaptable for time reducing features				
Individual Rise Off	75M02130 75M02129 KSC	No	Increase in size to 10 inches diameter pipe and connector and change in design concept of mating vehicle part could adapt the basic concept.				

Table 3-6. Rationale for Suitability of Existing Hardware for Space Shuttle Umbilicals

Туре	Part Number and Manufacturer	Suitable for SS?	Rationale
Individual Rise Off Locked to Vehicle	75M02882	No	Has individual locking mech- anism which is not acceptable for SS integrated services.
Multiple Rise Off	27-20418	No	Basic concept is adaptable. Not suitable in present configuration because of dissimilarity in services.
Multiple Integrated Locked to Vehicle	1A74896 MSFC MAC/DAC	No	Too large, heavy and complex. Not adaptable for time re- ducing features.
Multiple Integrated Locked to Vehicle	G7 820041 G7 822042 MSFC NAR	No	Too large, heavy and complex. Not adaptable for time re- ducing features.
Multiple Locked to Vehicle	65B80036 MSFC BAC	No	Support and actuating mechanish too heavy. Excessive initial critical adjustments required with close tolerances.
Individual Locked to Vehicle	55-06274 GD/C 676-440 G&H	No	Has individual locking mech- anism. Not adaptable for time reducing features.
Individual Locked to Vehicle	27-06172 GD/C 562-700 G&H	No	Has individual locking mech- anism. Not adaptable for time reducing features.
Individual Locked to Vehicle	27-04992 GD/C 017069-1239 Thru 1241 & 1042 thru 1044 Cannon	No ⁻	Has individual locking mech- anism. Not adaptable for time reducing features. Electrical connector insert may be adapted for use in integrated carrier.
Integrated Locked to Vehicle	GM100124-5	No	Has individual locking mech- anism. Not adaptable for time reducing features. Electrical connector insert may be adapted for use in integrated carrier.

Table 3-6. Rationale for Suitability of Existing Hardware for Space Shuttle Umbilicals (Continued)

•

• .

.

.

Туре	Part Number and Manufacturer	Suitable for SS?	Rationale						
CRYOGENIC COUPLINGS									
Ball and Cone	A11	Yes	Will require some redesign to adapt to rapid connect and verify requirements.						
Pressure Balanced, Vacuum Jacketed, Bayonet	LASL P/N Unknown	Yes	Will require some redesign to adapt to rapid connect and verify requirements.						
Bayonet, Vacuum Jacketed	55-21600 Aeroflex	Yes	Minimum time required. No additional insulation required. Long engagement is disadvantage.						
Self Locking Slip Coupling	Stratos	No	Has individual locking mech- anism. Unreliable. Align- ment is critical and diffi- cult to attain. Requires additional insulation. Not adaptable for time reducing features.						
Self Locking Slip Coupling	Chrysler	No	Has individual locking mech- anism. Critical alignment required. Unreliable. Not adaptable for time reducing features.						
Bayonet (Slip)	27-80279 GD/C	Yes	Requires modification to incorporate debris protection.						
Bayonet (Slip)	27-29006 GD/C	Yes	Easily adapted for rise off disconnect carrier.						
Self Locking	ME144-0011 Royal Ind.	No	Has individual locking mechanism.						
Bayonet (Slip)	27-02248 GD/C 310722 310723 Royal Ind.	Yes	Easily adapted for rise off disconnect carrier.						
Bolted Flange	GD/C	No	Has individual locking mech- anism. Not adaptable for time reducing features.						

Table 3-6. Rationale for Suitability of Existing Hardware for Space Shuttle Umbilicals (Continued)

Туре	Part Number and Manufacturer	Suitable for SS?	Rationale
	PNEUMATIC AND	HYDRAULIC CO	DNNECTORS
Self Locking Bayonet	10C01377	No	Has individual locking mechanism.
Pressure Balanced and Unbalanced Bayonet	65B64001 Thru 64003 Purolator	Yes	Requires modification to adapt to time reducing features. Must remain in carrier during engagement.
Bayonet Self Locking	7851844 7851861 Calmec 1A49958 7851823 Purolator	No	Has individual locking mechanism.
Self Locking	ME144-0010 Snaptite	No	Has individual locking mechanism.
Slip Bayonet	ME273-0055 Consolidated Controls	Yes	Must be adapted to remain in carrier during engagement to reduce time.
Slip Bayonet	ME273-0016 Royal Ind.	Yes	Must be adapted to remain in carrier during engagement to reduce time.
Bayonet	ME273-0013 Royal Ind.	No	Not adaptable for time reducing features.
Self Locking Bayonet	55-02126 Wiggins	No	Has individual locking mechanism.
Self Locking Bayoneț	55-08111-1 Thru - 23 GD/C	No	Has individual locking mechanism.
Bayonet	55-08111 -25 thru -31	Yes	Easily adapted for locking carrier.
Bayonet	55-02110 Wiggins	No	Has individual locking mechanism.
Bayonet Slip	27-08557 GD/C	Yes	Easily adapted for rise off carrier.

. .

Туре	Part Number and Manufacturer	Suitable for SS?	Rationale
Bayonet Slip	27-20414 27-20415 27-20416 GD/C	Yes	Easily adapted for rise off carrier.
	ELECTRI	CAL CONNECT	ORS
Pin and Socket	676-400 676-300 G&H	No -	Has individual locking mech- anism. Not adaptable for time reducing features.
Pin and Socket	55-06785 55-06786 G&H	No	Has individual locking mech- anism. Not adaptable for time reducing features.
Pin and Socket	562-600 G&H	No	Has individual locking mech- anism. Not adaptable for time reducing features.
Pin and Socket	CS3106A-40-74S Cannon	Yes	Must be adapted to remain in carrier during engagement.
Pin and Socket	MS3106R-18-1P	No	Not adaptable for time reducing features.
Pin and Socket	CA3100R-40-10S Cannon	Yes	Must be adapted to remain in carrier during engagement.
Pin and Socket	CA22520-5 Cannon	Yes	Must be adapted to remain in carrier during engagement.
Pin and Socket	CA22259-20 Cannon	Yes	Must be adapted to remain in carrier during engagement.
Pin and Socket	SC3100E-40-66P Bendix	Yes	Must be adapted to remain in carrier during engagement.
Pin and Socket	40M30668	Yes	Must be adapted to remain in carrier during engagement.
Pin and Socket	40M30672 CA22511-0 Cannon	Yes	Must be adapted to remain in carrier during engagement.
Pin and Socket	MS3100E-40-9P	Yes	Must be adapted to remain in carrier during engagement.
Pin and Socket	CA22259-25 CA22511-23P CA22259-166 GM-100596-100 Cannon	Yes	Must be adapted to remain in carrier during engagement.

Туре	Part Number and Manufacturer	Suitable for SS?	Rationale
Pin and Socket	PT06-10-6S-365	No	Not adaptable for time reducing features.
Pin and Socket	017069 Insert Cannon	Yes	Must be adapted to remain in carrier during engagement.
Pin and Socket	GM100124-5 Insert Cannon	Yes	Must be adapted to remain in carrier during engagement.
	ECS	CONNECTORS	
Flat Face 4" Dia.	KSC	No	Not adaptable for time reducing features.
Self Locking 6" Dia.	Jack & Heinz	No	Has individual locking mechanism.
Flat Face 5" Dia.	65B80148 MSFC/BAC	No	Not adaptable for time reducing features.
Flat Face 4" Dia.	65B80060 MSFC/BAC	No	Not adaptable for time reducing features.
Flat Face 12" Dia.		No	Not adaptable for time reducing features.
Flat Face 4" Dia.	G7-820600 MSFC/NAR	No	Not adaptable for time reducing features.
Slip Bayonet 10"	1A79377 MSFC/DAC	No	Not adaptable for time reducing features.
Slip Bayonet 5"	11200001 F/N 33 IBM	No	Not adaptable for time reducing features.
Slip Bayonet Rect. 3 x 4	8G37-820001 MSC/NAR	Yes	Must be adapted to remain in carrier during engagement.
Self Locking (Detent) 6"	27-80318 GD/C	Yes	Must be adapted for carrier locking and to remain in carrier during engagement.
Self Locking (Seal Infl) 4"	55-80043 GD/C	No	Has individual locking mechanism. Not adaptable for time reducing features.

Туре	Part Number and Manufacturer	Suitable for SS?	Rationale
Grommet and Groove 6"	57-08301 GD/C	No	Has individual locking mechanism. Not adaptable for time reducing features.
Grommet and Groove 4"	55-08312 GD/C	No	Has individual locking mechanism. Not adaptable for time reducing features.
Self Locking (Seal Infl) 8"	55-81005 GD/C	No	Has individual locking mechanism. Not adaptable for time reducing features.

Table 3-7. Ur	mbilical Connect and	Verification	Procedure Review
---------------	----------------------	--------------	------------------

•

ITEM	OPERATIONS	PROCEDURE STEPS	TIME (EST.)	PERSONNEL (Min., REQ'D)	EVALUATION
S-łC Aft Umbilicals (TSM) 1, 2 & 3	 Installation Preparation Carrier Inst. Pneu. & Fluid Conn. Elect. Conn. 6" LOX & Fuel Coupling Inst. Sensor Switch Adjust. 	24 128* 90* 98* 20* 10* 370	3 hrs 4 hrs 2 hrs 1 hr <u>20 min</u> 10.3 hr	4 3 2 1	 Aft Umb. Carriers weigh more than 600 lbs. each - require use of hoist, winch and sling to install. Many adjustments and measurements required during installation - some adjustments and measurements difficult to make due to poor accessibility. Tolerances, in some cases, difficult to maintain.
	 Verification 1. Preparation 2. Carrier Inst. 3. Pneu. & Fluid Conn. 4. Elect. Conn. 5. 6" LOX & Fuel Coupling Inst. 6. Sensor Switch Adjust. 	2 8	20 min 1 hr 10 min 10 min	1	 Work platforms required for access to carrier. All adjustments change after post-launch refurbishment. All pneu., fluid, elect. connectors must be removed from carrier and reinstalled during each installation. Leak check time consuming, many points to check.
		12	1.7 hrs		*. These operations accomplished twice, carrier is disconnected and recon- nected after initial installation.
					 Above data represent one typical in- stallation. Minor variations exist between three aft umbilical installa- tions.
S-IC Intertank Umbilical (LO ₂)	Installation 1. Preparation 2. Mating to Stage	34 <u>45</u> 79	2 hrs <u>4 hrs</u> 6 hrs	3 3	 Intertank umbilical assembly is quite large (15'x4''x9.5') and heavy (6700 lbs.) Initial mating to stage requires many measurements and adjustments. Tolerances on adjustments difficult
	Verification 1. Preparation 2. Mating to Stage	21 20 41	1 hr <u>1 hr</u> 2 hrs	3	 to hold. Difficulties encountered in latching and locking mechanisms due to bind- ing and high friction, etc. After initial mating to stage, dis- connect, retract, extend and recon- nect are automatically accomplished. However, operating times not always consistent. Internal pressure in LO2 lines often slows or prevents
					retraction. . LO2 line vacuum probes not easily accessible.
S-1C Fwd. Umbilical	Installation 1. Preparation 2. Carrier Inst. 3. Pneu. Conn.* 4. Elect. Conn.* 5. ECS Conn.	13 39 11 7 1 71	30 min 40 min 30 min 45 min <u>15 min</u> 2.7 hrs	1 2 1 1	 Umbilical fairly lightweight, easily installed by two men Nost time consumed in making and verifying proper adjustments to release mechanism, and installing each electrical connector separately following carrier installation.
	Verification 1. Preparation 2. Carrier Inst. 3. Pneu. Conn. 4. Elect. Conn. 5. ECS Conn.	13 12 - - 25	30 min 40 min 1.2 hrs	1	*. Pneumatic systems leak checks and electrical systems checkout not con- sidered. These operations are usually carried out over a period of several days and are accomplished simultaneously with system checkout. Note: Salf End Impilicat is nearly
					<u>Note</u> : S-IC Fwd. Umbilical is nearly identical in configuration and installation to S-IB Fwd.

ITEM	OPERATIONS	PROCEDURE STEPS	TIME (EST.)	PERSONNEL (Min., REQ'D)	EVALUATION
			•		· · · ·
S-11 Aft Umbilical Carrier	<pre>Installation 1. Preparation 2. Carrier Inst. 3. Pneu & Fluid Connec- tions 4. Elect. Conn.</pre>	18* 77 171 <u>84</u> 350	50 min 3 hrs 6 hrs <u>2 hrs</u> 11.8 hr	2 3 2 1	. S-II Aft Umbilical is quite heavy. Requires use of hoist for handling during installation . Numerous measurements and adjustments required . Special tools (wrenches, adapters, spring scales, etc.) required for installation and verification
	Verification 1. Preparation 2. Carrier Inst. 3. Pneu & Fluid Conn. 4. Elect. Conn.	6* 19 - - 25	30 min 1.5 hr 2 hrs	1 2 -	*Leak checks of pneumatic systems and checkout of electrical systems not included.
		·····			
S-11. LOX Fill Dis- connect	Installation 1. Preparation 2. Carrier Inst. 3. Pneu. & Fluid Conn. 4. Elect. Conn.	9* 39 23 4 75	45 min 3 hr 1 hr <u>15 min</u> 5 hrs	1	. S-II LOX Fill Disconnect requires use of hoist and come-alongs to position for installation . Special tools required for installa- tion and verification
	Verification 1. Preparation 2. Carrier Inst. 3. Pneu & Fluid Conn. 4. Elect. Conn.	4* 13 - - 18	15 min 30 min 10 min 	1 1 1 -	*Functional checks, leak checks and check- out of electrical indications not
*****		*****		•••••	included.
S-II LH2 Fill Dis- connect	Installation 1. Preparation 2. Carrier inst. 3. Pneu. & Fluid Conn. 4. Elect. Conn.	9* 99 23 4 135	45 min 4 hr 1 hr <u>15 min</u> 6 hrs	1 3 1 1	 S-II LH₂ Fill Disconnect requires use of hoist and come-alongs to position . for installation Special tools required for installa- tion and verification Hellum purged nylon bag cover, with fiberglass bulkheads, installed to prevent condensation of liquid air.
	Verification 1. Preparation 2. Carrier Inst. 3. Pneu. & Fluid Conn. 4. Elect. Conn.	4* 22 1 - 27	15 min 1 hr 10 min <u></u> 1 hr 25	1 1 - min	*Functional checks, leak checks and check- out of electrical indications not included.
*********	*****************************	******			
.S-II Fwd. Umbilical Carrier	 Preparation Carrier Inst. Pneu. & Fluid Conn. Elect. Conn. 	18* 77 129 <u>56</u> 280	50 min 3 hrs. 5 hrs <u>1.5 hr</u> 10.3 hr	2 3 2 1	 S-II Fwd Umbilical is quite heavy, requires use of hoist for handling during installation Numerous measurements and adjustments required Special tools (wrenches, adapters, spring scales, etc.) required for installation and verification.
	Verification 1. Preparation 2. Carrier Inst. 3. Pneu. & Fluid Conn. 4. Elect. Conn.	6* 19 3 	30 min 1.5 hr 15 min 2.3 hr	1 2 1 -	*Leak checks of pneumatic systems and checkout of electrical systems not included.

Table 3-7. Umbilical Connect and Verification Procedure Review (cont)

Table 3-7.	Umbilical Connect and	Verification	Procedure I	Review (c	ont)
• •	·. · · · · · · · · · · · · · · · · · ·			···· · · · · · · · · · · · · · · · · ·	/

•

ITEM	OPERATIONS	PROCEDURE STEPS	TIME (EST.)	PERSONNEL (Min., REQ'D)	EVALUATION
S-II LOX Fill Dis- connect	Installation 1. Preparation 2. Carrier Inst. 3. Pneu. & Fluid Conn. 4. Elect. Conn.	9* 39 23 4 75	45 min 3 hr 1 hr <u>15 min</u> 5 hrs	1 1 1	 S-II LOX FIII Disconnect requires use of hoist and come-alongs to position for installation Special tools required for installa- tion and verification
	Verification 1. Preparation 2. Carrier inst. 3. Pneu & Fluid Conn. 4. Elect. Conn.	4* 13 1 	15 min 30 min 10 min 55 min	1	*Functional checks, leak checks and check- out of electrical indications not included.
S-II LH2 FIII Dis- connect	Installation 1. Preparation 2. Carrier Inst. 3. Pneu. & Fluid Conn. 4. Elect. Conn.	9* 99 23 4 T <u>35</u>	45 min 4 hr 1 hr <u>15 min</u> 6 hrs	1 3 1 1	 S-Ii LH₂ Fill Disconnect requires use of hoist and come-alongs to position for installation Special tools required for installa- tion and verification Helium purged nylon bag cover, with fiberglass bulkheads, installed to prevent condensation of liquid air.
	Verification 1. Preparation 2. Carrier Inst. 3. Pneu. & Fluid Conn. 4. Elect. Conn.	4* 22 1 	15 min 1 hr 10 min 	1 1 - min	*Functional checks, leak checks and check- out of electrical indications not included
S-11 Fwd. Umbilical Carrier	Installation 1. Preparation 2. Carrier Inst. 3. Pneu. & Fluid Conn. 4. Elect. Conn.	18* 77 129 <u>56</u> 280	50 min 3 hrs 5 hrs <u>1.5 hr</u> 10.3 hr	2 3 2 1	 S-II Fwd Umbilical is quite heavy, requires use of hoist for handling during installation Numerous measurements and adjustments required Special tools (wrenches, adapters, spring scales, etc.) required for
	Verification 1. Preparation 2. Carrier inst. 3. Pneu. & Fluid Conn. 4. Elect. Conn.	6* 19 3 	30 min 1.5 hr 15 min 2.3 hr	1 2 1 -	installation and verification. *Leak checks of pneumatic systems and checkout of electrical systems not included.
Service Module Umbilical	Installation 1. Preparation 2. Carrier Inst. 3. Pneu. & Fluid Conn. 4. Elect. Conn. 5. ECS Conn.	5 7 8 4 	30 min 20 min 20 min 15 min 15 min 15 min 1 hr 40	1 1 1 1 1 1	. S/M Umbilical is light and small, easily handled by one man.
	Verification 1. Preparation 2. Carrier Inst. 3. Pneu. & Fluid Conn. 4. Elect. Conn. 5. ECS Conn.	3 - - - 7	10 min 10 min <u>5 min</u> 25 min.	1 - - 1	

Table 3-7. Umbilical Connect a	d Verification	Procedure Review	(cont)
--------------------------------	----------------	------------------	--------

ITEM	OPERATIONS	PROCEDURE STEPS	TIME (EST.)	PERSONNEL (Min.,REQ'D)	EVALUATION
S-IB Fwd Umbilical	Installation 1. Preparation 2. Carrier Inst. 3. Pneu. Conn. 4. Elect. Conn. 5. ECS Conn. Verification	13 39 11 7 <u>1</u> 71	30 min 40 min 30 min 45 min 15 min 2.7 hrs	1 2 1 1	 Umbilical relatively lightweight Easily installed by two men Most time is consumed in making and verifying proper adjustments to release mechanism and installing each electrical connector separately following carrier installation This umbilical is quite reliable, no major problems during S-18 series Pneumatic systems leak checks and
	 Preparation Carrier Inst. Pneu. Conn. Elect. Conn. ECS Conn 	13 12 - - - 25	30 min 40 min 1.2 hrs	1	electrical connector verification not considered. These operations are carrier out over a period of several days following installation. This umbilical is nearly identical in configuration and installation to S-IC Fwd.
S-18 Short Cable Mast Umbilicals II and IV	Installation 1. Preparation 2. Carrier Inst. 3. Pneu. Conn. 4. Elect. Conn.	4 28 11 <u>5</u> 48	90 min 60 min 30 min <u>30 min</u> 3.5 hrs	2 2 1 1	 S-IB Short Cable Mast Umbilical is relatively lightweight and easy to install Work platforms and ladders must be installed for access to umbilicals Most time is consumed in making and verifying proper adjustments and measurements and installing each
	Verification 1. Preparation 2. Carrier Inst. 3. Pneu. Conn. 4. Elect. Conn.	2 13 9 	15 min 20 min 10 min 	1 1 -	electrical connector following carrier installation . Pneumatic systems leak checks and electrical systems checkout not considered. These operations are usually accomplished over a period of several days following installa- tion.
S-IVB Aft Umbilical	Installation 1. Preparation 2. Carrier Inst. 3. Elect. Conn. 4. Pneu. Conn. 5. LO2 Conn. 6. LH2 Conn. 7. ECS Conn.	3 18 54 82 26 30 <u>5</u> 218	15 min 4 hrs 3 hrs 50 min 1.5 hr 3.5 hr <u>20 min</u> 13.4 hrs	2 4 2 2 4 4 2	 Most operations and verification steps serial - few simultaneous functions Crank-operated hoist and muscle power required for installation of large components; i.e. carrier, L02 and LH2 fill lines Work platforms and ladders required for access to work area Installation requires many measure- ments, adjustments, gage points and
	Verification 1. Preparation 2. Carrier Inst. 3. Elect. Conn. 4. Pneu. Conn. 5. LO2 Conn. 6. LH2 Conn. 7. ECS Conn.	9 9 1 - 10 10 2 - 41	15 min 20 min 5 min 45 min 45 min 10 min 2.3 hrs	1 1 - 1 1	torque applications . Application of insulation wrap by hand required for LH ₂ connector.
S-IVB Fwd and I.U. Umbilical	Installation 1. Preparation 2. Carrier Inst. 3. Elect. Conn. 4. Pneu. Conn. 5. GH2 Vent Conn. 6. ECS Conn. 7. Insulation	12 51* 147 14 13 5 <u>6</u> 248	45 min 90 min 180 min 30 min 30 min 20 min 45 min 7.3 hrs.	1 3 1 1 2 1 1	 S-IVB Fwd. is a dual service umbilical, servicing S-IVB stage and I.U. stage. Installation requires joint action by MDAC, IBM and Boeing (or Chrysler for S-IB). Installation requires many measurements and verification points. Leak checks of pneumatic systems and electrical system verification not included in time estimates
	Verification 1. Preparation 2. Carrier Inst. 3. Elect. Conn. 4. Pneu. Conn. 5. GH ₂ Vent Conn. 6. ECS Conn. 7. Insulation	12 16* - 8 - - 36	20 min 25 min .9 hrs	1 - - - -	*. Includes reinstallation following dis- connect after initial installation

ITEM	OPERATIONS	PROCEDURE	TIME (EST.)	PERSONNEL (Min., REQ'D)	EVALUATION
S-IB LOX Mast	Installation 1. Preparation 2. Component Test 3. Mate to Vehicle 4. Functional Test 5. Leak Test	3 40 20 12 4 79	40 min 60 min 15 min 15 min 15 min 2.4 hrs	2 	 Installation fairly simple Few problem areas Requires few people Major problem has been leakage of Teflon seal. Seal often leaks imme- diately after installation but leak- age ceases after seal has "cold flowed."
	Verification 1. Preparation 2. Component Test 3. Mate to Vehicle 4. Functional Test 5. Leak Test	1 31 11 6 - <u>3</u> 52	10 min 40 min 10 min 15 min 1.4 hrs	1 1 1 1	
S-IB Fuel Mast	Installation 1. Preparation 2. Component Test 3. Mate to Vehicle 4. Functional Test 5. Leak Test	Total 3 20 12 40 4 - 77	3.8 hrs. 40 min 15 min 15 min 60 min 15 min 2.4 hrs	2 	 Installation is fairly simple Few problem areas Requires few people Major problem has been leakage of Tefion seai. Seal often leaks immediately after installation but leakage ceases after seal has "cold flowed."
	Verification 1. Preparation 2. Component Test 3. Mate to Vehicle 4. Functional Test 5. Leak Test	31 31 6 <u>3</u> 52	10 min 40 min 10 min 10 min 15 min 1.4 hrs	1 1 1 1	
		Total	3.8 hrs		
Fill & Drain Valve (Centaur) (LO2 and LH2)	Installation 1. Preparation 2. Valve Inst. 3. Pneu & Fluid Conn. 4. Elect. Conn.	16 33 18 <u>2</u> 69	20 min 2.5 hr 45 min <u>10 min</u> 3.75 hr	1 1 1	 Installation utilizes necked-down tension bolts to secure ground half of valve to vehicle. Bolts break away when predetermined load trans- mitted from swing arm pull-off lan- yard to F&D valve shroud.
	Verification 1. Preparation 2. Valve Inst. 3. Pneu & Fluid Conn. 4. Elect. Conn.	4 13 9 <u>2</u> 28	10 min 30 min 20 min <u>10 min</u> 1.2 hrs.	1 1 1	. Major reported problem area has been leakage past seal.

Table 3-7. Umbilical Connect and Verification Procedure Review (cont)

٠

Table 3-8	UCR	Summary
-----------	-----	---------

			DEFECT/FAIL	URE TYPE A	ND NUMBER	R				
ITEM	MAL- FUNCTION	MATERIAL	DOCU- MENTATION		DAMAGE	CONTAM- INATION	DIMEN- SIONAL	USED ON	VENDOR	PREDOMINANT DEFECT/FAILURE
DISCONNECT VALVE ME273-0013	3							S-II	HADLEY 04650	IMPROPER SEAL SIZE JAMS POPPET
DISCONNECT VALVE ME273-0016		. 1		•				S-11		FLARE SCRATCHED
DISCONNECT VALVE ME273-0017	1			1				S-11	HADLEY 04650	EXCESSIVE LENGTH OF MOUNTING BOLT INTER- FERES WITH ADJUSTING NUT
DISCONNECT, VENT 1A48848	1			. 1	6	9		S-IVB	FAIRCHILD STRATOS	SCRATCHED SEALING SURFACES
QUICK DIS- CONNECT ASS'Y 1A49958	14	2			3	10	2	S-IVB	PUROLATOR	EXCESSIVE EXTERNAL LEAKAGE
DISCONNECT LO2 GROUND 1A49970					1		1	S-IVB	FAIRCHILD STRATOS	DEFECTIVE SEALING SURFACE ON FLANGE
DISCONNECT LH2 GROUND 1A49978				1	1			S−IVB	FAIRCHILD STRATOS	SCRATCHED SEALING SURFACES & IMPROPER ASS'Y
CARRIER, UMBILICAL 1A74896	1				1			S-IVB	DOUGLAS A/C	LEAKAGE BETWEEN DIS- CONNECT & DEBRIS VALVE AND DAMAGED THREADS
DISCONNECT 1B41065	1						1	S-IVB	PUROLATOR	DEFORMED SEAL
DISCONNECT LO2 FILL (AIRBORNE) 1B66932	4	1	1	2	4	6		S-IVB	FAIRCHILD STRATOS	DAMAGE TO SEALING SURFACES RESULTING FROM CONTAMINATION
UMBILICAL HOUSING ASS'Y 11200001				4	2	•		IU	IBM .	MANUFACTURING ERRORS
NIPPLE ASS'Y, Q.D. AIRBORNE 60C20113	3		1	1	. 1			S-IB	WIGGINS	SEAL DISLODGED WHEN DISCONNECTED UNDER PRESSURE
NIPPLE ASS'Y, Q.D. AIRBORNE 20C30138	2							S-IB	WIGGINS	POPPET STICKING OPEN, LEAKAGE
NIPPLE ASS'Y, Q.D. AIRBORNE 20C30140	1							S-IB	WIGG INS	SEAL DISLODGED WHEN DISCONNECTED UNDER PRESSURE
NIPPLE ASS'Y, Q.D. AIRBORNE 20C30389	1							S-IB	WIGGINS	FLARE TUBE FITTING END DAMAGED BY OVER TORQUING OF B-NUT

3-26

			DEFECT/FAIL	URE TYPE A	ND NUMBER					DOCOMUNIC
ITEM	MAL- FUNCTION	MATERIAL	DOCU- MENTATION	ASSEMBLY	DAMAGE	CONTAM- INATION	DIMEN- SIONAL	USED ON	VENDOR	PREDOMINANT DEFECT/FAILURE
UMBILICAL VEHICLE PLATE 65B80014-1					2			S-IC	BOEING	DAMAGED HELI-COILS
MBILICAL VEHICLE PLATE 655880015					1					DAMAGED HELI-COILS
UMBILICAL SUBHOUSING 65880026-9		·					1			RELIEF CUTS OMITTED, CAUSING INTERFERENCE
UMBILICAL VEHICLE PLATE 65880027-3							1			ALIGNMENT HOLES DO NOT MATE WITH ALIGN. PINS
UMBILICAL SUB HOUSING 65B80028-9							1			RELIEF CUTS OMITTED, CAUSING INTERFERENCE
UMBILICAL VEHICLE PLATE 65B80029-1A				1						HELI-COILS MISSING
UMBILICAL 30B HOUSING 65B80030-9							1	S-IC	BOEING	RELIEF CUTS OMITTED, CAUSING INTERFERENCE
QUICK DISCONNECT 7851823-503					2	9		S-IVB	MDAC	RUST, DIRT & DIS- COLORATION
QUICK DISCONNECT 7851823-505	1			1	2	1			PUROLATOR	INTERNAL MATING SURFACE BURRED
QUICK DISCONNECT 7851844-501						3			i	CONTAMINATED DURING TESTING
QUICK DISCONNECT 7851861-1					3	2				CONTAMINATED DURING TESTING
QUICK DISCONNECT 7851861–501	2				1			S-IVB	CALMEC	LEAKAGE
·	;									
•										

Table 3-8. UCR Summary (cont)

•

.

3-27

			DEFECT/FAIL	URE TYPE A	ND NUMBER	2		ł		
ITEM	MAL- FUNCTION	MATERIAL	DOCU- MENTATION		DAMAGE	CONTA-1- INATION	DIMEN- SIONAL	USED ON	VENDOR	PREDOMINANT DEFECT/FAILURE
FLUID COUPLING 65864001-1	5	6			4		510,442	S-IC	PUROLATOR	SEAL MAT'L EXCEEDED USEFUL LIFE LIMITA- TION
FLUID COUPLING 65B64001-2	1	8 :	2	:	4					SEAL DEFORMED AND EXPANDED
FLUID COUPLING 65B64001-3				1		1				LOOSE RETAINER
FLUID COUPLING 65B64001-4			- 1		1	2			: :	RUST ON INTERIOR SURFACES
FLUID COUPLING 65B64001-5				2	1	2				DAMAGE TO SEALING SURFACES RESULTING FROM CONTAMINATION
FLUID COUPLING 65864001-6			2			1				NO RECORD OF PRE- VIOUS USAGE
FLUID COUPLING 65864001-7	1			5	2	3				LOOSE RETAINER
FLUID COUPLING 65B64001-8			3			5				RUST ON INTERIOR SURFACES
FLUID COUPLING 65B64001-9				1				S-IC	PUROLATOR	LOOSE RETAINER
FLUID COUPLING 65864001-11				3	ĺ	1		S-IC	PUROLATOR	LOOSE RETAINER
FLUID COUPLING 65864001-12		1	2		2	1				SCRATCHED SEALING SURFACES & GALLED THREADS
FLUID COUPLING 65864001-14			1							NO RECORD OF PREVIOUS USAGE
FLUID COUPLING 65B64001-15						1				CONTAMINATED DURING HANDLING
FLUID COUPLING. 65B64001-16			1			1				CONTAMINATED DURING HANDLING
FLUID COUPL ING 65B64001-18	1			,	i	1				FOREIGN OBJECT LODGED IN POPPET
FLUID COUPLING 65B64001-20			2							NO RECORD OF PREVIOUS USAGE
FLUID COUPLING 65B64001-22	1		17	1		8				NO RECORD OF PREVIOUS USAGE
FLUID COUPLING 65864001-23	2			4		1		S-IC	PUROLATOR	LOOSE RETAINER LEAKING

Table 3-8. UCR Summary (cont)

3-28

	DEFECT/FAILURE TYPE AND NUMBER									PREDOMINANT
ITEM		MATERIAL	MENTATION	ASSEMBLY	DAMAGE	INATION	SIONAL	USED ON	VENDOR	DEFECT/FAILURE
LUID COUPLING 55864001-24			2		1	1.		S-IC	PUROLATOR	NO RECORD OF PREVIOUS USAGE
ELU ID COUPL ING 55864001-25				3		1				LOOSE RETAINER
FLU ID XOUPL ING 55864001-26			2							NO RECORD OF PREVIOUS USAGE
FLUID COUPLING 55864001-28	}		2	ļ		1				NO RECORD OF PREVIOUS USAGE
FLUID COUPLING 55864001-31	2			i		2	. •			LEAKAGE
FLU ID COUPL ING 55864001-32	1		5			2				NO RECORD OF PREVIOUS USAGE
FLUID COUPLING 55864001-33				1				i		MATERIAL NOT PER SPEC.
FLUID COUPLING 55864001-34			1							NO RECORD OF PREVIOUS USAGE
-LUID COUPLING 55864001-131	1							S-IC	PUROLATOR	LEAKAGE WHEN DISCON- NECTED

• .

.

.

.

Table 3-8. UCR Summary (cont)

SECTION 4

CANDIDATE CONCEPT DEFINITION

Candidate concepts were generated for the following categories of components, subsystems, and handling systems:

- a. Coupling:
 - 1. Cryogenic
 - 2. High pressure pneumatic and hydraulic
 - 3. Low pressure pneumatic, H₂0 glycol and JP-5
- b. Locking and release devices
- c. Engaging mechanisms
- d. Debris protection devices
- e. Booster umbilical carriers
- f. Booster umbilical handling concepts (3)
- g. Orbiter umbilical handling concepts (3)

Figures 4-1 through 4-44 are sketches depicting these various concepts. These sketches are conceptual only and do not include details or dimensions. They were prepared only to the extent necessary to allow evaluation and tradeoff analysis. Table 4-1 is a summary of the service requirements for booster riseoff umbilical carrier concepts A, B, and C.

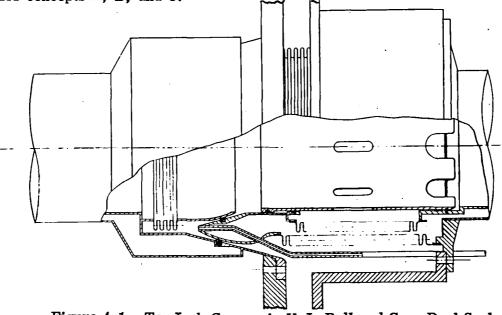


Figure 4-1. Ten Inch Cryogenic V.J. Ball and Cone Dual Seal

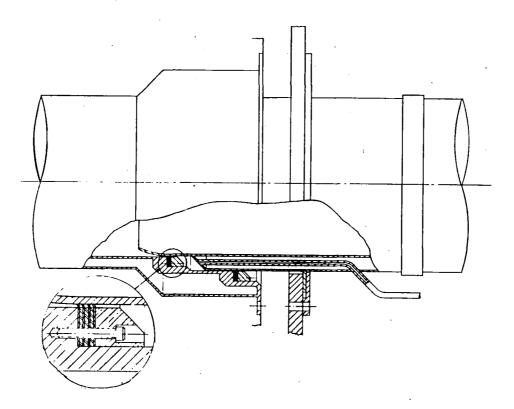


Figure 4-2. Ten Inch Cryogenic V.J. Slip Coupling-Self Forming Lip Seals

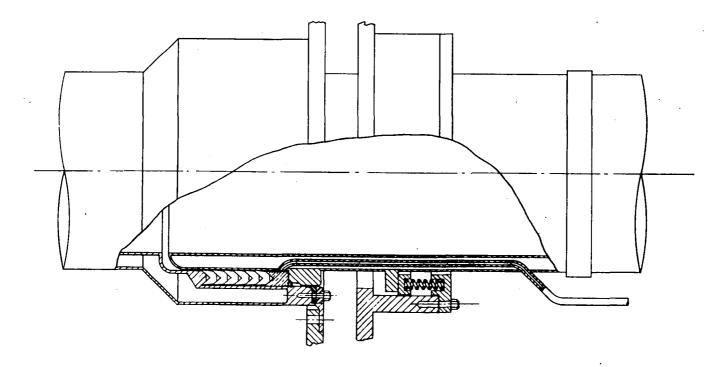


Figure 4-3. Ten Inch Cryogenic V.J. Slip Coupling-Chevron Seals

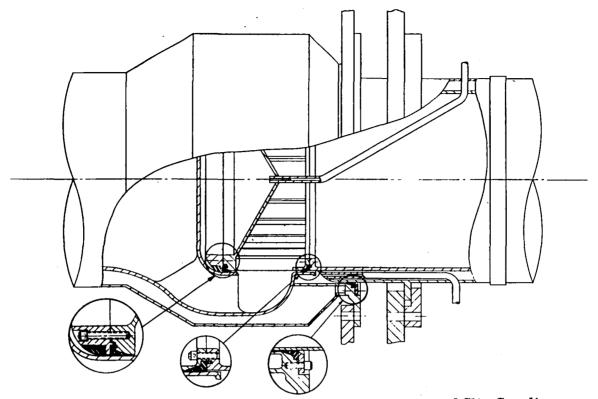


Figure 4-4. Ten Inch Cryogenic V.J. Pressure Balanced Slip Coupling

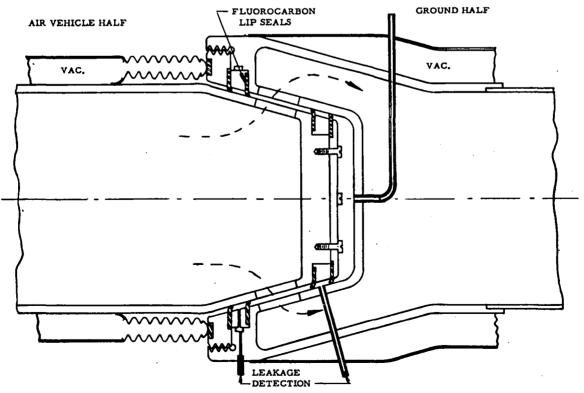


Figure 4-5. Partial Pressure Balanced Cone Seal

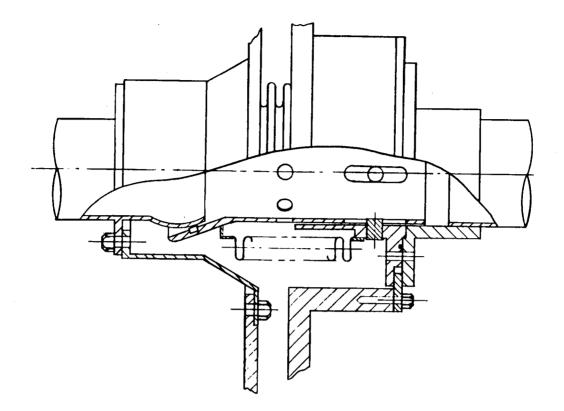


Figure 4-6. Three Inch Ball and Cone Coupling

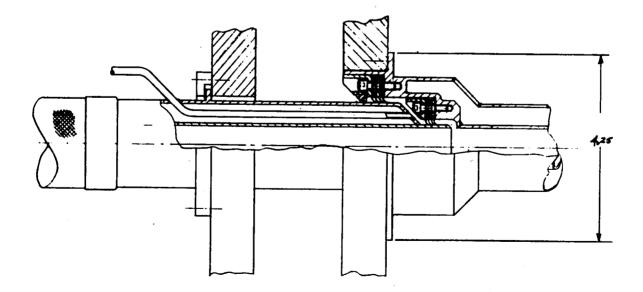


Figure 4-7. LH₂ - V.J. (1 in.) 4-4

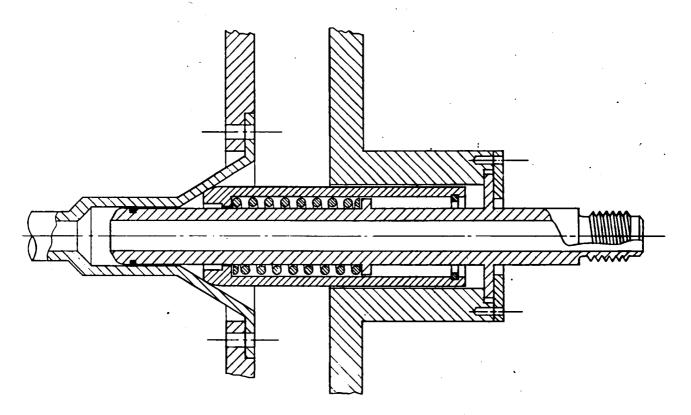


Figure 4-8. Pneumatic Slip Coupling (1 in.)

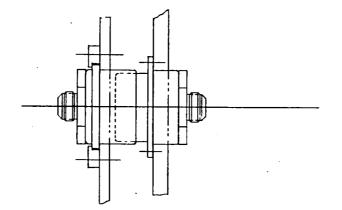


Figure 4-9. Pneumatic Pressure Balanced Coupling (1 in.)

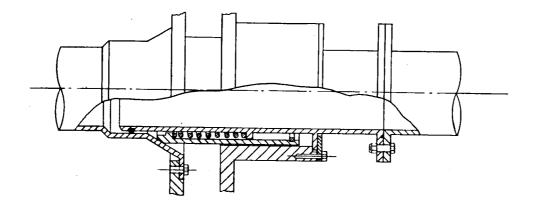


Figure 4-10. Pneumatic Coupling, 150 psi (4 in.)

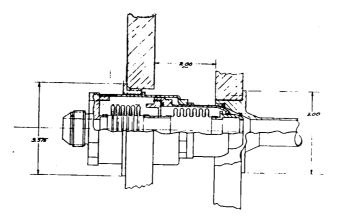


Figure 4-11. 150 psi (1 in.)

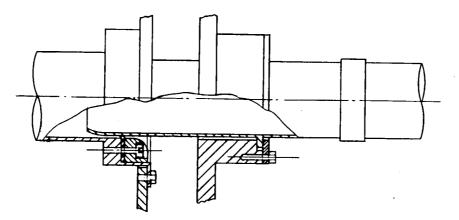
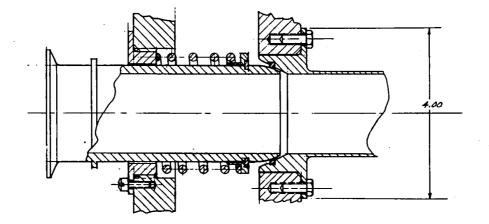
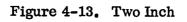




Figure 4-12. Pneumatic Coupling, 5 psi (3 in.)

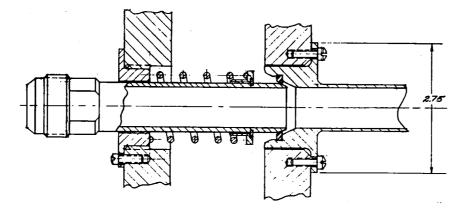
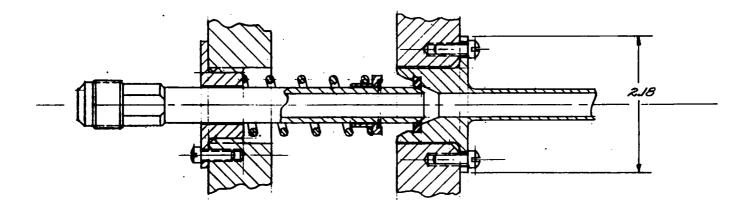
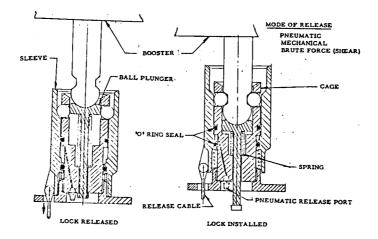
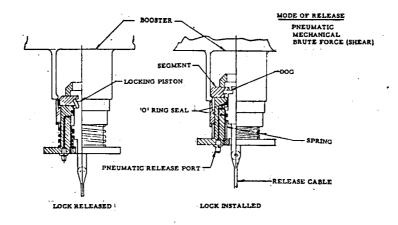
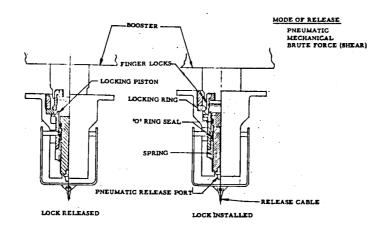
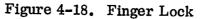
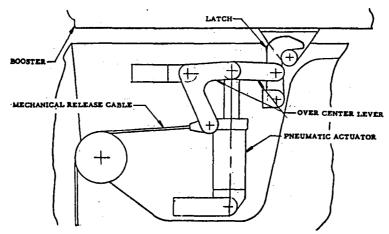
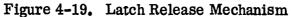



Figure 4-14. One Inch

Figure 4-15. One-Half Inch


Figure 4-16. Ball Lock



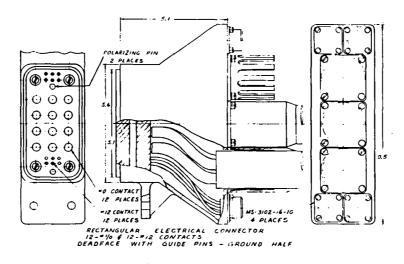


Figure 4-20. Rectangular Electrical Connector, Ground Half

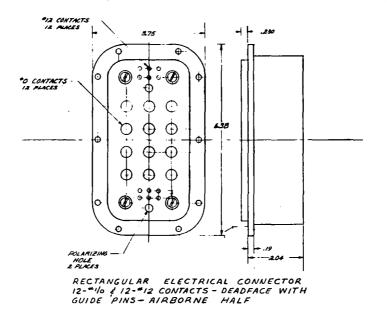


Figure 4-21. Rectangular Electrical Connector, Airborne Half

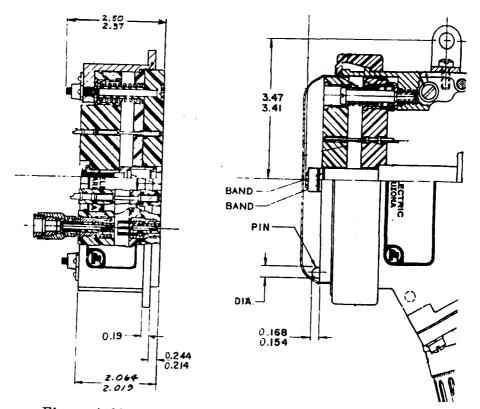


Figure 4-22. Typical Deadface Electrical Connector

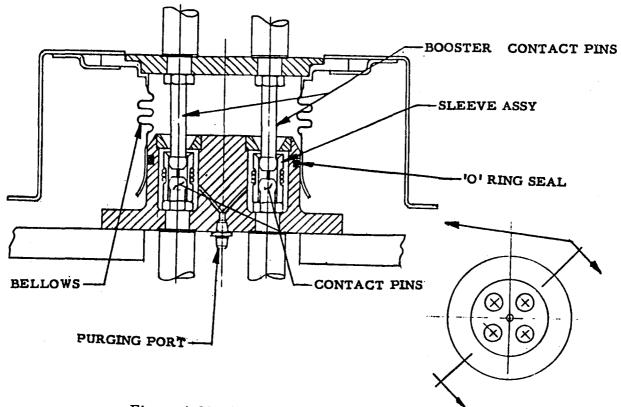


Figure 4-23. Booster Electrical Disconnect

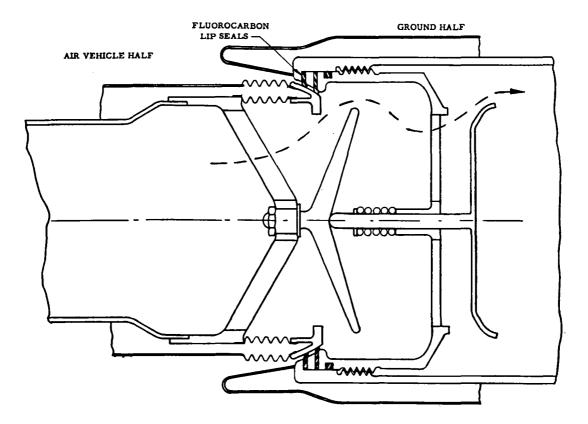
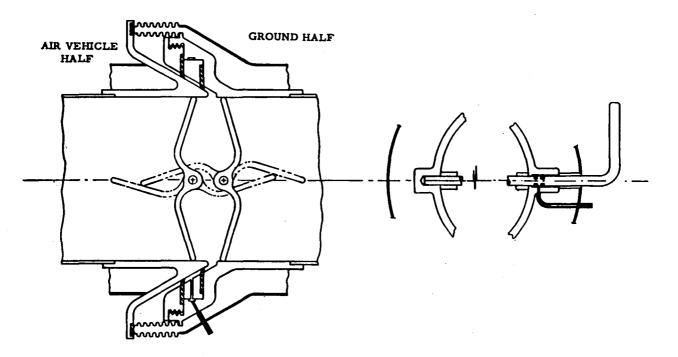



Figure 4-24. Cone Seal With Internal Actuated Poppet Closures

Figure 4-25. Butterfly Valve

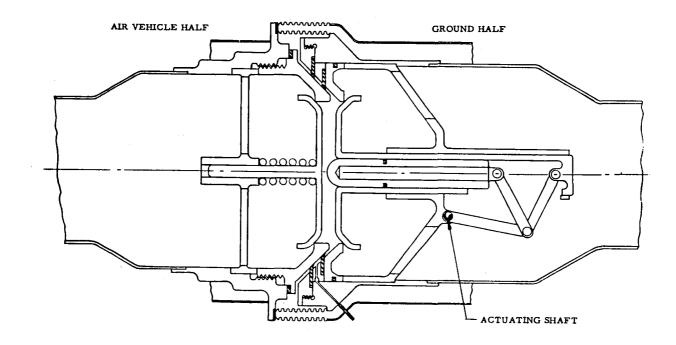


Figure 4-26. Poppet Valves, External Mechanical Actuated

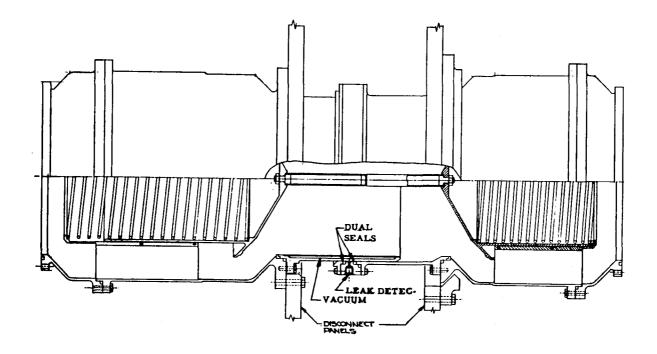


Figure 4-27. Poppet Valves, Internal Mechanical Actuated

.

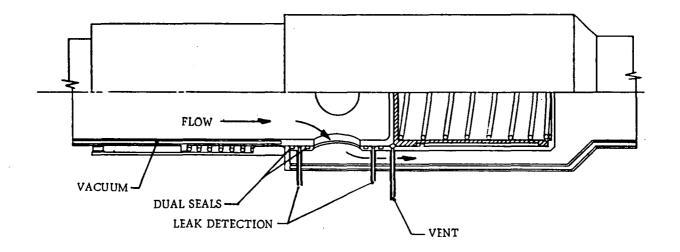


Figure 4-28. Disconnect, Balanced Poppet, Vacuum Jacket

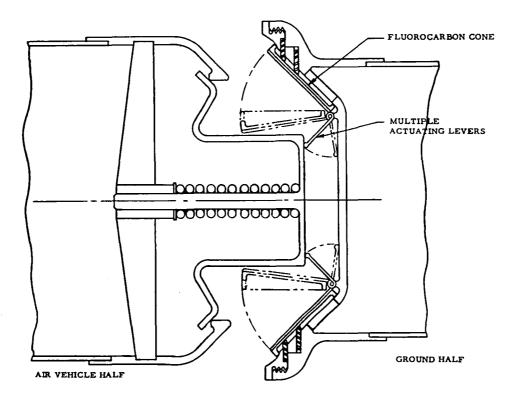
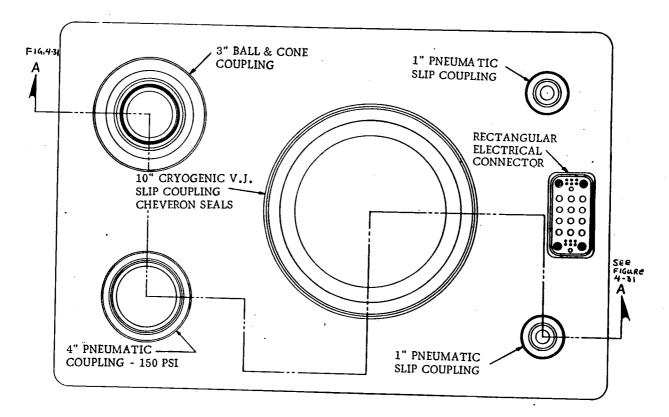



Figure 4-29. Debris Valves, Flexible Cone and Poppet

NAS 10-7702

f

Figure 4-30. Booster Rise-off Ground Umbilical, Concept A

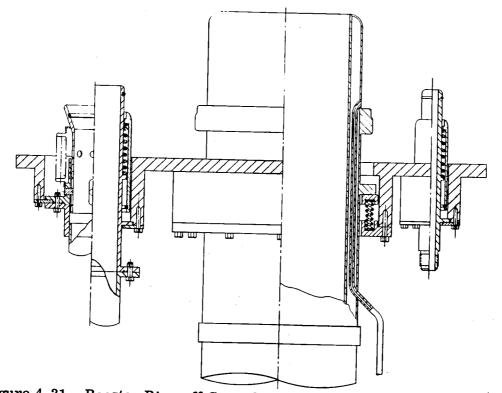


Figure 4-31. Booster Rise-off Ground Umbilical, Concept A (Section AA)

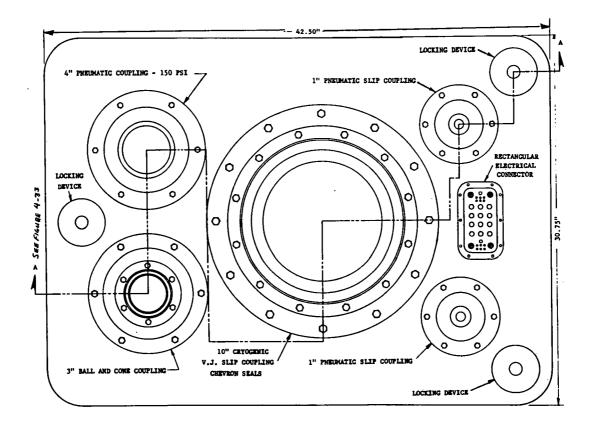


Figure 4-32. Booster Rise-off Airborne Umbilical, Concept A

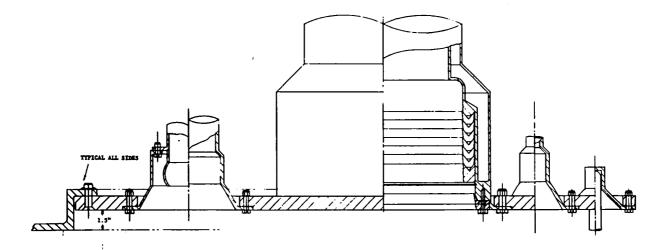


Figure 4-33. Booster Rise-off Airborne Umbilical, Concept A (Section AA)

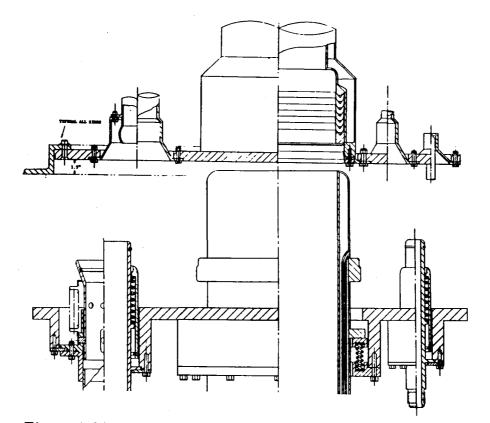


Figure 4-34. Booster Rise-off Umbilical, Ground and Vehicle

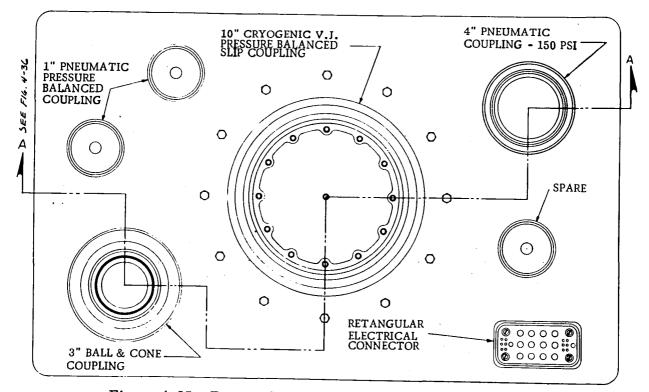


Figure 4-35. Booster Rise-off Ground Umbilical, Concept B

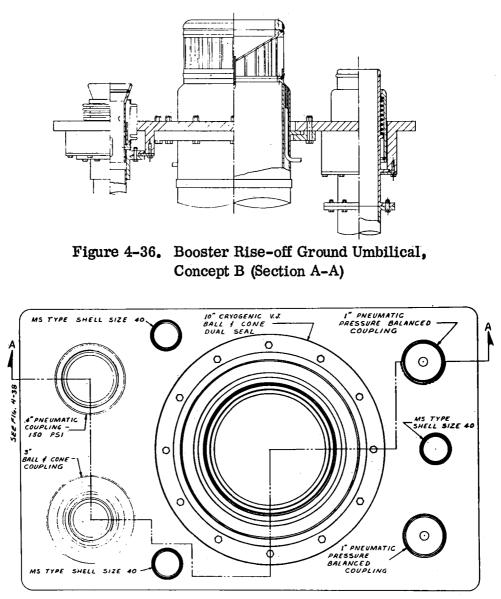


Figure 4-37. Booster Rise-off Ground Umbilical, Concept C

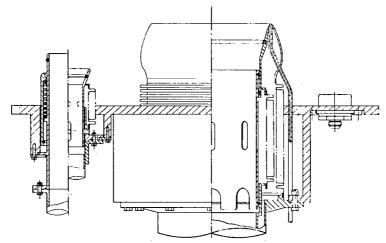


Figure 4-38. Booster Rise-off Ground Umbilical, Concept C (Section A-A)

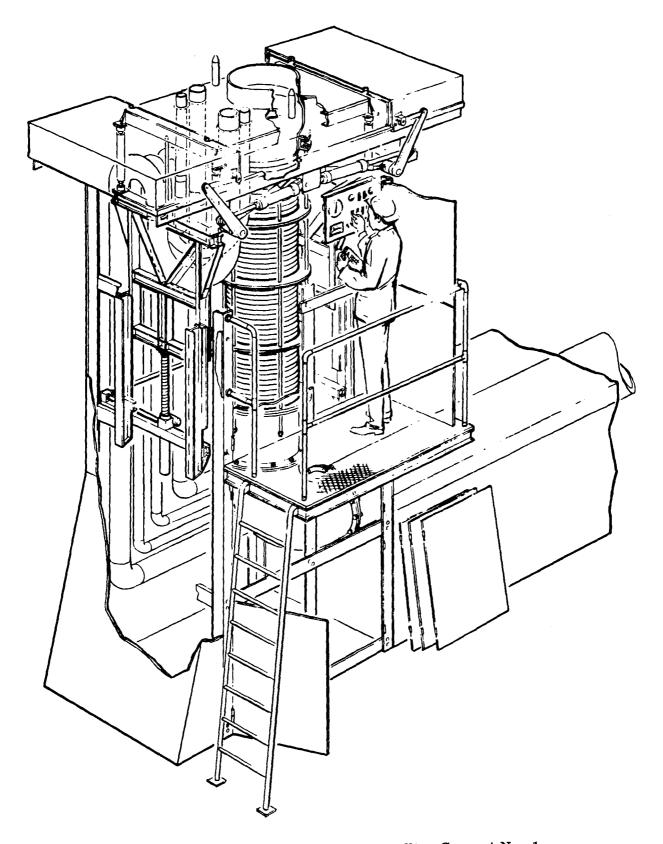


Figure 4-39. Booster Umbilical Handling Concept No. 1, Fixed Elevation

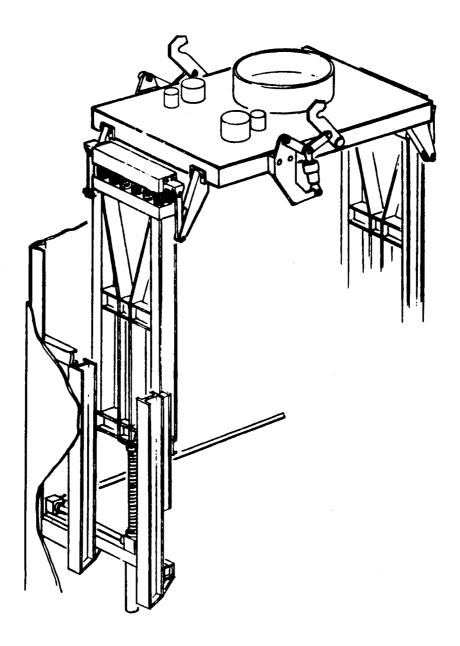


Figure 4-40. Booster Umbilical Handling Concept No. 2, Spring Mounted and Locked to Vehicle

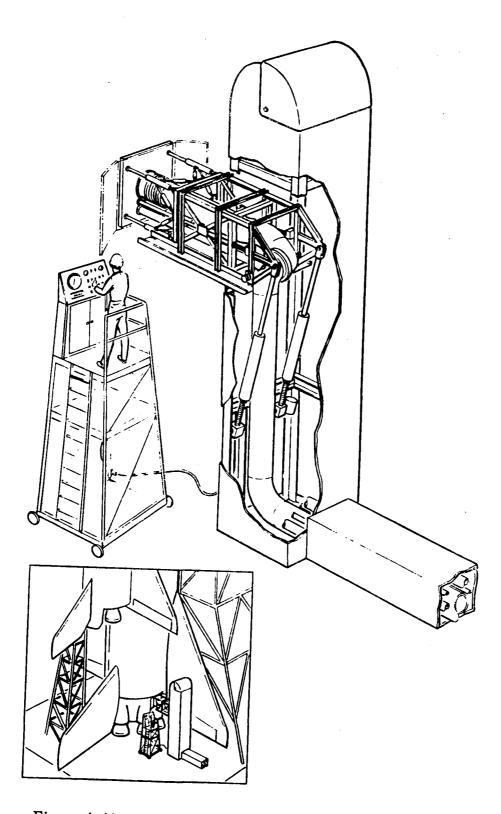
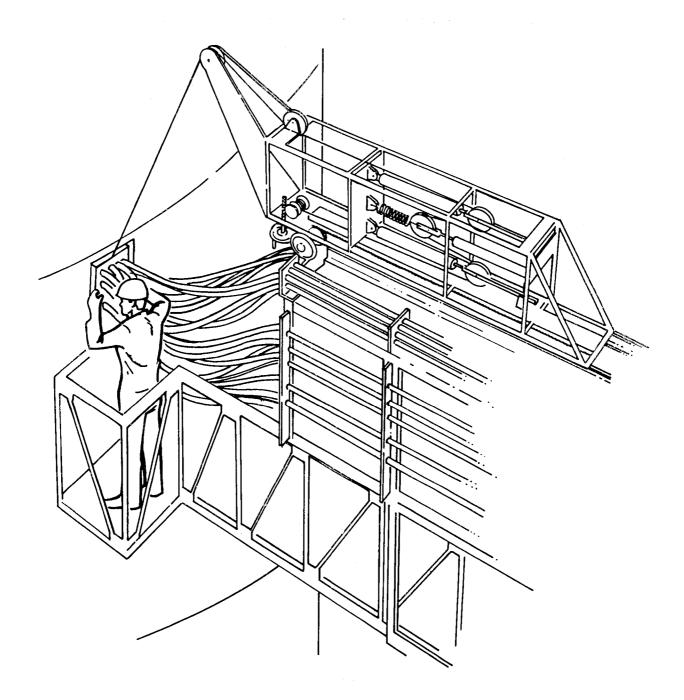
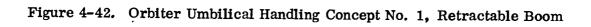


Figure 4-41. Booster Umbilical Handling Concept No. 3, Tail Service Mast (TSM) Type


		Concept A	
Service	Size (in.)	Type	Operational Pressure (psig)
$ m LH_2$ Fill and Drain	10	Slip	90
JP-5 Fill and Drain	3	Ball and Cone	150
GH ₂ Fill	1	Slip	1000
GHe Fill	1	Slip	3700
GN ₂ Purge	4	Slip	150
Electrical	Rectang	ular Connector	
		Concept B	
LH ₂ Fill and Drain	10	Pressure Balance	90
JP-5 Fill and Drain	3	Ball and Cone	150
GH ₂ Fill	1	Pressure Balance	1000
GHe Fill	1	Pressure Balance	3700
GN ₂ Purge	ge 4 Slip		150
Electrical			
		Concept C	
LH ₂ Fill and Drain	10	Ball and Cone	90
JP-5 Fill and Drain	3	Ball and Cone	150
GH2 Fill	1	Pressure Balance	1000
GHe Fill	· 1	Pressure Balance	3700
GN_2 Purge	4	Slip	150
Electrical	No.40	MS	4 Required


Table 4-1. Booster Riseoff Umbilical Carrier Concepts

•

.

.

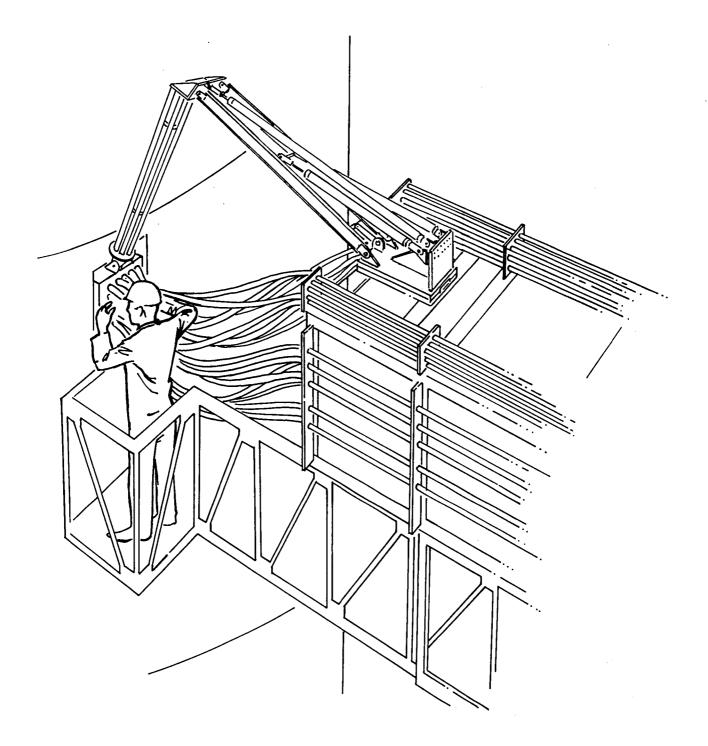


Figure 4-43. Orbiter Umbilical Handling Concept No. 2, Counterbalanced Boom

NAS 10-7702

•

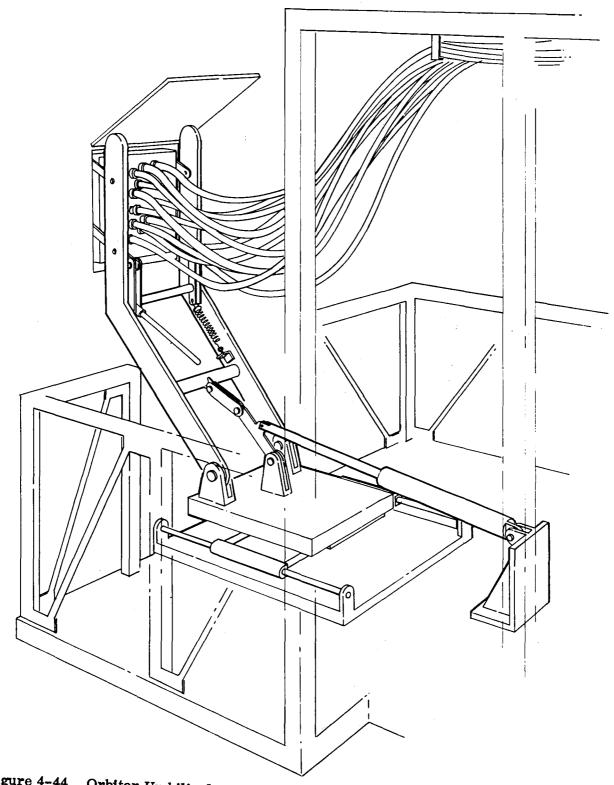


Figure 4-44. Orbiter Umbilical Handling Concept No. 3, Platform Mounted Retracting Arm

4.1 BOOSTER UMBILICAL HANDLING CONCEPT NO. 1, FIXED ELEVATION

This handling concept is characterized primarily by the design features incorporated to accommodate relative motion of the vehicle umbilical carrier (Figure 4-39). The ground carrier is allowed to move horizontally in any direction to track the vehicle carrier motion while it is fixed in elevation. The coupling design, therefore, must be capable of accommodating the vertical relative motion of the vehicle carrier. The amount of vertical relative motion will influence the choice of the coupling concept.

The slip coupling, of course, is capable of accepting the largest vertical excursions. It has been used with success on several vehicle programs. The ball and cone coupling has some advantages over the slip coupling, but it only has limited vertical motion capability, depending on the design of bellows and/or springs.

Another important feature of Concept No. 1 is the use of a screw jack elevating mechanism that provides a rapid engagement or connection capability for the ground carrier. It allows the ground carrier to be lowered out of the way during booster erection on the launcher. This concept will also have provisions to cover the ground carrier and couplings with a blast shield for protection from vehicle engine exhaust blast.

4.2 BOOSTER UMBILICAL HANDLING CONCEPT NO. 2 SPRING MOUNTED -LOCKED TO VEHICLE

The characteristic difference of Concept Number 2 (Figure 4-40) from Concept Number 1 is that the ground carrier tracks the vertical motion of the vehicle carrier as well as the horizontal motion. This, of course, allows a greater selection of coupling types because the design only has to accommodate tolerances and not relative motion. The ball and cone coupling can be used with the only disadvantage being the amount of separation loads generated by the thrust bellows.

The thrust loads from the fluid pressure may be reacted by the spring loads. If this loading produces a structural penalty on the vehicle, then the coupling loads may be reacted internally by locking the ground carrier to the vehicle carrier. The inherent reliability of the unlocked rise off disconnects may be retained by unlocking the locks after the pressure has been reduced and prior to engine start or vehicle release.

4.3 BOOSTER UMBILICAL HANDLING CONCEPT NO. 3 TAIL SERVICE MAST (TSM) TYPE

Concept No. 3 is characterized by the horizontal release direction of the couplings (Figure 4-41). Because the disconnects must be in-flight (required for on-pad abort) and because they must be unlocked and ejected laterally from the vehicle after liftoff, the carrier lock(s) must have primary, secondary, and tertiary release modes (fail operational/fail operational).

Because there is no relative motion between the ground and vehicle carriers, the choice of couplings is not limited thereby.

Included as part of the Concept No. 3 is the articulation necessary to retract the mast out of the way during booster erection. Provisions are incorporated for local manual control of the mechanisms to allow rapid engagement of the ground carrier to the vehicle carrier. The retraction of the mast also provides protection of the ground system from vehicle engine exhaust blast.

This concept is advantageous when space limitations preclude the use of either of the riseoff concepts (Concept Numbers 1 and 2).

4.4 ORBITER UMBILICAL HANDLING CONCEPT NO. 1, RETRACTABLE BOOM

Concept No. 1 for handling the orbiter umbilical carrier is comprised of a rollermounted retractable boom atop the service arm. The umbilical carrier is supported from the boom by a lanyard with the boom extended for umbilical carrier installation. The umbilical carrier is released and ejected from the vehicle pneumatically. Upon release signal, the lanyard is retracted by pneumatic cylinders mounted on the boom. Extension and retraction of the boom is accomplished manually with a rack and pinion and hand wheel. Adjustment of the lanyard for supporting the umbilical carrier during mating is accomplished manually with a hand wheel driving a worm gear reel.

4.5 ORBITER UMBILICAL HANDLING CONCEPT NO. 2, COUNTERBALANCED BOOM

Concept No. 2 for handling the orbiter umbilical carrier consists of a spring counterbalanced boom mounted atop the service arm. The umbilical carrier is attached to a the boom by a limited motion universal coupling thus providing stability to the umbilical housing during installation and retraction.

The counterbalance springs are adjusted to support the weight of the umbilical housing thus providing ease of handling during installation and without imposing a significant load to the vehicle structure.

The umbilical carrier is pneumatically ejected prior to vehicle liftoff. The signal provided for the ejection of the carrier also provides the signal to pneumatically pressurize the retraction cylinder on the boom. When the retraction is completed the service arm can then be retracted to the tower and secured for liftoff.

4.6 ORBITER UMBILICAL HANDLING CONCEPT NO. 3, PLATFORM MOUNTED RETRACTING ARM

Concept No. 3 for handling the orbiter umbilical carrier consists of a platform mounted retracting arm with a floating base to allow tracking of vehicle motions.

4-26

The umbilical carrier is mounted on links from the retracting arm with a manual positioning handle for vertical alignment during connect. Disconnect and ejection of the carrier from the vehicle is by pneumatic actuation. The floating base is mounted on parallel guide rods with ball bushings for friction free motion in a horizontal plane. Retraction of the arm is accomplished by a pneumatic cylinder actuated by the carrier release signal. An alternate method of mounting the retract cylinder positions the cylinder below the floating base and detaches the cylinder rod from the base so that the cylinder rod does not have to travel with the vehicle motions. As the cylinder is actuated it pushes the base away from the vehicle and a link attached to the retracting arm causes the arm to pivot vertically and retract as the base continues moving.

SECTION 5

CONCEPT EVALUATION AND TRADEOFF ANALYSIS

Figures 5-1 and 5-2 are block diagrams that illustrate the flow for concept selection. It is recognized that more combinations are possible than shown, however, those shown are considered the most compatible combinations. The portion of the block diagram showing the selected electrical connector flow applies also to the selection of fluid connectors as well as to locking and release devices.

5.1 CRYOGENIC COUPLINGS (UNWEIGHTED)

Relative ranking numbers are shown in Table 5-1 for each parameter for the concepts under consideration. Each concept provides a vent port between the dual seals for vent or drain and monitoring of leakage past the primary seal.

5.2 CRYOGENIC COUPLINGS (WEIGHTED)

The ball and cone coupling with bellows and dual ring seal is ranked the highest due to its successful usage history for both LO_2 and LH_2 , and its maintenance characteristics. (See Table 5-2).

5.3 HIGH PRESSURE PNEUMATIC AND HYDRAULIC COUPLINGS (UNWEIGHTED)

Relative ranking numbers are shown in Table 5-3 for each parameter for the concepts under consideration.

5.4 HIGH PRESSURE PNEUMATIC AND HYDRAULIC COUPLINGS (WEIGHTED)

The slip coupling with O-ring seals attained the highest ranking due to its successful usage history and general simplicity. (See Table 5-4.)

5.5 LOW PRESSURE PNEUMATIC, H₂O GLYCOL, AND JP-5 COUPLINGS (UNWEIGHTED)

Relative ranking numbers are shown in Table 5-5 for each evaluation parameter for the coupling concepts under consideration. Couplings with dual seals incorporate a vent port between the seals for vent or drain and monitoring of leakage past the primary seal. The slip coupling with O-rings is not suitable for cold gas venting.

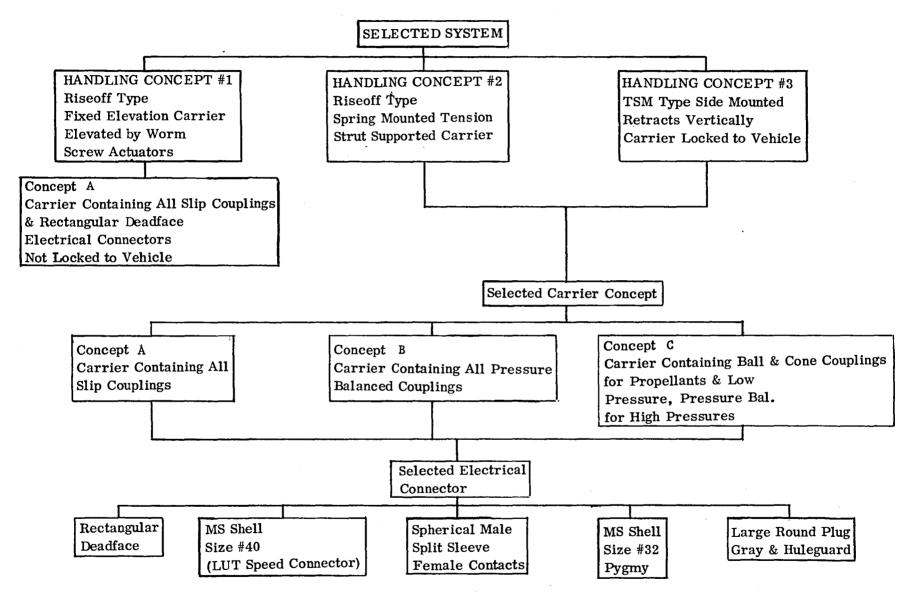
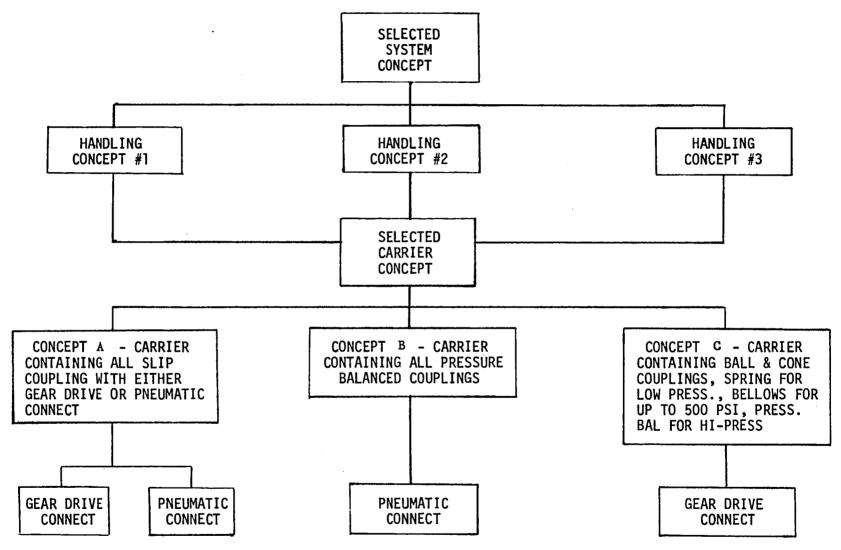



Figure 5-1. Booster Umbilical System Selection

5-3

MAJOR PARAMETER	WT	SUB-PARAMETER	WT	Ball & Cone with Bellows Dual Ring Seal	Ball & Cone-Bellows Primary-Ring Seal SecondSF Lip Seal	Slip-Dual SF Lip Seal	Slip PrimChevron SecondSF Lip	Press. Bal. Dual Lip Seals	Semi-Press, Ba Conical-Dual SF Lip Seals
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)							
		VERIFICATION OF CONNECT		9	9	10	9	6	5
		ALIGNMENT REQUIREMENTS		10	9	8	7	7	9
CONNECT		ADJUSTMENT REQUIREMENTS		8	8	9	5	6	5
AND	25%	CONNECT FORCE REQUIRED	r—	6	7	8	9	9	10 .
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS		10	9	8	8	7	6
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)							
		PERSONNEL (CREW) REQUIRED							
		SAFETY (PERSONNEL)							
		EASE OF REPLACEMENT	[10	9	9	8	8	7
		OPERATIONAL LIFE (WEAR RESISTANCE)		9	8	8	7	6	5
		ACCESSIBILITY FOR MAINTENANCE		9	9	9	8	7	7
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT		9	7	6	6	6	6
		LUBRICATION REQUIRED							
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)							
		SIZE		7	9	9	8	4	5
		CONFIDENCE IN DESIGN (EXPERIENCE)		9	8	8	6	. 7	6
		REDUNDANCY PROVIDED							
		FAILURE TO CONNECT		10	9	9	9	7	7
		FAILURE TO DISCONNECT		10	9	8	7	7	6
RELIABILITY	35%	FAILURE TO OPEN							
		FAILURE TO CLUSE							
		INADVERTENT CLOSURE							
		CONTAMINATION TRAPS							
		NUMBER OF PARTS		10	9	9	7	7	6
		COST		6	7	8	8	4	7
		WEIGHT (VEHICLE)		8	10	10	6	4	5
COST	10%	LOAD IMPOSED ON VEHICLE		3	5	6	5	10	8
		SIZE .							
		WEIGHT (GROUND)							
	100'	TOTAL	1						

Table 5-1. Cryogenic Couplings (Unweighted)

MAJOR PARAMETER	WT		WT	Ball & Cone with Bellows	Ball & Cone-Bellows Primary-Ring Seal	Slip-Dual SF Lip	Slip PrimChevron	Press. Bal. Dual Lip	Semi-Press. Bal Conical-Dual
MAJOR PARAMETER		SUB-PARAMETER		Dual Ring Seal	SecondSF Lip Seal	Seal	SecondSF Lip	Seals	SF Lip Seals
	ECT 25% CO FY 25% CO FY 25% CO POS AD PEC AD AD PEC AD AD PEC AD AD PEC AD AD AD AD AD AD AD AD AD AD	TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)							
		VERIFICATION OF CONNECT	7	63	63	70	63	on Dual Lip	35
		ALIGNMENT REQUIREMENTS	5	50	45	40	35	35	45
CONNECT		ADJUSTMENT REQUIREMENTS	5	40	40	45	25	30	25
AND	25%	CONNECT FORCE REQUIRED	3	18	21	24	27	27	10
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS	5	50	45	40	40	35	30 ·
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)							
		PERSONNEL (CREW) REQUIRED							
		SAFETY (PERSONNEL)							
		EASE OF REPLACEMENT	8	80	72	72	64	64	56
		OPERATIONAL LIFE (WEAR RESISTANCE)	3	27	24	24	21	18	15
		ACCESSIBILITY FOR MAINTENANCE	7	63	63	63	56	49	49
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT	y	81	63	54	54	54	54
		LUBRICATION REQUIRED							
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)							
		SIZE	3	21	27	27	24	12	15
		CONFIDENCE IN DESIGN (EXPERIENCE)	15	135	120	120	90	105	90
		REDUNDANCY PROVIDED							
		FAILURE TO CONNECT	5	50	45	45	45	35	35
		FAILURE TO DISCONNECT	10	100	90	80	70		60
RELIABILITY	35%	FAILURE TO OPEN					<u>/</u> *	<u></u>	
		FAILURE TO CLOSE							
		INADVERTENT CLOSURE					·····		
		CONTAMINATION TRAPS							
		NUMBER OF PARTS	5	50	45	45	35	35	30
۵ <u>۵ - ۲۰۰۰ میلیم</u> کار میلید کرد. ۱۹۰۰ - ۲۰۰۰ میلید کار میلید کرد از میلید کرد. ۱۹۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰		COST	5	30	35	40	40	20	35
		WEIGHT (VEHICLE)	3	24	30	30	18		15
COST	10%		2	6	10	12	10		16
	COST 10% LOAD IMPOSED ON VEHICLE 2						· · · · ·		
		WEIGHT (GROUND)							
<u> </u>	100/2	TOTAL		888	838	831	717	663	615

Table 5-2. Cryogenic Couplings (Weighted)

Table 5-3.	High Pressure	Pneumatic and	l Hydraulic	Couplings	(Unweighted)
------------	---------------	---------------	-------------	-----------	--------------

MAJOR PARAMETER	WT	SUB-PARA METER	WT	Slip-Dual SF Lip Seal	Slip PrimChevron SecondSF Lip	Press, Bal. Dual Lip Seals	Slip Dual O-Ring
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)					
		VERIFICATION OF CONNECT	1	10	7	6	10
		ALIGNMENT REQUIREMENTS		9	8	5	10
CONNECT		ADJUSTMENT REQUIREMENTS	\vdash	10	5	6	10
AND	25%	CONNECT FORCE REQUIRED		9	5	8	10
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS		8	7	8	9
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD. ELECT)					
		PERSONNEL (CREW) REQUIRED					1
		SAFETY (PERSONNEL)		1			
		EASE OF REPLACEMENT		8	6	7	10
		OPERATIONAL LIFE (WEAR RESISTANCE)		8	6	6	9
		ACCESSIBILITY FOR MAINTENANCE		9	6	7	10
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT		8	4	6	10
		LUBRICATION REQUIRED		1			
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)		1			1
		SIZE		7	7	5	10
		CONFIDENCE IN DESIGN (EXPERIENCE)		5	6	8	10
		REDUNDANCY PROVIDED	1	1			
		FAILURE TO CONNECT		9	8	6	10
		FAILURE TO DISCONNECT	1	8	6	7	10
RELIABILITY	35%	FAILURE TO OPEN		1			1
		FAILURE TO CLOSE	1	1		[
		INADVERTENT CLOSURE					1
		CONTAMINATION TRAPS		1			
		NUMBER OF PARTS		. 7	6	8	10
		COST		8	8	6	10
		WEIGHT (VEHICLE)		10	10	7	10
COST	10%	LOAD IMPOSED ON VEHICLE		6	6	10	6
		SIZE	1		[
		WEIGHT (GROUND)		1	1	1	
	100';	TOTAL					

5-6

MAJOR PARAMETER	WT	SUB-PARAMETER	WТ	Slip-Dual SF Lip Seal	Slip PrimChevron SecondSF Lip	Press. Bal. Dual Lip Seals	Slip Dual O-Ring
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)					
		VERIFICATION OF CONNECT	7	70	49	42	70
		ALIGNMENT REQUIREMENTS	5	45	40	25	50
CONNECT		ADJUSTMENT REQUIREMENTS	5	50	25	30	50
AND	25%	CONNECT FORCE REQUIRED	3	27	15	24	30
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS	5	40	35	40	45
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)					
•		PERSONNEL (CREW) REQUIRED					
		SAFETY (PERSONNEL)					
		EASE OF REPLACEMENT	ઠ	٤4	48	56	80
• [•]		OPERATIONAL LIFE (WEAR RESISTANCE)	3	24	18	18	27
		ACCESSIBILITY FOR MAINTENANCE	7	63	42	49	70
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT	9	72	36	54	90
		LUBRICATION REQUIRED					
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)					
		SIZE	3	21	21	15	30
		CONFIDENCE IN DESIGN (EXPERIENCE)	15	75	90	120	150
		REDUNDANCY PROVIDED					
		FAILURE TO CONNECT	5	45	40	30	50
		FAILURE TO DISCONNECT	1υ	80	60 .	70	100
RELIABILITY	35%	FAILURE TO OPEN					,
		FAILURE TO CLOSE					
		INADVERTENT CLOSURE					
		CONTAMINATION TRAPS					
		NUMBER OF PARTS	5	35	30	40	50
		COST	5	40	40	30	50
		WEIGHT (VEHICLE)	3	30	30	21	30.
COST	10%	LOAD IMPOSED ON VEHICLE	2	12	12	20	12
		SIZE			· ·		
		WEIGHT (GROUND)					
	100%	TOTAL		793	631	684 ·	984

Table 5-4. High Pressure Pneumatic and Hydraulic Couplings (Weighted)

ł

MAJOR PARAMETER	WT	SUB-PARAMETER	ŴТ	Ball & Cone with Bellows Dual Ring Seal	Ball & Cone-Bellows Primary-Ring Seal SecondSF Lip Seal	Slip-Dual SF Lip Seal	Slip PrimChevron SecondSF Lip	Ball & Cone with Spring, Ring Seal	Slip Dual O-Ring
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)							
		VERIFICATION OF CONNECT		10	10	10	9	8	8
		ALIGNMENT REQUIREMENTS		10	8	7	7	10	8
CONNECT		ADJUSTMENT REQUIREMENTS		10	10	9	8	7	9
AND	25%	CONNECT FORCE REQUIRED		9	9	8	6	7	8
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS		7	7	9	8	9	· 10
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)							
		PERSONNEL (CREW) REQUIRED							
		SAFETY (PERSONNEL)						· ·	
		EASE OF REPLACEMENT		9	7	9	6	10	10
		OPERATIONAL LIFE (WEAR RESISTANCE)		8	8	9	q	10	10
		ACCESSIBILITY FOR MAINTENANCE		8	6	7	6	10	10
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT		10	7	6	5	10	10
		LUBRICATION REQUIRED			······································				
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)							
•		SIZE		7	7	9	9	8	10
		CONFIDENCE IN DESIGN (FXPERIENCE)		10	7	6	5	9	10
		REDUNDANCY PROVIDED							
		FAILURE TO CONNECT		9	7	7	5	10	8
		FAILURE TO DISCONNECT		10	9	8	6	10	9
RELIABILITY	35%	FAILURE TO OPEN							
		FAILURE TO CLOSE							
		INADVERTENT CLOSURE							
		CONTAMINATION TRAPS							
		NUMBER OF PARTS		9	7	6	5	8	10
		CUST		8	7	7	6	9	10
		WEIGHT (VEHICLE)		8	8	10	10	9	· 10
COST	10%	LOAD IMPOSED ON VEHICLE		7	7	10	9	9	10
		SIZE _							
WEIGHT (VEHICLE) COST 10% LOAD IMPOSED ON VEH	WEIGHT (GROUND)								
	100%	TOTAL							

Table 5-5. Low Pressure Pneumatic, H_2O Glycol, and JP-5 Couplings (Unweighted)

5.6 LOW PRESSURE PNEUMATIC, H₂O GLYCOL, AND JP-5 COUPLINGS (WEIGHTED)

The slip coupling with O-rings attained the highest ranking due to its overall simplicity and history of successful usage. It is not suitable, however, for cold gases. The ball and cone coupling with a spring and single ring seal is suitable for cold gases, but the ball and cone coupling with dual ring seals is a better choice for hazardous cold gases. (See Table 5-6).

5.7 LOCKING AND RELEASE DEVICE EVALUATION (UNWEIGHTED)

Each of the devices under consideration incorporates a pneumatic actuation device as an integral part with the exception of the hook latch which uses an external cylinder. Again, individual differences in the assigned relative ranking numbers are not great, however, the sum total after applying the weighting factors on the matrix presented in Table 5-7 shows greater differences in the relative merits of each.

5.8 LOCKING AND RELEASE DEVICE EVALUATION (WEIGHTED)

The collet locking and release device ranked the highest with the 4-ball male locking device next. The primary factors that cause the collet to be the higher ranked are: better load distribution, less wear due to brinneling, and ease of holding critical toler-ances during fabrication. The self-cocking feature is also more easily incorporated into the collet device thus facilitating ease of connection. (See Table 5-8).

While it is recognized that the 4-ball male locking device is widely used on Saturn 5 – Apollo, it is recognized that collet locking devices have also been used to a considerable extent. Hardware experience on Convair Aerospace's many and varied programs has resulted in a basic distrust in the use of ball locking devices. Component failures have resulted in impact ranging all the way from nuisance items to the actual loss of an Atlas-Centaur vehicle.

The relative ranking numbers shown on the matrices represent, to a certain extent, a subjective evaluation. The numbers shown essentially reflect the Convair Aerospace attitude regarding ball locking devices, beginning at the higher levels of engineering management.

5.9 ELECTRICAL CONNECTOR EVALUATION (UNWEIGHTED)

The relative ranking numbers appearing for each parameter in columns for each type connector under consideration are shown in Table 5-9. In order to evaluate the connectors on a common baseline, the number of connectors required to provide a minimum of 12 each No. 1/0 contacts and 120 each No. 16 contacts is identified.

Table 5-6. I	Low Pressure	Pneumatic,	H_2O Glycol,	and JP-5 Couplings	(Weighted)
--------------	--------------	------------	----------------	--------------------	------------

MAJOR PARAMETER	WT	SUB-PARAMETER	WT	Ball & Cone with Bellows	Ball & Cone-Bellows Primary-Ring Seal	Slip-Dual SF Lip	Slip PrimChevron	Ball & Cone with Spring,	Slip Dual
				Dual Ring Seal	SecondSF Lip Seal	Seal	SecondSF Lip	Ring Seal	O-Ring
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)							
		VERIFICATION OF CONNECT	7	70	70	70	63	56	56
		ALIGNMENT REQUIREMENTS	5	50	40	35	35	50	40
CONNECT		ADJUSTMENT REQUIREMENTS	5	50	50	45	40	35	45
AND VERIFY	25%	CONNECT FORCE REQUIRED	3	27	27	24	18	21	24
VERT 1		POSSIBILITY OF DAMAGE TO COMPONENTS	5	35	35	45	40	45	50
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)							
		PERSONNEL (CREW) REQUIRED							
		SAFETY (PERSONNEL)							
		FASE OF REPLACEMENT	8	72	56	72	48	80	80
		CPERATIONAL LIFE (WEAR RESISTANCE)	3	24	24	27	27	30	30
		ACCESSIBILITY FOR MAINTENANCE	7	56	42	49	42	70	70
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT	9	90	63	54	45	90	ŶO
		LUBRICATION REQUIRED							
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)		1					
		SIZE	3	21	21	27	27	24	30
		CONFIDENCE IN DESIGN (EXPERIENCE)	15	150	105	90	75	135	150
		REDUNDANCY PROVIDED							
		FAILURE TO CONNECT	5	45	35	35	25	50	40
		FAILURE TO DISCONNECT	10	100	90	80	60	100	90
RELIABILITY	35%	FAILURE TO OPEN		 					
		FAILURE TO CLOSE							
		INADVERTENT CLOSURE							
		CONTAMINATION TRAPS		[
		NUMBER OF PARTS	5	45	35	30	25	40	50
		COST	5	40	35	35	30	45	50
		WEIGHT (VEHICLE)	3	24	24	30	30	27	30
COST	10%	LOAD IMPOSED ON VEHICLE	2	14	14	20	18	18	20
		SiZE							
		WEIGHT (GROUND)	·						
	1007	TOTAL		913	766	768	648	916	945

				4-Ball Lock	Toggle	Finger	Hook	Collet	Ball Lock	Spring
MAJOR PARAMETER	W'T	SUB-PARAMETER	WТ	Male	Lock	Lock	Latch	Lock	Female	Latch
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)								
		VERIFICATION OF CONNECT		10	8	8	10	Lock Lock	9	
		ALIGNMENT REQUIREMENTS		10	9	8	8	10	7	6
CONNECT		ADJUSTMENT REQUIREMENTS		9	8	8	7	9	9	7
AND	25%	CONNECT FORCE REQUIRED								
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS		10	8	8	10	10	8	7
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)			<u> </u>					
		PERSONNEL (CREW) REQUIRED								
		SAFETY (PERSONNEL)		9	7	7	9	10	8	7
		EASE OF REPLACEMENT		10	10	8	7	10	8	7
		OPERATIONAL LIFE (WEAR RESISTANCE)		8	8	8	9	10	7	7
		ACCESSIBILITY FOR MAINTENANCE			1					
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT		10	8	7	8	9	7	7
		LUBRICATION REQUIRED		9	7	7	10	9	8	7
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)								
		SIZE		8	7	7	6	9	7	6
		CONFIDENCE IN DESIGN (EXPERIENCE)		9	8	8	8	10	7	5
		REDUNDANCY PROVIDED								
		FAILURE TO CONNECT		10	8	8	10	10	9	6
		FAILURE TO DISCONNECT		9	8	8	9	10	8	5
RELIABILITY	35%	FAILURE TO OPEN								
		FAILURE TO CLOSE								ł
		INADVERTENT CLOSURE								
		CONTAMINATION TRAPS					-			
		NUMBER OF PARTS								
		COST		9	7	7	10	8	7	7
		WEIGHT (VEHICLE)		9	8	8	7	10	8	8
COST	10%	LOAD IMPOSED ON VEHICLE					· · ·			
		SIZE								
		WEIGHT (GROUND)			1					1
	1007	τυται								
	1 - * * (n <u></u>	1	11	1	1		1	1	1

Table 5-7. Locking and Release Device (Unweighted)

MAJOR PARAMETER	WT	SUB-PARAMETER	WT	4-Bali Lock Male	Toggle Lock	Finger Lock	Hook Latch	Collet Lock	Ball Lock Female	Spring Latch
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)								
		VERIFICATION OF CONNECT	5	50	40	40	50	50	45	45
		ALIGNMENT REQUIREMENTS	5	50	45	40	40	50	35	30
CONNECT		ADJUSTMENT REQUIREMENTS	5	45	40	40	35	45	45	35
AND	25%	CONNECT FORCE REQUIRED								
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS	5	50	40	40	50	50	40	35
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)				· · · · · · · · · · · · · · · · · · ·				
		PERSONNEL (CREW) REQUIRED								
		SAFETY (PERSONNEL)	5	45	35	35	45	50	40	35
		EASE OF REPLACEMENT	7	70	70	56	49	70	56	49
•		OPERATIONAL LIFE (WEAR RESISTANCE)	5	40	40	40	45	50	35	35
	1	ACCESSIBILITY FOR MAINTENANCE								
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT	8	80	64	56	64	72	56	56
		LUBRICATION REQUIRED	5	45	35	35	50	45	40	35
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)								
		SIZE	5	40	35	35	30	45	35	30
		CONFIDENCE IN DESIGN (EXPERIENCE)	20	180	160	160	160	200	140	100
		REDUNDANCY PROVIDED								i
•		FAILURE TO CONNECT	5	50	40	40	50	50	45	30
		FAILURE TO DISCONNECT	10	90	80	80	90	100	80	50
RELIABILITY	35%	FAILURE TO OPEN								
		FAILURE TO CLOSE								
		INADVERTENT CLOSURE								
		CONTAMINATION TRAPS								
		NUMBER OF PARTS								
		COST	3	27	21	21	30	24	21	21
	1	WEIGHT (VEHICLE)	7	63	56	56	49	70	56	56
COST	10%	LOAD IMPOSED ON VEHICLE								
	1	SIZE								
		WEIGHT (GROUND)								
	100%	TOTAL		\$25	801	774	837	971	769	642

MAJOR PARAMETER	WT	- SUB-PARAMETER	WT	Rectangular Deadface Connector (Cannon)	MS Shell Size #40 (Cannon)	Spherical Male, Split Sleeve Female Contacts		Large Round Plu (Gray & Huleguard
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)						
		VERIFICATION OF CONNECT		9	6	9	4	9
		ALIGNMENT REQUIREMENTS		9	6	10	4	7
CONNECT		ADJUSTMENT REQUIREMENTS	1					
AND	25%	CONNECT FORCE REQUIRED		8	9	10	У	8
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS		8	6	9	4	7
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)						
		PERSONNEL (CREW) REQUIRED				······································		
		SAFETY (PERSONNEL)					·	
		EASE OF REPLACEMENT		9	5	7	6	7
		OPERATIONAL LIFE (WEAR RESISTANCE)		8	6	9	6	7
		ACCESSIBILITY FOR MAINTENANCE						
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT		~				
		LUBRICATION REQUIRED	1	· · · · · · · ·				
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)		10	2	9	2	6 .
<u>.</u>		SIZE		2 Req'd 9	5 Req'd 8	2 Req'd 7	6 Req'd10	2 Req'd 7
		CONFIDENCE IN DESIGN (EXPERIENCE)		9	9	5	6	. 6
		REDUNDANCY PROVIDED						
		FAILURE TO CONNECT		8	4	9	4	7
		FAILURE TO DISCONNECT		9	8	10	8	8
RELIABILITY	35%	FAILURE TO OPEN	1					
		FAILURE TO CLOSE			·····			
		INADVERTENT CLOSURE						
		CONTAMINATION TRAPS						
		NUMBER OF PARTS	1		·			
		COST		9	8	7	10	7
		WEIGHT (VEHICLE)		9	8	7	10	7
COST	10%	LOAD IMPOSED ON VEHICLE	1					
		SIZE	1	ļ				
		WEIGHT (GROUND)	ļ.				6 2 6 Req'd10 6 4 8	

Table 5-9. Electrical Connector (Unweighted)

.

5.10 ELECTRICAL CONNECTOR EVALUATION (WEIGHTED)

A weighting factor has been applied to the relative ranking numbers assigned for each parameter shown in Table 5-10. Those parameters that have more bearing on the selection of a final concept carry the highest weighting factor.

Primary factor influencing the higher ranking of the rectangular deadface connector are: lower possibility of inflight damage, fewer required, each connector contains aligning pins, and ease of replacement of the deadface panel. Confidence in design for both the rectangular deadface and MS shell size No. 40 connectors ranked high since the former is used on Atlas, Polaris, and Poseidon and the latter on Saturn and previously on Jupiter.

5.11 DEBRIS PROTECTION (UNWEIGHTED)

The relative ranking numbers for those parameters that affect a decision on selection of the most attractive debris protection method are shown in Table 5–11. A summation with weighting factors applied is shown in Table 5–12.

5.12 DEBRIS PROTECTION (WEIGHTED)

The internally actuated poppets attained the highest relative ranking primarily due to confidence in design based on past experience. Externally actuated devices rank lowest due to additional actuation systems required. (See Table 5-12).

5.13 DEBRIS PROTECTION METHOD COMPATIBILITY

Table 5-13 is a chart that identifies the debris protection methods that are compatible with each of the couplings under consideration. An "X" indicates design compatibility while a blank indicates that the closure is not compatible with a given coupling.

5.14 BOOSTER UMBILICAL CARRIERS (UNWEIGHTED)

Table 5-14 shows the relative ranking numbers for each parameter for the concepts under consideration.

5.15 BOOSTER UMBILICAL CARRIERS (WEIGHTED)

Concept A attained the highest ranking although it ranked only 13 points above Concept C. (See Table 5-15). Both Concepts A and C are appreciably higher than Concept B. Factors contributing to the higher ranking of Concept A are: overall simplicity, lower cost, easier component refurbishment, lower connect force required, and lower loads imposed on the vehicle.

5.16 BOOSTER UMBILICAL HANDLING CONCEPTS (UNWEIGHTED)

Relative ranking numbers for each parameter for the concepts under consideration are shown in Table 5-16.

MAJOR PARAMETER	WT	SUB-PARAMETER	WT	Rectangular Deadface Connector (Cannon)	MS Shell Size #40 (Cannon)	Spherical Male, Split Sleeve Female Contacts	MS Shell #32 Pygmy	Large Round Plus (Gray & Huleguard
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)						
		VERIFICATION OF CONNECT	10	90	60	90	40	90
		ALIGNMENT REQUIREMENTS	5	45	30	50	20	35
CONNECT		ADJUSTMENT REQUIREMENTS						
AND	25%	CONNECT FORCE REQUIRED	5	40	45	50	45	40
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS	5	40	30	45	20	35
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)			·			
	ļ	PERSONNEL (CREW) REQUIRED						
		SAFETY (PERSONNEL)						
	· ·	EASE OF REPLACEMENT	10	90	50	70	60	70
		OPERATIONAL LIFE (WEAR RESISTANCE)	10	80	60	90	60	70
	1 1	ACCESSIBILITY FOR MAINTENANCE						
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT						
		LUBRICATION REQUIRED						
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)	5	50	10	45	10	30
		SIZE	5	45	40	35	50	35
		CONFIDENCE IN DESIGN (EXPERIENCE)	20	180	180	100	120	120
		REDUNDANCY PROVIDED						
		FAILURE TO CONNECT	5	40	20	45	20	35
	1	FAILURE TO DISCONNECT	10	90	80	100	80	80
RELIA BILITY	35%	FAILURE TO OPEN						
		FAILURE TO CLOSE						
		INADVERTENT CLOSURE						
		CONTAMINATION TRAPS						
		NUMBER OF PARTS						
	1	COST	8	64	72	56	80	56
		WEIGHT (VEHICLE)	2	18	16	14	20	14
COST	10%	LOAD IMPOSED ON VEHICLE	<u> </u>					
	1	SIZE						
	1	WEIGHT (GROUND)						
	1007	TOTAL	-	872	693	790		710

Table 5-10. Electrical Connector (Weighted)

MAJOR PARAMETER	WT	SUB-PARAMETER	WT	Poppets Internally Actuated	Butterfly Valves Internally Actuated	Butterfly Valves Externally Actuated	Swing Check Internally Actuated		Flex Cone & Poppet Internally	Valve Adjacent to	to	Shut-Off Valve Adjacent to Flex Line	Sleeve, Pressure Balanced Coupling
								Actuated	Actuated	Coupling	Coupling	(Ground)	Only
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)					r						
		VERIFICATION OF CONNECT		9	7	9	5	3	2	3	10	10	5
		A LIGNMENT REQUIREMENTS		8	8	5	5	3	5	10	10	10	5
CONNECT	050	ADJUSTMENT REQUIREMENTS										 	<u> </u>
AND VERIFY	25%	CONNECT FORCE REQUIRED		8	9	10	8	8	9	10	10	10	8
		POSSIBILITY OF DAMAGE TO COMPONENTS	<u> </u>	<u> </u>									·
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)	<u> </u>	10	10	5	10	10	10	9	3	3	10
		PERSONNEL (CREW) REQUIRED	<u> </u>	[<u> </u>	<u> </u>				
		SAFETY (PERSONNEL)		l								<u> </u>	
		EASE OF REPLACEMENT		9	9	8	9	8	8	9	8	8	7
	1	OPERATIONAL LIFE (WEAR RESISTANCE)		<u> </u>					 	ļ	 	<u> </u>	
		ACCESSIBILITY FOR MAINTENANCE	}_	┨							 		
MAINTAINABILITY 30	30%	EASE OF COMPONENT REFURBISHMENT	<u> </u>	9	8	7	8	8	. 7	6	6	5	6
		LUBRICATION REQUIRED		8	8	7	9	9	10	. 8	7	6	8
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)	<u> </u>	┨─────	 					 	┣───	<u> </u>	
		SIZE	╞╼╍					_					
		CONFIDENCE IN DESIGN (EXPERIENCE)	ļ	. 10	7	6	5	5	1	5	9	9	5
		REDUNDANCY PROVIDED	Į		 					ļ		 	
		FAILURE TO CONNECT		 								ļ	
		FAILURE TO DISCONNECT	<u> </u>						ļ		 		
RELIABILITY	35%	FAILURE TO OPEN		9	9	8	9	9	10	8	. 7	7	9
		FAILURE TO CLOSE		8	8	9	8	6	5	9	8	8	8
	1	INADVERTENT CLOSURE		10	10 9	8	10 9	10	10 9	8	6	6 8	10
		CONTAMINATION TRAPS	<u> </u>	9	9	8	9	8	6	8		7	9
		NUMBER OF PARTS							 =				
			┣—	9	9	5	9	8	6	6	5	.5	8
_		WEIGHT (VEHICLE)	<u> </u>				-	 		 	 		
COST	10%	LOAD IMPOSED ON VEHICLE						<u> </u>	┟		<u> </u>		
		SIZE		6	9	9	8	9	8	10	10 .	10	9
·····		WEIGHT (GROUND)	<u> </u>	7	9	4	7	8	9	5	3	3	9
	1007	TOTAL											

Table 5-11. Debris Protection (Unweighted)

				Poppets Internally Actuated	Butterfly Valves Internally	Butterfly Valves Externally	Swing Check Internally	Split Butterfly Çheck	Flex Cone & Poppet		Shut-Off Valve Adjacent	to Flex	Sleeve, Pressure Balanced
MAJOR PARAMETER	WТ	SUB-PARAMETER	WТ		Actuated	Actuated	Actuated		Internally Actuated	to Coupling	to Coupling	Line (Ground)	Coupling Only
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)											
		VERIFICATION OF CONNECT	10	90	70	90	50	30	20	30	100	100	50
		ALIGNMENT REQUIREMENTS	5	40	40	25	25	15	25	50	50	50	5
CONNECT		ADJUSTMENT REQUIREMENTS											
AND	25%	CONNECT FORCE REQUIRED	5	40	45	50	40	40	45	50	50	50	40
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS											
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)	5	50	50	25	50	50	50	45	15	15	5Ú
		PERSONNEL (CREW) REQUIRED		1									
		SAFETY (PERSONNEL)											
		EASE OF REPLACEMENT	10	90	90	80	90 -	80	80	90	80	80	70
		OPERATIONAL LIFE (WEAR RESISTANCE)		l .									
		ACCESSIBILITY FOR MAINTENANCE		Ĭ									
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT	10	90	80	70	80	80	70	60	60	50	60
		LUBRICATION REQUIRED	10	80	80	70	90	90	100	80	70	60	80
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)											
		SIZE	ا ا	1									<u> </u>
		CONFIDENCE IN DESIGN (EXPERIENCE)	15	150	105	90	75	75	15	75	135	135	75
		REDUNDANCY PROVIDED	1	1							1		1
		FAILURE TO CONNECT											
		FAILURE TO DISCONNECT		1								1	
RELIABILITY	35%	FAILURE TO OPEN	4	36	36	32	36	36	40	32	28	28	36
		FAILURE TO CLOSE	3	24	24	27	24	18	15	27	24	24	24
		INADVERTENT CLOSURE	10	100	100	80	100	100	100	80	60	60	100
		CONTAMINATION TRAPS	1	9	9	8	9	9	9	8	8	8	6
		NUMBER OF PARTS	2	18	18	16	18	16	12	16	14	14	9
		COST	5	45	45	25	45	40	30	30	25	25	40
		WEIGHT (VEHICLE)		1	1								1
COST	10%	LOAD IMPOSED ON VEHICLE		ļ							<u> </u>	1	<u> </u>
		SIZE	2	12	18	18	16	18	16	20	20	20	18
		WEIGHT (GROUND)	3	21	27	12	21	24	27	15	9	9	27
<u>, and a state of the second state of the seco</u>	100'2	TOTAL	100	895	837	718	769	721	654	708	748	728	690

Table 5-12. Debris Protection (Weighted)

*Not suitable for drain or vent

5-17

Table 5-13. D	Debris Protection	Method Con	mpatibility
---------------	-------------------	------------	-------------

			COUPLING TY	PES				
CLOSURE METHODS	Ball & Cone with Bellows Dual Ring Seal	Ball & Cone With Bellows PrimRing Seal SecSF Lip Seal	Slip-Dual SF LipSeal	Slip-Prim. Chevron & Sec.SF Lip	Press.Bal. Dual Lip Seals	Press.Bal.Conical Dual SF Lip Seals	BalläCone witn Spring, Ring Seal	Slip O-Ring
Sleeve - Press. Bal. Cpings. Only					X			·
Shutoff Valve Adj.to Flex Line (Ground)	X	X	x	x	x	X ·	x	x
Shutoff Valve Adj.to Coupling	X	X	x	x	x	X	x	x
Check Valve Adj.to Coupling*	X	X	x	x	x	X	X	x
Flex Cone & Poppet Internally Actuated			x	x		X		
Split Butterfly Check Internally Actuated	X	x	x	x				
Swing Check Internally Actuated			x	x				
Butterfly Valves Externally Actuated	X	x	x	x				
Butterfly Valves Internally Actuated	X	x	x	x				
Poppets Internally Actuated	X	X	x	x			X	x

* Not suitable for drain or vent

.

			÷	CONCEPT A	CONCEPT B	CONCEPT C
Major parameter	WT	SUB-PARAMETER	WT	Carrier Containing All Slip Couplings	Carrier Containing All Press. Balanced Couplings	Ball & Cone Couplings with Springs for Low Press., Bellows for Medium Press., Press. Balanced Couplings for Over 500 psig.
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)	·			over our pag.
		VERIFICATION OF CONNECT		9	8	9
		ALIGNMENT REQUIREMENTS		6	6	10
		ADJUSTMENT REQUIREMENTS		10	6	9
CONNECT AND	25%	CONNECT FORCE REQUIRED		10	8	6
VERIFY	~	POSSIBILITY OF DAMAGE TO COMPONENTS		7	5	10
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)				10
-		PERSONNEL (CREW) REQUIRED		9	9	10
		SAFETY (PERSONNEL)		9	9	9.
		EASE OF REPLACEMENT		8	8	10
		OPERATIONAL LIFE (WEAR RESISTANCE)				
		ACCESSIBILITY FOR MAINTENANCE				
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT		10	9	6
		LUBRICATION REQUIRED	1	10	9	9
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)				
		SIZE		10	8	9
		CONFIDENCE IN DESIGN (EXPERIENCE)		9	8	10
		REDUNDANCY PROVIDED				
		FAILURE TO CONNECT		10	6	9
-		FAILURE TO DISCONNECT		9	8	10
RELIABILITY	35%	FAILURE TO OPEN				
	1	FAILURE TO CLOSE				
		INADVERTENT CLOSURE				
		CONTAMINATION TRAPS				
		NUMBER OF PARTS				
		COST		9	6	5
		WEIGHT (VEHICLE)		9	6	10
COST	10%	LOAD IMPOSED ON VEHICLE		8	10	5
		SIZE				
		WEIGHT (GROUND)		10	9	8
	100'7	TOTAL				

Table 5-14. Booster Umbilical Carriers (Unweighted)

				CONCEPT A Carrier Containing All Slip Couplings	CONCEPT B Carrier Containing All Press. Balanced Couplings	CONCEPT C Ball & Cone Couplings with Springs for Low Press., Bellows for Medium Press., Press. Balanced Couplings for
MAJOR PARAMETER	WT	SUB-PARAMETER	WТ			Over 500 psig.
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)				
		VERIFICATION OF CONNECT	3	27	24	27
		ALIGNMENT REQUIREMENTS	5	30	30	50
CONNECT		ADJUSTMENT REQUIREMENTS	5	50	30	45
AND	25%	CONNECT FORCE REQUIRED	2	20	16	12
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS	2	14	10	20
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)				
		PERSONNEL (CREW) REQUIRED	5	45	45	50
		SAFETY (PERSONNEL)	3	27	27	27
		EASE OF REPLACEMENT	10	80	80	100
		OPERATIONAL LIFE (WEAR RESISTANCE)				
		ACCESSIBILITY FOR MAINTENANCE				
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT	10:	100	90	60
		LUBRICATION REQUIRED	5	50	45	45
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)				
		SIZE	5	50	40	45
		CONFIDENCE IN DESIGN (EXPERIENCE)	20	180	160	200
		REDUNDANCY PROVIDED				
		FAILURE TO CONNECT	5	50	30	45
		FAILURE TO DISCONNECT	10	90	80	100
RELIABILITY	35%	FAILURE TO OPEN				
		FAILURE TO CLOSE				
		INADVERTENT CLOSURE	<u>├</u> ──{			
		CONTAMINATION TRAPS				
		NUMBER OF PARTS				
	1	COST	5	45	30	25
		WEIGHT (VEHICLE)	2	18	12	20
COST	10%	LUAD IMPOSED ON VEHICLE	2	16	20	10
		SIZE			1	
		WEIGHT (GROUND)		10	9	8
· · · · · · · · · · · · · · · · · · ·	100'."	TOTAL		902	778	889

Table 5-15. Booster Umbilical Carriers (Weighted)

Table 5-16.	Booster	Umbilical	Handling	Concepts	(Unweighted))
-------------	---------	-----------	----------	----------	--------------	---

MAJOR PARAMETER	WT	SUB-PARAMETER	WT	CONCEPT #1 Fixed Elevation	CONCEPT #2 Spring Mounted Locked to Vehicle	CONCEPT #3 TSM Type
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)	5	9	10	8
		VERIFICATION OF CONNECT				
		ALIGNMENT REQUIREMENTS				
CONNECT		ADJUSTMENT REQUIREMENTS	4	8	10	5
AND	25%	CONNECT FORCE REQUIRED				
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS	3	9	10	6
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)	5	9	9	6
		PERSONNEL (CREW) REQUIRED	5	9	10	4
		SAFETY (PERSONNEL)	3	10	8	7
		EASE OF REPLACEMENT	10	9	8	10
		OPERATIONAL LIFE (WEAR RESISTANCE)				
		ACCESSIBILITY FOR MAINTENANCE	10	8	8	6
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT	7	9	9	6
		LUBRICATION REQUIRED				
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)				
		SIZE	3	8	8	4
		CONFIDENCE IN DESIGN (EXPERIENCE)	15	10	9	8
		REDUNDANCY PROVIDED			1	
		FAILURE TO CONNECT	7	9	10	. 7
		FAILURE TO DISCONNECT	10	10	9	6
RELIABILITY	35%	FAILURE TO OPEN	·			
		FAILURE TO CLOSE				
		INADVERT'ENT CLOSURE				
		CONTAMINATION TRAPS				
		NUMBER OF PARTS	3	10	8	6
		CUST	5	9	9	4
		WEIGHT (VEINCLE)	2	8	9	10
COST	10%	LOAD IMPOSED ON VEHICLE	2	10	6	9
		SIZE				
		WEIGHT (GROUND)	1	10	9	6
	100";	TOTAL				

Concept No. 1 utilizes a carrier with slip couplings mounted at a fixed elevation with a preset clearance between the carrier and the vehicle. Vehicle deflections are permitted by changes in the clearance with overtravel provided by the couplings.

Concept No. 2 utilizes a carrier that is locked to the vehicle until completion of fluid transfer. Prior to engine ignition, the latches are released and verification received. In the event of an on-pad abort, the latches are re-engaged for subsequent propellant drain.

Concept No. 3 is similar to the presently utilized Saturn V Tail Service Mast. The carrier is locked to the vehicle and incorporates primary, secondary, and tertiary release modes. Retract cylinders are pre-pressurized to provide sufficient carrier retraction to clear the vehicle in the event that boom retraction does not occur.

5.17 BOOSTER UMBILICAL HANDLING CONCEPTS (WEIGHTED)

Concept No. 1, Fixed Elevation, attained the highest ranking due mostly to higher grades for the reliability parameters. (See Table 5-17).

Concept No. 3 ranked the lowest due to system complexity, adjustment requirements, additional systems required, additional personnel required, maintenance requirements, and overall reliability.

5.18 ORBITER UMBILICAL CARRIERS (UNWEIGHTED)

This matrix shows the relative ranking numbers assigned for each parameter for the various concepts under consideration. More combinations are possible than those shown, however, those shown are considered the most compatible without undue duplication. (See Table 5-18).

5.19 ORBITER UMBILICAL CARRIERS (WEIGHTED)

Concept C attained the highest relative ranking primarily due to past successful experience with ball and cone couplings and their inherent capability of self-alignment while requiring minimum engagement. The gear drive method of connection requires a minimum of additional tools and/or equipment and provides positive alignment during the connection and engagement cycle. The collet locking and release device has a proven history of reliable operation with little wear and minimum refurbishment. Concept C with the 4-ball male locking and release device and Concept A utilizing the gear drive connect are still considered acceptable but do not incorporate as many desirable features as Concept C with the collet. (See Table 5-19).

· · ·				CONCEPT #1 Fixed Elevation	CONCEPT #2 Spring Mounted	CONCEPT #3 TSM Type
MAJOR PARAMETER	WT	SUB-PARAMETER	WT	FIXED Elevation	Locked to Vehicle	ISM Type
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)		45	50	40
		VERIFICATION OF CONNECT				
		ALIGNMENT REQUIREMENTS				
CONNECT		ADJUSTMENT REQUIREMENTS		32	40	20
AND	25%	CONNECT FORCE REQUIRED				
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS		27	30	18
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD. ELECT)		45	45	30
		PERSONNEL (CREW) REQUIRED		45	50	20
		SAFETY (PERSONNEL)		30	24	21
		EASE OF REPLACEMENT		90	80	100
•	·	OPERATIONAL LIFE (WEAR RESISTANCE)				
	1	ACCESSIBILITY FOR MAINTENANCE		80	80	60
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT		63	63	42
		LUBRICATION REQUIRED		÷		
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)				
		SIZE		24	24	12
		CONFIDENCE IN DESIGN (EXPERIENCE)		150	135	120
		REDUNDANCY PROVIDED				
		FAILURE TO CONNECT		63	70	49
		FAILURE TO DISCONNECT		100	90	60
RELIA BILITY	35%	FAILURE TO OPEN				
		FAILURE TO CLOSE				
		INADVERTENT CLOSURE				
		CONTAMINATION TRAPS				
		NUMBER OF PARTS		30	24	18
		COST		45	45	20
		WEIGHT (VEHICLE)		16	18	20
COST	10%	LOAD IMPOSED ON VEHICLE		20	12	18
		SIZE				
		WEIGHT (GROUND)		10	9	6
	100%	τοτλι		915	889	674

Table 5-17. Booster Umbilical Handling Concepts (Weighted)

				CONCI Carrier C All Slip C Collet Lock	Containing Couplings	CONCEPT B Carrier Containing All Press. Balanced Couplings. Pneu Connect w/Ball Lock	CONCEPT C Ball & Cone Couplings with Springs for Low Press., Bellows for Medium Press Press. Balanced Couplings for Over 500 psig.		
MAJOR PARAMETER	WT	SUB-PARAMETER	WT	Gear Drive Connect	Pneumatic Connect		Gear Drive Ball Lock	for <u>Connect</u> Collet	
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)		10	6	6	10	10	
		VERIFICATION OF CONNECT		9	9	8	10	10	
		ALIGNMENT REQUIREMENTS	T	6	6	5	10	10	
CONNECT		ADJUSTMENT REQUIREMENTS	1	9	6	6	9	y	
AND	25%	CONNECT FORCE REQUIRED		10	10	8	6	6	
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS		8	4	4	9	9	
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD. ELECT)	,	9	6	6	9	9	
•	1	PERSONNEL (CREW) REQUIRED	1	10	5	5	· 8	10	
		SAFETY (PERSONNEL)		10	8	8	8	8	
		EASE OF REPLACEMENT		7	8	8	7	7	
•		OPERATIONAL LIFE (WEAR RESISTANCE)	1					1	
AINTAINABILITY 30		ACCESSIBILITY FOR MAINTENANCE						<u> </u>	
	30%	EASE OF COMPONENT REFURBISHMENT	-	6	8	8	7	7	
		LUBRICATION REQUIRED		8	7	7	8	8	
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)	1						
		SIZE	1	ε	10	7	8	8	
		CONFIDENCE IN DESIGN (EXPERIENCE)		8	6	6	9	10	
		REDUNDANCY PROVIDED		1					
		FAILURE TO CONNECT	1	· ·		······································			
		FAILURE TO DISCONNECT		9	7	7	9	10	
RELIABILITY	35%	FAILURE TO OPEN							
		FAILURE TO CLOSE	1						
		INADVERTENT CLOSURE	1		1		-		
		CONTAMINATION TRAPS			+			<u> </u>	
		NUMBER OF PARTS							
		COST	1	8	9	4	7	. 7	
		WEIGHT (VEHICLE)	1	9	10	7	8	8	
COST	10%		1	· · ·	1			1	
- ••		SIZE	1	1	1		-	1	
		WEIGHT (GROUND)	1		1				
	100%	TOTAL			1				
	100%		<u> </u>	<u>A</u>	L		<u></u>	<u> </u>	

Table 5-18. Orbiter Umbilical Carriers (Unweighted)

				CONCE Carrier Co All Slip Co Collet Lock	ntaining uplings	CONCEPT B Carrier Containing All Press. Balanced Couplings. Pneu Connect w/Ball Lock.	Ball & Cone C Springs for La	ow Press., ledium Press. ced Couplings
MAJOR PARAMETER	WT	SUB-PARAMETER	WT	Gear Drive Connect	Pneumatic Connect		Gear Drive Ball Lock	for Connect Collet
······································		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)	5	50	30	30	50	50
		VERIFICATION OF CONNECT	3	27	27	24	30	30
		ALIGNMENT REQUIREMENTS	2	12	12	10	20	20
CONNECT		ADJUSTMENT REQUIREMENTS	2	. 18	12	12	18	18
AND	25%	CONNECT FORCE REQUIRED	. 2	20	20	16	12	12
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS	2	16	8	8	18	18
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)	2	18	12	12	18	18
•		PERSONNEL (CREW) REQUIRED	5	50	25	25	40	50
		SAFETY (PERSONNEL)	2	20	16	16	16	16
		EASE OF REPLACEMENT	10	70	80	80	70	70
•		OPERATIONAL LIFE (WEAR RESISTANCE)						
AINTAINABILITY		ACCESSIBILITY FOR MAINTENANCE				······································		
	30%	EASE OF COMPONENT REFURBISHMENT	10	60	80	80	70	70
		LUBRICATION REQUIRED	5	40	35	35	40	40
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)						
		SIZE	5	40	50	35	40	40
		CONFIDENCE IN DESIGN (EXPERIENCE)	20	160	120	120	180	200
		REDUNDANCY PROVIDED						·
		FAILURE TO CONNECT						
	1	FAILURE TO DISCONNECT	15	135	105	105	135	150
RELIA BILITY	35%	FAILURE TO OPEN				· · · ·		
		FAILURE TO CLOSE						
	1	INADVERTENT CLOSURE						
		CONTAMINATION TRAPS						
•		NUMBER OF PARTS						
		COST	7	56	63	28	49	49
		WEIGHT (VEHICLE)	3	27	30	21	24	24
COST	10%	LOAD IMPOSED ON VEHICLE						
		SIZE						
		WEIGHT (GROUND)				<u>.</u>		
	100%	TOTAL		819	725	657	830	875

Table 5-19. Orbiter Umbilical Carriers (Weighted)

5.20 ORBITER UMBILICAL HANDLING CONCEPTS (UNWEIGHTED)

The relative ranking numbers for each parameter for the concepts under consideration are shown in Table 5-20. The summation of ranking numbers with weighting factors applied is shown on the following matrix.

5.21 ORBITER UMBILICAL HANDLING CONCEPTS (WEIGHTED)

The highest ranking was attained by Concept No. 2, the counterbalanced boom. This concept ranked considerably higher than the next highest due to its overall simplicity. (See Tab 5-21).

5.22 HANDLING SYSTEM/COMPONENT COMPATIBILITY

Table 5-22 identifies the components that are compatible with each of the umbilical carrier handling concepts. An "X" indicates design compatibility while a blank indicates that the component is not compatible with a given handling system.

					EPT #1 ble Boom	CONCEPT #2 Counter Balanced Boom	CONCE Platform Mounted	
MAJOR PARAMETER	WT	SUB-PARAMETER	WT	Twin Cyl	Single Cyl		Attached Cyl	Free Cyl
		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)		8	8	10	7	7
		VERIFICATION OF CONNECT						
		ALIGNMENT REQUIREMENTS						
CONNECT		ADJUSTMENT REQUIREMENTS		7	7	9	6	6
AND	25%	CONNECT FORCE REQUIRED			•			
VERIFY		POSSIBILITY OF DAMAGE TO COMPONENTS		6	6	8	9	9
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)		6	7	9	7	7
		PERSONNEL (CREW) REQUIRED		6	6	8	8	8
		SAFETY (PERSONNEL)		7	7	9	8	8
		EASE OF REPLACEMENT		4	4	8.	10	10
		OPERATIONAL LIFE (WEAR RESISTANCE)						
		ACCESSIBILITY FOR MAINTENANCE		6	6	7	10	
MAINTAINABILITY	30%	EASE OF COMPONENT REFURBISHMENT		8	9	10	6	6
		LUBRICATION REQUIRED						-
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)						
· · · · · · · · · · · · · · · · · · ·		SIZE		7	6	10	8	9
		CONFIDENCE IN DESIGN (EXPERIENCE)		9	9	7	4	6
		REDUNDANCY PROVIDED		10	5	10	8	8
		FAILURE TO CONNECT						
		FAILURE TO DISCONNECT		9	6	10	5	5
RELIABILITY	35%	FAILURE TO OPEN						
		FAILURE TO CLOSE				ľ		
		INADVERTENT CLOSURE			_			
		CONTAMINATION TRAPS						
		NUMBER OF PARTS						
		COST		8	9	10	7	7
		WEIGHT (VEHICLE)						
COST	10%	LOAD IMPOSED ON VEHICLE		10	10	8	6	7
		SIZE						
		WEIGHT (GROUND)		6	6	10	8	8
	1007	тотаl						

Table 5-20. Orbiter Umbilical Handling Concepts (Unweighted)

.

		_		CONCEPT #1 Retractable Boom		CONCEPT #2 Counter Balanced Boom	CONCEPT #3 Platform Mounted Retracting Arm	
MAJOR PARAMETER	WТ	SUB-PARAMETER	WТ	Twin Cyl	Single Cyl		Attached Cyl	Free Cyl
CONNECT AND VERIFY		TIME REQ'D TO CONNECT UMBILICAL (INCLUDING PREP)	5	40	40	50	35	35
		VERIFICATION OF CONNECT						
		ALIGNMENT REQUIREMENTS						
		ADJUSTMENT REQUIREMENTS	Ŀ	35	35	45	30	30
	25%	CONNECT FORCE REQUIRED						
		POSSIBILITY OF DAMAGE TO COMPONENTS	3	18	18	24	27	27
		ADDITIONAL SYS REQ'D FOR CONNECT (PNEU, HYD, ELECT)	4	24	28	36	28	28
		PERSONNEL (CREW) REQUIRED	5	30	30	40	40	40
		SAFETY (PERSONNEL)	3	21	21	27	24	24
		EASE OF REPLACEMENT	5	20	20	40	50	50 ·
MAINTAINABILITY		OPERATIONAL LIFE (WEAR RESISTANCE)						
	30%	ACCESSIBILITY FOR MAINTENANCE	16	60	60	70	100	90
		EASE OF COMPONENT REFURBISHMENT	10	· 80	90	100	60	60
		LUBRICATION REQUIRED						
		TEMPERATURE RANGE (POSSIBILITY INFLIGHT DAM)						
		SIZE	5	35	30	50	40	45
		CONFIDENCE IN DESIGN (EXPERIENCE)	15	135	135	105	60	90
		REDUNDANCY PROVIDED	10	100	50	100	80	80
		FAILURE TO CONNECT			1			
	35%	FAILURE TO DISCONNECT	10	90	60	100	50	50
RELIABILITY		FAILURE TO OPEN						
		FAILURE TO CLOSE						<u> </u>
		INADVERTENT CLOSURE						
		CONTAMINATION TRAPS						
		NUMBER OF PARTS						
COST	10%	COST	5	40	45 -	50	35	35
		WEIGHT (VEHICLE)						
		LOAD IMPOSED ON VEHICLE	4	40	40	32	24	28
		SIZE	[
		WEIGHT (GROUND)	1	6	6	10	8	8
	100%	TOTAL	100	774	708	879	691	720

Table 5-21. Orbiter Umbilical Handling Concepts (Weighted)

×. .

Түре	COMPONENTS	ORBITER			BOOSTER		
		#1	#2	#3	#1	#2	• #3
	Concept A Carrier Containing Slip Couplings	x	x	x	x	x	
Carriers	Concept B Carrier Containing Pressure Balanced Couplings	Х	X	X		X	X
	Concept C Carrier Containing Ball & Cone Couplings	Х	X	X	X	X	X
	Rectangular Deadface Connector				X	X	X
Electrical	MS Shell Size #40		·		X	X	X
Connectors	Spherical Male, Split Sleeve Female Contacts				X	. X	X
	MS Shell Size #32 Pygmy				X	X	X
	Large Round Plug (Gray & Huleguard)				X	X	X
	4 Ball Lock Male	Х	X	X		Х	Х
Locking Devices	Toggle Lock	х	X	x		x	х
	Finger Lock	X	X	х		х	x
	Hook Latch					х	X
	Collet Lock	Х	X	X		Х	Х
	Ball Lock, Female	Х	X	Х		Х	Х
	Spring Latch	X	X	X		X	Х
	Ball & Cone with Bellows, Dual Ring Seal	X	Х	X	x	Х	Х
Couplings	Ball & Cone with Bellows, Prim. Ring Seal, Sec. SF Lip Seal	X	Х	X	X	Х	Х
	Slip-Dual SF Lip Seal	х	Х	x	x	X	X
	Slip-Prim. Chevron, Sec. SF Lip Seal	x	X	x	x	X	Х
	Pressure Balanced-Dual Lip Seals	X	x	x		x	х
	Pressure Balanced-Conical with Dual SF Lip Seals	X	X	X		X	X
	Ball & Cone with Spring, Single Ring Seal	X	Х	x	X	х	X
	Slip-Single O-Ring	х	X	х	х	х	X

Table 5-22. Handling System / Component Compatibility

,

SECTION 6

SELECTED CONCEPT REQUIREMENTS DEFINITION

Table 6-1 contains a summary of the various weighted evaluation factors from the tradeoff matrices in Section 5. The single asterisk * indicates the various concepts selected to be included into the space shuttle booster fuel riseoff disconnect panel conceptual design and the double asterisk ** indicates the various concepts selected to be incorporated into the orbiter umbilical conceptual design. The following paragraphs present a brief specification outline for the selected concept. Note that it has been described primarily for a space shuttle B9U booster and 161C orbiter configuration and has not been updated to agree with the most current space shuttle configurations.

6.1 SELECTED BOOSTER CONCEPT DEFINITION

The following paragraphs give a description of the salient features of the selected booster umbilical concept. Appendix A lists the drawings which have been prepared to detail this concept. Note that these drawings have been prepared to design a prototype of the concept for testing the handling and verification concepts only. As such, the design is not directly useable for a vehicle design but must be adapted to the specific application desired.

6.1.1 <u>HANDLING CONCEPT</u>. Selected for definition is Concept No. 1 which is a riseoff type with a fixed elevation carrier, and elevated by worm screw actuators.

Altomata Concenta	Weighted Evaluation Factor
Alternate Concepts	r actor
RYOGENIC COUPLINGS	
Ball and cone with bellows and dual ring seal	888**
Ball and cone with bellows, primary-ring seal and secondary-self forming (SF) lip seal	838
Slip with Dual SF lip seal	831*
Slip with primary-chevron secondary-SF lip seal	717
Pressure balanced-dual lip seals	663
Semi pressure balanced (conical) dual SF lip seals	615

Table 6-1. Weighted Evaluation Summary of Tradeoff Matrices

•

Alternate Concepts	Weighted Evaluation Factor
HIGH PRESSURE PNEUMATIC AND HYDRAULIC COUPLINGS	
Slip with dual SF lip seal	793
Slip with primary-chevron secondary-SF lip seal	631
Pressure balanced-dual lip seals	684
Slip with dual O-ring seals	984* **
LOW PRESSURE PNEUMATIC, H ₂ O, GLYCOL AND J-P COUPLING	S
Ball and cone with bellows and dual ring seal	913
Ball and cone with bellows, pri-ring seal secondary- SF lip seal	766
Slip with dual SF lip seal	738
Slip with primary-chevron secondary SF lip seal	648
Ball and cone with spring, ring seal	916**
Slip with dual O-ring seals	945*
LOCKING AND RELEASE DEVICE	
4-ball lock, male	925
Toggle lock	801
Finger lock	774
Hook latch	837
Collet lock	971**
Ball lock, female	769
Spring latch	642
ELECTRICAL CONNECTOR	
Rectangular Deadface Connector (Cannon)	872*
MS Shell Size No. 40 (Cannon)	693

Table 6-1. Weighted Evaluation Summary of Tradeoff Matrices, Continued

	Weighted Evaluation
Alternate Concepts	Factor
Spherical Male, Split Sleeve Female Contacts	790
MS Shell Size No. 32 (Pygmy)	625
Large Round Plug (Gray and Huleguard)	710
DEBRIS PROTECTION	
Poppets, internally actuated	895* **
Butterfly valves, internally actuated	837
Butterfly valves, externally actuated	718
Swing check, internally actuated	769
Split butterfly check, internally actuated	721
Flex cone and poppet, internally actuated	654
Check valve adjacent to coupling	708
Shut-off valve adjacent to coupling	748
Shut-off valve adjacent to flex line (ground)	728
Sleeve, pressure balanced coupling only	690
BOOSTER UMBILICAL CARRIERS	
Concept A - All slip couplings	902*
Concept B - All pressure-balanced couplings	778
Concept C - Ball and cone couplings with springs for low press, bellows for medium press and pressure-balanced couplings for over 500 psig	889
	000
BOOSTER UMBILICAL HANDLING CONCEPTS	
Concept 1 – Fixed elevation	915*
Concept 2 – Spring mounted locked to vehicle	889
Concept 3 – Tail service mast type	674

Table 6-1. Weighted Evaluation Summary of Tradeoff Matrices, Continued

٠

.

Alternate Concepts	Weighted Evaluation Factor
ORBITER UMBILICAL CARRIERS	
CONCEPT A - All slip couplings - collet lock	
Gear drive connect	819
Pneumatic connect	725
CONCEPT B - All pressure balanced couplings, pneumatic connect, ball lock	657
CONCEPT C - Ball and cone coupling with springs for low press and bellows for medium press, pressure balanced for over 500 psig gear drive for connect	
Ball lock	830
Collet	875**
ORBITER UMBILICAL HANDLING CONCEPTS	
CONCEPT 1 – Retractable boom	
Twin cylinder	774
Single cylinder	708
CONCEPT 2 - Counter-balanced Boom	87 9* *
CONCEPT 3 – Platform mounted retracting arm	
Attached cylinder	691
Free cylinder	720

Table 6-1. Weighted Evaluation Summary of Tradeoff Matrices, Continued

This booster fuel umbilical disconnect concept is characterized primarily by the direction of disconnect motion, the method of accommodating vehicle relative motion, and the method of accommodating the loads generated by the fluid system pressures.

The umbilical couplings (for fluid and electrical services) are disconnected vertically in the direction of flight and as a direct result of vehicle motion. The ground half will remain at a fixed elevation and the vehicle half will rise with the vehicle and separate during liftoff. During the extended time interval after the umbilical couplings have been mated until the vehicle is launched, the vehicle half of the couplings will be subjected to relative motion with respect to the fixed portion of the launcher. This motion has been established arbitrarily as ± 2 inches horizontally in any direction from the nominal position and ± 1 inch vertically from the nominal position. The horizontal motion will be accommodated by allowing the ground half of the coupling to move horizontally to track the vehicle. The relative motion between the ground half of the couplings and the fixed ground system will be accommodated by flex joints, flex hoses, or electrical cables.

For the fluid and gas couplings, the vertical relative motion of the vehicle half is accommodated by a sliding seal between the coupling halves. While the vehicle half is allowed to move up and down due to vehicle motion, the ground half will remain at a fixed elevation. For the electrical couplings, the vertical relative motion of the vehicle half will be accommodated by spring-loading the ground half of the coupling against the vehicle half. The spring load must be large enough to overcome the dynamic loading due to engine generated noise and vibration.

The pressures internal to the fluid and gas couplings generate a force on the piston area of the sliding seal and tend to force the two coupling halves apart. Upward motion of the vehicle half is to be restrained by the vehicle mass and structure. Downward motion of the ground half is to be restrained by structural supports from the ground. None of the vertical upward load on the vehicle is to be restrained by locks adjacent to the coupling(s) or carrier in order to alleviate vehicle structural loading. Incorporation of load relief locking devices would introduce an additional failure mode during launch.

6.1.2 <u>CARRIER CONCEPT</u>. Concept A is a carrier containing all slip couplings and rectangular deadface electrical connectors, not locked to the vehicle. This carrier concept is essentially inherent in the handling concept as described in paragraph 6.1.1.

Freedom of lateral motion for the ground carrier will be provided by four parallel compression struts. The nominal position of the carrier will be maintained by four tension type springs.

The ground carrier shall incorporate alignment pins that will engage with mating funnel fittings on the vehicle carrier. These alignment pins will reorient the ground carrier to align with the initial lateral mislocation of the vehicle. The design of the pins shall be such as to assure that the ground carrier is aligned with the vehicle carrier to within ± 0.050 inch prior to the point in the vertical travel that any of the vertical couplings start to engage. Each of the couplings shall incorporate self-alignment provisions and shall be mounted in the ground carrier to ensure proper engagement from an initial misalignment of ± 0.050 inches laterally and ± 1 degree angular misalignment. The electrical connectors must also provide for rotational misalignment.

6.1.3 <u>SCREW JACK ELEVATING MECHANISM</u>. The screw jack elevating mechanism serves the following purposes:

- a. It allows the ground halves of the couplings (mounted in the ground carrier) to be retracted, or lowered, out of the way during the time that the booster is being installed on the launch support pedestals. A nominal 12 inches of motion has been assumed.
- b. It allows the ground halves of the couplings (all at the same time) to be rapidly engaged, or raised, under power and local manual control.
- c. It provides the support for the ground carrier and couplings to maintain them at the proper fixed elevation during vehicle relative motion and during the loading applied by the fluid and gas pressures internal to the slip couplings.

6.1.4 <u>PROTECTIVE BLAST DOOR (GROUND</u>). This door (or doors) will be actuated by a ground pneumatic system after the vehicle has risen to an altitude sufficient to provide clearance for door movement. The door(s) outer surface will have sufficient structural and thermal integrity to withstand the direct impingement of the engine exhaust during the launch transient. The door(s) must be closed completely before the vehicle has risen to an altitude sufficient for direct exhaust impingement on the umbilical couplings.

6.1.5 <u>PROTECTIVE DOOR (VEHICLE</u>). This door (or doors) will be actuated by a vehicle system after the vehicle has risen to an altitude sufficient to provide clearance for door movement. The door(s) will have sufficient structural and thermal integrity to withstand the environment to be encountered during the vehicle flight and recovery.

6.1.6 <u>CRYOGENIC COUPLINGS</u>. The single cryogenic coupling in this panel will be nominal 10-inch size liquid hydrogen coupling and will have a 90 psig operating pressure. It will be a slip coupling having a sliding seal piston area of approximately 50 square inches (8-inch diameter). It will have dual self-forming lip seals similar to the Atlas 11 inch liquid oxygen staging disconnect. It will have a tertiary seal to contain a gaseous helium purge adjacent to the dual seals. This helium purge will prevent cryopumping and ice buildup on the sliding seal surface.

This coupling will be vacuum-jacketed and will not require the application of additional insulation after is is connected. The volume between the dual lip seals will be vented through a tubing connection on the ground side. This vent tubing will be monitored during verification of the connect phase when the coupling will be pressurized internally with gaseous helium or gaseous nitrogen. The acceptable amount of gas leaking out through the dual seal vent line will be established to provide a verification acceptance criteria. During actual liquid hydrogen transfer through this coupling, the volume between the dual seals will be vented to the gaseous hydrogen burn pond via a ground vent manifold system.

The coupling will also provide mounting provisions for an ultrasonic leak detector contact transducer. The acceptable amount of ultrasonic energy produced by a leaking seal during the verification phase will also be established. One, or both, verification acceptance systems may be used for connect verification. Neither one will be used during the propellant transfer operation.

While it is recognized that the tendency is normally toward more and more instrumentation of a launch operation, it is suggested that having too many measurements carries the risk of aborting due to erroneous indications as well as requiring considerable expense for maintenance. It is further suggested that a better approach for verifying couplings is to conduct a design evaluation and qualification test program of sufficient scope to justify confidence in the disconnects and carrier systems once it is verified that they have been properly engaged. With a design which conducts primary seal leakage to a safe disposal, and with confidence that the systems were properly engaged, neither ultrasonic nor telltale flow instrumentation should be required during the actual transfer operations.

Both halves of the disconnect will incorporate internal poppets for protection of the system from airborne debris during the launch, flight, and recovery operations. These debris poppets will be spring-loaded to the closed position and will be opened automatically by the engagement of the two coupling halves. The poppets will close automatically as the two couplings are separated.

The mounting provisions for the ground half of the coupling and the attached vacuum jacketed duct will allow some slight lateral and angular motion with respect to the ground carrier to assure that the coupling halves will align during engagement and disengagement. The vehicle half of the coupling will be rigidly attached to the vehicle carrier.

The ground carrier is mounted on a parallelogram linkage consisting of vertical compression struts. This linkage allows lateral freedom in any direction while keeping the ground carrier nominally parallel to the vehicle carrier. Because the compression struts move in an arc, the ground carrier is lowered very slightly as it is deflected from its neutral position. Before the ground carrier is driven up into engagement with the vehicle carrier it is spring loaded to the neutral position.

As the ground carrier is driven up to engagement, the first contact is made by the carrier alignment pins on the ground carrier(2) with the carrier alignment funnels on the vehicle carrier. If the vehicle carrier is located at the nominal position, then the pins will engage the centerline of the funnel without a camming action. If, however, the vehicle carrier has some initial misalignment (horizontal mislocation) then the pins (tapered) will contact the side of the funnel first. As the ground carrier continues being driven upward, the tapered pin is cammed sidewise by the funnel on the vehicle carrier to bring the tapered pin into alignment with the funnel centerline. As the ground carrier is cammed sidewise the centering springs are being deflected from the

neutral position. The cylindrical portion of the tapered pins will enter the cylindrical portion of the funnel throat prior to the elevation required for any of the couplings to contact initially. Thus the 10 inch liquid hydrogen ground coupling half will be automatically course aligned with the vehicle half just prior to initial contact.

Initial contact of the ground coupling will be the tapered leading edge of the male ground half with the teflon funnel on the vehicle half. The camming action of the tapered leading edge and funnel will realign the ground half, as required, to provide proper coupling engagement as the carrier is driven upward to the neutral (or nominal)position. The ground coupling can slide sidewise slightly on either of the gimbal block bushings. The gimbal block bushings, in conjunction with the three gimbal joints in the liquid hydrogen vacuum-jacketed duct, will allow slight angular reorientation to assure that the cylindrical sections of the ground and vehicle halves of the couplings can engage and disengage without binding. The ground half of the coupling is spring-loaded to the neutral position prior to contact. The nature of the self forming lip seals is such as to be forgiving with respect to small out-of-roundness and centerline angular misalignment. There is ample metal-to-metal clearance and the lip seals are flexible.

6.1.7 HIGH PRESSURE PNEUMATIC COUPLINGS (GASEOUS HELIUM AND GASEOUS HYDROGEN). These couplings will be slip couplings and will have a 1-inch seal piston diameter. The gaseous helium disconnect will be rated for 3700 psig operating pressure and the gaseous hydrogen coupling will be rated for 1000 psig operating pressure.

Both couplings will incorporate dual O-ring seals. The volume between the dual seals will be vented through the ground side to provide a leakage telltale function during the verification phase (immediately after engagement). For the gaseous hydrogen coupling, the seal cavity vent line will be vented to the hydrogen burn pond vent manifold. For the gaseous helium coupling seal, cavity vent will be capped in order to force the secondary seal to act as a redundant seal rather than acting as a diverter to force a hazardous media (hydrogen) to leak into a safe disposal path. The gaseous helium dual O-ring seal cavities will be designed to avoid seal failure or damage due to high pressure gas trapped between the seals. The primary purpose of the back-up of the backup seal in the helium slip coupling is to force the leak detection tracer gas to flow out through the measurement telltale. Since the helium leakage, if any, can be safely vented to the ambient surroundings of the coupling, a safe disposal vent is not required. Given these facts, then it is very easy to make the back-up seal act as a true redundant seal simply by putting a cap on the cavity vent line.

These couplings should not be cold enough to cryopump oxygen or nitrogen out of the ambient air, but frost or ice build-up may become a consideration. Ice scraper rings may be required.

Mounting provisions for an ultrasonic leak detector contact transducer will be incorporated into each coupling. These couplings will incorporate debris poppets and alignment provisions as described for the cryogenic couplings.

6.1.8 <u>FUEL (JP-5) COUPLING</u>. This coupling will be a 3-inch slip coupling with dual O-ring and a 150 psig rating. The volume between the dual seals will be vented to the ground side as a leakage telltale during a verification and will be routed to a safe disposal accumulator during the JP-5 transfer operation.

This coupling will incorporate debris poppets, alignment mounting provisions and ultrasonic leak detector contact transducer mounting provisions as described for the cryogenic coupling.

6.1.9 VEHICLE CAVITY PURGE GN₂ COUPLING. This coupling will be a 4-inch diameter slip coupling with a single O-ring seal and will be rated for 150 psig. It will incorporate debris poppets, alignment mounting provisions, and ultrasonic leak detector contact transducer mounting provisions, same as described for the cryogenic coupling.

6.1.10 <u>HYDRAULIC SYSTEM PRESSURE AND RETURN COUPLINGS</u>. These couplings will be similar to the JP-5 coupling except they will be 2-inches in diameter and will be rated for 3000 psig operating pressure.

6.1.11 <u>ELECTRICAL GROUND POWER CONNECTOR</u>. Two separate 400 Hz, 3 phase power circuits will be routed through a single Cannon-type rectangular faced connector. This connector will be an adaption of the Atlas type connector to delete the solenoid-release spring-eject feature and make it suitable for use with a ground carrier. It will incorporate the springs necessary to keep it connected while accommodating the \pm 1.0 inch of vertical relative motion.

The mounting provision to the carrier must allow for the ± 0.050 inch self alignment capability while only permitting a small amount (± 30 minutes) of angular travel. The alignment pins in the connector faceplate must provide the automated alignment laterally and rotationally as the ground carrier is raised into the nominal position.

Each of the two 3-phase circuits will consist of four No. 2-0 wires. The current through the connector will be carried by bussed No. 12 pins. Nine adjacent No. 12 pins will be bussed together to provide a No. 2-0 solder pot for the power cables.

The electrical disconnect back-shell and faceplate will be purged with a positive gaseous nitrogen pressure. The back-shell will incorporate Kellem grip strain relief.

6.1.12 <u>DATA BUS ELECTRICAL CONNECTOR</u>. The data bus electrical connector shall be separate from the electrical ground power connector. The minimum requirements are for a quantity of 12 Number 12 pins. This will be provided either by a shell size 40 MS series connector or by an additional rectangular connector. The MS series

connector proposed for use incorporates shells specially modified for automatic alignment as the ground carrier is raised to the nominal position. The temperature rating of the insert material may prove to be too much of a handicap.

If the MS series is used, it will provide adequate spares. If the Cannon rectangular connector is used, it will provide more than adequate spares.

This connector will incorporate carrier mounting alignment provisions and gaseous nitrogen purge provisions as described for the electrical power connector.

6.2 SELECTED ORBITER CONCEPT DEFINITIONS

The following paragraphs give a description of the salient features of the selected orbiter integrated umbilical carrier concept. Appendix B lists the drawings which have been prepared to detail this concept. Note that these drawings have been prepared to design a prototype for testing of the handling and verification concepts only. As such, the design is not directly useable for a vehicle design but must be adapted to the specific application desired.

6.2.1 <u>HANDLING CONCEPT</u>. The handling concept selected for the orbiter umbilical carrier is the counterbalanced boom. In a manner similar to a desk lamp, the boom supporting the ground carrier is counterbalanced with springs to the extent necessary to take the dead weight of the carrier, couplings and hoses. With this boom properly adjusted, the carrier will seek the nominal installed position. The installing personnel will only have to overcome the friction brake on the main boom to engage the lower two spherical end guide pins. Further force will then be required to rotate the carrier on the lower guides until the collet lock is engaged. Positive visual indication of collet engagement is provided by the release pin when it is allowed to engage the expanding collet fingers.

Ease of handling of the carrier may be further enhanced by using a spring suspension support for the flex hoses at approximately mid-span. This will reduce the tendency of the carrier to tip away from the vehicle thereby reducing the effort required of the installing personnel. The design drawings do not reflect this suspension system as it would be easier to determine the requirements on a working prototype system.

Note that this handling concept does not require any auxiliary power or supporting systems to line up the ground carrier and engage the collet locking device. The task can very likely be done by one person, certainly by not more than two. When the release pin snaps into position there is no possible doubt that the lock has been properly engaged.

The counterbalanced boom also provides the forces necessary to retract the carrier from the vehicle after it has been released and ejected. The tip boom balancing cylinder (spring balanced) will be pressurized in the center with 750 psig GN_2 at the time of carrier release. The resulting thrust load will cause the tip boom to swing down and away from the vehicle.

At the same time, the main boom spring-loaded balancing cylinders (2) will be pressurized with 750 psig GN_2 . These cylinders will cause the main boom to swing up and away from the vehicle. The combined action of the two booms will provide more than adequate clearance from the vehicle for the swing arm to rotate away from the vehicle path. Any one of the three cylinders will provide enough clearance for the swing arm to rotate.

A back-up system to the primary release kick-off and retract system is provided by a pneumatically-actuated lanyard. The direction of pull for the lanyard is directly away from the vehicle and slightly above the centerline of the ground umbilical carrier. The lanyard is attached to the collet locking mechanism release pin. If none of the primary release system is functional, the backup lanyard will:

- 1) pull the collet lock release pin, thus unlocking the lock,
- 2) perform the kick-off function of clearing the ground carrier from the vehicle carrier, and
- 3) retract the ground carrier far enough to provide clearance for rotating the swing-arm to its retracted position.

6.2.2 <u>CARRIER CONCEPT</u>. The selected concept is Concept C and is described as using ball and cone couplings with springs for low pressure and bellows for medium pressure and pressure-balanced slip couplings for pressures over 500 psig. It is further described as having a collet locking device and a gear drive for connection (pulling the carriers together after the collet is engaged).

The foremost features of this carrier concept are the gear-drive collet locking-device with the coupled gear drive guide pins. Prior to attempting to engage the ground carrier with the vehicle carrier, the collet lock and the four corner guide pins are extended from the face of the ground carrier 2 1/2 inches. It is verified that the collet is cocked and ready for engagement and that the release pin is extending from the rear of the locking device.

When the carrier is properly positioned with any two of the guide pins in their spherical seats, the carrier may be rotated around those two guide pins until the collet has entered the locking ring on the vehicle carrier. As soon as the collet is through the locking ring, the collet fingers will spread, allowing the spring loaded release pin to slide down between the fingers, locking the collet until the release pin is withdrawn. At this point, none of the couplings have started to engage. Thus, the installing personnel do not have to provide the effort necessary to overcome the spring rates and seal friction of the couplings. The gear drive mechanism must be used to pull the ground carrier up to the vehicle carrier to engage the couplings.

The coupled (synchronized) gear drive mechanism is powered manually with a standard universal (flexible) drive socket with an extended speed-handle (crank-not ratchet). Approximately 300 turns of the crank are required to move the carrier in the 2 1/2 inches to full engagement. As the gear drive mechanism on the collet locking device pulls the ground carrier up to the vehicle carrier, the four corner guide pins are being pulled back into the carrier at the same rate. The carrier plates are thus held parallel as the engaging forces of the couplings attempt to force them out of alignment. At full engagement, the surrounding skirt of the ground plate and its interior compartment walls will be sealed against the flat surface of the vehicle carrier. These walls and skirts will form the separately purged compartments.

Note that this carrier gear drive engaging mechanism does not require any auxiliary power or supporting systems to engage the couplings and pull the carrier plates together. This task can be accomplished by one person in four to five minutes.

To release the collet locking device 750 psig GN_2 will be used to pull the collet release pin. The pneumatic pressure will be supplied to the cylinder through redundant ports, check valves, hoses, solenoid valves and reservoirs. The four corner guide pins also incorporate kick-off pistons and will be pressurized with 750 psig GN_2 which is routed to the kick-off cylinders from separate ports connected to the release pin cylinder. Thus, the pressure must be applied to the release cylinder before the kick-off cylinders can be pressurized. This assures that the collet will be unlocked before the kick-off cylinders apply additional load to the collet making it more difficult to unlock.

The carrier may be manually disconnected from the vehicle if desired by reversing the connection procedure using the gear drive.

Another feature of the carrier and coupling design is that an individual coupling may be removed from the carrier without separating the carrier from the vehicle.

6.2.3 <u>LEAK DETECTION SYSTEM</u>. In order to verify in a minimum amount of time that the couplings have been engaged properly a convenient leak detection system is built into the ground carrier. The operational leak detection system proposed is an ultrasonic sound detection system. For the prototype system an additional leak detection system will be installed that will quantitatively measure leakage from the tell-tale connection located between the primary and secondary dynamic coupling seals. Use of this prototype leakage measuring system will provide for calibrating the operational ultrasonic system. The ultrasonic system will utilize piezioelectric crystal transducers mounted in a contact mode, i.e., they will respond to the ultrasonic energy being conducted by the body of the coupling rather than the ultrasonic energy in the surrounding atmosphere. The ultrasonic energy being picked up, if any, will be the energy being produced by tracer gas leakage past the primary dynamic seal.

By mounting a separate transducer on each coupling the task of discriminating a detected leak will be much simpler than trying to search with a hand-held airborne¹ sound probe or with several fixed airborne sound probes. In addition, the contact probes eliminate the attenuation factors associated with transmitting the ultrasonic vibrations in the coupling body into the air and then picking them up with a microphone (airborne sound probe).

Each of the miniaturized contact probes will require a miniaturized signal conditioning circuit mounted nearby to transmit the transducer output to the remote switching and audio detection circuitry. It is planned to use a simple audio (speaker) output and an audio analyzer (CRT) calibrated to known leakage rates for each coupling for the initial installation. It is conceivable that more sophisticated computerized audio snalysis techniques may be incorporated into the ground checkout software as the Space Shuttle Launch Processing System matures.

6.2.4 <u>FLEXIBLE HOSE INSTALLATION</u>. Included in the prototype design are the flexible hoses requird to allow the degree of freedom of movement required of the ground umbilical carrier. The ground carrier must be free to be retracted away from the vehicle far enough for swing-arm rotation. It must also be free enough to allow carrier engagement by not more than two operating personnel with the aid of the counterbalanced boom. And, it must also be free to track the vehicle relative motions after the ground carrier has been engaged with the vehicle carrier.

It is intended that all hoses and couplings be installed in the ground carrier at the time that the carrier is engaged to the vehicle. This will ensure the minimum time expenditure in connecting the ground services to the vehicle.

Although not shown on the prototype design, it is intended that the mid-span of the hoses be supported by a spring suspension system. This will provide load relief during the manual engagement of the ground carrier.

6.2.5 <u>BALL-AND-CONE COUPLING, 2 IN. DUAL SEALS</u>. This coupling is used as a gaseous hydrogen vent connection (2 places) and a JP-5 fill connection (1 place). It is a nominal 2 inch size, incorporates dual ball and cone coupling seals, has debris poppets, and has a leak detection/measuring telltale tubing top between the primary and secondary coupling seals.

¹ airborne - refers to sound transmitted through the surrounding air and does not refer to vehicle borne (airborne) equipment.

Each of the coupling seals receives an initial compressive load due to the spring rate of the integral bellows sections. As internal pressure is increased, the bellows will generate a thrust load due to pressure. This additional thrust provides a greater compressive load for the coupling seals. Since the thrust load reaction on the primary seal tends to decrease the secondary seal compression, the secondary seal bellows has a larger effective diameter in order to assure that the compressive load on the secondary seal increases with increasing internal pressure.

6.2.6 PRESSURE BALANCED COUPLING, 1 IN., HIGH PRESSURE. This coupling is used as a high pressure gaseous helium fill connection (1 place). It is a nominal 1 inch size and incorporates sliding coupling seals, a debris protection poppet, and a debris protection sleeve. Since the fluid being handled does not provide a hazardous vapor, dual seals are not provided. The tubing connection is for the purpose of venting the force balancing cavity to ambient pressure.

6.2.7 <u>BALL-AND-CONE COUPLING, 1 IN., DUAL SEALS</u>. This coupling is used as an EC/LSS (water/glycol) supply and return connection (4 places), a gaseous oxygen vent connection (2 places), a full cell gaseous hydrogen purge vent (1 place), a JP-5 tank pressurization connection (1 place), and an auxiliary propulsion system gaseous hydrogen accumulator vent connection (1 place). This coupling incorporates the same features as the 2 inch coupling except it is scaled down to 1 inch.

6.2.8 BALL-AND-CONE COUPLING, 1 IN., DUAL SEALS, VACUUM-JACKETED. This coupling is used as an LH₂ fill connection (2 places) and an LO₂ fill connection (2 places). It is a nominal 1 inch size and incorporates dual ball-and-cone seals, full vacuum-jacketed insulation, debris protection poppets, and a leak detection/measuring telltale tap between the dual seals.

The seals are compressed by a spring and a bellows in the ground half and by a bellows in the vehicle half. The vehicle bellows loads the primary seal and the spring and bellows in the ground half load the secondary seal. Since the primary seal compression tends to relieve the compression in the secondary seal, the bellows loading the secondary seal has a larger effective diameter than the vehicle half bellows.

The vacuum jacket is not continuously pumped. It will be evacuated and baked and sealed off.

6.2.9 BALL-AND-CONE COUPLING, 1/2 IN., SINGLE SEAL. This coupling is used as a fuel cell gaseous oxygen purge vent (2 places) and a fuel cell water vent (1 place). It is a nominal 1/2 inch size and incorporates a single ball-and-cone seal and debris poppets. Compression force for the low-pressure coupling seals is provided by a spring only.

٦

APPENDIX A

LIST OF BOOSTER UMBILICAL DISCONNECT DETAIL DRAWINGS

.

۰.

APPENDIX A

LIST OF BOOSTER UMBILICAL DISCONNECT DETAIL DRAWINGS

DWG. NO,	TITLE	Sheet Size	Quantity
SK-DE-0020	Booster Umbilical Disconnect Panel Prototype System	J	1
SK-DE-0021	Extend/Retract System (Spec Control Dwg)	J	2
SK-DE-0022	Extend/Retract System (Procurement/ Development Specification	А	
SK-DE-0023	Parallelogram Assy. Ground Carrier Support	J	1
SK-DE-0024	Shield Assembly, Ground Carrier	J	3
SK-DE-0025	Actuator, Shield Assy. (Spec Control Dwg)	J	1
SK-DE-0026	Actuator, Shield Assy. (Procurement/ Development Specification)	А	
SK-DE-0027	Flex Duct, Liquid Hydrogen (Procurement/Development Specification)	А	
SK-DE-0028	Coupling Assy. LH ₂ , 10 inch, Booster	J C	1 60
SK-DE-0029	Coupling Assy. JP-5	J	2
SK-DE-0030	Coupling Assy. GH ₂	J	2
SK-DE-0031	Coupling Assy. GHe	J	1
SK-DE-0032	Coupling Assy. GN ₂	J	1
SK-DE-0033	Disconnect Assy. Electrical Power	J	1

1

APPENDIX A (Contd)

LIST OF BOOSTER UMBILICAL DISCONNECT DETAIL DRAWINGS

DWG. NO.	TITLE	Sheet Size	Quantity
SD-DE-0034	Disconnect Assy. Data Bus	J	1
SK-DE-0035	Coupling Assy. Hydraulic	J	1
SK-DE-0036	Vehicle Carrier Assy.	J	2
SK-DE-0037	Ground Carrier Assy.	J	2
SK-DE-0038	Propellant Hose Installation	J	1
SK-DE-0039	Electrical Cable Instl.	J	1
SK-DE-0040	Leak Detection 'System Instl.	J	1

•

APPENDIX B

•

.

LIST OF ORBITER UMBILICAL DISCONNECT DETAIL DRAWINGS

.

-

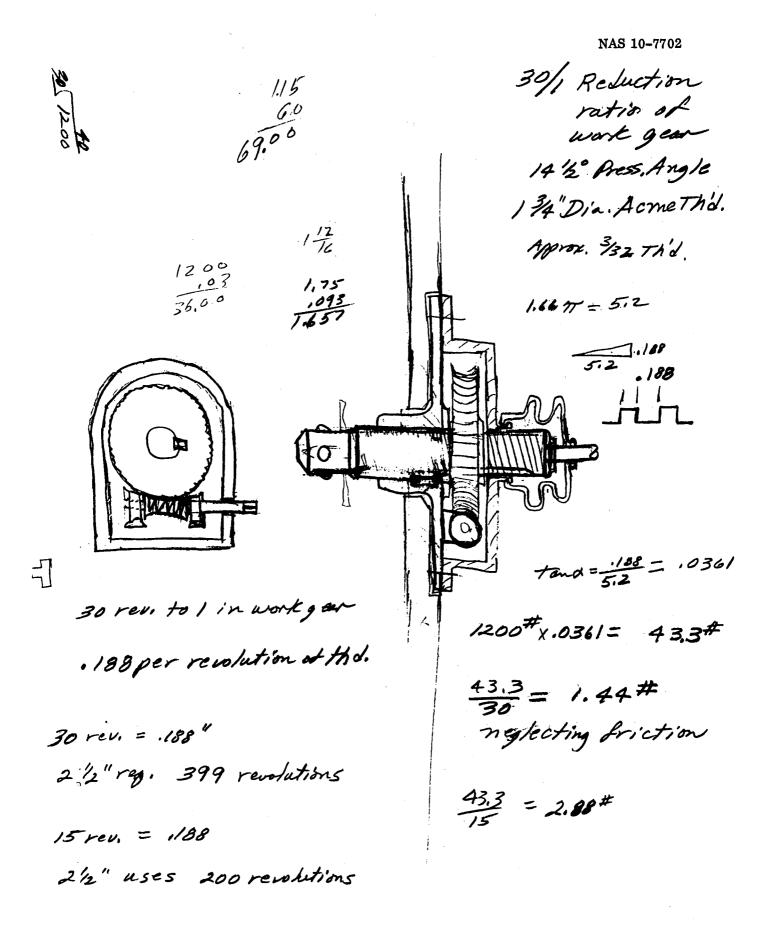
•

APPENDIX B

LIST OF ORBITER UMBILICAL CARRIER DETAIL DRAWINGS

DWG. NO.	TITLE	Sheet Size	Quantity
SK-DE-0001	Orbiter Umbilical Carrier Prototype System	J	1
SK-DE-0002	Boom Assy. Umbilical Carrier Handling	F C	1 9
SK-DE-0003	Assy. Ground Umbilical Carrier	F	3
SK-DE-0004	Assy. Vehicle Umbilical Carrier	F	2
SK-DE-0005	Assy. Secondary Eject Cylinder	F C	1 3
SK-DE-0006 SK-DE-0007	Plate, Umbilical Carrier, Vehicle Guide Pin Assy.	F	1
SK-DE-0008	Locking Device Assy.	F	1
SK-DE-0009	Coupling Assy. LO_2/LH_2		
SK-DE-0010	Coupling Assy.		
SK-DE-0011	Coupling Assy.		
SK-DE-0012	Coupling Assy.		
SK-DE-0013	Pneumatic Controls Instl.	F	2
SK-DE-0014	Propellant Hose Instl.	F	2
SK-DE-0015	Leak Detection System Instl.	F	2

.


APPENDIX C

.

CALCULATION WORK SHEETS

,

.

1.000 49 .098 49 .902 .98 1" VJ Coupling, Poppet Areas ID. Pipe (Tubing) 1.00" O.D. X.049 Wall = 21.902" .451 $A = \pi x.45i^2 = .638 in^2$ start of ribs (spider) Plug = , 375D $A = (188^{2}\pi) = (113)n^{2}$ r= ,530 A= 53277 = ,831in2 Ribs .35 X.06 2 X 3 = .0657 .831 .113 .718 1066 152 m2 sk Poppet Dia. = ,962 $A = .481^{2} \pi = .723 in^{2}$ Dia. Reg'd. Around Poppet A_{pyd} , 723 +.65 = 1.373 jn² $\frac{1.373}{37} = .437/3^2$ r=1.437 = .663, D = 1.326 USC 1.375 nom. 1.375 2/ 143 221 poppet must open Poppet movement Regid. max. =, 450 ; . use 1/2" for design

2" Ball & Cone, Poppet Areas NAS 10-7702 1.D. = 1.870 Pipe(Tubing) .065 Wall $A = .93^2 \pi = 2.78 i n^2$ Poppet DIA = 2.00 in = 3.14 in² $\sqrt{5.92} = \sqrt{1.88} = 1.37 Radius$ 3.14 2.78 D= 2,75 2" Coupling slots 21/4 Dia. = 1000#@750psi .656 RXTT = 1352in2 1. 333 in 2 Reg'l for 1000 # @ 750 psi 1.352 1.333 2,685 in 2 lange Cylinder $\sqrt{\frac{2.685}{2.685}} = \sqrt{.855} = 0.926 R = 1.852 Dia.$. 345 in 2 for 5/8 Dia. 1/8D=,562R 1.00 156275= 199 1345 .(45 in 2 x 750 = 485#

Prelim. Working Paper

 $F = Load \quad m \quad \text{Worm}$ $R = Radius \quad of \quad \text{Worm} = 1.25$ $r = pitch \quad radius \quad of \quad acmethd. = .839$ $p = lead \quad of \quad thread = 0.125$ $Q = Load = 1200^{\#}$ $\mu = \text{Coefficient of friction} = 0.2 \quad hardened \quad stl.on$ brom ze.

 $F = Q \times \frac{P \pm 6.2832 \mu r}{6.2832 r} \times \frac{r}{R}$ $1200 \underbrace{.125 + 6.2832 \times 0.2 \times .839}_{6.2832 \times .839 - 0.2 \times .125} \times \frac{.839}{1.25}$ $= 1200 \left(\frac{.125 + 1.055}{5.28 - .0250} \right) \times .672$ $= 1200\left(\frac{1.18}{5.255}\right) \times .672 = 807 \times .2245$ = 18.1.3 # or 227 in# Neglecting Friction: (For Comparison only) 19.06# $F = Q \times \frac{\rho}{6.2832R} = \frac{1200 \times .125}{6.2832 \times 1.25}$ -

15 to 1 vatio

20 to / ratio

 $\frac{227}{15} = 15.14 \text{ in}^{\#}$

 $\frac{227}{20} = 11.35 \text{ in}^{\text{#}}$

Using 4" Tool (speed wrench)

F = <u>3.78</u># _______Use F = 2,84#

Revolutions to Take up 21/2"

15 to 1 20×15=300 20 to 1 20×20=400 revolutions of worm revolutions of worm

From Catalog: Output torque of geon at 100 rpm: 15 to 1 C.07HP @ .09 HP 20 +01 463 in.# 794 in# Max. Reg 2. = 227 227 236 margin 567 morgin

Use Worn No. H 1407 K, Pitch Dia. = 1.000 Face 1'8, Hole 5/8", Keyway 18, Steel Mardened & Polished

NAS 10-7702

BY DATE	 SHEET NO OF 3
DATE	 JOB NO.

Worm & can Drive Calculations
Using Baston Geen Data Page 121
Hard steel Worm, Bronze worm Geory
12" Face worm dean, Cat. No. DB 1401 or 1402
5 2,500 or 3,337
12 Pitch Double Thread
Ratio 15/1 or 20/1
Teeth 30 40
Acme Thid, on Lockbelt 1.750 Dia., 8 threads/in.
.0625 Thd. width
Calculate Torque Regid. to votate lockbolt
F= Torque on screw
R = Radius of Moment Arm = 1.000 (To arrive in #)
r = pitch radius of Acme thid. = , 839
p = lead of thread = .125
Q = Load = 1200#
M = Coefficient of friction = 0.2
F = QX <u>P+6.2832 ur</u> Vr = 1200(.125+(.283, YD.2X. cm))
$F = Q \times \frac{P + 6.2832 \mu r}{6.2832 r} \times \frac{r}{R} = 1200 \cdot 125 + 6.2832 \times 0.2 \times .839} \frac{33}{125} + 6.2832 \times 0.2 \times .839} \frac{33}{125} + 6.2832 \times .839 - 0.2 \times .125}$

 $= 1200 \left(\frac{.125 + 1.055}{5.28 - .025} \right) \times .839 = 1007 \left(\frac{1.18}{5.255} \right)$ = 226 in.#

ву Б.Б.Б. DATE	SUBJECT	SH	NAS 10-7702 EET NO. 2. OF 3
CHKD. BY DATE			B NO
0	Scar Drive Ca	1c,	
Neglecting Fr.	iction (For Con	IC, parison Purposes t	(yhr)
$F = \frac{Q \times P}{6.2832}$	$= \frac{1200 \times 10}{6.2832 \times 10}$	$\frac{125}{1.00} = 23.9$ in	₩ ₩
Torque Regid. 15 to 1 ratio	on Worm	20 to 1 rai	tio
$\frac{226}{15} = 15.07$	in [#]	$\frac{226}{20} = 11.3$	
From Boston	Geor Catalog	· · ·	
15 for 0.07 $0 utput = 4$	HP Input		2.09 HP Input 794 in #
T = <u>63025 X H</u> RPM	HP=,	Horsepour 100	*
= <u>63025 X.</u> 100		= 63025	X.09
$= 44.1 in^{2}$	¥	= 56.7	12 in#
$44.1 \times 226 = 463$	21.5 in#	56,72×2	226 = 16,15 in#
Assuming 4"	Offset on Sp	eedwranch, For	c e =
$\frac{21.5}{4} = 5.3$	7# use	16.1.	<u>5</u> = 4,04 #

NAS 10-7702

BY BED DATE	SUBJECT	SHEET NO. 3 OF 3
CHKD. BY DATE		JOB NO.
	Gear Drive Calc.	

Revolutions to Take up 212" Inches 2.5" Total Take up Regid. 1/8" Lead on Acme Thid,

2.5 = 20 rev. of screw

15 to 1 20 × 20 = 400 20×15= 300 USE revolutions of worm

USE: Worne Geer No. D1401, Pitch Dia. = 2,500", 30 teeth, 1/2" Face, Bronze, Double Thil, 12 pitch, 14'12° Press. Angle

: Worm No. H 1407K, Pitch Dia. = 1.000; Face = 1'18', Hole 5/8", Keyway 1/8", Steel, Hardoned, Ground & Polished. 2.00 to 2.125 ID 2.75 Max. O.D. Need 584 # Force Combined Spring Rate + Thrust Media Pressure = 90 psig Spring = 134 # Total Thrust Thrust Due to Media Press. = 450 # @ 90 psi = 5.00 in.²

Assume 2.050ID./. 2.750.D. Area = 4.52 4.52×90 = 407#

$$Inner Sel Diz = 1, 5 NAS 10-7702$$

$$I:5 \times TT = 4.7 in. Circum.$$

$$I:433 \times 15^{2} = -365 \text{ Atm. Aress.}$$

$$See Diz = 2.750 \quad 2.750 \quad TT = 8.64 \text{ in. Circum.}$$

$$3.64 \times 40 = 345 \pm \text{ Needed}$$

$$3.1/\pm \text{ due to press}$$

$$2.433 \text{ in}^{2} \times 150 = 364 \pm 3.074 \text{ in}^{2} \times 150$$

$$364$$

$$-264$$

$$-264$$

$$31/-244 = 47 \pm 47$$

$$477 = 10 \pm 1/\text{ in. on}$$

$$Need \text{ Add}; \text{ finel} \text{ in ner seel}$$

$$40 \times 47 = 188 \pm 10 \text{ make 50} \text{ fin.}$$

$$345 - 63.5 = 0$$

$$\frac{9250 \times D}{18.2} = 188^{\frac{11}{2}}$$

$$D = \frac{18.2 \times 188}{9250} = .370 Def! Rey'd. Pitch = .055 18.2 cm vi/in@.020 per cm, mor. allow,def!, = 18.2 \times .020 = .364$$

Total Force from Enteral Bellows = 311+188 = 499#

Total Force Reg'd, from Growd Inner Bellows = 499 + 345 + 365 and From Spring Rate of Outer Bellows. = 880,5# BB0,5-364 = 516.5

Outer Bellows spring Rate Inner Bellows spring Rate

$$18 \text{ coils } x.020 = .36 \text{ may Jetl.}$$

 $\frac{8350 \times .36}{18} = 167^{\#}$
 216
 167
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216
 216

<u>49</u> 864 = 5167

$$\begin{array}{rrrr} 432,5 & 98,5 \\ 334,0 & 8,64 \\ \hline 98.5 & 8,64 \\ \hline \end{array}$$

C-12

1/1 - - NAS 10-7702 123 1031 156X 1/4× 1/2= +×4=.500 534 in2 .824D 412 R ,049 in 2/14" Dia Hols .75R = 1.76in.2 <u>.669</u> 2,429 Reg. 11 holes 2,429 Tr = V.774 = .87 .049×4=.196 .676 = 1.39 × Arca 1/4×1/4 = 1/6×6 = 6/6 = .375 + 6 x.049 = 294 .274 ,669 $\frac{.667}{.534} = 1.25$ ->.25× ,200 Reg 2. 6,125 -> 500 × 875 031 736R = 2.58 in² 67.312 = 1872 + .669 3.249 ·824T= 2,57 1.872 3.249 7 = V1.035 ,718X.095=,0683 .0683X 39,00 = 2045 ____ 6x,25 = 1.50 2,58 2.59 1.50 1.09 3.114 13.114 177 - V.992 ,095×109=1035 _ .998 USE 1.030R A= 1.032T= 3.331x2

C-13

NAS 10-7702

 $1.441 = \frac{R}{r = 1.030}$

R= 1.44/X1,030= 1.485

1.030

67+5=72"

S= WR = 1000 × 72 42 = 42 = 25,000 psi

Press, Bal . Compling P=2TX5 = $T = \frac{P_{X0D}}{25} = \frac{3000 \times 2.375}{2 \times 7000} = .508$ Barlow Formala D=outside dia. 十二日 P = pressure (psi) S = allow. tensile streg

Lame Formula $5 = P \frac{R^2 + r^2}{P^2 - r^2}$

 $= 3500 \left(\frac{1.485^2 + 1.030^2}{1495^2 - 1.030^2} \right)$

 $= 3500\left(\frac{3,26}{1.14}\right) = 10,000 \text{ psi},$ Th'd.

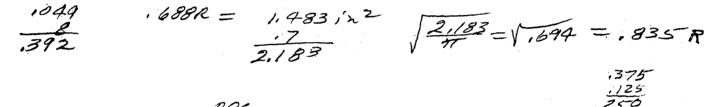
3.14 .99 2.15 × 3500= 7540#

 $5 = \frac{3500}{(R^2 + 1.06)}$ $(R^{2},06)$ 20 K = 3.5 K $(R^{2}+1.06)$ 20 K $R^{2}-1.06$ 20 K = 3.5 K $R^{2}+3.6$ X1.06

2,20 2,20

1.06 1.06 3.26 1.14

R2=

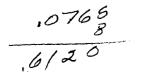

1.485 2970

6.28 ×.8 ×.25 = 1,256 ×10,000 = 12,560 $\frac{16.5KR^2}{R^2} = \frac{3.5KX1.06 + 1.06X20K}{16.5} = \frac{370R + 21200}{16.5} = \frac{24901}{165}$ This.

C-14

 $t = r\left(\sqrt{\frac{s+p}{s-p}} - 1\right)$ NAS 10-7702 $= 1.03 \left(\sqrt{\frac{20K+8.5K}{20K-3.5K}} - 1 = \frac{10}{10} \left(\frac{23.5K}{16.5K} - 1 \right) \right)$ $= 1.03(\sqrt{1.425-1}) = 1.03(1.194-1) = 1.03\times.194 = .200$ Largest Dia Under Press

Male $t = .812 \left(\sqrt{\frac{20k+3.5k}{20k-3.5k}} - 1 \right) = .812 \left(\sqrt{\frac{23.5k}{16.6k}} - 1 \right) = .812 \left(\frac{1.194}{1.194} - 1 \right) = .158$



7 1.5 X.188 = .886

8352TT = 2.19 , 392 + 8× 1/4× 1/8 = ,392 .6 282 # = 1.487 1250 ,824D = ,412R = ,532in2

1/4×1/4= 1/6×8 = .500 .500 .392 .196 .892 .696 ,049 2.392

.196

C-15

Male - Ground Pant - Spring

1 1/2" Hole .125 wire Dia. 1/4ID-

Freedength 4.0" Installed Length 3,5 Compressed Length 2.0

2" 317# Separation Force

Bellours

Thrust Area = 4,524in2 2.050 ID X 2.750 0.D,

Thrust = 4.524×90= 407# @ gopsig.

190 = 13,54 /in on seal. 407 317 190# Need 40 # /in on seel 40.0-13.5= 26.5#/in spring # Total spring Force Regd.

Need, 875 compression

pitch .065 1514 Conversion .020/conv. . 308 perinch .875 = 2085 free .308 = 2085 free length 2.05 × 2.750 324 tinform.

 $\frac{324 \times .875}{44} = 6.45^{\#}$

77,5 = X ×.875 $\chi = 44\chi 77.5 = 3900$

Rear Bellows

Compressed Length = 2.00

Total Carrier Force

2" JP - 5 = 869 $1" LH_{2}LO2 = 3,520$ $1" H_2OGH(col) = 4,800$ GN_{2}

GHe 100

1" - 602 @ 150 psi 2ea 2×880 1760 1" - LH2 @ 30 psi 2 ea 2\$ 500 1000 V . 2760 2 ea 2" LH2 Vent @ 5751 2 × 10 20 2780 5180 4 ca 1" H2Ocly col @150ps 2400 44 600 1 en 1" GHEFill @ 3500 5280 100 100# 1 * LOZ Vent @ 5/PSi' 2 er 5290 10# 10 1" GO2 vent Aps Accun, 150 1 ea. -600 600 1/2" H2O vent e 515i 1 ca. .10± 1"GH2 Rung eventasps" lea. 10 2×10 20 1/2 602 Porge vent 2 can 2" JP FILL @ 901519 869 869 1 ea. 1" GN2 @ 150 TPTOKPES. 600 - 5890 600 eu.

5890 # Total Simultaneous Forces

°C-17

NAS 10-7702

2" JP-5 Coupling

NAS 10-7702

2"ID Bellows 0,D, = 2.7 4 convolutions per inch

TAAT], 2.0 2 2.35

4000 #/in/convolution-spring Rate

5.0 in? thrust area 4000 × 188 = 125# spring 4 300 y 125 - 175 #

.046 Rated Axial Defl. / consolution

:. 19 = 4.75 in - length of bellows $\frac{4000 \times .875}{10} = 184^{\#}$ Seal Dia = 2.25 xTT = 7.07in, 184 = 26 #/ Inew inch due to spring rate Thrust area of 5,0 in2 Seal Area OF 1,125R = 3,97in 2

 $5.0 - 3.96 = 1.04 in^2 \times 90 = 93.7 #$ $\frac{93.7}{7.07} = 13.3^{\#}/linearin.$

26 + 13.1 = 39.1 #/linear inch

Total separation Force on Carrier =

1" ECLSS Coupling

1" I.D. Bellows $0, D_1 = 1, 4"$ 6.65 Conv. per inch aug. 5000 #/in/complution - spring Rate 1.25 in 2 Thrust Area ,022 Rated Axial Defl. / convolution

Need 3/8" Compression .: 1375 = 17 convolutions 17 = 2.55 in . - long th of bellows $\frac{5000 \times .375}{17} = 111^{\#}$ Seal Area = 1.25×11 = 3,92 in. 111 = 28.3# due to spring rate

Thrust Area of 1.25 in * × 150 psi = 187.5# Thrust Load 187.5 = 47.8 # linear inch 3.92

Allowable Load for Collet Locking Device

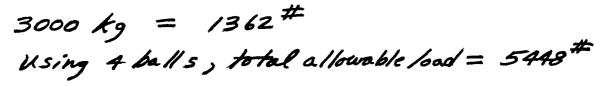
Weakest point in the Collet is the midpoint of the fingers. The diameter in this area is 0.750 in. and the fingers are 0.062 thick. Slots are milled to form 8 fingers, each 0.233 in. wide. Material will be a precipitation hardened stainless steel, tensile strength of approx. 120,000 ps;, Rockwell C-30 to C-35. (17-4PH)

- .750 dia = 2.3562 Circum. 2.3562 = .2945 , .0625 s/ots
- . 2945 -. 0625 = . 232 width of ach finger
- ·232 X.062 X8 X /20K = 13,920#

Operating load if failure is not designed in as a rechandant release mode is: $13.920 = 2,790^{\text{#}}$

with Minor design changes ; load capatility (apri) can be increased to 5580 #

Allowable Load for 4 Ball Locking Device


Using
$$304.55$$
, Brinell hardness = 180
Load on Ball = 3000 kg , Ball dia = $10 \text{ mm} = .393''$
 $\therefore 180 = \frac{3000}{4}$ than $A = \frac{3000}{180} = 16.67 \text{ mm}^2$

Area of spherical segment =
$$2\pi rh$$
,
where $r = radias$ of ball
 $h = depth$ of indentation

Brinell Std. . 393 dia. ball

$$A = 16.67 \text{ mm}^2, r = 5 \text{ mm}$$

 $= 2 \pi r h$
 $h = \frac{A}{277 r} = \frac{16.67}{6.2832 \times 5} = .530 \text{ mm}$.
 $h = \frac{16.67}{6.2832 \times 5} = .530 \text{ mm}$.
 $h = \frac{16.67}{6.2832 \times 5} = .401 \text{ mm}$
 $= 0.020^{11}$
 $= \frac{0.01585}{A cceptable}$

C-21

Since the balls contact a 45° sloped surface on the ball lock ring, the load must be reduced by:

5448 × Sin 45° = 5448×,707 = <u>3850</u> Allowable Load

Shear Out of Balls thru Ball Lock Ring 1/2 dia. ball, circum. = 1.5708" Shear Area = 1.5708 - . 0625 = .7229

Avg. thickness of ring = .156" Area = .7229 x.156 x4 = .451 in? Shear strength of 304 ss = 70% of 75,000 = 52.5K Failure Lood = 52.5K x.451 = 23,700# Due to Angle of contact and rolling displacement of metal on the ball lock ring, the failure borce should be reduced by sin45° $\therefore 23,700 x.707 = 16,770$ #, SHEAR OUT FORCE The shar out force can be reduced if desired for a redundant release mode by reduction of the lock ring thickness, or by increasing the clearance diameter thru the ring.

Work hardening of the lock ring surface by the Brinelling action thru repeated use will increase the allowable loods on the lock ring.

Brinelling of the release pin will be Minimum since it is case hardened to Rockwell C-60.

The allowable loads due to Brinelling of the balls on the lock ring can be increased by use of a different material for the lock ring, i.e. heat treated.

The total tensile load the locking device is capable of withstanding is limited by the area of Cross-section remaining in the area of the balls. This area is equivalent to a circle of .625 dia (4 quarter segments of .512 radius), $A = .3068 \text{ in}^2$

P = 75K X. 3068 = 23,000

BY THE DATE	SUBJECT.	NAS 10-7702	SHEET NO. / OF Z
CHKD. BY DATE			JOB NO.

4 Ball Locking Device - Cyl. size & Wall The Calc. Using 750 psi preumatic pressare for release pin.

Connect Force :

USE. 1200# Required to Mate all Connectors, Compress springs, compress bellows, and and and Seal triction forces,

Outside Dia. of smaller cylinder = 1.375+(2x.090) 1.375 .180 T.555 Dia. x 750psi = 1166# 1200 +1166 = 2366#

 $A = \frac{2366}{750} = 3.155 \text{ in}^{2}$ $r = \sqrt{3.155} = \sqrt{1.0042} = 1.002 \quad \text{Dia.} = 2.004"$ $use \quad 2.000"$ $A = \pi \text{ in}^{2} F = 750\pi = 2360 \text{ # ok.}$ $= 6\pi \text{ std."0"-Ring}$

C-24

BY 66 DATE	SUBJECT	SHEET NO. 2 OF 2
CHKD. BY DATE		JOB NO.

Four Ball Locking Device Calculation on Connect Cylinder Wall Thickness Use Lame' Formula for Cylinder subjected to High Internal Pressure t= P-r=Thickness of cylinder $t = r\left(\frac{StP}{S-P} - I\right)$ r= I.D. = 1.375" S = Mox. Allow. Fiber Stress t= 1.375 (15,000+750 -1) <u>75,000</u> = 15,000 - 30455. = 1.375 (15.750 -1) P = Press. Within Cylinder = 750ps; = 1.375 (VI.107 -1) = 1.375 (1.052 -1) = 1.375 ×.052 = .0715" Use .09 to allow for larger machining tolerances for Cost reduction.

W.R. KILLIAN Ball & Cone, V.J., Dual seal 9-24-71 LH2 DISCONNECT TEMP. CALC. Q = KA AT BTUIN Strage - BTU L hrifte ge in hr Q= BTU/ - HEAT FLUX SER FIG L K = BTU . IN ~ THERMAL CONDUCTIVITY hr. ft2. 0F 43 h = 1N - Length OF HEAT PATH -423 -250 AT = OF - TENP. Differential $A_{z} = F + 2 - AREA$ $A = (12.50)(TT)(.125) = .0342 Ft^{2}$ KAT TAVE , TAVES -250 = - 337% $K = 41.8 \frac{BTU.IN}{AT-3370F}$ MAX Q TO LIMIT TEMP AT -250°F. Q = (41.8) (.0342) (173, MAZU (4.5)Q = 55.1 BTU/-

WR. KILLAN NAS 10-7702

IF THE TEMP AT THE AMBIENT INTERFACE IS TO BE -250°F OR WARMER, THE Q (HEAT FLUX) MUST BE 55.1 BTU OR GREATER IF Q is LESS Than 55.1 BTU/hr, Then The At must be hess than 173°F WITH THE RESULTANT TEMP AT THE WARM ITERFACE COLDER THAN -250 OF. EXAMPLE - AS AT = 0 BTU/ , AT = 0 TEMP AT WARM FACE = LH TEMP. APPROACH -) CALCULATE THE ACTUAL HEAT ELUX WHIICH MAY BE TRANSPORTED TO THE GN2 ATMOSPHERE SURROUNDING THE COUPLING. (BTU hr.ft2) a) Calc. h b) Knowing h& A cole Que C) IF QLLOW QMAX Then recelc. At from QALLOW = KAAT

3/4

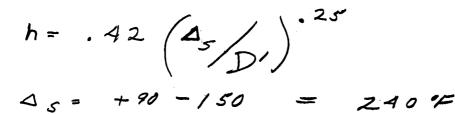
CONSIDER Natural CONVECTION 40 Still Ambient AIR @ 90°F. $h = .42 \left(\Delta_{T/D} \right)^{0.25}$ where : h= film coef BTU hr. ft2. offeriff.) A. Temp difference - pipe to ambient ziv -250 °F to +90°F = 340°F D'= Outside diam fitting = 12.5 IN. $h = .42 \left(\frac{540}{12.5} \right) \cdot 25^{\circ} = .95 \frac{BTU}{hr \cdot ft^{2.0}r}$ Q = (. 95) (A,) (A_5) ALLOW DS= 340 0/5 $A_{1} = (TT)(12.5) \times (1.0) = .274 \text{ ft}^{2}$ 144 = 1'' effective @ outer shint $A_{LLOW} = (.95) (.274) (340) = 88.5 BTU$

CALC OF ACTUAL AT $Q = (K)(A)(\Delta T)$ $88.5 = (41.8)(.0342)(\Delta +)$ 4.5

∆T=	(4,5) (88,5)
	(41.8) (,0342)

ST= 278 %

$$-423 + 278 - 145$$
 %


ACTUAL SKIN TEMP WILL NOT BE LESS THAN -145 %.

5/4

ASSUME To ~ Temperature @ Outside of fitting = -150 °F

△T= -423 - (-150) = 273 °F Ave Temp = (-423 - 150) = -286 °F

KAUE = 56 BTU.IN 2 From Graph. hr.ft2 of

$$h = .42 \left(\frac{240}{12.5} \right)^{.25}$$

h: .878 BTU/ hr.f+2.0F

 $Q_{2}(.878)(.274)(240) = 57.7 BTu/$

6/7

$$Q = \frac{423}{x}$$

$$Q = (56)(.0342)(273) = \frac{-423}{273}$$

$$Q = 116 \quad \text{BTW} = 700 \quad \text{HIGH}$$

$$Mr = 47 \quad 700 \quad \text{HIGH}$$

$$TRY = 200 \quad \text{C}F$$

$$\Delta T = -423 - (-200) = 223 \quad \text{C}F$$

$$A = -311 \quad \text{C}F$$

$$K_{AUE} = 49 \quad \text{BTW} \quad \text{hr} \cdot \text{H2.0F}$$

$$h = .42 \quad (43)^{-125} \quad \text{C}F$$

$$A_{3} = -200 \quad 490 = 290 \quad \text{F}F$$

$$h = .42 \quad (290)^{-125} \quad \text{C}F$$

$$h = .42 \quad (290)^{-125} \quad \text{C}F$$

$$R_{AULOW} = (.92) \quad (290) \quad (.274) = 73.2 \quad \text{BTW}$$

$$h_{V}$$

623

C-31

$$\frac{423}{-200}$$

$$Q_{READ} = \frac{KA4t}{2}$$

$$Q_{READ} = \frac{(44)(.0342)(223)}{4.5}$$

$$Q_{READ} = \frac{(44)(.0342)(223)}{4.5}$$

$$Q_{READ} = \frac{83.0}{1.5}$$

$$R_{READ} = \frac{83.0}{1.5}$$

$$R_{TCY} = \frac{210}{-210}$$

$$\frac{7}{100} = \frac{213}{-100}$$

$$\frac{7}{100} = \frac{213}{-100} = \frac{213}{-100}$$

$$R_{AVE} = -\frac{316}{-7.5}$$

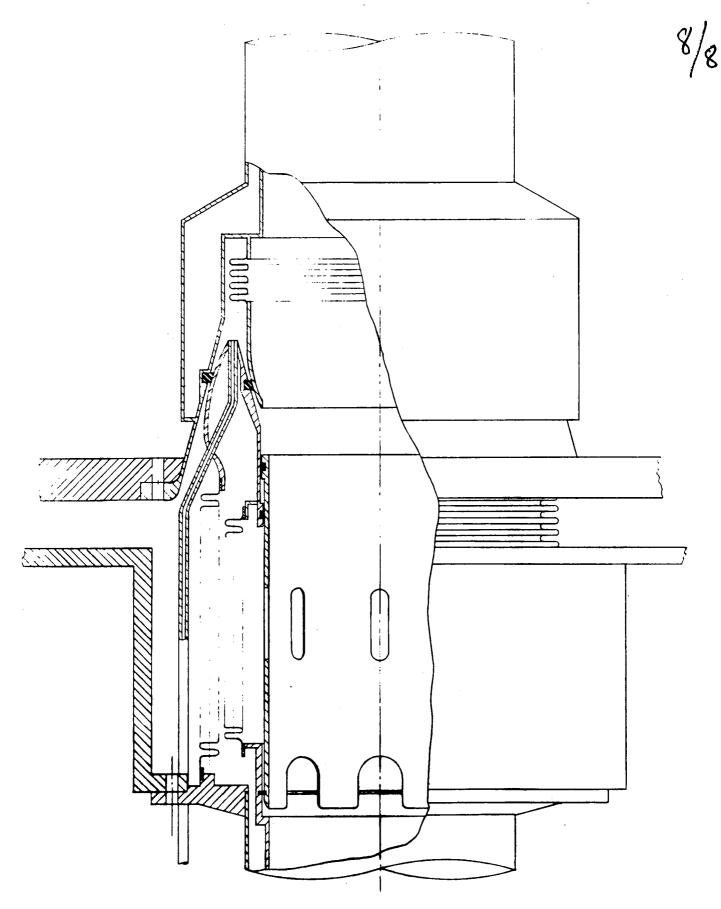
$$R_{AVE} = \frac{47.5}{-12.5}$$

$$R_{AVE} = \frac{47.5}{-12.5}$$

$$R_{AVE} = \frac{47.5}{-12.5}$$

$$R_{AVE} = \frac{47.5}{-12.5}$$

$$R_{AVE} = \frac{7}{12.5}$$


$$R_{AVE} = \frac{(.435)(.274)(300)}{-12.5} = \frac{76.9}{-12.5}$$

$$R_{AVE} = \frac{76.9}{-12.5}$$

$$R_{AVE} = \frac{76.9}{-12.5}$$

$$R_{AVE} = \frac{76.9}{-12.02}$$

$$R_{AVE} = \frac{76.9}{-12.02}$$

W.R. KILLIAN 10 | 28 | 71

BALL AND CONE, V.J., DUAL SEAL - 1" LOX AND LAZ DISCONNECT

- TEMPERATURE CALCULATIONS
 - HEAT FLUX INPUT REQD = QREQD
 - Q. KAAT ~ BTU. IN <u>fre</u> BTU/ REQO L hr fre.gr IN hr
 - $L \begin{pmatrix} REF & FIGURE 1 LENGTH OF HEAT PATH \\ A & TO B INNER PATH = .80+.40+.32 = 1.52" \\ A & TO B OUTER PATH = .60+.85+.25+.62=2.32" \\ \end{pmatrix}$
 - REF FIGURE 1 AREA OF HEAT PATH INNER PATH = $(.80)(2)(\pi)(.063) = .0022$ ft² 144
 - OUTER PATH = (1.00)(2) (T) (.080) = .00349 ft²
 - INNER PATH $A = \frac{.0022}{1.52} = .00145 + 12$
 - OUTER PATH $A = \frac{00349}{2,32} = .00151 fl^2/1N$

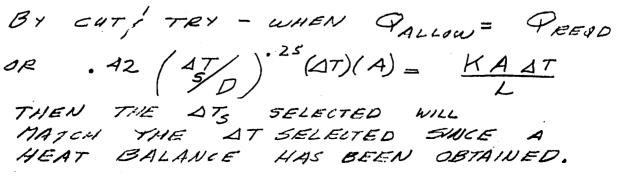
2/7

1" DISCONNECT, TEMP. CALC. (CONT)

ASSUMPTIONS:

IN ORDER TO SUPPLY THE QREAD AT THE COUPLING HEAT MUST BE REMOVED BY CONVECTION TO THE AMBIENT ATMOSPHERE. IF THE h = .42 (AT/D) D)

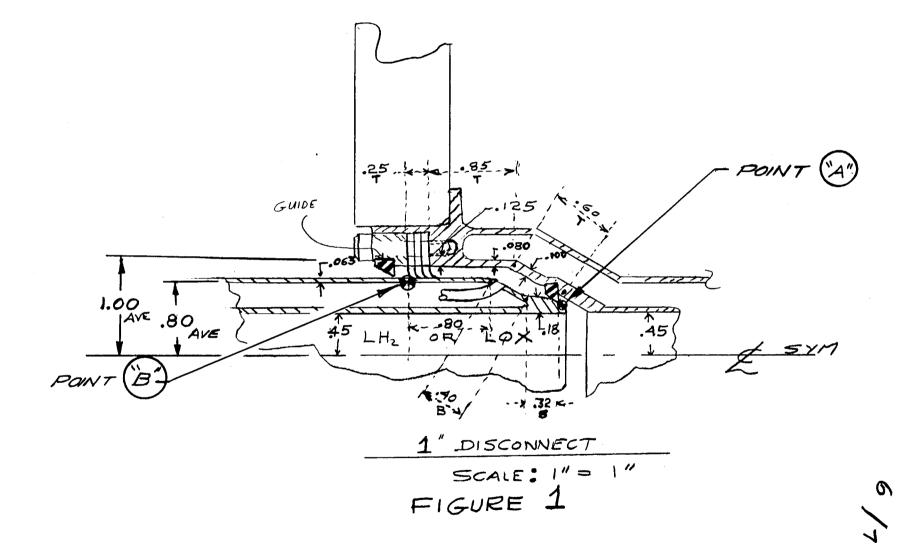
UTILIZED TO DETERMINE THE CONVECTIVE HEAT TRANSFER COEFICIENT WHERE

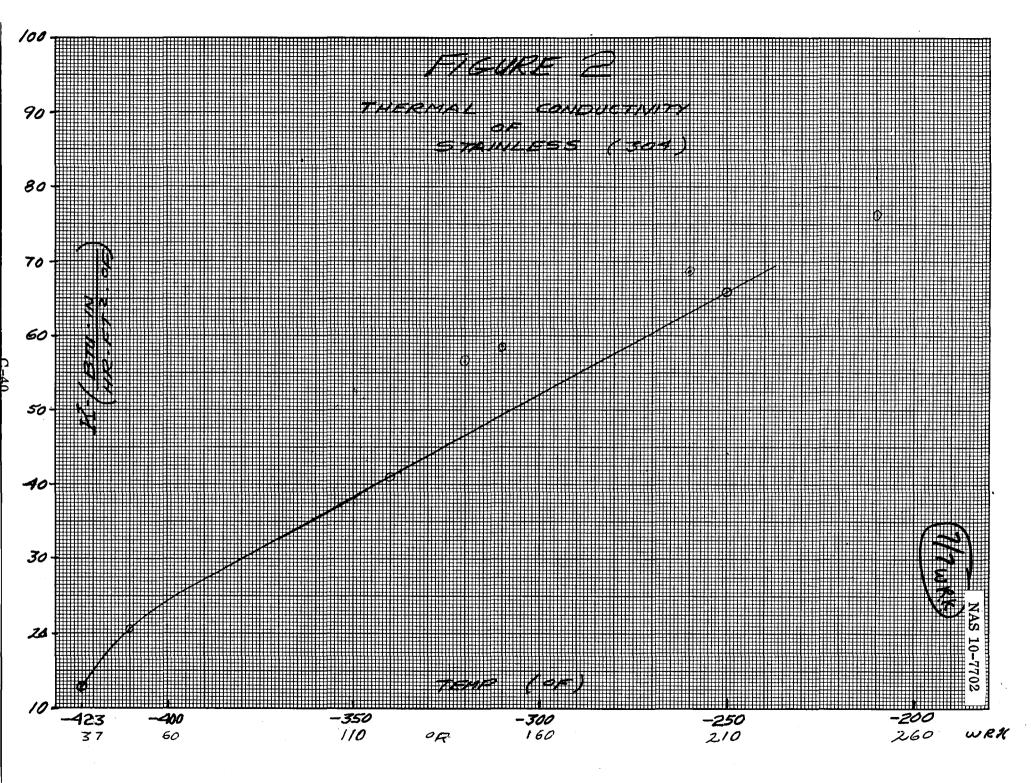

h = HEAT TRANSFER ~ (BTU/hr'ff².ºF)

 $\Delta T = TOTAL \Delta T - AMBIENT AIR TO APE SURFACESF$ D = DIAM OF COUPLING AT PIPE SURFACEAND

PALLOW = h × A × AT = BTU/

WHERE


 $\Delta T = \Delta T - AMBIENT AIR TO PIPE SURFACE ~ OF$ A = AREA OF 1/4" BAND ~ EST EFFECTIVECONVECTIVE LENGH OF PIPE ~ FT²



EMP AT POINT B- INNER PATH NAS 10-7702 CALCULATION OF QREAD ~ INNER PATH QREOD - KAST ASSUME SURFACE TEMP - 2939F WHERE A/ = . 00145 F+2/ (REF SHT1) AT = -423-(293) = 130°F H = 36.0 @ AVE TEMP = -3589F REF FIGURE 2 ••• QREQD = (36)(.00145) (130) = 6.79 BTU/ CALCULATION OF PALLOW ~ INNER PATH $h = .42 \left(\begin{array}{c} \Delta T_{5} \end{array} \right)^{0.25} Assume AMB. TEMP = 90.99$ TEMP = 90°F WHERE $\Delta T_{5} = -293^{\circ} + 90^{\circ} = 383^{\circ}F$ D = 1.66 " $a^{\circ}b = -42 \begin{pmatrix} 53.907 \\ 383 \\ 1.66 \end{pmatrix} = -64 BTU \\ hr.ft^{2}gr$ $0^{\circ} \circ Q_{ALLOW} = (1.64) \Delta T_5 A$ $A = (1.66 \times .25 \times T_7) = .00905 ft^2$ 0°0 QALLOW = (1.64) (383) (.00905) = 5.68 BTW/ SINCE PALLOW < QREAD, TEMP MUST BE LOWERED. C-36

NAS 10-7702 CALL OF QREOD ~ INNER PATH (CONT) ASSUME SURFACE TEMP = - 305 °F PREDD = HAAT WHERE : A/ : .00145 ++2/ 11 AT = -305 - (-423) = 118 °F K = 34.2° 0 9 = (34.2) (.00145) (118) = 5.85 BT4/ CALC OF QALLOW - INNER PATH (CONT) $h = .42 \begin{pmatrix} \Delta T_{s} \\ D \end{pmatrix} = 0.25 \qquad Assume AMB. TEMP = 90°F$ WHERE : ∠75 = -305~+90 = 395 °F $D = 1.66 \ \text{IN}$ $E_{3.927}$ $\therefore h = .42 \left(\begin{array}{c} 395 \\ 166 \end{array} \right) \ 0.25 = 1.645 \ \text{BTL}$ $hr: 44^{3.95}$ PALLOW = h A ATS QALLOW = (1.645) (.00 905) (395) = 5.87 BTUJ SINCE PREGO = PALLOW - HEAT BALANCE HAS BEEN OBTAINED & SURFACE TEMP= -305"F

EMP. AT POINT B ~ OUTER PATH NAS 10-7702 ALC OF PRED OUTER PATH $Q_{REQD} = \frac{KA\Delta T}{L} \qquad ASSUME SURFACE$ UNERE A/ = .00151 Ft²/1N = - 300°300 °1 -423 - (-300) = 123 eF $\begin{array}{c} \Delta T = -423 \\ K = 35 \end{array}$ REF FIGURE 2 ••• $Q_{REQD} = (35)(.000151)(123) = 6.50 BTU$ CALC OF QALLOW - OUTER PATH $h = .42 \left(\frac{2T_5}{D} \right)^{0.25} A_{350}$ E AMB. WHERE $\Delta T_5 = 90^{\circ} - -300^{\circ} = 390^{\circ} F$ D = 2.08 IN $h = .42 \left(\frac{390}{2.08} \right)^{0.25} = 1.552 BTU \\ \frac{1}{100} \frac{1}{1$ · · Q = (1.552) (390) (.01138) = A= (2.08) (.25) (71) = .01138 Ft2 " Q = 5.90 BTU/HR TEMP AT SURFACE = -295 FINAL EST

SUPP. 1/A

TINCE - 305 °F & -295°F BOTH TEND TO APPROACH THE LIQUEFACTION POINT OF AMBIENT AIR, THE WALL THICHNESSES SHOULD BE REDUCED PER FIGURE 3 TO .040" (INNER) \$.060" (OUTER)

and the second second

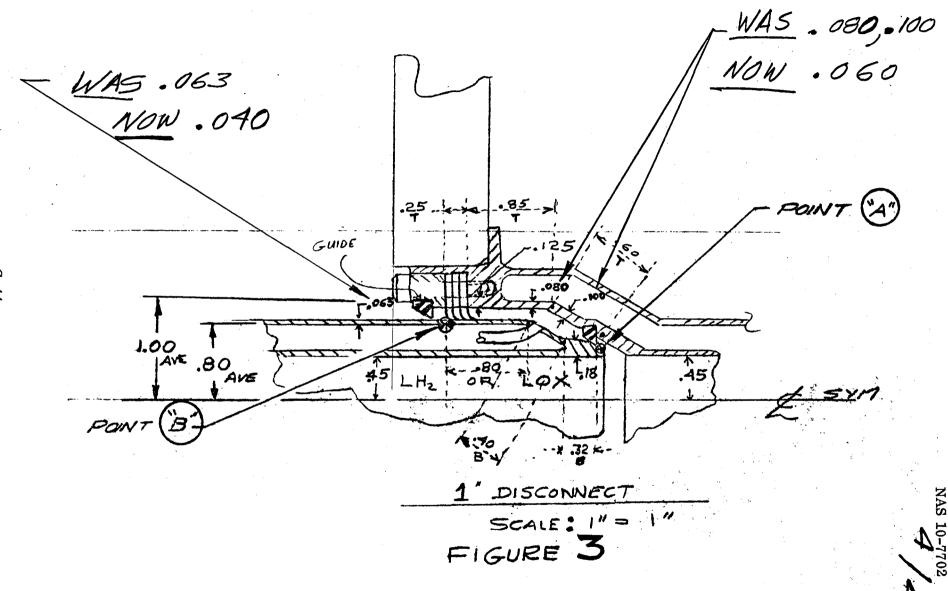
LENGTH - INNER PATH = 1.52" LENGTH - OUTER PATH = 2.32"

- $AREA \sim INNER = (-80)(2)(TT)(.040) = .0014 Ft^{2}$ 144
- $AREA \sim OUTER = (1.00)(2)(TT)(.060) = .00262 + 2$

INNER	AL	5	.000922	F+Z/IN
-------	----	---	---------	--------

OUTER A/ = . 00113 F12/

SUPP 2/A TEMP AT POINT B- INNER PATH, FIGURE 3 CALC OF GREOD PREAD HAAT ASSUME SURFACE L TEMP = -277 OF WHERE A/L = . 000 922 F+2/1N $\Delta T = -423 - (-277) = 146 \,^{\circ}F$ H = 38.3 @ -350°F AVE TEMP QREQD = (38.3)(.000922)(146) = 5.16 BTU/ CALC OF PALLOW $h = .42 \left(\begin{array}{c} \Delta T_{s} \\ \end{array} \right) \cdot 25$ AMB TEMP. 90% WHERE AT5 = -277 + 90 = 367 %

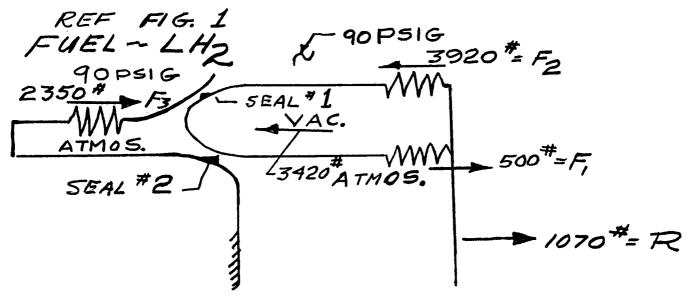

 $h = .42 \begin{pmatrix} 367 \\ 1.66 \end{pmatrix} \cdot 25 = 1.625 BTu / hr \cdot ft^{2} \cdot of$

QAILOW = (1.625) (367) (.00905) = 5.38 BTU/

BALANCE OF Q = QALLOW WILL T SURFACE TEMP OF -276 °F OCCUR

NAS 10-7702

SUPP. 3/4 TEMP AT POINT B- OUTER PATH, FIGURE 3 CALC OF QREQO PREQD HADT ASSUME SURFACE TEMP = -273 °F WHERE A/2 = 00113 ++2/ ∆T = - 423 - (- 273) = 150 °F K = 38.5 AT AVE TEMP - 348°F REF FIG 2 0 ° 9 REOD = (38.5) (.00113) (150) = 6.52 BT4/ CALC OF PALLOW $h = .42 \left(\frac{\Delta T_5}{D} \right)^{.25}$ ANB TEMP= 90% 363°F △T3 = -273 +90 = D= 2.08 (363) •25 = 1.526 BTu/ o°oh='.42 PALLOW = (1.526) (363) (.001138) = 6.31 BT4/ SINCE PREOD = PALLOW, SURFACE TEMP. WILL = -273°F

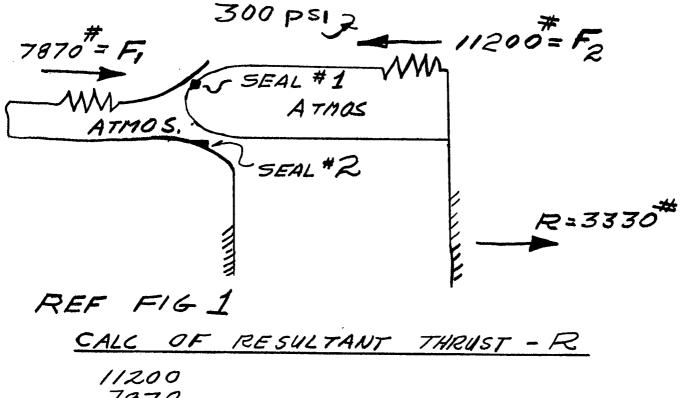


C-44

10-

WRK. 9/24/71

CALCULATION OF THRUST FORCES DEVELOPED BY BELLOWS:

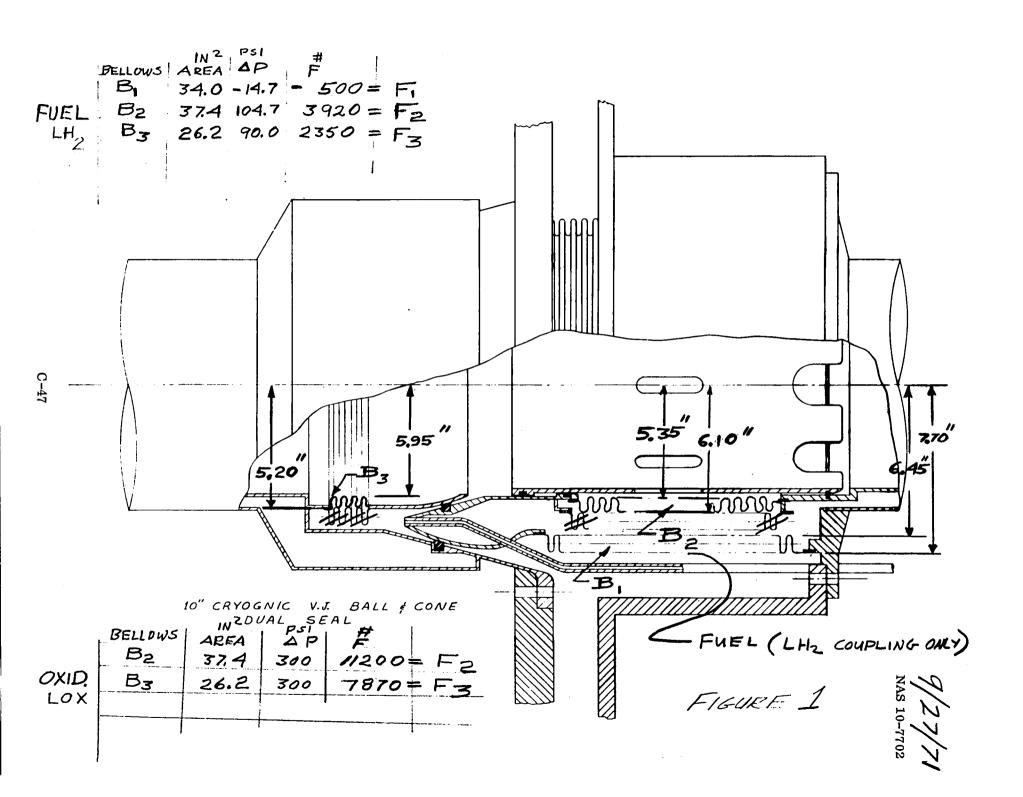


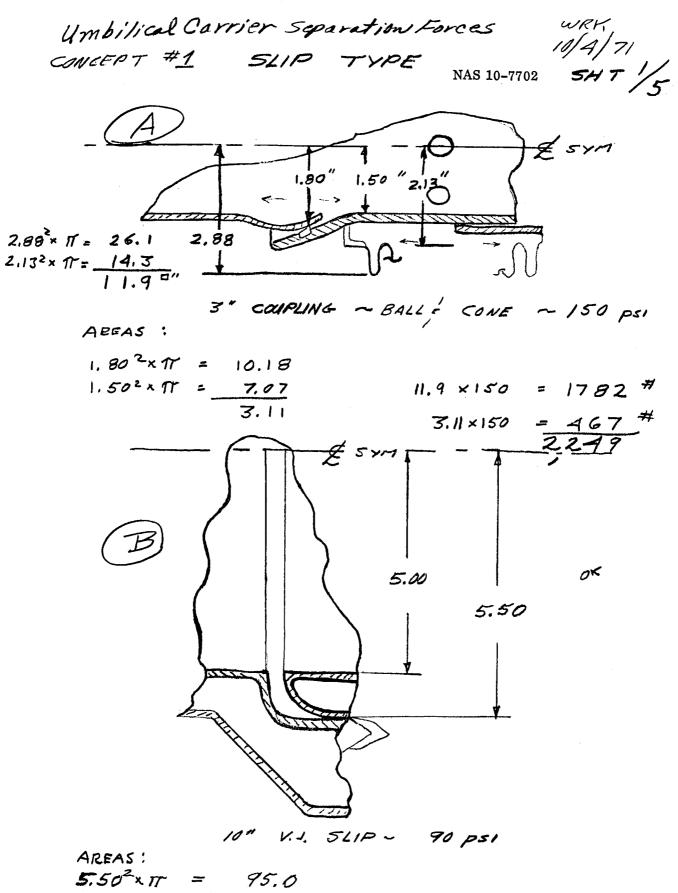
REF FIG 1
CALC OF RESULTANT THRUST-R
3920
<u>- 500</u> 3 4 2 0
$\frac{-2350}{1070} = R^{*}$
LINEAR LOAD AT SEAL #1
$(3420/2 + 2350)/_{34"} = 119 \#/1N$
LINEAR LOAD AT SEAL #2
1710/44.7'' = 38#/1N
* THE RESILITANT / DAD R WILL

* THE RESULTANT LOAD R WILL OPPOSE THE INITIAL COMPRESSION OF BELLOWS BY THE GROUND HAVE OF THE COUPLING. INITIAL COUPLING LOAD \$ 1070 *.

NAS 10-7702 9/24/71

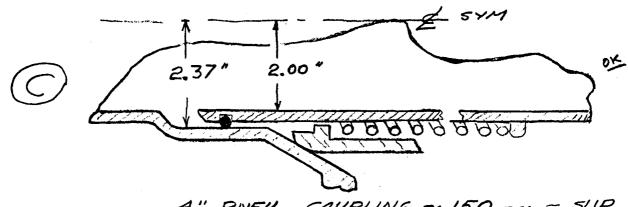
CALCULATION OF THRUST FORCES DEVELOPED BY BELLOWS;



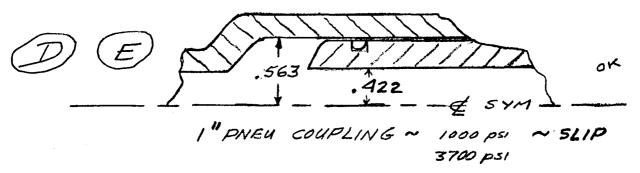

<u>7870</u> # = R*

LINEAR	LOAD	AT	SEAL	# <u>1</u>		
(11200/2	+ 78	70)	34"	-	396	#/IN

LINEAR	LOAD	AT	SEAL	#2		
(11200)	$\left(\frac{1}{2}\right)/4$	4.7			125	#/10


* THE RESULTANT LOAD R WILL OPPOSE THE INITIAL COMPRESSION OF THE BELLOWS BY THE GROUND HALF OF THE COUPLING, INITIAL COUPLING LOAD = 3330 #

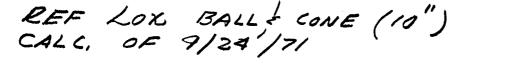
 $5.50^{2} \times 17 = 95.0$ $5.00^{3} \times 17 = 78.6$ 16.4 = 176.4 = 1480 $FUEL 16.4 \times 90 = 1480$ $C-48 OCLOIZER 16.4 \times 300 = 4920$



4" PINEU. COUPLING ~ 150 psi ~ SLIP

AREAS : 2.372×17 = 17.72 2.00 2×11 = - 12.58 AREA - 5.14 01

150× 5.14 = 770 #


AREAS: $.563^2$, $Tr = .997$ $.422^2 \times TT = .559$	
AREA =, 438 0"	.438×1000 = 438 #
Ē	.438 × 3700 = 1,620 #
ASSUME 100 FOR	ELECT. DISCONNECT.
$\frac{\underline{TTEM}}{\underline{A}} = \frac{\# REPO}{2349}$	
ABUDUL	
	+ ANY SEATING FORCES A-
0×10-> 10097# ~	<i>REQUIRE</i> D C-49

NAS 10-7702 WRK 10/4/71 CONCEPT #2 ~ PRESS, BALANCED SHT 3/2 I" PNEU. PRESS. BALANCE COUPLING (2 REQD) 180# each per 65864001 " COUPLINGS, FLUID - SATURN, V/S-IC, SPEC. " TOTAL=2×180 = 360 # MAX 10" CRYOGENIC V.J. PRESS. BALANCED EST. UNCOUPLING FORCE - 1000 MAX 4" SUP COUPLING ~ 150 PSI (REF SHT 2.5, ITEM C) = 770# 3" BALL & CONE ~ 150 psi (REF SHT 1/5, ITEM A = 2249# TOTAL COUPLING LOAD 100 - ELECT. COUPLING 360 1000 770 2249 4479 # -

C-50

WRM 10/4/71 5HT 4/5

CONCEPT # 3 COMBINED BALLS CONE + PRESS, BALANCE REF LH2 BALL & CONE (10) CALC. OF 9/24/71 @ 90 ps1 ~ FORCE= R = - 1070 #

@ 300 psi~ FORCE = R= -3330

2- 1"- PRESS. BALANCED PNEU. COUPLINGS= 360 # LREF SHT 3/5 4" SLIP TYPE PNELIMATIC COUPLING = 770 # LREF SHT 2/5 ITEM O =2249 * 3" BALL AND CONE LREF SHT 1/5 ITEM 🔿 = 180 # 3 M.S. ELECT CONNECTOR 60 # each =2669# TOTAL FORCE -FUEL COUPLING TOTAL FORCE LOX COUPLING

WRK 10/4/71 SHT 5/5

DISCONNECT FORCE SUMMARY

- CONCEPT #1 ~ SLIP TYPE A- FUEL = 6657 # B- OXIDIZER = 10097 # CONCEPT #2~ PRESS, BALANCE = 4,479 #

-> CONCEPT *3- COMBINED BALL! CONE + PRESS. BALANCE A- FUEL = 2,669 # B- OTUDIZER = 409#

DISTRIBUTION LIST

Manned Spacecraft Center National Aeronautics and Space Administration Houston, Texas 77058 EP-5 Bill Chandler George C. Marshall Space Flight Center National Aeronautics and Space Administration Huntsville, Alabama 35812

John F. Kennedy Space Center National Aeronautics and Space Administration Kennedy Space Center, Florida 32899

Distribution:

S&E-AJTN-SO

FP-C, HQ	Warren Foss	2
FP-A, HQ	James Spears	10
LV-ENG-C	W. Jafferis	10
DD-SED-4	N. P. Salvall	1
DD-MDD-31	J. B. Downs	1
DD-SED-31	G. E. Reichle	1
DD-SED-31	J. E. Sullivan	1
DD-SED-32	F. Ruggieri	1
LV-MEC-24	F. W. Mokry	1
LV-MEC-11	J. de LaRosa	1
LV-GDC-22	F. Overstreet	1
LV-GDC-22	W. G. Milan	1
LV-MEC-22	J. G. England	1
LS-ENG-21	G. L. Allgire	1
DD-SED-4	A. Garraway	1
DD-SED	L. Owens	1
DD-SED-3	B. Nelson	1
DD-SED-31	R. Hahn	1
DD-MDD	A. Zeiler	3
DD-EDD	J. White	3

3

F. Jankowski

15

DISTRIBUTION LIST, Contd

· · ----

DD	D. D. Buchanan	1
DD-MDD-3	E. Davis	1
SO	Bob Gorman	3
DF	T. Utsman	. 5
DD-SED-4	T. A. Poppel	19
Libraries at:		
Ames Research Center National Aeronautics and Space Administration (Library) Moffett Field, Calif. 940035		1
Flight Research Center National Aeronautics and Space Administration (Library) Edwards, California 93523		1
Goddard Space Flight Center National Aeronautics and Space Administration (Library) Greenbelt, Maryland 20771		1
Jet Propulsion Laboratory (Library) 4800 Oak Grove Drive Pasadena, California 91103		1
John F. Kennedy Space Center National Aeronautics and Space Administration (Library) Kennedy Space Center, Fla. 32899		1
Langley Research Center National Aeronautics and Space Administration (Library) Langley Station Hampton, Virginia 23365		1
Lewis Research Center National Aerospace and Space Administration (Library) 21000 Brookpark Road Cleveland, Ohio 44135		1

DISTRIBUTION LIST, Contd

Manned Spacecraft Center	1
National Aeronautics and	
Space Administration (Library)	
Houston, Texas 77058	
George C. Marshall Space	1
Flight Center	
National Aeronautics and	
Space Administration (Library)	
Huntsville, Alabama 35812	
National Aeronautics and	1
Space Administration (Code USS-10) (Library)	

.

.

Washington, D. C. 20546

.

End of Document