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bby
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Abstract

If a ;ogstructiblyicountable ordinal a is a pap ordinal, then
the ordgr tjpé of the set of index ordinals smaller than a is
exactly é;piihe gap ordigals are the only polnts of discontinuity of
a certain 6£é;nal~valued fﬁnétion.

The négion of gap-mihimality for well~ordered systems of notations
is defined_;ﬁ& the exis;encé of;gap—minimal systems of notations of

arbitrarily’iérge constructibly countable length is established.
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SYNOPSIS

Using systems of notations we provide a classification of the
constructible sets of integers according to their arithmeticalidegrees;

In the Introduction we present an overview of the main results
concerning the hyperarithmetical and the ramified analytical hierarchies
and summarize the principal results of this dissertation.

Chapter 0, Preliminaries, presents our choice‘of notation and
contains a few propositions which will be used later on. The proofs of
2,5 and 2;8 afé essentially given in [1].-

AIn Chapter I we study a certain class of ofdinals, the gap
" ordinals, and we show that they are evenly distributed among the count-
able constructible ofdinalé. That gap ordiﬁals exist was established
_ by Putnam in [13j. They appear for the firstttime in the literature
under this name in flO]. Except the Lemma 1.3, 1.5 and 1.6 which were
adapted from [10], all the results in this chapter are new, Theorem 1.10
states that there are exactly « 'non-gap' ordinals smaller than any
gap ordinal u; ‘énd Theorem 2.1 offers a new characterization of the
- gap ordinals as the only points of discontinuity of a certain ordinal-
valued function.

In Chaptér Ii we consider a new minimality requirement for
systems‘of notatiops-and we thus definergap—minimal systems of notations.
As a main resuit Qe obtain, in Theorem 3.2 that there exists a gap-
minimal system of notations containing notations for all ordinals

smaller than any arbitrary fixed countable constructible ordinal.

-iy-
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Lemma 1.4 (Recursioﬁ Lemma) in this chapter is due to Rogers [16] and
is a standard result in higher recursion theory. Lemma- 2.1 and
Theorems A, B,'C (stated without proof) are due to Putnam and Leeds [10];

All the other results in the chapter are new.

The results in Chaptef‘II are in a sense parallel to the results
in [10], which pro%ide a classification of'cpnstiﬁqtible sets of

integers using generalized admissible dég;éeihierafchies.

-v—



‘INTRODUCTION

In this disseftation we stﬁdy the arithmetical deérees:o% Setsrof
integers in the constructible hierarchy. We will show that the
h1erarchy of coﬁstructlble sets of integers up to any given level can R
be considered as an-ex;ension of the ramified ana;ytical hierarchy,
which in turn can be cdﬁgiaéféd’as an extensiqn 6f fhe hypgrarithmetj

ical hierarchy.

The hyperarithmetical hierafchy'ﬁro;ldes a/classification of a
certain collection of sets of integers accordlng to their degrees of
unsolvability. Attempts at organizing the sets of integers not
covered by this hierarchy have led to classifications of sets of
_integérs according to ﬁheir arithmetical degrees; the new hierarcuny
obtained.is called the ramified analytical hierar;hy. We will show
that the ramified angiytical hierarchy itself can be extended, using
- the same methods as those employed in defining the hyperarithmetical
hierarchy. |

In this introduction we review the known results about these

hierarchies and we attempt to justify the results in the paper.

‘1.  The hyperarithmetical Hierarchy.

The classical defiﬁition Qf.the hyperarithmetical hiefaichy is
provided by induction 6n'the Kleene-Churchisysﬁem of notations O.
0 1is a set of integers on which a partial ordering <0 is imposed
and which is the smallest set of integers satisfying the following

conditions:



(1) 10 & (xX)(xe 0 = 1_%0 XVvzx=1)

XVys=

(1) Nxed = 25 06 M e0 = (y<,

x=y < 29N
(iii) (e)(&e is an ordervpreserving map =~ 3.5%¢0 &

(n) (8, (ng) <, 3-5%)),

where 00 =1, (n+1)O = 2n0, and ¢e is an order preserving map if

and only if

; (n>(§e<50) convergent & ¢e(n0) e 0 & (m)(p)(m <n =

L eg(my) <g 8, ().

With each élément a in 0 1is associated a set of'integers Ho(a)

_as followsziﬁ

HO(1) =g
10(2%) = 1%y’

H0(3.5%) = {J(x,y) | v < 3.5% & x ¢ 101

0

The prbperties of 0O which are most relevant to this paper are:
(i) 0 safiéfies "internal uniqueness;" aﬁd i o is:a minimal
system of ﬁagétions. We will write 'IalR'. for the ofdinél for which
the integer a ';s‘a notation in R. A systeﬁléf‘@563tions R
satisfies internalfuniqﬁeness ifjfo; all,‘a, S,f if |a|R = lbIR"
theﬂ HR(a) Ei HR(b). A system of notations wifh this property

assigns then a unique Turing degree fo all 6rdinals which have at

least one notation in it. The fact that O satisfies internal
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uniqueness was established by Spector in [17]. A Systeﬁ of ﬁpfations
R is minimal if the Turing degree it associates with én ordinai i;

as low as possiblé, i.e. if for any other system of noﬁationg AS,' if
IaIR = ]bls, then HR(a) is recursive in Hs(b). ;i;‘[ll] it is
shown that 0 is abmaximal minimal systeﬁ of notatigns, in the sense
that it contains hétationé“féf'é$1large_a'seg@g9£ §f the clasSicél
ordinals as is ﬁossible for Aliinimalngyéﬁéﬁ‘ésféo.l The smallest
ordinal which is not assigned ;.nﬁtation“ih;-biﬂis a countable opdiﬁal,
which is known in the literature as "construcfivé w," (w |

1 1
In order to define the hyperarithmetical hierarchy we

--Kleene-
Chﬁrch wl).
need the concept of 'recursive union." If T 1s a class of sets of

integers, then the recursive union of T is the collection of sets of

integers recursive in at least one element of T, i.e.

RU(T) = {AcN | (EB)(B e T & A < B))
Then, the hyperarithmetical hierarchy, H.A., is defined as:
0
H.A. = RU({H (a) | a e O})

Kleene haé shown in [ 9] that ﬂ.A. = Ai (='zi()ni).

fwa other "hierarchical" definitions of H.A. beéides the‘ongu
'given above, are known. One uses degree¥hierarchies and the ofher
uses definitions in second-order number tﬁeory. It is interesting
that H.A. cén be extended in three differenf directions, slightly

modifying the three definitions, in such a way that the resulting



clasg of sets is the same in the three cases. For completenéss sake
we give here the two other definitions:

(1) Let f be a function from ng into the family of Turing

degrees defined as follows:
1. £(0) = deg. (@)

2. £(ot1) = (deg (£())' 1f & < ult

3. £(A) = an upper bound to RU({£(a) | o < A}) and £(A)

3

is recursiveiig the jump-jump of any other such
CK

. 1°

f 1is said to be a degree-hierarchy and H.A. can be defined from £

upper bound, if Lim(Ax) and X < u

as follows:

H.A. = {AEN | ‘(Ea)(A sp £@)}.

(11) A hierarchy of sets 1s defined inductively on the ordinals

CK,

<u)l.

Ab = {A€N | A is recursive}

Au+1f= {ASEN | A is definable over A, 1in second-order

number theory using constants from 'Aa}

A, = (JA 1if Lim(})
. o<A a

Kleene has shown that:

H.A. = {ASN | (Ea)(A e A)).



2. The ramified analytical hierarchy.

The claésical definitioq of the ramified analytical hierarchy is
obtained from the last definiti;n of H.A. above, the one using second-
order number ﬁheory, by $impiy dropping the requiremént that a < mgK
in the inductive definition. Then the ramified analytical hierarchy;
R.A, is jus;: a%énA“' I£ is obvious by a cardinality argument that
this new hiéf;rchy of séts must collapse at some ordinal. The point
of collapséfvas proved tB be cbuntable by Cohen. [4]. This ordinal is
called_lBo.;iThen,' R'A'~='A60f It wa; conjectured By Coheﬁ, énd
proved indé?éndentiy by GénQy and Putnam (unpublished) that; ABO is
the minimuﬁ?iB—model for analysis. The problem was then to try to
extend'H.Aﬂfgsing its other cﬁéracterizations (systems of nbtations
and degree—ﬂiérarchies) in such a manner that we get exactly R.A. in
both cases.iTObviously some'cléuée in those defiﬁitions had to be
weakened. 'Iﬁ'one case, relaxinéffhe requirement that the system of
notations on‘which the hierarchy is defined to be minimal, has proved
most fruitfﬁlﬂ In [12), Putnam and Lukas define a system.of notations
R to be:alﬁést-minimal, if for any other system of notations S, 1if
|a|R = I@Ié, then HR(a) is arithmetical in Hs(p).'.They prove that
there exists an almost-minimal system of notationsi_R:‘which;contains
o,f and‘fhat Ris maxiﬁgl

almost-minimal, i.e. that no other almost-minimal system of notations

notations for all ordinals smaller than B

can give notations to ordinals bigger than or equal to BO' Then they

show that



R.A. = ABo = RU({HR(a) IR is a maximal almost-minimal system of

notations and a € R})

In the case of the degree-hierarchy, we modify the third clause
'in the definition of £, to get an admigsible degree~hierarchy as
follows: |
We wiil say that S dis a uniform upper bound for a countable
collection of sets of integers TI', if T .is an S-recursively
enumerable family of S-recursive sets. Let f be a function from the

ordinals into the family of Turing-degrees such that:

1. £(0) = degy(8)

2. f(a+l) = (deg (f(e)))’

_3; £(A) is a uniform upper bbundvof RU({f(a) | « <)) and
there exists an n suéh that £()) 1is recursive in the nth

jump of any other such uniform upper bound.

Boyd, Hensel and Putnam show in [3], that such a function £, called
an admissible degree.hierarchy,-exists and can be defined on the .
initial segment of the ordinals determined by BO'. Then R.A. can be

defined as: .

R.A. = Aéoé AN | m)a < gy 8 A < £(a))

where f 1is an admissible degree hierarchy extending up to By



In his dissertation {1], Bollos shows that if one ﬁodifigs-.
slightly the definition of the constructible hierarchy; L, (sée
precise definition in the next chapter) the classificg;ion of setg of -
integers provided.by the ramified analytical hieraréh; agrees with the-‘
classification provided by the constructible hierarchy, i.e. that for
all o, 1if 1< o < B : then M (\“(w) = A A

The next obvious move is to try getting regﬁlts about the
arithmetical degrees of the constructible sets which occur at levels

above BO .

3. Gap ordinals and gap-minimal systems of notations.

The fact that three independent hierarchical charécte;iéations of
the ramified analytical sets stop at the same ordinal,' 80, leads one
to believe that by studying ordinals similar to BO; we can extedd
the ramified analytical hierarchy even furthér. Tﬁis turns out to be
the case. |

The first part of this thesis is derted to the study of these
ordinals. We take as the most important characteristic of the Bo—
‘1ike érdinals the following: No new»seﬁs of integeré are const;uéted
in the‘constructible hierarchy at the leﬁelg beginﬁing with thé
successor of the "Bo—like" ordinals for a certain number of stages

(which can be very large). These ordinals, whose exact definition is

given in Chapter I, are called gap ordinals. An ordinal a, such
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that there exists'a set of integers in Ma+1- Ma’ willJbé cglledlan
index ordinal. 1In Chapter I will will show that there are exaétly.
B 1indices which are smaller than any given B8 WhicQ }s a gap
ordinal, thus shoﬁing that, in a sense, there are eﬁéﬁgh indices to
absorb the gapg, no mat;er-how long the gaps aré.,‘i |

In the second'chapteflQeiﬁée_gap.or@ina}élﬁﬁwconstfuct a hierarchy
of sets extending arbitraril§ ;1ose to'fhé fi;é£kcon§tructib1y un- |

countable ordinal, mL ' This is done by relaxing still more the

1°
minimality requirement on systems of notations and defining gép-
minimal‘systems of notations. In our main theorem (Chapter 11.3.2) we
prove that there exists a gap-minimal system of notations up to any.

.ordinal less than constructible w and that the classification of

1’
sets of.integers given by these systems of notations i3, in a sense to
be made precise, best possible. |

Assuming ;he Axiom of‘Constructibiliﬁy (V =1L1L) to be true, we can
claim that we have a classification of all sets of integers according
té their arithmetical degrée; 0f course, there is no reason (as bf
now) to believe this axiom to be true, so all we have is a classifi-
cation of the consfructible sets of integers.

Two questionsAwhich are not touched ubon in the'thesis,but should

" be considered are the following:

A. The connection between gap ordinals and admissible ordinals

(in the sense of metarecursion theory).
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B. The gap-mipimal systems of notations construqted in Cbaptér II‘.
are not the ﬁost general systems of notations, since ;héy are wéll;
orderings, rather than well-founded partial—orderingskgith a uniqhe
least element. Tﬁe problem is then, are there any g?;ée—like) gap-
minimal systems of ﬁotations“which extend-arbitfariiy fér up to wg?

What additional properties woplﬁ such.systemg:offnotatidns-have.to

have?

These questions will béviAQéstiéatéa iﬁ‘éhbthef paper.

"As a final point of the Introduction we ;ould like to point out
that this thesis is but one link in a chain of papers written by
Professor Hilary Putnam and his students, and that the'reSults in it
.are best understood if considered in conjunction with the papers [2],

{31, {101, [11], [1],.listed in the bibliography.



Chapter O.

PRELIMINARIES R

In this chapter we discuss our choice of notationﬁand present
some definitions and results which will be used in théffollowing

chapters.

1. Notation.
We will use the standard ndtétioﬁs_in féé@fsive function theory,.
as they appear in Rogers [16]. The e-th A—?artial recursive function

will be denoted by ¢2 , the domain of ¢2, i.e. the set x| ¢2(x)

convergent} will be denoted by .Wé. J will be a fixed primitive
recursive 1-1 function from N x N onto N; its inverse functions

will be denoted by K and L such that
KI(x,y) = x aand -~ LI(x,y) =y

Jumps are defined as follows: 1let S be an arbitrary set of integers.

Then

s(® - g

'S(n+1) (n)

= {x I ¢Sx (X) Convergent} (=(S(n))')

s - e,y | xe 5P

Notation in set theory is fairly standard and we will not diverge
from it. All our set theoretic constructions can be formalized in
Zermelo-Fraenkel (ZF) set theory plus the Axiom of Choice. (See

Méndelson [14], for the axioms of ZF.)
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ON is the class of ordinal numbers and each o € ON is identified
with the set of all smﬁller ordinals, {B: B < a}. Hence the ordinalv
0 is @, otl is aUfa}, and A is a limit if and only if
X#0 and UX =), We use a,B8,Y,... to range over ON.

Sometimes we look at results in secénd order number theory; in
that case, small Roman letters will represent integefs, capital Roman
letters will :epresent sets of integers. When we are proving results
in set tbeory, small Roman letters will represent arbitrary sets.
Althqugh thesévnotations are not consistént with eéch othér, we use
them, sidce tﬁey appear as such throughﬁdt the literature. However,
’iﬁ will always be clear from context which case we are in at a

particular moment.

2. The constructible hierarchy.

In [8], Godel defines a transfinite hierarchy M, of sets and
uses it to prove the consistency of the Axiom of Choice and of the
Generalized Continuum Hypothesis with the axioms of ZF. Since we

will examine classes of this hierarchy in detail, we define it here.

2.1 Definition. ,Fof all o € ON, let Ma be as foilows:_
My = {8}

M, = {X |.Fodo(X,Ma)}

otl

M, = UM
A .éia a
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’;.Xﬁ? of.

where 'Fodo(A,B)' means that there is a formula ¢(X"O;'

set theory and elements bo,...,bn of B such that

A={X¢ BVI;¢B(X,bO,...bn)},

where ¢B is ¢, with all the quantifiefs restr;gﬁéd to B.

The union of all the ciaéses of théiéonstrgctible hierarchy, .

LgNM is denoted in the literature by 'L’ and is referred to as the »¢~.'
ae . . . .- ‘ ' B a :

constructible universe.

2.2 Definition. A set x 1s said to be constructible, if x.e L,

in other words if there exists an «a, such that x ¢ Ma'

The following properties of the Ma's will be of use later on.

" Their proofs are standard, and may be found for example in Felgner [7].

2.3 Proposition. For all a,

1) Mu is transitive, i.e. every element of an element of Ma
is an element of Ma itself.

(i1) a € Ma+1

For all «a, 8,

(iii) If o < B, theq Mu? MB.
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’

2.4 Definition. A set: A of integers is of order a, 'if

Ae M —.Ma. An ordinal o, with the property that;there exists

a+l

at least one set of integers of order a, will be called an index.

vy
+ -

We will abbreviate 'al.is an index' by I(&),{f&t is part of the
content of G6de1's‘proof-men;£ongd above tha;ithéfe are no. indices
greater than or equal to d;r (wi:Iis:tﬁe'fi?gﬁﬁaﬁcountable construct;
ible ordinal). Putnam has showﬁ in [15]; tﬁéf Eheré are L-uncountab1§ -
many_non-indices. Clearly there are L¥uncoﬁn£ab1y many indices.' If
K 1s a set of order a, we will call K (arithmetically) complete
(of order ) if every set of integers in Ma+ is arithmetical in

1
K, di.e.

M)A € M NP = (En) (A < K™)

"It is not hard to see that if I(é), then TI(otl).- we include the

proof here for‘two reasons: (i) We will make extremely freqﬁent un-

cited use of this fact throughout the paper, and (ii) we offer a '
ver .

concrete example of how one defines a set of Ma+l

2.5 Pfoposition. If A e Mar\P(m), then A(w) £ NP(w), for

.Ma+1
‘a > 0.

Proof. We follow tﬁe proof in Boolos [1].

Let Q(A,1i) = {J(x,1i) | x € A}. Observe that for any a > 0, if

A and B are in Ma’ so are AUB, Q(A,i) for any integer 1, and
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= {x'|.(Ey)T§(x,x,y)}. Hence for any A in M, éJQ(A(j) ) s

in Ma’ for any integér i. Then,

A S x e M| BRI WU(,0 e R <> ye A &

{wIJ(w 1)&RE

(1)( < i< = (J(y,i+l) € R <= (Ez )T »V,2) &

& x € R))}Y =
={xeM | EBR((Y)I(y,0) e R<=>yecA &
(1)(0 <1 < Lx = J(y,itl) € R <=
ED) A3, & @ gy (OOHD e R = (), =1 &

I (w,1) ¢ R = (2),=w))))) & xc¢ R}.

The T's wused in the proof refer to the familiar Kleene T-predicates.

(w)

- Althdugh the expression for A above looks somewhat formidable,
the idea behind it is rather simple. An integer will be in the
desired set, just in case it belongs to some finite jump of A. More-

over, we can get to that finite jump by taking the single jump as

often as necessary.

Generaily, it is easier to speak about fgnctioné of integers
thén to speak'aﬁoﬁt relations between érbitfary sets; This led to
the notion of an‘arithmetical copy qf a collection of sets, copy in
the sense that the relations existent amOnglmembers of the given
collectibn of sets are preserved under fhe function which does the

coﬁying. We define precisely the notion of arithmetical copy just for
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‘the Ma's, since this 1is the only case in which we use it. The
general definition can be found in [12].

Let F be a set of integers. Then

FIELD(F) = {x | (Ey)(J(x,y) € F v J(y,x) e F}.

2.6 Definition. Let F be a set of integers and let a € ON. F is

said to be an arithmetical copy of M , 1if there exists a function f,

not necessariiy in L, such that f is one~to-one from FIELD(F; onto

. 'Ma, .and such that

YY) (x,y) e F = f(x) € £(y)).

If for some integer a, every element of FIELD(F) is of the

form J(x,a), i.e. if
(x)(x e F < LKx = LLx = a),

then F 1is said to be an a-initial arithmetic copy of Ma' The last

definition, of an initial copy, is extremely useful, since it enables
us to distinguish between copies of various Ma's.

The fuhdameptal result in Boolos [1l], is that if I(a), then
there exists an afitﬂmetical copy of Ma,“which is of order a. It

follows that for any a, there exists an a-initial arithmetical

copy of Ma of order «.



16.

2.7 Proposition. If Ea is an arithmetical copy of Ma of order «,

then Ea is a complete set of order a.

The proof.of‘the above proposition although straigh£forward"is
quite tedious and we omit it here. The idea behind it is as follows:
Any set of integers in Ma+1 is first-order-definable over ,Ma; any
such definition can be 'translated' into a definition over E, using
only number qﬁantifiers.

Noté that if A 1is any complete set of order a; so are all the
finife jumps df A; thus there is no unique Turing degree character-
izing the complete sets of a given order. This is the main reason for
" which we concentrate'our attention.to aritﬁmetical degrees and in
Chapter II we‘even modify the definition of a jump to mean 'arithme-

AN

tical jump."

2.8 Proposition. Let Ea be an initial arithemtical copy of Ma of
order o, Then there exists an arithmetical copy of Mu+1 of order

o+l.

The proof of Proposition 2.8 forms Chapter II of [1]. Again we
indicate the main steps: If ¢ 1is a formula with number quantifiers,
containing =, €, and constants from Field(Ea), we write 'Ea E ¢

for what is expressed in model theory as:
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<Fiéld(Eu), {?x,y> | J(x,y) ¢ Ea}’ Field E > B ¢,

where satisfaction (F) is defined by:

1) E F é_e}b <> J(a,b) € E_
(A1) B, b (04x <> (2 . FLeldE) E, F 417D

etc. llf,j_

If ¢ contains the_conSfénts al;f..;an;””and' a, represents

i

the set x in M, then
i o

E, B¢ <= M, =¥,
where 1 1s like ¢, except that it has xi's wherev ¢ had ai's.
Then every formula of this kind containing one free variable X
correspénds to a firsp-order definition over Ma_-of é'membef of
Ma+l' But the set defined by ¢ Qill be new, i.e, will bé én element

of Ma+1 - Ma’, just in case

Ea E &(Ez)(w)(¢w <> w e z)

If y 1is a Godel number .of such a formula ¢, y 1is a least Gddel

number of ¢, just in case
(2)(z <y & =z 1s a Gdédel number of ¢ = E, E ¥(w)(¢w = yw))

Suppose Ea is an a-initial arithmetical copy of Ma’ Pick an
integer b # a. Then if y is a-least Gsdel number for ¢, we let
J(y,b) be a name for the set defined by ¢, 1.e. add to Ea’

{3(d,3(y,5)) | E, E ¢d}, Then the set
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EalJ{J(d,J(y,b)) | y 1is the least Godel number of some formula

¢ and ¢ defines a new set and d € Field(Ea)’ and E_ = ¢d}

is an arithmetical copy of Ma+l' To show that the arithmetical copy

built above is of order otl it is enough to observe that the whole

(w)

procedure is uniformly recursive in Ea

and b. This copy will be
designated By (Ea’b)*’ to‘show the dependence mentioned above. The

operation * will be used in the construction of complete sets.

3. Uniform upper bounds.

Let C be a countable collection of sets of integers. A set of

in;égers A 1s-said to be a uniform upper bound of C just in case
there exists an A=recursive function £, such that for all sets of

integers B,
BegC < (En)(xB = ¢?(n)).&.(n)(3B € C)(¢?(n) = XB)

where ¥ is the characteristic function of the set B. Observe

B

that the uniform upper bound of a collection of sets C cannot be

. itself in C, if C 1is closed under the jump operation.

3.1 Proposition.~xLet A be a uniform upper bound for C and let

A <

-~

a B. Then some finite jump of B 1s also a uniform upper bound

of C.
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Proof. Obserﬁe first that A Sa B < (En)(A < B(n)). We need

1
‘the following fact for the proof of the proposition: If A Sl B via

recursive function ¢z and if f 4is an A-recursive f@pction with

A-index ‘then there exists a recursive function;fh, such that

eqs
h(eo,z) is a B-index fér'tf; This fact is proved éélfollows: For
any x, start comﬁutiﬁg 'Ekkgtud;ing.the'algéyifﬁm for'it‘giQen by
.¢20, and rebldce every que;ti;; of-;ﬁe'férﬁ>E;£; y in A?Y by‘the‘
question 'Is ¢z(x) in Bé”.ﬂ'The Qalge cﬁmpufed will be unchanged

but we have used an oracle for B 1instead of one for A. The pro-

Therefore there exists a -

cedure is clearly uniform in 2z "and eq.

recursive h such that

- A B
f=4¢ =9 .
ey h(eo,g)
Now let D € C be arbitrary and suppose £ 1s the A-recursive

function generating A-indices of the sets in C. Then for some n,

Xp = ¢?(n)' But we know that there exists an integer k such that

A < B(k) Th X, = B(k) where h 1s the function
Sp BT Then Xp = dh(e(n),z)
described in the proof above and 2z 1s an index of the recursive

function g,s.t. x € A <> g(x) e'B(k), where g 1is 1-1. h is

aB *h(£(n) ,2)

arbitrary n. By the fact proved above, it equals ¢?(n) and is

-recursive function. Conversely, coansider for

therefore the characteristic function of some element of C. There-

(k)

is a uniform upper bound for C and the function

(k)

fore B

generating B ~indices for C 41is Anh(f(n),z).
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4. Systems of notations.

We assume known all the information aboﬁt the system of notations
0, for example at the level in Rogers' Chapters XI and XVI [16]. In‘
particular we assume known Spector's result about H-sets corresponding
fo notations for the same ordinai being Thring—equivalent and all the
known uniformity results. Since the systems of notations which will be
needed in subsequent proofs are more general (or, ffom a different
point of view, weaker) than 0, we will study them at the time they

are introduced.

4.1 Definition. Let o ¢ ON. Then o 1s said to be HYP, written

- HYP(a), juSt_in case

@)(AeM NP => o ¢ M_NP(W).

5. The Ramified Analytical Hierarchy.
It this section we define yet another hierarchy and we state some
of its properties. The ramified analytical hierarchy was defined for

the first time by Kleene in [ 9].

§
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5.1 Definition. For all o e.ON,: let Aa be as follows:

{S| S€N and S is arithmeticall

AO =

Aa+i ={S | SESN and S 1is definable in second-order number
-”theory using set constants representing sets in Aa}

A, = Ua .

A Ca<) @

While it is still the case that for all «, B, if a < B8, then
AuGEAB, this inclusion is not always strict, i.e. there exists an

The first ordinal at which this

ordinal ;a15§uch that Aa = Aa+1'

happeﬁs iéldénoted in thé literature by 60. Cohen has shown in [4]

that B ,ié‘countable. A

0 8o

satisfies all the second—ordef.comprehension schemata). Cohen

:1s an B-model for analysis (that is, it

conjectured'that A is the @inimum B-model for analysis. His

conjecture was shown to be trueiBy Putnam and Gandy. (An w-model .
is.a 8—mode1>just in case the pre&icate "For"all ¢, o 1is not an
infinitél&_descending pagh in R" holds of a 1inear.ofdering ‘R in
A, only'ifva is actually a well-ordering.) L

Our interest in this hierarchy comes from two directions: One
is that it ié kpéwn tﬁat Bo is also the smallest ér&inél which is
not an index, and the other is Boolos' result that if one alters
slightly the definitioh 6f the éonstructiblé hierafchy. (namely
replaciné M0 by the'class:of;the hereditarily finite sets), the two

hierarchies agree in their classifications of sets of integers up to

and including B,, i.e. for all 1 <a <8 Ma(WP(w) = Aa{WP(w).

0’



Chapter I

GAP ORDINALS

. In this”éhapter we yill}study those ordinals whicﬁ are not
indiceé. We will show thatvtﬁese ordinals can be characterized in a
new way as béing the points at which a certain function is discontinuous.
As a corollafy we will show that indices are 'evenly' distributed among

the ordinals which are smaller than mﬁ.

Section 1 -~

1.1 Definifibn. Let a é ON. o will be said to beié gap‘brdinal

(abbreviated as G(a)) if:
(1) a iis a limit of indiges

v

<1i>_a1(¢>.

1.2 Definition. Let G(a). The ordinal B such that for all y < 8,
Mc+y+l f MQ+Y conFalns no set of integers and I(a+B) 1is calleq the
length of the gap at ao. We will denote this uniquely determined

ordinal by g(u),

It follows directly from the definitions abové<that any limit
ordinal which is not a limit of_indiceé lies between « and atg(a)
for some o such that-.G(a). Oﬁ the other side, no restriction is

‘made on "a+g(a), except that it must be an index. By a cardinality
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argument ?e see that 1if G(a), then there exists a B8, such that
I(B) and a« < B; conversely, if I(a) then there exists a B8,
such tﬁat -G(B) and o < B.

We prove now a few propertiés of gap ordinals which will be used

in subsequent proofs.

1.3 Proposition. For all a, if G(a) then HYP(&).

Proof. Observe first that if G(a) then Ma(\P(m) is closed
under mahy operations. Some of these closure properties come from the
" simple fact that any gap ordinal is a limit ordinal. In particular
Maf\P(w) is cloéed under definition in second—érder number theory; for
any definition of a set of integers in secénd—order number theory cén
be easily transiated to a definition of the same set over some MB,
B < a. MafWP(w) is therefore an w-model for analysis. Suppose now

that G(a) and A € MarﬁP(w). Then o > wA for otherwise the

1’
relativized hyperarithmetic hierarchy would produce new sets of integers
A
1’

.at M . In fact a > w for 1if a = w?, then 0A would be of

a+l
'order a, and @ would be an index. It follows that HYP (a) .,

As a cor@llary to the above proof we see ;hat Ma(\P(w) is in
fact a B-model for analysis.

We mentionea before that the first non-index is denoted in the
literature by BO.I.Thérefore G(BO) and for all a, a < 80 => I(a).

It is known that the length of the gap at BO’ 8(80) is 1. There~
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fore I(By+1}...I(By),...I(By*+w),..., and the B th index is just
Bd+1’ hence there are exactiy '30 indices smaller than 80. We will
show that this is in fact trﬁe;for all gap ordinals, i.e. that for any

G(a), there are exactly a indices smaller than a. In order to do

this we define a functioh 0 as follows:

1.4 Definition. Let 0; ON - ON be the ordinal-valued function which

associates with every ordinal ' o, the order of the ath complete set.

ObserQé{that 1f 0(a) = 8,  then B is the ath index. Also,

for all  a,B;if o€ Range(O), then I(o). From the definition it

follows théﬁ&
1) 0 :is a monotone funé;ion
(i1) 0 'is 1-1

(1ii) for all «, O(a) > a.lﬂ‘

Clearly 0 is the identity function on all ordinals smaller than BO,
and at BO; 0 skips one level, i.e. O(Bo) = 80+1 . Since
I(a) = I(d+l), we have 0(80+n) = Bo+n+l for all n < w, and

0(30+w) = Bo+w. ‘Hence 0 has a fixed point at +w, and it continues

BO‘
to be thevidentify for all the ordinals smallgr‘th§ﬁ~¥ﬁe next ga@
ordinal. These considerations léd us to the following. conjecture: If
G(a), then atweg(a) 1is a fixedvpoinﬁ of 0. The conjecture turns
out to be true. In order to pf&vé iﬁswg need a whole sequence of

lemmas, some of which are interesting in their own right, and some of

which are not.
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1.5 Lemma. If o is a limit.of indices and Ma contains a well-
ordering of integers of length ia, then I(a). The proof of this

lemma is easy and can be found in detail in Putnam & Leeds [10].

It follows from thié lemma that if G(a), then Ma cannot contain

.a well-ordering of integers of length a.

1.6 ngmngfLet G(a). “For an& B, if B < a, then B+8 < 0.
Proof.. By Lemma 1.5 it follows that there is no well-ordering of
integers of‘iength a in MB’ for arbitrary 8 < a.  Suppose TI(B),

B <a Hahd-i§+8 > a. Let E, be an arithmetical copy of M, of

B B
order B. Tﬁen R = {J(x;y) € EB | x and y are 'ordinaié'},is a
well-ordering of length 8, and

R' = {J(x,y) | L e Field(R) & Ly ¢ Field(R). & . Kx = 1v

Kx

2& Ky=1 Ky=2.&.Kx=Ky =

Kx <R Ly}

is a well-ordering of integers of length greater than a, and R' is
contained in -MG for some index ¢ < a. But this implies that there
is a well-ordering of integers of length & in M contradicting

the fact that 'G(a). Therefore such a B does not exist.
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1.7 Theorem. Let @y and aé ‘be such that G(al) and G(az) and

such that for all B, a, < B <a either I(B) or B < alfg(al)

1 2’
(i.e. @y and @, are two successive gap ordinals). Then if
O(al) = al+g(al), the function 0 has a fixed point 6§,
+g(a ) < 6 < a,.
Proof. The proof will be constructive; we will exhibit one such
fixed point.. Claim tha; § ==al+m-g(a1) is a fixed point of the

function 0;7 Uéing Lemma 1.6 we observe that for all n,
ai+n g(a ) i< az So al+m‘g(al) is at worst equal to aye But we

will show that § 1is inlthe range of 0, therefore it cannot be a

gap ordinal,: So & belongs to the desired interval. Now observe that

O(al) _= cxl + g(ay)
O(a + 1) = al + g(al) + ;

. R : . ’\:A B
- . N E
.

~0(ai.fim) = a; + g(al) + w;

We will show by induction on B8 < g(al) that

+ g(al) + weB.

(*) '0(a1'+ m'B).= oy

The case B'= O is one of the hypotheses of‘thé cheo;ém. Suppose

(*) holds for all Yy < B. Ihen'if for some v, 8_$.Y+1, we have:
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O(a1 + w*y) é’al + g(al) + w*y, by Induction Hypothesié

O0(o, + wey +_w) a, + g(al) + wy +w =

1 1

o, + g(al) + w(y + 1) =

1
ey o

Rl

But the leftmost é#pressibn‘#ﬁvﬁhe ;aStxcéain 6iiquali£ieé is just
O(ul+m-3), =1e) ﬁe are done. g A | ;. ..H. ' ‘h

. Suppose now that Lim(B). Then Q(lub{§1¥w-y | y < B8} =
= 0(al+w~8). Let o© =‘lub{0(al+w-y)'! Y < B}.- We have to show that
o = 0(a1+m-8). o 1is clearly 5'0(a1+w‘8) and by the induction

hypothesis ¢ = ai+g(a1)+w-8. Suppose 0o < O(al+w'8). Since a < az;

1(c), so o 1is in the range of 0. Hence there exists 1, such that

o = 0(1) and there exists such that 1t < al+w-yd, since al+m-8_

Yo

is a limit ordinal. Then O(1) < O(a1+wa0) < 0. The first inequality

holds by monotonicity of 0 and the second one by the definition of

g. So o0 < o, which is clearly a contradiction. Therefore we have:

0‘“1 + weg( 1)) = a; + g(al) + w'g(ql) =

ap + (L4 w)glay) =

+ weg(a

1 LA

Hence 6 1is a fixed point of 0 and the theorem is proved.
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1.8 Corollary. If a. and o, . are as in the hypothesis of Theorem

1 "2
1.7, then O(a ) =« +g(a2) '

Proof. It is easy to see that once the function 0 hits a
fixed point below a gap ordinal, each point above the fixed point but

below the next gap ordinal is itself a fixed point of 0. Suppose now

that 'O(az) >a2+g(a is by definition an index, so

20 2)

there must'be some ordinal smaller than ays - call it vy, such that

But a2+g (a

0(y) = a2+o(a2) But by Theofem 1.7 O(y) can be at most equal to

%y So we have q2+g(a2) <a Since g(az) > 0, this ié ciearly a

2-’

contradictiah.

1.9'Coroliéty.- If G(a); tHen 0(a) = otg(a).

?roof.é By induction on the sequence of gap ordinals,_let o be
a gap ordinal. Suppose that for all B, if B <o and G(B) then

0(8) = B+g(8).

Case (1). = B, Then 0(8)) = B+l = B +g(8)-

Case (ii). There exists a éreatest gép ordinal 8, which is smaller

than o. By the induction hypothesis, 0(8) = B+g($).v Then by

Corollary 1.8, 0(a) = ot+g(a).

Case (iii). o # BO and there 1s no greatest gap otdinal-smaller‘than

a, i.e.” o is a limit of gap ordinals. Clearly O0(a) > atg(a).

Ced

Suppose 0(a) # atg(a). Then there ixists an ordinal B8 < a, such
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that O0(B) = a+g(B), and G(B). But by the induction ﬁyboﬁhesisﬁ

0(B) = B+g(B) and since B < a, B+g(B) < o, so O(qi_< a, which

is a contradiction.

Therefore we have proved:

1.10 Theorem. There are exaé#i& ¢ “indices leé;”than any gap

ordinal a.

Section 2

In this section we study the continuity of the function O and

we offer a different characterization of gap ordinals.

2.1 Theorem. Let a € ON -and let Lim(a). Then O is continuous

at a if and only if ~G(a). In other words, the gap ordinals are

the only points of discontinuity of the function 0.

~ By "continuous" we mean "continuous with respect to the natural

Proof. In order to prové continuity of a function from the ordinals
to. the ordinals we. have to show that the function commutes with the

least-upper-bound-operation at limit ordinals.
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We show first that 0 1s discontinuous at gap ordinals. Let

G(a).

Claim. 1ub{0(a) | 8 <a} =a.
Proof. If & < a, O0(S) ; 0(a), by monotonicity of 0. Therefore

the lub of the set considered is less than or equal to O(a). But by

Corollary 1.9, 0(a) = a+g(a) and every 0(8) for '6 < a, being an
index ordinal, is strictly less than a. So the desired lub has to be
at most equal-to a. But if it is not exactly o, since Lim(a),
there exists 1p < a, such that 0(a) = é, cpntradicting Corollar§ 1.9,
~ the monotonicity of 0 and-thelfact thaﬁ for all «, O(a) > a. So
the claim is true. But O(lub{§ |§ < a}) = 0(a) # a = 1ub{0(8) | § < al.
Therefore 0 1is not continuous at a. By taking contrapositives the

- only'if part of the theorem follows.

To prove the other direction of the theofem, let a be such that

Lim(a) .and ~G(a). Then there are two cases to be considered:

(1) (EB)(G(R) & B < a < B+g(B)), 4i.e. lies inside the gép of
some gap ordinal.

(11) 1(a).

Case (1). O(lub{é |8 > a}) = O(a). Let t = lub 0(8) | & < al.
Clearly 1t > B+g(B), where B 1is the ordinal inside whose gap «
lies, and 1 < 0(a). Suppose 1t < 0(a). Then claim that I(t). For

if not, either IG(T), or T ifself lies inside a gap. i.e.
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(EB) (G(Y) &~Y,< T < y+g(y)). In;the first subcase lub{O(d)'1 § < 1}= 1,
by the claim proved at the bggihning of the proof of the theoren, aﬁd
since T > B+g(B), a < 8+g(é);=> a <1, so O0(x) <1, which is a
contradictioﬂ. In the seéoéd~subca$e, 1ub{0(8) | § < a} =y, and

a <y, so again O(u)'; Y < 1, the same contradiction. SQ if oﬁr ‘
assumption ié correct, Qe have I(1). So there exists o < a, such
that 0(o) = 1. But Lim(a) implies that there exists p, O <p < a.
But thislis $ contradicéion, since then, 0(o) = T < O(p);: contrary to

the definition of 7.

Case (ii);: 5s before lét ‘T = 1ub{0(8) | 5§ < a}. Them T £.O(a).

Supposé “;%;lO(a). If {'5 a, then I(t), for r’i o => 0(t) <1t =
0(t) =‘;1 :£;t the fact that EI(T) leads directly to a coﬁtradiction,
since tﬁefé?ﬁust be-a’ o,  suéh_that 0(o) = 73 'then there must be a

p, O < p < a, and O0(p) > T, Vgpntradicting the definition of 7.

8§ §%sﬁme a <1 <.O(a). If I(1) we are done by the argument
ébove. AIf'not, T is either a ga§ ordinal or lies inside the gap of
a gap ordinal. Arguing exaétly as in Case (i) we see thaf this is an
impossibility; Bence T = 0(a), and the function 0 is continuous

at o, which had to be proved.




Chapter II

: GAP-MINIMAL SYSTEMS OF NOTATIONS

Section 1

1.1 Definition. A system of notations R 1is a well-ordering of

integers vﬁR.
If a sysfem of notations is of order type d, then it assigns a
unique notation to every ordinal smaller ‘than o.

' just in

Let R be a system of notations. We write ']a]R = q
case a € Field(R) & a is the ath element of R. We associate

H-sets with: R as follows:

Hp(a) = ¢ I lalg = 0
Hp (a) =‘11R(bv)(“’) if |b|.R+1 = |aly
HR(a)'= {J(x,y) |y <pa&xe HR(y)} if Lim(lalR)

The above definifion of H-sets in terms of the w-jump rather than in

terms of oréinary jump is justified by the fact thét we are interested
in arithmetical degrees of sets in the constructible hierarchy, rather
than iu Turing degrees of tﬁé same sets. Sinée for any set A, A is’

(w)

1-1 reducible to A uniformly via AxJ(x,0), our H-sets have the
usualhprOperty that a R b = HR(a) <4 HR(B), uniformly in a and

b'
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In this'chapter we study'theiarithmetical degrees of the H-sets
associated with systems of nptaﬁions and prove the main result of this
thesis, namely the existencgvoé gap-minimal systems of notations of
arbitrary lengtﬁ (<wi). The first ﬁartbof the chapter contains a
number of results neces%ary for the proof of the main theorem, -and
some of them.interesting in their own right. They are mostly concerned
with the relationship bétween H-sets and uniform upper bounds and with
the positién;of certainiH;set; in the constructible hieraréhy.

Let- ;ijbe a gap ordinal-and let R be a well-ordering of
integersléii;whose initigl segments are in Ma(\P(m). We will show
thét ghe ﬁlgéts associlated wi;h integers in R which are ﬁotations
for ordinaisismaller then'theilength (order—type) of R aré themselves
in Méﬂ P(m).'; Clearly, HR(OQ =% isin M _NP). Now, if
HR(a) € Marlp(w), and b .;s E@g R-successor of a, HR(b)’= HR(a)(w)’
But since qi is a limit ordiﬁal;lthere exists B < a, such that
' L NEWEM 0BG,

HR(a) e M NP(w). By Lemme #OﬂZ.S; HR(a)(m) e M

B B
so HR(b) £ Ma(\P(w) also. Therefore if for some integer a in the
field of -R; vHR(a) is not in MG(\P(w) and a 1s the R-least
eleﬁent with this property, a has to be a notation for a limit

ordinal. We will show that such an a cannot exist;j The result will

. be an easy corollary of the following: -
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.1.2 Theorem. For all a, b in Field(R), if a 4is in the field of

‘ 1 .
Rb+R1, then HR(a) is Al in Rb+R1, uniformly in a.

In the statement of the theorem 4'Rc' stands for the intiial:
segment of R determined by ¢, and 'a +R 1' 4is an abbreviation

for 'the unique element of R which is the R-immediate successor of

a.’!

1.3 Lemma.

(a) If A e Ai, then A' ¢ Ai, uniformly, i.e. there exists a

recursive function f such that if e 41is a 1-index of A,

41
~ then f(e) is a Ai—indix for A'.

(b) Let f be a recursive function such that for all x, £(x) is

a Ai—index for a Ai—set. Let Ax be the Ai-set whose index is

f(x). Then the set {J(x,y) | x ¢ Ay} is a Al—set, uniformly.

1

(c) If A 1is in- Al then A(m) is in Al uniformly.

1 1’

Proof. Part (a) is a particular case of Theorem X, Chapter 16 in
Rogers; part (E) appears in the same book as exercise 16-94 and it is

easily proved. TFor (c), let e be a Ai

be the recursive function found in (a). Lef g(n) = fn(e), where

-index for A and let f

fo(e) = e, and g(ntl) = £(g(n)). g is clearly a recursive function
and g(n) 1is, by repeated applications of part (a), a Ai-index for
A(n). But A(w)'= {JI(x,y) | X € A(y)}. Applying (b), we get the

desired result.
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The results of Lemma 1.3 hold in relativized form also.‘ We shall

not give the proof here, but weé will use them freely in that form.

1.4 Lemma (Recursion Lemma , Rogers) .

Let. R be a.well%ordering of integers and let P be a binary
relation onrintegers suqh that there exists a k, partial recursive
function of'fwo variablés, such that for all integers e and for all
a in the fiéld of R, | |

<b><b<R a= BG4 (b) = P(a,dy o 0) (@)

Then theref;;ists an ¥,  sﬁch that for all a in the field of R,

P(a,é_(a)). "

‘The:ét;;f of this lemma Q;es the recursion theorem and can be
found in Rbgers_[lG, Chaptér XViA\p.398].

The,prbaf of the theorem u;eé the recufsion lemma and is .a
triviai modification of Kleene's result about the li-sets associated
with 0; N

ERY

Proof of the Theérem.

Fix b in the field of R. Recall that we have to show that:
(a)(a € Field( ) = H (a) 1is - A7 'in ,

Bt Forpl? 7 Ty fot 1

uniformly in a). ‘
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We use the recursion lemma over the well-ordering Rb+ i, where P
. " R 1
is taken to be
J(a w):lﬁa ; Field(R ,.,) &w 1is a Al’Rb+ 1 :iéaex for
’ ) Rb+R1 1 R+ X )

Given 2 2z such tﬁat '(é)(é.kﬁ; _ -a'=?vP(¢,$;ké)) we must show how

PR

to compute a w, uniformly in a_ and z  Such that " P(a,w).
. 1,Rb | .
Case-l. a 1is R-least. Let w be a Al +Rl—1ndex for @.

Case 2. a is an R-Successor. Let c¢ be the R-immediate predecessor |
of a. Then ¢z(c) is a A;’Rb+Rl~index for HR(c). Since
.HR(a) =_HR(C)(N), we can apply the construétioq in Lemma 1.3, to get

1, '
a Al Rb+Rl index fo; HR(a).

Case 3. a 1is .an R-limit. Then

H (a) = {J(x,y) | y<, a&xe H (M) =
R - Rt 1 R

R

(36 | y<p  a& EDEAT] L E,0),E%)

Rp+ 1

R

{IGy) |y < aé& (f)-(Eu)Ti’l(L¢z(y)sf.X,q)}

Rt 1

R

where Ti 1 is the Kleene T-predicate as defined in Rogers, 15.2.
. b4 .

For lack of space, we omitted the superscribt Rb+ 1 from the T-
R

predicates, but it belongs there.
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But {y | y < a} 1is arithmetical in R+ 1’ uniformly -
B T A i

in a. A Tarski-Kuratowski computation gives then HR(a) is in

Ai’Rb+Rl , and an index forvit can be obtained uniformly in a.

1.5 Corollary. Let o be a gap ordinal and let R be a wéll—ordering

of integers all whose initial segments are in. Ma(WP(w). Then for all
a in the field of R, if 2|, < @, then Hy(a) e M NP(w).
Proof. - Let a be the R-least element of R such that HR(a)

is not in 'ﬁé(\P(m). By a remark above a has to be an R-limit. By

0

- 1 ¢ Ra+Rl
the theoggpﬁ?HR(a) is é; in Ra+Rl’ hence HR(a) $p 0 R, By
hypcthQSlS’ija+Rl is in‘ Ma(\P(w). Since a 1s HYP,
Rat,1 - Lo '
R™ ¢ MajWP(w) also, Therefore HR(a) is in Ma(\P(w). So there

is no such a.

Remark that in the ﬁroof we used only the following property of
the ordinal a: HYP(a). Therefore the conclusions of the theorem (and
of the cofoilary) hold for ény a having this property and such that

Mal\P(m) contains a well-ordering of integers of the appropriate type.
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Section 2.
In this section we investigate the connections between uniform
‘upper bounds and H-sets. Ve will show that 1if o is a gap ordinal,

then H'(a) is a uniform upper bound on Maf\P(m).

2,1 Lemma (Leeds). Let A be a uub for Ma(WP(w), o a gap ordinal.

A

“Then there exists a well-ordering of integers R, such that:

(i)'Eve?y initial éegment of RA is in Maf\P(m), and
' CES Rgffa A.
gxoof. }Let wﬁ be thé set of A-Gédel numbers of sets of integers

in Ma; Sihée o 1is HYP; there exists a predicate W(x) arithmetical

in A Asuch-that

X € Wz & W(x)s=> x ¢ Wﬁ $3Wi is a well—ordering.
Let PA(a;B?Q,y) be a predicaté'ﬁhich holds just in case the following
hold: - . - ‘

) 2eW & beWs & W@ & W)

(i) a<b & x eField(wi) &y eField(wﬁ) V. & T,y e wg.

Let

R, = {J(0x,a),3(y,b)) | P,(a,b,x,y)}
RA is obviously arithmetical .in A, aﬁd since it is constructed by

joiﬁing together w well—ofderings, évery initial segment in R is

in Ma' The length of RA is exactly a.
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By the corollary to the previous theorem we can conclude that if

A

it follows that H_ (b) < A also.
RA a

b 4is in the field of R , then HR (b) dis in Ma(\P(m). But then
A .

Reviewing the situation up to now, we see that we can associate
with every uniform upper bound on ﬁa(\P(w) a well-ordering Qf
integers which is arithmetical in the considered uub and moreover;
such that the H-sets associated with that well-ordering are all in

-Ma ﬂP(w); This is the case because we are indu;tively building sets
along well—order;ngs in :Ma’ using sets already in Ma’ and the
closure properties of Mar\P(m) guarantee that the resulting sets
will be in 'Ma 'too.‘ Suppose now that we extend one of these well-
orderings RA in order to have a notation for a. One‘can_ask then,
where does H(a) iie, 1f a 1is the notation we assigned to «. We

will show that H(a) cannot possibly be in Ma’ and that H(a)

itgelf is a uub for MG(WP(w).

2.2 Proposition. Let A be a uub for MdflP(m), a gap ordinal.

Then there exists a well ordering of integers RA such that:

1 ) ’
(1) RA 2 A.

(i1i) Every initial segment of R,

A of length strictly smaller

than a 1is in MG{NP(w).'

(iii) RA is of ‘length a+l..
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Proof. Let d be an ArGédel number for A. Since no uniform
upper bound on Mar\P(m) can itself be in Ma(\P(m), d is not an
element of Wz. Therefore PA(d,d,x,y) will not hold for any choice

of x and y. We add just one new element at the 'end' of R,, there-

A’

fore we must make sure that all the elements in R are smaller in

A
the new ordering than the new element. Define RA as follows:
' = n :
R, = R, U{J(x,J(0,Ld) | x e R}
Since RAF ié arithmetical in A, so is RA, RA is obviously of

lengﬁh a%iii and everytinitial segment of RA of length strictly

smaller than o« is an initial segment of RA of that length and by
is the

the constrqétion of RA is in Mar\P(w). Therefore RA

desired well-ordering.

2.3 Proposition. Let RA be tﬂg\well~ordering obtained above and let

a be the.last element of R!, i.é. the notation for a. Then
H_  (a) is.ndt an elemenf of M NP(w).
RA o .

Proqﬁ;" éuppose HR,(a) is in Ma(\P(w). We will show that we
. L A .

can construct a well-ordering of integers of length, which is

arithmetical in HR,(a). But we know that for any two sets A ~and
R ' T

B, if A is of order B, and 3B is arithmetical in A, then B
itself is of order at most By - so the constructed well-ordering will
be in Maf\P(m) as well, contradicting the fact that MQF\P(w)

contains no well-orderings of length a. By definition,
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H,.(a) '-'-':{J(x,y) l y <,»a & xe€H,[yl.
RA. RA RA

Define a well-ordering of integers S as follows:
s = {J&x,y) | x¢ HR,(a) &yce HR,(a) & (Lx R Ly Q! a)Vv
A A . A A

V(Lx = Ly & Kx < Ky)}

S is clearly a well-ordering of length greater than 6, for any
§ <o, so S: is of length at least o. 1In order to show that S 1is

arithmetical in HP,(a) it is enough to observe that the following
\A .

problems are uniformly arithmetical in HR;(a):

A
i. Determining if x is in the field of RA and x <gt @%
A
X € Field(RA) & x <, a <= (Ey)(J(y,x) ¢ B ,(a)).
: R R
: A A
2. Determining i1if X <, y <,y a:
: R R
A A
X <pi y <pr @ = X e Fie;d(RA) & X <pi a &y e Fleld(R)) &
A A= A
- &y <raby#xa
A .
& {r | J(r,x) e H ,(a)} < {r | J(x,y) ¢ H ,(a)}.
RA a RA

Therefore S 1is arithmetical in HR|(a) and by the argument above it
. A
is in MaflP(w).' But this is a contradiction. Therefore HR,(a) is
. A

not a set of integers in M, if a 'is a notation in RA for «a.
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2.4 Theorem. - Let a be a gap brﬁinal. There exists an arifhmetical
. copy of Maf\P(w), E, such}tbét E <, HR(a), provided a is a
notation in R for a. .

Proof. The proof will;bé by iﬁduction cn R, and we will in
‘fact prove the gtronger‘result that HR(a)Ta: Ea.

RecallAthat we havg available the operation * which enables us to
build an afiFhmetical c%py of' Ma+l given an arithmetical copy of Ma,
and that thélnew arithmétical.copy is uniformly recursive in the wih
jump of ghe?bld arithmetical copy (that qf Ma)° Let E be a recursive
_ arithﬁetiéaiacopy of MwQ It is useful to pick E to be OR-initial.

For exampléipick E to be:
O @0, I@,0)) | (Ex) @) EE =m &6y =n&xey)

where G is the recursive funé;ion which maps the hereditarily finite
sets ontho-one'onto the natural numbers. Now define the desired copy

E_ of M.g be induction over R as follows:

a a
E =E
Or
E = (E,,b)*  if [b] = Je|p +1
E, I'c%bl.Ec S Af g 1; a limit ordinal

e
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Ea is clearly an arithmeticél copy of M . We show now by induction

that E, is recursive in HR(b), uniformly in b. E " is recursivé,

b Or

hence recursive in @ = HR(OR). Suppose now that bifR a and that

Eb Sr HR(b). Let ‘¢ be the R-successor of b, Théﬁ}

vEC = (Eb’c)*‘ -<-T Etsw) ,51 HR(b_) (w) = H-R(C) "

Since both reducibilitieé'ébovgtére‘unifofm, it. follows that Ec is
uniformly recursive in 'HR(c).' In order'to‘probe the result at limits

we have to examine the operation * in greater detail. Recall that if

EC = (Eb,c)*, then we have:

Ec = Ele{J(d,J(y,c) I y is the least Godel number of some
formula ¢ and ¢ defines a new set and d € Field(Ec)

and E, Eod})

"Hence if we define the E's along some well-ordering of integers;Athe
way we did above, they will form an increasiﬁg sequence of sets.
Observe that given an x in some E we can tell the level at which
the set represented by x first appeared in the éonstructible
hierarchy, for it is enough to compute LLx; the set represented by

and thefefofe it is new in M

x first has an image iq E m+lLLXIR'

LLx?

.Let b be an R-limit. We will show thatl E is recursive in the

b

(ordinary) jump of HR(b)° By assumption EC < HR(c), for all

¢ <p b. Recall that we have used in a previous proof the fact that

if b 4is an R-limit, the predicate 'x 1is in the field of R and
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X <p b' 4is uniformly decidable in HR(b)'. Rather than give an
explicit expression for the function, we indicate how we can decide
membership in Eb given an oracle for HR(b)'. Given a number x,

we want to know whether x 1s in Eb. Compute LLx. Ask if

LLx € Field(R) and LLx R b. If the answer is 'no,' x. is not in

Lx’
- '
HR(LLx), and H(LLX) < HR(b) S HR(b) R

E . If the answer is 'yes,' ask 1f x is in E " Since by the

»indubtion4hyp9thesis ELLx =
given anAoracle for HR(b)' we can decide membership in ELLx'
Remark that although at limit ordinals we have arithmetigal rather
than Turing rédu@ibility, the induction still works, because finite
jumps are absorbed by w-jumps. For example, let b bg an R-limit

and let ¢ be the R-successor of b; suppose HR(b)'. Then

B, <¢

B = Eor g B o aeH @ 2 ne® - ne

So the induction can continue from this point on as before. We have
therefore shown that there exists an arithmetical copy of Ph which

is recursive in HR(a)'.

From this the following easy, but important corollary is

immediate:
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2.5 Corolla:x; HR(a)' is a uniféorm upper bound for Mar\P(Q).
25222; Since -Ea is an §f§thmetiéal copy of Ma’ Ea is a.
uniform upﬁer bound for MG(SP(w). Bur clearly any set in which a
uniform upper bound for a coiléction-of sets of integers 1s recursivg
in, 1is itself a uniforﬁ_#pper bound for that collection, so we are

done.

It can'Be shown (uéing the same kind of proof as in the above -

A’

and A is a uniform upper
bound fbr _ﬂ&f\P(w), then [E_ itself is arithmetical in A.

theorem) that if R is chosen to be R

Section 3 - .-
In thié'section we build fhe gap-minimal systems of notations

extending arbitrarily close to ‘mi.

3.1 Definition. Let A be a uniform.upper bound for a countable

collection of sets of integers Y. A 1is said to be a B-least uniform
upper bound for € if and only if A is arithmeticai in the g-th jump

of any other uniform upper bound for .

In other wofds, if we denote the collection of uniform upper bpunds

on € by U(¥),
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Ae U(®) =+ A is B-least <= (B)(B ¢ U(¥) =>_Af éa Bw'B);

Our aim is to define a sequence of H-sets which is arithmeticélly
minimal in the foilowing sense: If R 1s any systgéﬁéf notations, thén _
ﬁmin(a) <, HR(a'), provided a and a' are nota?ighs for the same
ordinal. The sequenée ‘Hmi#.'is defined using qu;ﬁprevious result

connecting H-sets with uniform'upper bounds'aﬂd a series of results in

‘Putnam & Leeds [10], which we‘ddbte:

Theorem A. Let a be a gap ordinal and let the length of the gap at

‘« by g(a). Any complete set E of order oa+g(a) is a g(a)-

a+g(a5

least uniform upper bound on Maf\P(m) = Ma NP(w).

+g (o)

Theorem . B. Let a be a gép ordinal and let the length of the gap at
a be g(a). There is no y-least uniform upper bound on Maf\P(m),

if v < g(a).

Theorem C. Let a be a gap ordinal and 1eﬁ>the'1§ngth‘of the gap at
a be g(a). Then there exists a g(a)-least uniform ﬁpper bound on

. Ma(\P(@), A, such that both A and a. g(a)th jump of A are in
Ma+g(q)'

The proof of Theorem A is not véry hard and is similar to our
proof of Theorem 2.4. The main idea of the proof is that given any
uniform upper bound for M&(\P(w), we can build an arithmetical copy

of Md which is arithmetical in the g(a)thl jump of the uniform
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upper bound. The proof of Theofem B is much more delicate and it
involves a forcing argument. The 'ancestor' of this proof is a
.theorem by Boyd which states:tﬁat if.cxi is a countable w-model for
analysis, then there exist gwo sets of integers A énd B such that
A and B are uniform ﬁpper.bounds on ~Z, and such that if C 1is

- any set of integers whiéh is arithmetical both in A and in B, then
C 1is second-order defiﬁéble over the sets of integers in 7 It
followed frém that theofem.thét there was no arithmetically least uniform
" upper boundfon_df;'for if K were such a uniform upper bound, then

K A A, - K;é; B, énd K  w?uld be second-order definalbe ovér o4, so
K€ di,'jaééi K' (which:islin ~Z) would be recursive in K, which

is a contraaiction‘ Theo?em Q is a corollary of Theorem B and of the
definabili;iiof forcing over Spr ground model.  We stress again the
fact that 6ﬂr results Qill dep;nd very strongly.&n Theorem B, and a
real undersfanding of them cannééfbe achieved without a detailed

examination of that proof.

1

Wevlist now the necessary (previosuly proved) facts fér the
definitioﬁ”of the minimal sequence of H-sets. From now on _Q 'will be
a fixed atbitrary gap ordinal and the length of the gap a; o will
be denoted by g(a). Recall that g{a) > 1.,‘Le;'1U(a) aenote the
collection of uniform upper bounds on Ma{\P(m). vdieérly

U(a)TWMdn P(w) = §. Then the following are true:
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i) if A is in U(a) then there exists a well-ordefiﬁg RA of
léngth a+l - such that;
a. All initial segments of RA of length strictly smallef
thaﬁ a are in Ma(WP(w).
bf R <a A .and HR (a) <, A? 'if a is tbe ath element

A. A
of R

A’ _ o .

(ii) If K 1s a complete set of order a +g(a), then K e U(a)
and K 1is g(d)—least. |

(iii)“If ‘é is a notation for « in'somé éystem of notations VR,
theh' HR(a)' is a uniform upper bound fo; Muf\P(w).

(lv) If A and B are two sets of integers such that for some n,

! AQ g then A®) = g,

" The main theorem.of this chapter will assert the existence of a
system of notations which is 'best possible' with respect to the
arithﬁeﬁical degrees associated with its l-sets, We now make precise
» ;he notion of.'bést possible.' Consider now.an arbitrary system of
noﬁaﬁions (i.e. a well-fouﬁded partial—ordering of integers), as |
defined by Endérton; Such a system, R, is said to be minimal if for
any other system of'notations, S, if ace Fiéld(R) and b ¢ Field(s)
and IalR = Ibls,' Fhen HR(a) < Hs(b). fdr ékamplé, 0 is . a system'
of notations which is minimal and con;ains potations for all constructive
ordinals. Putnam and Luckham [11] have shown that there is no minimal

system of notations containing a notation for constructive wy . In
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[12], Putnam and Lukas relax the requirement on ninimality a little

bit further and define a system of notations R to be almost-minimal

1f for every system of notations S, if a € Field(R) and b e Field(S)

and |a| = |b|

R b g then Hh(af is arithmetical in Hs(b). In the above

definitions, the H-sets ére the usual H-sets, defined using ;he ordinary
jump. The mé?n result of the‘Putnam and Lukas paper cited above is that
there are alﬁqst«minimalésystems of notétions conﬁaining notations for
all ordinais1;< 80, andithat fn fact there is a system of ﬁotations of .
leﬁgth ‘BO.¥aV§ return now to systems of notations which are well-
'orderings dfj%ntegefs and:in.wﬁich the H-set associated withva hotation
for a éuﬁcé;;;r ordinal is'the w-jump of the l-set associated yith the
predecessorigg that ordinai. Lét R be such a system of noﬁations;

Ve wili sayfﬁbat R 1is gag‘migimal if for any syétem S of the same
type, if/ a'éfField(R) and b E;Field(s) and |$]R = Ib[s' and
Lim([alR);‘FFﬁen: A

v | HR(a)f_a HS (b)h(d)

where h is a function defined as follows:
h(y) = (least index greater than or equal to Yy) - Y

and o 1is the ordinal whose notation in R 1is ,ai;and whose notation

in S is B.

It follows from the definition of gameinimality that the
arithmetical degrees assigned to H-sets along a gap-minimal system of

notations are as low as possiblé, i.e. for no ‘B_< h{y), can HR(a)
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" be B-least, because that would.contradict the non-existence of B-least

uniform upper-bounded asserted by Theorem B.

3.2 Main Theorem

induction. J‘f

Let a <-wi. There exists a gap-minimal system of notations

containing notations for all ordinals less than «. Clearly it is

enough to consider only limit ordinals in the proof of the theorem and -

-a moment of Ehought will;show that it is enough to consider only those

limit ordinal$ which are gaps. The proof of the theorem will be by

Induction hypéthesis: For’eve;y gap ordinal less than «, B, there

exists a gap-minimal system of notations of length 8. We will consider

three caseé,;§hich obviously include all gap ordinals:

\ B

Case I. Thefé are no gap ordiﬁalélsmaller than a (a = 30).
- Case II. There is a greatest gap ordinal smaller than «.

Case III. There is no greatest gap ordinal less than a«, i.e. a 1is

a limit of gap ordinals, and o # Bo*
The proofs of the induction step in Cases.I, iI énd IIT will be
contained in Proposi;ions‘I, II and III, respectivély.

e
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Prqpositién I. There exists a-gap—minimal system of notations of
length 80.

Proof. We will use Theorem 5 in Putnam and Lukas which states
that fo? every ordinal less than or equal to 80, B there exists an
almost-minimal system of notations of length w.B. In our proof we
will denote H-sets obtained along a well-ordering using ordinary jumps
by capital Roman letters (H) and H-sets oﬂtained along the saﬁe well-
ordering usiﬁg w-jumps by capital script letters (). Let R be a

branch of length w.B of the system of notations whose existence is

0

asserted by the Putnam-Lukas theorem. R is then an almost-minimal
system of notations. Let K be the generic uniform upper bound on

MB NF(w). -Let S be the well-~ordering wﬁich is arithmetical in K
0 .

and such that HS(B is arithmetical in K. We know that HS(BO)

0

is 1-least.  Claim that R8 is a gap minimal system of notatioms.
’ 0
In this proof we write HR(a), to mean HR(a), where IaIR = y. For

all o < By h(a) = 0. We want to show that for any system of

notations T, for all qa < Bg» g%k(a) J@&(a). By almost

<
~a
minimality HR(a) <a HT(a), for all ¢ < weBpe In particular
HR(m.a) - ET(m.a). (Use o < B <> w.a < w.p) It is easy to see that

ng(a) =, HR(m.a), By transitivity of a0 it follows that

Jﬁi(a) 24 é%}(a)?_ for all ¢ < Bo In particular, J%%(d) <. gfé(a)i
a ary? ) : (w) ; ” -
Therefore J?R(go) Sa‘JZS(BO) <, K 25 K . So d%k(so) is a l-least

uniform upper bound on M8 NP(w), i.e. " R behaves as desired at its
o 0 _
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B,th point and below. Therefore the initial segment of R, which is

0

of length B8

0 is a gap-minimal system of notations.

Proposition II.

Suppose o 1s a gap ordinal and suﬁpose»there is a largest gap
ordinal smaller than a. Assuﬁe that there is a gap-minimal system of
notations R giving a notation to all ordinals smaller than or equal
to Y+g(y), where Yy is the greatest gap ordinal less than ¢g. We
will show how to obtain a gap-minimal syétem of notations extending up
to a+g(d). Let R be the uniform upper bound-on Ma(ﬁP(m) obtained
using Theorem C. Then there is a g(a)-jump of K which is arithmetical
in the compiete'set of order otg(a). Observe that it is aiways
péssible to "paste together'" two well-orderings in order to.obtain a
new well-ordering whose order-type is the sum of the order-types of the
two components, provided the components are disjoint. Our proof will
proceed as .follows:

1) Givén tﬁe "generic'' uniform upper bound K, build the
"generic" well-ordering W, of length g(a) aloﬂg which the arith-

Kg(a) is obtained.

metically low
(11) Build the well-ordering RK as indicated in Theorem ; RK
is then arithmetical in K, H_ (a) < K for all a ¢ Field(RK),
: RK a
lal <a, and H_ (a)'" 1is a g(a)—léast uniform upper bound on

R By

Ma-n-P(m).
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(1ii) Obtain disjoint copies of RK and W and paste them together

to obtain a well-ordering S of length oa+g(a) as follows:

5 ={J(I(x,0),J(y,0)) | J(x,y) e R} U
‘ IO ,10),I,1)) | JG,y) € W U

{3(3(%,0),3(y,1)) | x ¢ Field(RKj & y e Field(W)}

(iv) Obtain disjoint copies of R and S. Delete the initial
segment of length y+g(y) of S and replace it by R. Let

}a!s =:Y%g(y)} Construct the well-ordering T of length ‘at+g(a):

T = (JU(x,0,I(5,0) | I(x,y) e R}V
{31,300, | JG,y) e 5 & ((a,x) €8 vx=a)l}VU
{3(3(x,0),3(y,1) | x € Field(R) & y e Field(5) &

& (J(a,y) €Svy=a)}

We claim that T 1is a gap-minimal system of notations of length
atg(a). First observe that by taking a copy of a well-ordering in the
manner above, we do not alter the arithmetical degrees of the H-sets

constructed along the well-ordering. Then, by the induction hypothesis,

TJ(a,i) = (JGy) e T | I(y,H(2,1)) ¢ 0,

the initial'sggment of T of length Y;g(y) is a gab—minimal system
of notations. Observe that HT(b)' is a g(yj—ieast.uniform upper
bound on MYr\P(w) (where b = J(aﬁl)). For if we construct the
generic well-ordering for Myf\P(m), wl, ﬁwl(c) will be a g(y)-

least uniform upper bound for MY(\P(w),.provided ¢ 1is a notation in
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Wy for Y.. But by gap—minlmallty Ho, () < HW (c)g(Y)a EY+§(Y)

"(the complete set of order Y+g(Y)).v Therefore if V dis any other

well-ordering and v is a notation in V for v,
g(Y) PSP .
HT( ) < < Y+g(Y) s Hv(v) By gap-minimality again,

Ho(I(a, l) < H (a)h(Y+g(Y)) Since vy+g(y) 1s an index, h(y+g(y)) =

50 we‘have HT(J(a,l)) 2a Hs(a). Since the initial RK wgs generic, the
H-set built‘élong it atélevelz o 1s an g(a)—ieast uniformrupper bound

on M, (1P(w) as observéd in (ii). - T is exacply the same as , on

its termlnal stretch sd'wé know that the gap—minimality_prﬁperty hol&s

at the new gap, a. The problem remains then to show that T 1is gap

, minlmal on the interval (y+g(y),a). In order to do this we provp an

easy lemma:w>

Lemma. Let w be a well-orderlng of integers. For an arbitrary set

of integers A and a e Fleld(w), define a set A; as follows:

a
Aw = A .lf Ialw =0

a b(w)

ChE

AW = U&y) |y < a & xe A%} if Lim([a]w)_

if b, +1 = [af,

Let A and B be two sets of integers such that A <' B. Then, if

. ac F1e1d(w) and F*d # ﬂ AU 1 W’ unlformly in a. The Lemma

really says that if we start with one set arithmetical in another and
take jumps of both along the same wéii—ordering, at the same point,

the jump of the first set will always be of lower 1-1, hence
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hence arithmetical also, degree, than the jump of the second set. We
sketch the proof for the notations in W wup to and including the first

limit ordinal, w. The res;'éf the proof is similar.
A< B e (En)(A g 3™y,

Let f{(x) be the recursive function which takes A(m) l—l.into B(w).

pick at thé beginning aé beiﬂg above A. If 'a is a notation in W
for a finiﬂg ordinal, say m, then Aa_ is carried 1-1 into Bé by
f iterafé&yjm times. 'Suﬁpose now that a 1is a notation in W for

a. Then .

J(x,yj'é A =y <ﬁ a&xe A ey <y a & le‘W (x) ¢ BY

e 317 G,y e 8

. a—i‘
1B

Since we already know that ‘for any well-ordering W,

So Aaﬂg

HT(y+g(y))T§é HW(Y+g(Y))? and that h(g) = 0 for any ordinal between

the end 6f the gap at y and o, it follows by the Lemma thét T is
well-beh#Qed~in that intervél. Moreerr HT(u) is arithmetically
equivaleﬁ;_to HRK(a), therefore it is a g(a)fleaétiuniform upper bound
of MafﬁP(w). ‘Therefore T 1is a gap—minimél sys;ém“of notations which
gives notétions to all ordinals smaller ;han a+g(q). By Theorem B it

also follows that T assigns a;ithmeticél degrees to its H-sets which

- are as low as possible. .
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In the aboveAbroof we wrote HR(a), for HR(a),~ if IgIR _—
No possible confusion can arise, since our systems give unique

notations to ordinals.

Proposition III

' Suppose now that Q: is a gap o:dlnal whlch 1s a limit of ‘gap
ordinals, i.e. ‘that there is no greatest gap ord;nal less than a. Ip
order to prove that there-exists a gap minimal system of notations
- extending up to a, given tﬁe possibility of building'sﬁch systems up

to any smaller gap ordinal, we need tovprove the following lemma:

Lemma. Let a be a gap ordinal which is a limit of .gap ordinals and.
.let K be the generic uniform upper bound on M NP(w) given by
Theorem C. Let R be the generic well-ordering associated with
A Kg(a). (R is the well—orderlng obtained by pasting together the well-
ordering along which the "good" g(a)-jump of K is taken). Then we
can find an w-sequence of gap-ordinals converging to a, uniformly
in HR(a)', where a 1is the notation of o in ‘R.

£i22£° Tﬁe strategy-is to define a.fupction from the integers
inte the field of R which is an order-preserving function and whose
values converge to a, and to do this effectively in ~HR(ai'.»’We
first show that we can pick out among the notations in R, those

notations which correSpond to gap ordinals.. Recall that the following

problems are uniformly arithmetical in H (a),
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1. Deciding whether x € Field(R) & x <R @

2, Deciding whether x ‘R y <p a-
In the proof of the theorem stating that HR(a)' is a uniform upper
bound on MafﬁP(m), we built‘a sequence of arithmetical copies of
M,'s, for B < a, indexed by elements of R. It followed by the

B8

construction that for x <, a, Ex was recursive in HR(x)' uniformly

R
in x, which in turn ié 1-1 reducible uniformly in x to HR(a).
Therefore the following'two problems are decidable uniformly in HR(a)'
" (arithmetically in; HR(a));
3. Deciding 1f x € Fiéld(R) and if x 1is a notation for an
index ofdiﬁéi less than a:
R

y ¢.Ex¢fand (Ez)(y ¢ Ez i& y<pgz<ga & ~v(Eu) (y QU <R z))).

x < '%::& I(leR) <> (Ey)(y represents a set of integers and

4. Deciding if x € Field(ﬁ)‘ and 1f x is a notation for a gap
ordinal.. =~ A
We will write in words what the predicate says, since its

complicated form obscures the very simple meaning:

X <R‘é and G(|x|R) <> x 1s a notation in R for a limit and

¥ . is.a limit of indices and x 1s not a notatioh for an index.
Having available these deciSionvbrocedures we build now the desired
w-sequence of gaps converging to «. First we extract from R a well-

ordering containing only notations for gaps:
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R' = {J(x,y) l J(x,y) € R "ahd x and y are notations for gap
ordinals}.
By 4, R' ia HR(a). Now we define the R'-valued function which we
need:

Let g be defined as follows:

g(0)

[

.ﬁz[z qr 2l

_g(n+15 ; uzlz ¢ {g&O),..:g(n)} & =z R al
g is cleé;i; arithmetical'in HR(a). (In fact it is recu?sive in
HR(a)'.) _Wéiate trying fé defing an f with the properties

_. (i):(;;?f(x) <r' a) 3and?

G0 G G <y = £ < £
Lét f..ﬁei:f' | ﬁ

£(0) = £(0) \

f(nfl):= g(z),‘ wherg z = puz'[f(n) <R g(z")].

It is easy to see that f satisfies (i) and (ii), that f 1is
arithmetiéal in HR(a) and that the sequence f(n) converges in R'

to a, as n ‘gets bigger and bigger. Therefore the lemma is proved.

Let Bn be the w-sequence of gaps converging to  a. By the
induction hypothesis we can find an w—seqﬁence of gap minimal systems
of notations {Rh} n e N such éhat__Rn gives a notation to every

ordinal less than Bn' Using the Rh's7 we will build a gap-minimal
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system of notations extending.to :‘a. First we build disjoint copies

of the 'Rn's as follows:
R = {33 (x,0),J(y,n)) | I(x,y) € R )

Clearly for all n, 1if ' a e:Field(Rn), HRn(a) zp H (a). Define

R
inductively a sequence of well-orderings T . Let |b_ |,, = B_.
g n n Rh+l

o , : ' )
Totl = TUWGLy) e R,y | 3G %) e R! v x =D )

VLI (x,y) | % Field(T ) & y e Field(R', )

= 1
& (y b v J(bn,y) € Rn+l)}

and Tn+l is an extension (proper)

Cleérly.fér_every n, T cT i1»

of Tn ﬁhiéh is compétible with Tn’ i.e. no element which is added to

the field of T_ to form the field of T is already in T_. By
! T n+l - n

an argument similar to that used in the successor case we see that for

every n,‘ Tn is a gap-minimal system of notations containing
notations fbr.every ordinal less than By*
n.

Let T = UJT We claim that T is the desired gap-minimal

. neN .
system of notations. The lenght of T 1s greater than §, " for any
§ < a. Itlfollows that the length of T is'exaétiy "ae. By
construction T 1is arithmetical in HR(a);' where. R. was the generié

well-ordering given by Theorem C.- To see that TT is gap-minimal it

is enough to observe that for any. B-<‘q;. HR.(b) = HT(c), if
. ’ n
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R' ICIT = 8. Let B be an arbitrary ordinal less than a.
"

Then for some n,. Bn <B<8B since ana. Let S be any system

nt+l’

of notations of length greater than or equal to B. Suppose

|b|T = JCIRQ+1 = |d|S = 8. By minimality of R! .,

h(e)

: HR'- (c) Sa Hs(d) . But by the observation above, HR;+ (c) Ea HT(b).

n+l 1
Therefore T is well-behaved at B8, which had to be proved. .

The. induction is thus completed and we have proved the Theorem.
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