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Gap-Minimal Systems o f  . . Notations and t h e  

Const ruc t ib le  Hierarchy 

Abstract  --- 

M i r i a m  L. Lucian 

I f  a c o n s t r u c t i b l y  coun t ib le  o r d i n a l  i s  a gap o r d i n a l ,  then 

the orde r  type of the  set  of index o r d i n a l s  smaller than  

exac t ly  

! .. -..: . . 

a.  he gap o r d i n a l s  are the  only p a i n t s  of d i s m n t i n u i t y  of 
. .  a :  , , 

a c e r t a i n  oidinal-valued funct ion.  
. . 

. . 
.. - . .. , 'i 

The not ion  of gap-minitnalit y f o r  well-ordered systems of n o t a t i o n s  

i s  defined and the  existence of gap-minimal systems of n o t a t i o n s  of 

a r b i t r a r i l y  large conn t ruc t ib ly  countable l eng th  i s  e s t a b l i s l l e d  
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SYNOPSIS

Using systems of notations we provide a classification of the

constructible sets of integers according to their arithmetical degrees.

In the Introduction we present an overview of the main results

concerning the hyperarithmetical and the ramified analytical hierarchies

and summarize the principal results of this dissertation.

Chapter 0, Preliminaries, presents our choice of notation and

contains a few propositions which will be used later on. The proofs of

2.5 and 2.8 are essentially given in [1].

In Chapter I we study a certain class of ordinals, the gap

ordinals, and we show that they are evenly distributed among the count-

able constructible ordinals. That gap ordinals exist was established

by Putnam in [13]. They appear for the firstttime in the literature

under this name in [10]. Except the Lemma 1.3, 1.5 and 1.6 which were

adapted from [10], all the results in this chapter are new. Theorem 1.10

states that there are exactly a "non-gap" ordinals smaller than any

gap ordinal a, and Theorem 2.1 offers a new characterization of the

gap ordinals as the only points of discontinuity of a certain ordinal-

valued function.

In Chapter II we consider a new minimality requirement for

systems of notations and we thus define gap-minimal systems of notations.

As a main result we obtain, in Theorem 3.2 that there exists a gap-

minimal system of notations containing notations for all ordinals

smaller than any arbitrary fixed countable constructible ordinal.
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Lemma 1.4 (Recursion Lemma) in this chapter is due to Rogers [16] and

is a standard result in higher recursion theory. Lemma 2.1 and

Theorems A, B, C (stated without proof) are due to Putnam and Leeds [10]
- . /' \-..

.'. ::•-•"

All the other results in the chapter are new. •<;

The results in Chapter II are in a sense parallel to the results

in [10], which provide a classification of constructible sets of

integers using generalized admissible degree hierarchies.
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- INTRODUCTION

In this dissertation we study the arithmetical degrees of sets of

integers in the constructible hierarchy. We will show that the

hierarchy of constructible sets of integers up to anyj.given level can

be considered as an extension of the ramified analytical hierarchy,

which in turn can be considered as an extension, of the hyperarithinet-

ical hierarchy.

The hyperarithmetical hierarchy provides a classification of a

certain collection of sets of integers according to their degrees of

unsolvability. Attempts at organizing the sets of integers not

covered by this hierarchy have led to classifications of sets of

integers according to their arithmetical degrees; the new hierarchy

obtained is called the ramified analytical hierarchy. We will show

that the ramified analytical hierarchy itself can be extended, using

the same methods as those employed in defining the hyperarithmetical

hierarchy.

In this introduction we review the known results about these

hierarchies and we attempt to justify the results in the paper.

1. The hyperarithmetical hierarchy.

The classical definition of the hyperarithmetical hierarchy is

provided by induction on the Kleene-Church system of notations 0.

0 is a set of integers on which a partial ordering <-. is imposed

and which is the smallest set of integers satisfying the following

conditions:
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(i) 1 e 0 & (x) (x e 0 => 1 <Q x v x = 1)

(ii) (x)(x e 0 => 2X e 0 & (y)(y e 0 => (y < x v y =

x =» y <Q 2
X))) '. • ... .

(iii) (e) ($ Is an order preserving map ==> 3.5e e 0 &

(n)(*e(n0) <Q 3
;.5e)),

where 0- = 1, (n+l)n = 2
nO, and <|> is an order preserving map if

and only if : : :

(n)(<J> (n_) convergent & 4> (nQ) e 0 & (m) (n) (m < n

With each element a in 0 is associated a set of integers H (a)

as follows : .

H°(2a) = H°(a)' ' V

H°(3.5e) = U(x,y) | y < 3.5e & x e H°(y)K

The properties of 0 which are most relevant to this paper are:

(i) 0 satisfies "internal uniqueness," and (ii) 0 is a minimal

system of notations. We will write 'lal ' for the ordinal for which1 ' K

the integer a is a notation in R. A system of notations R

satisfies internal uniqueness if for all a, b, if |a|p = |b|R, .

R R
then H (a) = H (b). A system of notations with this property

assigns then a unique Turing degree to all ordinals which have at

least one notation in it. The fact that 0 satisfies internal
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uniqueness was established by Spector in [17], A system of notations

R is minimal if the Turing degree it associates with an ordinal is

as low as possible, i.e. if for any other system of notations S, if

|a|R = |b|s, then HR(a) is recursive in HS(b). 'in [11] it is

shown that 0 is a maximal minimal system of notations, in the sense

that it contains notations for as large a segment of the classical

ordinals as is possible for a minimal system to do. The smallest

ordinal which is not assigned a notation in 0 is a countable ordinal,

CK
which is known in the literature as "constructive u." (u. —Kleene-

Church u..). In order to define the hyperarithmetical hierarchy we

need the concept of "recursive union." If T is a class of sets of

integers, then the recursive union of F is the collection of sets of

integers recursive in at least one element of F, i.e.

RU(F) = {A£N | (EB)(B e T & A < B)}

Then, the hyperarithmetical hierarchy, H.A., is defined as:

H.A. = RU({H°(a) | a e 0})

Kleene has shown in [ 9 ] that H.A. = A* (= zjonj).

Two other "hierarchical" definitions of H.A. besides the one

given above, are known. One uses degree-hierarchies and the other

oses definitions in second-order number theory. It is interesting

that H.A. can be extended in three different directions, slightly

modifying the three definitions, in such a way that the resulting



class of sets is the same in the three cases. For completeness sake

we give here the two other definitions:

CK
(i) Let f be a function from to.. into the family of Turing

degrees defined as follows :

1. f(0) = degT(0)

2. f(ct+l) » (degT(f(a))' if a < uf~

3. f(A) = an upper bound to RU({f(a) | a < X}) and f(X)
i

is recursive-i-in the jump-jump of any other such

CKupper bound, if Lira (A) and X < to, .

f is said to be a degree-hierarchy and H.A. can be defined from f

as follows:

H.A. -{A£N (Eo)(A <

(ii) A hierarchy of sets is defined inductively on the ordinals

< toCK-

A_ = {A'SN | A is recursive}

A ., = {A £N I A is definable over A in second-orderct+1 ' a

number theory using constants from A }

A. » (JA if Lim(A)
X a<X a

Kleene has shown that:

H.A. • { A S N . I (Ecc)(A e AQ)}.



2. The ramified analytical hierarchy.

The classical definition of the ramified analytical hierarchy is

obtained from the last definition of H.A. above, the one using second-

CKorder number theory, by simply dropping the requirement that a < w..

in the inductive definition. Then the ramified analytical hierarchy,

R.A. is just MA. It is obvious by a cardinality argument that
, aeOn a

this new hierarchy of sets must collapse at some ordinal. The point

of collapse was proved to be countable by Cohen [4]. This ordinal is

called 3-.,, Then, R.A. = Ac . It was conjectured by Cohen, and
u : PO

proved independently by Gandy and Putnam (unpublished) that A0 is
1 30

the minimum .; 3-model for analysis. The problem was then to try to

extend-H.A. using its other characterizations (systems of notations

and degree-hierarchies) in such a manner that we get exactly R.A. in

both cases. Obviously some clause in those definitions had to be

weakened. In one case, relaxing the requirement that the system of

notations on which the hierarchy is defined to be minimal, has proved

most fruitful. In [12], Putnam and Lukas define a system of notations

R to be almost-minimal, if for any other system of notations S, if

|aL = |b|_, then HR(a) is arithmetical in HS(b). They prove that
JX & - .

there exists an almost-minimal system of notations R which contains

notations for all ordinals smaller than B-, and that Ris maximal

almost-minimal, i.e. that no other almost-minimal system of notations

can give notations to ordinals bigger than or equal to 3_. Then they

show that



R.A..= Aft = RU({H (a) |R is a maximal almost-minimal system of

notations and a e R})

In the case of the degree-hierarchy, we modify the third clause

in the definition of f, to get an admissible degree-hierarchy as

follows:

We will say that S is a uniform upper bound for a countable

collection of sets of integers F, if T is an S-recursively

enumerable family of S-recursive sets. Let f be a function from the

ordinals into the family of Turing-degrees such that:

1. f(0) = degT(0)

2. f(a+l) = (degT(f(cO))'

3. f(X) is a uniform upper bound of RU({f(ct) | a < X}) and

there exists an n such that f(X) is recursive in the nth

jump of any other such uniform upper bound.

Boyd, Hensel and Putnam show in [3], that such a function f, called

an admissible degree hierarchy, exists and can be defined on the

initial segment of the ordinals determined by 3«. Then R.A. can be

defined as:

R.A. = A0 = {A?N | (Ea)(a < 0 & A <_ f(a))\
P u L •

where f is an admissible degree hierarchy extending up to B-.



In his dissertation [1], Bollos shows that if one modifies

slightly the definition of the constructible hierarchy, L, (see

precise definition in the next chapter) the classification of sets of

integers provided by the ramified analytical hierarchy agrees with the

classification provided by the constructible hierarchy, i.e. that for

all a, if 1 < a < 8n, then M 0?((j) = A •: "•'•''••
- - U • . _ • • ' .a . . . a. •• .; - . . . .

The next obvious move is to try getting results about the

arithmetical degrees of the constructible sets which occur at levels

above 3 .

3. Gap ordinals and gap-minimal systems of notations.

The fact that three independent hierarchical characterizations of

the ramified analytical sets stop at the same ordinal, $_, leads one

to believe that by studying ordinals similar to gft, we can extend

the ramified analytical hierarchy even further. This turns out to be

the case.

The first part of this thesis is devoted to the study of these

ordinals. We take as the most important characteristic of the BQ-

like ordinals the following: No new sets of integers are constructed

in the constructible hierarchy at the levels beginning with the

successor of the "$0-like" ordinals for a certain number of stages

(which can be very large). These ordinals, whose exact definition is

given in Chapter I, are called gap ordinals. An ordinal a, such
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that there exists a set of integers in M ,- M , will be called an
a

index ordinal. In Chapter I will will show that there are exactly

3 indices which are smaller than any given 3 which is a gap

ordinal, thus showing that, in a sense, there are enough indices to

absorb the gaps, no matter how long the gaps are.

In the second chapter we use gap . ordinals to construct a hierarchy

of sets extending arbitrarily close to the first constructibly un-

countable ordinal, o>. . This is done by relaxing still more the

minimality requirement on systems of notations and defining gap-

minimal systems of notations. In our main theorem (Chapter II. 3. 2) we

prove that there exists a gap-minimal system of notations up to any.

• ordinal less than constructible to.. , and that the classification of

sets of integers given by these systems of notations is, in a sense to

be made precise, best possible.

Assuming the Axiom of Constructibility (V = L) to be true, we can

claim that we have a classification of all sets of integers according

to their arithmetical degree. Of course, there is no reason (as of

now) to believe this axiom to be true, so all we have is a classifi-

cation of the constructible sets of integers.

Two questions which are not touched upon in the thesis but should

be considered are the following:

A. The connection between gap ordinals and admissible ordinals

(in the sense of metarecursion theory).



B. The gap-minimal systems of notations constructed in Chapter II

are not the most general systems of notations, since they are well-

orderings, rather than well-founded partial-orderings with a unique

least element. The problem is then, are there any (tree-like) gap-

minimal systems of notations which extend arbitrarily far up to w.. ?

What additional properties would such .systems of .notations have to

have? ' . " . . • . _ . >>••>. ••' '•' '-.''. •- .;. ••'• >'v.'-: -•

These questions will be investigated in another paper.

As a final point of the Introduction we would like to point out

that this thesis is but one link in a chain of papers written by

Professor Hilary Putnam and his students, and that the results in it

are best understood if considered in conjunction with the papers [2],

[3], [10], [11], [1], listed in the bibliography.



Chapter 0. ,

PRELIMINARIES / .

'-'•' " '

In this chapter we discuss our choice of notation and present

some definitions and results which will be used in the. following

chapters. +y-

1. Notation^. •.'••' •'' "". ;?,:/-.~'--v::. • '..:••.':'- ••';'-i&̂ '< • • •

We will use the standard notations in recursive function theory,.

as they appear in Rogers [16]. The e-th A-partial recursive function

A A i Awill be denoted by <j> , the domain of $ , i.e. the set {x | <f> (x)
C _ G S

convergent} will be denoted by W . J will be a fixed primitive

recursive 1-1 function from N x N onto N; its inverse functions

will be denoted by K and L such that

KJ(x,y) = x and LJ(x,y) = y

Jumps are defined as follows: let S be an arbitrary set of integers.

Then

Sv ' = S

s(n+l) m {x i

S(U>) - (J(x,y)

s(n)

x

I V C Qf* Cf w

convergent} (

(y))

Notation in set theory is fairly standard and we will not diverge

from it. All our set theoretic constructions can be formalized in

Zermelo-Fraenkel (ZF) set theory plus the Axiom of Choice. (See

Mendelson [14], for the axioms of ZF.)
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ON is the class of ordinal numbers and each a e ON is identified

with the set of all smaller ordinals, {$: B < a}. Hence the ordinal

0 is 0, a+1 is a U{a}, and X is a limit if and only if

X / 0 and L)X = X. We use a,(3,Y,... to range over ON.

Sometimes we look at results in second order number theory; in

that case, small Roman letters will represent integers, capital Roman

letters will represent sets of integers. When we are proving results

in set theory, small Roman letters will represent arbitrary sets.

Although these notations are not consistent with each other, we use

them, since they appear as such throughout the literature. However,

it will always be clear from context which case we are in at a

particular moment.

2. The constructible hierarchy.

In [8], Godel defines a transfinite hierarchy ^ of sets and

uses it to prove the consistency of the Axiom of Choice and of the

Generalized Continuum Hypothesis with the axioms of ZF. Since we

will examine classes of this hierarchy in detail, we define it here.

2.1 Definition. For all a e ON, let M be as follows:a

MQ = {0}

Mcrfl ° {X I

M. » U M
' * a<X a
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where *Fodo(A,B)' means that there is a formula <j>(X,Xn,.. .X ) of.

set theory and elements bn,...,bri of B such that

A - {X e B | <frB(X,b0,...bn)}, ; |^
r.-'"~'.

B ' ' • . ' • ' "
where <{> is <J>, with all the quantifiers restricted to B.

The union of all the classes of the constructible hierarchy,

U M is denoted in the literature by L and is referred to as the
aeON

constructible universe.

2.2 Definition. A set x is said to be constructible, if x e L,

.in other words if there exists an a, such that x e M .ot

The following properties of the M 's will be of use later on.
a

Their proofs are standard, and may be found for example in Feigner [7]

2.3'Proposition. For all a,

(i) M is transitive, i.e. every element of an element of M
a a

is an element of M itself.
a

<"> a e M a + l

For all a, 6,

(iii) If a < 3, then M <J M..
ct r p
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2.4 Definition. A set A of integers is of order a, if

A e M ,, -. M . An ordinal a, with the property that there existsa+1 a

at least one set of integers of order a, will be called an index.

We will abbreviate 'a . is an index' by I(ot).. : It is part of the

content of Gbdel's proof mentioned above that there are no, indices

L L •'"•'' ' ":' '*'''••'
greater than or equal to w.. (a)- is the first uncountable construct-

ible ordinal). Putnam has shox-m in [15], that there are L-uncountably

many non-indices. Clearly there are L-uncountably many indices. If

K is a set of order a, we will call K (arithmetically) complete

(of order a) if every set of integers in M is arithmetical in

.K, i.e.

(A) (A e Mo+inP(w) => (En) (A <T K(n))

It is not hard to see that if I(ct), then I(o+l). We include the

proof here for two reasons: (i) We will make extremely frequent un-

cited use of this fact throughout the paper, and (ii) we offer a

concrete example of how one defines a set of M , over M .
OCiJL Ct

2.5 Proposition. If A e M nP(u>), then A(a)> e M ,1OP(u), for- - a

a > 0.

Proof. We follow the proof in Boolos [1].

Let Q(A,i) = (J(x,i) | x E A}. Observe that for any a > 0, if

A and B are in M , so are AUB, Q(A,i) for any integer i, and
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B1 = (x | (Ey)T̂ (x,x,y)}. Hence for any A in Ma, UQ(A(j),j) is

in M , for any integer i. Then,

A(W) = {x e M | (ER)((y)(J(y,0) e R <=^ y e A) &

{w|j(w,i)eR}
(i)(0 < i < Lx =» (J(y,i+l) e R <===>(Ez)T1 ' (y,y»z) &

& x e R))} =

- (x e M | (ER)((y)(J(y,0) e R <*=> y e A &

(i)(0 < i < Lx => J(y,i+l) e R <==>

(Ez)(Tj(z,y,y) & (w)<lh(z) ((J(w,i) e R => (z)w = 1 &

(J(w,i) ̂  R => (z)w = w))))) & x e R}.

The T's used in the proof refer to the familiar Kleene T-predicates.

Although the expression for A above looks somewhat formidable,

the idea behind it is rather simple. An integer will be in the

desired set, just in case it belongs to some finite jump of A. More-

over, we can get to that finite jump by taking the single jump as

often as necessary.

Generally, it is easier to speak about functions of integers

than to speak about relations between arbitrary sets. This led to

the notion of an arithmetical copy of a collection of sets, copy in

the sense that the relations existent among members of the given

collection of sets are preserved under the function which does the

copying. We define precisely the notion of arithmetical copy just for
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the M 's, since this is the only case in which we use it. Thea ' J

general definition can be found in [12].

Let F be a set of integers. Then

FIELD(F) - {x | (Ey)(J(x,y) e F v J(y,x) e F}.

2.6 Definition. Let F be a set of integers and let a e ON. F is

said to be an arithmetical copy of M , if there exists a function f ,

not necessarily in L, such that f is one-to-one from FIELD(F) onto

M , and such that

(x)(y)(J(x,y) e F «=> f(x) e f(y)).

If for some integer a, every element of FIELD(F) is of the

form J(x,a), i.e. if

(x) (x e F <=> LKx =• LLx = a) ,

then F is said to be an a-initial arithmetic copy of M . The last

definition, of an initial copy, is extremely useful, since it enables

us to distinguish between copies of various M 's.

The fundamental result in Boolos [1], is that if I(ct), then

there exists an arithmetical copy of M , which is of order a. It

follows that for any a, there exists an a-initial arithmetical

copy of M of order a.a
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2.7 Proposition. If E is an arithmetical copy of M of order a,

then E is a complete set of order a.

The proof of the above proposition although straightforward is

quite tedious and we omit it here. The idea behind it is as follows:

Any set of integers in M . is first-order-definable over M ; any

such definition can be 'translated1 into a definition over E using

only number quantifiers.

Note that if A is any complete set of order a, so are all the

finite jumps of A, thus there is no unique Turing degree character-

izing the complete sets of a given order. This is the main reason for

which we concentrate our attention to arithmetical degrees and in

Chapter II we even modify the definition of a jump to mean ."arithme-

tical jump."

2.8 Proposition. Let E be an initial arithemtical copy of M of

order a. Then there exists an arithmetical copy of M _ of order

o+l.

The proof of Proposition 2.8 forms Chapter II of [1]. Again we

indicate the main steps: If <j> is a formula with number quantifiers,

containing =, e, and constants from Fie Id (E ), we write 'E ^ <{>'a a

for what is expressed in model theory as:



17.

<Field(Ea), {<x,y> | J(x,y) e EQ) , Field EQ> J- f,

where satisfaction (t=) is defined by:

(i) E h a e b <==> J(a,b) e E

(ii) Ea N (x)*x *•* (a e,Field(Ea))(Ea |=

etc.

If <j> contains the constants a.,...,a , and a. represents

the set x. in M , then
i a

Ea K * «=> MQ = if), .

where i|i is like ^>, except that it has x.'s where <{> had a.'s.

Then every formula of this kind containing one free variable x

corresponds to a first-order definition over M of a member of
a

M . But the set defined by $ will be new, i.e. will be an element

of M . - M , just in case

E 1= 'v(Ez)(w)((})W <=> w e z) •

If y is a Godel number of such a formula <f>, y is a least Godel

number of <{>, just in case

(z)(z < y & z is a Godel number of <j> => E (= r\-(w)((j)W =>

Suppose E is an a-initial arithmetical copy of M . Pick an

integer b ^ a. Then if y is a-least Godel number for <f>, we let

J(y,b) be a name for the set defined by <J>, i.e. add to E ,

(J(d,J(y,b)) | E »• $d). Then the set
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E U{J(d,J(y,b)) | y is the least Godel number of some formula

4> and 4> defines a new set and d e Field (E )- and E t= <f>d}a a

is an arithmetical copy of M .. To show that the arithmetical copy

built above is of order a+1 it is enough to observe that the whole

procedure is uniformly recursive in E and b. This copy will be

designated by (E ,b)*, to show the dependence mentioned above. The

operation * will be used in the construction of complete sets.

j. Uniform upper bounds.

Let C be a countable collection of sets of integers. A set of

integers A is said to be a uniform upper bound of C just in case

there exists an A-recursive function f, such that for all sets of

integers B,

B e C <=> (En)(XB - <J,
A
(n) ) .&. (n) (3B e C)($

A
(n) - XR)

where XD is the characteristic function of the set B. Observeo

that the uniform upper bound of a collection of sets C cannot be

itself in C, if C is closed under the jump operation.

j.l Proposition. Let A be a uniform upper bound for C and let

A < B. Then some finite jump of B is also a uniform upper bound
3

of C.
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Proof. Observe first that A < B «=> (En) (A < B̂ n'). We needa i

the following fact for the proof of the proposition: If A < B via

recursive function <{> and if f is an A-recursive function with
• Z '.-.'••

A-index en, then there exists a recursive function h, such that

h.(.e-,z) is a B-index for f. This fact is proved as follows: For

any x, start computing f(x) using the 'algorithm for it given by

A " ' ' . • - , ' "
4> , and replace every question of the form "Is y in A?" by the

question "Is <j> (x) in B?". The value computed will be unchanged
Z • ' ' '

but we have used an oracle for B instead of one for A. The pro-

cedure is clearly uniform in 2 and e0> Therefore there exists a

recursive h such that

Now let DeC be arbitrary and suppose f is the A-recursive

function generating A- indices of the sets in C. Then for some n,

A
XD = <|>f, v. But we know that there exists an integer k such that

(k) B (k)

A <- Bv '. Then X,, = < j > u / r / N N» where h is the function1 D h(± (n) ,z)

described in the proof above and z is an index of the recursive

(k)
function g,s.t. x e A <==> g(x) e B , where g is 1-1. h is

(k)a B -recursive function. Conversely, consider A, .,., . . for
h(f (n) ,z)

arbitrary n. By the fact proved above, it equals <!>£/• \ anc* is

therefore the characteristic function of some element of C. There-

(k)fore B is a uniform upper bound for C and the function

(k)
generating B -indices for C is Xnh(f(n),z).
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4. Systems of notations.

We assume known all the information about the system of notations

0, for example at the level in Rogers' Chapters XI and XVI [16]. In

particular we assume known Specter's result about H-sets corresponding

to notations for the same ordinal being Turing-equivalent and all the

known uniformity results. Since the systems of notations which will be

needed in subsequent proofs are more general (or, from a different

point of view, weaker) than 0, we will study them at the time they

are introduced.

4.1 Definition. Let a e ON. Then a is said to be HYP, written

HYP(ct), just in case

(A) (A e M np(u) '=> 0A e M OP(w)).cc ct

5. The Ramified Analytical Hierarchy.

It this section we define yet another hierarchy and we state some

of its properties. The ramified analytical hierarchy was defined for

the first time by Kleene in [ 9].
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5.1 Definition. For all a e ON,' let A be as follows:

A_ = {S | S £N and S is arithmetical}

A - = {S | S£N and S is definable in second-order number

theory using set constants representing sets in A }

A. - U A .
A a<A a

While it is still the cas'e that for all a, 6, if a < 3, then

A 9 A0, this inclusion is not always strict, i.e. there exists ana P . .

ordinal a such that A = A -. The first ordinal at which this

happens is denoted in the literature by $_. Cohen has shown in [4]

that 3rt is countable. A0 >is an 3-model for analysis (that is, it
0 .0Q ,

satisfies all the second-order comprehension schemata). Cohen

conjectured that A0 is the minimum 6-raodel for analysis. His
S0

conjecture was shown to be true by Putnam and Gandy. (An u-model ^f(

is a B-model just in case the predicate "For all a, a is not an

infinitely descending path in R" holds of a linear ordering R in

*4't', only if R is actually a well-ordering.)

Our interest in this hierarchy comes from two directions: One

is that it is known that $n is also the smallest ordinal which is

not an index, and the other is Boolos' result that if one alters

slightly the definition of the constructible hierarchy, (namely

replacing M by the class of the hereditarily finite sets), the two

hierarchies agree in their classifications of sets of integers up to

and including $Q, i.e. for all 1 < a < &_, M OP(u) =* A DP (ID).



Chapter I

GAP ORDINALS

In this chapter we will study those ordinals which are not

indices. We will show that these ordinals can be characterized in a

new way as being the points at which a certain function is discontinuous,

As a corollary we will show that indices are 'evenly' distributed among

the ordinals which are smaller than (u. .

Section 1 . •

1.1 Definition. Let a e ON. a will be said to be a gap ordinal

(abbreviated as G(a)) if:

(i) a ;is a limit of indices

(ii) *I (a) . • ' • •

1.2 Definition. Let G(ct) . The ordinal B such that for all y < .8,

M . - M contains no set of integers and I(a+3) is called the
(X «| T X "

length of the gap at a. We will denote this uniquely determined

ordinal by g(ct).

It follows directly from the definitions above that any limit

ordinal which is not a limit of indices lies between a and a+g(a)

for some a such that G(a). On the other side, no restriction is

made on ct+g(a) , except that it must be an index. By a cardinality
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argument we see that if G(a), then there exists a B, such that

1(8) and a < 3; conversely, if I(a) then there exists a B,

such that G(B) and a < B.

We prove now a few properties of gap ordinals which will be used

in subsequent proofs.

1.3 Proposition. For all a, if G(a) then HYP(a).

Proof. Observe first that if G(cc) then M OP (to) is closedct

under many operations. Some of these closure properties come from the

simple fact that any gap ordinal is a limit ordinal. In particular

M 0 P(w) is closed under definition in second-order number theory; for

any definition of a set of integers in second-order number theory can

be easily translated to a definition of the same set over some Mg,

B < a. M OP(w) is therefore an w-model for analysis. Suppose now
A

that G(a) and A e M f )P(u) ) . Then a > to , for otherwise the

relativized hyperarithmetic hierarchy would produce new sets of integers

A A Aat M . In fact a > co , for if a = u then 0 would be of

order a, and a would be an index. It follows that HYP(a).

As a corollary to the above proof we see that M nP(iu) is in

fact a B-model for analysis.

We mentioned before that the first non-index is denoted in the

literature by BQ. Therefore G(8Q) and for all a, a < BQ => I(a).

It is known that the length of the gap at 3Q, 8(8Q)
 is 1- There-
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fore I(g +1̂ .. .I(8Q+n),.. .r(30+u) ,..., and the 3 th Index is just

3n+l, hence there are exactly $_ indices smaller than 3«. We will

show that this is in fact true for all gap ordinals, i.e. that for any

G(ct), there are exactly a indices smaller than a. In order to do

this we define a function 0 as follows:

1.4 Definition. Let 0: ON -> ON be the ordinal-valued function which

associates with every ordinal ' a, the order of the ath complete set.

Observe that if 0(a) = 8, then 3 is the ath index. Also,

for all a, .'if a e Range(O), then I (a). From the definition it
• - ' "'*'• ''.-' . .

follows that: ' ' (

(i) 0 is a monotone function

(ii) 0 is 1-1 v

(iii) for all a, 0(a) > a. \'\

Clearly 0 is the identity function on all ordinals smaller than 3fi,

and at 3Q, 0 skips one level, i.e. 0(3Q) = &Q+1 . Since

I(a) =*• I(a+l), we have 0(8Q+n) = 3Q+n+l for all n < 03, and

Q(3n+to) = 8n+u. Hence 0 has a fixed point at 3n+uj, and it continues

to be the identity for all the ordinals smaller than the next gap

ordinal. These considerations led us to the following, conjecture: If

G(a), then a+wg(a) is a fixed point of 0. The conjecture turns

out to be true. In order to prove it we need a whole sequence of

lemmas, some of which are interesting in their own right, and some of

which are not.
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1.5 Lemma. If a is a limit.of indices and M contains a well-
a

ordering of integers of length a, then I(a). The proof of this

lemma is easy and can be found in detail in Putnam & Leeds [10].

It follows from this lemma that if G(a), then M cannot contain
a

a well-ordering of integers of length a.

1.6 Lemma. Let G(ce) . Tor any 8, if 8 < a, then 8+8 < a.

Proof./By Lemma 1.5 it follows that there is no well-ordering of

integers of length a in Mg, for arbitrary 8 < a. Suppose 1(8),

8 < a and 3+8 > a. Let' E0 be an arithmetical copy of M0 of
. - P " P

order 8. Then R = (J(x,y) e Eg | x and y are 'ordinals'}.is a

well-ordering of length 8, and

R' = U(x,y) I Lx e Field(R) & Ly e Field(R). & . Kx = 1 v

. Kx = 2 & .Ky = 1 Ky = 2. & . Kx = Ky =>

Kx <R Ly} . .

is a well-ordering of integers of length greater than a, and R' is

contained in Mr for some index <5 < a. But this implies that there

is a well-ordering of integers of length a in M , contradicting

the fact that G(ct). Therefore such a 8 does not exist.
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1.7 Theorem. Let a. and a. be such that G(cc ) and G(a ) and

such that for all 3, a. < g < a_, either I(g) or B < a..+g(ct )

(i.e. a1 and «„ are two successive gap ordinals). Then if

O(a-) = aj+g(a..), the function 0 has a fixed point S,

ĉ +gCĉ ) < 6 < a2. ;

Pr_qof_. The proof will be constructive; we will exhibit one such

fixed point. Claim that <5 = a +co-g(cO is a fixed point of the

function 0. Using Lemma 1.6 we observe that for all n,

a.+n*g(a..) < a?. So o.+wgCa.) is at worst equal to «„. But we

will show that 6 is in the range of 0, therefore it cannot be a

gap ordinal." So 6 belongs to the desired interval. Now observe that

-..'c + tc)

0(a1 +; u) = a-ĵ  + g(â ) + oj;

We will show by induction on $ < g(a.) that

The case B = 0 is one of the hypotheses of the theorem. Suppose

(*) holds for all y < 3. Then if for some y, 3 = Y+l, we have:
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0(ct + to'Y) = c^ + g(oO + O)*Y, by Induction Hypothesis

0(a + wY + .u) = a. + g(a ) + WY + 01

But the leftmost expression in the last, chain of equalities is just

0(a..+io'3), so we are done. . .. ..

Suppose now that Liin(6). Then 0(lub{a.,+wY | Y < B) =

= 0(a,+w-g). Let a = lub{0(a.,+u-Y) | Y < 3). We have to show that

a = 0(a.+to'B). a is clearly < 0(0̂ +10* 3) and by the induction

hypothesis cr = a.4-g(a- )+ar3. Suppose a < 0(a.+wB). Since a < a?,

I(o), so a is in the range of 0. Hence there exists T, such that

0 = O(T) and there exists Yn such that T < a.+u)*Yn> since a.+a)-3

is a limit ordinal. Then O(T) < 0(0̂ +00- YO) < o. The first inequality

holds by monotonicity of 0 and the second one by the definition of

a. So a < a, which is clearly a contradiction. Therefore we have:

a^ + (1 + coVgCc^) -

Hence 6 is a fixed point of 0 and the theorem is proved.
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1.8 Corollary. If a and ,ct are as in the hypothesis of Theorem

1.7, then 0(«2) = a2+g(a2>.

Proof. It is easy to see that once the function 0 hits a

fixed point below a gap ordinal, each point above the fixed point but

below the next gap ordinal is itself a fixed point of 0. Suppose now

that 0(<x ) >a +g(a_). But a_+g(a_) is by definition an index, so

there must be some ordinal smaller than <*„, call it y, such that

0(y) = a2+"(a2^* ^ut ky Theorem 1.7 0(y) can be at most equal to

«„. So we have a2+g(a_) < a ; Since g(cO > 0» this is clearly a

contradiction.

" • • '""'',;' : - '

1.9 Corollary. If G(a), then 0(a) = a-fg(oc).

Proof. By induction on the sequence of gap ordinals, .let a be

a gap ordinal. Suppose that for all 3, if 3 < ot and G(3) then

0(3) = 3+g(3). V\

Case (i). a = 3Q. Then 0(3Q) - 3Q+1 - 3Q+g(30).

Case (ii). There exists a greatest gap ordinal 3, which is smaller

than a. By the induction hypothesis, 0(0) = 3+g(3). Then by

Corollary 1.8, 0(a) = a+g(a). ; • -:

Case (iii). a ̂  3Q and there is no greatest gap ordinal-smaller than

a, i.e. a is a limit of gap ordinals. Clearly 0(a) > a+g(a).
• • "" ***

Suppose 0(a) ^ a+g(a). Then there ixists an ordinal 3 < a, such
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that 0(3) = oH-g(B), and G(0). But by the induction hypothesis .

0(3) = B+g(e) and since B < a, 3+g(3) < a, so 0(a) < a, which

is a contradiction. _;.\:
••. » • ..'.-•;'•• •'•

Therefore we have proved: _-'

: ::'- ".'"' *.-V..; '•;.. . ' ...*.-•'- ^V . - • '

1.10 Theorem. 'There are exactly a indices less than any gap

ordinal a. .

Section 2

In this section we study the continuity of the function 0 and

we offer a different characterization of gap ordinals.

2.1 Theorem. Let a e ON and let Lim(ct). Then 0 is continuous

at a if and only if Ĝ(a). In other words, the gap ordinals are

the only points of discontinuity of the function 0.

By "continuous" we mean "continuous with respect to the natural

topology induced by the closure under the least-upper-bound operation."

Proof. In order to prove continuity of a function from the ordinals

to the ordinals we. have to show that the function commutes with the

least-upper-bound-operation at limit ordinals.
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We show first that 0 is discontinuous at gap ordinals. Let

G(o).

Claim. lub{0(6) | 6 < a} = a.

Proof. If 6 < a, 0(6) < 0(a), by monotonicity of 0. Therefore

the lub of the set considered is less than or equal to 0(a). But by

Corollary 1.9, 0(a) = a+g(a) and every 0(6) for 6 < a, being an

index ordinal, is strictly less than a. So the desired lub has to be

at most equal to a. But if it is not exactly a, since Lim(a),

there exists p < a, such that 0(a) = p, contradicting Corollary 1.9,

the monotonicity of 0 and the fact that for all a, 0(a) > a. So

the claim is true. But 0(lub{6 | 6 < a}) = 0(a) ^ a = lub{0(6) | 5 < a).

Therefore 0 is not continuous at a. By taking contrapositives the

only if part of the theorem follows.

To prove the other direction of the theorem, let a be such that

Lim(cc) and M3(a). Then there are two cases to be considered:

(i) (E3)(G(B) & 8 < a < g+g(B)), i.e. lies inside the gap of

some gap ordinal,

(ii) I(«).

Case (i). 0(lub{6 | 6 > a}) = 0(a). Let T = lub 0(6) | 6 < a}.

Clearly T > 3+g(3), where 3 is the ordinal inside whose gap a

lies, and T < 0(ct). Suppose T < 0(a). Then claim that I(T). For

if not, either G(T), or T itself lies inside a gap. i.e.
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(E6)(G(r) & Y < T < Y+g(Y»- In the first subcase lub{0(6) | 6 < T}= T,

by the claim proved at the beginning of the proof of the theorem, and

since T > 3+g(B), a < 6+g(3) =*• a < t, so 0(a) < T, which is a

contradiction. In the second subcase, lub{0(6) | 6 < a} = Y» and

a < Y» so again 0(ct) < Y < T, the same contradiction. So if our

assumption is correct, we have I(T). So there exists a < a, such

that 0(0) = T. But Lira(a) implies that there exists p, a < p < a.

But this is a contradiction, since then, 0(0) = T < 0(p), contrary to

the definition of T. .

Case (ii). As before let t = lub{0(6) | 6 < a}. Then T < 0(a).

Suppose T < 0(a). If T < a, then I(T), for T < a => O(T) < T =>

O(T) = T. But the fact that I(T) leads directly to a contradiction,

since there must be-a o, such that 0(0) = T; then there must be a

p, o < p < a, and 0(p) > T, 'contradicting the definition of T.

So assume a < T < 0(a). If I(T) we are done by the argument

above. If not, T is either a gap ordinal or lies inside the gap of

a gap ordinal. Arguing exactly as in Case (i) we see that this is an

impossibility. Hence T = Q(a), and the function 0 is continuous

at a, which had to be proved. - -.



Chapter II

GAP-MINIMAL SYSTEMS OF NOTATIONS

Section 1

1.1 Definition. A system of notations R is a well-ordering of

integers < .

If a system of notations is of order type a, then it assigns a

unique notation to every ordinal smaller than a.

Let R be a system of notations. We write '|a|R = a
1 just in

case a e Field(R) & a is the ath element of R. We associate

H-sets with R as follows:

.HR(a) = 0 if |a|R = 0

HR(a) = HR(b)
(a)) if |b|R+l = |a|R

HR(a) = (J(x,y) | y <R a & x e HR(y)} if Lim(|a|R)

The above definition of H-sets in terms of the co-jump rather than in

terms of ordinary jump is justified by the fact that we are interested

in arithmetical degrees of sets in the constructible hierarchy, rather

than in Turing degrees of the same sets. Since for any set A, A is

1-1 reducible to A uniformly via XxJ(x,0), our H-sets have the

usual property that a < b => H_(a) <n H^Cb), uniformly in a and
K K X K

b.
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In this chapter we study the arithmetical degrees of the H-sets

associated with systems of notations and prove the main result of this
.-

thesis, namely the existence of gap-minimal systems of notations of

arbitrary length (<w). The first part of the chapter contains a

number of results necessary for the proof of the main theorem, and

some of them interesting in their own right. They are mostly concerned

with the relationship between H-sets and uniform upper bounds and with

the position of certain H-sets in the constructible hierarchy.

Let a be a gap ordinal and let R be a well-ordering of

integers all whose initial segments are in M flP(uO. We will show

that the H-sets associated with integers in R which are notations

for ordinals smaller then the. length (order-type) of R are themselves

in M np(u>). Clearly, Ĥ CO..) = 0 is in M DP(u)). Now, ifoc K K- a

HD(a) e M OP(uj), and b is the R-successor of a, H_,(b) = H
K Ot . \ , K

But since a is a limit ordinal, .there exists 3 < a, such that

H_(a) e M0OP(w). By Lemme #0.2.5, HD(a)
(a>) e MOJ,f>P(u))£M np

K p K pT-L (X

so H (b) e M OP(ai) also. Therefore if for some integer a in the

field of R, Hn(a) is not in M nP(u)) and a is the R-least
K Oi

element with this property, a has to be a notation for a limit

ordinal. We will show that such an a cannot exist. The result will

be an easy corollary of the following:
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1.2 Theorem. For all a, b in Field(R), if a is in the field of

R, . ,, then rL.(a) is A, in R, , ,, uniformly in a.
DTnl K 1 '•'"TR!

In the statement of the theorem 'R ' stands for the intiialc

segment of R determined by c, and 'a +„ I1 is an abbreviation
K

for 'the unique element of R which is the R-immediate successor of

a.1

1.3 Lemma.

(a) If A e A , then A1 E A , uniformly, i.e. there exists a

recursive function f such that if e is a A.-index of A,

then f(e) is a A.,-indix for A1.

(b) Let f be a recursive function such that for all x, f(x) is

a A.-index for a A -set. Let A be the A -set whose index is
1 1 x 1

f(x). Then the set (J(x,y) | x e A } is a A -set, uniformly.

(c) If A is in A*, then A^ is in A*, uniformly.

Proof. Part (a) is a particular case of Theorem X, Chapter 16 in

Rogers; part (b) appears in the same book as exercise 16-94 and it is

easily proved. For (c), let e be a A,-index for A and let f

be the recursive function found in (a). Let g(n) = fn(e), where

f (e) = e, and g(n-t-l) = f(g(n)). g is clearly a recursive function

and g(n) is, by repeated applications of part (a), a A,-index for

A^n). But A(w) •- {J(x,y) | x E Â }. Applying (b), we get the

desired result.
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The results of Lemma 1.3 hold in relativized form also. We shall

not give the proof here, but. we will use them freely in that form.

1.4 Lemma (Recursion Lemma, Rogers).

Let < be a well-ordering of integers and let P be a binary
K

relation on integers such that there exists a k, partial recursive

function of two variables, such that for all integers e and for all

a in the field of R,

(b)(b'';'̂ a=> .P(b,<J>e(b) =» P<a,*k(e>a)(a)). ''

Then there exists an r, such that for all a in the field of R,

The proof of this lemma uses the recursion theorem and can be

found in Rogers [16, Chapter XVI,- p. 398].

The proof of the theorem uses the recursion lemma and is a

trivial modification of Kleene's result about the H-sets associated

with 0.

Proof of the Theorem. . _.'.. '•. < '•'..'

Fix b in the field of R. Recall that we have to show that:

(a) (a e Field(R^ ) ̂ H (a) is A* in K ,
^R1 \+r L ^R1

K

uniformly in a),
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We use the recursion lemma over the well-ordering R, ,, where P
R

is taken to be . . . . . .

(J(a,w) | a e Field(R, . ,) & w is a A,' D+ 1 index for-b+Rl 1 R ,^.

HR(a)}.. ' f '

Given a z such that (c) (c < a => P(c,<|>! (c)) we must show how

to compute a w, uniformly in a and z such that P(a,w).

Case 1. a is R-least. Let w be a A '%+ 1-index for 0.
J. K

Case 2. a is an R-successor. Let c be the R-immediate predecessor

ẑ
(u)

of a. Then <j> (c) is a A-'-Kl-incIex for H_(c). Since
Z I K K

= HR(c) , we can apply the construction in Lemma 1.3, to get

for H_(a).
. K •

Case 3. a is .an R-limit. Then

H (a) = { J(x,y) | y < a & x e H (y)} =
ViR

(J(x,y) | y < a& (Ef)'(uM' (ft (y) ,f ,x,u)
%+_! i>1

K

{J(x,y) | y < a & (f)-(Eu)T̂ 1(L*z(y),f,x,u)}

where T' 1 is the Kleene T-predicate as defined in Rogers, 15.2.
•'•»•'•

For lack of space, we omitted the superscript R, , from the T-
R

predicates, but it belongs there.
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But {y | y < a} is arithmetical in R, 1 , uniformly
VR1 ^R1

in a. A Tarski-Kuratowski computation gives then HR(a) is in

1 R.A ' %+ 1 , and an index for it can be obtained uniformly in a.

1.5 Corollary. Let a be a gap ordinal and let R be a well-ordering

of integers all whose initial segments are in M DP(o)). Then for all

a in the field of R, ;if |aL < a, then H_(a) e M nP(u>).
' K K Ot

Proof. Let a be the R-least element of R such that H (a)
' J .• . J\

is not in M r\P(ui). By a remark above a has to be an R-limit. By

t>
the theorem H_(a) is A, in R , . , hence Hn(a) < 0 K . By

. • ••. K .1 a"'"T)-*- "• -1--. ;"• ' • K

hypothesis, R , , is in M OP (to). Since a is 1HP,
.:.'- R̂1 Q:

R '
0 ^R1 e M OP(w) also. Therefore HD(a) is in M OP (CD). So there

0, . K (X

is no such a.

Remark that in the proof we used only the following property of

the ordinal a: HYP(a). Therefore the conclusions of the theorem (and

of the corollary) hold for any a having this property and such that

M np(w) contains a well-ordering of integers of the appropriate type.
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Section 2. , ;

In this section we investigate the connections between uniform

upper bounds and H-sets. We will show that if a is a gap ordinal,

then H1 (a) is a uniform upper bound on M OP(ai).

2.1 Lemma (Leeds). Let A be a uub for M OP (to), a a gap ordinal.

'Then there exists a well-ordering of integers R. such that:
A

(i) Every initial segment of R is in M HP (ID), and
A Ct

(ii) R-: <a A.

Proof. Let w be the set of A-Godel numbers of sets of integers

in M . Since a is HYP, there exists a predicate W(x) arithmetical
(X • ','

in A such that :.

x e w & W(x)<=> x e w & w is a well-ordering.

..•'••' \. •.

Let P.(a,b,x,y) be a predicate which holds just in case the following

hold:

(i) a e !• & b e \ & W(a) & W(b)' • • . • • e e ' • • • " . • ' . . '

(ii) a < b & xeFieldO/) & yeFieldoA .v .a=b & J(x,y) e WA.
SL U - . : 3.

Let

RA = {J(Jx,a),J(y,b)) | PA(a,b,x,y)}

R. is obviously arithmetical in A, and since it is constructed by

joining together 01 well-orderings , every initial segment in R is

in M . The length of R. is exactly o.
Gt A
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By the corollary to the previous theorem we can conclude that if

b is in the field of R. , then H_ (b) is in M OP(ai). But then
A RA a

it follows that H_ (b) < A also.
RA a

Reviewing the situation up to now, we see that we can associate

with every uniform upper bound on M HP(u>) a well-ordering of

integers which is arithmetical in the considered uub and moreover,

such that the H-sets associated with that well-ordering are all in

M OP(OJ). This is the case because we are inductively building sets

along well-orderings in M , using sets already in M , and the

closure properties of M np(w) guarantee that the resulting sets

will be in M too. Suppose now that we extend one of these well-

orderings R in order to have a notation for a. One can ask then,
A

where does H(a) lie, if a is the notation we assigned to a. We

will show that H(a) cannot possibly be in M , and that H(a)

itself is a uub for M OP (to).

2.2 Proposition. Let A be a uub for M DP(u)), a gap ordinal.

Then there exists a well ordering of integers R' such that:

CD R; <a A.
(ii) Every initial segment of R' of length strictly smaller

A

than a is in M OP(w).
a

(iii) R' is of length a+1.
*»
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Proof. Let d be an A-G6'del number for A. Since no uniform

upper bound on M OP(ai) can itself be in M nP(u>)» d is not an
/

element of w . Therefore F.(d,d,x,y) will not hold for any choicee A

of x and y. We add just one new element at the 'end' of R , there-
A

fore we must make sure that all the elements in R. are smaller in

the new ordering than the new element. Define R' as follows:

Rl =.R. U(J(x,J(0,Ld) | x e R }
A . A A

Since R is arithmetical in A, so is R' R' is obviously of
A ; .., ' . A A

length a+1,'. and every initial segment of R' of length strictly
x\

smaller than' a is an initial segment of R of that length and by
.'->••, •• **

the construction of R. is in M np(w). Therefore R' is theA a A

desired well-ordering. .

2.3 Proposition. Let R' be the well-ordering obtained above and let
- - • • ' ' 7 •• ~ f\ • v - '•

a be the last element of R!, i.e. the notation for a. Then

H (a) is not an element of M nP(w).
A °

Proof. Suppose H0,(a) is in M np(u>). We will show that weRA a

can construct a well-ordering of integers of length, which is

arithmetical in H_,(a). But we know that for any two sets A and
A ' :.:,•

B, if A is of order 3, and B is arithmetical in A, then B

itself is of order at most 3, so the constructed well-ordering will

be in M nP(ui) as well, contradicting the fact that M f\P(w)

contains no well-orderings of length a. By definition,
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H_,(a) = (J(x,y) | y < , a & x e HR,(y)}.
V RA RA

Define a well-ordering of integers S as follows

S = U(x,y) | x e H_,(a) & y e H_,(a) .&.(Lx < , Ly < , a) v
ii. K. K, K.A A A A

v(Lx = Ly & Kx < Ky)}

5 is clearly a well-ordering of length greater than 6 , for any

6 < a, so S is of length at least a. In order to show that S is

arithmetical in H , (a) it is enough to observe that the following
RA

problems are uniformly arithmetical in H , (a) :
A

1. Determining if x is in the field of R' and x <R| a:A K. .
A

x e Field (R!) & x < , a <=> (Ey)(J(y,x) e H_,(a)).
A K.. K.

A A

2. Determining if x <n, y <_, a:
RA RA

x <D« y <Dt a <=> x e Field (R') & x <„, a & y E Field (R') &K. . f\. • A KA A
A A= A

& y < , a & y ? « x &
A

& {r | J(r,x) e H _ , ( a ) } < {r | J(r,y) e H R , ( a )} ,
RA a RA

Therefore S is arithmetical in H , (a) and by the argument above it
A

is in M np(uj). But this is a contradiction. Therefore HDl(a) is
" RA

not a set of integers in M , if a is a notation in R' for a.
a A
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2.4 Theorem. Let a be a gap ordinal. There exists an arithmetical

copy of M OP(w), E, such that E <. HR(a), provided a is a

notation in R for a.

Proof. The proof will be by induction on R, and we will in

fact prove the stronger result that H (a) > E .
K ia- a

Recall that we have available the operation * which enables us to

build an arithmetical copy of M - given an arithmetical copy of M ,

and that the new arithmetical copy is uniformly recursive in the u>th

jump of the-old arithmetical copy (that of M ). Let E be a recursive

arithmetical copy of M . It is useful to pick E to be On-initial.w • i\

For example pick E to be:

{j(J(m,0R),J(n,0R)) | (Ex)(Ey)(G(x) = m & G(y) = n & x e y}

where G is the recursive function which maps the hereditarily finite

sets one-to-one onto the natural numbers. Now define the desired copy

E of M be induction over R as follows:a a

VE • :'
Eb» (Ec,b>* if |b|R- HR + i , ;. ;,:;.

E. = U E if IbL is a limit ordinal
b c< b c ' 'R _

a
R
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E is clearly an arithmetical copy of M . We show now by induction
3 • - .

that E, is recursive in H (b), uniformly in b. En is recursive,
D K Op

hence recursive in 0 = II (0 ). Suppose now that b .< a and that
K K •_-.•K.

E, < HD(b), Let c be the R-successor of b. Then,
D j. K. ••.,'•

Since both redvicibilities above are uniform, it follows that E is

uniformly recursive in Hn(c). In order to prove the result at limits
K.

we have to examine the operation * in greater detail. Recall that if

E = (E, ,c)*, then we have:

E = E, U(J(d,J(y,c) | y is the least Godel number of some

formula $ and (j> defines a new set and d e Field (E )

and E !=4>d}c

Hence if we define the E's along some well-ordering of integers, the

way we did above, they will form an increasing sequence of sets.

Observe that given an x in some E we can tell the level at which

the set represented by x first appeared in the constructible

hierarchy, for it is enough to compute LLx; the set represented by

x first has an image in ETT , and therefore it is new in M ,i,T i
. LLx urr LLx'R

Let b be an R-limit. We will show that E, is recursive in theb

(ordinary) jump of H (b). By assumption E <_, H (c), for all
tx C 1 K

c <R b. Recall that we have used in a previous proof the fact that

if b is an R-limit, the predicate 'x is in the field of R and
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x < b1 is uniformly decidable in HR(b)'. Rather than give an

explicit expression for the function, we indicate how we can decide

membership in E, given an oracle for H (b)1. Given a number x,

we want to know whether x is in E, . Compute LLx. Ask if

LLx e Field(R) and LLx < b. If the answer is 'no,' x is not in
K

E. . If the answer is 'yes,' ask if x is in E T . Since by theD . LL>X-

induction hypothesis ELLX ̂ T HR(LLx) , and H(LLx) ̂  HR(b) <T HR(b)',

given an oracle for II (b) ' we can decide membership in E TT .K

Remark that although at limit ordinals we have arithmetical rather

than Turing reducibility, the induction still works, because finite

jumps are absorbed by w-jumps. For example, let b be an R-limit

and let c be the R-successor of b; suppose E. <_ H (b)'. Then

E - (E,c)* <_ E,vu" < (H(b)Tu" = HR(b)
v ' = H_(c)C 1 b ± IK K

So the induction can continue from this point on as before. We have

therefore shown that there exists an arithmetical copy of M which

is recursive in H (a)'.

From this the following easy, but important corollary is

immediate:
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2.5 Corollary. H (a)' is a uniform upper bound for M PiP(u>).

Proof. Since E is an arithmetical copy of M , E is a——— a ' ; ex a

uniform upper bound for M f)P(a)). Bur clearly any set in which a

uniform upper bound for a. collection of sets of integers is recursive

in, is itself a uniform upper bound for that collection, so we are

done.

It can be shown (using the same kind of proof as in the above

theorem) that if R is chosen to be R , and A is a uniform upper
A

bound for M nP(to), then ,E itself is arithmetical in A.
Ot ' 3.

Section 3 ". ' \.

In this section we build th,e gap-minimal systems of notations

extending arbitrarily close to w. .

3.1 Definition. Let A be a uniform upper bound for a countable

collection of sets of integers c<o. A is said to be a g-least uniform

upper bound for ^ if and only if A is arithmetical in the g-th jump

of any other uniform upper bound for *£?. , •:. -

In other words, if we denote the collection of uniform upper bounds

on <G by
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A e KCg1) =*•• A is B-least *=> (B) (B e UCg>) =* A < B W ' ) .
3. :

Our aim is to define a sequence of H-sets which is arithmetically

minimal in the following sense: If R is any system 6f notations, then

H (a) < H (af), provided a and a1 are notations for the samea K .

ordinal. The sequence H . is defined using our previous result

connecting H-sets with uniform upper bounds arid a series of results in

Putnam & Leeds [10], which we quote: .', .'••'•

Theorem A. Let a be a gap ordinal and let the length of the gap at

a by g(a). Any complete set E , . of order a+g(a) is a g(a)-

least uniform upper bound 011 M fiP(u>) = M . / .r\P(w).ct ort-g â;

Theorem B. Let a be a gap ordinal and let the length of the gap at

a be g(a). There is no y-Ieast uniform upper bound on M OP(u>),

if Y < g(a).

Theorem C. Let a be a gap ordinal and let the length of the gap at

a be g(a). Then there exists a g(a)-least uniform upper bound on

M OP(ID), A, such that both A and a. g(oc)th jump of A are in

M -L I \ 'a+g(a)

The proof of Theorem A is not very hard and is similar to .our

proof of Theorem 2.4. The main idea of the proof is that given any

uniform upper bound for M np(u>), we can build an arithmetical copy

of M which is arithmetical in the gCa)1- jump of the uniform
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upper bound. The proof of Theorem B is much more delicate and it

involves a forcing argument. The "ancestor1 of this proof is a

theorem by Boyd which states that if ̂  is a countable ui-model for

analysis, then there exist two sets of integers A and B such that

A and B are uniform upper bounds on f̂-, and such that if C is

any set of integers which is arithmetical both in A and in B, then

C is second-order definable over the sets of integers in <-£/?. It

followed from that theorem that there was no arithmetically least uniform

upper bound on ,j#\ for if K were such a uniform upper bound, then

K < A, K .<•: B, and K would be second-order definalbe over ^4, so
& " ,3. ' . .

K e ̂ /, .and K1 (which is in ^f) would be recursive in K, which

is a contradiction. Theorem C is a corollary of Theorem B and of the

definability of forcing over our ground model. We stress again the

fact that our results will depend very strongly on Theorem B, and a

real understanding of them cannot be achieved without a detailed

examination of that proof.
'• i

We list now the necessary (previosuly proved) facts for the

definition of the minimal sequence of H-sets. From now on a will be

a fixed arbitrary gap ordinal and the length of the gap at a will

be denoted by g(a). Recall that g(ct) > 1. Let ,U(a) denote the

collection of uniform upper bounds on M nP(ai). Clearly

U(a)OM OP(ai) = 0. Then the following are true:
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(i) If A is in U(ct) then there exists a well-ordering R of
A

length a-fl such that:

a. All initial segments of R. of length strictly smaller

than a are in M OP(u>).• a '

b. R < A and HD (a) < A, if a is the ath elementA a RA a

of R. .
A . . . .

(ii) If K is a complete set of order a +g(a), then K e U(a)

and K is g(ct)-least.

(iii) If a is a notation for a in some system of notations R,

then HR(a)' is a uniform upper bound for M OP(u>).

(iv) If A and B are two sets of integers such that for some n,

A- B(n), then A(a>) E B
((i°.

The main theorem of this chapter will assert the existence of a

system of notations which is 'best possible' with respect to the

arithmetical degrees associated with its H-sets. We now make precise

the notion of 'best possible.' Consider now an arbitrary system of

notations (i.e. a well-founded partial-ordering of integers), as

defined by Enderton. Such a system, R, is said to be minimal if for

any other system of notations, S, if a e Field(R) and b e Field(S)

and |aL = Ibl , then HD(a) <„ H_(b). For example, 0 is a system
K o K 1 b

of notations which is minimal and contains notations for all constructive

ordinals. Putnam and Luckham [11] have shown that there is no minimal

system of notations containing a notation for constructive w.. . In
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[12], Putnam and Lukas relax the requirement on minimality a little

bit further and define a system of notations R to be almos t-minimal

if for every system of notations S, if a e Field (R) and b e Field (S)

and |aj = |b| then H (a) is arithmetical in H (b) . In the above
K - o AX o

definitions, the H-sets are the usual H-sets , defined using the ordinary

jump. The main result of the Putnam and Lukas paper cited above is that

there are almost-minimal : systems of notations containing notations for

all ordinals .< SQ, and ; that in fact there is a system of notations of

length 8Q. We return now to systems of notations which are well-

orderings of integers and in which the H-set associated with a notation

for a successor ordinal is the w-jump of the H-set associated with the

predecessor of that ordinal. Let R be such a system of notations.

We will say that R is gap-minimal if for any system S of the same

type, if a e Field (R) and b e Field(S) and laL = |b| and
, K D

Lim(|a|R), then: V'V

where h is a function defined as follows: .

h(y) = (least index greater than or equal to y) ~ Y

and a is the ordinal whose notation in R is a and whose notation

in S is b. ,.-• . . ''-• ;".-,

It follows from the definition of gap-minimality that the

arithmetical degrees assigned to H-sets along a gap-minimal system of

notations are as low as possible, i.e. for no S < h(y), can HR(a)
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be 3-least, because that would contradict the non-existence of 3-least

uniform upper-bounded asserted by Theorem B.

3.2 Main Theorem

Let a < to1. There exists a gap-minimal system of notations

containing notations for all ordinals less than a. Clearly it is

enough to consider only limit ordinals in the proof of the theorem and •

a moment of thought will show that it is enough to consider only those

limit ordinals which are gaps. The proof of the theorem will be by

induction. ' .

Induction hypothesis: For every gap ordinal less than a, 3, there

exists a gap-minimal system of notations of length 3. We will consider

three cases, which obviously include all gap ordinals:

• . - • • ' • : \ .

Case I. There are no gap ordinals smaller than a (a = 3~)•

Case II. There is a greatest gap ordinal smaller than a.

Case III. There is no greatest gap ordinal less than a, i.e. a is

a limit of gap ordinals, and a £ 30«

The proofs of the induction step in Cases I, II and III will be

contained in Propositions I, II and III, respectively.
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Proposition I. There exists a gap-minimal system of notations of

length 3Q.

Proof. We will use Theorem 5 in Putnam and Lukas which states

that for every ordinal less than or equal to 30, 3 there exists an

almost-minimal system of notations of length to. 3. In our proof we

will denote H-sets obtained along a well-ordering using ordinary jumps

by capital Roman letters (H) and H-sets obtained along the same well-

ordering using en-jumps by capital script letters (#f) . Let R be a

branch of length a)-3r> of the system of notations whose existence is

asserted by the Putnam-Lukas theorem. R is then an almost-minimal

system of notations. Let K be the generic uniform upper bound on

MQ Hp (to). Let S be the well-ordering which is arithmetical in Kgo
and such that H (3Q) is arithmetical in K. We know that HS(3Q)

is 1-least. Claim that R is a gap minimal system of notations.
0

In this proof we write II (a), to mean II (a) , where |a| = a- For

all a < 3Q, h(a) = 0. We want to show that for any system of

notations T, for all a < gn, Ĵ fr,(a) < <3̂ (a). By almostu K a i

minimality HR.(a) < H_(ct), for all a < ai.30. In particular

H p(ui.a) < IL(to.a). (Use a < 6 <==* at. a < u>. 3) It is easy to see that
K Si • • L

HD(u>.a). By transitivity of < , it follows that
K. ~~33

<a ̂  (a) , for all a < 6Q. In particular,

Therefore R̂(3Q) <a ̂ (30) <a K <a K
(a)) .; So <̂fR(30) is a 1-least

uniform upper bound on Mn OP(co), i.e. R behaves as desired at its
30
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BQth point and below. Therefore the initial segment of R, which is

of length $n is a gap-minimal system of notations.

Proposition II.

Suppose a is a gap ordinal and suppose there is a largest gap

ordinal smaller than a. Assume that there is a gap-minimal system of

notations R giving a notation to all ordinals smaller than or equal

to r^gCy)* where y is t^6 greatest gap ordinal less than a« We

will show how to obtain a gap-minimal system of notations extending up

to ot+g(a). Let K be the uniform upper bound on MaOP(ui) obtained

using Theorem C. Then there is a g(«)-jump of K which is arithmetical

in the complete set of order ct+g(a). Observe that it is always

possible to "paste together" two well-orderings in order to obtain a

new well-ordering whose order-type is the sum of the order-types of the

two components, provided the components are disjoint. Our proof will

proceed as follows:

(i) Given the "generic" uniform upper bound K, build the

"generic" well-ordering W, of length g(a) along v;hich the arith-

metically low K8 ' is obtained.

(ii) Build the well-ordering R^ as indicated in Theorem ; R^

is then arithmetical in K, H_ (a) < K for all a e Field(R̂ ),s\v a K.

|aL < a, and H (a)1 is a g(ct)-least uniform upper bound on
*K *K

M n-P(u) . . •
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(ill) Obtain disjoint copies of R^ and W and paste them together

to obtain a well-ordering S of length oc+g(ct) as follows:

S ={J(J(x,0),J(y,0)) | J(x,y) e 1^} U

{J(J(x,l),J(y,l)) I J(x,y) e W) U

{J(J(x,0),J(y,l» | x e Field (Î ) & y e Field (W»

(iv) Obtain disjoint copies of R and S. Delete the initial

segment of length y+g(y) of S and replace it by R. Let

|a| =• Y+g(y)' Construct the well-ordering T of length a+g(a):
L>

T - U(J(x,0),J(y>0) | J(x,y) e R> U :

(j(J(x,l),J(y,l) | J(x,y) e S & (J(a,x) e S v x = a) } U

(j(J(x,0),J(y,l) 1 x e Field (R) & y e Field(S) &

& (J(a,y) e S v y = a)}

We claim that T is a gap-minimal system of notations of length

a+g(oO« First observe that by taking a copy of a well-ordering in the

manner above, we do not alter the arithmetical degrees of the H-sets

constructed along the well-ordering. Then, by the induction hypothesis,

TJ(a,l) = {J(x«y> e T I JCy.H(a.l)) e T},

the initial segment of T of length y+gCy) *s a gap-minimal system

of notations. Observe that tLCb)' is a g(y)-least uniform upper

bound on M nP(io) (where b = J(a,l)). For if we construct the

generic well-ordering for M nP(w), VL, H^ (c) will be a g(v)-

least uniform upper bound for M DP(u)), provided c is a notation in
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Vi for y. But by gap-minimality H^b) <a H^ (c)
 E

y+g(Y)

(the complete set of order y+g(y))- Therefore if V is any other

well-ordering and v is a notation in V for y >

Ĥ b) <a Ey+g(y) <a HyCv)
8 .̂' By gap-minimality again,

HT(J(a,l) <a Hs(a)
h(Y+g(Y)). Since Y+g(y) is an index, h(Y+s(y))=0,

so we have HT(J(a,l)) < H (a). Since the initial R,, was generic, the
i. : cl L> IS.

H-set built along it at level . a is an g(a)-least uniform upper bound

on M f)P(u>) as observed in (ii). T is exactly the same as R^ on

its terminal stretch, so we know that the gap-minimality property holds

at the new gap, a. The problem remains then to show that T is gap

minimal on the interval (Y+g(Y)»a)' In order to do this we" prove an

easy lemma:,. ;.

Lemma. Let W be a well-ordering of integers. For an arbitrary set

• • ' 3
of integers A and a E Field (W), define a set A,, as follows:

A J J = A i f | a | w - Q . . = ' . . ' ;

$-£™ if i b i w ^ . i = i a i w ;,
:, :

A^ - U(x,y) | y <w a & x e A^} if Lim(|a|w>

Let A and B be two sets of integers such that A < B. Then, if
"-.• : .3-

a E Field (W) and |aL £ 0, A 7̂ <, B^, uniformly in a. The Lemma

really says that if we start with one set arithmetical in another and

take jumps of both along the same well-ordering, at the same point,

the jump of the first set will always be of lower 1-1, hence
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hence arithmetical also, degree, than the jump of the second set. We

sketch the proof for the notations in W up to and including the first
i

limit ordinal, to. The rest of the proof is similar.

A < B <*=* (En) (A <, B̂ n').
Si ,.!•

Let f(x) be the recursive function which takes A 1-1 into B w .

Of course the f we pick will depend upon the finite jump of B we

pick at the beginning as being above A. If a is a notation in W
"... - *

- o a

for a finite ordinal, say m, then A is carried 1-1 into B by

f iterated ; m times. Suppose now that a is a notation in W for

a . Then • "••; . • ' ; ; •

"' •' 3. - V I V IT 7 V
J(x,y) e A <=> y <w a &, x e A' <-=> y < a & fl/|W (x) e B^

'V:V <=> J(f'y'w (x),y) e Ba

So A3 <. Ba.
JL \ . •

Since we already know that'for any well-ordering W,

HT(Y+g(y)) < IL,(Y+g(Y))» an<* that h(g) = 0 for any ordinal between

the end of the gap at Y anc* ot, it follows by the Lemma that T is

well-behaved in that interval. Moreover H_(a) is arithmetically

equivalent to HB (a), therefore it is a g(ct)-least uniform upper boundRK ;
of M OP(m). Therefore T is a gap-minimal system of notations which

gives notations to all ordinals smaller than ct+g(ct). By Theorem B it

also follows that T assigns arithmetical degrees to its H-sets which

are as low as possible. :
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In the above proof we wrote H (a) , for IL(a), if |a| = 'a.

No possible confusion can arise, since our systems give unique

notations to ordinals. ;•.,

Proposition III • . / . ' {•'?•.'

Suppose now that a is a gap ordinal which is a limit of gap
" . " > - " •

ordinals, i.e. that there is no greatest gap ordinal less than a. In

order to prove that there exists a gap minimal system of notations

extending up to a, given the possibility of building such systems up

to any smaller gap ordinal, we need to prove the following lemma:

Lemma . Let a be a gap ordinal which is a limit of gap ordinals and

let K be the generic uniform upper bound on M Op(o)) given by

Theorem C. Let R be the generic well-ordering associated with

K . (R is the well-ordering obtained by pasting together the well-

ordering along which the "good" g(ct)-jump of K is taken). Then we

can find an ui-sequence of gap-ordinals converging to a, uniformly

in H^Ca)', where a is the notation of a in R.
K

Proof . The strategy is to define a function from the integers

into the field of R which is an order-preserving function and whose

values converge to a, and to do this effectively in H_,(a)'.- We
K

first show that we can pick out among the notations in R, those

notations which correspond to gap ordinals. Recall that the following

problems are uniformly arithmetical in H0(a);K
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1. Deciding whether x e, Field (R) & x < a.
K

2. Deciding whether x < y < a.
K K

In the proof of the theorem stating that Ĥ (a)' is a uniform upper

bound on M OP(w), we built a sequence of arithmetical copies of

M g's, for g < a, indexed by elements of R. It followed by the

construction that for x < a, E was recursive in H (x) ' uniformly
K X K

in x, which in turn is 1-1 reducible uniformly in x to IL(a).

Therefore the following two problems are decidable uniformly in IL(a) '

(arithmetically in H,,(a)).
K

3. Deciding if x e Field (R) and if x is a notation for an

index ordinal less than a:

x < a & I(lxL) <=> (Ey) (y represents a set of integers and
. K , • ; K

y i EX- and (Ez) (y e EZ & y <R z <R a & (̂Eu)(y <R u <R z))).

4. Deciding if x e Field (R), and if x is a notation for a gap

ordinal. / '

We will write in words what the predicate says, since its

complicated form obscures the very simple meaning:

x < a and G(|xL) <=> x is a notation in R for a limit and

x is a limit of indices and x is not a notation for an index.

Having available these decision procedures we build now the desired

w -sequence of gaps converging to a. First we extract from R a well-

ordering containing only notations for gaps:
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R' = (J(x,y) | J(x,y) e R and x and y are notations for gap

ordinals).

By 4, R1 < H (a). Now we define the R1-valued function which we
*~"cl Xv

need:

Let g be defined as follows:

g(0) = yz[z < , a]
K. .

g(n+l) = uz[z i {g(0),...g(n)} & z <R, a]

g is clearly arithmetical in H (a). (In fact it is recursive in

H (a)'.) We are trying to defing an f with the properties
K - . . • •

(i) (x)(f(x) < , a) and
,.' J\ j

(ii) (x)(y)(x < y =* f(x) < , f(y)).
K

Let f be: V

f(0) = g(0) V

f(n+l) = g(z), where z - yz'[f(n) <R, g(z')].

It is easy to see that f satisfies (i) and (ii), that f is

arithmetical in HD(a) and that the sequence f(n) converges in R1
K

to a, as n gets bigger and bigger. Therefore the lemma is proved.

Let g be the co-sequence of gaps converging to a. By the

induction hypothesis we can find an to-sequence of gap minimal systems

of notations {R } n e N such that R gives a notation to every

ordinal less than g . Using the R *s we will build a gap-minimal
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system of notations extending to a. First we build disjoint copies

of the R *s as follows:n .

R^ - U(J(x,n),J(y,n)) ,| J(x,y) e RR}

Clearly for all n, if a e Field (R ), IL (a) =T H^ (a) . Define

inductively a sequence of well-orderings T . Let |b |_, = 8 .
H II t\ . « 11n+1

Tn+i
U(J(x,y) | x e Field(Tn) & y e Field(R +̂1)

& (y - b V J(b,y) en

Clearly for every n, T £ T ' , and T - is an extension (proper)

of T which is compatible with T , i.e. no element which is added to

the field of T^ to form the field of T +. is already in 'T . By

an argument similar to that used in the successor case we see that for

every n, T is a gap-minimal system of notations containing

notations for every ordinal less than 3 .

Let T = U T . V7e claim that T is the desired gap-minimal
neN n

system of notations. The lenght of T is greater than 6, for any

6 < a. It follows that the length of T is exactly a. By

construction T is arithmetical in IL.(a), where R was the generic
"•

well-ordering given by Theorem C. To see that TT is gap-minimal it

is enough to observe that for any 3 < a, H , (b) = HT(c), if
• • . lx el J.

n
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if |b|, =|c|T=3. Let 8 be an arbitrary ordinal less than a.
n

Then for some n, 3 < B < 8 ., , since 8 ta. Let S be any system

of notations of length greater than or equal to 8. Suppose

|b|T = [c| , - |d|g • B. By minimality of R/ ,
n+1

H0, (c) < Hc(d)
h .̂ But by the observation above, 1L, (c) = H,_(b),

K , _ 3 o K , . 3 1
n+l n+1

Therefore T is well-behaved at 3, which had to be proved.

The. induction is thus completed and we have proved the Theorem.
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