
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-566

A Brief Description and Comparison of Programming
Languages FORTRAN, ALGOL, COBOL,

and LISP 1.5 From a

F. P. Mathur

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

September 15, 1972
Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

PLII,
Critical Standpoint

https://ntrs.nasa.gov/search.jsp?R=19720025540 2020-03-23T09:58:50+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/80644799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TECHNICAL REPORT STANDARD TITLE PAGE

I. Report No. 33-566 2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle 5. Report Date
A BRIEF DESCRIPTION AND COMPARISON OF PROGRAMMING September 15, 1972
LANGUAGES FORTRAN, ALGOL, COBOL, PL/I, AND LISP 6. Performing Organization Code
1.5 FROM A CRITICAL STANDPOINT

7. Author(s) 8. Performing Organization Report No.
F. P. Mathur

9. Performing Organization Name and Address 10. Work Unit No.
JET PROPULSION LABORATORY
California Institute of Technology 11. Contract or Grant No.
4800 Oak Grove Drive NAS 7-100
Pasadena, California 91103 13. Type of Report and Period Covered

Technical Memorandum
12. Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
14. Sponsoring Agency CodeWashington, D.C. 20546

15. Supplementary Notes

16. Abstract

Several common higher level program languages are described. FORTRAN, ALGOL,
COBOL, PL/I, and LISP 1.5 are summarized and compared. FORTRAN is the most
widely used scientific programming language. ALGOL is a more powerful
language for scientific programming. COBOL is used for most commercial
programming applications. LISP 1.5 is primarily a list-processing language.
PL/I attempts to combine the desirable features of FORTRAN, ALGOL, and COBOL
into a single language.

17. Key Words (Selected by Author(s)) 18. Distribution Statement

Computer Applications and Equipment Unclassified -- Unlimited
Computer Programs

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 13

T



HOW TO FILL OUT THE TECHNICAL REPORT STANDARD TITLE PAGE

Make items 1, 4, 5, 9, 12, and 13 agree with the corresponding information on the
report cover. Use all capital letters for title (item 4). Leave items 2, 6, and ~14
blank. Complete the remaining items as follows:

3. Recipient's Catalog No. Reserved for use by report recipients.

7. Author(s). Include corresponding information from the report cover. In
addition, list the affiliation of an author if it differs from that of the
performing organization.

8. Performing Organization Report No. Insert if performing organization
wishes to assign this number.

10. Work Unit No. Use the agency-wide code (for example, 923-50-10-06-72),
which uniquely identifies the work unit under which the work was authorized.
Non-NASA performing organizations will leave this blank.

11. Insert the number of the contract or grant under which the report was
pre pared.

15. Supplementary Notes. Enter information not included elsewhere but useful,
such as: Prepared in cooperation with... Translation of (or by)... Presented
at conference of... To be published in...

16. Abstract. Include a brief (not to exceed 200 words) factual summary of the
most significant information contained in the report. If possible, the
abstract of a classified report should be unclassified. If the report contains
a significant bibliography or literature survey, mention it here.

17. Key Words. Insert terms or short phrases selected by the author that identify
the principal subjects covered in the report, and that are sufficiently
specific and precise to be used for cataloging.

18. Distribution Statement. Enter one of the authorized statements used to
denote releasability to the public or a limitation on dissemination for
reasons other than security of defense information. Authorized statements
are "Unclassified-Unlimited, " "U.S. Government and Contractors only, "
"U. S. Government Agencies only, " and "NASA and NASA Contractors only."

19. Security Classification (of report). NOTE: Reports carrying a security
classification will require additional markings giving security and down-
grading information as specified by the Security Requirements Checklist
and the DoD Industrial Security Manual (DoD 5220. 22-M).

20. Security Classification (of this page). NOTE: Because this page may be
used in preparing announcements, bibliographies, and data banks, it should
be unclassified if possible. If a classification is required, indicate sepa-
rately the classification of the title and the abstract by following these items
with either "(U)" for unclassified, or "(C)" or "(S)" as applicable for
classified items.

21. No. of Pages. Insert the number of pages.

22. Price. Insert the price set by the Clearinghouse for Federal Scientific and
Technical Information or the Government Printing Office, if known.

I-



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-566

A Brief Description and Comparison of Programming
Languages FORTRAN, ALGOL, COBOL, PLII,

and LISP 1.5 From a Critical Standpoint

F. P. Mathur

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

September 15, 1972

(



Prepared Under Contract No. NAS-7-100
National Aeronautics and Space Administration



Preface

The work described in this report was performed by the Astrionics Divi-
sion of the Jet Propulsion Laboratory.

JPL TECHNICAL MEMORANDUM 33-566 iii



PRECEDING PAGE BLANK NOT FILMEf

Contents

I. Introduction ...........

II. Basic Philosophy of Programming Languages

III. Metalanguages ..........

IV. FORTRAN (Formula Translation).

V. ALGOL (Arithmetic Language).

VI. COBOL (Common Business Language)

VII. LISP 1.5 (List Processing Language) .

VIII. PL/I (Programming Language I)

IX. Conclusion ............

References

Bibliography .

Figures

1. Process of compiling an object program

1

2

2

4

5

7

8

...... .......10

..... . ...10

..... . ...12

11

Preceding page blankJPL TECHNICAL MEMORANDUM 33-566 v



Abstract

Several common higher level program languages are described. FORTRAN,
ALGOL, COBOL, PL/I, and LISP 1.5 are summarized and compared. FOR-
TRAN is the most widely used scientific programming language. ALGOL is
a more powerful language for scientific programming. COBOL is used for
most commercial programming applications. LISP 1.5 is primarily a list-pro-
cessing language. PL/I attempts to combine the desirable features of FOR-
TRAN, ALGOL, and COBOL into a single language.

JPL TECHNICAL MEMORANDUM 33-566vi



A Brief Description and Comparison of Programming
Languages FORTRAN, ALGOL, COBOL, PL/I,

and LISP 1.5 From a Critical Standpoint

I. Introduction
Explicit procedures, namely, algorithms or programs

for the solution of mathematically structurable prob-
lems, require a notation and syntactic structure for
their description. Such systems of notation are called
programming languages.

The solution of a problem by means of computer facil-
ity consists of explicitly delineating the steps or com-
mands that a computer should follow in order to pro-
duce the solution. The computer must be instructed in
the manner in which it must expect to receive the data
to be acted upon. This data and the format of the solu-
tions must be presented to the computer in a prescribed
manner. Though the computer is incapable of formulat-
ing these procedures, its forte lies in following the com-
mands with great speed.

The algorithm, which may be in the form of a flow
chart, and the data are coded in the source language
(the subject of this paper) and inputed to a compiler
where it is compiled, assembled, and effectively trans-

lated into an object program that is in machine language
- the binary language in which a computer basically
operates. The process of compiling an object program
from a source program is shown in Fig. 1.

In the early days of computers, all programming was
done in machine language. From the standpoint of the
computer, the machine language programming is the
most efficient; however, it requires that the program-
mer be familiar with the internal organization and de-
sign of the computer. As computer applications became
widespread, higher level languages were developed
that separated the user from the designer and became
more user oriented. At first these languages were oriented
toward the scientist programmer and were strictly for
scientific applications. As computer applications broad-
ened toward data processing and business-type appli-
cations, business-oriented languages came into being.
As a next step these two main, though basically diver-
gent, orientations were and are being incorporated with-
in the same language. The success of truly general-pur-
pose languages as measured by widespread acceptance
is yet to be seen.

JPL TECHNICAL MEMORANDUM 33-566 1



II. Basic Philosophy of Programming Languages
A significant difference between natural languages

and programming languages is, that due to the nonin-
telligent nature of the computer, no ambiguities in the
programming language may exist. The language must
be context free; hence, it is not subject to growth and
spontaneous development.

The ideal problem-oriented source language designed
for wide use must possess the characteristics of being
easily learned, easy to use, easy for others to follow,
should not require a huge compiler to produce a reason-
ably efficient execution of the job, must be computer
independent (i.e., should be usable on other machines)
and the structure must lend itself to automatic error de-
tection. Many of the above requirements are conflicting,
as is apparent in the following excerpt:

"An ideal source language should be easy to learn and
simple to use, such a language must be general: a source
language must apply to the widest possible range of prob-
lems to be of greatest value, must be concise with as few
words as possible and using identifiers as far ranging
as possible. It must do a maximum amount of work with
a minimum of commands. Through this it will tend to-
wards symbolic languages but not in such a way as to
make its resulting simplified programs difficult for the
layman to follow. It should obey the cardinal program-
ming rule of absolute precision but at the same time
should avoid any unnecessary complications which will
make the construction of the compiler more difficult.
Finally, it should be as natural and unforced a language
as possible" (Ref. 1).

In subsequent pages an attempt will be -made to see
how close the higher level languages under considera-
tion approach the ideal source language defined above.
For a thorough treatment of language comparison, the
reader is referred to Ref. 2, where some 120 languages
are broadly cove1-ed and illustrative sample programs
are given for some 30 languages.

III. Metalanguages
Metalanguages are languages whereby other languages

may be described. One of the characteristics of natural
languages (since they are, in general, unbounded) is that
they are their own metalanguage. ALGOL, a widely
used metalanguage to describe programming languages,
is termed the Backus-Naur form of syntax description. It
describes precisely what combinations of symbols are
meaningful and its use results in metalinguistic formulas.

2

This metalanguage employs four characters which are
unrelated to, and distinct from, the programming lan-
guage under description. These are the metalinguistic
brackets '<' and '>' which are used to enclose names of
things about which the metalanguage is talking,'
which means "is," and 'i' which means "or," Thus

<digit> ::= 0111213141516171819

is read "a digit is a 0 or a 1 or a 2 or a 3 or a 4 or a 5 or a
6 or a 7 or a 8 or a 9."

Sometimes what is being defined is mentioned on both
sides of the symbol ':: = ,' e.g., < identifier> :: = < letter>]
<identifier> <letter> <identifier> <digit> which
says that "an identifier is a letter or an identifier followed
by a letter or an identifier followed by a digit." This is a
recursive definition, which is equivalent to saying that
an identifier is any sequence of letters and digits which
starts with a letter.

The above example of metalinguistic formula is an il-
lustration from ALGOL. In describing other languages,
such as COBOL, other metalinguistic techniques have
been developed. Charts also exist which describe in
graphical form the syntax of the language.

IV. FORTRAN (Formula Translation)
FORTRAN is the most widely used high-level pro-

gramming language. The original version of FORTRAN,
FORTRAN I, was developed in 1957 by the IBM Cor-
poration for the 704 computer, which now is obsolete.
Originally all programming was done using hand-coded
symbolic machine instructions. FORTRAN I programs
were monolithic, and minor changes in the program re-
quired that the entire program be recompiled. Expan-
sion of FORTRAN I into FORTRAN II in 1958 allowed
programs to be separately compiled. Subprogram facility
allowed data to be declared common to all programs;
also, subprograms could invoke one another, thus en-
abling the task of programming to be divided among
several programmers. FORTRAN II also had the fea-
ture that parts of the program could be written in sym-
bolic machine code in order to increase efficiency of
compilation. Input/output was also expanded for han-
dling and editing alphanumeric information.

In 1961, FORTRAN II was augmented to FORTRAN
IV (hereafter referred to as F II and F IV). F IV
contains all the features of F II plus a number of addi-
tional ones. The additional features are double preci-

JPL TECHNICAL MEMORANDUM 33-566



sion, complex number arithmetic, logical variables, logi-
cal connectives, and relational expressions. Also, prob-
ably due to the influence of ALGOL, a number of formal
syntactic changes were made. A new conditional logical
IF statement supplementing the arithmetic IF state-
ment was introduced, thus

IF (Z .GT. 5 AND. Z .LT. 9) Y = Z

In F II only a single COMMON block can be defined,
whereas in F IV several independant COMMON blocks
may be defined.

F II had only two types of data, floating-point and
fixed-point, and had very simple means of distinguish-
ing them. All variables beginning with letters I through
N were denoted as fixed-point and the remaining as
floating point. Even with the introduction of three new
types of data in F IV, the simplicity and convenience
of this system has been retained. However, F IV may
overrule this implicit declaration by explicitly declaring
a variable as any one of the five types: real, integer, logi-
cal, complex, or double precision. Variables in FOR-
TRAN may be alphanumeric, up to six characters long,
and the first character must be a letter.

FORTRAN hardware representation is restricted to
the 48-character set, only upper-case letters being al-
lowed. Expressions in FORTRAN do not permit mixed
modes, i.e., all variables must be of the same type or
mode; however, in exponentiating, floating-point num-
bers may be raised to a fixed-point power. Care must
be taken in assigning modes on either side of statements,
since during evaluation the expression is completely
computed in its basic mode, and the computed value
is assigned to the variable on the right of the equal sign,
converting its mode, if necessary, to that of the variable
being equated to.

In evaluating arithmetic statements the hierarchy of
operations has to be obeyed. The basic hierarchy of op-
eration is from left to right. Exponentiation and paren-
theses operation come first, followed by multiplication
and division as second, followed by addition and sub-
traction as last. It should not be overlooked that expo-
nents in themselves may be expressions. Redundant sets
of parentheses may be used, thus allowing complete
mathematical freedom; however, the statements become
correspondingly harder to read. Programs written in
FORTRAN can become quite complex and are much
harder to read than those written in either ALGOL,
COBOL, or PL,/I.

FORTRAN does not have any reserved words; e.g.,
the following is a DO statement: DO 7 A = 3,5. How-
ever, DO7A = 3.5 is an arithmetic statement. FORTRAN
is written in fixed form, i.e., only one statement per line
is allowed; thus, no punctuation is required to terminate
a statement. However, a statement may be continued
onto a following line by punching a special character
in column six. The order of obeying statements is sequen-
tial. Comments may be inserted freely into the program
by punching a "C" in column one. Blanks have no signi-
ficance in FORTRAN and are ignored; thus, GO TO 3
is identical to GOTO3. The exception to the significance
of blanks is when input/output is specified, using Hol-
lerith format. Labels in FORTRAN may be numeric only
and of no greater than five digits.

Subroutines and functions in FORTRAN may not in-
voke themselves, i.e., they may not be invoked recur-
sively. (However, the same effect may be obtained by
the use of dummy statements.) Subscripts in FORTRAN
are written in parentheses, e.g., Xi is written as X(I).
An array may have maximum dimension of seven in
F IV and three in F II. The maximum size of an array
used must be initially declared. Subscripted variables
have to begin with unity and are required to be stepped
positively only.

A few simple control statements such as DO, IF, GO
TO, specify the flow of control. FORTRAN conditional
statements, though ingenious and simple, are not as
sophisticated as those in ALGOL, (these are described
in subsequent pages). The statement, IF (A) 5,10,15
provides three-way conditional branching; if A is nega-
tive, zero, or positive, branching takes place to state-
ments labeled 5,10, and 15, respectively.

FORTRAN input/output statements come in pairs;
namely, an input or output statement followed by the
FORMAT specification, e.g.,

PRINT 50,K,P

50 FORMAT (10X,I5,F9.5)

states that K and P should be printed according to the
FORMAT specification labeled 50. The format specifi-
cation stated by 10x states that the first ten character
positions be left blank, I5 states that the next field of five
characters represents a decimal integer; and F9.5 states
that the next field consists of 9 characters representing
a real number having five digits after the decimal point.
The Hollerith H format specification is available for
transmitting characters, but suffers from the fact that the

JPL TECHNICAL MEMORANDUM 33-566 3



total number of characters and blanks need to be counted
and specified. Other format specifications are available,
and though generally adequate for scientific applica-
tions and easy to apply, they are not as extensive as the
input/output facilities provided in PL/I. The input/
output statements of FORTRAN cannot be compared
against those of ALGOL, since none are specified in
the latter.)

FORTRAN, as exemplified by its input/output state-
ments is, in general, a compromise between simplicity
of use and flexibility of format. It has proved to be such
an effective compromise between generality and effici-
ency that it has become the most widely accepted higher
language in use today.

V. ALGOL (Algorithmic Language)
ALGOL was developed by an international computer

group and attempts to achieve a common programming
language to serve both program input to computer and
as a vehicle for communicating algorithms in published
form. ALGOL 60 was defined and reported by an
ALGOL committee in 1960, and further revisions were
incorporated in 1962 in the "Revised Report on the Al-
gorithmic Language ALGOL 60," which was published
simultaneously in various international computer journals.

The publication language of ALGOL is used to write
algorithms for man-to-man communication and permits
use of various notational characters such as Greek letters,
etc., which are not included in the reference language
and would be unreasonable to expect in the hardware
representation. The publication language has been quite
successful in achieving its goal, as can be evidenced by
the number of algorithms published in ALGOL in such
journals as the Communications of the ACM.

ALGOL was designed to he machine independent.
This characteristic is carried to the extent that no expli-
cit reference to addresses of stored data nor instructions
for storing is made. Input-output procedures are left
completely undefined, as is hardware representation.
Thus the programmer must learn the specific input-
output procedures depending on the compiler he may
be using.

ALGOL, like FORTRAN, is directed toward numerical
computation. ALGOL possesses an explicit syntax, which
is defined using the Backus-Naur notation, and together
with its block and nested block structure in which each
nested block may have its own local identifiers, provides

the language with a high degree of elegence of expres-
sion. Though all identifiers and variables have to be de-
clared in ALGOL, it does not compare with the sophis-
tication of the Data division in COBOL.

ALGOL comprises 116 basic symbols, namely the ten
digits, 52 letters, upper and lower case, and 52 delimit-
ers, such as the six arithmetic operators (e.g., +,-,/
etc.), the six relational operators (<,-, =, etc.), the five
logical operators (-, A, etc.), the six sequential opera-
tors (go to, if, else, etc.), the six brackets (' ', [ ],
begin end, etc.),the seven declarators (boolean, integer,
real, etc.), and the three specifications (string, value,
label).

Numbers, variables, statements, labels, blocks, pro-
cedures, and programs are built up by using the above
symbols and obeying the syntactical rules. It should be
noted that in ALGOL basic symbols (e.g., go to) can
be a word or two words and need not be a single charac-
ter. As contrasted against FORTRAN, two symbols for
division are defined in ALGOL, the normal "/" and
the operator "-" which is restricted to operands of
type integer and yields the integral part of the quotient.
The rules of precedence of arithmetic symbols is same
as in FORTRAN, and the same left-to-right sequence
is retained.

ALGOL programs are written in free form. More than
one statement can be written per line and a statement
is allowed to overflow to the next line. However, in
FORTRAN only one statement per line is permitted
and in order to continue on to the next line, a special
location on the line (column 6) must be punched.
However, ALGOL statements require that they be de-
limited by a semicolon.

The ALGOL assignment statement corresponds to the
FORTRAN arithmetic statement. However, the ambi-
guity of the "=" symbol is overcome by the use of the as-
signment symbol ":="; the "=" symbol is reserved for
use as a relational operator, where a relational operator
can be defined as having arithmetic expressions as input
and Boolean values as output. ALGOL also has the fea-
ture that in a single assignment statement more than one
variable can be set equal to the same value, e.g.,

x:=y: = : = 0;

The complexity in FORTRAN of the fixed-point and
floating-point designations is overcome in ALGOL by
declaring each identifier as type integer or real, respec-
tively.

JPL TECHNICAL MEMORANDUM 33-5664



The FORTRAN subroutine corresponds to the ALGOL
procedure. However, ALGOL procedures, unlike sub-
routines in FORTRAN, have the property of being
able to invoke themselves.

The FORTRAN DO corresponds to the ALGOL
for; however, ALGOL has the major advantage in that
the variable can be stepped by a negative quantity and
not necessarily in steps of one only.

The ALGOL conditional statements are much more
powerful than those of FORTRAN. In ALGOL com-
pound statements may be used to assign values in an
if or for statement, in which case begin and end are
used as delimiters, e.g.,

if a = 0 then begin p: = 0; q = 1 end else begin

p: =1; q: =2 end;

Multiple nesting of if, then, else, statements are also
permitted and with the above feature make them a very
powerful improvement over that permitted in FOR-
TRAN.

In FORTRAN labels are numerical only, whereas in
ALGOL labels may be an identifier or an unsigned in-
teger. ALGOL syntax requires that labels be followed
by a colon. Ambiguity of numerical labels is illustrated
in the following designational expression:

if XYZ<C then 13 else r [ifa>O then 2 else n]

It is not obvious at first sight that 13 is a label but 2
is not.

All of ALGOL is written on a single level of a line.
Subscripts and superscripts are accommodated by the
use of brackets; "( )" are used for superscripts and "[ ]"
are used for subscripts. Several levels of subscripts may
be denoted by their use, e.g., the mathematical expres-
sion xk, - + X 3 is written in the ALGOL reference

language as x [k [1],k [2](2)] (2)+x [k [1] (3),k [2 ] ] (-5);
The one exception to the above arises in exponen-
tiation. In ALGOL the FORTRAN 1.238E7 is repre-
sented as 1.23810o+7, the Burroughs ALGOL hard-
ware representation uses the notation 1.238X10*7. It
is to be wondered that the ALGOL committee did not
accept the simpler FORTRAN notation. In ALGOL
exponents are required to be integers.

Unlike COBOL, ALGOL has very few reserved words
(identifiers), these being the common standard func-

tions such as abs(E), sqrt(E), sin(E), etc., where E may
have a current value of x, giving abs(x), sqrt(x), etc.
These functions may be available through a library of
subroutines. At this point one may inquire why the
special symbols such as begin, real, etc., could not have
likewise been made reserved, thus avoiding the neces-
sity to have to underline them or to print them in bold
face.

Spaces or blanks have no significance, thus ALGOL
can be arranged in a form easy to read. The only excep-
tion is in the use of strings where the symbol "_" de-
notes a space. A well-organized ALGOL program is
quite superior to FORTRAN or COBOL in readability.
Indentation is not part of the language; however, it is
used to enhance readability of program. Comments can
also be used, which are ignored by the computer, to pro-
vide the program with documentation.

ALGOL is notably lacking in the provision for com-
plex numbers and multiple precision and has been se-
verely criticized for the lack of the former. It is to be
noted that the Russian version of ALGOL does have
provision for complex numbers.

Another criticism leveled at ALGOL is that (though
the recursive feature is an important one) the recursive
use of procedures without prior statement, whether
this is needed or not in a particular case, necessitates
provision for it in the compiler, with consequences of
additional expense in storage space and time.

ALGOL also gives rise to side effects, "Side effects
arise principally because there is no limitation on the
extent to which functional procedures may bring about
the modification of variables whether listed among
their parameters or not. A consequence of this is that,
when a general expression is being evaluated, the mean-
ing of later terms or subexpressions may be changed by
side effects occurring during the evaluation of earlier
terms or subexpressions" (Ref. 3). A knowledgeable pro-
grammer may use side effects to perform programming
tricks. Though this is essentially an added flexibility, it
should be relegated to machine language programming
and not to automatic programming languages where
the ordinary user may be confounded by their occurrence.

VI. COBOL (Common Business Oriented
Language)

Business-type programming languages, as opposed
to scientific problem oriented languages which were

JPL TECHNICAL MEMORANDUM 33-566 5



designed to express numeric calculations and possess an
algebraic command structure, are characterized by the
handling of a great mass of data with relatively little
computation required. The command structure of
COBOL is similar to that of the English language. The
language is based on English, using English words and
certain rules of syntax derived from English; however,
being a computer language, it has to be precise. The
COBOL language was developed through collaboration
of computer manufacturers and users, in cooperation
with the United States Department of Defense. The
language was first described in a report to the Confer-
ence on Data Systems Languages (CODASYL) in April
1960 and is hence known as COBOL 60. Further addi-
tions and refinements produced COBOL 61 in 1961.
COBOL 61 has been defined by CODASYL as consist-
ing of two main portions:

(1) "Required COBOL consists of that group of fea-
tures and options ... which have been designated
as comprising the minimum subset of the total lan-
guage which must be implemented."

(2) "Elective COBOL consists of those features and
options, within the complete COBOL specifica-
tions ... whose implementation has been desig-
nated as optional."

Various CODASYL group committees have been es-
tablished for the maintenance, additions, and improve-
ments to COBOL. However, since 1961 no changes
have been announced.

The formulation of COBOL has with reference to the
segregation of its divisions been perhaps more meth-
odical than other programming languages. COBOL is
divided into four main divisions corresponding to the
four different categories of information, namely:

(1) Identification division

(2) Environment division

(3) Data division

(4) Procedure division

In the identification division the programmer and
the program is identified; the environment division con-
tains the description of the hardware used (memory
size, input output units, etc.); the data division'specifies

the structure of the data files, records, and entries. The
procedure division describes the program to be exe-
cuted, and is similar in structure to FORTRAN or
ALGOL. The main features of the above is that it sep-
arates the computer-dependant statements of the pro-
gram from those that are computer independent. Thus,
a program on one system may reasonably easily be con-
verted for use on another by adjustment of statements
in the Environment and Data divisions. The above is
one of the most important features of COBOL.

The language notations of COBOL are similar to those
of FORTRAN, ALGOL, or PL/I. Like FORTRAN,
COBOL requires a programming form and statements
have to be numbered; however, in COBOL each and
every statement must be numbered sequentially. This
can cause reassignment of all the numbers should one
line in the program be required to change.

Statements in COBOL need to be terminated with
either a period, a comma, or a semicolon, whereas
ALGOL and PL/I require only semicolons to terminate
their statements.

COBOL allows words to be connected with hyphens,
just as in PL/I in which words are connected to form
composite words by the use of the underscore.

One of the restrictions on the use of the blank that is
found in COBOL, perhaps due to the noncomputational
nature of the language, is that, unlike FORTRAN,
ALGOL, and PL/I, it requires that blank characters
must surround arithmetic operators.

In COBOL as in PL/I, key words have preassigned
meanings. In COBOL, key words are reserved for their
intended purpose and cannot be used for other purposes.
In writing programs, key words should be underlined,
analogous to boldface words in ALGOL. Both key and
nonkey (noise) words are required to be spelled correct-
ly. Indentation may be used to enhance readability of
program. The use of noise words is not necessary; how-
ever, they provide the necessary documentation for the
understanding of the program by a nonuser. This also
leads to verbosity. Comments in COBOL are restricted
to the Procedure division and written in a NOTE state-
ment, whereas other languages allow comments to ap-
pear throughout the program. One of the hindering fea-
tures of COBOL is that it has several hundred reserve
words, and in writing a program one has to constantly
refer to the list of reserved words. Conditional statements
are easier to understand in COBOL than in any of the
other languages.

JPL TECHNICAL MEMORANDUM 33-5666



COBOL requires that all data be described in the
Data division along with all programmer-supplied words.
Though this is a notable feature of COBOL, it contri-
butes toward the loss of programming flexibility.

COBOL restricts the table (array) size to three dimen-
sions. Also, there is no concatenation operator in
COBOL.

In general, COBOL programs are easy to read, per-
haps because programs are relatively less complex and
are hard to write due to the verbosity. However, in
other dialects of COBOL, such as Rapidwrite, often-
used words may be coded and effectively abbreviated.
This aspect of coding can be extended so that COBOL
may be written in a language other than English by the
compilation of suitable dictionaries or synonym tables.
Most of the features of COBOL have been improved
upon and incorporated in the most recent IBM lan-
guage PL/I.

VII. LISP 1.5 (List Processing Language)
LISP was first developed by John McCarthy and

others of the Artificial Intelligence group at MIT (1960).
It underwent several stages of development and simpli-
fication and is essentially based on a scheme for repre-
senting the partial recursive functions of a certain class
of symbolic expressions (Ref. 4).

Until now, programming languages have been con-
cerned with solving problems using algebraic equations,
statements, and logical operations. Generalization of
techniques for processing string-type data, editing, and
listing led to the formulation of LISP. Applications to
which LISP is particularly suited are those involving
symbol manipulation, theorem solving, game solving,
integral and differential equations, and heuristic prob-
lems. Several list processing languages exist, such as
IPL V, COMIT, SLIP, and others. LISP is probably
the most powerful; however, it does not have as good
string manipulation properties as COMIT, for example.

The primary aim of list processing languages is to lo-
cate elements of lists corresponding to certain proper-
ties and to ascertain truth or falsehood or other properties
of special functions as applied to certain lists. The im-
portant operations in list processing are the following
(Ref. 5):

(1) Creation of a list or stack

(2) Location of a list or stack when given its symbolic
name

(3) Ability to insert a sublist or cell into a specified
location in a list structure and a similar ability to
delete

(4) Store or retrieve a cell in a stack ("push-down"
and "pop-up")

(5) Ability to iterate through a list structure according
to a specified tracing mode and to terminate the
iteration by use of a relation on a cell contents

(6) Unlimited-indirect and direct positional or sym-
bolic addressing of cells in a list structure

(7) Ability to retrieve or store the link or information
portion of a list cell

(8) Ability to return list structures, sublists, cells, or
stacks to the list of available space

(9) Relations on contents and structure which set in-
dicators that can be tested for branching and other
purposes

(10) Elementary arithmetic capabilities

(11) A "book-keeper" that maintains the available space
list and symbolic-name-versus-address table

LISP consists of two divisions called

(1) Data language which describes the lists, sublists,
elements, items, etc., to be operated on, and

(2) Metalanguage. These are operations to be per-
formed on the Data language. To avoid confusion
in semantics it would have been preferable if this
section had been referred to as the Function lan-
guage.

The heart of the data language is the s-expression,
which is defined thus:

< s-expression > :: = < atomic symbol> I < s-exp. s-exp. >

where an atomic symbol is a single element of a list or
the name of a list, beginning with an alphabetic charac-
ter, containing no blanks, and cannot be decomposed.

JPL TECHNICAL MEMORANDUM 33-566 7



In LISP, blanks and commas are interchangeable;
e.g., (A B C) is equivalent to (A,B,C), which is a sym-
bolic expression, and A, B, and C are atomic symbols.
A special symbol NIL meaning "nothing" is used and
is a useful function for the purpose of definition.

LISP uses extensively the functional notation, i.e., a
function and its arguments. When the specific number
and type of arguments are given, the function will be
evaluated, and the necessary housekeeping of assigning
locations to the arguments is automatically taken care
of. Five basic functions are defined in LISP: cons, which
construct a larger expression from two smaller ones;
two breakup expressions car and cdr, which obtain the
first part and last part of a composite expression, respec-
tively; two predicates eq, which check if the two argu-
ments are the same; and atom, which checks if the
single argument is an atomic symbol. From these five
basic functions, by means of composition conditional
exprcssion and recursion, other functions can be defined.

For example, if |XI Y denotes a word, the first cell
being the address and the second the decrement, then
car (X,Y) is the address of X, and cdr(X,Y) is decrement Y.
LISP also features logical connectives e.g., PA q =
(p->q; T->F); and pVq = (p->T; T-->q). The cond
function (pi -- el; p2-->e 2; ... p-->e,,) is analogous to
saying if pl then el else if p2 then e2 · · '.

A possible structural representation of a list such as
(A(B(C.A))(C.A)) is the following:

In LISP the linkages of a list structure can become very
complex, and it is not feasible for the programmer to keep
track of the locations of the various lists. To take care of
this the language itself automatically assigns locations
to the newly created lists, and makes the cells of the
erased lists available. This is achieved by scanning the
entire memory, after the available cells are exhausted,
and then collecting those cells which are not connected
to any list structure of the program.

Though LISP and similar languages offer a convenient
way of dealing with such non-numeric data processing

applications as pattern recognition, information retrieval,
decision making, etc., they are not easy to follow, and
successions of the functions car, cons, cdr abbreviated
in the form, e.g., caddadaadar are not always easy to
decode. Also, the use of parentheses require pains-
taking exactness in order to have them balanced. How-
ever, in order to perform these functions using the lan-
guages previously discussed would require voluminous
programs. It is also feasible for implementing LISP, e.g.,
in ALGOL, and to make it an adjunct to the higher lan-
guages discussed, thereby increasing their power con-
siderably.

VIII. PL/I (Programming Language I)
PL/I was originally called NPL (New Programming

Language), but due to the pressures from the British
National Physical Laboratory, IBM decided to label it
PL/I. It is the latest higher level language to emerge
from IBM. PL/I is a general-purpose language that en-
ables the programming not only of scientific and com-
mercial applications, but also of real-time and systems
applications. Since PL/I is broad and comprehensive,
a feature of importance is that it may be taught as well
as used in subsets of the language. Though PL/I retains
some of the FORTRAN features, its structure and de-
scriptive vocabulary (key words) are essentially those
of ALGOL, e.g., a subroutine is referred to as a PROCE-
DURE. Due to the large variety of operations PL/I
contains more key words than FORTRAN. However,
these key words are not reserved and may be used as
variables and labels.

Commercial data processing features bear many simi-
larities to COBOL, as have been pointed out in the
prior discussion of COBOL. PL/I also possesses fea-
tures of list processing, though not as extensively as
LISP. Most of the procedures in LISP can be done in
PL/I.

Among new features and concepts in PL/I are the
provision of statements to use interrupt facility of mod-
ern computers as well as facilities for running asyn-
chronously, tasking, multiprocessing. In calling proce-
dures, control is passed asynchronously to the next state-
ment before the called procedure has been executed.
The control system treats the called procedure as an in-
dependent task and assigns it a priority. On interrupt
the task with highest priority is given control.

In PL/I storage can be STATIC, AUTOMATIC, or
CONTROLLED. By means of these the programmer has

JPL TECHNICAL MEMORANDUM 33-5668



the capability to make storage allocation over complete
procedure, or local to a block, or special, depending
on execution of data.

The character set of PL/I is larger than that of FOR-
TRAN, though smaller than that of ALGOL. PL/I does
not use lower case letters as in ALGOL. Unlike FOR-
TRAN and similar to ALGOL, PL/I is written in free
form and may be indented for readability. Statement
numbers are not used in PL/I, statements are ended by
means of a semicolon as in ALGOL, and more than one
statement may be written on a line. (Also, the multiple
assignment statement of ALGOL A: = C: = B; is incorpor-
ated in PL/I as, A,C= B;). Comments are used in PL/I
by means of the delimiter "/*" (e.g., /* THIS IS A
COMMENT */). Alphabetic labels are used in PL/I,
numeric labels being forbidden. Subscripted label vari-
ables for purposes of switching is also a feature of the
language; e.g.,

DECLARE LABEL(10);

LABEL(3): A= 1;

Identifiers can be 31 characters long as compared to
6 in FORTRAN. To improve the clarity and mnemonic
significance of names the underscore "_" may be used
(when using the 60-character set) as a connective within
a name. The syntax of identifiers is similar to FORTRAN.

In normal reading and writing of natural languages,
blanks are of significant importance and (unlike FOR-
TRAN) this has been recognized in PL/I. Since there
are no reserved words in PL/I, except for relational
operators such as GE, GT, NOT, etc., (note that control
words like GO TO are not reserved; the meaning is de-
rived from context), and since key words may be used
as names, it is imperative that words in PL/I be separ-
ated by one or more blanks; e.g.,

DOI = 1 is an assignment statement.

whereas

DOI = 1... is a DO statement.

It is not necessary that operators be surrounded by
blanks, unless the operators have been transliterated
using characters (e.g., LE is transliterated in the 48-
character set as < = ).

Though identifiers in DECLARE statements of PL/I
may have many attributes (e.g., base, scale, precision,
range, etc.), the language has the characteristic flexibility

that the user need not specify details which are not of
interest. Rules such as "if data unspecified then con-
sider it arithmetic," "if no base specified then assume
decimal," etc.,' then take over. If however, as in FOR-
TRAN the names of variables begin with I through N
and their characteristics are undeclared, then they are
assumed to be of type integer (fixed point of FORTRAN).
This property is useful when using integers for indexing
and counting.

Specific virtues of PL/I, such as use of prefix operators,
the use of "*" in a subscript position to indicate evalua-
tion of arrays for all values of subscripts, bit-string oper-
ators, etc., are seemingly endless. PL/I allows powerful
DO statements, such as

DO I= 10 TO .01 BY -. 001;

It is to be noted that the commas in FORTRAN DO
statement are here replaced by TO and BY. The DO
statement has also been extended to control a loop from,
e.g., 1 to J-1 and then from J+1 to N. Some of the
other control statements and properties of PL/I are
illustrated in the following compact program for evalu-
ating the roots of the equation ax 2 +bx+c=O (Ref. 6):

/*FIND ROOTS OF EQUATION

A*X**2+B*X+C=0*/

DECLARE (R1,R2,F)COMPLEX;

IF A = 0 THEN LINEAR: R1,R2= -C/B;

ELSE QUAD: DO;D=B**2-4*A*C;

E = - B/(2*A);

IF D=0 THEN R1,R2=E;

ELSE IFD>0THEN REAL: DO;

F =SQRT(D)/(2*A);

R1 = E+F; R2 = E-F;

END;

ELSE IMAG:DO;

F= SQRT(- DO/(2*A)*1I;

R1=E+F; R2=E-F;

END QUAD;

FORTRAN input/output has been expanded upon
greatly in PL/I in order to incorporate COBOL-type
programming and list processing. Input/output has also
been simplified to the extent that READ and WRITE

JPL TECHNICAL MEMORANDUM 33-566 9



statements need have no FORMAT specification at all,
the format being deduced from the data. Four kinds of
READ and WRITE statements exist; namely, data-, list-,
format-, and procedure-directed. Format specifications
are, in principle, similar to those in FORTRAN. Apart
from these, input/output facilities also include report
generation, editing, and buffer control.

The two criticisms leveled against ALGOL, namely
that all identifiers have to be declared and that all pro-
cedures have the recursive property, whether desired
or not, have both been avoided in PL/I. PL/I allows
implicit declaration and all procedures in order to be
recursive have to be so declared, thus minimizing poten-
tial side effects. However, PL/I may be criticized for its
restricted character set which does not provide lower-
case alphabetic characters as in ALGOL. Lower case
characters would help to make commercial and non-num-
erical type outputs more conventionally readable.

Many of the PL/I features (e.g., report generation,
complex arrays, etc.) are not yet fully available. Software
for the IBM 360's yet remains to be completely debugged.
It has been voiced by IBM that they would like FOR-
TRAN and COBOL to be replaced by PL/I. It should
be noted that the diagnostics of PL/I are perhaps more
powerful than those for any other language. The under-
lying philosophy is that in the event of an error, the com-
piler should deduce the correction and make every ef-
fort to proceed with compilation.

To say the least, PL/I is a challenge to the other higher
level languages, and hopefully will motivate them to ac-
celerate their growth.

IX. Conclusion
Several powerful programming languages have been

described in this paper that attempt to facilitate com-

munication between man and machine. In the short time
since computers came into their own, the growth of pro-
gramming languages has been prolific. A significant
if not an equal portion of the cost of development
and operation of computer systems is incurred in pro-
viding software.

In order to develop an effective programming lan-
guage, the program innovator must not only be familiar
with broad areas of applications such as scientific, busi-
ness, and symbol manipulation, but must also be familiar
with the intimate inner workings of compilers and com-
puters. His mathematical and logical disciplines must
be enhanced by those of grammar, polemic, and linguis-
tics.

The possibility of standardization of computer lan-
guages is still remote, and in the author's opinion will
remain so until standardization in hardware applied to
standard problems is first achieved. However, neither is
the development of hardware at a standstill. Great effort
is being made in the development of more effective
input/output facility with a computer; effectively, an at-
tempt is being made to give computers new "senses" in
order that their input/output perception may be en-
hanced. Breakthroughs in character recognition and
speech recognition would open new avenues of commu-
nication with the computer, resulting in hopefully sim-
pler and more versatile programming languages. Con-
ception of computers based on other than binary arith-
metic systems, such as signed-digit arithmetic, residue
numbers (or even the development of a multi-state de-
vice), would, it is conjectured, affect the evolution of
programming languages to a significant degree. Finally,
since man is so strenuously trying to simulate the be-
havior of human beings in the computer, it is hoped
that he will improve his understanding of both himself
and the machine.

References

1. Kilner, D., "Automatic Programming Languages for Business and Science,"
Comput. Bull., Sept. 1962.

2. Sammet, J. E., Programming Languages. History and Fundamentals. Pren-
tice-Hall, Inc., New York, 1969.

3. Strachey, C., and Wilkes, M., "Some Proposals for Improving the Efficiency
of ALGOL," Commun. ACM, Vol. 4, pp. 488-491, November 1961.

JPL TECHNICAL MEMORANDUM 33-56610



References (contd)

4. McCarthy, J., "Recursive Functions of Symbolic Expressions and Their Com-
putation by Machine, Part I," Commun. ACM, Vol. 3, pp. 488-491, Nov-
ember 1960.

5. Chai, D., and DiGuiuseppe, J., A Study of System Design Considerations in
Computers for Symbol Manipulation, Final Report to the National Science
Foundation. University of Michigan, May 1965.

6. A Guide to PL/I for FORTRAN Users, IBM Technical Publication C20-
1651-0, 1966.

PROGRAMMER

Fig. 1. Process of compiling an object program

JPL TECHNICAL MEMORANDUM 33-566 11



Bibliography

General

Bromberg, H., "Standardization of Programming Languages," Datamation,
August 1963.

Burck, G., The Computer Age, Academy Guild Press, Fresno, Calif., 1965.

Pearcey, T., "Aspects of the Philosophy of Computer Programming," Comput.
Bull., March 1964.

Shaw, C., "The Language Proliferation," Datamation, May 1962.

Wegner, P., Introduction to System Programming, Academic Press, Inc., New
York, 1964.

FORTRAN

Backus, J., and Heising, W., "FORTRAN," IEEE Trans. Elec. Comnput., Vol.
EC-13, 1964.

Backus, J. W., et al., "Revised Report on the Algorithmic Language ALGOL
60," Commun. ACM., No. 6, pp. 1-17, January 1963.

"FORTRAN IV Language for IBM 7090/7094 IBSYS Operating System," IBM
Systems Reference Library, C28-6390-3.

Golde, H., "FORTRAN II and IV for Engineers and Scientists," The Mac-
Millan Company, New York, 1966.

McCracken, D., "A Guide to FORTRAN IV Programming," John Wiley &
Sons, Inc., New York, 1965.

ALGOL

Clippinger, R., "ALGOL-A Simple Explanation," Comput. Automat. Vol. 11,
1962 pp. 17-19.

Dijkstra, E., "Operating Experience With ALGOL 60," Comput. J., Vol. 5, 1962.

Higman, B., 'What Everybody Should Know About ALGOL," Comput. J., Vol.
6, 1963.

McCracken, D., A Guide to ALGOL Programming, John Wiley & Sons, Inc.,
New York, 1962.

Naur, P. (Ed), "Revised Report on the Algorithmic Language ALGOL 60,"
Computer J., Vol. 5, 1963.

COBOL

Clippinger, R., "COBOL," Comput. J., Vol. 5, No. 3, Oct. 1962.

Cunningham, J., "Why COBOL," Commun. ACM, Vol. 5, p. 236, May 1962.

COBOL, Department of Defense, Washington, D.C. 1965.

JPL TECHNICAL MEMORANDUM 33-56612



Bibliography (contd)

COBOL (contd)

McCracken, D., A Guide to COBOL Programming, John Wiley & Sons, Inc.,
New York 1963.

Sammet, J., "Basic Elements of COBOL 61," Commun. ACM, Vol. 5, pp. 237-
253, May 1962.

LISP 1.5

Weizenbaum, J., "Symmetric List Processor," Commun. ACM, Vol. 6, Septem-
ber 1963.

PUil

A PL/I Primer, IBM Technical Publication C-28-6808-0, 1965.

A Guide to PL/I for Commercial Programmers, IBM Technical Publication
C20-1651-0, 1966.

PLII Language Specifications IBM Operating System/360, IBM Systems Ref-
erence library, C28-6571-2.

JPL TECHNICAL MEMORANDUM 33-566
NASA - JPL - Coml., L.A., Calif.

13


