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ABSTRACT

This revised user's manual describes the details of a general-purpose

computer program VISCEL (VISCoELastic analysis) which has been devel-

oped for the analysis of equilibrium problems of linear thermoviscoelastic

structures. The program, an extension of the linear equilibrium problem

solver ELAS, is an updated and extended version of its earlier form (written

in FORTRAN II for the IBM 7094 computer). A synchronized material prop-

erty concept utilizing incremental time steps and the finite element matrix

displacement approach has been adopted for the current analysis. Resulting

recursive equations incorporating memory of material properties are solved

at the end of each time step of the general step-by-step procedure in the

time domain. A special option enables employment of constant time steps in

the logarithmic scale, thereby reducing computational efforts resulting from

accumulative material memory effects. A wide variety of structures with

elastic or viscoelastic material properties can be analyzed by VISCEL.

The program is written in FORTRAN V language for the UNIVAC 1108

computer operating under the EXEC 8 system. Dynamic storage allocation

is automatically effected by the program, and the user may request up to

195K core memory in a 260K UNIVAC 1108/EXEC 8 machine. The physical

program VISCEL, consisting of about 7200 instructions, has four distinct

links (segments), and the compiled program occupies a maximum of about

11700 words decimal of core storage. VISCEL is stored on magnetic tape,

and is available from the Computer Software Management and Information

Center (COSMIC).

JPL Technical Memorandum 33-466, Vol. I, Rev. 1 vii



VISCEL - A GENERAL-PURPOSE COMPUTER PROGRAM FOR

ANALYSIS OF LINEAR VISCOELASTIC STRUCTURES

USER'S MANUAL

I. INTRODUCTION

The general-purpose digital computer program VISCEL is capable of

solving equilibrium problems associated with one-, two-, or three-

dimensional linear viscoelastic structures (Fig. A-1). Since the program is

an extension of the linear equilibrium problem solver ELAS (Ref. 1), its sol-

ution at the beginning of the initial time step yields elastic solution of struc-

tures. Basic inputs of VISCEL, thus, are the same as in ELAS; additional

inputs are, however, necessary for VISCEL, which represent changes in

material properties and loading in the time domain. Other important features

of the program include dynamic memory allocation, optional node relabelling

scheme, boundary condition imposition during assembly of the stiffness

matrix and its storage within a variable bandwidth. The program is further

divided into four distinct links, namely, input, generation, deflection, and

stress links.

This user's manual describes the numerical problem formulation, input

preparation, output description, and other relevant details of the program.

The physical program is available from COSMIC. 1

Volume II of this report is the program manual, which contains the

lists of variables, subroutines, and flow charts as well as other pertinent

program information (Ref. 2).

1 Computer Software Management and Information Center, Computer Center,
University of Georgia, Athens, Georgia 30601, telephone: (404) 452-3265.
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II. BASIC CAPABILITIES OF THE VISCEL PROGRAM

The basic capabilities and the initial inputs of VISCEL are the same as

the linear equilibrium problem solver ELAS (Ref. 1). In order to achieve a

self-contained report, this report includes several tables and figures from

Ref. 1; they are provided in the Appendix in appropriate order. Thus,

Tables A-1 and A-2 describe, respectively, the various structures that can

be solved by VISCEL and their compatible combinations. Also, information

regarding various available finite elements is given in Tables A-3, A-4, and

A-5. Further, the usual conventions for ordering of element nodes are

explained in Table A-6. VISCEL can handle any material, namely, isotropic,

orthotropic, or anisotropic; their input requirements are described in

Fig. A-2.

III. NUMERICAL FORMULATION OF THE LINEAR THERMOVISCO-
ELASTIC PROBLEM

Reference 3 gives complete derivation of the numerical formulations of

the linear thermoviscoelastic problem, whereas Ref. 4 presents details of

the finite element technique. However, such formulations are summarized

below in a simplified manner for completeness of this report.

A. Basic Approach

The fundamental equilibrium problem in structural analysis can be

formulated as differential equations with appropriate boundary conditions;

alternatively, an equivalent extremum formulation may be developed based

on the principle of minimum potential energy and its complement (Ref. 5).

In this work, structural discretization is achieved by the finite element dis-

placement matrix technique, a variant of the well-known Ritz method for the

minimization of the total potential energy functional 4 associated with admis-

sible displacement trial functions. The admissible functions are restricted

to be sufficiently smooth, usually being algebraic or trigonometric polyno-

mials, and, furthermore, they are required to satisfy essential boundary

conditions arising from the requirement of geometric compatibility. This is

achieved by expressing the trial solution in terms of a set of linearly inde-

pendent known functions and undetermined parameters and then minimizing

the functional with respect to such parameters.

JPL Technical Memorandum 33-466, Vol. I, Rev. 12



In the finite element method, a structure is discretized by any suitable

random mesh, and a family of piecewise continuous displacement fields is

prescribed for each element, which are finally expressed in terms of their

nodal function values. Such nodal displacements are the undetermined

parameters to be determined from the extremum principle, the fundamental

assumption in the procedure being that the total potential energy of the entire

structure is equal to the sum of potential energies of the individual elements

(Ref. 4). Such an assumption is valid provided the displacement functions

and their derivatives of order one less than the highest one appearing in the

functional are continuous at interelement boundaries; this ensures that values

of highest derivatives occurring in the total potential energy functional +

remains finite (Ref. 4). Obviously, the greater the number of chosen unde-

termined parameters, i. e., finer the finite element mesh, the lower the

value of the total potential energy would be, yielding even better approxima-

tions. Whereas ~ approaches its minimum value from above, the corres-

ponding strain energy value is always underestimated, and hence the present

approach computes lower bounds of associated displacements. The finite

element procedure thus gives a stationary value of 4 for the variations of the

unknown nodal displacements. Because of its resemblance to the piecewise

Ritz procedure, any particular nodal parameter is only influenced by its

adjacent elements, and hence the final stiffness matrix is highly banded in

nature for most practical problems. It can further be shown that the minim-

ization process of total potential energy of the entire structure with respect

to each unknown nodal displacement is equivalent to the appropriate summa-

tion of such process for all individual elements with respect to their nodal

parameters. For quadratic functionals, the piecewise Ritz procedure for

each element yields symmetric linear equations in the element displacement

vector. The minimization process for the entire structure then leads to the

set of linear, simultaneous equations:

a-= Kq+ P = k eqe+ pe E ( 1)
aq

JPL Technical Memorandum 33-466, Vol. I, Rev. 1 3



where

ke = element stiffness matrix

eq = element nodal displacement vector

pe = equivalent nodal load vector

with appropriate summation over all elements based on nodal connectivity.

Such equations are further positive definite for stable structures and may be

solved by standard processes to yield the undetermined nodal displacements.

Computation of stresses, etc., is performed next by the usual procedure.

The program starts with the computation of element stiffness matrices

already derived above.

In viscoelasticity, the creep strain rate or the relaxation stress

response is dependent not only on the current stress and strain state, but

also on the entire history of its development in the time domain. Associated

numerical computation procedures usually adopt a step-by-step incremental

process, which normally requires knowledge of stress and strain at all pre-

ceding intervals. This enables computation of stresses/strains at a given

time implied by some relevant law of the characteristic functions. Usually

such material properties are strongly dependent on time and temperature.

The viscoelastic equations are developed as finite difference equations in

time and finite element matrix equations in space (Ref. 3). This computer

program is based on linear thermoviscoelastic formulations utilizing a

"synchronized" material property concept for thermorheologically simple

materials. The fundamental assumptions may be summarized as follows:

(1) Material properties. The material properties may be

temperature-dependent and are assumed to behave in a thermo-

rheologically simple way; thus, for temperature changes, the

characteristic functions, both creep and relaxation, show pure

shift when they are plotted against the logarithm of time.

Such materials are better suited for a complete characterization

over a large range of time and temperature scale since their

theological behavior can be described for the entire temperature

range as a single function of reduced time and temperature.

JPL Technical Memorandum 33-466, Vol. I, Rev. 14



Thus, when any characteristic function, such as the relaxation

modulus, is plotted against reduced time, all curves will fall on

the single curve for initial temperature T o . Hence it is then

necessary to determine relaxation/creep functions for one tem-

perature only.

The shift functions may sometimes be dependent on stresses,

requiring determination of the shift function at the end of each

time step. However, such considerations are excluded in the

present version of the program. The material can be isotropic,

orthotropic, or general (Fig. A-2), provided they are properly

defined by experimental results. For this analysis, it is

required to have a knowledge of the modulus functions (relaxation-

type functions). Furthermore, the material is assumed to be at

least slightly compressible.

The concept of synchronized material properties is that all

material properties are functions of only one parameter 6. The

same concept applies to external loadings, both mechanical

and/or thermal. The parameter J may be time, reduced time,

or any other suitable variable. Material and load data are con-

sidered in functional form (Fig. 1), which are to be presented at

each time step, in the shape of predetermined tabulated values

obtained either experimentally or derived from analytical con-

siderations; any interaction between them is assumed to be

included in such values.

(2) Linear viscoelastic behavior. Strains are linear functions of

stresses, but are strongly dependent on loading history, implying

that if all loads are doubled, all deformations will be doubled too.

Thus, creep/relaxation laws are linear in stress/strain and as

such the principle of superposition is valid for such cases.

Further geometric nonlinearies, e. g., large strain or large

deformations, are not considered for the current analysis.

(3) Deflection boundary conditions. Deflection boundary conditions

are assumed to remain unaltered throughout the entire time

domain of computation, being fixed initially at the beginning of

JPL Technical Memorandum 33-466, Vol. I, Rev. 1 5



the initial time step. The solution at the beginning of such initial

time step corresponds to the usual linear elastic analysis of the

structure.

B. Analysis Review

Numerical formulation of the step-by-step linear thermoviscoelastic

analysis procedure for quasi-static problems may now be summarized. A

basic assumption in the analysis is that the materials are thermorheologi-

cally simple in nature. Such an assumption is necessary so that the charac-

teristic functions may be singly defined for the entire temperature range in

the time domain. The usual field equations for viscoelastic materials may

then be extended for the thermoviscoelastic case. This is achieved by intro-

ducing the concept of a "reduced time" when all characteristic functions ful-

fill the same time-temperature shift and can be represented as a function of

reduced time:

ft dT

g(xh't) J a[T(x
h
,T)] (2)

in which a(T) is the time shift function usually determined experimentally as

a function of temperature T only. Such shift function dependence on time t

and position x
h

within the material region is implicit through T, and may be

sometimes described by the well-known Williams-Landel-Ferry (WLF)

equation. Relationship (2) signifies that all the characteristic functions,

such as relaxation moduli of a thermoviscoelastic material at any arbitrary

temperature T corresponding to time t, may now be expressed by their

behavior at reference temperature T o on the new reduced time scale i.

Each relaxation modulus, signifying relaxation stress variation for unit

strain applied initially, may then be expressed as

T T 0
Eijk2 (t) = Eijk (i = j = k = = 1, 2, 3) (3)

Eijke(t) being the general anisotropic relaxation moduli having 21 independent

components. The constitutive equations for the usual viscoelastic case may

JPL Technical Memorandum 33-466, Vol. I, Rev. 16



be derived by approximating strain variations by the sum of a series of

step functions, which corresponds to a series of relaxation displacement

inputs. Constitutive equations are obtained, from superposition principles,

in the form of hereditary integrals. For the present thermoviscoelastic

case, the constitutive equations may simply be derived from such relations

for the corresponding viscoelastic case by utilizing Eq. (3):

ij (X h t) f Eijk (Xh t) - w(xh, T)]

Xa [ek (xhT) - ak (xh T)O(xh T)] d T (4)

o.. E e~. e + Ek(dT (5)
ij iijk( k(O) ijke( aT k - ) (5)

in which ek2 (O) is the initially induced step strain at t = 0, the correspond-

ing first term being the effect of such initial strain at time (xh, t). The

kernel of the hereditary integral Eijk2[ (xh, t) - (Xh, T)] may be considered

as the memory function transforming the influence of pulse strain at time T

to the time instant t. In addition to Eq. (4), two more equations are

required to completely define the field equations:

(1) Equilibrium equations

-. . . + f . = 0 (6)
1J, j 1

(2) Strain-displacement equations

1
e -(u. + u. ) (7)
eij =2 (i, j j, i

where fi is the body force component per unit volume. The field equations

may next be expressed as incremental field equations when the time domain

JPL Technical Memorandum 33-466, Vol. I, Rev. 1 7



is subdivided into arbitrary intervals At(m). Equations (6) and (7) and the

stresses of Eq. (5) then take the following form:

a + af. = 0
ij(m), j l(m) = 0

ij(m) 2 i(m),j j(m), i

(8)

tij(n) )

0-ij (n) = Eijk2(9 (n)) ek2(0) + Eijk£( (n) - ') aT (ek - akee) dT

Finally, Eq. (9) may be approximated and expressed in the matrix

form as follows:

m=n

n} = [E(ni)]{eo + E [E(0n - n-l)]{ Aem
m=l

- A(a6)m}

The continuum is next divided into small finite elements, and piece-

wise continuous displacement fields are prescribed for each of such ele-

ments in terms of their time-dependent nodal function values. Minimization

of the total potential energy with respect to such parameters then yields the

incremental equilibrium load-deflection equations of the entire structure.

Such step-by-step incremental equations may finally be written in the global

coordinate system:

[Kn, n-l]{AUn = (P} -

n

+Em=l

m=n - 1

m=l
[Kn, m-1] {AUm} - [Kn] {U}

4Tn m-} +FnIn, m-lJ + nF

JPL Technical Memorandum 33-466, Vol. I, Rev. 1
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with

i[K j] = stiffness matrix derived from material matrix computed

for the reduced time difference =Ai
j

= %j - Ci

Pn}= external load vector at step n

{Tn, m1 }= forces due to temperature changes

{F} = body forces vector

and in which the summation, as usual, signifies the memory of the material.

The element stresses may then be obtained from Eq. (10), when element

strains are derived from the usual relationship:

e eue = XUe

-eU = au

e = bu

U e , ie being element nodal displacements in the global and local coordinate

systems, respectively, Xthe direction cosine matrix, and U and e are

displacements and strains within the element.

C. Special Incremental Procedure

It is apparent from the nature of Eq. (11) that computation time may

be excessive after a few time steps. This is because at each time step,

recomputation of solution results is required for all preceding time steps,

which are then added to obtain the final solution. However, in order to

minimize such computation efforts, the program provides an option by which

time steps may be so chosen that previous time intervals become a subset

JPL Technical Memorandum 33-466, Vol. I, Rev. 1 9



of the following time intervals. Thus, the parameter i may be expressed as

the summation of incremental Al's as follows (Ref. 2):

M N(i) i- )j
j i N1i ) j N( i ) A i i ( 1 2 )

i=l j=l

where M defines the total number of time step groups, and N(i) is the number

of steps in the ith group. The values of M and N can be suitably chosen by

the user, and this scheme may be employed to solve the recursive Eqs. (10)

and (11), provided material property and external loads are available for

each jl. Figure 2 shows details of such a computation scheme for values of

M = 3, N(1) = 2, N(2) = 3, and N(3) = 2. In such cases the time intervals

tend to remain constant in the logarithmic scale; thus, it is then possible to

cover a long time domain with relatively small computational effort.

IV. INPUT PREPARATION FOR VISCEL

The program VISCEL is assumed to be stored on a tape (say,

number 12345), which contains the symbolic and relocatable program

elements. Data deck corresponding to any problem must be preceded by

a set of control cards which are first described below. The actual data deck

preparation is explained next.

A. VISCEL Control Cards for UNIVAC 1108/EXEC 8 Computer

Depending on the size of the problem to be solved, the user may

request for an appropriate core storage. Such values are assigned to an

integer LDATA, to be calculated approximately from Ref. 2, Fig. 1, in

which for most problems the major storage space would be required for

elements of the upper symmetric half of the stiffness matrix. The program

is compiled for LDATA = 20000 words decimal storage, and if more storage

is requested, this is achieved by recompilation of two small programs

COMBK and MAIN, the block data and the main driver programs,

respectively.

Furthermore, as explained in Ref. 2 (pp. 3-4), various Fastrand

(drum) file storage units are utilized as additional stores during execution

JPL Technical Memorandum 33-466, Vol. I, Rev. 110



of the program; their functions are summarized in Table A-7. Unless

specified, the UNIVAC 1108 system automatically allocates 128 tracks to

each of the units, which, however, may be inadequate for solution of large

order problems. It is then necessary to increase the number of data tracks

for such units by inserting relevant control cards in the run stream.

Control cards corresponding to the two sets of values of LDATA are

as follows:

(1)

not requir

Control cards with LDATA < 20000

The following run stream may be used for problems which do

:e more than 20000 words storage for the COMMON:

@RUN,/TPC RUNID, ACCOUNT, PROJECT, TIME, PAGES

@MSG, READ TAPE 12345

@ASG, T TAPE, T, 12345R

@ FREE TPF$

@ASG, T TPF$, F///500

@ COPY, G TAPE, TPF$

@ FREE TAPE

I @ASG, T UNIT NUMBER, F2///1000

@XQT ABSEL

VISCEL INPUT CARDS

@FIN

(2) Card input with LDATA > 20000 (say, LDATA = 80000)

When COMMON requirements are greater than 20000 (say,

80000), the following typical run stream may be adopted:

@RUN, /TPC RUNID, ACCOUNT, PROJECT, TIME, PAGES

@MSG, READ TAPE 12345

@ASG, T TAPE, T, 12345R

@ FREE TPF$

@ASG, T TPF$, F///500

JPL Technical Memorandum 33-466, Vol. I, Rev. 1 11



@COPY, G TAPE, TPF$

@FREE TAPE

L@ASG, T UNIT NUMBER, F2///lOOOj

@FOR, S COMBK, COMBK, COMBK

-2, 2

PARAMETER LDATA = 80000

@FOR, S MAIN, MAIN, MAIN

-2, 2

PARAMETER LDATA = 80000

@PACK

@PREP

@MAP, EN MAPEL, ABSEL

@XQT ABSEL

VISCEL INPUT CARDS

@FIN

Requests for additional storage tracks for the Fastrand units may be made

by inserting control cards, shown above within the dotted boundaries.

B. Input of Problem Data

The physical arrangement of the data deck which follows the control

cards (explained in previous section) is depicted in Fig. 3. This deck

corresponds to values M = 2, N(1) = 2, N(2) = 3 in the time domain

defined by Eq. (12). VISCEL input data may be as described below, with

reference to Table 1 describing input items; the integers of the problem

control card (Table 1, input item 2) is explained in Table A-8.

Data Group 1: Basic input for the elastic problem which also

corresponds to the initial time solution of the

viscoelastic problem

JPL Technical Memorandum 33-466, Vol. I, Rev. 112



Data Group 2: Data for multiple solutions of the elastic problem

or

Data for viscoelastic incremental solution in the

time domain

The nature of the data in group 2, if any, is determined by the con-

tents (ISUCA value) of the END card in the master (initial time) deck (input

item 19, Table 1) and the subsequent additional input data decks for visco-

elastic problems. Field specification for the END card is as follows:

70X, 17, 3HEND (13)

in which the I7 field corresponds to the integer ISUCA, which is to be set

as follows:

(1) ISUCA = 0 For linear elastic problems

(2) ISUCA < 0 For multiple runs

(3) ISUCA > 0 For linear viscoelastic problems

(4) ISUCA = 1 For master and following deck

(5) ISUCA > 1 For following additional decks in increasing

sequence

Thus, in the viscoelastic case, the first card following the data of

the previous time step is the problem control card, equivalent to input

item 2 of the initial time step, containing information on modifiable input

items. The modified information is provided next, followed by the END

card with the ISUCA value which determines the nature of the data, if any,

in the succeeding step. A numerical example of a two-dimensional plane

stress problem (Fig. 4) with irregular mesh labeling is chosen to elaborate

on the preparation of the data; the complete input data are presented in

Fig. 5 with M = 2, N(1) = 4, and N(2) = 2 values selected for the incre-

mental time scheme of Eq. (12). Node relabeling may be requested by

using appropriate option in input item 17 of Table 1.

Relevant details on permanent and modifiable input items are provided

in Table 2. Element data corresponding to input item 16 of Table 1 is

described in Table A-9. Also, input items 13, 15, and 18 in the same table

may be specifically described as follows:

JPL Technical Memorandum 33-466, Vol. I, Rev. 1 13



(1) Input item 13 (angle types - fixing local y and z axes)

In connection with element type 4 (Table A-3), the input corre-

sponding to column 16 of Table A-4 consists of a list of + angles

in degree units. The 4 values are assigned quantities with abso-

lute values less than 90 deg and. are defined as the angle between

the local y and. global Y axes. Let the direction cosine vectors

be denoted by (fxX' fxY' lxZ)' (1yX' fyY' Iyz ) and ( zX' £zY' izZ)

in which the local x axis is assumed. to coincide with the nodal

line 1-2 (Table A-3). Then the signs of fxX' yX' and Ify are

used. to determine the sign of q; such procedure is summarized

in Table A-10.

(2) Input item 15 (deflection boundary conditions)

The deflection boundary condition relations may be written as

(Ref. 1):

u, j = + aui + a2ui, j + (14)

when coefficients a, al, a
2

. , and the input pairs (i,j),

(i',j'), (i",j"), .. ., are the relevant inputs as follows:

i,j i,j a0

i, j i',j' a1

i,j i", j" a 2

in which the first two pairs along each row are the two degrees

of freedom, under consideration and the related one, the third

scaler relating such two deflection components.

JPL Technical Memorandum 33-466, Vol. I, Rev. 114



(3) Input item 18 (concentrated load input)

The inputs for the prescribed force boundary conditions for

concentrated loads are as follows:

i,j P

i',j' P'

where P., I t
where Pij Pi.,j I , ... , are the prescribed. concentrated nodal

loads at nodes i, it , ... , corresponding to degrees of freedom

j,j't ,..., respectively. Apart from concentrated. loads, the ele-

ments may be subjected. to any pressure as well as temperature

loading as indicated, in Table A-4.

V. DESCRIPTION OF VISCEL OUTPUT

Table A-11 provides a list of output items of the initial time step

solution, whereas Table 3 summarizes such items for the entire visco-

elastic problem with an input index value INP set to 1 for the elastic solution.

The definition of stress components at mesh points is given in Table A-1Z.

VI. ERROR MESSAGES AND DIAGNOSTICS

The error messages shown in Table A-13 are usually related to the

initial time step solution. Error message 10 in particular needs a detailed

explanation, which appears either for geometrically unstable structures, or

when the structure is not adequately supported. The last number appearing

in the error message, if negative, indicates the mesh number to be checked

carefully for existence of any unknown deformation. However, if the num-

ber is positive, then it is first necessary to find from output item 10 of

Table A-11 the pair of numbers with the second number identical to this

error message number. The first number of the pair is called IBB,

denoting the equation number in the reduced set of the stiffness matrix.

Then column IBB of output item 10 of Table A-11 is searched for the row

having the same IBB number found previously, such that the column IBO

contains the number -1. The mesh number in that row happens to be the

trouble spot, whereas the defective direction is the one appearing in the
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table heading of the output item. In such case, the element descriptions,

material matrices, and geometric continuity around the mesh point are to

be checked to correct the situation.

VII. CONCLUDING REMARKS

This user's manual describes in detail the information necessary to

utilize the computer program VISCEL for the solution of thermoviscoelastic

problems associated with practical structures. Extensive applications of

the problem are envisaged in the analysis of a wide variety of practical

structures including solid propellant rocket motors, spacecraft components

such as solar panels, etc. In order to make this document complete, some

information, including most tables and figures in the Appendix, have been

reproduced from Ref. 1.
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Table 1. Input items (summary of options, contents, and formats)

Input Conditions Format
item determining List of input statements that read the associated input item card(s)' (outside parentheses indicate the
No. options possibility of multiple cards)

1 (B
i
, i = 1, 14) The card may contain any alphanumeric message 14A6

2 IN, IT, IDEG, ITYPE, IGEM, ISTR, IH, 18, IBN, IP, IPRS, IMAT, NTIC, 214, 611, 314, 1012, 911, 3F5.4, E10.5
ISDT, ISDY, ISDZ, IARE, IMMX, IMMY, IMMZ, IMFI, INX, INP, ISHUF, (see Table A-8 for details)
ICOR, B1UN, IMES, IPIR, ITAP, ITAS, G1, G2, G3, ACEL

3 b ITYPE = 0 (i, E
i
, Gi, a

i
, i = 1, IMAT) (3(12, 3E8.5))

ITYPE = 1 (i, D1
i
, D 2i, D14i, D22,, D24i D44, D' D06 D66i'"al, (12, 9E8.5/12, 2E8.5)

a2, i= 1, IMAT)

ITYPE = 2 (i, D0,, D1 D3i, D24i , D D22i, D23i D24i i, D2i (12, 9E8.5/12, 9E8.5/12, 6E8.5)

D26
i, D 3 3 i, D34i, D 3 5i, D36i' D44i, D 45i D4 6 i, i, D 5 5 ,i D5,6i

D66 i, 5ai, a ,, i = 1, IMAT)

4 1 < IPRS < 99 (i, Pi, i = 1, IPRS) (8(12, E8.5))

IPRS = 0 No input card

5 1 < NTIC < 99 (i, h i , i = 1, NTIC) (8(12, E8.5))

NTIC = 0 No input card

6 1 < ISDT < 99 (i At, i = 1, ISDT) (8(12, E8.5))

ISDT = 0 No input card

7 1 < ISDY < 99 (i, (ct/ay)i, i = 1, ISDY) (8(12, E8.5))

ISDY = 0 No input card

8 1 < ISDZ < 99 (i, (at/az)i, i = 1, ISDZ) (8(12, E8.5))

ISDZ = 0 No input card

9 1 < IARE < 99 (i, Ai, i = 1, IARE) (8(12, E8.5))

IARE = 0 No input card

10 1 < IMMX < 99 (i, Ci, i = 1, IMMX) (8(12, E8.5))

IMMX = 0 No input card

11 1 < IMMY < 99 (i, IC, i = 1, IMMY) (8(12, E8.5))

IMMY = 0 No input card

12 1 < IMMZ < 99 (i, l i = 1, IMMZ) (8(12, E8.5))

IMMZ = 0 No input card

13 1 < IMFI < 99 (i, I i = 1, IMFI) | (8(12, E8.5))

IMFI = 0 No input card

14 ICOR = 0 (j, , Yj,Zj, j = 1, IN (14, 3E12.4, 40X) or (40X, 14, 3E12.4) or
2 < IN < 9999 (2(14, 3E12.4))

ICOR = 1 Input card(s) should be as required by the user's version of subroutine CORG (see Ref. 1)
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Table 1 (contd)

Input Conditions Format

item determining List of input statements that read the associated input item card(s)" (outside parentheses indicate the

No. options possibility of multiple cards)

15 IBUN = 0 (ikiki Iakk 1, BN) (5(14,11, 14, 11, F6.0))
1 < IBN < 9999

IBUN = 1 Input card(s) should be as required by the user's version of subroutine BUNG (see Ref. 1)

16 IMES = 0 (MM,,, J W,,,, J2 W,,, J3W,,, J4W.,,, J5W, ..... m = 1, IT) (2014) (see Table A-9 for variables of

1 < IT < 9999 | the list)

IMES = 1 Input card(s) should be as required by the user's version of subroutine MESG (see Ref. 1)

17 ISHUF = 0or 1 No input card

ISHUF = 2 (Ni, i = 1, IN) (2014)

ISHUF = 3 (N i , IMAX i , i = 1, IN) (2014)

18 1 < IP < 9999 (il, j, P, I = 1, IP) (5(14, 11, E11.4))

iP = 0 No input card

19 No list (the card is punched END in the last three columns) 70X, 17, 3HEND (ISUCA value)

20 No input for standard VISCEL; otherwise input of certain user's subroutines (see Ref. 1)

VISCEL PROBLEM CONTROL CARD, PROVIDES MODIFIABLE INFORMATION

MODIFIED INFORMATIONS

19 END card 70X, 17, 3HEND (ISUCA value)

PROCESS TO BE REPEATED

FOR SUBSEQUENT TIME STEPS

aNomenclature

p pressure 1, moment of inertia about local z axis

h thickness ¢ angle determining the orientation of principal axes of cross section

At temperature increase in overall coordinate system

a t/dy temperature gradient in local y-axis direction X, Y, Z overall coordinates of mesh points

d t/dz temperature gradient in local z-axis direction x, y, z local coordinates
A cross-sectional area ,, , index pairs and the constant of the kth dbc input unit (see SectionA cross-sectional area II-D)

Ill-D)

C torsional constant il,j1 ,P, index pair and constant of the Ith concentrated load input unit (see

I, moment of inertia about local y axis Section IV-B)

bThe symbols shown in Input Item 3 are defined in Figs. A-2c, 2d, and 2e.
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Table 2. Permanent and. modifiable input items

Description of input item Qualifications

Existence
in the
master
deck

Existence
in the

successive
decks

1 Title card For master deck only *

2 Control card For master and successive decks * *

Modifiable information

3 Material types For master and successive decks o

4 Pressure types For master and successive decks o o

5 Thickness types For master and successive decks o o

6 Temperature increase types For master and successive decks o o

7 Temperature gradient types For master and successive decks o o
-local y-axis direction

8 Temperature gradient types For master and successive decks o o
-local z-axis direction

9 Cross-sectional area types For master and successive decks o o

10 Torsional constant types For master and successive decks o o

11 y-moment-of-inertia types For master and successive decks o o

12 z-moment-of-inertia types For master and successive decks o o

13 Angle types-fixing local y and For master and successive decks o o
z axes

Permanent information

14 Mesh point coordinates For master deck only o

15 Deflection boundary conditions For master deck only o

16 Element descriptions For master deck only o

17 Relabelling information For master deck only o

Modifiable information

18 Concentrated loads For master and successive decks o o

19 End card For master and successive decks * *

* = the card(s) must exist.

o = the card(s) exist optionally depending on the control constant in the control card and relate to the
modifiable information.

- = the card(s) must not exist.

JPL Technical Memorandum 33-466, Vol. I, Rev. 1
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Table 3. Summary of output items

Output Output for linear elastic solution or Output for linear
item initial time solution of linear iscoelastic solution

number viscoelastic problems

Linear elastic problem or linear visco-
elastic problem

(1) Title of the problem
(2) Table for control constants

Modifiable information (material prop-
erties, pressure types, etc.)

Nodal coordinates

Mesh topology; element property types

Relabelling message

Topology of the reduced stiffness matrix

Stiffness matrix requires.... storage
locations

Total common length is (decimal)....
storage locations

Count of main diagonal elements of row
listed stiffness matrix

Force and displacement boundary condi-
tions in directions 1 (2, 3,4, 5, 6)

Input link took.... seconds

Generation link took .... seconds

Nodal deflections

Forces acting at the nodes

Deflection link took.... seconds

Stresses at the nodes

Stress link took.... seconds

Number of equal time step
group....

Number of time steps in the
group ....

Modifiable information (mate-
rial properties, pressure
types, etc.)

Input link took.... seconds

Generation link took.... seconds

Accumulative nodal deflections

Forces acting at the nodes

Deflection link took.... seconds

Stresses at the nodes

Stress link took.... seconds

JPL Technical Memorandum 33-466, Vol. I, Rev. 1
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t4

(a) ELASTIC MODULUS

(b) SHEAR MODULUS

CC
(c) COEFFICIENT OF EXPANSION

(d) EXTERNAL PRESSURE

Fig. 1. Schematic representation of the
material properties and external
disturbances at it

(e) TEMPERATURE CHANGE

(f) OTHER PROPERTIES (MODIFIABLE),
CONCENTRATED LOAD, ETC.
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'GROUP 3 "

'TYPICAL MATERIAL PROPERTY OR EXTERNAL DISTURBANCE CURVE (CM)

E

=41 :2

t_2t(12 1i- =2 i=3
6Fig. 2. Typical interval setup

Fig. 2. Typical ~ interval setup
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Fig. 3. Physical arrangement of data deck for the VISCEL program
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Y 5 2

4

100 in. I_ 100 in.

Fig. 4. Plane stress example problem
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APPENDIX

VARIOUS REFERENCE TABLES AND FIGURES
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Table A-1. Deflection degrees of freedom at a point
for different cases of structures

Column number 1 2 3 4 5 6 7

E

,~-au 0) ° e E E E 0 

o \ .o - as w r ,
- a

E E E 0

Case a 0 0

description r E
0~ 0~ 0 r Co wo z

1 Planar truss 2

2 Space truss :::. : R8?:_ _ 3

3 Planar frame 3

4 Space frame 6

5 Gridwork frame I I I 3

6 Plane stress R : 8:: 2

7 Plane strain ''' R 2

8 Plate bending 3

9 General solid 9 9 : 3

10 General shell;bend. memb............

11 General shell, membrane ; : R 3

12 Solid of revolution 2

13 Shell of revolution, membrane 2

14 Shell of rev.; bend., memb. 3

4X, Y, Z refer to the axes of the overall coordinate system.
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Table A-2. Types of structures that VISCEL can handle

11 12 13 14

E E

E E

1E E

4 5pace frame __ ......E,

51 Gridwork fDram ion ,R _

Planar truss- -

8 Plate bending -a. aR i _ g _ g av&'+r~s-v Ra ....................
12 Spl a e strss

7 Planar framns (e. 04 41 0 0 0

Se Plate ben g :

1~ase 2 S o li o fi re o lutis

1 3 Shell ofDeseroltion membrane

5 1 Gridwork frame ! ... . . ...... .....

1 Plane stress:

14 Spae framev t; bending, membrane

14 Shell of revolution; bending, membrane

1Cases 6 and 7 may not exist simultaneously.

JPL Technical Memorandum 33-466, Vol. I, Rev. 1
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Table A-4. Necessary and optional information for element definition

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 18 19 20

EA -t

2 . A A
c E 8 

0 3 3 

C C
P~~~~

>. .>.
., = ~ ~ A A . C. - - .-xS x S, S S A * x Cx C 3

..
.C I> :.- -f t t - -

-E c E --E -
3~~~~~ ~~~ ~~~~~~~ ) C0. . 0 .

£ - .W. >. >. cc C E e 0
C - - - - - Z

C -0I, -0 I

A. - z -z z z u, . 0 ~ . .-L 

2 ~ ~~~~ ~~ 2:::*::::.;:::::::::2 

>.- .2U C ~ 
A A A A A A A -- a a1 aP a a a a 0 .3 : * * * 

* ;:2:: C:C:C:C::C;C:* :: 02::: a 0. 0E Ea E w ! E E
* 0 0 0 0 0 ~~ ~~ ~~~~0 0 0 2 C * *

2

.......... ........ .........i .......... in f

.-. .. . .. . .. . .

...... ........ ......... ................ .. . .. .... ... ..... ....... ... . .... ....... .... ... . . .6 . ................ . . .. ii i ,.... .. .... .. . .... ...
7

8

10

1 2

13

14

15

16

17

18 f' //E3 Necessary inform ation Optional information
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Table A-5. Types of elements available for
different cases of structures

Column number 1 2 3 4 5 6 7 8

E dm E!escri ' *
E E

4 Space sfr e 2 C -4
description r f r m

1 Planar truss .

2 Space truss

3 Planar frame

4 Space frame

5 Gridwork frame

6 Plane stress 

7 Plane strain i i _

8 Plate bending

9 General solid 1 

10 General shell; bending, membrane

11 General shell, membrane

12 Solid of revolution

13 1Shell of revolution, membrane '

14 Shell of revolution; bending, membrane _ !,
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Table A-6. Convention for ordering the
vertices of elements

Element

type First Other vertices
number vertex

1 Any The remaining

2 Any The remaining

3 Any The remaining

4 Any The remaining

5 Any Counterclockwise sequence about overall Z axis

6 Any Counterclockwise sequence about overall Z axis

7 Any Counterclockwise sequence about overall Z axis

8 Any Counterclockwise sequence about overall Z axis

9 Any Counterclockwise sequence for the first three vertices

about the normal of their plane, heading towards

the fourth vertex

10 Any *

11 Any Clockwise sequence about local normal**

12 Any Counterclockwise sequence about local normal**

13 Any Counterclockwise sequence about local normal**

14 Any Counterclockwise sequence about local normal**

15 Any Counterclockwise sequence about overall Z axis

16 Any Counterclockwise sequence about overall Z axis

17 *** The remaining

18 The remaining

*Counterclockwise sequence for the first four vertices on the same face
about the normal heading towards the other four vertices. The fifth
vertex lies diagonally across the first vertex. The last four vertices also
establish a counterclockwise sequence about the normal of their face,
heading towards the first four vertices.

**Local normals head always to the same side of the space divided by
the middle surface.

***The one with smaller meridional arc length (the meridional curve should
have a direction).
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Table A-7. The functions of the FORTRAN units as used in VISCEL

JPL Technical Memorandum 33-466, Vol. I, Rev. 1

FORT RAN
unit Function of the unit

number

1 System

2 Chain

3 Scratch for topological information generated in Link 3

4 Storage for deflections

5 Input

6 Output

7 Punch

8 Overlays for FORTRAN IV

9 Storage for material elastic constants

10 Storage for material expansion coefficients

11 Storage for temperature changes

12 Storage for elemental stiffness matrices

13 Storage for overall stiffness matrices

14 Scratch for elemental stiffness matrices

Scratch for incremental deflections for ISTEP = 1

15 Storage for stiffness matrix decomposed by Choleski scheme
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Table A-8. Summary of the problem control card. (input item 2) of input data

Name of Card columns
field of field Format Range Description

-I
IN 1-4 14 2-9999 Total number of mesh points

IT 5-8 14 1-9999 Total number of elements

IDEG 9 11 2-6 Number of degrees at a mesh point (see Table A-1, column 7)

ITYPE 10 11 0-2 Material indicator: 0-isotropic, 1-orthotropic, 2-general (see Fig. A-2)

IGEM 11 0-1 Geometry indicator: IGEM = 0 all Z coordinates are zeroa (see Table A-3,
IGEM = 1 not all Z coordinates are zero a column 10)

ISTR 12 11 0-1 Plane strain case indicator: ISTR = 1 plane strain

ISTR = 0 not plane strain

IH 13 11 2-8 Maximum number of vertices in elements used (see Table A-3, column 3)

18 14 11 5-10 b Maximum number of words for element description I(see Table A-3, column 5)

IBN 15-18 14 1-9999 Total number of dbc input units (see Section III)

IP 19-22 14 0-9999 Total number of concentrated load input units (see Section III)

IPRS 23-26 14 0-99 Total number of different pressures

IMAT 27-28 12 1-99 Total number of different materials

NTIC 29-30 12 0-99 Total number of different thicknesses

ISDT 31-32 12 0-99 Total number of different temperature increases

ISDY 33-34 12 0-99 Total number of different temperature gradients (at/ly)'

ISDZ 35-36 12 0-99 Total number of different temperature gradients (at/az)e

IARE 37-38 12 0-99 Total number of different cross-sectional areas

IMMX 39-40 12 0-99 Total number of different torsional constants

IMMY 41-42 12 0-99 Total number of different moments of inertia (about y axis)'

IMMZ 43-44 12 0-99 Total number of different moments of inertia (about z axis)C

IMFI 45-46 12 0-99 Total number of angles fixing local y and z axes'

INX 47 II 1-4 Number of link after which return-to-beginning-for-next-job is done

INP 48 11 0-2 Printout indicator: 0-minimum; 1-intermediate; 2-detailed output
(see Table A-11)

ISHUF 49 11 0-3 Relabelling indicator: 0-no relabelling; 1-iterate to relabel without reading
cards; 2-read cards and iterate to relabel; 3-relabel
as shown on cards (see Ref. 1)

ICOR 50 11 0-1 Indicator for coordinate generation: 0-read coordinates from cards;
1-generate coordinates via subroutine CORG (user's version) (see Ref. 1)

IBUN 51 11 0-1 Indicator for displacement boundary conditions: 0-read from cards;
1-generate with user's version of subroutine BUNG (see Ref. 1)

IMES 52 1 II 0-1 Indicator for element descriptions: 0-read from cards; 1-generate with user's
version of subroutine MESG

IPIR 53 11 0-2 Local coordinate selection indicator for shells: 0-assume local x as 1-2 line
of lowest numbered element; 1-assume as principal; 2-read by subroutine
AGEL
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Table A-8 (contd)

JPL Technical Memorandum 33-466, Vol. I, Rev. 1

Name of Card columns
faeld of foeld Range Format Descriptionfield of field

ITAP 54 11 0-9 Chain tape number for program (if zero, program assumes 2)

ITAS 55 11 0-9 Chain tape number for intermediate storage

G1 56-60 F5.4 (- 1.)-( 1.) Cosine of the angle of acceleration vector with X axis"

G2 61-65 F5.4 (-1.)-(I1.) Cosine of the angle of acceleration vector with Y axis"

G3 66-70 F5.4 (-1 .)-(1.) Cosine of the angle of acceleration vector with Z axis'

ACELd 71-80 E10.3 Any Magnitude of acceleration vector times unit mass (unit weight)

ax, Y, Z refer to overall coordinate system.

bWhen 18 = 10, zero should be punched in column 14.

¢x, y, z refer to the local coordinate system of the element.

din element type 3, ACEL means weight per unit length.
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Table A-10. Table for determining the direction of local y axis
and the sign of angle q

JPL Technical Memorandum 33-466, Vol. I, Rev. 1

Parameter o l X 0.0001 IiXXI < 00001
| Parameter IIQXI >0.0001 I2xzi >0. 0001 ixZI x 0.0001

Positive direction Such that Such that Such that
for local y axis 'yy = cos 2 =os = Cos 

Sign of P Negative Sign of 2yX** Sign of 2 '*
the sign

of (izYsX)X

*If (2Y2xX) is zero, its sign may be assumed negative.
**If yX is zero, its sign may be assumed positive.
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Table A-11. List of output items
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Table A-12. Meanings of the components of stresses at
two- and three-dimensional continua

mesh points of

Element
Class Structure First Second Third Fourth Fifth Sixth

type
No. No type component component component component component component

1 5, 6 2-D elasticity a, o2T 7,* 0 t 0 0

2 7, 8 Plate, bending 0 0 0 Ml Ml M,2

3 15, 16 Solid of revolution al a2 oa 2, 0 0

4 9, 10 General solid ao, 2 a3 r ,2 1' 3 r23

5 17 Shell of revolution, membrane N, N, 0 0 0 0

6 18 Shell of revolution, membrane and N, N2 0 M, M2 0

bending

7 13, 14 Shell, membrane N, N2 N12 0 0 0

8 11, 12 Shell, membrane and bending N, N2 N12 M, M2 M2

'~Nomenclature:

cr,, a2, o normal stresses N, N, membrane normal forces M,, M
2

bending stress couples *o, for plane-strain case

T12, T13, '2. shear stresses N,,2 membrane shear M,, twist stress couple tT7' for plane-strain case

3 3 &3

2T13 2 2 -- 2 N2 -2 2 2--2

M1 2 M1

STRESS I MEMBRANE FORCES I STRESS COUPLES

The axis labels 1, 2, and 3 stand for KSI, ETA and ZTA (direction cosines for local axes), respectively
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Table A-13. List of error messages

No. Error message

1. INPUT ERROR

2. THE FOLLOWING DISPLACEMENT BOUNDARY CONDITION(S)
CAUSE(S) MORE THAN ONE MULTIPLE CONNECTION FOR
THE UNKNOWNS. THEY ARE IGNORED

3. i: IN ELEMENT ... , ERROR IN MESH TOPOLOGY INFORMA-
TION. NO CORRECTION IS MADE. ii: IN ELEMENT ......

PROPERTY TYPE NUMBER(S) IS OUTSIDE THE RANGE. THE
TYPE NUMBER(S) IS ASSUMED LARGEST POSSIBLE

4. ELEMENT ... IS UNACCEPTABLE. DISREGARDED

5. WARNING. LESS THAN 12750 DECIMAL LOCATIONS ARE
AVAILABLE FOR THE NEXT LINK PROGRAMS. THOUGH IT

MAY BE SUICIDAL, EXECUTION CONTINUES

6. THE POINT ... DOES NOT APPEAR IN THE MESH

TOPOLOGY

7. DUMMY AREA OVERLAPS COMMON AREA BY ... DECIMAL

LOCATIONS. RECOMPILE BY CHANGING THE EQUIVA-
LENCES OF DUMMY AND BB IN LINKS 1 AND 3, RE-
SPECTIVELY

8. ELEMENT ...... IS UNACCEPTABLE. DISREGARDED 

9. THE VOLUME OF ELEMENT ...... IS TOO SMALL...
DISREGARDED

10. STIFFNESS MATRIX IS NOT POSITIVE DEFINITE ...

11. NO SCRATCH TAPE IS GIVEN OR ERROR IN SCRATCH TAPE

12. MORE THAN 12 NON-ONE-DIMENSIONAL ELEMENTS AT

NODE ...

13. NODAL STRESS COMPUTATION IS DELETED DUE TO

PRECEDING

14. NO SCRATCH TAPE. STRESS LINK IS NOT EXECUTED

15. ERROR IN READING ELEMENT SETS FROM TAPE ITAS. STRESS
LINK EXECUTION IS DELETED......

16. NOT ENOUGH INDEPENDENT INFORMATION AVAILABLE

17. ERROR IN MESH TOPOLOGY. NODE ASSUMED INTERNAL

18. MORE THAN 4 MATERIALS, FIRST 4 CONSIDERED

19. MORE THAN 4 CLASSES, FIRST 4 CONSIDERED

20. MORE THAN 19 ELEMENTS, FIRST 19 CONSIDERED

21. NOT ENOUGH INFORMATION FOR BEST-FIT QUADRATIC
BEST-FIT PLANE IS USED

22. NOT ENOUGH INFORMATION FOR MIDDLE SURFACE NOR-
MAL. APPROXIMATE XII AND ZTA VALUES ARE USED

23. SCRATCH AREA FF OVERLAPS WITH RESIDUAL AREA. PUSH
FF FURTHER DOWN BY RECOMPILING LINK 4.

I
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ONE-DIMENSIONAL

TWO- DIMENSIONAL

THREE-DIMENSIONAL

Fig. A-1. One-, two-, and three-dimensional
finite element meshes
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z THIRD MATERIAL
I AXIS

Aa,

_v

I,

0x / / SECOND
MATERIAL
AXIS

FIRST MATERIAL
AXIS u, v, w ARE DISPLACEMENTS

au av aw au av
EC = - e = --, Cy =' - + -ax ay az ay ax

aw au av aw
y = - + -. Yu = - + -ax az ax ay

/ eS D,, D12

a2' 

/ 7ru \ SYM

T y'/.

D,3 D14 De D,6 E eS

D23 D24 D2 5 26 e 
D03 D34 s 05 6 :J e 

D0 D45 D06 YI\ 7 ,

D55 D y-r

MATERIAL
({) = [D]{(). [D]: MATRIX

VECTOR OF

THERMAL
a {c EXPANSION

COEFFICIENTS

(b)

(a)

GENERAL CASE

DEj D,2

D22

[D.] =

SYM

Di3 D14 D1o Dm
D23 D24 D25 D26

D3a D34 Da3 D36

Dm D45s D6
D55 Dso

D6 6

[a] = [a,, a,, a3]

INPUT: D,, D, D13, D, 013, D, D2,, D, D

D23, 024, D054, D3, D34, D3, D, D

D36, D44, D45, De6, Ds3, D5G, D6

al, a2, 03

(e)

Fig. A-2. Description of the material
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ISOTROPIC CASE

aE bE bE O O O

aE bE O O O0

aE O O 0
[Do] = G 0

SYM G 0

G (4G-E) G (2G)
a -= -,b =---

E (3G--E) E (3G-E)

[a] = [aa, a]

INPUT: E, G,G.

ORTHOTROPIC CASE

Dj, D 0 * D 0 0
D2 * D24 0 0

[D~] t O 0 0

SYM D~s D,,
_ D6G

* IN PLANE-STRAIN CASE D02, OTHERWISE 0

t IN PLANE-STRAIN CASE NOT NECESSARY,
OTHERWISE 0

[a] = [ar, a, O ]

INPUT: D;,, D;2, D;4, D02, D2, D;J, Ds5, D0, DoG

(C) (d)

F

(4)= CE,


