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. ABSTRACT

A study of applications of filamentary composite materials to aircraft fuselage structure

- was performed. General design criteria were established and material studies conducted using

the 727-200 forebody as the primary structural component. Three design approaches to the
use of composites were investigated: concept 1, uniaxial reinforcement of metal structure; .
concept 2, uniaxial and biaxial reinforcement of metal structure; and concept 3, an all-
composite design. Materials application studies for all three concepts were conducted on
fuselage shell panels, keel beam, floor beams, floor panels, body frames, fail-safe straps, and
window frames. Cost benefit studies were conducted and developmental program costs esti-
mated, also for all three concepts. On the basis of weight savings, cost effectiveness, devel-
opmental program costs, and potential for early application on commercial aircraft, the .
concept | design is recommended for a S-year flight service evaluation program. .
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APPLICATION STUDY OF FILAMENTARY COMPOSITES
IN A COMMERCIAL JET AIRCRAFT FUSELAGE

' By R. W. Johnson and R. R. June
1.0 SUMMARY

A study of applications of filamentary composite materials to aircraft primary fuselage
structures was performed. The Boeing 747, 737, 727-200, and the 707-320 aircraft were
reviewed to determine the component best suited for the study, and a 4.57-m (180-in.) long

section of the 727-200 forebody was chosen as the demonstration component. The structural :

components studied are shown in figure 1. The study established a three-level approach to

the use of composites, namely: concept 1, uniaxial reinforcement of metal structures; con- .- . .

cept 2, uniaxial and biaxial remforcement of metal structures; and concept 3, an all-
composite design. '

General design criteria were established for all three concepts, and material selection
studies were conducted to determine the most suitable composite material for each design
concept. High-strength graphite epoxy was chosen for all concepts because of its lower cost.
The adverse effect of residual tensile thermal stresses induced in the metal-reinforced com-
ponents would be reduced by applymg thermal stress alleviation techniques during bondmg
The weight savings achxeved in this phase of the study are shown in table 1.

TABLE 1.-SUMMARY OF STUDY SECTION WEIGHT SAVINGS o -

Baseline Concept 1 ‘Concept 2 Concept 3
Component . kg Ibm kg ibm kg Ibm kg Tbm

Shell

Upper quadrant 144 317 115 254 112 248 111 245 ) -

Side quadrant 211 465 | 171 | 377 | 144 | 318 | 137 302 1

Lower quadrant 168 371 143 316 | 141 310 152 335 |.
Floor beams 57 126 39 86 38 84 38 84
Floor panels 53 116 - 31 69 31 69 31 69
Keel beam 22 48 14 30 14 31 {a) (a) \

Total weight 655 | 1443 513 1132 | 480 1060 469 .1035

Weight saving - .- 141 311 175 383 186 408
% weight saving - —- |215 215 | 265 26.5 28.2 28.2
Weight of composite e 34.4 768 | 60.6 | 1336 | 166.3 | 366.6
CerFP : - 4.10 2.87 1.1

3 ncluded in lower quadrant panel
bComposite efficiency factor

" Cost benefit studies were conducted for all three concepts. The weight savings achieved
. in the study section were extrapolated to determine savings for a total fuselage, and fabrica-
tion costs were estimated for a 300-airplane production program. The results of the eco-

nomic analysis indicated that the concept 1 design was cost effective for a graphite



e —— B T o —— A s

composite price of $132/kg ($60/1bm) and the concept 3 all-composite design was cost effec-
tive at a composite price of $77/kg ($35/ibm). The results of this analysis indicated that con-
cept 2 would not become cost effective until the composite price is less than $44/kg (520/1bm).
The effect of a reduction in the material cost in this concept was not suff1c1ent to offset the
estimated mcreased productxon costs. :

Detailed developmental program plané were established, and these are presented for all
three concepts. The developmental program costs were estimated and the relative costs are

' defined_as shown.’

Relative Developmental

Concept . - Program Costs
4 1.0
2 . - 2.4
3 ' ‘ 33

The developmental program schedule for each concept is summarized in figure 2.

- On the basis of weight savings, cost effectiveness, developmental program costs, and
" potential for early application on commercial aircraft, the concept 1 design is recommended -
for a S-year fhght service evaluation program.

2.0 INTRODUCTION

Studies conducted on composite-reinforced metal structures and all-composite struc-
tures indicate that the use of these new materials and concepts will significantly reduce air-
craft structural weight. To apply these new concepts to full-scale primary aircraft structure
for commercial service will require an extensive developmental program. Before committing .
funds for this program, however, the cost benefits to commercial airlines must be established.
To properly assess the ability of these new materials to maintain structural integrity for the
life of an aircraft, the developmental program must consist of design and analysis studies,

" material selection and process evaluation studies, fabrication procedure studies, ground test-
ing, and flight service evaluations.

The Boeing Company 747, 737, 727-200,-and 707-320 aircraft were reviewed as candi-
date components on which to conduct theapplications study. The 727-200 forebody was
- chosen as the primary structural component for the study because it contained major pro-

- duction splices and the loads and skin gages are representative for an aircraft of this size. The -

applications study was conducted for three design concepts: concept 1, uniaxial reinforce-

ment of metal structures; concept 2, uniaxial and biaxial reinforcement of metal structures;

" and concept 3, an all-composite design. The primary structural components thhm thxs body
section that were evaluated for composxte apphcatlon are: the followmg ' : .




) Fusglagc shell paﬁels : ' 4 ' @  Fuselage frames
o Keelbeam . - o Windowframes
o Floor beams : ' ® Fail-safe straps
o Floorl pénels_
General design criteria were est;ablished for all three concépts based-on existing 727-200
criteria and previous test programs. Material selection studies were conducted to determine

the composite best suited for each design concept. The general design criteria and matenal
selection study are discussed in section 3.0.

During the study, the structurél components were designed and analyzed for each of thei -

three concepts. Weight savings analyses and cost benefit studies were performed for each

concept. Developmental program cost estimates, including a 5-year flight service evaluation = '
period, were obtained for all- concepts. The concept studies, weight savings, and cost benefit -

“studies are also discussed in section 3.0. Section 3.6 defines the relative developmental pro-
gram costs and section 3.7 describes the concept recommended for flight service evaluation.

The demo nstration program plan for all éoncepts consists of five phésés: '
o  Phase [-developmental program |
. - Phase; II—design, analysis, and engineering ver_ificaﬁon tests
° Phasé III—-fabrication and quality assurémce o
e | Phase IV—full-scale ground tests and documentatxon -
©- Phase V flight service evaluatxon
A general discussion of, the developmental program is contained in section 4.0 for all

three concepts. Detailed test programs, manufacturing procedur'es? and quality assurance
procedures for concepts 1, 2, and 3 are contained in appendixes A, B, and C, respectively..

U.S. customary units were used for calculations throughout the study. These units were -

* converted to SI units as adopted by the Eleventh General Conference on Weights and Meas-
~ ures, Paris, October 1960. Conversion factors for SI to U.S. customary units are presented in
appendix D. A table of standard densities used in this study is presented in appendix E.
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Years from
contract
go-ahead

1 2 3

Phase | —developmental program

Phase |1—design analysis and
verification tests

Phase 111—fabrication and
quality assurance

Phase 1V —full-scale ground tests

CONCEPT 1-PHASES |-V

Years from
contract
go-ahead

1 2 3 . 4

Phase 1—developmental program

"Phase ll—design, annalysis, and
verification tests

Phase IlI—fabrication and
quality assurance -

.Phase |V—full-scale ground tests

[

- CONCEPT 2 AND 3—-PHASE l’-lV

Years beyond phase {V

1 2 '3 4

Phase V—flight service evaluation

ALL CONCEPTS-PHASE V

FIGURE 2-DEVELOPMENTAL PROGRAM SCHEDULES
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~ 3.0 APPLICATION ANALYSIS

3.1 AIRCRAFT AND COMPONENT REVIEW

All of the current Boeing airplane models were initially considered as potential flight
test aircraft for this study. The 747 aircraft was dismissed as a candidate when preliminary
cost estimates indicated that the developmental program funding level was out of reasonable
range. The 707-320 fuselage was dismissed because major cutouts exist in the fuselage sec-
tions close to the wing intersection where the skin panels are designed for other than mini-
mum gage considerations. The 707-320 was also dismissed due to uncertainty regarding the
‘future production schedule. The 737 aircraft was dismissed since almost the entire fuselage
contains minimum-pressure-designed gages.

The 727-200 aircraft was selected as the best eandidate aircraft on which to conduct the -

applications study. The production schedule carries far enough into the future for possible
installation of the test structure in the production line. The test section in the forebody is
the stretch portion, thus allowing relatively easy installation at the major body splices. This
section also contains no major cutouts, which will reduce the developmental program costs
associated with complex structural reinforcement around large cutouts. The fuselage section
selected for study is shown in fxgure 3.

The structurallelements cons1dered for composite application were:

Compression skin panels (lower quadrant)

Fuselage frames

Window frames

Faii-safe sfra_ps

Fleor beams

Floor panels

Keel beam . A T
Tension skin panels (upper quadrant)

v

Shear skin banels (side quadrant)

Initial studies indicated that composites could not be applied to fuselage framesina
cost-effective manner. The composite-reinforced concept resulted in minimum metal gages
that increased the manufacturing costs. The engineering development costs associated with
all-composite fuselage frames were considered too high for the small total weight saved.
Composite-reinforced and all-composite window frames were also considered unfeasible due
to the costly manufacturing processes required to gain the small potential weight saving. The

-



design of fail-safe straps is influenced by the overall'skin panel design; therefore, fail-safe
straps were not studied as separate structural components. The remainder of the components
listed Were designed and analyzed for each concept.

3.2 GENERAL DESIGN CRITERIA .

vGe'neral design criteria were established for the applications study to ensure that the
flight test vehicle would equal or exceed the existing 727- 200 in ultimate strength, fatigue
re51stance and damage containment. :

The reinforced c0mponents were designed to a requirement that the metal by itself
would carry limit load, and composite reinforcing would be added to obtain ultimate loads.
Since ultimate load is 1.5 times limit load, this resulted in a metal-to-equivalent-composite
ratio of 2 to 1. Initial designs of the fuselage skin panels were not constrained to this crite-
rion. When the skin panels were redesigned to this criterion, a reduction in the weight savings
of approximately 10% resulted. The criterion provides adequate safety and design confidence

for the flight test vehicle. :

The fuselage skin and stringer material in the uniaxial reinforced aluminum construction
was designed to the same longitudinal stress level as the existing structure, and the allowable
skin hoop pressure stresses were determined from equivalent damage-containment param-
eters. The effect of residual thermal stresses on the operating fatigue cycles did not cause a
reduction in the ultimate design stresses, since the skin panels in the selected section are not . -
fatigue critical for bending stresses, and the thermal stresses would be controlled during fabri- .
~ cation by applymg thermal stress alleviation techmques ‘

An ultimate strain level of 0.15 mm/mm (0.006 in./in. ) was 1mposed on the remforced ,
titanium and all-composite designs. This criterion was developed on the basis of the results of"
" the NAS1-8858 studies (see ref. 1). The allowable pressure stresses for the reinforced tita-
" nium and all-composite designs were determined from equivalent damage-containment

parameters. ‘ '

A criterion was established that all layers of composite at splice boundaries would ter-
minate on bonded stepped load transfer fittings. This was established from NAS1-8858
fatigue and ultimate test results, as well as other Boeing research which indicated that this -
configuration is the most structurally efficient.

A design and fabrication criterion was established that the composite would be cured
and bonded to the stepped load transfer fitting as a subassembly. This reduces the manufac-
turing complexity and increases the quality assurance of the composite components. Design
criteria were also established to ensure that, wherever possible, composite components would
be exposed in the final assembly to allow m-place inspection of the components durmg flight -

service evaluation.



3.3 MATERIA_L' STUDIES AND SELECTION

The composite reinforcing materials initially considered for the applications study were

_boron/fepoxy, graphlte/epoxy, and PRD-49 Fiberglass was not considered as a primary rein-
forcmg material.

Boron/epoxy was considered for all reinforcing applications and for the all-composite
components, because the thermal expansion coefficient of boron, compared to that of alumi-
num and titanium, makes it more compatible than graphite. However, because of the higher
material and machmmg costs, boron was eliminated from the study

‘High-strength graphite/epoxy comp051te was selected as the major reinforcing and all-
composite material. The initial design studies were conducted using graphite layers 0.177 mm
(0.007 in.) thick. However, because a considerable weight savings was realized in minimums
gage areas when the graphite layer thickness was changed to 0.127 mm (0.005 in.), the final
designs incorporated the thinner graphite layers. '

PRD-49 was not considered as a primary reinforcing or all-composite material because
of its relatively low compression properties. However, this material was incorporated into a
floor beam concept for.comparison to a graphite design.

The three graphite/epoxy systems selected for test and evaluation in the developmental
program, together with their typical properties, are shown in table 2. The Hyfil material was
selected on the basis of some preliminary Boeing IR&D test data that showed good repeata-
bility of tensile strength and modulus properties. In addition, it can be obtained in continu-
ous lengths in widths up to 406 mm (16 in.). This width reduces the fabrication costs
involved in laying down large areas of composite for the concept 2 and 3 designs. The
Narmco and Hercules systems were chosen as representative materials from U.S. suppliers.
All graphite material will be 0.127 mm.(0.005 in.) thick.

TABLE 2—-TYPICAL MECHANICAL PROPERTIES? FOR CANDIDATE COMPOSITES

Fiber Composite

Resin

Fiber system Tension modulus Tension strength Volume] Tension modulus Flexural strength “Interlaminar shear
GN7sam | 1bl/sq in. | MN7sam ] 1bf/sa in. | fraction |GIN7sq m | 1bi7sq ih. | MN/sqg in.] 1bf7sq in. | WN/sqm | 1bi7sq in.
Hyfit 2711 | 828 DDS  193.06 | 28 x 106 | 2413.25 | 350 000 067 ]131.00 | 19x 105 1689.27 | 245000 | 89.64 |13 000
Modmor 1) | Narmeo 5208 ]227.63 | 33x 108 | 2413.25 | 350 000 0.61 | 12401 18x 10% | 1379.00 | 200000 |. 96.53 14000 .{ -

Hercules AS | 3M PR288  1192.06 | 28x 10 | 2413.25 | 350000 | 060 | 11222 | 17x 105 1370.00 | 200000 | 110.32 | 16000

3Manutacturers’ data

The adhesive systems selected for evaluation in the developmental program are shown in
table 3. Test data obtained under Boeing IR&D studies indicate that the environmental sta-
bility of the 450°K (350° F) curing adhesives is far superior to that of the 394°K (250°F)
- curing adhesives. On the basis of these tests, the AF 30 system is presently being considered
as the primary load transfer bond material between the composite and step fittings in all con-

~ cepts. The 394°K (250° F) curing system is presently being considered for bonding the com-
- posite and step end fittings to the metal structure in the concept 1 and 2 designs to minimize

the residual thermal stresses. The two 394°K (250°F) curing systems will be evaluated -
during the developmental program, and the final chonce wﬂl be based on environmental sta-
bility charactenstxcs : .

T —



TABLE 3.—~CANDIDATE ADHESIVE SYSTEMS

Adhesive

Description

AF 30
Hysol EA 9628 .

3M powder adhesive

450°K (350°F) curing nitrile phenolic
394°K {250°F) curing modified epoxy
394°K {250°F) curing modified epoxy

| The material selected for the reinforced aluminum concept consisted of conventional
alloys of 2024-T3 and 7075-T6. The 6Al-4V alloy in the annealed condition was selected for
the reinforced titanium.and all-composxte concepts. Design properties for these metals are.

shown in table 4

TABLE 4.—-CANDIDATE METAL DESIGN PROPERTIES

Proert . Aluminum Aluminum Titanium
opery clad 2024-T3 bare 7075-T6 Ti-BAI-4V ann.
Tensi ltimat MN/sq m 413.7 524.0 923.9
ension ultimate 1bi/sq in. 60 000 76 000 134 000
Tension vield MN/sq m 310.3 455.1 868.8
rension yie Tof/sq in. ~ 45 000 66 000 126 000
Comprossion vield MN/sq m 255.1 462.0 910.1
ompression yie Ibf/sq in. 37 000 67 000 132 000
. MN/sq m 262.0 317.2 544.7
Shear ultimate Tbf/sq . 38 000 46 000 79 000
. . GN/sqg m 72.4 71.0 110.3
Tension modulus Tbf/sq . 705 x 100 0.3 x 100 6.0 x 100 ]
. GN/sq m 73.8 72.4 113.1
Compression modulus 7y 0.7 x 100 ~105x 100 T6.4x 705
_ GN/sq m 2716 A 26.9 42.7
Shear modulus bf/sq in. “Z0x 100 L) x 106 ET% 100 —
—
.

v p———
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- 3.4 CONCEPT STUDIES

The following concept studics were developed with certain constraints imposcd on the .
designs. These design constraints are defined as follows:

e The o'ute} surface of the fuselage study section was kept the same as the existing
section. ’

e  The distance between the outér fuselage surface and the surface defined by the
inner flange of the body frames and the spacing of the body frames were also the
sande as the existing structure. These design constraints allowed for installation of
existing interior panels and maintained existing passenger seat spacing. '

@ The stringer spacing used in all design concepts was kept identical to the existing
structure.. :

3.4.1 Floor Beams

The floor beam is a single-span beam loaded at four locations by the passenger seat
tracks. The beam is. designed to withstand a forward crash condition of nine times gravita-
tional force. The loading imposes an upward load on one beam and a downward load on the
next. The web of the beam contains a series of cutouts that accommodate control cables and
hydraulic, electrical, and air conditioning services. The existing floor beam is made from an
aluminum extrusion 184.1 mm (7.25 in.) deep. The top and bottom chords are 50.8 mm
(2.0in.) by 3.17 mm (0.125 in.), and the web is 177.8 mm (7.0 in.) by 2.54 mm
(0.100in.) ' ‘ : : ’

The concept 1 floor beam design is shown in figure 4. The top and bottom chords of }
the existing floor beam extrusion are machined down in thickness and graphite is bonded in "
place. A thin metal strip is bonded to the surface of the graphite to produce a balanced
design and minimize the thermal distortion. It also acts as an abrasion protection for the
composite. The web is not modified in this design. :

The concept 2-1 floor beam design is shown in figure 5, The chords are reinforced with
graphite and the web consists of an aluminum-faced honeycomb sandwich. Where the cut-
outs exist in the web of the beam, metal doublers are bonded on as local reinforcement.
Figure 6 shows the concept 2-2 floor beam design. This design is identical to concept 2-1

with the aluminum replaced with titanium. \

The concept 3-1 floor beam design, shown in figure 7, is an all-graphite composite
design with metal abrasion strips and angles bonded to the chords. The fabrication process -
considered for this design is to lay up the composite on a rectangular mandrel and then split
the composite after curing. The two channel pieces are then-bonded back-to-back to form
the web of the beam. The web would have metal doublers bonded on for reinforcement

~ “around the cutouts. Figure 8 shows the concept 3-2 design, in which PRD-49 instead of
graphite is used for the web material. _ :



In each floor beam design, the seat tracks are attached by drilling through the cempos-

ite in the chords. This composite hole-out material has not been considered as load-carrying
material. The material could be replaced by a fiberglass strip, but to simplify fabrication the
graphite is made continuous across the width of the chords. The ends of the floor beams are "
reinforced with metal doublers for attachment to the body frames

TABLE 5—~FLOOR BEAM WEIGHT SUMMARY

‘The weight estimate and the weight of composite for each design are shown in table 5.

. ~ Weight - Composite
Concept Description Welgh? saving weight
: kg Ibm kg lbm % kg ibm
Baseline Existing 727-200 . - 717 | 158 - - - - -
! Aluminum-graphite chords, 576 | 12.7 141 | 33 196 | 074 | 163
unchanged web ' - : ’ B -
21 Aluminum-graphite chords, - . ' '
aluminum honeycomb web 4.85 10.7 2.32 5. 'l. 3?.3 0.74 1.63
22 Titanium-graphite chords, 4.76 | 105 241 | 63 336 0.74 | 1.63
titanium honeycomb core ;
3-1 Aluminum-graphite chords, ' ; U .
+450 graphite web 6.03 1?.3 1.14 2.5 15.‘8 4.17 9.2
32 Aluminum-graphite chords, . - : ' ' a
+45° PRD-49 web 5.53 12.2 . 1.64. 3.6 22.8 3.04 -6.7
' 074 | 1.63%
3pRD-49 P Graphite

" 3.4.2 Floor Panels

sist of aluminum faces on balsa wood core at a weight of 4.05 kg/sq m (0.83 'lbm/sq.ft).

Rolls-Royce Composite Materials Limited has designed all-graphite composite floor panels

The existing 727-200 floor ‘panels in the underseat area consist of aluminum faces on . .
PVC core at a weight of 3.37 kg/sq m (0.69 Ibm/sq ft). The floor panels in the aisle area con- . .

* which are suitable for replacement of the existing panels. These panels have been included in -
the applications study to demonstrate the typical weight savings available by using all-
composite floor panels. The design of the composite floor panels is shown in figure 9.

The composite floor panelé that would ;eplace those in the underseat area weigh 2.34

kg/sq m (0.48 Ibm/sq ft) and the composite aisle floor panels weigh 2.64 kg/sq m (0.54

Ibm/sq ft). The weight saved for a 4.57-m (180-in.) length of fuselage is 21.3 kg (47 Ibm),

which is a 40% savings. The total floor panel composite material weight for the fuselage test
section is 11.6 kg (25.6 lbm). S

11
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3.4.3 Keel Beam

The keel beam in the 727-200 forms the continuous compression member in the lower
quadrant between body stations (BS) 740 and 950. The keel beam load in the fuselage sec-
tion forward of BS 740 is distributed to.adjacent stringers between.BS 640 and 740. The keel

‘beam in the forebody section, as shown in figure 10, consists of two identical aluminum

machined extrusions located at stringer (STR) 28 on the left and right side of the aircraft
bottom centerline. Each keel beam section contains approximately 968 sq mm (1.5 sq in.) of
effective material at BS 740.

The design of the reinforced aluminum keel beam is shown in figure 11. This design
consists of two identical machined aluminum sections bonded with layers of graphite/epoxy.
The layers of graphite terminate on a stack of vertical titanium step fittings at BS 740. The
number of layers of graphite decreases from BS 740 to 680 to conform to the load reduction
caused by shear redistribution. A cap strip is bonded across the top of the section to prevent -
delamination of the graphite layers caused by flexing of the skin. The reinforced keel beam
assembly is mechanically fastened to the panel skin.

The existing keel beam elements weigh 22 kg (48 1bm). The graphite-composite-
reinforced aluminum keel beam weighs 14 kg (30 Ibm), with a weight savings of 37.5% and a
composite weight of 2.7 kg (6.0 lbm).

A titanium keel beam design was developed for the concept 2 lower quadrant panel.
The design is identical to the reinforced aluminum beam with titanium replacing the alumi-
num sections. The weight of this reinforced titanium keel beam is 14 kg (31 1bm) for a
weight savings of 35.4% and a composite weight of 2.7 kg 6.0 Ibm).

3.4.4 Upper Quadrant—Tension Skin Panel

The upper quadrant skin panel, shown in figure 12, extends from BS 680 to 740 and
from STR 10 left to STR 10 right. The panel consists of 2024-T3 machine-tapered skins and
7075-T6 tapered stringers. The stringers are riveted to the skins, and the panel assembly is
attached to the body frames by shear clips at each frame and stringer intersection. Fail-safe
straps are bonded to the skin at each frame location. The skin gage varies from a minimum of
1.01 mm (0.040 in.) to a maximum of 1.05 mm (0.065 in.). The skin gage between STR 10
and 4 at BS 740 increases to 2.54 mm (0.100 in.) thickness to account for high panel shears
caused by body bending and shear redistribution from the BS 740 bulkhead.

The reinforced aluminum concept 1 design, shown in figures 13 and 14, consists of a
uniform 0.91-mm (0.036-in.) thick 2024-T3 aluminum skin with a 0.63-mm (0.025-in.) thick
2024-T3 bonded waffle doubler and graphite-reinforced, riveted aluminum stringers. The -
skin panel assembly is attached to the body frames in the same manner as the existing struc-
ture. The graphite reinforcing is bonded on both sides of each outstanding leg of the stringer
as shown in figure 14. Each composite layer at BS 680 and 740 is bonded to a titanium step
fitting. The stringers are 0.63-mm (0.025-in.) constant thickness formed from 7075-T6 alu- -
minum sheet materidl. The graphite tapers in thickness from a maximum at BS 740 to a mini-
mum at BS 680 to accommodate the reductxon in the bendmg moment. :



During bonding the residual thermal stresses are reduced by restraining the aluminum
‘stringer on a steel tool base. This method of fabrication will produce a stress-free tempera- -
ture at approximately 322°K (120°F) for a 394°K (250°F) cure cycle. The resulting resid-
ual thermal stress at 218° K (-67° F) plus the operating fatigue stresses are not severe: enough
to cause premature fatigue damage. '

The weight of the existing upper quadrant panel including the skin, stringers, body
frames, and shear clips is 144 kg (317 lbm). The concept 1 weight for the same structural
elementsis 115 kg (254 1bm). This results in a weight savings of 19.8% with a composite
weight of 6.8 kg (15.0 1bm).

The reinforced titanium concept 2 design, shown in figures 15 and 16, consists of a
uniform 0.381-mm (0.015-in.) 6A1-4V titanium skin reinforced with one ply ‘'of graphite at
90° for pressure load and two plies of graphite at 45°for shear. An additional doubler of
0.254-mm (0.010-in.) titanium is bonded to the skin along BS 740, and a £+45° graphite
. doubler is added at BS 740 between STR 7 and 10. The stringers are of constant thickness

“formed from 0.406-mm (0.016-in.) 6Al-4V titanium sheet. The graphite reinforcing is
bonded to the top of the hat section, and the stringer is bonded to the skin panel on top of

the graphite reinforcing. The graphite layers on the stringers taper in thickness to accommo- . -

date the varying bending moment, Titanium frame tees are bonded to the skin panel with

" cutouts for each stringer. The bonded portion of the frame tee is continuous and actsasa
fail-safe strap. J-section titanium frames are mechanically attached to the frame tee segments,
and flanged cutouts in the frame webs accommodate the stringers. Lateral stability of the

- body frames in the upper quadrant is provided with f1ve tension ties at approximately
760-mm (30-in.) spacing. '

The panel contains‘'mechanical splices.at STR 1, 4, and 7. These splices are required
because of the limited width of titanium sheet. Each 760-mm (30-in.) wide panel section
contains a picture frame titanium step fitting for the composite reinforcing. The panel sec-

tions are riveted together with titanium flush head rivets. A 0.254-mm (0.010-in.) thick strip - a

of titanium is bonded along each mechanical splice to prevent knife edging of the counter- -
sunk fasteners. The bonded frame tee portions are also spliced at each: longitudinal splice,
and the frame web and inner chord are continuous from STR 10 right to STR 10 left.

The weight of the concept 2 design including the skin panel, stringers, frame tees,and -~ .

frame J-section‘is 113 kg (248 1bm). This results in a weight savings of 21 7% with a compos- '

ite weight of 14.4 kg (31.7 Ibm).

The all-composite concept 3 design, shown in figures 17 and 18, consists of cross-ply-
‘laminated graphite skins and fiberglass graphite stringers. The axial load ratio between the )
stringers and skin is similar to that of the existing structure. The exterior of the panel con-
tains a bonded, fine wire mesh screen for lightning protection and static dissipation. The
basic skin contains three plies of graphite at 90° for pressure load and two plies at 45° for
shear. The axial load in the skin is taken by 0° plies tailored to the varying load levels. The-
skin contains additional plies at £45°in high-shear areas. .
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The stringers are molded fiberglass hat sections with uniaxial graphite reinforcing. The

“fiberglass is considered to be a shear tie for the graphite reinforcing. The thickness of the
fiberglass section was based on compression crippling calculations. Fiberglass was chosen for
this application because of its thermal expansion compatibility with graphite composite and’
the availability of standard fabrication processes. All-graphite composite stringers were not
considered because of the labor costs associated with present hand layup fabrication tech-
niques. If advanced methods of manufacturing of structural sections in graphite composite
are available to support the developmental program, then the fiberglass stringers would be
replaced with graphite composite sections.

The construction of body frames and method of supplying lateral stability are identical
to the concept 2 design. There are no separate fail-safe straps in the panel, since results from
Boeing IR&D tests indicate that the three layers of 90° plies of graphite together with the

cross-plied £45° layers are able to contain local damage. The layers of graphite in the skin are - '

continuous across the entire surface of the panel. Each layer terminates on a titanium step
picture frame which surrounds the panel.

The area between STR 9 and 10 will contain a transition from skin stringer to honey-
comb to match the side quadrant panel. The panel splice at STR 10 will be a typical honey-
comb double-lap splice joint. These details are shown in figure 18.

The weight of the concept 3 design for the skin panel, stringers, frame tees, and frame J- :

section is 111 kg (245 Ibm). This results in a weight savmgs of 22. 7% with a composite
weight of 47.6 kg (105 Ibm).

The weights of all three upper quadrant designs are summarized in table 6.

* TABLE 6.—UPPER QUADRANT PANEL WEIGHT SUMMARY

: : Weight Composite
Concept Description Weight . ‘saving weight
' kg bm kg ibm % kg ibm
Baseline Existing 727-200 144 | 317 | - - - - -
1 Aluminum skin; | 115 | 254 | 29 | 63 | 198 [ e8| 150

aluminum-graphite stringer

2 Titanium reinforced skin; . 112 | 248 (‘32 | 69 | 217 | 144 | 317
titanium-graphite stringer :

3 Graphite skins; ) 1 | o245 | 33| 72 22.7 | 476 | 105.0
fiberglass-graphite stringers - R N R




345 LoWelf Quadrant—Compression Skin Panel

" The lower quadrant skin panel, shown in figure 19, extends from BS 680 to 740 and * o
from STR 19 left to STR 19 right. The panel contains 2024-T3 machine-tapered skinsand .~
7075-T6 tapered stringers. The stringers are riveted to the skin, and the panel assembly is B
attached to the body frames by full-depth shear clip angles along each frame. Fail-safe straps
are bonded to the skin at each frame location. The skin gage varies from a minimum of :

1.02 mm (0:040 in.) to a maximum of 4.06 mm (0.160 in.) at BS 740 under the keel beam.

The reinforced aluminum concept 1 design, shown in figures 20 and 21, consists of a
2024-T3 aluminum machine-tapered skin with a bonded waffle doubler and graphite-
reinforced, riveted aluminum stringers. The machined skin varies in thickness from 0.91 mm
(0.036 in.) to 3:81 mm (0.150 in.). The 2024-T3 aluminum bonded waffle doubler covers
the skin area where the thickness is less than 1.14 mm (0.045 in.). The skin panel assembly is
attached to the body frames with full-depth shear clip angles along each frame. The stringers
_are inverted hat sections with graphite composite bonded to the top surface. The number of -

.

" . layers of graphite is tailored to match the variation in the compression end load. Each layer

~of graphite at BS 680 and 740 terminates on a titanium step fitting. The stringers are of con-
stant thickness fabricated from 0.91-mm (0.036-in.) and 1.02-mm (0.040-in.) gage material. -
- The gage of both stringer types was based on compression crippling calculations. The longi-
tudinal portion of the waffle doubler between the fail-safe strap locations and between the
rivet lines is chemically milled to reduce weight. This detail is shown in figure 21, The
stringers have been inverted to increase the effective width of the skin under compression -
16ad, which results in a reduction of the overall skin thickness. The composite-reinforced
aluminum keel beam chords previously defined are mechanically attached along the STR 28 ‘
location. The longitudinal mechanical splices at STR 19 and 26 are the same as those used on - .
the exxstmg structure. : A

Residual thermal stress alleviation processes will be used for fabrication of the stringers -
in this panel to reduce distortion of the parts and simplify fastener installations. The test -
results presented in reference 2 indicate that residual thermal tension stresses improve the
buckling capacity of compression members. This additional compression capacity has not
been accounted for in these preliminary designs but will be accounted for when the desngns
are refined.

The weight of the existing lower quadrant panel including the skin, stringers, body
‘frames, shear clip angles, and the keel beam chords is 190 kg (419 Ibm). The concept 1 . .
weight for the same structural elements is 157 kg (346 1bm). This results in a weight savmgs -
of 17.4% with a total composite weight of 7.3 kg (16.2 ibm).

The reinforced titanium concept 2 design for the lower quadrant, shown in figures 22
and 23, consists of 6Al-4V titanium skins reinforced with one ply of graphite at 90° for pres-
sure and two plies of graphite at 45° for shear and graphite-reinforced titanium stringers. The
skin panel between STR 19 and 23 is 0.51-mm (0.020-in.) constant thickness and the skin
panel between STR 23 and 27 is 0.46-mm (0.018-in.) constant thickness. An additional
doubler is bonded to this panel section between STR 26 and 27 at BS 740 for additional _
shear capacity. The skin panel between STR 27 left and right is 0.71-mm (0.028-in.) constant
thickness with a tapered doubler bonded to the panel. There is no grap}ute reinforcing on

b
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this skin panel because of the mechanical attachment requirements of the keel beam chords.

The stringers are of constant thickness formed from-6Al-4V titanium sheet that varies in gage -

. from 0.64 mm (0.025 in.) to 1.02 mm (0. 040 in.). The gage of each stringer was based on

© . compression crippling calculations, The graphite reinforcing is bonded to the top of the hat

- section and the stringer is'bonded to the skin panel on top of the graphite reinforcing. The
"graphite layers on the stringers taper in thickness to accommodate the variations in the com-

pression end load. Bonded titanium frame tees, titanium J-section frames, and frame lateral -
stability straps are assembled on the skin panel in a similar manner to that described for the .

- top quadrant concept 2 panel. The mechanical longitudinal skin sphces are also identical to

those descnbed for the top quadrant desrgn. :

, The keel beani chords are mechanically fastened to the skin panel. Bonding was not
considered because of the possrbrhty of creating bond- voxds due to the relatwe stiffness of
the chord section. ’ r

: The weight of the conoept 2 tiesigri for the skin p'anei stringers, frame tees, frame sec-
tions, and the keel beam chords is 155 kg (341 1bm). This results ina werght savmgs of 18 6%
with a composite werght of 18.7 kg (41 .3 1bm).

The all~composrte concept 3 design, shown in figures 24 and 25, consists of cross-ply- -
laminated graphite skins on 19.05-mm (0.75-in.) thick aluminum honeycomb core. The
exterior skin contains a bonded, fine wire mesh screen for lightning protection and static dis-

‘sipation. The inner skin contains two plies at 90° for pressure, two plies at 45° for shear, and
one ply at 0° for erid load. The outer skin contains one ply at 90° two plies at 45° and one
ply at 0° Plies at 0° are bonded to the panel in the keel beam area for additional end.load,
and +45°graphite doublers are added for increased shear capacity in the keel beam shear
redistribution area. Frame tees are bonded fiberglass sections, and titanium frame J-sections

“are mechanically attached. As in the upper quadrant design, there are no separate fail-safe

-straps. The basic plies of graphite in the skin are continuous across the entire surface of the
panel. Each basic ply terminates on a tltamum step picture frame ‘which surrounds the panel. .
The panel splice at STR 19 locatron isa honeycomb-type double-lap splice.

The keel beam load at STR 28 is mtroduced into'a U-shaped titanium fitting, whrch B

extends 1520 mm (60'in.) forward of BS 740 and contains machined load transfer steps that
shear the compression load through the +45° doublers and into the 0° plies. The skin between

STR 28 left and right is a single trtamum sheet mechamcally fastened to the edges of the tita- _

- nium fitting.

The weight of the concept 3 design for the skin panel, frame tees, fran'\e. J-section, and
the titanium keel beam fitting is 152 kg (335 lbm) This results in 8 werght savings of 20.0%
with a composite werght of 47.4 kg (104, 6 lbm)

l

The weight of all three demgn concepts for the lower panel is summadzed in table 7
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TABLE 7.—LOWER QUADRANT PANEL WEIGHT SUMMARY

- Weight Composite
Concept Description Weight saving weight
. kg | ibm kg Ibm % kg Ibm
Baseline | Existing 727-200 190 | 419 | --| - - | - -
1| Aluminumskin; - 157 | 346 | 33 73 174 | 7.3 | 16.2
aluminum-graphite stringer : g B . . o
2 Titanium reinforced skin; 155 | 341 | 35 78 | 186 | 187 | 41.3
titanium-graphite stringer ' . ' ‘
3 | Grephiteskins; 152 | 335 | 38 | 84 | 200 | 47.4 [104.6
aluminum honeycomb core ) .

3.4.6 Side Quadrant—Shear Skin Panel

The side quadrant skin panel, shown in figure 26, extends from BS 680 to 740 and from
STR 10to 19. The panel contains 2024-T3 machine-tapered skins, 7075-T6 tapered stringers,
and 7075-T73 forged window frames. The stringers and window frames are riveted to the
skin, and the panel assembly is attached to the body frames by full-depth shear clip angles N
along each frame. Fail-safe straps are bonded to the skin at each frame location. The skin
gage varies from a minimum of 1.02 mm (0.040 in.) to a maximum of 6.10 mm (0.240 in.) at
BS 740 in the window area. The panel has a wing scanmng light cutout at STR 15 between
BS 720B and 720C. ‘ : :

. The reinforced aluminum concept 1 design, shown in figures 27 and 28, consistS of
7024—T3 aluminum machine-tapered skins, 2024-T3 bonded waffle doublers, 7075-T73 -
forged window frames, and 7075-T6 graphite-reinforced stringers. The skin panel between
STR 10 and 14 varies from 1.52 mm (0.060 in.) to 4.06 mm (0.160 in.) thick and the
bonded waffle doubler in this area is 0.81 mm (0.032 in.) thick. The skin panel between
STR 14 and 19 varies in thickness from 1.02 mm (0.040 in.) to 2.41 mm (0.095 in.) and the
doubler in this area is 0.63 mm (0.025 in.) thick. The skin panel assembly is attached to the
body frames with full-depth shear clip angles along each frame. :

The splice stringers at STR 10, 14; and 19.dre similar to those in the upper quadrant,
with graphite reinforcing bonded to the outstanding legs. Stringers STR 11 and 13 are Z-
sections with graphite reinforcing, and stringers STR 15, 16, and 18 are similar to those in
the lower quadrant. The crease beam stringer at STR 17 was not designed with graphite rein-
forcing because of mechanical attachment requirements of the floor structure. The doubler
between STR 10and 14is proflled around the window frame to carry the pressure load and
shear around the cutout.

Residual thermal stress alleviation processes would be used for fabrlcatlon of all the
stringers.to reduce distortion and improve the fatigue properties.
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The weight of both cxisfing side quadrant panels including the skin panel, stringers,

" body frames, and shear clips is 211 kg (465 Ibm). The concept I weight for the same struc-

tural e]emcnts is 171 kg (377 1bm). This results in a weight savings of 18.9% with a compos-

. ite weight of 4.1 kg (9.0 1bm).

The reinforced titanium concept 2 design for the side quadrant, shown in figures 29 and
30, consists of graphite-reinforced 6Al-4V titanium skins and graphite-reinforced titanium
stringers. The skin panel between STR 10 and 14 is taper machined from a nominal thickness
of 0.76 mm (0.030in.) to 3.17 mm (0.125 in.). The panel contains machined pockets for .
composite reinforcing. The area between STR 10 and 11 contains two plies at 90°in the
recesses and the area between STR 11 and 13 contains two plies at 45° The area between
STR 13 and 14 contains two plies at 45°in the recesses. Two plies at 45°are also laid over
the entire area from STR 10 to 14. The plies in the recesses are bonded to steps machined in
the basic skin, and the overall #45°plies are bonded to step fittings located around each
window and along the splices at STR 10 and 14. The skin panels between STR 14 and 19 are
of uniform thickness 0.38 mm (0.015 in.), with one ply at 90° and two plies at 45° A tita-
nium doubler is added at BS 740 and STR'17, and $45°graphite doublers are added in other
areas of high shear. The stringers are of constant thickness formed from 6Al-4V titanium
sheet or machined from extrusions. The stringer sections used in this design are shown in
figure 30. The crease beam, STR 17, was not designed for composite application because of
the panel splice and floor structure mechanical attachment requirements. The window frame
is machined from titanium and bonded to the skin panel. Bonded titanium frame tees, tita-
nium J-section frames, and frame lateral stability straps are assembled on the skin panel in a
manner similar to that described for the upper and lower quadrant concept 2 panels. The
mechanical longitudinal skin splices are also identical to those described for the upper and
lower quadrant designs. -

The weight of the concept 2 design for both side panelsis 144 kg (318 Ibm). This
results in a weight savings of 31.6% with a composite weight of 10.0 kg (22.0 1bm).

- The all-composite concept 3 design, shown in figures 31 and 32, consists of cross-ply-

laminated graphite skins on 19.1-mm (0.75-in.) thick aluminum honeycomb core. The exte- . .

rior skin contains a bonded lightning protection screen similar to that of the upper and lower
quadrant panels. The basic inner skin contains two plies at 90° two plies at 45°, and one ply
at 0° The basic outer skin contains one ply at 90°, two plies at 45° and one ply at 0° Addi-
tional plies at 90°are bonded to both skins between STR 10 and 14. Also, additional £45°
plies are bonded in this area. The large end load at the STR 17 location is taken by a series of
0° plies on both inner and outer skins. The floor structure is connected to the body shell by
means of a fiberglass tee bonded to the panel surface. The window frames are machined tita-
nium sections that contain bond load transfer steps for each ply. Frame tees are bonded

fiberglass sections, and titanium frame J-sections are mechanically attached. As in the upper =

and lower quadrant design, there are no separate fail-safe straps. The basic plies of graphite in
the skin are continuous across the entire surface of the panel. Each basic ply terminates on a
titanium step picture frame which surrounds the panel.

The weight of the concept 3 design for both side panelsis 137 kg (302 Ibm). This
results in a weight savings of 35.0% with a ¢omposite weight of 39 kg (86 1bm).
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The weights of all three design conceﬁts for the side panels are summarized in table 8.

TABLE 8.—SIDE QUADRANT PANEL WEIGHT SUMMARY

Weight Composite

Concept ‘ Description Weight saving weight
. kg Ibm kg Ibm % kg | ibm
Baseline Existing 727-200 211 465 - - - -~ -
1 Aluminumskin; = . 43¢ | 377 | 40 | 88 [ 189 [ 41 9
aluminum-graphite stringer .
2 Titanium reinforced skin; 124 | 318 | 67 | 47 | 316 | 100 | 22
titanium-graphite stringer :
3 Graphite skins; 137 | 302 | 74 | 163 | 350 | 300 | 86
aluminum honeycomb core - ) i

‘The weight of a fuselage section containing each of the three design concepts is shown
in table 9. The all-composite floor panels-are included in the weights for each of the three -
concepts; the concept | weight incorporates concept 2-1 floor beams, and the concept 2 and
3 weights, concept 2-2 floor beams. '

TABLE 9.—-WEIGHT SUMMARY OF FUSELAGE SECTION

Component Baseline ' Concept 1 Concept 2 Concept 3

, kg Ibm kg | ‘bm kg “Tbm kg Tbm
Shell o | - I

Upper quadrant | 144 317 115 | 254 112 248 | 1N - 245
- Side quadrant 211 465 171 377 144 318 137 - 302

Lower quadrant . ‘168 . 371 143 316 141 310 152 335
Floor beams 57 126 39 86 38 84 38 84
Floor panels : 53 116 .31 ) 69 N 69 31 69
Keel beam _ 22 48 14 30 14 | 31 {a) {a)

Total weight 655 1443 513 1132 480 1060 469 1035

Weight saving - - 141 311 | 175 383 186 408
“ weight saving - - 215 21.5 26.5 26.5 282 | 282
Weight of composite ] — - | 344 75.8 | 60.6 | 133.6 | 166.3 366.6
CEFP - 4.0 2.87 1.11

dIncluded in lower quadrant panel

bComposite efficiency factor
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3.5 COST BENEFIT STUDIES

Weight savings for an entire fuselage section between the flight deck area and the aft

. pressure bulkhead were obtained, for each of the concepts studied, by extrapolating the
savings in the study section to the total fuselage on the basis of primary structural weight and

bending moments and shear loads. The results are shown in table 10. This table also contains
weight estimates of the systems impact of the concept 2 and 3 designs which will resuit from
significant changes to electromagnetic interference and electrical ground paths. The large
reduction in the weight savings for the total fuselage as compared to the study section is due
to the fact that the large bulkheads at the front and rear spars are included in the total pri- .
mary structural weight and no weight savings were obtained for these components in the

" applications study. The weight savings for the total fuselage were further reduced because of

the large area of minimum-gage structure outside of the study section.

TABLE 10.—TOTAL FUSELAGE WEIGHT SAVING SUMMARY

~— 200 in.— 360 in. — |

Area considered

. Structural System
-Concept Weight impact impact - CEF
. kg lB_m g lbm kg lbm % .

Baseline 5195 11 452 - — . - — -

-1 4794 | 10569 -401 - 883 - - 7.8 1.25
2 4511 9944 -684 -1508 +454 +100 | 12.2 1.12
3 4465 9843 | -730 -1609 +136 +300 114 0.34

Manufacturing production methods for each design concept were formulated, and cost
estimates were developed for a 300-airplane production program at a cost for graphite com-
posite of $132/kg ($60/Ibm). These cost estimates, shown'in table 11, do not include major
costs for facilities. The effect on the cost per pound saving of reducing the composite price is
shown in figure 33. ' '



TABLE 11.~WEIGHT SAVING AND INCREASED PRODUCTION COSTS FOR TOTAL FUSELAGE

item " Units Baseline Concept 1 Concept 2 Concept 3
kg 5195 4794 4511 4 465
Total primary fuselage weight '
Ibm 11 452 10 569 9944 9843
. a kg - 401 684 730
Weight saved
ibm . - 833 1508 1609
Increased production cost? $ . - 27786 | 131130 | 160875
. ' . $/kg - 169.30 191.70 220.30
Cost per kilogram (pound) of saving
$/ibm ~ 31.50 87.00 100.00
L kg - 321 568 1725
Composite weight in fuselage . :
: . Ibm ~ 707 1253 3 804

3Structural weight saving

b,Graphite composite cost at $132/kg ($60/1b)

An cconomic analysis was performed to define the cost benefits to airline companies of

incorporating composite structures on commercial jet aircraft. The analysis was applied to
the total 727-200 fuselage using the weights and costs shown in table 11 and the following

“set of conditions.

©  The average trip length and yearly utrhzatxon rate was obtamed from 1969 Us.

- domestic trunk route data

. @ . The arrcraft was considered to have the existing payload capability and number

and type of engines.

o  The total aircraft weight savings was taken as twice that saved for the fuselage
alone. This cascading ratio has been substantiated by Boeing [R&D studies.

o  Fuel and maintenance costs were the only two items credited as direct operating -
" cost savings. The fuel savings were obtained from aircraft performance curves, and

the reduction in maintenance costs was calculated from the followmg Air Trans-
port Association equation with 1971 coefficients.

Maintenance houré’per fliéht hour =

where Wa = airframe weight.

0.01 Wa

ve.

~ 680

1000

(Wa/1000) + 85
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° Direct Jabor costs plus overhcad were computed at $15/hr.

e - Aircralt insurance costs were increased due to the more expensive construction. .

e  The present values of cost savings and insurance were bascd on a 15% cost of

-capital for 12 years of service.

The results of this analysis, shown in table 12, indicate that only concept 1 is cost effec-

tive at a graphite composite price of $132/kg (§60/lbm). The analysis was further extended
to show the effect of reducing the composite cost to $44/kg ($20/ibm). The savings in fuel

and maintenance were kept constant, and the insurance costs were reduced according to the

reduction in the production costs. The results, shown in figure 34, indicate that concept |

_rapidly increases in cost effectiveness, and concept 3 becomes cost effective at a composite

price of approximately $77/kg ($35/1bm). The projected cost estimates shown in figure 35
indicate that concept 3 will become cost effective in late 1976. The results shown in figure
34 indicate that concept 2 would not become cost effective until the graphite composite:
price is less than $44/kg ($20/ibm). The effect of a reduction in the material cost on this

concept was not sufficient to offset the estimated increased production costs.

TABLE 12—ECONOMIC ANALYSIS FOR CASCADED WEIGHT SAVINGS
OF A 727-:200 TOTAL AIRCRAFT

Concept 2

0.40

ltem Units Concept 1 Concept 3
kg 801 1368 1460
Weight saved, total aircraft
o Ibm 1766 3016 3218
Increased production cost $ 27786 131 130 160 875
, A $/kg 34.70 95.80 110.0
Cost per kilogram (pound) saved
$/lbm - 16.73 _43.47 50.00
Present value of fuel savings $ 18 980 34139 36 404 -
Present value maintenance reduction $ 14 750 25 636 27 280
Present value of insurance $ . ~1507 - =7097 -8726
Summation of present values ] 33223 52 678 54 958
Present value/in-creased cost - 1.19 - 0.34.

A detailed economic analysis to mcludc the benefits of increased revenue was not per-

formed, since this type of analysis requires a definition of route structures and passenger load

factor. A brief study of airline routes and recorded data of passenger load factor indicates
that the usc of composites on commercial airlines will have a present value of between

$22/kg ($10/lbm) and $331/kg ($150/1bm) of weight saving. The higher present values apply

to a very limited number of routes mvolvmg the use of very few aucraft



3.6 DEVELOPMENTAL PROGRAM COMPONENTS AND RELATIVE COSTS

L DeveIOpmental program costs were estxmated and the relative cost for each concept is

defined as follows

Relative Dévelopmental

Concept ) “Program Cost
1.0
. 2.4
3. 33

The concept | program cost includes the developmental program plan as defined in sec-
‘tion 4.0 and appendix A and two flight service evaluation aircraft. Each service evaluation
aircraft will contain a top quadrant panel and a lower quadrant panel. The top quadrant
panel will provide information on tension- and tension-fatigue-loaded structure, and the
lower quadrant panel will provide information on compression-loaded structure. The top
quadrant panel has been extended beyond the original study section, since this panel size is
better suited for the aircraft assembly. Also, this extended panel will evaluate uniaxial com-
posite reinforcing through a wider range of end loads. The composite-reinforced side quad-
rant panels will not be installed on the flight evaluation aircraft, since the axial stress levels i in

the reinforced stringers are less than the tension and compression stresses experienced by the

upper and lower quadrant stringers. It was considered that the additional information
obtamed by service evaluation of the side quadrant panels did not warrant the relatxvely hxgh
cost of the redemgned panels. .

The concept 1 fhght evaluatlon axrcraft 1s shown m fxgure 36. The sect:on selected w1ll
contam the followmg components B : .

) ‘Concept 1-—upper quadrant panel 9 65 m (380 in.) long
o Concep-t I.-—lower quadrant-panel, 4.57 m (180 in.) long
'e Concept 2-1 floor beams, 8

o All-composife floor panels—4.57-m (180-in.) long section

\
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2

TABLE 13— WE/GHTSUMMARY OF THE CONCEPT 1

3

) FLIGHT EVALUA T/ON COMPONENTS

. The wcwhts of the componmts in thc conccpt I scrv1cc cvaluation alrcraft are defined
in table 13. ' : S oo

‘ "7 :Baselme

_ } _ Concept 1

.Compone.nt"" el "'~'_kgf : “lbm - kg Ilbm
Shell - . : I T :

Upper quadrant 9. 65m (380in. ) Iong . 284 | 883 © 210 463
Lower quadrant 4 57 m (180 in.) Iong'f _' “1 - 168. 3N 143 316
Floor beams - ' 57 - | 126 39 86
Floor panels ;B3 116 31 69
Keel beam | _ . 22 - 48 14 30
Total wenght - 564 1244 437 964
Weight saving = - 127 280
% weight saving - - 225 225
Weight of composite . - - 32.7 72.0

The concept 2 procram cost in¢ludes the devclopmental ‘program plan as defined in sec-
tion 4.0 and appendxx B and two fhght service-evaluation aircraft. The concept.3 program
cost includes the developmental program plan as dcfmed in section 4.0 and appendix Cand
two flight service evaluation ajrcraft. The flight evaluatxon aircraft for concepts 2 and 3 will
-contain: the respective 4.57-m (180-in,) long quadrant panels eight concept 2-2 floor beams,
and a 4.57-m (180-m.) long section of the all-composxte ﬂoor panels. The welght of these

' components has been prevxously defined in table 9 ‘ ~

A cost comparlson for mstallatxon of the fhght components was made between inline
.prodiiction and retrofit mstallatxon The, mlme productlon installation costs for all concepts
were approximately ‘oneé-Half the retrofxt costs therefore the'inline productxon process was
used for all concepts. : A




3.7 DISCUSSION OF STUDY RESULTS AND RECOMMENDATIONS

The weight saving estimates and cost benefits analysis produced during the application -
study were obtained for the aircraft section studied with the desxgn constraints defined in
section 3.4, : .

The concept | design represents a minimum developmental cost program. The resuits of :

the flight service evaluation program would provide valuable information on the effect of
commercial aircraft service environment on uniaxial graphite-reinforced stringers in fuselage
application. The results of the cost benefits study indicate that this design approach is pres-

“ently cost effective, which will allow the concept to be incorporated in new aircraft designs .

and derivatives of present aircraft in the near future. A concept | airframe design will also
result in minimum-changes to inspection, maintenance, and electrical systems.

The results of the cost benefits study indicate that concept 2 is not cost cffective based

on the present fabrication cost estimates and projected graphite costs. However, the results .

from the concept 2 program would provide valuable information on the effect of commercial

aircraft service environment on uniaxial reinforcement.of meta] structures and cross-ply com-
posite laminates,

Implementation of the concept 3 developmental program would provide valuable infor- - '

mation on the effect of commercial aircraft service environment on all-composite primary
structure. The results of the cost benefits study indicate that the cost effectiveness of this
concept is strongly influenced by the future graphite price. Incorporation of a concept 3 .
design into a commercial jet aircraft fuselage will require significant modifications to inspec-

tion, maintenance, and electrical systems. These changes will result in increased expenses for -

commercial airline companies, which were not included in the cost benefits study.

On the basis of the cost benefits study, the developmental program costs, and the
potential for early implementation of composites on commercial jet aircraft, the concept 1
design is recommended for a 5-year flight service evaluatxon program :
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6.35 mm

{0.25i

dia holes —\f
1 . 1

n.)

TT'

T
‘127mm‘}j
{0.50 in.)

1.27 mm
{0.050 in.} =~—>

K;

=

NS

0.406 mm
{0.016 in.)
7075-T6
aluminum

1 ' o
0,406 mm
(0.016 in.)
7075-T6
aluminum

1.27 mm

(0.050 in.)

graphite /epoxy

5 plies + 45°

5 plies —45°

alternately

10 plies graphite {0°)
_both chords

|

ad |

FIGURE 7.—CONCEPT 3-1 FLOOR BEAM. " -
. AT STATION 7208 i
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UL 1L

'(o.'so in.)

1.77 mm

(0.07 in,)—

<—f1.77 mm

(0.07 in.)

PRD- 49 _
7 plies +45° .

"7 plies —45%
alternately

=10 plies graphite (0°)

both chords -

FIGURE 8.—CONCEPT 3-2 FLOOR BEAM - -

- AT STATION 7208 .
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4570 mm
(180 in.)

Keel beam cord -

N
%-'1« ,L’\\r
S
&
74 .
- FIGURE 10.—EXISTING KEEL BEAM
. BS
Titanium 680

: step fittings . ‘ - ' o
IR — BS
< : : Section BS 680 720A ‘9
_J N ks
720F

Section BS 720F + 254 mm (10 in.) | '
| s | M
: 720F +254 mm (10 in.)

[« —

Section BS 720A

. °132 Plies
" 0 graphite

Section BS 720F
FIGURE 11.-4ALUM/NUM-RE/NFORCEQ KEEL BEAM DESIGN
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increased cost/weight saving, $/lbm
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'.\ Concept 3
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FIGURE 33.—EFFECT OF GRAPHIfE‘ COMPOSITE PRICE

ON THE COST OF WEIGHT SAVING
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Present value/increased cost, $/$
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4.0 DEMONSTRATION PROGRAM PLAN

The demonstratlon program plan for all three concepts is dlvxded mto f1ve phases, as’
follows

® Phasel—developmental program

e Phase ll—design; analysls, and engineering verification tests

®  Phase III-fabrication and quality assurance

- Phase IV—full-scale ground ,tests and documentation

o  Phase V—flight service evaluation
A discuésion of each phase is contained in the following sections. The schedules for all five
phases for concepts 1, 2, and 3 are shown in figures 37, 38, and 39, respectively. Each of the
following sections contains a general program discussion which relates to all three concepts.

Specific tests that relate to the concept 1, 2, and 3 desxgns are contained in appendlxes A, B,
and C, respectlvely

4.1 PHASE I-DEVELOPMENTAL PROGRAM

The developmental program will provide the basic engineering knowledge necessary to.
proceed with the final design of the components. The major portion of this phase will be

-completed before final release of the component drawings. The adhesive environmental expo-. )

sure tests will not be completed before final drawing reiease; however these data w1ll be
available before the start of the flight service test.

4.1.1 Composite Laminate Selection

The composite laminates defined in table 2 will be evaluated, and the most suitable
laminate will be selected on the basis of repeatability of mechanical properties, bond strength
to the base metal, and handling characteristics for fabrication processes. A procurement
specification will be developed as a result of this series of tests. The test program for each
concept is contained in the appendixes. N

4.1.2 Adhesive Selection, Laminate Bonding, and Titanium Surface Treatment

The candidate adhesive systems defined in table 3 will be evaluated. AF 30 is presently
considered to be the only 450°K (350° F) system that will be used; therefore, no selection
process will be needed. The selection of the 394° K (250° F) system will be based on evalua- -
" tion according to criteria contained in Boeing materials specifications. Standard 12.7-mm
(0.5-in.) overlap specimens will be used in room temperature tests and environmental
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and 3 designs to establish damage containment parameters.

resistance will be determined using stressed specimens exposed to elevated temperature and
humidity. Along with this evaluation of the 394° K (250° F) systems on metal substrates, the
compatibility of these systems with the selected composite will be evaluated. An adhesive
material specification and a process specification will be written. :

A titanium surface treatment prograrh will be.conducted in conjunction with the com-
posite bonding program. This program will evaluate the compatibility of present surface
treatment methods with the selected composite and adhesive systems. Environmental tests -

will be conducted on laboratory specimens, and the titanium surface treatment process will | '

be evaluated. '

The composite bonding and surface treatment programs will be the same for all concepts.

4.1.3 Adhesive Laboratory and Outdoor Exposure Tests ‘ N .

Laboratory and outdoor exposure tests will be conducted using AF 30 and the selected
394°K (250°F) system. Since laboratory tests indicate that adhesive bond delamination
increases with increasing humidity and temperature, a high-humidity, warm climate such as

that of Panama will be selected for the outdoor exposure tests. The laboratory exposures will
simulate critical ground and flight service conditions by subjecting test specimens to varying -

temperature and humidity levels. Stressed lap shear and fracture propagation data will be
generated. The detailed test plan for each concept is defined in the appendixes.

4.1.4 Design, Analysis, and Engineering Feasibility Tests

The designs produced during the applications study for all concepts contain areas of

.7'_

engineering unknowns regarding ultimate strength, fatigue resistance, and fracture toughness, . -

These unknowns must be investigated before final design drawings are started. The designs
produced in the applications studies will be refined and potential problem areas detailed to
provide visibility. Analyses of ultimate strength, fatigue capability, and fracture toughness
will be conducted on the refined designs. In those areas where available test data and analysis
methods are not sufficient to proceed with final designs, engineering feasibility tests will be
conducted. Tests will also be conducted on joint details to détermine strength and fatigue
requirements, and the optimum geometry of the composite load transfer fittings will be
determined. Fracture toughness tests will be conducted on subscale panels for the concept 2

4.1.5 Manufacturing Methods Development
The designs produced during the applications study for all concepts contain fabrication

unknowns regarding tolerances and tooling requirements. The development of tolerance con-
trol and tooling methods will require that test panels be fabricated and various methods be .

-tried to satisfy the engineering design requirements. These test panels will contain representa-
" tive components defined by the refined designs produced during phase I. The results of this

program will identify the fabrication problem areas and supply preliminary information to
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the design engineers. This program will also supply 1nformatron for fabrication of thc engi-
necring feasibility panels allowables test panels, and the full-scale manufacturmg feasrbrhty
) hardware :

4.1.6 Basic Allowables

Basic engineering allowables required for designing with graphite composites are avail-
able in publications such as reference 3. However, due to the variation in mechanical proper-
tics caused by fabrication procedures and test methods it is considered necessary to conduct
a test program to determine the basic mechanical properties of the selected fiber and resin
system. Tests will be conducted to determine the environmental resistance of metal and com- -
posite joints and to establish allowable stresses for particular structural configurations in each
concept. Tests will also be conducted to determine the effect of flaw size in the cured com-
posite components and to establish quahty control limits, The test programs for each con-.
cept are defined in the appendixes.

41,7 Mamrfacturing Feasibility Hardware

There are many areas of unknowns regarding the feasibility of fabrication of full-scale
~ components for each design concept. The manufacturing methods development program o
previously defined will evaluate detail fabrication problems, but the “size effect’ of full-scale . .
components will not have been investigated. An example of the size effect is the problems '
that result during bonding of large components of different relative stiffnesses. The mechan-
“ical attachment of stringers that contain residual thermal stresses will also cause some diffi- ..
culties during fabrication. These problem areas will be investigated by fabricating full-size
components and developing the assembly requirements. The results of this study will be
incorporated into the final assembly processes for the ground and flight test components.

The results of this study will also.be used, where necessary, to modify the final designs to
ensure a product of acceptable engineering quality. These test panels will contain representa- '
tive components and, wherever possible, will be tested in the engineering feasibility and verl-

frcatlon programs. The feasibility hardware for each concept is defined in the appendixes. T :

4.1.8 Quality Assurance ' e

Many areas of the concept designs contain structural sections and composite laminate }
thicknesses that have not previously been subjected to'nondestructive inspection. Quality .
assurance developmental programs w1ll be conducted to establxsh inspection techniques for
these areas. : \

‘An optical system for measuring the residual thermal stresses in the concept 1 rein-
forced stringers will be developed during this program. This system will be assembled, veri-
fied, and then released to the fabrication quality assurance group for use in measuring the
residual thermal stresses.
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The inspection of composite remforcmg on the stringers in all concepts will require the -
development of through-transmission water-coupled ultrasonic inspection equipment of a
size to suit the narrow strips of composite on the stringers. This method of inspection has

- been selected because of the high flaw resolution that can be obtained. The equipment will

be portable and will use small-diameter water nozzles for inspecting the full width of the

bonded composite reinforcing strips. The inspection capability of this equipment will be veri- -

fied by checking reinforced stringer sections with known flaw inclusions.

A section of the thickest keel beam laminate stack in the concept 1 and 2 designs will
be inspected to determine the capability of existing through-transmission ultrasonic inspec-
tion equipment. Flaws of varying size will be located at various positions through the lami-
nate thickness, and the part will be subjected to ultrasonic inspection. The results of these
tests will be used to formulate the inspection procedure for the final parts.

The floor beams will be fabricated as a single-stage bond. The inspection methods
required to verify the composite-reinforced chord bond in the area of the web will be inves-
tigated. The results of this study will be used to define the inspection procedure for the final
parts. ' '

The most suitable techniques for inspecting the flight service aircraft at the end of the
S-year evaluation period will be determined in this phase of the program. Completed panel
sections from the manufacturing feasibility studies will be subjected to various inspection
methods and selections will be made

4.1.9 Electrodynamic Systems

The semiconductive nature of the graphite composite components in all design concepts
invalidates the electrical bonding, grounding, and shielding methods employed on present
all-metal aircraft. The effect of the composite material on lightning protection, static charge
dissipation, electrical ground continuity, and electromagnetic interference will have to be
evaluated. The results from a recent Air Force contract (ref. 4) will be used in this program.
Each concept design will be studied and recommendatlons made to ensure that all electrical

: system requirements are satisfied.

4.2 PHASE II—DESIGN, ANALYSIS, AND ENGINEERING VERIFICATION TESTS

\

4.2.1 Design

The final designs of the ground test and flight service evaluation components will be
based on the refined concept designs produced during phase 1. The phase I designs will be
modified where necessary toincorporate the results of the engineering and manufacturing
feasibility tests and the electrical system requirement studies. The titanium surface treatment .
process and process specifications for composite laminates and adhesives developed during
phase I will also be incorporated in the final designs. The de51gn drawmgs will be produced
accordmg to Boeing productlon drawing standards.



4.2.2 Analysis

The-analysis of the components in all concepts-will require a detailed check of ultimate
strength, fatigue, and fracture toughness. The ultimate strength checks of uniaxial reinforced
- components will be accomplished by converting the composite to an equivalent metal section
and applying conventional analysis methods. The residual thermal stresses will be included in
all calculations. A finite- dxqplaccment computer model will be established for the complete
fusclage scction, and all critical load cases will be checked. In the transition areas between
-the existing fusclage and the composite section, a fine-grid model will be established and used
to determine the adequacy of the splice details throughout the operating temperature range
of the aircraft. The computer program that will be used for these analyses is described in ref-
erence. 5. In those arcas of cross-plied laminates, a computer program similar to that
described in the NAS1-8858 phase 111 tests will be used (see ref. 6). In the compression-
loaded arcas, computer analyses will be conducted using the programs defined in references
7, 8, and 9 to check the structural elements for critical buckling loads. A fatigue analysis will
be performed, and the resulting fatigue stresses will be compared to the results of the labora-
tory test panels. A fracture toughness analysis will be conducted to determine damage con-
tainment requirements, and the results from the structural test panels will be used for com-
parison to ensure adequate damage containment capability.

4.2.3 Engineering Verification Tests

Structural tests will be conducted on the most critical components in each design con-’
cept to verify the final designs. The results of this program will ensure that the full-scale
ground test goals can be achieved. Where the test results indicate a deficiency, the final
designs will be modified before the drawings are released for fabncatlon The test program ..
- for each concept is contained in the'appendixes. '

4.3 PHASE I11-FABRICATION AND QUALITY ASSURANCE

4.3.1 Fabrication

The final fabrication processes will be based on the results of the manufacturing meth-
ods development program, the manufacturing feasibility tests, and the final drawings. Basic
fabrication processes have been established for all concepts based on studies conducted -

during the application analysis. These are defined in the appendixes for each concept and are ~~. -

- considered valid; only a few detail procedures will be modified by the results of the phase 1
programs. : o T~

4.3.2 Quality Assurance

'Final quality assurance procedures for all concepts will be based on the phase I pro- .
grams and existing inspection methods. Quality assurance ‘procedures have been established \
for all concepts based on the applications study deS1gns The following inspection procedures~
are common to all concepts: .
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e  Standard techniques will be used fdt-véll-metal receiving inspection.

@ Receiving inspection for the selected composite and the 394° K (250° F) adhesive
system. will be conducted according to the procurement specification developed in
phase I, and receiving inspection of the AF 30 adhesive will be conducted accord-
ing to existing company specifications. ' :

o Quality control of the co'mposite and 394°K (250° F) adhesive system during
fabrication will be maintained according to the process specifications developed in
4 phase I, and AF 30 quality control will be conducted according to existing com- .
pany spemflcatlons

©  Quality control of metal fabrication will be mamtamed by applymg conventional
metal mspect10n techniques.

Particular requirements for each concept are defined in the appendixes.

4.4 PHASE IV-FULL-SCALE GROUND TESTS AND DOCUMENTATION

4.4.1 Full-Scale Ground Tests

'Flight evaluation components for all concepts will be subjected to ground tests to verify

their structural integrity. These components will be separate from the final flight service eval-

uation sections, and they will be fabricated from the final drawings. The concept 2 and 3
total fuselage section will be tested to limit and ultimate loads, and a four-lifetime fatigue
spectrum will be applied. The concept 1 total fuselage section will not be tested, since only"
the upper and lower quadrant panels are being modified with the composite components.
The major splice areas of the concept 1 panels will be tested in fatigue to verify the final
designs. The fatigue resistance and damage containment capability due to pressure loading of
the concept 1 panels are not considered unknowns since similar waffle doubler and fail-safe
strap construction in the concept 1 designs has already been evaluated in the Boeing 737 air-
craft. Blade penetration tests on concept 1 panels will further substantiate the damage con- -
tainment capabilities. The details of the test programs for each concept are contamed in the
appendxxes :

4.4.2 Documentation *

Quarterly reports and a final document f_or all concepts will behpublished in accordance
with the schedules shown in figures 37, 38, and 39. The quarterly reports will describe the
progress that has been made in each area, present test results obtained during the previous 3

_months, and define proposed test programs and schedules for the following 3 months. At the

completion of the full-scale ground tests, a final document will be prepared that will contain
the results of the tests and a summary of the material contained in the quarterly reports.
Inspection reports will be submitted at 6-month intervals throughout the flight evaluation
period. These reports are described in section 4.5.6. .



4.5 PHASE Y——FLICHT SERVICE EVALUATION

4.5.1 _Scction lnétallation

All scrvice evaluation components will be assembled in existing production line tools
modificd to accommodate the small dimensional changes of the composite components. The
concept 2and 3 sections will be assembled outside of the production line and then mated
with the adjoining sections in a final assembly. The concept | components will be inserted
dircetly into the production line and assembly will proceed. without further modification.

4.5.2 Section Instrumentation

Service evaluation sections for all concepts will contain strain gages to monitor the
load-carrying capability of the composite-reinforced components. There will be 45 strain
eage bridges installed in the quadrant panels of the concept 2 and 3 sections and 30 strain
gage bridges installed in he concept 1 panels. The floor beams will be instrumented with an
additional five strain gage bridges in each concept. The wire leads will be routed to one loca-
tion where a flight recorder can be conveniently connected.

4'.5.3 Aircraft Certification

" The service evaluation aircraft will be subjected to the standard flight test program for
all production line aircraft. No additional flight tests will be required for FAA certification,
since the weight decrease and altered stiffness are not sufficient to affect the flight character-
istics. During the normal flight test for airline acceptance, the aircraft will be subjected to

two mancuver conditions to obtain strain gage data. The first maneuver will be performed to

provide tension in the upper quadrant panel and compression in the lower quadrant panel.’

The second maneuver will be performed to provide compression in the upper quadrant panel

anud tension in the lower quadrant panel. During these maneuvers, other data related to load
factor, airspeed. altitude, and gross weight distribution will be recorded. This information

© will become baseline data that will be used for companson throughout the flight evaluatlon
period,

4.5.4 Aircraft Monitoring<

At 6-month intervals for a period of § years, the service evaluatlon alrcraft will be sub-
jected to the two maneuvers previously defined. Strain gage data will be obtained during
these tests and the aircraft will then be returned to commercial service.

The strain gage data obtained during each of the Gmonth checks will be comparéd to
the baseline data. If the strain gage data indicate that the composite reinforcing is correctly.
~louded. the aircraft will be allowed to continue in commercial service. If, however, these data
mdicate significant change in the load levels the aircraft will be recalled and a detalled

inspection performed. : . :

~
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4.5.5 Aircraft Inspection and Disposition

At the end of the S-year service evaluation program, the composite components will be y
nondestructive inspected for voids, delamination, and environmental degradation. This
inspection will require that the interior panels and insulation liners be removed. At the com-
pletion of this inspection, and depending upon the results of the total evaluation program,
the composite components will either remain on the aircraft or be replaced with conven-
tional structure and the aircraft will be returned to commercial service.

-4.5.6 Inspection Reports

Inspection reports will be prepared at 6-month intervals throughout the flight evalua-
tion period. These reports will contain the strain gage information obtained on the previous
flight test and the utilization data of the aircraft for the previous 6 months. At the end of the
flight service evaluation period a report will be submitted that contains the results of the
final inspection and a summary of all data collected during the 6-month inspections.
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“The composrtc laminates that were selected during the materrals study (sec. 3.3) will: be |

APPENDIX A
DETAILED TEST AND MANUFACTURING PLANS
FOR‘ THE CONCEPT 1 DEVELOPMENT PROGRAM

A.l LAMINATE SELECT-ION TESTS

evaluated in the followmg test program. One composite system will be selected for use
throughout the deve_lopmental program based on the results of this test program.

Tension, compression, and interlaminar shear tests will be conducted on uniaxial com-
posite at three temperatures, and interlaminar shear-tests of bonded titanium and composite .

will be conducted. This test program is summarized in table A-1.

A.2 ADHESIVE LABORATORY AND OUTDOOR EXPOSURE TESTS

Laboratory and outdoor exposure tests will be conducted using AF 30 and the selected -
394° K (250° F) system. Stressed lap shear and fracture propagation data will be generated'

The fracture propagation specimen.is shown in fxgure A-1, the lap shear specrmen in fxgure .

- A-2,and the detarled test plan in table A- 2

" The basic allowables test. program is shown in-tab"le A-3.

A.3 BASIC ALLOWABLES

A4 MANUFACTURING FEASIBILTTY HARDWARE

Full-scale components will be fabncated durmg thrs program These components are
defined as follows:

A 3050-mm (120-in.) long by 610-mm (24-in.) wide section of the upper quadrant

skin will be fabricated. A 3050-mm (120-in.) long strmger ofthe strffest confrgura- -

tion will: be fabricated and rrveted to the skm

A 3050-mm (120-in.) long 'by 610 -mm (24-in}) wide section of the lower quadrant

skin will be fabricated. A 3050-mm (120-in.) long stnnger of the stiffest conﬁgura-
tion will be fabricated and rrveted to the skm

‘A 2540-mm (100-i -in.) long sectron of a keel beam chord will be fabncated and fas-
tened to the lower quadrant skm panel. - :

\
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A.5 ENGINEERING VERIFICATION TESTS

The following programs define the engineering verification tests that will be performed
for the concept 1 development program.

- A.5.1 Test 1—Residual Thermal Stress Fatigue Test

This test will evaluate the effect on the fatigue life of residual thermal stresses in rein- .
forced stringers. The section of the panel is shown in figure A-3; the panel is 910 mm (36 in.)
long. The number of cycles to failure will be obtained for 12 specimens—six in each of two
stringer configurations (5 and 20 plies, 0°). Three specimens of each configuration will be
tested at 218°K (-67°F) and three at room temperature.

A.5.2 Test 2—Lower Quadrant Compression Panel

This test will evaluate the compression load capability of a representative section of the
lower quadrant design (fig. A-4). The panel will be tested by loading the keel beams with.
concentrated loads and reacting these with a uniform load along the other panel edge. The
panel will be curved, and the unloaded edges will be simply supported. Two panels will be |
tested to compression ultimate. The mstrumentatmn on each panel will consist of 40 axial
gages and 10 rosette gages.

A.5.3 Test 3—Axial Tension Fail-Safe Panel

This test will evaluate the fatigue crack propagation rates and damage containment
capability of a representative upper quadrant panel under axial tension load (fig. A-5).
Fatigue cracks will be cut in the panel, the panel will be fatigue cycled for approximately

'50 000 cycles, and crack growth rates will be measured. The fatigue cracks will be repaired

and blade penetration tests conducted on the panel under axial tension. A total of five panels
will be tested with two fatigue crack propagation tests and two blade tests on each panel.
The instrumentation on each panel will consist of ‘40 axial gages and 20 rosette gages.

A.6 FABRICATION PROCESSES

The fabrication processes for the upper and lbwer quadra'n't panels are defined as follows: -

e  The composite will be cured and bonded to the tltamum load transfer fitting with
AF 30 adhesive as a subassembly. : :

© The composite and load transfer fitting will be bonded to the aluminum stringer
with the 394° K (250° F) adhesive. The stringer will be restrained by a steel tool
during bonding and lateral support will be provided to prevent buckling.



© The waffle doubler will be bonded to the skin and the waffle pattern will be -
formed by chemical mlllmg

© Reinforcing doublers will be envelope bagged and bonded to the skin as'sembly
with the 394°K (250° F) adhesive.

®  The stringers will be riveted to the skin assemblies by conventional processes.
The fabrication processes for the keel beam chords are defined as follows:

o The cémpoéite plies and titanium end fittings will be bonded with AF 30 adhesive
as a subassembly. Bonding will be done on surfaces that simulate the metal parts.

® The comp031te and end fittings will. be bonded to the alummum section with the
394°K (250° F) adhesive.

The fabricétion of the floor beams is defined as follows:

e The composite chords will be cured as a subassembly.

“@  The composite, cap strips, web channel sections, doublers, and core will be bonded' )

with the 394° K (250° F) adhesive.

A.7 QUALITY ASSURANCE FOR FABRICATION

During each phase of fabrication, nondestructive inspection will be performed on all
-components. The fabrication sequences have been arranged so as to provide easy access to all
bond lines. Water-coupled through-transmission ultrasonic inspection will be the primary
process used for quality assurance control because of its high resolution of flaw detection.

The detailed quality contrdl procedures for the concept 1 components are defined as follows:

© The cured strmger reinforcing lammate and the step flttmg bond will be mspected
as a subassembly.

©  The composite laminate and end fitting bond to the stringer will be inspected ae a

subassembly.

@  The verification of the required level of residual thermal stress and its umformlty :
will be accomphshed by using the optical comparator developed in phase I.

©  The keel beam composite laminate and load transfer fittings will be inspected as a
subassembly and the bond between the laminate and aluminum sections will be
inspected after final assembly.

® °  Quality assurance methods for the floor beam assembly will be defined by the
developmental program in phase I.

7



e Quality assurance of the fastener installation and fmal assembly will be controlled
by standard inspection procedures :

A.8 FULL-SCALE COMPONENT TESTS

The full scale component tests that W111 be conducted for the concept 1 design are
defined as follows.

A i _ ‘ _
A.8.1 Test 1——Body Station 740 and 480 Crown Splice Fatigue Tests

These tests w111 evaluate the fatigue capability of the BS 740 and 480 stringer and skm
splice details (fig. A-6) Three test panels that represent each area will be fatigue tested to.
failure. The instrumentation on each panel will consist of 20 axial gages. '

A.8.2 Test 2—Body Station 680 Lower Quadrant Splice Compression Test. .

This test will evaluate the ultimate compression capability of the BS 680 compression:
splice (fig. A-7). Three test panels that represent this splice area will be tested to failure.. The
instrumentation on each panel will consist of 40 axial gages.

A.8.3 Test 3—Pressure-Loaded Fail-Safe Panel

Th'is test will evaluate the damage containment capability of a representative fuselage
panel under pressure load (fig. A-8). The test panel will be mounted in a section of conven-
tional fuselage structure and loaded by internal pressure. A total of three panels will be

tested with four blade penetration shots on each panel. The instrumentation on each panel
will consist of 40 axial gages and 20 rosette gages.

2
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: APPENDIX B )
DETAILED TEST AND MANUFACTURING PLANS
FOR THE CONCEPT 2 DEVELOPMENT PROGRAM .

'B.I LAMINATE SELECTION TESTS

" The composite laminates that were selected duri.ng the materials study (sec. 3;3)'wrll be -

“evaluated in the following test program. One high-strength composite system will be selected
" for use throughout the developmental program based on the results of this test program.-

Tension, compression, and interlaminar shear tests will be conducted on uniaxial com-~ = -~

poslte at three temperatures, and interlaminar shear tests of bonded titanium and composite

will be conducted. In-plane shear tests of i45°phes will also be conducted. This test program .

1s summarlzed in table B-1.

B 2 ADHESIVE LABORATORY AND OUTDOOR EXPOSURE TESTS

Laboratory and outdoor exposure tests will be conducted using AF 30 and the selected 4

394°K (250°F) system. Stressed lap shear and fracture propagation data will be generated. -

- The fracture propagation specimen is shown in figure B-1, the’ lap shear. specrmen in fxgure e

B-2, and the detarled test plan in table B-2.

B. 3 BASIC ALLOWABLES

The basrc allowables test program is shown in table B- 3

B.4 MANUF'ACTURINGFEASIBILITY HARDWARE B

~ Full- scale components will be fabricated durmg this program These components are '
~ defined as follows: : : :

e A 3050-mm (l 20-1n ) long- by 910:mm (36-m ) wrde section of the upper quadrant;.'

containing the titanium skin, the composite skin remforcmg, three remforced

strmgers the frame tees and frame J-sections.
o

e . 'A 3050-mm (120—m ) long by 910-mm (36-1n ) wide section of the wmdow belt .~ '_ '

containing the titanium sKin, the composite skin remforcmg, the wmdow frames,
STR 11 and 13,.the frame tees and frame J-sectrons

o A 3050-mm (1 20:in.) long by 910-mm (36-in. ) wide section of the side quadrant

below the window belt containing the titanium skin, the composite skin rein-
forcmg, the STR 17 mechamcal splice, the frame tees, and frame J- sectxons

‘e A 3050-mm (1’ 20-in ) long by 690-mm (27-in ) Wide 'section of the lower quadrant'

center skin containing the titanium skin, one keel beam chord, the frame tees and
frame J-sectrons . -

8l
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B.5 ENGINEERING VERIFICATION TESTS

The following programs dcfine the engineering verification tests that will be performed
for the concept 2 development program.’

B 5.1 Test 1—-Residual Thermal Stress Fatigue Test

This test will evaluate the effect on the fatigue life of residual thermal stresses in rein-
forced stringers. The section of the panel is shown in figure B-3; the panel is 910 mm (36 in.)
long. The number of cycles to failure will be obtained for 12 specimens—six in each of two
stringer configurations (5 and 20 plies, 0°). Three specimens of each conﬁguratxon will be
tested at 218°K (- 67°F) and three at room temperature.

-

B.5.2 Test 2—Bonded Shear Web Stiffeners

This test will evaluate the bond and stiffness requirements of frame tees and stringers .
for stabilizing the body skin shear panels (fig. B-4). The panel is a representative section of -
the skin above or below the window panel that contains frame tees, stringers, and comp051te-
reinforced titanium skin, :

Panels will be fatigue tested by applying a cyclic load to a cantilever beam and recording
the cycles to failure and mode of failure for eight specimens—four in each of two shear web

- gages. Two stiffener bond lap lengths will be tested. The mstrumentatmn on each panel will |

consist of eight axial gages and 15 rosette gages.

B.5.3 Test 3—Window Panel Ultimate and Fatigue Tests

This program will evaluate the shear and pressure load capability of a window belt panel
(fig. B-5). The window panel will be tested with shear and pressure loads. An ultimate test
will be performed on one panel, and simulated fatigue cycles will be applied to a second ,
panel. The test panel is'a representative section of the window belt area. Panels will be loaded
to-ultimate pressure and shear loads so as to obtain strain surveys, ultimate loads, modes of
failure, and number of cycles to failure. The instrumentation on each panel will consist of 15

" axial gages, 10 crack-wire circuits, 40 rosette gages, and five deflection indicators.

\

B.5.4 Test 4—Lower Quadrant Compression Panel -

This test will evaluate the compression load capability of a representative section of the
lower quadrant design (fig. B-6). The panel will be tested by loading the keel beams with con-
centrated loads and reacting these with a uniform load along the other panel edge. The panel
will be curved and the unloaded edges will be simply supported. Two panels will be tested to

.compression ultimate. The instrumentation on each panel will consist of 40 axial gages and

10 rosette gages.



B.5.5 Test 5—Axial Ténsion Fail-Safe Panel

This test will evaluate the fatigue crack propagation rates and damage containment -
capability of a representative upper quadrant panel under axial tension load (fig. B-7).
Fatigue cracks will be cut in the panel, the panel will be fatigue cycled for approximately
- 50 000 cycles, and crack growth rates will be measured. The fatigue cracks will be repazred

.and blade penetration tests conducted on the panel under axial tension. A total of five panels -
will be tested with two fatigue crack propagatlon tests and two blade tests on each panel.
The instrumentation on each panel will consist of 40 axial gages and 20 rosette gages.

B.5.6 Test 6—Frame Tee Fail-Safe Strap Panel Test -

‘This test will evaluate the fatigue crack propagation rates and damage containmént |
-“capability of a representative quadrant panel under pressure load (fig. B-8). Fatigue cracks

will be cut in the panel, the panel will be fatigue cycled for approximately 50 000 cycles, and :

crack growth rates will be measured. The fatigue cracks will be repaired and blade penetra-
tion tests conducted on the panel under hoop pressure tension loads. A total of five panels
will be tested with two fatigue crack propagation tests and two blade tests on each panel.

- The instrumentation on each panel will consist of 40 axial gages and 20 rosette gages.

" B.5.7 Test 7—Damage Containment with Biaxial Stresses. -

This test will evaluate the damage containment capability of a fuselage skin panel under

pressure stress and axial tension or compression (fig. B-9). A representative section of a skin
panel will be installed in a section of a 727 fuselage contained between two pressure bulk-

‘heads. The fuselage section will be pressurized and axial tension or compression will be intro-il

duced into the shell by hydraulic jacks acting between the end bulkheads. Blade penetration

~ tests will be conducted on the test panel under biaxial stress. Five panels will be tested with

“four blade shots in each panel, The instrumentation on each panel.will consist of 40 axial
gages and 20 rosette gages. : : o

B.§.8 Test 8—Body_Station 740 and 680 Crown Splice Fatigue Tests .

These tests will evaluate the fatigue capability of the BS 740 and 680 stringer and skin -
splice details (fig. B-10). Three test panels that represent each area will be fatngue tested to
fallure The mstrumentatlon on each panel will consist of 20 axial gages.,

B.5.9 Test 9—Body Station 680 Lower Quadrant Splice Compr’éssion Test

This test will evaluate the ultimate compression capability of the BS 680 compression
splice (fig. B-11). Three test panels that represent this splice area will be tested to failure. The
mstrumentatxon on each panel will consxst of 40 axial gages. . )

[
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. B.6 FABRICATION PROCESSES .

The fabrication processea for the upper quadrant panel are defined as follows:

The composxte will be cured and bonded to the titanium.load transfer f1ttmg w1th
AF 30 adhesive asa subassembly

The composite skin reinforcing will be cured and bonded to the precurved picture

frame load transfer fitting with AF 30 adhesive on a flat tool surface. The assem--

bly will then be vacuum bagged and heated to 394°K (250° F) in a curved bond tool.

The composite skin reinforcing will be bonded to the titanium skin in a curved
bond tool with the 394° K (250° F) adhesive.

The stringers, stringer reinforcing, frame tees, and skin assembly will be bonded
with the 394°K (250° F) adhesive.

The fabrication processes for the window belt panel are defined as follows:

(-}

The skin reinforcing will be bonded in the recesses with the 394° K (250°F) adhe—
sive in a curved bond tool.

The overall skin reinforcing will be bonded to the precurved pieture frame with
AF 30 adhesive on a flat tool. The assembly will then be vacuum bagged and
heated to 394°K (250°F) in a curved bond tool. :

The composite skin w111 be bonded to the titanium skm assembly with the 394° K
(250°F) adhesive in a curved bond tool.

The window frames, frame tees and stnngers will be bonded to the skin panel
assembly with the 394°K (250° F) adhesive.

The fabricatiOn processes for the lower quadrant center skin panel are defined as follows:

©

The tapered doubler and the frame tees will be bonded to the skin thh the 394°K
(250°F) adhesive. » : .

The keel beam filler doubler will be bonded to the skin assembly with the 394° K - |
(250°F) adhesxve

The keel beam chords will be mechanically attached to the panel assembly. -

The fabrication processes for the keel beam chords are defined as follows:

-]

The composite plies and titanium end fittings will be bonded with AF 30 adhesive
as a subassembly. Bonding will be done on surfaces that simulate the metal parts

The composite and end ﬁttmgs wxll be bonded to the txtamum sections with the

394°K (250° F) adhesive.



_ The fabrication processes for the floor beam are defined as follows: -
e The co_mp_osite chords will be cured as a subassembly.

-3 The'cornposi'te‘, cap strips, web channel sections, doublers, and core will ‘be bonded
with the 394°K (250°F) adhesive. :

B.7 QUALITY ASSURANCE FOR FABRICATION

During each phase of fabrication, nondestructive inspections will be performed on all
components. The fabrication sequences have been arranged so as to provide easy access to all
bond lines: Water-coupled through-transmission ultrasonic inspection will be the primary
process used for quality assurance control because of its high resolution of flaw detection.

- The detarled quality control procedures for the concept 2 components are defined as follows

o The cured stringer and skm-remforcmg laminate and the step fitting bonds will . .
" each be inspected as subassemblies.

e The cured and bonded laminate in the recesses in the srde quadrant will be
inspected as a subassembly. -

@  The bond of the comp051te skin and step fitting to the titanium skin Wlll be
" inspected as a subassembly.

o - The frame tee, stringer, and strmger-remforcmg bonds to the skin panels will be
inspected between each bondmg sequence.

© - The keel beam composrte lammate will be mspected as a subassembly, and the -
" bond between the laminate and titanium sectrons will be mspected after final
assembly. : A

@  Quality assurance methods. for the floor beam assembly W111 be defined by the .
developmental program in- phase I :

] Qualrty assurance of the fastener installation and final assembly will be controlled
by standard inspection procedures.

- B.8 FULL-SCALE GROUND TEST

The full-scale ground test will consist of a complete concept 2 fuselage section
4570-mm (180-in.) long with a 2030-mm (80-in.) long transition section of conventional 727
~ structure on each end. The test fuselage will be mounted as a cantilever beam, and the loads

will be introduced through a loading boom. The test setup is shown in figure B-12. Com-
_pressed air will be used for fuselage pressurization and styrofoam will be used to reduce the

air volume. The static loads will consist of seven conditions of positive and negative bending - -

moment, ground handling, and pressure. The fatigue loading will be a ground-air-ground

3

.-8‘5.



spectrum consisting of taxi, positive vertiéal, negative vertical, and pressure loading. Magnetic
digital tape programs will be used to control the loads. A computer-controlled digital data
acquisition system will be used to record all data. The following instrumentation will be used
on this test: '
e 150 axial strain gages
o. 60 rosette strain gages
":@ 15 electrical deflection indicators
© 10 crack-wire circuits
®© 1.86sq m (20 sq ft) of photoelastic coating located in 10 separate locations - -
e 5 inertia-triggered strobe flash camera circuits
o 10 sound detection circuits

.

During cyclic fatigue testing, four major inspections will be performed for each hfetlme
The test program sequence is as follows.

e Load to 75% limit load, obtain strain survey
e  Conduct cyclic fatigue test, four lifetimes”
e Conduct seven static load survey_s' to limit load

- @ _ Conduct seven static load conditions to ultimate

86
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12.7 mm\
(0.50in) ¥

6.3 mm
{0.25 in.)

FIGURE B-1-FRACTURE PROPAGATION SPECIMEN @

12.7 mm
. ™. (0.50 in.)

203 mm
(8.0in.)
25.4mm
I/ (1.0in.)
FIGURE B-2—LAP SHEAR SPECIMEN
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ﬂ /— Graphite skin

|———— 230 mm.(9 in.) ——

Titanium skin
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FIGURE B-3.—RESIDUAL THERMAL 'S'.TRESS FATIGUE TEST
' SPECIMEN SECTION—CONCEPT 2
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FIGURE B-4.-BONDED SHEAR WEB STIFFENER TES'TSPECIMEN CONFIGURATION
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F/GUBE B-5.—WINDOW PANEL ULTIMATE AND FA-TIGUE TEST -

SPECIMEN CONFIGURA TION—-CONCEPT 2
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FIGURE B-6.—LOWER QUADRANT COMPRESSION PANEL
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" FIGURE B-7.—AXIAL TENSION FAIL-SAFE PANEL TEST SPECIMEN CONFIGURATION— CONCEPT 2
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FIGURE B-8.~FRAME TEE FAIL-SAFE STRAP PANEL TEST
'SPECIMEN CONFIGURATION~CONCEPT 2
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727 fuselage sectioi7-' : ) - .

Pressure - : 1520 mm , V ‘ .
bulkhead \ Test panel . (60 in.) - '

' ‘ . " Rigid .

E‘___ 3050 mm ] test .

v (120 in.) : frame
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E E v

a i >

Internal hydraulic jacks -/

FIGURE B-9.—[5AMAGE CONTAINMENT WITH BIAXIAL STRESSES TEST
SPECIMEN CONFIGURATION—CONCEPT 2

-<~———— Composite structure :i < Conventional structure ——]
230 mm ; l["] S ';," e T " E: : = i L
(9 in.} ji‘w f’— 'X] ] <0 \ ;-: PR )" . = \
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i ‘ i : splice n
.

FIGURE B-10.—BODY STATIONS 740 AND 680 CROWN SPLICE FA TIGUE TEST
SPECIMEN CONFIGURA TION-CONCEPT 2 :
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F/GURE B8-11.—BODY STATION 680 LOWER QUADRANT SPLICE COMPRESSION
TEST SPECIMEN CONFIGURATION—-CONCEPT 2
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APPENDIX C o S Ey
DETAILED TEST AND MANUFACTURING PLANS L
- FOR THE CONCEPT 3 DEVELOPMENT PROGRAM

C.1 LAMINATE SELECTION TESTS

The composite laminates that were selected during the materials study '(éec; 3.3) will be

. evaluated in the following test program. One composite system will be selected for use
. throughout the developmental program based on the results of this test program.

Tension, compression,-and interlaminar shear tests will be conducted on uniaxial com-
posite at three temperatures, and interlaminar shear tests of bonded titanium and composite
_W111 be conducted. In-plane shear tests of $45° plies will also be conducted. ThlS test program ‘
is summarized in table C-1. ‘

C.2 ADHESIVE LABORATORY AND OUTDOOR EXPOSURE TESTS. A

Laboratory and outdoor exposure tests will be conducted using AF 30 and the selected
394° K (250°F) system. Stressed lap shear and fracture propagation data will be generated.
The fracture propagation specimen is shown in frgure C-1, the lap shear specimen in figure.
C-2, and the detarled test plan in table C-2.

C.3 BASIC-ALLOWABLES

The basic allowables test program is shown in table C-3.

C4 MANUFACTURING FEASIBILITY HARDWARE

A Full-scale components will be fabricated during this orogram. These componentsare s
defined as follows: : L .

- M
e

© A 3050-mm (120-in.) long by 2160-mm (85-in.) wide section of the upper quad- S
rant containing the composite skin, the composite reinforced stringer, the frame o
tees, and the frame J-sections.

o A 3050-mm (120-in.) long by 1520-mm (60-in.) wide section of the window belt. A' o
panel containing the composite skins, the window frames, and the_frame tees.

® A 3050-mm (120-in.) long by 2030-mm (80-in.) wide section of the lower quad- '
rant panel containing the compos1te skins, the keel beam transmon and the ~~~-_ .
frame tees. - :
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C.5 ENGINEERING VERIFICATION TESTS

The following programs define the engineering verification tests that will be performed
for the concept 3 development program. ' : : '

C.5.1 Test 1—Window Panel Ultimate and Fatigue Tests

This program will evaluate the shear and pressure load capability of a window belt panel
(fig. C-3). The window panel will be tested with shear and pressure loads. An ultimate test
will be performed on one panel and simulated fatigue cycles will be applied to a second
panel. The test panel is a representative section of the window belt area. Panels will be loaded
to ultimate pressure and shear loads, so as to obtain strain surveys, ultimate loads, modes of-
failure, and number of cycles to failure. The instrumentation for each panel will consist of 15
axial gages, 10 crack-wire circuits, 40 rosette gages, and five deflection indicators. '

C.5.2 Test 2—Lower'Quadr_a'nt Compression Panel

This test will evaluate the compression load capability of a representative section of the
lower quadrant design (fig. C-4). The panel will be tested by loading the keel beams with con-
centrated loads and reacting these with a uniform load along the other panel edge. The panel
will be curved and the unloaded edges will be simply supported. Two panels will be tested to
compression ultimate. The instrumentation on each panel will consist of 40 axial gages and

10 rosette gages.

C.5.3 Test 3—Axial Tension Fail-Safe Panel

- This test will evaluate the fatigue crack propagation rates and damage containment
capability of a representative upper quadrant panel under axial tension load (fig. C-5).
Fatigue cracks will be cut in the panel, the panel will be fatigue cycled for approximately
50 000 cycles, and crack growth rates will be measured. The fatigue cracks will be repaired
and blade penetration tests conducted on the panel under axial tension. A total of five panels
will be tested with two fatigue crack propagation tests and two blade tests on each panel.
The instrumentation on each panel will consist of 40 axial gages and 20 rosette gages.

'C.5.4 Test 4—Frame Tee Fail-Safe Strap Panel Test

This test will evaluate the fatigue crack propagation rates and damage containment
capability of a representative quadrant panel under pressure load (fig. C-6). Fatigue cracks
will be cut in the panel, the panel will be fatigue cycled for approximately 50 000 cycles, and
crack growth rates will be measured. The fatigue cracks will be repaired and blade penetra-
tion tests conducted on the panel under hoop pressure tension loads. A total of five panels
will be tested with two fatigue crack propagation tests and two blade tests on each panel.
The instrumentation on each panel will consist of 40 axial gages and 20 rosette. gages.

x



C.5.5 Test 5— Damage Contamment w1th Bxaxral Stresses

This test will evaluate the damage containment capablhty of a fuse]age skin panel under
pressure stress and axial tension or compression (fig. C-7). A representative section of a skin
. panel will be installed in a section of a 727 fuselage contained between two pressure bulk-
heads. The fuselage section will be pressurized and axial tension or compression will be intro-
. duced into the shell by hydraulic jacks acting between the end bulkheads. Blade penetration
tests will be conducted on the test panel under biaxial stress. Five panels will be tested with
four blade shots in each panel. The instrumentation on each panel will consist of 40 axial
gages and 20 rosette gages. : .

'C.5.6 Test 6—Body Station 740 and 680 Crown Splice Fatigue Tests

These tests will evaluate the fatigue capability of the BS 740 and 680 skin splice detaiis o
(fig. C-8). Three test panels that represent each area will be fatigue tested to failure. The
instrumentation on each panel will consist of 20 axial gages. -

C.5.7 Test 7—-Body Station 680 Lower Quadrant Splice Compression Test-

This test will evaluate the ultimate compression capability of the BS 680 compressi’on'
splice (fig. C-9). Three test panels that represent this splice area will be tested to failure. The
instrumentation on each panel will consist of 40 axial gages.

C.6 FABRICATION PROCESSES
-The fabrication processes for the upper quadrant panel are defined, as follows:

~©  The fiberglass strmgers will be formed and cured wrth the frame tee Joggles '
_ mcluded : .

o  The stringer composrte reinforcing will be cured and bonded to the step fxttmgs ‘
with AF 30 adhesive as a subassembly.

® The strmger composrte assembly will be bonded to the strmgers with AF 30

adhesrve
\

© The composite skin will be cured and bonded to the precurved picture frame with
~ AF 30 adhesive on a flat tool. The assembly will then be vacuum ‘bagged and
" . heated to 394°K (250°F) in a curved bond tool. :

o  The stringers, combosite skin, and frame tees will be bonded with the 394°K
(250°F) adhesive in a curved bond tool.

@  The frame J-sections wil'l‘be mechanically fastened with conventional processes.

0

R : N U
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The fabrication processes for the side quadrant panel are defined as follows:

The composite skins will be cured and bonded to the precurved picture frame and

" window frame load transfer rings with AF 30 adhesive on a flat tool. The assembly

will then be vacuum bagged and heated to 394°K (250° F) in a curved tool.

The outer skin and core will be bonded with the 394°K (250°F) adhesive ina .
curved bond tool. ‘

The skin-core assefnbly will be pulled flat and the core will be machined to a
flat plane.

The inner skin and wmdow frames will be bonded to the core thh the 394° K
(250° F) adhesive in a curved bond tool.

The frame tees will be bonded to the skm assembly with the 394°K (250°F)
adhesive.

The frame J-sections will be mechanically fastened with conventional processes.

The fabrication processés for the lower quadrant panel are defined as follows:

The fabrication processes for the floor beams are defined as follows:

@

The composite skins will be cured and bonded to the precurved picture frame with
AF 30 adhesive on a flat tool. The assembly will then be’ vacuum bagged and

" heated to 394°K (250°F) ina curved tool

The outer skin and core will be bonded with the 394°K (250°F) adhesive in a
curved bond tool.

The skin core assembly will be pulled flat and the core will be machined to a flat
plane.

The inner skin.and keel beam fitting will be bonded to the skin assembly with the
394° K (250° F) adhesive in a curved bond tool.

The frame tees will be bonded to the skin assembly with the 394°K (250° F)
adhesive.

The frame J-section and keel beam center skin panel will be mechanically fastened
with conventional processes.

The body-wing fairing panels will be mechamcally fastened to fittings bonded on
the exterior of the panel.

The composite chords will be cured as a subassembly. ~

5
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The composite, cap stnps web channel sections, doublers and core will be bonded
with the 394° K (250° F) adhesive. :

C.7 QUALITY ASSURANCE FOR FABRICATION

During each phase of fabrication, nondestructive inspections will be performed on all
-components. The fabrication sequences have been arranged so as to provide easy access to all
bond lines. Water-coupled through-transmission ultrasonic inspection will be the primary A
process used for quality assurance control because of its high resolution of flaw detection,

The detailed quality control procedures for the concept 3 components are defined as follows:

®

The cured stringer and skm-remforcmg laminate and the step frttmg bonds will
each be inspected as subassemblres

The cured composite skins and bonded step frttmgs will be inspected asa
subassembly. : S

The bonded sandwrch panel, frame tees and keel beam fitting will be mspected as
a final assembly

Quality assurance methods for the floor beam assembly will be defined by the
developmental program in phase I.

Quality assurance of the fastener mstallatlon and final assembly will be controlled
by standard inspection procedures :

C.8 FULL-SCALE GROUND TEST-

The full-scale ground test will consist of a complete concept 3 fuselage section’

'4570-mm (180-in.) long with a 2030-mm (80-in.) long transition section of conventional 727 - :

structure on each end. The test fuselage will be mounted as a cantilever beam and the loads
will be introduced through a loading boom. The test setup is shown in figure C-10. Com-
pressed air will be used for fuselage pressurization and styrofoam will be used to reduce the
air volume. The static loads will consist of seven conditions of positive and negative bending

moment, ground handling, and pressure. The fatigue loading will be a ground-air-ground spec-

trum consisting of taxi, positive vertical, negative vertical, and pressure loading. Magnetic-
digital tape programs will be used to control the loads. A computer-controlled digital data
acquisition system will be used to record all data. The- followmg mstrumentatlon W111 be used

©

. on this test,

1 50 axial strain gages
60 rosette strain gages

1'5 electrical deflection indicators

103
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i 1
° 10 crack-wire circuits
;

° 1.86 sq m (20 sq ftj of photoélastic coating located in 10 separate locations
e 5 inertia-triggered strobe flash camera circuits o
o 10 sound'detection éircuits .

During the cyélic fatigue testing, four major inspections will be performed for each life-
time. The test program sequence is as follows. :

® Load to 75% limit load, obtain strain survey

1

e Conduct cyclic fatigue test, four lifetimes

o Conduct $even staticjload surveys to, limit load |
i : A _ |
| A o
o Conduct éeven staticiload conditions to ultimate;
: i
i t

e

y
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FIGURE C-2-LAP SHEAR SPECIMEN
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.. Pressure load

Fiat panel o .
- 4

3 L 1

1620 mm -
(60 in.)

Body
shear

]
1520 mm (60 in.) ==

FIGURE C-3.—-WINDOW PANEL ULTIMATE AND FATIGUE TEST
SPECIMEN CONFIGURATION—-CONCEPT 3

1830 mm {72 in.) radius panel

BS720A 7208 720C - . 720D  720E

720F

2030 mm
{80 in.)

————
)

po e e et

s o e e e oS

- —— 3050 mm {120 in.)

FIGURE C-4.—~LOWER QUADRANT COMPRESSION PANEL TEST
SPECIMEN CONFIGURATION~-CONCEPT 3
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N

740
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‘Flat panel

i
L

) 1
1 + v T + + + S-3R
4 + — + + 4+ S-2R
1370 mm )| + + 4 + T 51

{54 in.) |

1 + ' -i- + + s-2L

1 + + + + T— st
¥ I
- L)

T

2540 mm (100 in.}
FIGURE C-5.-AXIAL TENSION FAIL-SAFE PANEL TEST SPECIMEN CONFIGURATION— CONCEPT 3

Fla'tpanel
| B 12 typical stringers - >
I e
Tr +— » BS
- - .
. - “ BS
} N T O O

- 3050 mm (120 in.) -

FIGURE C-6.—FRAME TEE FAIL-SAFE STRAP PANEL TEST
SPECIMEN CONFIGURATION— CONCEPT 3



. 727 fuselage section/ o ] _

Pressure T : 15620 mm
t panel A ,
bulkhead N ‘ est pane (eolm.)
' Rigid
3050 mm ] test
(120 in.) frame

]
]
'
'
2
[}
L}
i
]
[}
)
|
1
:

Internal hydraulicjacks—/

" FIGURE C-7.~DAMAGE CONTAINMENT WITH BIAXIAL STRESSES TEST
' SPECIMEN CONFIGURA TION—-CONCEPT.?

lo—— Composite structure - Conventional structure —-—-1
- ' ee ~
9in) & — O E— s =
4 &W L NI - x
" fe—— 1520 mm (60 in.) - — 1520 mm (60 in.) ——v]
spiice

FIGURE c-8. —BODY STA TION 740 AND 680 CROWN SPLICE FA TIGUE TEST
SPECIMEN CONFIGURATION—-CONCEPT 3

O
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1830 mm (72 in.) radius panel

,.—— Composite structure.

Ry

i Conventional structure ——4" s

il | - | |
i -
f
610 mm T
(24n.) aia
g
‘L: 1 ) ot o= -
- ; I
l"— 1020 mm (40 in.) ! 1020 mm {40 in.) '—’I
' ‘BS
splice

'FIGURE C-8. —BOD Y STATION 680 LOWER QUADRANT SPLICE COMPRESSION
' - TEST SPECIMEN CONFIGURATION—-CONCEPT 3

727 existing structure
1020 mm (40 in.)
Transition section

1020 mm (40 in.)-\

.

680

Transition section
1020 mm {40 in.)

_727 existing structure

1020 mm (40 in.)
: BS
740

Composite test structure
4570 mm (180 in.)

Loading boom - o

.“'___-

Hydraulic iack—\ Pressure bulkhead - Keel beam _/

Rigid . - . -+ @
. test L ‘
frame

IR

FIGURE C-10.~CONCEPT 3—FULL-SCALE TEST STRUCTURE
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The international system of units (SI) was adopted by the Eleventh General Conference
on Weights and Measures, Paris, October 1960. Conversion factors for the units used herein

APPENDIX D
CONVERSION OF SI UNITS TO U.S. CUSTOMARY UNITS

are given in the following table:

Conversion
Physical quantity Sl unit factor U.S. customary unit
Length Meter (m) - 39.37 in.
Area Square centimeter {(sq cm) 0.155 sq in.
Mass Kilogram (kg) 2.2045 . ibm ,
Load Newton (N) 0.2248 Ibf Tl
Density Gram/cubic centimeter 0.0361 Ibm/cu in.
: (g/cu cm) ,

Area density Kilogram/square meter 0.2048 Ibm/sq ft™

(kg/sq m) =
Modulus, strength, Meganewton/square meter 145.0 1bf/sq in.
pressure {MN/sq m) .
Temperature oK (Kelvin) —g-tk - 460 OF (Fahrenheit)

aMultiply the value in Sl units by the conversion factor to obtain the value in U.S. customary units.

Prefixes to indicate multiples of units are as follows:

milli (m) 103
centi (¢) 1072
kilo (k) 103
megaM) - 106

giga (G) SR 109

i RS 12
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_ AFPENDIX E~
TABLE OF DENSITIES AND WEIGHTS USED

FOR WEIGHT-SAVING CALCULATIONS

Material Beqslt .
" gfey em Ibm/ey in.

Graphite somposite 1.58 0.057
PRD-49 | 1.36 6.049
Adhssive 1.22 08:644
Aluminum=2024-T3 2.77 8:168
Aluminum=7075-T6 2.80 0161
Titaniym=6A1-4Y 4:44 6:168
Fiberglass 1.94 8:878

Material B Weight =
External wire mesh 8:285 8842
screen for soncept 8 A

A'\"
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