General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TM X-62,174

NASA TECHNICAL MEMORANDUM

NASA TM X-62,174

(NASA-TM-X-62174)LONGITUDINAL AERODYNAMICN73-10030CHARACTERISTICS OF A LARGE SCALE MODEL WITHN73-10030A SWEPT WING AND AUGMENTED JET FLAP IN
GROUND EFFECT M.D. Falarski, et al (NASA)Unclas
CSCL 01B G3/02Unclas
45820

LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF A LARGE-SCALE MODEL WITH A SWEPT WING AND AUGMENTED JET-FLAP IN GROUND 3FFECT

Michael D. Falarski and David G. Koenig

Ames Research Center and U.S. Army Air Mobility R&D Laboratory Moffett Field, Calif. 94035

October 1972

(all

PRECEDING PAGE BLANK NOT FILMED

5

4

kan kipata sa ka Ka

NOTATION

÷	A s	thrust augmentation ratio of jet augmentor, J_A/J_T
	Ъ	wing span, m (ft)
	BLC	boundary layer control
	C .	chord, m (ft)
	c	mean aerodynamic chord, m (ft)
•	C _D	drag coefficient, $\frac{drag}{qS}$
÷	c _{Dm}	total momentum drag coefficient, momentum drag qS
	CJAI	isentropic augmentor jet force coefficient, <u>isentropic force</u> qS
·	C _{Ja፤}	isentropic aileron BLC coefficient, <u>isentropic BLC force</u> qS
	с _{јт}	total isentropic thrust coefficient, C _{JAI} + C _{JaI}
	С _L	lift coefficient, $\frac{lift}{qS}$
	C _m	pitching-moment coefficient, pitching moment qSc
	CT	underwing engine total thrust coefficient, $\frac{\text{thrust}}{\text{qS}}$
	a	thrust thrust
	ŢŢ	augmentor turbocompressor jet pipe turbat coerrictent, qS
. • •	n h/a	distance from ground to wing chord plane, m (11)
	u/e	Faird of distance from ground to mean derodynamic chord at w - o
	± <u>+</u>	horizontal tail incidence, positive with trailing edge down, deg
	JA	augmentor jet force at $q = 0$, N/m^2 (psf)
	JI	isentropic jet force at $q = 0$, N/m^2 (psf)
	PTAUG	total pressure of primary air measured inside wind duct, cm Hg (in Hg)

기가 말하는 것이 나라지 않는 것을

١.

a de la construcción de la constru Construcción de la construcción de l

q free-stream dynamic pressure, N/m² (psf)

wing area, sq m (sq ft)

T.S. thrust split between augmentor and underwing engines (67:33 means 67 percent of total thrust is in the wing and 33 percent is in the underwing engines)

airfoil thickness, m (ft)

chordwise station, m (ft)

airfoil ordinate, m (ft)

distance between moment center and line of action of thrust, m (ft)

a, AL model angle of attack, deg

aileron deflection, positive with trailing edge down, deg

elevator deflection, positive with trailing edge down, deg

augmentor flap deflection measured with respect to diffuser mid-line, positive with trailing edge down, deg (see figure 4(a))

 $^{\delta}\text{ID}$

S

t

 \mathbf{x}

y

Z

δ_a

δe

δf

augmentor intake door deflection, positive with leading edge down, deg (see figure 4(a))

δ_{JP}

deflection of augmentor turbocompressor jet pipes relative to fuselage datum plane, deg

 $\delta_{\rm TH}$ angle of thrust deflection of J-85 underwing engines, deg

augmentor jet angle relative to wing chord plane, deg

SUBSCRIPTS

a	aileron
A	augmentor
f	flap
I	isentropic
JP	augmentor turbocompressor jet pipes
L	left
R	right
S	slat
u	uncorrected
u/w	underwing
V	Viper
W	¹ Construction of the construction of the second s second second se Second second s Second second seco
	en de la companya de En la companya de la c
·	

3

v

11.42구

LONGITUDINAL AERODYNAMIC CHARACTERISTICS OF A LARGE-SCALE MODEL WITH A SWEPT WING AND AUGMENTED JET-FLAP IN GROUND EFFECT

Michael D. Falarski and David G. Koenig

Ames Research Center

and

U.S. Army Air Mobility R&D Laboratory

SUMMARY

This report presents the data of a wind tunnel investigation of the in-ground-effect longitudinal aerodynamic characteristics of a largescale swept augmentor wing model in the Ames 40- by 80-Foot Wind Tunnel. The investigation was conducted at three ground heights; h/c = 2.01, 1.61, and 1.34. The induced effect of underwing nacelles was studied with two powered nacelle configurations. One configuration used four JT-15D turbofans while the other used two J-85 turbojet engines. Two conical nozzles on each J-85 were used to deflect the thrust at angles from 0° to 120°. Tests were also performed without nacelles to allow comparison with previous data taken out of ground effect.

INTRODUCTION

The augmentor wing concept is being studied as one means of attaining STOL performance in turbofan powered aircraft. Wind tunnel tests of a large-scale unswept augmentor wing model are reported in reference 1 and 2. An initial investigation of a swept augmentor wing model was reported in reference 3. The aerodynamics of the swept model were subsequently investigated more extensively and these results, which include the lateral stability and control characteristics, were reported in reference 4.

This report presents the results of a wind tunnel investigation of the longitudinal aerodynamic characteristics of the swept augmentor wing model in ground effect. The study was performed at ground heights of h/c = 2.01, 1.61, and 1.34. The ground effects of two different underwing nacelle configurations were documented: (1) four JT-15D turbofan nacelles, and (2) two J-85 turbojet engines with the exhaust being deflected through twin conical nozzles. The model was also tested without nacelles to allow comparison with the results out of ground effect (references 3 and 4).

This research program was undertaken in cooperation with the Defense Research Board of Canada and DeHavilland Aircraft of Canada, Ltd.

MODEL AND APPARATUS

Basic Model

The model is shown installed in the wind tunnel in figure 1. Figure 1(a) shows the model with no underwing engines at a ground height of 1.34 h/c. Figure 1(b) shows the model at a ground height of 2.01 h/c with the four JT-15D nacelles mounted on the wing. Figure 1(c) shows the model with the two J-85 turbojet engines installed. The basic geometric details of the model are shown in figure 2, and the model reference dimensions and airfoil coordinates are listed in Tables I to III. The wing planform and leading-edge geometry are presented in figures 2(c) and 2(d).

The air for the augmentor and aileron BLC systems was supplied by a pump consisting of a J-85 coupled pneumatically to two turbocompressors,

which were modified Viper engines. A diagram of the compressor system is presented in figure 2(e).

The horizontal tail planform geometry is described in figure 3(a) and Table II. The tail was equipped with the leading-edge slat shown in figure 3(b). The slotted, double-hinged elevator is shown in figure 3(c). When the tail was installed it was set at an incidence of -8.7° and the elevator was set at zero.

Augmentor Flap

The geometry of the augmentor flap cross section is shown in figure 4(a). The augmentor is an ejector system consisting of a trailing-edge primary nozzle (figure 4(b)) through which the compressed air is delivered, a (lower) flap, a (upper) shroud, and an intake door. The secondary air is entrained from the wing upper surface, the slot between the intake door and shroud, and the tertiary gap between the wing lower surface and flap. The mixed jet is ejected downward between the flap and the shroud. The diffusion angle for this report and reference 4 is $4^{\circ}50^{\circ}$; for the investigation of reference 3, it was $6^{\circ}37^{\circ}$. The intake door was set at its optimum position for each flap angle.

The ducting for the primary air and aileron BLC is shown in figures 4(c) and 4(d). Figure 4(d) shows the variation of duct diameter with wing span which was designed to maintain a duct Mach number of .36.

Aileron BLC

The geometry of the aileron BLC is shown in figure 5. The system was fed through an extension of the augmentor primary air duct and therefore was coupled with the augmentor output. Airflow to the aileron was 5% of the total turbocompressor airflow. The ailerons were deflected symmetrically to 30° unless otherwise specified.

Underwing Nacelles

<u>JT-15D turbofan engines.</u> Four JT-15D turbofan nacelles were mounted under the wing for a series of tests at ground heights of 2.01 h/c and 1.34 h/c. The geometry of the engine installation is shown in figures 2(a) and 6. This engine has a bypass ratio of 3 and a pressure ratio of 1.45. <u>J-85 turbojet engines.</u> The starboard J-85 underwing engine is shown in figure 7. The exhaust was split and ducted through two conical nozzles, one on each side of the engine. The nozzles were rotated from 0° (aligned with freestream) to 120° (30° forward of vertical). The geometry details of the nacelle installation are presented in figures 7(b) and 7(c).

TESTS

The test procedure consisted primarily of varying angle of attack at constant augmentor and underwing engine thrust coefficients. The angle of attack range varied from -4° to 8° at h/c = 1.34 to -6° to 18° at h/c = 2.01. The augmentor thrust coefficient was varied from 0 to 1.5. The operating parameters varied with underwing engine installation. The dynamic pressure, augmentor total pressure and underwing engine thrust levels for each configuration are tabulated below:

Underwing Engines Removed

C _{JI} Nominal	<u>N/m²</u>	q (psf)	PT. <u>em(in</u>	AUG) of Hg
1.6	191.	5 (4,0)	61	(24)
1.2	244	(5.1)	7 - 1 1 - 1	
.9	335	(7.0)		
.4	684	(14.3)	4	
.2		.	23.9	(9)
0	445	(9.3)	0	(0)

JT-15D Underwing Engines

C _{J T}	G C	PTAUG	Thrust/Engine N(1b)			
Nominal	N/m ² (psf)	cm(in) of Hg	67/33 T.S.	40/60 T.S.		
1.6	192 (4.0)	61 (24)	778 (175)	2335 (525)		
1.2 0.9	244 (5.1) 335 (7.0)					
0.4	684 (14.3)	23.9 (9)				
0	445 (9.3)	0	0			

	<u>1-02 000</u>	erwing Engines	
C _{JI} <u>Nominal</u> 50/50 T.S.	q <u>N/m²(psf)</u>	PTAUG <u>cm(in) of Hg</u>	Thrust/Engine N(1b)
1.2 .9 .4 .2	173 (3.6) 240 (5.0) 493 (10.3) 684 (14.3)	40.7 (16) ↓ ↓ 23.9 (9)	2225 (500)
<u>30/70 T.S.</u>	•		
1.2 .9 .4 .2	139 (2.9) 191.5 (4.0) 388 (8.1) 684 (14.3)	30.5 (12) ↓ ↓ 23.9 (9)	4050 (910) 3115 (700)

DATA REDUCTION

For all force and moment data, the effects of compressor residual jet thrust, and the intake momentum drag of the fuselage mounted J-85, Viper compressors, and underwing engines, have been subtracted from the measured values. The reactive forces and moment created by the thrust of the underwing engines have also been removed from the measured data. The corrections made for thrust and ram drag are as follows:

 $C_{L} = C_{L_{U}} - C_{T_{JP}} \sin (\alpha - \delta_{JP}) - C_{T} \sin (\delta_{TH} + \alpha)$

$$C_{D} = C_{D_{u}} - C_{D_{m} J-85} - C_{D_{m} Viper} + C_{TJP} \cos (\alpha - \delta_{JP})$$

+ $C_{T} \cos (\delta_{TH} + \alpha) - C_{D_{m} U/M}$

 $= C_{m_{\underline{u}}} - C_{\underline{T}_{JP}} \frac{Z_{\underline{J}-85}}{\overline{c}} - C_{\underline{T}} \frac{Z_{\underline{u}/w}}{\overline{c}}$

The forces and moments are referred to the stability axes. The moment center used for data computation was located longitudinally at 0.25c and vertically 0.20c below the wing chord datum. The data were not corrected for wind tunnel wall effects.

Values of $C_{J_{I}}$ were computed on the basis of the measured mass flow and total pressure in the duct prior to discharge.

DATA PRESENTATION

The aerodynamic data are presented in three sections. The first section, figures 8 to 17, is the data without underwing engines. The second section, figures 18 to 23, is the results with the JT-15D nacelles mounted under the wing. The third section, figures 24 to 39, presents the data with the underwing J-85 engines. A summary of the data is presented at the end of each section.

An index to the aerodynamic data figures is presented in Table IV. Table V presents a run-by-run index of the wind tunnel investigation.

REFERENCES

- Koenig, David G., Corsiglia, Victor R., and Morelli, Joseph P.: Aerodynamic Characteristics of a Large Scale Model with an Unswept Wing and Augmented Jet Flap. NASA TN D-4610, 1968.
- Cook, Anthony M., and Aiken, Thomas N.: Low Speed Aerodynamic Characteristics of a Large Scale STOL Transport Model with an Augmented Jet Flap. NASA TM X-62,017, 1971.
- Falarski, Michael D., and Koenig, David G.: Aerodynamic Characteristics of a Large Scale Model with a Swept Wing and Augmented Jet Flap. NASA TM X-62,029, 1971.
- 4. Falarski, Michael D., and Koenig, David G.: Longitudinal and Lateral Stability and Control Characteristics of a Large-Scale Model with a Swept Wing and Augmented Jet Flap. NASA TM X-62,145, 1972.

TABLE 1. - WING REFERENCE DIMENSIONS

Wing area, sq m (sq ft) 21.36(230.0) Aspect ratio 8.0 Span, m (ft) 13.08(42.895) Taper ratio 0.30 Sweep at 1/2 chord, deg 27.5 Airfoil section **RAE 104** Root chord, m (ft) 2.515(8.25) Tip chord, m (ft) 0.755 (2.475) Root thickness, percent $12\frac{1}{2}$ Tip thickness, percent 10^{1} Augmentor span limits, Inner, m (ft) (percent) 1.111(3.645)(12.34)Augmentor span limits, Outer, m (ft) (percent) 4.575(15.01)(70.0) Wing area spanned by one augmentor, sq m (sq ft) 6.75(72.62) Wing area spanned by one aileron, sq m (sq ft) 1.997 (21.50) Wing area spanned by fuselage, sq m (sq ft) 3.88(41.77) Flap hinge axis, percent chord 68.543 Aileron hinge axis, percent chord 68.0 Incidence, camber, twist 0 Mean aerodynamic chord, m (ft) 1.793(5.880)

NOTE: All chords are measured in streamwise direction.

TABLE II. - TAIL REFERENCE DIMENSIONS

Horizontal Tail

Gross area, sq m (sq ft)	5.58(60.0)
Aspect ratio	4.5
Span, m (ft)	5.005(16.432)
Taper ratio	0.40
Sweep at ¼ chord, deg	25
Airfoil section	RAE 104 with modified 1.e.
Thickness/chord ratio, percent	10
Root chord, m (ft)	1.591(5.22)
Tip chord, m (ft)	0.635(2.082)
Elevator hinge axis	see figure 3(c)
Elevator travel, deg	±30
Tailplane incidence, deg	±12
Tailplane arm, m (ft)	6.804(22.32)
Tailplane volume coefficient	0.990
Mean aerodynamic chord, m (ft)	1.114(3.654)

Vertical Fin

Fin arm, m	(ft)	···	5.361(17.603)		
Fin volume	coefficient		0.07476		

TABLE III. - COORDINATES OF R.A.E. 104 AIRFOIL (t/c max. = .10)

	x/c	y/c(100)	x/c	y/c(100)	
	0	. 0	0.35	4.9300	
	0.001	0.3441	0.35	4.9488	
	0.002	0.4863	0.38	4.9775	
	0.003	0.5953	0.4	4.9946	
· · · ·	0.004	0.6870	0.42	5.0000	
	0.005	0.7676	0.44	4.9937	
	0.006	0.8404	0.45	4.9862	
	0.007	0.9072	0.46	4.9756	
	0.0075	0.9387	0.48	4.9454	· · · · · · · · · · · · · · · · · · ·
	0.008	0.9692	0.5	4.9027	
	0.009	1.0274	0.52	4.8468	
	0.01	1.0824	0.54	4.7769	
	0.012	1.1842	0.55	4.7363	
	0.0125	1.2083	0.56	4.6917	
	0.014	1.2776	0.58	4.5802	
	0.016	1,3642	0.6	4.4650	
	0.018	1.4452	0.62	4.3113	
	0.02	1.5215	0.64	4.1370	
	0.025	1.6960	0.65	4.0438	
والمتعام المراجع	0.03	1.8522	0.66	3.9473	
in the second	0.035	1.9945	0.68	3.7452	
	0.04	2.1256	0.7	3.5331	and a second
	0.05	2.3617	0.72	3.3128	
	0.06	2.5709	0.74	3.0861	
	0.07	2.7592	0.75	2.9708	
en de la tra	0.075	2.8468	0.76	2.8545	
	0.08	2.9307	0.78	2.6103	
a di kata sa ka	0.09	3.0881	0,8	2.3819	na an a
	0.1	3.2336	0.82	2.1437	
n an an an an an an Saon an Annaichte an an	0.12	3.4945	0.84	1.9055	
	0.14	3.7222	0.85	1.7864	
	0.15	3.8254	0.86	1.6673	
••	0.16	3.9224	0.88	1.4202	
	0.18	4.0992	0.9	1.1910	
	0.2	4.2556	0.92	0.9528	
	0.22	4.3936	0.925	0.8932	
·	0.24	4.5149	0.94	0.7146	
	0.25	4.5697	0.95	0.5955	setterin a construction and setter and
· · ·	0.26	4.6208	0.96	0.4764	
	0.28	4.7124	0.975	0.2977	la de la seconda de la companya de l
· ·	0.3	4.7905	0.98	0.2382	
lan, interprétent	0.32	4.8556	0.9875	0.1489	en Swijsfelje Stort weigene onderfasien nie.
	0.34	4.9082	1.0	0	
	ni dat serieta	ar he china tha a		na frencia kolek	

에 회장 가슴에 사실 것 것 같아요. 영제 사실 지난 것 같은 것 같아요. 한 것 같아요.

이는 사람은 전에 가지 않는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 이 것이 있는 것이 없는 것이 있는 것이 없는 것이 없 것이 없는 것이 없

and Bayon as grown a Banana an Ingelor (1996) a shekaraf

.

TABLE IV. - INDEX TO DATA FIGURES.

TIGURE	EFFELT	h/c	Sf, deg	TAIL	₩w ENG	Т.S.	REMARKS
	C	2.04	40	OFF	OFF		
<u>ba</u>	-J <u>-</u> J <u>-</u>		<u> </u>	ON			
			70	OFF			
			ł	ON			
		161	30	OFF			
10			40	OFF			
h			V	ON			
12 0			70	OFF			
		V	V	ON			
13		1.34	30	OFF		 	
140			40	OFF			
6			V	ON			
15			60	OFF			
160-			70	OFF			· · · · · · · · · · · · · · · · · · ·
Ь		V	V	ON		 	
170	h/c	N	40	OFF		L	
6	3		70	<u> </u>			
180-	CJI	2.04	40	OFF	JT-IS	40:60	
Ь						67:33	
(<u>c</u>	T.S.				<u></u>	N	CJ1=118
11 d	CJI			ON	┨	40:60	<u> </u>
е			<u> </u>		<u></u>	67:33	
190			07	<u> </u>	<u> </u>	40:60	
Ь	V			<u> </u>	-∬	67:33	
C	T.S.	V	₩	V	╢╴		$\ C_{T_{T}} = 0.18$
20a	$C_{\mathcal{J}_{\mathcal{I}}}$	1.34-	40	OFF	<u> </u>	40:60	
Ь					┨	61:33	C- 110
С	T.S.			<u> </u>		N A REAL	1 JI=118
4	CJI		<u> </u>	ON		40:60	
e			V	¥		61:33	
ZIa		<u> </u>	70	OFF		40:60	
b	1					01:55	CT 1.10
<u> </u>	T.S.	<u> </u>	╢╌╴╎╌┈╴	<u>∦</u>		1 Anula	<u> ~41 = , G</u>
<u> </u>		<u></u>	-		╶╢╾╾┼╍╍╍	40:00	
e e	<u> </u>	¶	¥			101.33	
220	1 1/2		40			47.22	
Шь	4	<u> </u>					
C	<u> T.S.</u>	2.04				1 1.	
<u> d</u>	<u> </u>	1.34-		V V			
230	1 1/2	↓ ~		I ON		17:22	
۰ <u>له الم</u>	V	N I i n f					
r	<u> T:S.</u>	1.34	<u>∦</u>		- <u>v</u>		
이 🖬 한 사람은 한 학원 전국 🗄	• 📲	1				1	11

TABLE TV. - INDEX TO DATA FIGURES CONTINUED.

IFIGURE	EFFECT	h/c	Sf, deg	TAIL	₩w ENG	Т.S.	REMARKS
74.	CTr-	7.04	40	OFF	J-85	50:50	STH = 0
- 2470-	-51					30:70	
				+/		2	: CJr=1.Z
	<u> </u>			ON.		30:70	V
	LJE				}	50:50	STH= 30
120-						30:70	
<u> </u>						~	V ; ^C ∃ ₁ =1.2.
<u> </u>	1.2.		70	DEF		50:50	574=60
260				(30:70	
<u> </u>	TC T			J		~	: CT==.85
<u> </u>	1.3.				 	30:70	
<u>a</u>					╂───	50:50	STH=90
210-						30.70	
<u>b</u>	¥			<u> </u>	}		: CT.= .85
C	1.2.		<u> </u>	V		50:50	
6	CJT				∦	3-130	<u>∦ }</u>
ee			 			50:10	5-176
280-				066	}	20:20	01H=100
<u>b</u>	V		 		╢───	50:10	1 45
<u> </u>	T.S.			V V	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
d	CJI		 	ON	<u> </u>	20:20	∦ −− , −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
e	V			<u>↓</u> <u> </u>		30:10	C /
290	STH				<u></u>	50:50	$C_{Jr=,42}$
Ь	1 1		V			<u> </u>	C11.02
302	$C_{J_{I}}$	161	40			20:50	1 9H=0
6			 		- -	<u> </u>	
G	T.S.					~	CJ_=1-L
310	CJI				<u> </u>	20:20	PH=30
Ь				•		30:00	
C	T.S.		V			N	\downarrow : $C_{3r}=1,2$
32a	CJr		70			So:SO	<u>ani=60</u>
Ь	l V					30:70	
c	T.S.			<u> </u>		<u>ہ</u>	¥ : C37=.89
33~	CTI					50:50	1 27H=90
d b	J					30170	
6	T.S.		V 1			N	₩ :C _{JE} =.85
340	CJL	1.34	4-0			30:70	8m=0°
h	T.S			4.		∼	: CJF=1.2
0	CTT.			ON		32:70	
350	C=-					30:70	Sn+=30
	TTS.						: CJ_= 1.7
} - <u></u>	C.T.			ON		30:70	V
		.					

TABLE IN. - INDEX TO DATA FIGURES CONCLUDED

TIGURE	EFFECT	h/c	Sf, deg	TAIL	W ENG	T.S.	REMARKS
36.0	CT-	1.34	70	OFF	J-85	50:50	STH=60
360	<u> </u>					30:70	
	1.5.			V		\sim	: C ^{2E} = '82
j	CTT			07		30:70	V
- <u>a</u>	J			OFF		50:50	511=90
380	W _L	N	40			50:50	STH=O
Ь						30:70	
C C			V				2n+=30
39 a			07			50150	874=60
6						30:70	
C		1				Soisa	<u> ଚଲ=ମ୦</u>
4	ธิก	2.04	V	<u> </u>	V	50:50	لير
		n in the second					
							
				ļ		 ====	
					1	 	<u> </u>
					<u> </u>		
				<u> </u>			
				l		ļ	
				<u> </u>			
			<u> </u>	ļ	<u> </u>	<u> </u>	
				ļ		ll	
<u> </u>				 		1	
				<u> </u>	╢		
				<u> </u>			
	<u> </u>		 		-		
			<u> </u>			1	
		1	<u></u>				
		1					
		<u> </u>		<u> </u>			
	-						
		line of the		1			
			1				
				-			
				1			
						1	
1		lt.	11	_!!	_ <u></u>		

TABLE V. - RUN INDEX

RUN	h∕c	δ _f	HORIZ.	U/W ENGINE T.S.	THRUST ENG.	CJI	9,psf	PTAUG	REMARKS	FIGURE
	2.04	30	ON	JT-15 -	~~	60			JT-IS THRUST CALIBRATION	
2		4			V				n u u	-
3		40		67:33	175	1.62				18C
4						1.20				
5						,89				
6						.44				
7					· V	.27				
8				40:60	525	1,58				180
9						1,17				
10						.87				
11						.43				
12		↓			V	.27				V
13		70		40.60	52.5	1.59				19a
14						1.20		1. 1. 11		
15						.88				
16					V	.44				V
17				67:33	175	1,60				196
18						1.25				
19						.89				
20					V	.44				
21		V	V	~	N	~			$\propto = 14^{\circ}$	V
22		40	OFF	40:60	525	1.58				180
23					ŀ	1.23				
24						.90				
25				V	\checkmark	.44				V V
26				67:33	175	.44				186
27						1.58				
28						1.27				
29					V	.89				V
30	1.34			40,60	SZS	1,59				200
31					1	1.21				
32						.89				
33	J	V	V		V	.44				V

. . .

TAULEY .- RUN INDEX

34 (134) 40 OFF Tr-IS 6733 175 44 20h 35 1 1 40 1 40 1	RUN	h/		5)t	HOR	17. L		ч МЕ	T.S.	THRUST ENG.	CJI	°g₁ _{Ps} f	PTAUG	REMARKS	FIGURE
35 1 90 1 90 1 36 1 1 1000 0 1/2.1 1 37 1 1000 0 1/2.1 1 1 38 V 0:00 0 1/2.1 1 1 38 V 0:00 0 0 1 1 40 1 1:53 0:000 0 1 1 40 1 1:53 0:000 1 1 1 1 41 <	34	[.]	54	4	0	OF	F	JT-	-15	67:33	175	.44				200
34 121 121 37 1000 0 122 123 38 V 000 0 0 V 39 70 4460 525 1.53 216 40 1 1.53 $\alpha = -4, -2$ 1 41 1 1.19 1.19 1.19 42 1 1.19 215 1 453 1 1.19 215 1 1.19 446 1 1.19 215 1.12 1 446 1 1.19 1.22 1.22 1.22 1.22 447 V $0:00$ 0.122 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22 1.22	35											90				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36									V	· V	1.21				
38 V 0:0 0 0 V 36 70 44260 525 1.53 X=-4,-2 Z(a. 40 1 1.53 $\alpha = -4, -2$ 1 Z(a. 41 1 1 1.14 1.53 $\alpha = -4, -2$ 1 41 1 1 1.14 1.14 1 1.14 1 42 1 1 1.14 1.14 1 1.14 1 43 1 1 1.14 1 1.14 1 1.14 43 1 1 1.18 $\alpha = -4, -2$ 1 1.14 44 1 1.87 2.15 2.15 2.15 45 1 1 87 2.15 2.15 45 1 1.14 1.14 1.14 1.14 1.14 47 1 1.14 1.12 2.14 1.14 1.14 48 1 1.14 1.22 1.24 1.24 1.24 1.24 52 1 1	37									0:00	0	1,22				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	38				/					0:0	0	0				<u> </u>
40 1.53 $\alpha = -4, -2$ 41 1.63 1.63 $\alpha = -4, -2$ 42 1.64 1.67 1.64 1.64 43 1.64 1.63 $21b$ 44 1.653 1.75 4.3 $21b$ 44 1.653 1.75 4.3 $21b$ 45 1.64 1.19 1.19 1.19 47 1.954 1.19 1.19 1.19 47 1.643 1.19 1.22 1.24 48 1.6050 0.0 1.22 1.20 1.20 50 0.01 4050 525 1.53 $21d$ 51 1.20 1.20 1.20 1.20 1.53 53 1.163 1.53 1.54 1.54 1.54 56 1.133 1.54 1.20 1.53 1.54 1.20 57 1.53 1.56 1.20 1.20 1.20 1.20 1.20 1.20	39			7	0					40:60	525	1,53				Zia
41 119 87 77 42 77 87 77 43 77 77 77 44 77 77 77 44 77 77 77 44 775 775 775 775 45 775 775 775 775 46 7755 775 775 775 476 7756 7756 7756 7756 476 7756 7756 7756 77576 477 7756 77576 77576 775766 7757666 575 $7766666666666666666666666666666666666$	40											1.53	[x=-4,-2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	41											1.19				
43 V V 43 V 44 $b733$ 175 43 215 45 1 88 215 46 1 88 119 215 46 1 1.99 88 119 215 46 1.19 V 1.54 119 119 47 V V 1.54 119 119 48 V $0:0$ 0 1.22 V 49 V $0:0$ 0 0 V 50 ON $40:60$ 525 158 $21d$ V 51 1 12.0 12.0 12.0 12.0 12.0 12.0 54 $67:33$ 175 43 $21c$ 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 <th< td=""><td>42</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,87</td><td>1</td><td></td><td></td><td></td></th<>	42											,87	1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	43				- 1					V	۷	.43				V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44		а. 1911 — П							67:33	175	.43				215
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	45											.88				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	46											1.19				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	47										V	1.54				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	48									100:0	0	1.22				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	49						/			0:0	0	0				Υ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50					0	N			40:60	525	1.58				210
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	51											1.2.0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	52											,88				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	53									V	V	.43				V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54									67:33	175	.43				ZIE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	55											.89				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56											1.20				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	57	1	1							V	V	1.53				·
59 0:0 0 V 60 40 40:40 525 1.56 20d	58							1		100:0	0	1,20				
60 40 40°60 525 1.56 200	59				V					0:0	0	0				<u> </u>
	60	11		4	0		1			40,60	525	1.56				200
	61			1	{		1				1	1.18				
12	62				1			1				.89				
63	63	1		1	<u> </u>	1		1		11	1 1	.43				V
14 67:33 175 A3 20e	4		1		1	H -		1	[67:33	175	.43				20e
65	65]		1	1			1		11	TI	.89				1
66 1 1.21	66		V		V		V	1	V			1.21				↓

ይ

. . !

T	<i>ب</i> د.	E	Ţ.	- [-	RUN	ιT	.ND	εX	
				÷					
						aj 1			

	<u> </u>		lucer		1						
RUN	1%	δ_{f}	TAIL	ENGINE	T.S.	ENG.	$C_{J_{I}}$	2,pst	PTAUC	REMARKS	
67	1.34	40	ON	JT-IS	40:60	175	1,56				20
68		1			100:0	0	1,21	ļ			
69					0:0	0	0	<u> </u>			
70				OFF			1.52	ļ	 		
71							1.17	ļ			
72							.87		╏────┤┨──		
73							.42		┝		
74							. 18		9		
75							0				V
76		70					1,54				16
77							118		<u> </u> [[_		
78							,86				
79							.42				
80							.18			· · · · · · · · · · · · · · · · · · ·	
<u><u> </u></u>		-					U U				¥
<u> </u>			OFF				1.54			· · · · · · · · · · · · · · · · · · ·	16
83	╢──┝						1116				
\$4							186				
85	-[]						.42				
86	╹╢───┤──		╶╢╌╌┨╾╾				19				
<u> </u>		- 					0				V
570	-	1 20	-		╼┠╼╌╂╍╸		1.55				12
08			╶╢──╎──				1.21		1		
<u> </u>	-			-			89	-[+		
70	╶╢╼╼┥┥╼╼	-{					.43	-	1		
71	-					╌┼╌┼╌	1 .9		┨╴╼╢╴		
76	-	- ∦}		╢─┤─					┪━━━┼┝		
<u> </u>	-			╢╌╝		╌┨╼╸			╉╍╌╢	······································	1
<u> </u>	╶╢──┤──	1 50			╶╢╌╢╴		110		╉──╫		
95	 			-		┈┼╼╌┠╼	1-00		╺┠╍╌╍╸╎┠		
76	- [[╌╟╼╼╋━╼		-	╺╁╸╂╴	┼╌╊╸	12		╶╆╼╾╴╞╂		
97	. #			•			1	-		· · · · · · · · · · · · · · · · · · ·	
98									-╞┤╏		

Ъ

TALLE X. - RUN INDEX

RUN	忆	δ _f	HORIZ.		τ.s.	THRUST ENG.	CJI	2.pf	PTAUG	REMARKS	FIGURE
100	1.34	60	OFF	OFF	-	-	0				15
101							1.48				
102							1.16				
103							186				<u> </u>
164	<i>y</i>						.43				
105	<u> </u>	₩ V					.19	ļ			V
106	1.61	070		 			1.49	_			IZa
107							1.17	L	[]	•	
108							,99	<u> </u>			
109				 			.43	1			
110							.19				
111		V					0	<u> </u>			<u>v</u>
112		40					1.54	<u> </u>			<u> 11a</u>
113							1.16	<u> </u>			
114							.86				
115							.42				<u> </u>
116							.18	<u> </u>			Ψ
117		30					1,54				10
118							1.19				<u> </u>
119							,87				
120							43				
121							.18				
122		V	V				0				V
123		40	ON				1.51				116
124-							1.16				
125							.19				
126							.43	1			
127		V.					0				V
128		70					1.53	1			126
129							1,19				
130							.18				
131							.43	[
137	V V	V		V	V	V	0				V

TALLEY. - RUN INDEX

Run	1%		δ	HORIZ.	U/ EN	W SINE	T.S.	THRUST ENG.	$C_{\sigma_{\mathfrak{I}}}$	9,psf	PTAUC	STH	REMARKS	FIGURE
133	20		70	ON	0	F			1.49	<u> </u>		-		96
134	1			<u>}</u>					1.15					
135	╟───┠─	{		<u> </u>	[[]				.85					
136									.19					
137									.43					
138			V						0					¥
139			40						1.52					86
140			1						119					
14-1	1								.87					
142		- II	-						43					
143									.19				1	
14-4	\parallel				1				0					<u> </u>
14.5				OFF	1				1,48	1.				8a
146	╢╼╍╋			1	11-				116					<u> </u>
147	- +			-	11				.87					
1/10	╢──┼					ļ			.42					
143	╢──┼				11				.19					
IC A			 		1				0					V V
10	╉		70	╶╢╌╍┝╍╾	1	 			0	1				9a
101	╶╢╌╼╍╌┞			╺╢╼╼┤┈━╸					1.57					
122								<u>├</u>	1.19					
132			[╶╢╼╌┟╍━		1		┟╼┟╼	.87	-				
107	-								.43					
122	-					b			.19		1	1		¥
	-		40			-85	0.0		0		1	0	ENGINE THRUST CALIBRATION	-
13/							30.70	700	1		-	11 T		
128-	-		 		-		50:50		42	-		11		24a
127			 				1		28,					L.
160			╟──┼╾╍	╶╴┫╌╌╌╌┤╌╌╸		<u> </u>			1		-			Z4c
161	-		╢			 		700				╢╌┝╸		
162			╟	╶┠╌╾┼╌╾		1	+					╢╴┤╴	ENGINE THRUST CALIB.	
(6 <u>)</u>	-	 	∦ - ∔		┉╟┈━	<u> </u>	Errer	700	1.52		•			240
164-		/	╢	- I		<u> </u>	1	1	1.16			情力		Z4a

TALLE T. - RUN INDEX

RUN	h/c	δ _f	HORIZ.	U/W/ ENGINE	τ.s.	THRUST ENG.	CJI	2,pf	PTAUC	STH	Remarks	FIGURE
166	2.04	40	OFF	J-85	30.70	1167	1.14-			0		24b
167							.83					
168						V	.42					V
169					50:50	300	.19					24a
170		¥			0:0	0	0			V		
171		70			10:00	ک	-	l		60	THRUST CALIBRATION	
172					50.50	700	1,18					ZGa
173							,88					
174						¥	.43					
175						300	,19					
176					0:0	0	0					
ררו					30,70	1167	1.17	1				2.66
178						700	.84					
179						910	.19			1		¥.
180					0:~	~~	_ /			90	THRUST CALIBRATION	·
181					50,50	300	.19					270
182						500	42					
183						1	.83					
184						V	(1.1)					¥
185					30:70	700	18	1				275
186					0:0	0	0					1
187					3070	910	.74					
188						J	.41					V
189					0:11	N.	1	1		120	THRUST CALIBRATION	
190					0:~	~					14	
191					50:50	300	.19					1280
192						500	42	1				
193						J,	.83					
194					50:70	700	.19					286
145	 	 	 		J	910	.41	1	†		1	
196	1	 	ğ	 	0:0	0	0					-11
197		∦ }		 	10010	D	.41		1-1			
198	V	1	ON		50:50	300	.19			IV	1	280

6T

TALLE V. - RUN INDEX

RUN	1%	δf	HORIZ.	U/W ENGINE	T.S.	THRUST ENG.	CJI	€1Psf	PTAUC	STH	Remarks	FIGURE
199	2.04	01	ON	J-85	50:50	5.00	.42			1ZO		282
200					J		.85					V
201					30:70	700	.19					280
202					1	910	,41					
2.03					100:0	0	.4Z.	ļ		V		<u> </u>
z04					0.0			<u> </u>		90	THRUST CALIBRATION	<u> </u>
205					50:50	300	, 19	<u> </u>				270
206						500	.42					
297							,84					
208		1			V	V	1.15					
209					0:0	0	0					
210					30:70	700	.18					272
2(1						910	40					
212					V	910	79					
213					0:1	N				60	THRUST CALIBRATION	
214					30:70	910	1.12					· 26d
215	╢──┼──		-		1	T	.81		1			
216							.40	1				
217					T	700	.19					
218					0:0	0	0		1	V	•	
219		40		╢╼	0:0	N		1	1	0	THILUST CALIBRATION	
220					100:0	0		1		1	STATIC AUGMENTATION	
221	╢──┤──				30.70	910	617		1			74d
217						1	18.	1	1			4
772			- <u> </u>			N.	N	1				
724					30:70	910	41		1	11		24d
225	╶╢╌╍┼╾╸		╶╢╼╌┨╼╼╼		1	100	19		1			1
226	╶╢───┼╾━	╶╢╌╌┼──			100; 0	0	181	1	1	11-1-		
22.7	╶╢╾╍╁╼╍				0:0	0	0			11 1		
779	-		•	╺╢╾╾┼╼╼╸	10:~	1	1	1	+	30	THRUST CALIBRATION	
774	╶╢╴╌┤╌			╶╢╴╼╾┼╼╍╴	30:70	760	.18	-	-	1		25b
27.0	·			- #[910	.42		1	11-1-		1
250	╶╢╼╼╴╢╼╸			- 	-+	$+\frac{1}{1}$	97	1	-	te 5		

TALLE V. - RUN INDEX

		<u> </u>	HORIZ	116.7		THRICT						Current
RUN	1%	δf	TAIL	ENGINE	T.S.	ENG.	CJI	8.pst	MAUG	91H	KEMARKS	FIGURE
232	2.04	40	ONJ	J-85	3010	910	1.15			30		256
233					100:0	0	.82					<u> </u>
234					50:50	500	LIS					259
235					1		.84					 -
236	V				0:0	0	0					
237	1.34				30:70	910	1.12					350
238							181	1				
239						₩	,41				<u> </u>	
240					ĪV	700	.19					
241					0:0	0	0	1		V		<u> </u>
242					30:70	910	1.12			0		340
243		<u> </u>					.81					
244							.41					<u> </u>
245		1-1				700	-18					<u> </u>
2.46					0:0	0	0			V		¥
247		70			30 :70	700	.18			60	•	369
248	{{				i	910	.41					<u></u>
249						1	179					
250		╢					1.14					
251	 				0.0	0	0	1				<u> </u>
252	╟╍╌┝╌╸╸	╟────	OFF		Soisc	300	19	1				36a
253		╢──┼───		╢╶┼─	30:70	700	19					366
254			1		SPISU	500	43					36a
200	╢──┼──	1	╢──┤──		30170	910	.42					366
256	 				50150	Sau	.87					364
757	 	╢		╢╶┼╴	30170	910	1.85					366
7.50		╢┈╢┈╍╸			50:50	500	1.14					369
750	╢─┼─				0:0	10	10			11 1		36a
7.60	╢╾┼╍╸	40			30:14	910	1.15			0		34 a
761	 			•		1	182		1		l	
712	-	╂}					41					
712		╶╢──┤──	.		╶┼╼╢╌	700	.19			11 1		
267	╢╴╏╌╸				0:0		0		-	11 1		V
1 454	-) } : ₩ - :	n •		U						-5 H		-11

TALLEY .- RUN INDEX

R

Run	<u>ا</u> م	δ _f	HORIE.	U/W ENGINE	T.S.	THRUST ENG.	CJI	2,psf	PTAUG	S _{TH}	Remarks	FIGURE
265	1.34	40	OFF	J-85	30:70	910	1.16			30		35a
266]		Î				,84					
267						V	.41					
268					V	100	.19					
269					0:0	0	0			V		V
270		070			50:50	300	19	1		90		37
271		<u> </u>			50;50	500	42					
272					ļ	1	.87					
213					0.0	0	0					
274	161				50:50	304	.19					330
275					30:70	700	19					33h
271-					50;50	500	.42					332
ררצ					3010	916	.41					336
278					50:50	506	84					33a
279					0:0	¢.	0			V		<u>3</u> 3 a
280					50:50	300	18	1		60	•	329
281					30:70	700	.19					32.b
282					50150	500	.4-2					320
2.93					30:76	910	.42					326
284					Soiso	500	.86	' .				32a
285					30:70	916	.84					326
286					50:50	500	1.17					329
287					30:70	910	1.16					325
288		V			0:0	4	0			V		32a
289		40			30:00	700	.19			30		316
290					So;so	500	.43					3la
291					30170	910	.42		i i			315
292					50:50	500	.86					310-
Z43					30;70	410	185					316
294					So:So	500	1.17			1~1~i		312
295					30:70	910	1					
296					0:0	0			†	I I I		
297	V	V	V	V	30:70	700	19			0		306

TAULE V. - RUN INDEX

ß

Run	%	S _f	HORIZ.	U/W ENGINE	T.S.	THRUST ENG.	C _{JI}	°€3Psf	PTAUC	Snt	Remarks	FIGURE
Z98	1.61	40	OFF	J-85	30:70	910	,42			0		390
299					50:50	500	.86					300
300					30:70	910	1.17					300
301					50:50	500	1.18					30 -
302					10010	0	1.19	1.1				4
303					30170	910	1.17	<u> </u>				306
304	V	↓ I	- V	V.	0:0	0	0					300
]		
				<u> </u>						ļ		
								<u> </u>				
				<u> </u>	L			[
	ĺ						<u> </u>					
				[<u> </u>			[
					ļ		· · · · ·	ļ				·
				Į	Į		ļ	ļ				
			<u>}</u>]	ļ			ļ				
				[ļ	ļ		ļ				·
			Į		<u> </u>	Į						
				1						1		
	 			Į		L		ļ				<u> </u>
				ļ	<u> </u>	<u> </u>						
					ļ	 	Í <u> </u>		ļ			
							[[·
			¥		 	ļ		ļ			<u> </u>	Į
			1	<u> </u>		<u> </u>	 					· · · · · · · · · · · · · · · · · · ·
		<u> </u>			<u> </u>		╣	ļ		y		
		 	Į	<u> </u>	_	. ¹ .	∦	 				
			<u> </u>		1	ļ	 	ļ				
					<u> </u>	<u>↓</u>	<u> </u>					
					<u> </u>	<u> </u>	<u> </u>	ļ		li		
	<u> </u>				ļ	<u> </u>	<u> </u>	.	ļ			<u> </u>
1		¥	Ĭ	ļl	ļ	_	II	. ļ	 			ļ ļ

(a) model with JT-15 underwing engines

Figure 2.- Swept augmentor wing basic geometry.

- 100 % 6.54 (21.4) 229 1.83 (5.99) 2.50 (8.21) 1.61 (5.29) 4:57 (15.01) 70% 1.73 (5.76) 1.79 (5.88) ,86 (2.83) DIMENSIONS IN MET <u>SSI </u> (b) model with J-85 underwing engines Figure 2.- Continued.

<u> </u>	
ROOT 20.3 (B) 2.4 (176)	
T_{IP} [10.2 (4)] 1.0 ($\frac{3}{8}$)]	

. . . .

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

(d) augmentor duct diameter as a function of wing span

Figure 4.- Concluded.

.

Ila N

.

. .

12~ 5

126 U

.

with no underwing engine; h/c = 1.34, $\delta_{f} = 30^{\circ}$, tail off.

Figure 15.- Longitudinal aerodynamic characteristics with no underwing engine; h/c = 1.34, $\delta_f = 60^\circ$, tail off.

IS U

.

.

16a \$

180- W

D.CONTROL

Figure 18.- Continued.

186 W

.

Figure 18.- Continued.

Figure 18.- Concluded.

A States and

19c U

200 -

.

zod to

.

.

ZOe A

and the second se

onic and the second

zid ô

学家的公司的问题

z4 c \$

25 4 0

25- 10

Figure 26.- Longitudinal aerodynamic characteristics with two J-85 underwing engines; h/c = 2.04, $\delta_f = 70^\circ$, $\delta_{TH} = 60^\circ$.

26 - 5

HERES

27~ 7

. .

ZTe A

•

.

28d -

30 4 0

and the second second

30- 96

-

316 0

ú .

32a 5

33b

- Alter

34 ~ 00

×

,这个问题和我们的"我们"

346 0

.

-

20

