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ABSTRACT

The problems associated with data acquisition and reduction In the U.Va.
superconductlng magnetic suspension and balance facll Ityare similar to
those In free-f light ranges (or tunne Is). The mode I undergoes a "Quas I-s Ix­
degree-of-freedom" motion which must be monitored both in position and angu­
lar orientation from which the aerodynamics must be inferred. The data
acquisition problem is made more difficult because geometric constraints
prevent direct visual access to the model in the Mach 3 wind tunnel. The
methods, accuracies and problems associated with the acquisition of data
are discussed.
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1.0 Introduction

The problems associated with data reduction in the U.Va. superconduct­
ing magnetic suspension and balance faci I ity (SMSS) are simi lar to those in
free-fl'ight ranges (or tunnel~). A complete description of this facit ity
can' be found in reference I. The mode I undergoes a "quas i-s ix-degree-of
freedom" motion which must be monitored in both position and angular orien­
tation, from which the aerodynamics must be inferred. The advantages of
this facil ity over a conventional free fl ight facil ity is the abil ity to
test over "long" times and gather more data, making the determination of
model aerodynamics more accurate. In addition the increased length of time
enables the transient part of the motion to decay al lowing observation and
analysis of steady-state motion. This promises to be a useful technique,
as will be described below.

The precision with which we can determine the aerodynamics depends on
two factors: first, the accuracy of the data acquisition technique used;
and, second, the manner in which the errors propagate through the mathe­
matical motion model and data reduction techniques. Here we wil I primari Iy
be concerned with the latter; however, since it is an integral part of the
data reduction scheme we wi I I first discuss the data acquisition problem.

2.0 Data Acquisition

There are three methods for data acquisition in the U.Va. magnetic sus­
pension facil ity. These are shown in Figures I, 2, and 3. The first of
~hese-the optical sensor (Figure I), used to provide .feedback for the con­
trol system, wil I also provide the primary data source for the data reduc­
tion process. The optical system is a conventional light beam-photocell
system designed and cal ibrated to give position and angular data. The model
geometry is one of the optical sensor design criteria, and hence, changing
model geometry may require a new optical sensor design and cal ibration.

The optical system wi I I hopefully be replaced by an electromagnetic
sensor of the MIT type (Figure 2) which at this time is stil I under develop­
ment. The main problems with the electromagnetic system arise from its use
near a htgh alternating current source. The electromagnetic sensor wi I I re­
quire less area in the annulus around the tunnel and thus al Iowa larger
diameter test section. The primary motivation for development of the
electromagnetic sensor is its invariance to model changes. 2

The fiber optic system3 (Figure 3) was designed primari Iy for use as a
visual cue for the operator, who, due to tbe hel ium dewar, does not have a
direct I ine of sight to the model. The distortion created (mostly barrel
type), shown in Figure 4 can be compensated for by an extensive cal ibration
procedure. This source of data is difficult to incorporate into the data
reduction process since it requires a relatively large preprocessing effort
and its estimated accuracy is an' order of magnitude less than the other two
systems as is illustrated in Table I.

.05 degrees (2 planes)

.01 degrees (2 planes)
• I degree (I plane)

.1 mm <3 axes)

.1 mm <3 axes)
I mm <3 axes)

Table I
Data ACquisition Systems Accuracies (estimates)

Position AnglesSensor Type

Optical
Electromagnetic
Fiber .Optic

3.0 Control Technique

In order to understand the concepts of data reduction as appl ied to
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the model motion in the U.Va. magnetic suspension facil ity it is first
necessary to understand the "quasi-six-degree-of-freedom" nature of the
motion. By "quasi-six-degree-of-freedom" we mean the model is free to both
rotate and translate at frequencies above some cutoff imposed by the SMSB
co~trol' system. The feedback controller is designed to control only low
frequency (0(10 hz» and DC components of the model motion leaving the high
frequency motion "untouched".

The maximum excursion of the model from the tunnel center I ine at high
frequencies given by

a I
= _m.;..;a;;.;.x......,.-;;;;.z

mi

Control I ed

IX/Mext '
(Cm/Ft-I b)

FreeControlledFree

Driving Frequency
(Rad/Sec)

where amax is the maximum angle of attack, Iz the pitch moment of inertia,
m, the mass, and i the distance between center of pressure and center of
gravity.

For a typical model with a natural aerodynamic frequency of 35 hz the
maximum displacement can be kept within I cm of the center I ine.

In principle a controller which wi II leave the model aerodynamics "un­
~ouched" (i.e. not affect the roots of the characteristic equation asso­
ciated with the aerodynamics) can be designed. It is one that requires
feedback in position, velocity, angle and angular rate, the gains of each
being determined by the method of Bass and Gura. 4 This method requires the
knowledge of the aerodynamic properties of the model a priori, and freedom
to use feedback in al I the problem variables. Although feasible, this
method is less desirable than a simple position-velocity controller.

An analysis of a simple position-velocity controller with a 3 hz natural
frequency and n damp i ng rat io has been carr ied out based on rather crude
estimates of model aerodynamics. The indications are that there is little,
if any, interaction with the model motion due to aerodynamics.

Two sources of error were examined:
I. Errors due to uncertainties in model aerodynamics.
2..Errors due to uncertainties in the position of the magnetic center

with respect to the center of mass.

As can be seen from Figure 5 there is an insignificant effect on the
damped natural frequency of the model and a sma I I effect (about 2%) on the
damping exponent. The error introduced by the controller into the damping
exponent can easi Iy be cal ibrated with wind off and used to compensate the
later results of the inversion process to obtain aerodynamics. For the
steady-state case a frequency response analysis for a typical model with
and without controller was conducted. The results are given in Table I I.

Table II
Frequency Response Analysis
ltJM t lex
(Rad/Ft-Ib)

150 1.56036 1.56981 17.4107 17.5269
175 1.91601 1.92581 15.7085 15.7964
200 2.45552 2.46566 15.4143 15.4838
225 2.96322 2.96845 14.698 14.7285
250 2.65051 2.64787 10.6494 10.6414
275 I .88953 1.88687 6.27438 6.26686
300 ·1 .33748 i .33608 3.73196 3.7287

K.3.



.,be drawn from the effacts of the control Jer on the
and the frequency response of the model are as

For transient analyses the damping exponent may be affect by some
sma I I percentage (about 2-5%). This can be compensated for a
posteriori.
There is insignificant effect on the frequency.
The forced steady-state motion is essentially unaffected by the
contro I Ier.

2.
3.

The conclusions to
~haracteristic equation
follows:

I •

Thus for the a.na I ys is of aerodynam ics discussed in the next sect ions
the model will be considered to be in free-fl ight with no inputs due to the
feedback control system. This, it is felt, is the unique feature of this
wind tunnel system -"long term" free-fl ight data.

4.0 Mathematical Models

4.0.1 The first mathematical model to be considered is well known 5
linearized equations for a rol ling missi Ie with trigonal or greater symmetry

(4.0.1-3>

(4.0.1-5)

(4.0.1-2)-[Cm + Cm.D + iPo(CmpaD)JA+[isD2 - Cm -iPo(i A - Cm )JD6 = Mext
a a p q pr

where the C's are the aerodynamic coefficients, ll·the nondimensional mass,
iA and is nondimensional inertias, Po the nondimensional rol I rate, D the
derivative operator, A the complex angle of attack, 6 the complex orienta­
tion angle, Fext and Mext external driving functions. These equations have
the fami! iar quadricycl ic solution for either of the variables A or 6; e.g.

(AI + iWI)t (A2 + iW2)t iW3t
6 = KI e + K2e + K3 e + K4

where Ki is the initial ampl itude of the mode, Ai is the damping rate of the
mode, wi is the frequency of the mode, and ~i is the phase angle of the mode.
The subscripts I, 2, 3, and 4 refer to the precession, nutation, rol ling
trim; and nonrol I ing trim modes respectively.

The constants Ki, Ai, Wi, and ~i contain the information needed to
obtain the aerodynamic coefficients. The precision to which the coefficients
can be determined depends on the precision to which the data is known;
examples of this wi I I be given below.

Equation 4.0.1-3 contains the information needed to fit both transient
(al I four modes of motion) and steady-state (just the K3 and K4 modes of
motion) data. The inversion process for transient case yields the aero­
dynamics in one run using the fol lowing relationships

Cm = (Wlw2 - AIA2)21 /pU2Sd
a y

C + Cm. = [(AI + A2) + ~~S (-Cz - CD)]4I y/ pUSd 2
mq a a

WIA2 + w2AI US
C =[ + ---2P (-C - CD>J41 /pUSd 2 (4.0.1-6)

mp8 WI + w2 m za x

where the drag coefficient and I ift curve slope must be obtained by other
means. The drag coefficient, CD' determination is straightforward - being
proportional to the. force required to prevent the model from moving along
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the tunnel axis. This force is easi Iy determined to a high level of accuracy
from the currents in the coils. The slope of the I ift coefficient, Cz (as
well as other translational aerodynamics) can be obtained from a. ex
standard swerve reduction program5 (proportional to the lateral distance
travel ed)"

The useful part of the appl ication of the quadricycl ic solution to both
transient and steady-state data I ies in the abil ity to write either the real
or imaginary part of the solution; e.g.

B= Re(~) = Klcos(Wlt + ~l) + K2cos(W2t + ~2) + K3cosw3t + Re(K4) (4.0.1-7)

and sti I I have al I the information contained. This enables the appl ication
of the techniques indicated to data from a single plane.

4.0.2 The second model to be considered is the fitting of the obser­
vations to the equations of motion using a technique which we wil I cal I the
"Brute-force" method. 7 For an axisymmetric model only the z force and M
pitching moment equations are necessary for the inversion; however, data on
all kinematic variables is needed:

'fI:, + qC + pvC +z z z
w q pv

wC + qC + pvC +m m mw q pv

DwC
Z

+ pDvCz + prCz = p(Dw - qu + pv) (4.0.2-1 )
Ow pDv pr

DwC + pDvC + prC = IBDq - (i C - IA}pr
mOw mOmp v pr

+ iE(p2 - r 2}-i F(qr - Op) + iD(qp - Dr} (4.0.2-2)

where v, w, p, q, r are the nondimensional kinematic velocities and the I's
are moments and products of inertia. This model is fitted by reduction to
a set of algebraic equations as described below.

4.0.3 The third model is a special ization of the first one (eq. 4.0.1-2)
Here only steady-state motion is considered, perhaps the most unique model
for2free fl ight faci I ity to be using. The advantage to steady-state reduc­
tion is, of course, the increased accuracy to which the data can be deter­
mined, having many cycles of data to "smooth" over.

4.0.4 The last model considered is the ful I six degree of freedom
equations of motion given in reference 5. Here the motion is al lowed to
include nonl inear aerodynamics as wei I as nonl inear inertia terms.

5.0 Data Reduction Techhiques

Three conceptually differ"ent classes 9f methods have been investigated
for extracting aerodynamics from available observations. These three classes
are referred to here as

I. Differential Correction Methods,
2. "Brute Force" Method, and
3. Steady State Analysis Method.

Most conventional procedures belong to class (I). Our particular adaptations
are in some aspects unique, as wil I be explained below, but in general
represent the state-of-the-art of this approach. Classes (2) and (3) are
original approaches gtowing out of our research efforts at U.Va.

5.0.1 Differential Correction Methods

Here we are referring to the class of numerical methods which success­
ively improve prel iminary values for the unknown parameters in a given
mathematical model until the computed output agreas with observations in
some optimum sense (in our case, minimizing the weighted sum of squares of
observed-minus-computed residuals). We have employed two differential
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correction formulations in our data reduction analyses, these are

AP = (ATWA)-l ATW AUf, (5.0.1-1)

and
(5.0.1-2)

(5.0.1-5)

(5.0.1-6)

(5.0.1-7)

(5.0.1-3)

(5.0.1-4 )

where
AP - n x matrix of corrections to parameters,

AUf - m x matrix of obse~vation residuals,

A _ m x n Jacobian matrix of partial derivatives of the
m observables with respect to the n parameters,
evaluated with the current parameter estimates, .

mx m weighting matrix,

AUfTWAUf,

W -
~ -

GT -

and

[~ I • • •~ I ] (5.0.1-8)apl c aP n c

AC :: ApTAP, AC assigned empirically. (5.0.1-9)

The reader Is referred to reference 8 for theoretical derivations and
discussions of (5.0.1-1) and (5.0.1-2).

The first differential correction formula (5~0.1-1) is the classic
least squares solution. The second formula (5.0.1-2) is the method of
gradients ("steepest descent") solution for minimizing an arbitrary function.

Evaluation of the derivative matrix (5.0.1-5) is often a source of
numerical difficulty. 'For analytic algebraic observation equations, we
have developed, and used extensively a computer program which completely
automates the process of partial differentiation. This process was employed
with the quadricycl ic solution as given in 4.0.1. For those cases in which
the ful I six-degree-of-freedom equations (4.0.4) were integrated, we adopted
a proces$ known as parametric differentiation for computation of the elemen~

of the observation Jacobian (5.0.1-5). This procedure8 develops a set of
m x ndifferential equations (one for each element of A) which can be
integrated simultaneously with the equations of motion. These equations
fol low from straight forward partial differentiation of the equations of
motion.

Comparing the method of gradients co~rection equation (5.0.1-2) with
the least square correction equation (5.0.1-1), we note that use of (5.0.1-2)
eliminates the necessity of inverting (ATWA), but introduces the necessity
of controlling convergence rate by logically assigning AC (5.0.1-9) in
(5.0.1-2). Our experience indicates that (5.0.1-2) is a val id alternative
to (5.0.1-1), but should be employed only in the event that (ATWA) is so
poorly conditioned that numerica.1 inversion is impossible. We have found
that the classical least square solution is typically an order of magnitude
more efficient as the basis for least square differential corrections.

5.0.2 The "Brute Force" Method

Equations 4.0.1-1, 2 are solvable by differentiating the data numeri­
cally (using a five point central differencing scheme) and assuming at I the
observab.le kinematics to be known quantities. Thus the equations of motion
are reduced to a set of I inear algebraic equations in the aerodynamics which
can be inverted to obtain the aerodynamics. As one might suspect, the
accuracy of this method is highly sensitive to errors in observed data, since
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(5.0.3.1-2)[-(C + C )]w + [-po Cz ]
z<i Zq pB

lmag

numerical differentiation Is being performed. This method also requires data
on both position and angles in two orthogonal planes, however it is capable
of handl ing a more sophisticated (i .e. nonl inear) model of the aerodynamic
forc€s and moments.

For more details on this "Brute Force" method see reference 7. Compari­
son of this method with the others wi I I be presented below.

5.0.3 Steady-State Analysis

5.0.3. I Equations

As stated before, the coupled, complex, second order, linear differen­
tial equations which describe the motion of our model reduce to two complex
algebraic equations when only the steady-state response Is considered.

The resulting equations can be arranged9 in the fol lowing fashion:
211iwlJ.

Rea I ( A 0) • [pA (C + C ) Jw + [C ] (5 .0. 3. I -I )o Z Z . Z
o pr pf3 CL

211iwlJ.
( 0) =

A
o

+ [-Cm ]
CL

Real

lmag

(!:!.-.)
A

o

M
(~)
A

o

• [-i B]w2 + [poiA]w

C
Z

+ 211
CL

(iAPo - iBw) = [-(C + C )]w + [-C p Jm m· m Q 0
q CL PP

(5.0.3.1-3)

(5 •0 •3. I-4 )

The terms appearing on ~he left hand side of the equations are al I observa­
bles (or in the case of the last equation - computable before they are
needed). These quantities are determined for each of several frequencies
on the frequency response curve. Due to the periodic non-damped nature of
the steady state solution lJ.o and Ao can be determined using a simple least
square procedure or fourier analysis to obtain amp( itude,phases,and
frequencies. Since a I inear model has been assumed, observations of one
plane of data (both angle and velocity) is sufficient. Each. of the first
four equations are val id for the n-points used on the frequency response
curves. Therefore, we have n sets of equations whose solution is a simple
non-iterative least squares reduction for the coefficients.

The major advantages of this method are its simpl icity (no interation
necessary) and its relative insensitivity to reasonable measurement errors.

The determinable coefficients include al I of the coefficients on the
right hand side of equations 5.0.3.1-1, 2, 3 and 4. This, it should be
noted, includes inertla terms.

5.0.3.2 Magnetic Investigation of Resonance

In the steady state case the use of an oblate spheroid for the
support element wi I I also al low for an investigation of a resonance curve. In
the previous section this was shown to be sufficient to determine the models
aerodynamics. Use of an oblate spheroid provides an additional "spring constant"
-term (which is proportional to the magnitude of the main field) in the rota­
tional equation of motion.

For discussion's here we assume no transl·ation, the models motion is
given by:
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..
.. " lwt

lp ('AD - CD)} = M eo mpr 0

(5.0.3.2-1)

(5.0.3.2-2)

..
~ssuming the steady state solution (A = Aoe iwt and for simpl icity assume
Po = 0, then rearranging and separating the equation into real and imaginary
parts;

M
Rea I (-2.) =

Ao

(5.0.3.2-3)

It shou Id be

the problemwith the same 00 but different C
m

AML
section.
before.

M
lmag (-2.) = (C + C )00

A m m·
0 q a

For numerous runs, a II

becomes the same as that described in the previous
noted that the "variable" is now C not "00" asmA. ML '

This method wi I I be investigated numerically in the near future, no
results are as yet available.

A disadvantage of this method that is that the translation equation of
motion is unchanged. AI I the quantities appearing are constant, making it
necessary to vary 00 (as well as C ) to evaluate all of the aerodynamic
coefficients involved. mAML

6.0 Numerical Results

A comparative numerical study of how observational statistics propagate
through the data reduction methods into statistics of the determined aero­
dynamic derivatiWCs has been carried out. Observations were simulated by
corrupting perfect (computed) values of the observables by adding Gaussian
random relative errors. Several noise samples were taken at each noise
level (o)j and each of the several appl icable data reduction techniques
were employed to determine the corresponding values for the aerodynamic
derivatives. From these results, small sample statistics of the determined
derivatives were computed for each method. Typical results of these analyses
are displayed in figures 6, 7, 8 and 9 for a 15° included angle cone.

AI I the data are presented as percent standard deviation of the aero­
dynamic coefficients versus percent random noise. superimposed on the data.
The major observation to be made is the consistent superiority of the steady­
state method over the others. The translational derivatives (not shown)
fol low the same pattern with the steady-state method yielding the most
accurate inversion at a given noise level. The errors noted in the
differential correction methods are approximately the same as other investi­
gators using these methods have found them to be.

One interesting fact to be reported on in detail in a future publ ication
is the abil ity to separate Cm and Cm. for reasonable noise levels using the
"Brute Force" method ~ q a

t Curves. I and 2 have a sl ightly higher positional noise level than the
others, however our experience Indicates that the moment coefficients
are not extremely sensitive to positional noise.
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7.0 Conclusions

An analysis of several methods for obtaining aerodynamic coefficients
from the U.Va. superconducting magnetic suspension and balance wind tunnel
system has been carried out. The method for inverting steady state free­
fl i.ght ·rrotion yields more precise aerodynamic coefficients than transient
methods at the same measurement noise level.
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Figure Optical Sensing System

Figure 2 Electromagnetic Sensing System
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Figure 3 Fiber Optic System
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Figure 4 Distorted Cone
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