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ABSTRACT

The problems associated with data acquisition and reduction in the U.Va.
superconducting magnetic suspension and balance facility are similar to
those in free-flight ranges (or tunnels). The mode! undergoes a "Quasi-six-
degree-of-freedom'" motion which must be monitored both in position and angu-
lar orientation from which the aerodynamics must be inferred. The data
acquisition problem is made more difficult because geometric constraints
prevent direct visual access to the model in the Mach 3 wind tunnel. The
methods, accuracies and problems associated with the acquisition of data

are discussed.
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.0 Introduction

The problems associated with data reduction in the U.Va. superconduct-
ing magnetic suspension and balance facility (SMSB) are similar to those in
free~-flight ranges (or tunnels). A complete description of this facility
can be found in reference I. The model undergoes a "quasi-six-degree-of
freedom™ motion which must be monitored in both position and angular orien-
tation, from which the aerodynamics must be inferred. The advantages of
this facility over a conventional free flight facility is the ability to
test over "long" times and gather more data, making the determination of
model aerodynamics more accurate. In addition the increased length of time
enables the transient part of the motion to decay allowing observation and
analysis of steady-state motion. This promises to be a useful technique,
as will be described below. ' '

The precision with which we can determine the aerodynamics depends on
two factors: first, the accuracy of the data acquisition technique used;
and, second, the manner in which the errors propagate through the mathe-

matical motion model and data reduction techniques. Here we will primarily
be concerned with the latter; however, since it is an integral part of the
data reduction scheme we will first discuss the data acquisition probliem.

2.0 Data Acquisition

There are three methods for data acquisition in the U.Va. magnetic sus-
pension facility. These are shown in Figures |, 2, and 3. The first of
these-the optical sensor (Figure |), used to provide feedback for the con=-
trol system, will also provide the primary data source for the data reduc-
tion process. The optical system is a conventional 1ight beam-photocell
system designed and calibrated to give position and angular data. The model
geometry is one of the optical sensor design criteria, and hence, changing
model geometry may require a new optical sensor design and calibration.

The optical system wilil hopefuily be replaced by an eiectromagnetic
sensor of the MIT type (Figure 2) which at this time is still under develop-
ment. The main problems with the electromagnetic system arise from its use
near a high alternating current source. The electromagnetic sensor will re-
quire less area in the annulus around the tunnel and thus allow a larger
diameter test section. The primary motivation for development of the
electromagnetic sensor is its invariance to model changes.?

The fiber optic sysTem3 (Figure 3) was designed primarily for use as a
visual cue for the operator, who, due to the helium dewar, does not have a
direct line of sight to the model. The distortion created (mostly barrel
type), shown in Figure 4 can be compensated for by an extensive calibration
procedure. This source of data is difficult fo incorporate into the data
reduction process since it requires a relatively large preprocessing effort
and its estimated accuracy is an order of magnitude less than the other two
systems as is illustrated in Table 1.

Table |
Data Acquisition Systems Accuracies (estimates)
Sensor Type : Position ) Angles
Optical .1 mm (3 axes) .05 degrees (2 planes)
Electromagnetic .1 mm (3 axes) .0l degrees (2 planes)
Fiber Optic I mm (3 axes) . | degree (I plane)

3.0 Control Technique

In order fo understand the concepts of data reduction as applied to
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the model motion in the U.Va. magnetic suspension facility it is first
necessary to understand the "quasi-six-degree-of-freedom" nature of the
motion. By "quasi-six-degree-of-freedom" we mean the model is free to both
rotate and translate at frequencies above some cutoff imposed by the SMSB
control  system. The feedback controller is designed to control only low
frequency (0(10 hz)) and DC components of the mode! motion leaving the high
frequency motion "untouched".

The maximum excursion of the model from the tunneil centerline at high
frequencies given by :
a !
_ max 'z - ' O

dmax = " mi (.0-1)
where ama, is the maximum angle of attack, |, the pitch moment of inertia,
m, the mass, and & the distance between center of pressure and center of
gravity.

For a typical model with a natural aerodynamic frequency of 35 hz the
maximum displacement can be kept within | cm of the centerline.

"un_

In principle a controller which will leave the model aerodynamics
touched" (i.e. not affect the roots of the characteristic equation asso-
ciated with the aercdynamics) can be designed. It is one that requires
feedback in position, velocity, angle and angular rate, the gains of each
being determined by the method of Bass and Gura.4 This method requires the
knowledge of the aerodynamic properties of the mode! a priori, and freedom
to use feedback in all the problem variables. Although feasible, this

method is less desirable tThan a simple position-velocity controller.

An analysis of a simple position-velocity controller with a 3 hz natural
frequency and v 2 damping ratio has been carried out based on rather crude
estimates of model aerodynamics. The indications are that there is little,
if any, interaction with the model motion due to aerodynamics.

Two sources of error were examined:

Il. Errors due to uncertainties in model aerodynamics.

2. .Errors due to uncertainties in the position of the magnetic center
with respect to the center of mass.

As can be seen from Figure 5 there is an insignificant effect on the
damped natural frequency of the model and a small effect (about 2%) on the
damping exponent. The error introduced by the controller info the damping
exponent can easily be calibrated with wind off and used to compensate the
later results of the inversion process to vbtain aerodynamics. For the
steady-state case a frequency response analysis for a typical mode!l with
and without controiler was conducted. The results are given in Table 11.

Table il
Frequency Response Analysis
Driving Frequency IA/Mex‘rl lX/Mexfl
(Rad/Sec) (Rad/F+-1b) (Cm/Ft=-1b)

Free Controlled Free Control led
150 1.56036 |.56981 17.4107 17.5269
175 1.91601 I.92581 15.7085 15.7964
200 2.45552 2.46566 15.4143 15.4838
225 2.96322 2.96845 14.698 14.7285
250 2.65051 2.64787 10.6494 10.6414
275 1.88953 |.88687 6.27438 : 6.26686
300 1.33748 I.33608 3.73196 3.7287
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The conclusions to be drawn from the effects of the controller on the
characteristic equaflon and the frequency response of the model are as
follows:

I. For transient analyses the damping exponent may be affect by some
small percentage (about 2-5%). This can be compensated for a
posteriori.

2. There is insignificant effect on the frequency.

3. The forced steady-state motion is essentially unaffected by the
controllier.

Thus for the analysis of aerodynamics discussed in the next sections

the model will be considered to be in free-flight with no inputs due to fhe
feedback contro!l system. This, it is felt, is the unique feature of this
wind tunnel system - "long term" free-flight data.

4.0 Mathematical Models

4.0.1 The first mathematical mode! to be considered is well known
linearized equations for a rolling missile with trigonal or greater symmetry

[2uwD - Ci - Cz.D - ipo(CZ + CZ DYyJA-[2u + CZ -ipoCZ oa = Fexf (4.0.1-1)
: a “a pB pB q pr
- in i D2 - -ip (i. - =M -
[Cm + Cm.D + :pO(Cm .D)]A+[|BD Cm 'po('A Cm )1oa Mex+ (4.0.1-2)
o a pB : q pr

where the C's are the aerodynamnc coeff|C|enTs, 1 the nondimensionai mass,
ip @and ipg nondimensional inertias, p, the nondimensional roll rate, D the
derivative operator, A the complex angle of attack, A the complex orienta-
tTion angle, Fgy+ and Mg+ external driving functions. These equations have
The familliar quadricyClic solution for either of the variables A or A, e.g.

(A + Twp)t (Ap + fu)t  iwgt

where K. is the initial amplitude of the mode, A; is the damping rate of the
mode, wj is the frequency of the mode, and ¢j is the phase angle of the mode.
The subscripts |, 2, 3, and 4 refer to the precession, nutation, rolling
trim, and nonrolling trim modes respectively.

The constants K;, A;, wj, and ¢; contain the information needed to

obtain the aerodynamic coefficients. The precision to which the coefficients

can be determined depends on the precision to which the data is known;
examples of this will be given below.

Equation 4.0.1-3 contains the information needed fo fit both transient
(all four modes of motion) and steady-state (just the K3 and Ku modes of
motion) data. The inversion process for transient case yields the aero-
dynamics in one run using the following retationships

C, = (wiwp = A1x2)2I /pu25d : (4.0.1-4)
a
= DUS _ 2 . . _
nq ¥ cm& L+ 22) + 5= (-C, 2. CD)]4ly/pUSd | (4.0.1-5)
wllz + wz)\]_ ’ .
- pUS _ \ 2 v _
CmpB C TR ( czh Cy) 141, /pUsd (4.0.1-6)

where the drag coefficient and |ift curve slope must be obtained by other
means. The drag coefficient, Cp, determination is straightforward - being
proportional to the force required to prevent the model from moving along

K.4.

Iy



the tunnel axis. This force is easily determined to a high level of accuracy
from the currents in the coils. The slope of the lift coefficient, C, (as
well as other translational aerodynamics) can be obtained from a . ¢
standard swerve reduction program® (proportional fo the lateral distance
ftraveled).

The useful part of the application of the quadricyclic solution to both
transient and steady-state data lies in the ability fo write either the real
or imaginary part of the solution; e.g.

B = Re(d) = Kjcos(wit + ¢1) + Kpcos(uwat + ¢2) + Kzcoswszt + Re(K,) (4.0.1-7)

and still have all the information contained. This enables the application
of the techniques indicated to data from a single pilane.

4.0.2 The second model to be considered is the fitting of The obser-
vations to the equations of motion using a technique which we will call the
"Brute-Force" method.’ For an axisymmetric model only the z force and M
pitching moment equations are necessary for the inversion; however, data on
all kinematic variables is needed:
wCZ + qCZ + vaZ + DwCZ + pDsz + prCZ

w q pv Dw pDv pr
wC +qC_ + pvC_ + DwC + pDvC + prC
m m m m m m
w q pv Dw pDv pr

+ iE(p2 - rz)-iF(qr -Dp) + i

u(bw - qu + pv) (4.0.2-1)

Dg - (i

I

1]

c - iA)pr

D(qp - Dr) (4.0.2-2)
where v, w, p, g, r are the nondimensional kinematic velocities and the i's
are moments and products of inertia. This model is fitted by reduction to
a set of algebraic equations as described below. ' :

4.0.3 The third model is a specialization of the first one (eq. 4.0.1-2)
Here only steady-state motion is considered, perhaps the most unique model
for free flight facility to be using. The advantage to steady-state reduc-
tion is, of course, the increased accuracy fto which the daTa can be deter-
mined, having many cycles of data to "smooth" over.

4.0.4 The last model considered is the full six degree of freedom
equations of motion given in reference 5. Here the motion is allowed to
include nonlinear aerodynamics as well as nonlinear inertia terms.

5.0 Data Reduction Techniques

Three conceptually different classes of methods have been investigated
for extracting aerodynamics from available observations. These three classes
are referred to here as

I. Differential Correction Methods,

2. "Brute Force" Method, and

3. Steady State Analysis Method.

Most conventional procedures belong to class (1). Our particular adaptations
are in some aspects unique, as will be explained below, but in general
represent the state-of-the-art of this approach. Classes (2) and (3) are
original approaches g#wing out of our research efforts at U.Va.

5.0.1 Differential Correction Methods

Here we are referring to the class of numerical methods which success-
ively improve preliminary values for the unknown parameters in a given
mathematical model until the computed output agre@s with observations in
some optimum sense (in our case, minimizing the weighted sum of squares of
- observed-minus-computed residuals). We have employed two differential
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correction formulations In our data reduction analyses, these are

AP = (ATWA)™! ATW av, (5.0.1-1)
and 1/2 :
&P = - (496 (5.0.1-2)
GG
where
AP = n x | matrix of cecrrections to parameters, : (5.0.1-3)
AY = m x | matrix of observation residuals, (5.0.1-4)
A = m x n Jacobian matrix of partial derivatives of the
m observables with respect to the n parameters,
evaluated with the current parameter estimates, - (5.0.1-5)
=m x m weighting matrix, - (5.0.1-6)
¢ = A¥Tway, (5.0.1-7)
T _ 3¢ 3¢ ' . |
G =L~ | ¢ ¢ « (5.0.1-8)
and T -
AC = AP AP, AC assigned empirically, (5.0.1-9)

The reader s referred to reference 8 for theoretical derivations and
discussions of (5.0.1-1) and (5.0.1-2).

The first differential correction formula (5.0.1-1) is the classic
least squares solution. The second formula (5.0.1-2) is the method of
gradients ("steepest descent™) solution for minimizing an arbitrary function.

Evaluation of the derivative matrix (5.0.1~5) is often a source of
numerical difficulty. For analytic algebraic observation equations, we
-have developed, and used extensively a computer program which completely
automates the process of partial differentiation. This process was employed
with the quadricyclic solution as given in 4.0.1. For those cases in which
the full six-degree-of-freedom equations (4.0.4) were integrated, we adopted
a process known as parametric differentiation for computation of the elemenis
of the observation Jacobian (5.0.1-5). This procedure8 develops a set of
m x n-differential equations (one for each element of A) which can be
integrated simultaneousiy with the equations of motion. These equations
fol low from sTralghT forward partial differentiation of the equations of
motion.

Comparing the method of gradients correction equation (5.0.1-2) with
the least square correction equation (5. O I-1), we note that use of (5.0.1-2)
eliminates the necessity of inverting (ATWA), but introduces the necessity
of controlling convergence rate by logically assigning AC (5.0.1-9) in
"(5.0.1-2). Our experience indicates that (5.0.1-2) is a valid alfernaflve
to (5.0.1-1), but should be employed only in the event that (ATWA) is so
poorlyrcondifloned that numerical inversion is impossible. We have found
that the classical least square solution is typically an order of magnitude
more efficient as the basis for least square differential corrections.

5.0.2 The "Brute Force" Method

Equations 4.0.1-1, 2 are solvable by dlfferenflaflng the data numeri-
cally (using a five ponnf central differencing scheme) and assuming all the
observable kinematics to be known quantities. Thus the equations of motion
are reduced to a set of linear algebraic equations in the aerodynamics which
can be inverted to obtain the aerodynamics. As one might suspect, the
accuracy of this method is highly sensitive to errors in observed data, since
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numerical differentiation is being performed. This method also requires data
on both position and angles in two orthogonal planes, however it is capable
of handling a more sophisticated (i.e. nonlinear) model of the aerodynamic
forces and moments.

For more details on this "Brute Force" method see reference 7. Compari-
son of this method with the others will be presented below.

5.0.3 Steady-State Analysis
5.0.3.1 Equations

As stated before, the coupled, complex, second order, |linear differen-
tlal equations which describe the motion of our model reduce to two complex
algebraic equations when only the steady-state response is considered.

The resulting equaflons can -be arranged9 in the following fashion:

2u|on .
Real ¢ A ) = [pO(CZ + CZ e + [Cz ] (5.0.3.1-1)
o pr pB8 a :
Zuion . ~
Imag C_TR———) = [f(Cz’+ CZ )]w‘+ [-po Cz ] (5.0.3.1-2)
o a q p8
: M o 2 ~ _ -
Real (K-) =[ |B]w + [polA]w + [ Cm ] (5.0.3.1=3)
o a
M' Cz . R
Imag Gj;) + o 2u (I - le) = [-(Cmq+ Cm&)]w + [-Cmpepo] (5.0.3.1~4)

The terms appearing on the left hand side of the equations are all observa-
bles (or in the case of the last equation - computable before they ate
needed). These quantities are determined for each of several frequencies
on the frequency response curve. Due to the periodic non-damped nature of
the steady state solution Ay and Ap can be determined using a simple least
square procedure or fourier analysis to obtain amplitude,phases, and
frequencies. Since a linear model has been assumed, observations of one
plane of data (both angle and velocity) is sufficient. Each of the first
four equations are valid for the n-points used on the frequency response
curves. Therefore, we have n sets of equations whose solution is a simple
non-iterative least squares reduction for the coefficients.

The major advantages of this method are its simplicity (no interation
necessary) and its relative insensitivity to reasonable measurement errors.

The determinable coefficients include all of the coefficients on the
right hand side of equations 5.0.3.1-1, 2, 3 and 4. This, it should be
noTed’incIudes inertia terms.

5.0.3.2 Magnetic Investigation of Resonance

In the steady state case the use of an oblate spheroid for the
support element will also allow for an investigation of a resonance curve. In
the previous section this was shown to be sufficient to determine the models
aerodynamics. Use of an oblate spheroid provides an additional '"spring constant"
term (which is proportional to the magnitude of the main field) in the rota-
tional equation of motion.

For discussion's here we assume no translation, the models motion is
given by:
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( 3 ~ | ’ ‘ ' lw;
- : 2. - - =
{ Ecma+ cmA + cm&o +ip,(C, éo)] + 1g0%- C D - ip (1,0 = C, rD)} M@
BAL P q P
' | - . (5.0.3.2-1)
Assuming the steady state solution (4 = Aoeim* and for simplicity assume

Po = 0, then rearranging and separating the equation into real and imaginary
parts; .

M
__o_=— - 2 o . : . -
Real (Ao) CmA + [ g Cma] (5.0.3.2-2)
BAL
Mo ‘
Imag (—) = (C_ +C_ ow (5.0.3.2-3)
A m me
o q 1 , :
For numerous runs, all with the same w but different Cm the probiem
' A
becomes the same as that described in the previous section. It should be
noted that the "variable" is now Cm not "w" as before.
A
: BAL » . A
This method will be investigated numerically in the near future, no

results are as yet available.

A disadvantage of this method that is that the transliation equation of
motion is unchanged. All the quantities appearing are constant, making it
necessary to vary w (as well as C ) to evaluate all of the aerodynamic
coefficients involved. mABAL

6.0 Numerical Results

A comparative numerical study of how observational statistics propagate
through the data reduction methods into statistics of the determined aero-
dynamic derivatig@Qs has been carried out. Observations were simulated by
corrupting perfect (computed) values of the observables by adding Gaussian
random relative errors. Several noise samples were taken at each noise:
level (0); and each of the several applicable data reduction techniques
were employed to determine the corresponding values for the aerodynamic
derivatives. From these results, small sample statistics of the determined
derivatives were computed for each method. Typical results of these analyses
are displayed in figures 6, 7, 8 and 9 for a 15° included angle cone.

All the data are presented as percent standard deviation of the aero-
dynamic coefficients versus percent random noise¥ superimposed on the data.
The major observation to be made is the consistent superiority of the steady-
state method over the others. The translational derivatives (not shown)
follow the same pattern with the steady-state method yielding the most
accurate inversion at a given noise level. The errors noted in the
differential correction methods are approximately the same as other investi-
gators using these methods have found them to be.

One interesting fact to be reported on in detail in a future publication
is the ability to separate Cy and C, for reasonable noise leveis using the
"Brute Force" method. q « :

+ Curves.| and 2 have a slightly higher positional noise level than the
others, however our experience indicates that the moment coefficients
are not extremely sensitive to positional noise.
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7.0 Conclusions

An analysis of several methods for obtaining aerodynamic coefficients

from the U.Va. superconducting magnetic suspension and balance wind tunnel
system has been carried out. The method for inverting steady state free-
flight motion yields more precise aerodynamic coefficients than ftransient
methods at the same measurement noise level.
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Figure 4 Distorted Cone
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