MOLECULAR BRANCHING RATIO METHOD FOR INTENSITY CALIBRATION OF OPTICAL SYSTEMS IN THE VACUUM ULTRAVIOLET

MICHAEL J. MUMMA

OCTOBER 1972

GODDARD SPACE FLIGHT CENTER

 GREENBELT, MARYLAND(NASA-TM-X-66070) MOLECULAR BRANCHING
RATIO METHOD FOR INTENSITY CALIBRATION OF
OPTICAL SYSTEMS IN THE VACUUK ULTRAVIOLET
M.J. Mumma (NASA) Oct. 197233 p CSCL 03B

Molecular Branching Ratio Method for Intensity Calibration of Optical Systems in
the Vacuum Ultraviolet

Michael J. Mumma
Astrochemistry Branch, Laboratory for

Extraterrestrial Physics

NASA-Goddard Space Flight Center, Greenbelt, Md. 20771

ABSTRACT

A state-of-the-art review is given of the molecular branching ratio method for intensity calibration in the vacuum ultraviolet. Ways are described for determining both relative and quantitative responses in the wavelength range $1000 \AA<\lambda<3000 \AA$. The molecular band systems which are discussed are: $H_{2}\left(B^{I} \Sigma_{u}^{+}-X^{I} \Sigma_{g}^{+}\right), H_{2}\left(C^{1} \Pi_{u}-X^{I} \Sigma_{g}^{+}\right)$, $N_{2}\left(a^{1} \Pi_{g}-X^{l} \Sigma_{g}^{+}\right), \quad \operatorname{CO}\left(A^{1} \Pi-X^{1} \Sigma^{+}\right), \quad N O\left(A^{2} \Sigma^{+}-X_{r}^{2} \Pi_{r}\right)$, and $\mathrm{NO}^{+}\left(\mathrm{A}^{1} \Pi-\mathrm{X}^{1} \Sigma^{+}\right)$.

Unitl recently, calibration of optical systems in the vacuum ultraviolet ($1000<\lambda<3000$) was extremely difficult. With the exception of the atomic branchingratio method, the available techniques were not suited to in-situ calibration of an optical system. ${ }^{1,2}$ Furthermore, the method of atomic branching ratios gave only a few scattered calibration points over a wide wavelength range and required two optical systems, one to calibrate the long-wavelength atomic 1 ine intensity (typically He 5015 \AA) and one for use in the vacuum ultraviolet (typically He $584 \AA$). For completeness, we mention some of the other calibration procedures that were available or suggested: (1) doublemonochromator technique used with a thermopile detector, sodium salicylate detector, or photoionization detector, (2) synchrotron emission, used as a known source with a calculable spectral distribution, and (3) delayed-coincidence atomic line fluorescence ${ }^{3,4}$ (e.g. H(3s-2p) $6563 \AA$ and H(2p-1s)1216 \AA). These methods suffered from one or more of the following problems: (1) limited wavelength range, (2) impracticability of in-situ measurements, (3) uncertainty of polarization effects, and (4) self-absorption of atomic lines terminating on the ground electronic state. These problems were largely overcome by the recently developed
molecular branching-ratio technique.

The extension of the branching ratio technique to molecular band intensities was suggested independently by McConkey ${ }^{5}$ and Aarts and de Heer ${ }^{6,7}$ McConkey found good agreement between the spectral response (3000-4500 $\%$) measured with an NBS quartz-iodine lamp and the spectral response determined from intensity measurements on the $N_{2}\left(C^{3} \Pi_{u}-B^{3} \Pi_{g}\right)$ second positive group. Aarts and de Heer measured the relative intensities of bands (1400-2600 $)$ belonging to the $\operatorname{CO}\left(A^{1} \Pi-X^{1} \Sigma^{+}\right)$fourth positive group and the $\mathrm{CO}^{+}\left(\mathrm{B}^{2} \Sigma^{+}-\mathrm{X}^{2} \Sigma^{+}\right)$first negative group. Although they recognized that the electronic transition moment, R_{e}, might not be constant for the systems, Aarts and de Heer assumed constant R_{e} for the purpose of deriving a spectral response curve and demonstrating the usefulness of the technique. This early work ${ }^{5,6,7}$ demonstrated the feasibility of the method, but the reliability was unknown since the variation of electronic transition moment had not been accurately measured or calculated for any band system

$$
(\lambda<3000 \AA) \text { except } N_{2}\left(a^{1} \Pi_{g}-X^{1} \Sigma_{g}^{+}\right)
$$

The first quantitative, detailed treatments of the technique in the vacuum ultraviolet were given independently by Mumma and $\operatorname{Zipf}^{8,9}\left(\mathrm{~N}_{2}(\mathrm{a}-\mathrm{X})\right.$ and $\left.\operatorname{CO}(\mathrm{A}-\mathrm{X})\right)$ and by Becker et al.10
$\left(\mathrm{H}_{2}\right.$ and $\left.\mathrm{HD}(\mathrm{B}-\mathrm{X})\right)$. Further advances have been made by Poland and Broida ${ }^{11}(\mathrm{NO}(\mathrm{A}-\mathrm{X}))$) Stone and Zipf ${ }^{12,13}$ $\left(\mathrm{NO}^{+}(\mathrm{A}-\mathrm{X})\right.$ and $\left.\mathrm{H}_{2}(\mathrm{C}-\mathrm{X})\right)$ and Aarts and de $\mathrm{Heer}^{14}\left(\mathrm{NO}^{+}(\mathrm{A}-\mathrm{X})\right)$. In this paper, we review the theory and the molecular band systems that may be used for intensity calibration in the vacuum ultraviolet $(1000 \AA<\lambda<3000 \AA)$. The method is useful for wavelengths longer than $3000 \AA$ as well. Band systems at wavelengths longer than $3000 \AA$ have not been included in this review since standard lamps are routinely used for intensity calibration at wavelengths longer than $2600 \AA$.

THEORY

Consider two molecular electronic states that are connected by an electric-dipole-allowed transition. The volume emission rate (photons/cm ${ }^{3} \sec 4 \pi S r$) will be given by

$$
\begin{equation*}
\beta_{v^{\prime} v^{\prime \prime}}=n_{v^{\prime}} A_{v^{\prime} v^{\prime \prime}} \tag{1}
\end{equation*}
$$

where n_{v}, is the number density $\left(\mathrm{cm}^{-3}\right)$ in level v^{\prime} and $A_{v^{\prime}} \mathrm{v}^{\prime \prime}$ is the transition probability $\left(\mathrm{sec}^{-1}\right)$. If the photons are incident on an optical system (monochromator + windows + detector) which has a spectral sensitivity $R(\lambda)$, then the measured counting rate (counts/sec) for a band ($v^{\prime}, v^{\prime \prime}$) is given by

$$
\begin{equation*}
S_{v^{\prime} v^{\prime \prime}}=G R\left(\lambda_{v^{\prime} v^{\prime \prime}}\right) \beta_{v^{\prime} v^{\prime \prime}} \tag{2}
\end{equation*}
$$

G is a geometrical function involving the acceptance solid angle of the optical system, source characteristics, monochromator slit settings, etc. G is kept constant for observations of a given band system and is thus of no importance in determining the relative spectral response. The transition probability ${ }^{15}$ is given by

$$
\begin{equation*}
A_{v^{\prime} v^{\prime \prime}}=\frac{64 \pi^{4}}{3 h} q_{v^{\prime} v^{\prime \prime}} \nu_{v^{\prime} v^{\prime \prime}}^{3} R_{e}^{2}\left(v^{\prime}, v^{\prime \prime}\right) \tag{3}
\end{equation*}
$$

where $q_{v} v^{\prime \prime}$ is the vibrational overlap integral (FranckCondon factor), and $v_{v^{\prime}} v^{\prime \prime}$ is the wave-number $\left(\mathrm{cm}^{-1}\right)$. The lifetime of the vibrational level v^{\prime} is $\tau_{v^{\prime}}=\left(A_{v},\right)^{-1}$, where

$$
\begin{equation*}
A_{v^{\prime}}=\Sigma_{v^{\prime \prime}} A_{v^{\prime} v^{\prime \prime}}, \tag{4}
\end{equation*}
$$

and the molecular branching ratio is defined as

$$
\begin{equation*}
\text { B. } R_{\cdot}=A_{v^{\prime} v^{\prime \prime}} / A_{v^{\prime}} \tag{5}
\end{equation*}
$$

The relative intensities of bands belonging to a $v^{\prime \prime}$ progression (v^{\prime} constant) are independent of n_{v}, Eqs. (1, 2, 3) and depend only on the branching ratios, so that

$$
\begin{equation*}
\frac{S_{v^{\prime} v^{\prime \prime}}}{S_{v^{\prime} v^{\prime \prime}}}=\frac{R\left(\lambda_{2} v^{\prime} v^{\prime \prime}{ }_{1}\right) q_{v^{\prime} v^{\prime \prime}} v_{1}^{3} v^{\prime} v^{\prime \prime}{ }_{1}^{R} e^{2}\left(v^{\prime} v^{\prime \prime}{ }_{1}\right)}{R\left(\lambda_{v^{\prime} v^{\prime \prime}}\right) q_{2} v^{\prime} v^{\prime \prime} v_{2}^{3} v^{\prime} v^{\prime \prime}{ }_{2}^{R} e^{2}\left(v^{\prime} v^{\prime \prime}{ }_{2}\right)} \tag{6}
\end{equation*}
$$

This means that the relative spectral response of the optical system can always be extracted from measurements of the relative
counting rates for a given $v^{\prime \prime}$ progression, independent of the ways in which the various v^{\prime} are populated. Thus, effects such as cascade, quenching, self absorption (except for bands terminating on $v^{\prime \prime}=0$), and excitation mechanism (e.g. exchange interaction vs direct excitation by electron impact) have no effect on the measured relative spectral response. Hence, the method is readily used in discharge systems, controlled electron beam experiments, and photoexcitation sources. The results for different $\mathrm{v}^{\prime \prime}$ progressions are best internormalized by requiring a least-squares fit of the data to a third-order expression in λ for $R(\lambda)$ (see Mumma and Zipf^{8} for further details). A requirement for using Eq. (6) is that R_{e}^{2} be known for bands ($v^{\prime}, v^{\prime \prime}$). A frequently successful approach is to express R_{e} in terms of the r-centroid, $\bar{r}_{v^{\prime} v^{\prime \prime}} 16,17,18$.

Under certain circumstances cascade contributions to the excited state may be negligible. The electron impact cross sections $\sigma_{o v}$, for direct excitation by a monoenergetic electron beam are given by ${ }^{15,19}$

$$
\begin{gather*}
\sigma_{o v}, \alpha f_{o v}, \lambda_{o v}, \alpha \lambda_{o v}^{3}, A_{o v} \\
\sigma_{o v}, \alpha q_{o v}, R_{e}^{2}\left(\bar{r}_{o v},\right) \tag{7}
\end{gather*}
$$

at sufficiently high electron energies (typically E > 100 eV), where $f_{o v}$, is the absorption oscillator strength. For
lifetimes ${ }^{\top}{ }_{v}$, which are sufficiently short, the molecule essentially radiates in situ and the equilibrium number density, n_{v}, is given by

$$
\frac{d v_{v^{\prime}}}{d t}=0=\mathrm{Jn}_{0} \sigma_{o v^{\prime}}, n_{v^{\prime}} A_{v^{\prime}},
$$

or

$$
\begin{equation*}
\mathrm{n}_{\mathrm{v}^{\prime}}=\frac{\mathrm{Jn}_{0}^{\sigma} \mathrm{ov}^{\prime}}{\mathrm{A}_{\mathrm{v}^{\prime}}} \tag{8}
\end{equation*}
$$

where J represents the electron beam current density. Then the relative counting rates in the band system are given by Eqs. (1,2,3,7 and 8)

The electronic transition moment usually varies across the band system, but when it is constant Eqs. (6) and (9) reduce to an especially simple form. Accurate Franck-Condon factors and r-centroids are available for many systems. Albritton, Schmeltekopf, and Zare's Rydberg-Klein-Rees calculations ${ }^{20}$ are especially useful since their tables include q, \bar{r}, and $q \nu^{3}$.

Excitation of molecular band systems by electron impact at moderately high energies is expected to produce essentially unpolarized radiation since many closely spaced rotational levels are usually excited (exception, H_{2}, e.g. see Ref. 2l). Although a particular rotational line may show polarization
effects, rotational averaging is expected to yield a
net polarization near zero for the band. This is the case for the NO γ bands. ${ }^{l l}$ However, when NO γ line fluorescence is excited by level-crossing-spectroscopy, the resultant rotational lines are polarized. Intensity calibration by polarized molecular line fluorescence can give misleading results if the monochromator has a wavelengthdependent polarization.

DISCUSSION OF SPECIFIC BAND SYSTEMS $H_{2}\left(B^{I_{\Sigma_{u}}^{+}}-X_{\Sigma^{+}}^{I_{2}}\right)$
Becker, Fink, and Allison ${ }^{10}$ have excited single
rotational levels in the $H_{2} B$ state $\left(v^{\prime}=3, J^{\prime}=1\right)$ and the HD B state $\left(v^{\prime}=3, J^{\prime}=2\right)$ by absorption of the Ar $1066.66 \AA$ resonance line. The emitted ($B-X$) radiation consists of one P-branch line and one R-branch line for each transition $\left(3, v^{\prime \prime}\right)$. Thus the H_{2} many-line spectrum is reduced to an easily used subset of 28 lines (Table I). The transition probabilities have been calculated ab initio by Allison and Dalgarno ${ }^{22}$ and their results were confirmed by the independent calculation of Julienne. ${ }^{23}$ Becker et al. showed that a calibration curve established using the Lyman lines ($1100-1650 \AA$) was in good agreement with similar measurements (1325-1800\&) on the $N_{2}\left(a^{1}{ }_{g}-X^{l} \Sigma_{g}^{+}\right)$Lyman-Birge-Hopfield (LBH)
band system in the range of overlap (1325-1650).

In application, the emitted line intensities are much brighter from $H D$ than from H_{2}, because the Ar 1066 A line is in closer resonance with the HD transition and the statistical weight for the ground state level is more favorable. The useful wavelength range is smaller than that indicated in Table V because the $(3,0)$ lines are subject to self absorption and the $(3,3),(3,12)$, and $(3,13)$ lines are quite weak in emission. The practical range over which/ the Lyman line fluorescence may be used for calibration purposes is thus $1112-1638 \AA$.

$$
H_{2}\left(C^{l_{u}}-X_{g}^{1} \Sigma_{g}^{+}\right)
$$

Aarts and de Heer ${ }^{24}$ and Carriere and de Heer ${ }^{25}$ first attempted to use the Werner bands for calibration purposes. Their intensity measurements were made at $4 \AA$ resolution. This was later shown to be inadequate to eliminate band overlap, ${ }^{12}$ giving rise to a pronounced dip in the resultant calibration curve around 1200 \AA. Such insufficient resolution has led to erroneous values in the literature for dissociative excitation cross sections.

Stone and Zipf^{12} have recently investigated the use of Werner bands for intensity calibration. They find that a spectral resolution of $0.44 \AA$ is required to eliminate most
of the problems produced by overlapping lines. The lines of the P and R branches are known to be subject to strong perturbations due to mixing of the $B^{\prime}{ }^{1} \Sigma_{u}^{+}$and $C^{1} \pi_{u}$ states. The Q-branch lines are not subject to this perturbation since the symmetries of the C rotational levels that generate the Q-branch are different from the symmetries of the corresponding B^{\prime} levels. The Ql lines are mainly free from overlap by P and R branch lines. Stone finds that their observed intensities are in close agreement ($\pm 3 \%$) with the theoretical intensities calculated by two methods, (1) Eq. (6) and the ab initio transition probabilities of Allison and Dalgarno ${ }^{22}$, and (2) Eq. (9) and the appropriate Franck-Condon factors and electronic transition moments.

The relative emission intensities for Q1 lines have been calculated using Eq. (6) and the transition probabilities of Allison and Dalgarno and are presented along with the appropriate wavelengths in Table II. To date, only Q1 lines in the range 1100-1250 \AA have been experimentally verified to follow these intensity relations. The prospective user is cautioned to check for overlap by P and R Branch lines.

$$
N_{2}\left(\mathrm{a}^{1} \pi g-\mathrm{X}^{1} \Sigma_{g}^{+}\right)
$$

The LBH band system of N_{2} consists of compact (full width at half maximum (FWHM) < 2 \AA) single headed bands (1275-2100)
which are readily excited by electron impact. The electronic transition (a-X) is forbidden by electric dipole interaction and proceeds mainly by magnetic dipole interaction although there is some electric quadrupole contribution as well. McEwen ${ }^{27}$ was the first to investigate quantitatively the emission intensities of these bands; he established that R_{e} was constant to within $\pm 20 \%$. McEwen's intensity calibration was based on the constant quantum yield of sodium salicylate over the wavelength range in question. Subsequent investigations by numerous authors have found no variation of R_{e}. Holland ${ }^{28}$ observed the emission intensities with an optical system which had been calibrated using the doublemonochromator technique and a thermopile detector. Lassettre ${ }^{29}$ used the electron-energy-loss method to show that the excitation cross sections, $\sigma_{o v}$, followed the Franck-Condon factors for $v^{\prime}=0$ through $v^{\prime}=12$. Mumma ${ }^{8,30}$ used atomic nitrogen (NI) branching ratios to verify that R_{e} was constant. Ajello ${ }^{31}$ measured the band emission intensities using an optical system that was calibrated by use of the double-monochromator method and a sodium salicylate detector. A curve-of-growth analysis ${ }^{32}$ also indicated a constant R_{e}, but these data covered a very limited range of r-centroids and the results are not indicative of the whole band system.

The lifetime of the $\mathrm{a}^{1}{ }_{\mathrm{m}}^{\mathrm{g}}$, state is $\sim 1.60 \times 10^{-4}$ seconds. ${ }^{26}$ Thus the excited molecule can experience many collisions and can travel $5-10 \mathrm{~cm}$ before radiating. The vibrational population of the a-state may not be given by Eq. (8). However, the relative emission intensities for bands belonging to a given progression (v^{\prime} constant) will still be given by Eq. (6). In Table III, we present the band-head wavelengths and relative emission intensities for the LBH system. The a-state vibrational distribution is strongly dependent on the experimental excitation conditions. When the system is excited by monoenergetic electrons $\left(\mathrm{E}_{\mathrm{e}}>100 \mathrm{eV}\right)$ at low pressure $\left(<10^{-4}\right.$ torr), the vibrational populations follow the weighting factors $q_{o v}, / A_{v^{\prime}}{ }^{8}$. Under these conditions the relative emission intensities (normalized to the 3,0 band) are obtained by multiplying the tabulated values by the appropriate weighting factor. By contrast, in another experiment, the Lewis-Rayleigh afterglow of N_{2} produced $\mathrm{N}_{2}\left(\mathrm{a}^{1} \pi_{\mathrm{g}}\right)$ with $\mathrm{v}^{\prime}=0,1,2,3$ highly populated but $v^{\prime}=4,5$ only weakly so ${ }^{10}$. In practice, the user must exercise caution when analyzing the observed spectrum in order to account correctly for the effects of band overlap. A wavelength resolution of $1 \AA$ or better is highly recommended.

$$
\operatorname{Co}\left(A^{1} \pi-X^{1} \Sigma^{+}\right)
$$

The fourth positive group of $C O$ consists of single headed compact bands ($1400-2200 \AA$) that are degraded toward the red. The bands are readily excited by electron impact ${ }^{9,33,34}$ in CO due to the large electronic oscillator strength for this transition ${ }^{9,35}$ (absorption f-value $=0.19$). Cascade into the A state has been shown to be negligible ($<1.5 \%$) for moderately high electron energies ${ }^{33,36}$ (> 100 eV). The equilibrium vibrational distribution of the A state is thus given by Eq. 8. There is at least one reference (e.g. Ref. 37) in the early literature that reports that the electronic transition moment, $R e$, is constant for this system. This early work suffered from inadequate intensity calibration procedures, which led to incorrect conclusions. In fact, R_{e} varies quite strongly with the r-centroid. Mumma et al. ${ }^{9}$ have determined the dependence of R_{e} on \bar{r} using an optical system that was calibrated with the molecular branching ratio method (N_{2} LBH system) and the atomic branching ratio method (NI multiplets). They found

$$
\begin{equation*}
R_{e} \alpha 1.0-0.6 \bar{r}_{v^{\prime} v^{\prime \prime}} \tag{10}
\end{equation*}
$$

No information regarding the coefficient of the second order term could be obtained because the data were adequately fitted by a straight line. This dependence was independently confirmed
by the electron-energy-loss spectra of Lassettre et al. ${ }^{35}$ who found exactly the same functional form for R_{e}. Because Lassettre's experiment did not use optical techniques the exact agreement constituted a direct and independent confirmation of the optical calibration techniques developed by Mumma and $Z_{i p f}^{8}$. It also provided indirect confirmation of the constancy of R_{e} for the N_{2} LBH system. Recent lifetime data of Imhof and Read ${ }^{37}$ indicate that an inclusion of the quadratic term may be necessary to reproduce the observed small variation of lifetime with v'. However, the quadratic term is expected to have only a small effect on the calculated intensities for bands with r-centroids in the range $1.05<\overline{\mathbf{r}}<1.35$, because R_{e} is well represented by Eq. 12 in that range. These bands lie to the left of the dashed line in Table IV.

The absolute transition probabilities have been calculated using the Franck-Condon factors and r-centroids of Albritton et al. ${ }^{20}$ and the expression for $R_{e}(\vec{r})(E q$. (10)). The relative intensities were then calculated using Eq. (9) and were normalized to the $(2,0)$ band. ${ }^{9}$ The results are given in Table IV along with the band-head wavelengths. The lifetimes of the levels v^{\prime} are typically ${ }^{36,38} \sim 10 \mathrm{nsec}$, thus the limits of the emitting region correspond to the electron
beam limits. For monoenergetic electron impact (> 100 eV) Table IV gives the relative volume emission rates directly. When the vibrational distribution can not be described by Eq. (8), the relative volume emission rates of bands belonging to different progressions cannot be described by Table IV. However, the relative intensities of bands within a given progression (v^{\prime} constant) will still be given by the appropriate row in Table IV.

$$
\operatorname{NO}\left(A^{2} \Sigma^{+}-x^{2} \pi_{r}\right)
$$

The NO (A-X) Y band system occurs in the wavelength range $1900-3400 \AA$. The emission bands form four heads (doublet - double headed) and are degraded to the violet. The system has been studied extensively both theoretically $20,39,40$ and experimentally. 11, 41,42 Franck-Condon factors and r-centroids have been calculated assuming both Morse 39 and RKR ${ }^{20,40}$ potential functions. The recent $R K R$ calculation of Albritton et al. ${ }^{20}$ yields Franck-Condon factors that are in close agreement with the calculation of Nicholls, 39 which was based on Morse potential functions. The calculations of Flinn et al. ${ }^{40}$ do not give correct relative intensities for the bands in emission, which was first noted by Callear et al. ${ }^{41}$ and confirmed by Poland and Broida. ${ }^{11}$ The first quantitative study of these bands in emission was performed
by Robinson and Nicholls. 42 They concluded that R_{e} varied strongly but this was later shown to be incorrect by several authors. ${ }^{11,41}$ Callear's comparison of the observed emission intensities with Flinn's Franck-Condon factors should be disregarded because Flinn's Franck-Condon factors have been superceded by Albritton's. However, Callear also compared the observed emission intensities with Nicholls's Morse FranckCondon factors, which we have already noted are in good agreement with Albritton's. This comparison showed that R_{e} was nearly constant for $1.00<\bar{r}<1.10 \AA$. Poland and Broida showed that R_{e} was constant to within 10% over the band system. We have therefore taken Albritton's intensity factors and wavelengths as representative of the relative emission intensities of these bands (Table V). They may be used for calibration purposes in the range 2100-2600 $\%$.

Poland and Broida excited the NO γ system by absorption of the Xe continuum, which resulted in extensive fluorescence ($v^{\prime}=0,1,2,3$). They also used level-crossing spectroscopy to excite specific K^{\prime} levels in the $A^{2} \Sigma^{+}$state. 11,43 $\mathrm{Cd}^{+} 2144 \AA$ radiation ${ }^{11}$ was used to excite $\mathrm{v}^{\prime}=1, \mathrm{~K}^{\prime}=13$ (two spin levels were excited) and the $\mathrm{Zn} 2138.56 \AA$ resonance line ${ }^{43}$ was used to excite $v^{\prime}=1, K^{\prime}=23$ and 29. The resultant $A-X$ rotational line radiation ($1, v^{\prime \prime}$) was found to be highly
polarized, unlike the radiation when the extended band system was excited. Considerable caution must be exercised in using the line fluorescence of NO to avoid polarization dependent effects in the measured monochromator spectral response. The extended band emission (excited by Xe continuum absorption) showed no polarization (< 2%).

The measured lifetimes of the $A^{2} \Sigma^{+}$levels are approximately independent of v^{\prime}, but the levels are fed by cascade as well as excited directly. ${ }^{44}$ The reported lifetimes ${ }^{36,44}$ range from 200 ns to 100 ns .

$$
\mathrm{NO}^{+}\left(\mathrm{A}^{1} \pi-\mathrm{x}^{1} \Sigma^{+}\right)
$$

The $\mathrm{NO}^{+}\left(\mathrm{A}^{1} \pi\right)$ state is readily excited by electron impact ionization and photo-ionization of NO. Several groups ${ }^{13,14,45}$ have recently investigated the emission intensities of the $\mathrm{NO}^{+}(\mathrm{A}-\mathrm{X})$ bands that were excited by monoenergetic electron impact. Aarts and de Heer ${ }^{14}$ and Stone and Zipf^{13} found that R_{e} varies to second order in \bar{r} whereas Mentall and Morgan 45 were able to fit their observed intensities assuming only first order dependence on \bar{r}. All three groups used photoelectric detection and established their relative intensity calibrations by using the molecular branching ratio method for N_{2}. However, Stone and Zipf calibrated their system using the $\mathrm{HD}(\mathrm{B}-\mathrm{X})$ line fluorescence method as well. In addition,
they used the computer-least-squares-fit method in establishing their calibration curve. Finally, photoelectron spectroscopy ${ }^{46}$ yields relative level cross sections, $\sigma_{v}, / \sigma_{o}$, and a variation of R_{e} with \bar{r} for the $N O\left(X^{2} \pi\right) \rightarrow$ $\mathrm{NO}^{+}\left(\mathrm{A}^{1} \pi\right)$ transition which agree well with Stone's results. For these reasons, we accept Stone and Zipf's (equivalently, Aarts and de Heer's) functional form for $R_{e}(\bar{r})$ for the $\mathrm{NO}^{+}(\mathrm{A}-\mathrm{X})$ bands and their values for the level cross sections, $\sigma_{v^{\prime}}$. The relative emission intensities were calculated with Eq. (9). They are given in Table VI and apply for electron energies in excess of 100 eV .

In practice, the $\mathrm{NO}^{+}(\mathrm{A}-\mathrm{X})$ system is simple to use for calibration purposes because the problem of overlapping bands is not nearly so severe, as with $\mathrm{N}_{2}(\mathrm{LBH})$ or CO4+. However, the wavelength range ($1300-1600 \AA$) is somewhat limited. ESTABLISHMENT OF A QUANTITATIVE CALIBRATION

The relative spectral response of an optical system may be established over a wide wavelength range by intensity measurements on the band systems mentioned. The spectral response may be made quantitative by determining the absolute detection efficiency at one wavelength, corresponding to establishing a value for G in Eq. 2.

At sufficiently high impact energies; the excitation
cross section, σ_{v}, , in the Bethe approximation is given by ${ }^{47}$

$$
\begin{equation*}
\sigma_{v^{\prime}}=\frac{4 \Pi a_{o}^{2} R^{2}}{E_{e l}} \frac{f_{o v^{\prime}}}{E_{o v^{\prime}}} \ln \left(4 C_{e l} / R\right) \tag{11}
\end{equation*}
$$

where a_{0} is the first Bohr radius, R is the Rydberg energy, $E_{o v}$, is the excitation energy, C is a constant, and $E_{e l}$ is the energy of the incident electron. In the absence of cascade into level v^{\prime}, quenching, or excitation transfer, the emission cross section of the ($v^{\prime}, v^{\prime \prime}$) band is given by

$$
\begin{equation*}
\sigma_{v^{\prime} v^{\prime \prime}}=\frac{A_{v^{\prime} v^{\prime \prime}}}{A_{v^{\prime}}} \sigma_{v^{\prime}}, \tag{12}
\end{equation*}
$$

and thus depends on R e through Eq. (3). Aarts and de Heer ${ }^{33}$ established that the $C O\left(A^{l} \pi\right)$ state was not populated by cascade and they used Eqs. (11) and (12), along with preliminary f values of Lassettre and Skerbele (final f values were $\sim 10 \%$ higher, see Ref. 35) to establish quantitative cross sections for the $(0,1)$ band of $C O\left(A^{l} \pi-X^{1} \Sigma^{+}\right)$. However, they assumed constant $R e$, which was later shown to vary quite strongly with $\overline{\mathbf{r}}$ by Mumma et al. ${ }^{9}$ thus affecting the cross section ${ }^{\sigma} v^{\prime} v^{\prime \prime}$ through the branching ratio in Eq. (12). Using the correct branching ratio and the published f values ${ }^{35}$, we have recalculated the emission cross section at 500 eV (Bethe theory). The value of the constant C in Eq. (11) may be determined for each $\mathbf{V}^{\text {' }}$ from the coefficients in the expansion
for the generalized oscillator strength. ${ }^{48}$,

$$
\begin{equation*}
f(k)=\frac{f_{o}}{(1+X)^{6}}\left\{1+\sum_{m=1}^{\infty} \frac{f_{m}}{f_{o}}\left(\frac{X}{1+X}\right)^{m}\right\} \tag{13}
\end{equation*}
$$

where K is the momentum transferred by the impacting electron, $X=\left(K_{0}\right)^{2} / \alpha^{2}$, and $x=\sqrt{Q / R}+\sqrt{\left(Q-E_{v},\right) / R} . Q$ is the ionization potential of the orbital being excited. Then,

$$
\begin{equation*}
\ln C=2 \ln \left(\alpha \quad R / E_{o v},-\frac{137}{60}+\frac{f_{1}}{6 f_{o}}+\frac{f_{2}}{42 f_{o}}+\cdots\right. \tag{14}
\end{equation*}
$$

The generalized oscillator strength has been accurately measured by Lassettre and Skerbele and they find ${ }^{49} f_{o}=0.0427$, $f_{1}=0.0893$, and $f_{2}=0.0165$ for excitation of $v^{\prime}=2$. Using these data, we find $\ln C=0.0514\left(v^{\prime}=2\right)$ and $\ell n C=0.1635$ $\left(v^{\prime}=0\right)$. Combining these values with Eq. (11) and the branching ratios of Mumma et al., we find

$$
\begin{equation*}
\sigma_{0,1}(500 \mathrm{eV})=5.4 \times 10^{-19} \mathrm{~cm}^{2} \pm 7 \% \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{2,2}(500 \mathrm{eV})=4.4 \times 10^{-19} \mathrm{~cm}^{2} \pm 7 \% \tag{16}
\end{equation*}
$$

The error estimate includes estimated rms errors of 5.5% in Lassettre and Skerbele's f-values and 3% in the branching ratios. The total rms error is thus $\pm 6.3 \%$ which we round upward to 7%. This rms error (7\%) is thought to be realistic. These values for $\sigma_{0,1}$ and $\sigma_{2,2}$ may be used to establish a quantitative spectral response at $1597 \AA$ and
$1577 \AA$ respectively.

The principle of using the absorption oscillator strength and the Bethe theory to establish quantitative cross sections has recently been applied in the extreme vacuum ultraviolet as well by van Raan ($\lambda<1164 \AA$) using noble gas resonance lines 50 noble gas resonance lines.

The quantitative response may also be established by measurements of the emission intensity of Lyman alpha radiation, HI 1216 \AA, produced by electron impact dissociative excitation ${ }^{49}$ of H_{2}. This cross section has been placed on an absolute scale by comparison with the cross section for exciting Lyman alpha by electron impact on atomic hydrogen, which was normalized to the Born approximation above 300 eV . At 100 eV , the value of the dissociative excitation cross section is

$$
\begin{equation*}
\sigma(1216)=1.2 \times 10^{-17} \mathrm{~cm}^{2} \pm 11 \% \tag{17}
\end{equation*}
$$

The error reflects the fact that the dissociative excitation cross section is related to the theoretical value of the direct excitation cross section by experiment. A wavelength resolution of $\sim 1 \AA$ is required to separate the Lyman alpha line from neighboring lines of the $\mathrm{H}_{2}(\mathrm{C}-\mathrm{X})$ Werner bands.

DISCUSSION

We indicate the internal consistency of this calibration technique by noting that Mumma et al. 9 established a quantitative spectral response for their optical system through measurements on Lyman alpha ${ }^{51}$ (12168), using Eq. (17), and the relative intensities of the N_{2} LBH system and certain NI multiplets. ${ }^{8}$ They then measured the emission cross section for the $C O$ fourth positive bands at $1597 \AA$, consisting of the (0,1) band (95\%) and the (6,5) band (5\%). Their measured cross section extrapolates to $5.8 \times 10^{-19} \mathrm{~cm}^{2}$ $\pm 13 \%$ at 500 eV . Thus, their cross section for the (0,1) band is $5.5 \times 10^{-19} \mathrm{~cm}^{2} \pm 13 \%$ at 500 eV , which is in agreement with Eq. (15). The close agreement suggests that the error bars are realistic, and perhaps even conservative.

ACKNOWLEDGMENTS

The author wishes to thank Drs. E.J. Stone, D.L. Albritton, and R. E. Imhof for making data available prior to publication. The author especially wishes to thank Dr. A. Skerbele for providing previously unpublished data. The author wishes to acknowledge valuable discussions with $\mathrm{Dr} . \mathrm{G} . \mathrm{M}$. Lawrence on the scope of this paper.

1. E. Ya. Shreider, Sov. Phys. Tech. Phys. 9, 1609 (1965).
2. J.A.R. Samson, Techniques of Vacuum Ultraviolet

Spectroscopy, (Wiley, New York, 1967), Ch. 8.
3. F. Cristofori, P. Fenici, G.E. Frigerio, N. Molho, and P.G. Sona, Physics Letters 6, 171 (1963).
4. G.M. Lawrence, Phys. Rev. A2, 397 (1970).
5. J.W. McConkey, J. Opt. Soc. Am. 59, 110 (1969).
6. J.F.M. Aarts and F.J. de Heer, J. Opt. Soc. Am. 58, 1666 (1968).
7. J.F.M. Aarts, F. J. de Heer, B.F.J. Luyken, F.W. Saris, L. Vriens, and D.A. Vroom, Physica 41, 209 (1969).
8. M.J. Mumma and E.C. Zipf, J. Opt. Soc. Am. 61, 83 (1971).
9. M.J. Mumma, E.J. Stone, and E.C. Zipf, J. Chem. Phys.

54, 2627 (1971).
10. K.H. Becker, E.H. Fink, and A.C. Allison, J. Opt. Soc. Am. 61, 495 (1971).
11. H.M. Poland and H.P. Broida, J. Quant. Spectrosc. Radiat. Transf. 11, 1863 (1971).
12. E.J. Stone and E.C. Zipf, J. Chem. Phys. 56, 4646 (1972).
13. E.J. Stone and E.C. Zipf, J. Chem. Phys. 56, 2870 (1972).
14. J.F.M. Aarts and F. J. de Heer, Physica 54, 609 (1971).
15. G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, (Van Nostrand Reinhold, New York, 1950).
16. R.W. Nicholls and R.W. Jarmain, Proc. Phys. Soc. (London) 69, 253 (1956).
17. J. Drake and R.W. Nicholls, Chem. Phys. Letters 3, 457 (1967).
18. T.C. James, J. Molec. Spectrosc. 20, 77 (1966).
19. H.S.W. Massey and E.H.S. Burhop, Electronic and Ionic Impact Phenomena, I, (Oxford U.P., New York, 1969), p. 444 .
20. D. Albritton, A. Schmeltekopf, and R. Zare, Diatomic Intensity Factors (Harper and Row, New York, to be published).
21. P. Cahill, R. Schwartz, and A.N. Jette, Phys. Rev. Letters 19, 283 (1967).
22. A.C. Allison and A. Dalgarno, Atomic Data 1 , 289 (1970).
23. P.S. Julienne, private communication (1970).
24. J.F.M. Aarts and F.J. de Heer, Physica 52, 45 (1971).
25. J.D. Carriere and F.J. de Heer, J. Chem. Phys. 55, 3829 (1971).
26. D.E. Shemansky, J. Chem. Phys. 51, 5487 (1969).
27. D.J. McEwen, Ph.D. Thesis, University of Western Ontario, 1965; Nature 209, 902 (1966). -24-
28. R.F. Holland, J. Chem. Phys. 51, 3940 (1969).
29. A. Skerbele and E.N. Lassettre, J. Chem. Phys. 53, 3806 (1970).
30. M.J. Mumma, Ph.D. Thesis, University of Pittsburgh, 1970.
31. J.M. Ajello, J. Chem. Phys. 53, 1156 (1970).
32. M.J. Pilling, A.M. Bass, and W. Braun, J. Quant. Spectrosc. Radiat. Transf. 11, 1593 (1971).
33. J.F.M. Aarts and F.J. de Heer, J. Chem. Phys. 52, 3554 (1970).
34. J.M. Ajello, J. Chem. Phys. 55, 3158 (1971).
35. E.N. Lassettre and A. Skerbele, J. Chem. Phys. 54, 1597 (1971).
36. J.E. Hesser, J. Chem. Phys. 48, 2518 (1968).
37. R.W. Nicholls, Nature 186, 958 (1960).
38. R.E. Imhof and F.H. Read, Chem. Phys. Letters 11, 326 (1971).
39. R.W. Nicholls, J. Res. Natl. Bur. Std. (U.S.) 68A, 535 (1964).
40. D.J. Flinn, R.J. Spindler, S. Fifer, and M. Kelly, J. Quant. Spectrosc. Radiat. Trans. 5, 165 (1965):
41. A.B. Callear, M.J. Pilling and I.W.M. Smith, Trans.

Farad. Soc. 62, 2997 (1966).
42. D. Robinson and R.W. Nicholls, Proc. Phys. Soc. (London) 71, 957 (1958). -25-
43. H.M. Poland and H.P. Broida, J. Chem. Phys. 54, 4514 (1971).
44. G.E. Copeland, J. Chem. Phys. 56, 689 (1972).
45. J.E. Mentall and H.D. Morgan, J. Chem. Phys. 56, 2272 (1972).
46. O. Edquist, E. Lindholm, L.E. Selin, H. Sjorgren, and L. Asbrink, Arkiv. Fysik 40, 439 (1972). 47. Reference 19, p. 437.
48. L. Vriens, Phys. Rev. 160, 100 (1967).
49. Ausma Skerbele (private communication, 1972).
50. A.F.J. van Raan (private communication).
51. See e.g. M.J. Mumma and E.C. Zipf, J. Chem. Phys.

55, 1661 (1971) and references contained therein.

TABLE I. Wavelengths and Transition Probabilities of H_{2} and $H D\left(B^{1} \Sigma_{\mathrm{u}}{ }^{+} \rightarrow \mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}\right)$Lines.

H_{2}					HD			
Band	Line	$\left(\begin{array}{l} \lambda \\ (\hat{A}) \end{array}\right.$	$\begin{aligned} & A \nu^{\prime} J^{\prime} \nu^{\prime \prime} J^{\prime \prime} \\ & \left(X 10^{8} s^{-1}\right) \end{aligned}$	Relative Intensity	Line	$\begin{gathered} \lambda \\ (\AA) \end{gathered}$	$\begin{aligned} & { }^{A} v_{8}^{\prime} J^{\prime} \cdot v^{\prime \prime} J^{\prime \prime} \\ & \left(X 10^{-1}\right) \end{aligned}$	Relative Intensity
3,0	$\mathrm{R}(0)$	1062.8	0.336	0.141	R(1)	1066.7	0.256	0.131
	P (2)	1066.8	0.705	0.296	P(3)	1071.8	0.411	0.210
3,1	R(0)	1112.0	0.759	0.319	R(1)	1109.7	0.792	0.405
	$\mathrm{P}(2)$	1116.2	1.518	0.637	P(3)	1114.9	1.215	0.622
3,2	R(0)	1162.7	0.305	0.128	R(1)	1153.9	0.652	0.334
	P(2)	1167.1	0.555	0.233	P(3)	1159.3	0.924	0.473
3,3	R(0)	1214.9	0.046	0.019	R(1)	1199.2	0.028	0.014
	P (2)	1219.4	0.125	0.052	P(3)	1204.8	0.021	0.011
3,4	R(0)	1268.4	0.546	0.229	R(1)	1245.6	0.333	0.170
	P (2)	1273.0	1.110	0.466	$\mathrm{P}(3)$	1251.4	0.565	0.289
3,5	R(0)	1322.8	0.232	0.097	R(1)	1292.9	0.615	0.315
	P(2)	1327.5	0.401	0.168	P(3)	1298.8	0.884	0.453
3,6	R(0)	1377.7	0.093	0.039	R(1)	1340.8	0.062	0.032
	P(2)	1382.5	0.240	0.100	P(3)	1346.8	0.053	0.027
3,7	R(0)	1432.6	0.600	0.251	R(1)	1389.2	0.293	0.150
	P(2)	1437.4	1.205	0.506	P(3)	1395.2	0.521	0.267
3,8	R (0)	1486.8	0.132	0.055	R(1)	1437.5	0.670	0.343
	P(2)	1491.6	0.196	0.082	P(3)	1443.6	0.966	0.495
3,9	R (0)	1539.3	0.325	0.136	R(1)	1485.4	0.075	0.038
	P(2)	1543.9	0.779	0.327	P(3)	1491.5	0.059	0.030
3,10	R(0)	1588.6	1.187	0.498	R(1)	1532.2	0.407	0.208
	P(2)	1593.3	2.382	1.000	P(3)	1538.2	0.754	0.386
3,11	R (0)	1634.0	0.542	0.227	R(1)	1577.2	1.284	0.658
	P(2)	1638.0	0.955	0.400	$\mathrm{P}(3)$	1583.0	1.952	1.000
3,12	R (0)	1672.7	0.0071	0.0029	R(1)	1619.5	0.768	0.393
	P(2)	1676.1	0.0054	0.0022	$\mathrm{P}(3)$	1625.0	1.018	0.521
3,13	R (0)	1702.6	0.0054	0.0022	R(1)	1657.9	0.076	0.039
	P(2)	1705.2	0.0131	0.0054	P(3)	1662.9	0.075	0.038

TABLE II. Wavelengths and Relative Intensities for Q1 Lines of the

	$v^{\prime \prime}=0$	I	2	3	4	5	6	7	8	9	10	11	12	13
v^{\prime}														
C	$\begin{gathered} 319 \\ 1009.9 \end{gathered} \text { * }$	$\begin{gathered} 809 \\ 1054.1 \end{gathered}$	$\begin{gathered} 974 \\ 1099.5 \end{gathered}$	$\begin{gathered} 386 \\ 1146.0 \end{gathered}$	$\begin{gathered} 98 \\ 1193.3 \end{gathered}$	$\begin{gathered} 12 \\ 1241.2 \end{gathered}$								
1	$\begin{aligned} & 780 \\ & 986.9 \end{aligned}$	$\begin{gathered} 551 \\ 1029.1 \end{gathered}$	$\begin{gathered} 13 \\ 1072.3 \end{gathered}$	$\begin{gathered} 759 \\ 1116.5 \end{gathered}$	$\begin{aligned} & 1000 \\ & 1161.3 \end{aligned}$	$\begin{gathered} 437 \\ 1206.7 \end{gathered}$	$\begin{gathered} 76 \\ 1252.1 \end{gathered}$	$\begin{gathered} 4 \\ 1297.2 \end{gathered}$						
2	$\begin{aligned} & 745 \\ & 966.2 \end{aligned}$	$\begin{gathered} 49 \\ 1006.6 \end{gathered}$	$\begin{gathered} 411 \\ 1047.9 \end{gathered}$	$\begin{gathered} 270 \\ 1090.0 \end{gathered}$	$\begin{gathered} 126 \\ 1132.8 \end{gathered}$	$\begin{gathered} 905 \\ 1175.9 \end{gathered}$	$\begin{gathered} 711 \\ 1219.0 \end{gathered}$	$\begin{gathered} 168 \\ 1261.7 \end{gathered}$	$\begin{gathered} 10 \\ 1303.4 \end{gathered}$					
3	$\begin{aligned} & 475 \\ & 947.5 \end{aligned}$	$\begin{gathered} 21 \\ 986.3 \end{gathered}$	$\begin{gathered} 307 \\ 1026.0 \end{gathered}$	$\begin{gathered} 10 \\ 1066.3 \end{gathered}$	$\begin{gathered} 358 \\ 1107.2 \end{gathered}$	$\begin{gathered} 11 \\ 1148.3 \end{gathered}$	$\begin{gathered} 463 \\ 1189.4 \end{gathered}$	$\begin{gathered} 728 \\ 1230.0 \end{gathered}$	$\begin{gathered} 227 \\ 1269.6 \end{gathered}$	$\begin{gathered} 12 \\ 1307.6 \end{gathered}$				
4	$\begin{aligned} & 245 \\ & 930.6 \end{aligned}$	$\begin{gathered} 86 \\ 968.1 \end{gathered}$	$\begin{gathered} 84 \\ 1006.2 \end{gathered}$	$\begin{gathered} 119 \\ 1045.0 \end{gathered}$	$\begin{gathered} 61 \\ 1084.2 \end{gathered}$	$\begin{gathered} 142 \\ 1123.6 \end{gathered}$	$\begin{gathered} 105 \\ 1162.9 \end{gathered}$	$\begin{gathered} 151 \\ 1201.7 \end{gathered}$	$\begin{gathered} 580 \\ 1239.5 \end{gathered}$	$\begin{gathered} 231 \\ 1275.7 \end{gathered}$	$\begin{gathered} 8 \\ 1309.4 \end{gathered}$			
5	$\begin{aligned} & 114 \\ & 915.7 \end{aligned}$	$\begin{gathered} 93 \\ 951.9 \end{gathered}$	$\begin{gathered} 6 \\ 988.8 \end{gathered}$	$\begin{gathered} 102 \\ 1026.3 \end{gathered}$	$\stackrel{2}{1064.0}$	$\begin{gathered} 101 \\ 1101.9 \end{gathered}$	$\begin{gathered} 15 \\ 1139.7 \end{gathered}$	$\begin{gathered} 125 \\ 1177.0 \end{gathered}$	$\begin{gathered} 30 \\ 1213.5 \end{gathered}$	$\begin{gathered} 413 \\ 1249.0 \end{gathered}$	$\begin{gathered} 193 \\ 1282.9 \end{gathered}$	$\stackrel{2}{1315.0}$	$\begin{gathered} 1 \\ 1344.8 \end{gathered}$	
6	$\begin{gathered} 50 \\ 902.2 \end{gathered}$	$\begin{gathered} 67 \\ 937.3 \end{gathered}$	$\begin{gathered} 2 \\ 273.1 \end{gathered}$	$\begin{gathered} 43 \\ 1009.3 \end{gathered}$	$\begin{gathered} 27 \\ 1045.8 \end{gathered}$	$\begin{gathered} 16 \\ 1082.4 \end{gathered}$	$\begin{gathered} 54 \\ 1118.8 \end{gathered}$	$\stackrel{2}{1154.8}$	$\begin{gathered} 82 \\ 1189.9 \end{gathered}$	$\begin{gathered} 3 \\ 1224.0 \end{gathered}$	$\begin{gathered} 289 \\ 1256.6 \end{gathered}$	$\begin{gathered} 134 \\ 1287.3 \end{gathered}$		
7	$\begin{gathered} 21 \\ 890.1 \end{gathered}$	$\begin{gathered} 40 \\ 924.3 \end{gathered}$	$\begin{gathered} 8 \\ 959.1 \end{gathered}$	$\begin{gathered} 11 \\ 994.3 \end{gathered}$	$\begin{gathered} 28 \\ 1029.7 \end{gathered}$	1069.1	$\begin{gathered} 28 \\ 1100.4 \end{gathered}$	$\begin{gathered} 12 \\ 1135.1 \end{gathered}$	$\begin{gathered} 14 \\ 1169.0 \end{gathered}$	$\begin{gathered} 39 \\ 1201.9 \end{gathered}$	1233.3	$\begin{gathered} 214 \\ 1262.9 \end{gathered}$	$\begin{array}{r} 68 \\ 1290.3 \end{array}$	$\begin{gathered} 9 \\ 1315.3 \end{gathered}$

* Wavelengths after E. J. Stone, private communication.
TABLE III. Wavelengths and Relative Emission Intensities for the

	$v^{\prime \prime}=0$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
v^{\prime}																			
0	215	683	1000	896	552	247	83	21	4										
	1450	1501	1555	1612	1672	1736	1805	1878	1956										
1	665	1000	371	2	337	624	518	266	95	24	5								
	1416	1464	1515	1570	1627	1688	1752	1821	1895	1973	2057								
2	1000	513	16	463	325	2	211	458	389	195	65	16	3						
	1384	1430	1479	1530	1585	1642	1703	1768	1838	1911	1990	2074	2165						
3	1000	61	338	275	15	313	183	1	196	340	254	114	34	8					
	1354	1398	1444	1493	1545	1600	1658	1719	1785	1854	1928	2007	2092	2182					
4	1000	35	493	2	325	133	64	293	88	30	246	310	189	72	19	4			
	1325	1368	1412	1459	1508	1560	1616	1674	1736	1801	1871	1945	2025	2109	2200	2297			
5	1000	348	315	210	308	47	353	25	184	268	14	119	333	296	143	47	10	1	
	1299	1339	1382	1427	1474	1523	1576	1631	1690	1752	1818	1888	1963	2042	2127	2218	2315	2420	
6	1000	926	45	654	20	470	88	257	282	17	352	178	14	298	430	276	106	26	4
	1273	1312	1353	1396	1441	1489	1539	1592	1648	1707	1769	1835	1906	1981	2060	2145	2236	2333	2438

TABLE IV. Bandhead Wavelengths and Relative Emission Intensities
of the $\operatorname{co}\left(A^{1} \pi-X^{1} \Sigma^{+}\right)$Fourth Positive Group.

TABLE V. Wavelengths and Relative Emission Intensities of the No $\left(A^{2} \Sigma^{+}-\mathrm{X}^{2} \pi\right) \gamma$ Band System.

	$\mathrm{v}^{\prime \prime}=0$	1	2	3	4	5	6	7
v'								
0	$\begin{gathered} 721 \\ 2265.5 \end{gathered}$	$\begin{aligned} & 1000 \\ & 2366.0 \end{aligned}$	$\begin{gathered} 786 \\ 2474.2 \end{gathered}$	$\begin{gathered} 463 \\ 2590.9 \end{gathered}$	$\begin{gathered} 228 \\ 2717.0 \end{gathered}$	$\begin{gathered} 100 \\ 2853.8 \end{gathered}$	$\begin{gathered} 40 \\ 3002.5 \end{gathered}$	$\begin{gathered} 15 \\ 3164.8 \end{gathered}$
1	$\begin{aligned} & 1000 \\ & 2151.3 \end{aligned}$	$\begin{gathered} 274 \\ 2241.8 \end{gathered}$	2338.7	$\begin{gathered} 147 \\ 2442.7 \end{gathered}$	$\begin{gathered} 238 \\ 2554.4 \end{gathered}$	$\begin{gathered} 206 \\ 2675.0 \end{gathered}$	$\begin{gathered} 132 \\ 2805.2 \end{gathered}$	$\begin{gathered} 71 \\ 2946.4 \end{gathered}$
2	$\begin{aligned} & 1000 \\ & 2049.5 \end{aligned}$	$\begin{gathered} 53 \\ 2131.5 \end{gathered}$	$\begin{gathered} 420 \\ 2218.8 \end{gathered}$	$\begin{gathered} 173 \\ 2312.2 \end{gathered}$	$\stackrel{--}{2412.1}$	$\begin{gathered} 63 \\ 2519.4 \end{gathered}$	$\begin{gathered} 141 \\ 2634.5 \end{gathered}$	$\begin{gathered} 145 \\ 2758.7 \end{gathered}$
3	$\begin{gathered} 820 \\ 1958.1 \end{gathered}$	$\begin{aligned} & 1000 \\ & 2032.8 \end{aligned}$	$\begin{gathered} 193 \\ 2112.2 \end{gathered}$	$\begin{gathered} 163 \\ 2196.6 \end{gathered}$	$\begin{gathered} 393 \\ 2286.6 \end{gathered}$	$\begin{gathered} 150 \\ 2382.7 \end{gathered}$	$\underset{2485.5}{=-}$	$\begin{gathered} 56 \\ 2595.7 \end{gathered}$

TABLE VI. Bandhead Wavelengths and Relative Intensities. of the $N O^{+}\left(A^{1} \pi-X^{l} \Sigma^{+}\right)$Baer-Mischer Band System.

	$v^{\prime \prime}=0$	1	2	3	4	5
v^{\prime}						
0	192	641	1000	983	676	349
	1368.3	1413.7	1461.4	1511.8	1564.9	1621.1
1	256	466	281	29	33	145
	1339.7	1383.1	1428.8	1476.9	1527.6	1581.0
2	150	127	8	26	51	15
	1313.0	1354.7	1398.5	1444.6	1493.0	1544.0
3	52	15	3	14	2	3
	1288.2	1328.3	1370.4	1414.5	1461.0	1509.8

