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I. INTRODUCTION

This report is a revision of the second<part of an earlier”"x‘eport.l
Our interest in the subject was reawakened by reading the paper of
Heaton and Moiseiwitsch2 which, among other things, léd us to the realil-
zatlon that many of our earlier resulté were derived under umnecessarily
severe restrictions.3

Our goal is to derive various theorems in the theory of scattering
of a spin-less particle by a real central potential, directly from the
Kohn variation.principle.4 Such an approach provides a uﬁified view of
the theorems and also, as a by product, yields sufficiént conditions
unde; which an optimal variational wavefunction will satisfy analogous

5
theorems.

II. THE KOHN VARIATION PRINCIPLE4

Some Definitions:
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Let *KQ be a trial function satisfying the asymptotic condition6
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where )\ ¥y 1s independent of [ . Then the Kohn variation

principle states that

$Lxnd=o (5)
where
DD 2 2y v2mm N’a, (E- He) %) (6)
and where, from (4) the variations of Q‘b_ satlsfy the asymptotic
condition
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In a nioment we will derive the Kohn variation principle. That is we will
show that if the 64{9_ are otherwise unrestricted then (5) implies

and is implied by the Schrgdinger equation

(E-=H) ¥ =0 B (8)

Therefore since, when (8) is.satisfied, we have C}\ﬂ = ‘)\& we see
> .

that E?\_L] provide a variational approximation to the true 7\4

-« F)Q '-"—'*041 54, where 5_1 is the phase shift).

Written out more.explicitly (5) is evidently

(9
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Further by an integration by parts, and by use of (1) and (6) it is easy

to show that7
0= S Y2ty ;8% 2 Qe Yy %)

. Thus we may write (9 ) in the same form as the familiar bound state

variation principle, namely8

0= (5\\&) E-~ VYO + (0B~ )y é\s&) (10)

in which form it is clear that with &‘\1& arbitrary, the Kohn varia-

t;ion principle implies- and is implied by the Schr'c;dinger equation.
Finally we make a simplification - clearly there is no need to

introduce complex wave functiéns', so we won't do so. Bince with (\{L

real the two terms' in (10) are equal to one another, we can replace (9 )

and (10) by -
O= 57\4’ v‘— 2w C\b) (g~ Qt) 5q;£/) (1D
and '
0= (é‘\@_) (e-4y) de ) ‘ (12)

Thege, together with (6), the asymptotic conditions (4) and (7), and the

¥ (1) - (3) are then our basic equations.
III. THE GENERALIZED HELLMANN-FEYNMAN THEOREM

Let /,A,, be a real parameter im NV . Then differentrating (6)

with respect to /-L we find
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We now note that

‘-&}E-Nﬂf_’z) (13
R

_4ESSP = E?Eé- Sp~ ' S (14

satisfies (7) with

_ ™
3= Sp (15)

whence we see from (11) and (12) that the sum of the last three terms in

(13) vanishes to that

i T S
Ll . (16)

which by analogy with the bound state case, we call the generalized
Hellmann-Feynman theorem. For exact wave functions it is a well known
result.9 In a variation calculation (14) will be a possible variation of

K&Q/ » and hence (16) will be satisfied by the optimal trial function,

.

provided that the set of trial functions is independent of /Ut 10

IV. INTEGRAL HELLMANN-FEYNMAN THEOREM

=

s . .
Let “Q/ be an optimal trial function for a potemtial

Then since
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we see that if 8 & is a real constant then

(5,7 w2) 8& = (5,-9,156 Con (- 2T )

is of the form (7_) with

Mz (- o) a6 (17

Thus we can choose.

S¥az (- & | (18
whence we find from (11), using {(17) aﬁd (6) that

) 0= 7\2 - E}AY 42w C‘{Q)(Efﬁin@&'&)-‘
o ,
0= rp M (e, Ce'ﬁb')gg) =L ] $2m C‘VL)Cﬁrﬂw):&) (18)
We now ﬁote that if we choose, as we may
5%, - G

then we find from (12) [i.e., (1) with usy/‘everywhere:)

o= ()%_, CE‘—-E;)&E,) - (‘S’;/ (B-B. %) b



Thus we can writg (19) as
0= e #2r 0%, (E-R)de) — Ta) faa b (F, -9 §)

whence from (E) we have finally

0= L[%,)— Dl b2 (0, (R 40 3 (22)

which,for exact wave functions, is a well-known re:sult‘,'.Ll Also it is

clearly the continuum analogue of ‘the so-called integral Hellmann-Feynman

" Theorem for beund sta.t:es.12

In a variation calculation (18) and (20) will be possible varietions

Qz—

of Q/_L . and % respectively, and hence (22) will be satisfied

: =
by the optimal trial functions provided that F‘(_L -~ ¥ and \\’g,-x
o -7

is any given function such that _ .
A — ‘:a Ao Cer— 2)

are chosen from a common linear space of trial f_unctions.]"3
V. A SIMILAR THEOREM

The theorem of the preceding section describes what happens if we

change 'V at gLl »Q _ . Now we investigate the effects
of chang‘ing ,Q,  at gi;&.,& V. -  First let _,Q,\.’>,Q be. of
the fo'rmv | -‘ . : ' 4 | |
L'= 2 +4m
where mm is an integer. Then we can write
B B O
an

P = L Al (- LTy 49, o (er— 2T ) <23>



whence

S Whig,)8e (24)

satisfies (7) with

5= O ) s6 | (25)

From (11) and (6) we then find, after some rearranging

= )ug A ch)

B> ) — Thed 42w G4 - ) (26)

Further from (23) we see that we may Clogse.

S\‘YL' = L\}‘g_ g*d’) &é' (27)

/

which, when inserted into (12) yields

C= (LL{) B~ W %) — (.\.\é;) CE"\Q*)\&») (28)
Thus we can write (26) as
Oz Drel- T G0, 00%) 4L orae (29)
;£

whichhgs a known theorem.14
o aimd) Wavs By oni )

For the case

fashfon except
K
;

'y

o,

‘!.\'—' £ +m A we proceed in a similar

that now we can write

i
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whence we can choose
OV - Loy W,0) ééf (31)
with
Sh=2 (V- o) oe ’ (32)

and also we can use
SW = O+, Se | (33)

The result is then

LXY - Tyl fm OF, CH ~ Be) %) (34)

\
)R> A 3

"which # again for exact wave functions is a known result.

In a variation calculation (24) and (27) will be possible variations
of \\/.Q, and \\Jd and therefore (29) will be satisfied if
\-\/z_’ L and qfe‘ A, M Y defined as in the previous section,
are chosen from a common linear space of trial functions. Similarly ome
will bhave (34) if ‘-\/ -X and ‘{11 4 are chosen from a common’
linear space. | |

Next we consider the -CAla-

£2'= R=Ym3

Here we can write

R N
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and

a1 '
W= s R -2l ) ), e G -1y, (36)

/
then we see that

S (Y- Lg)se (37)

1129} A

satisfies (7) switTh

OS2 = (2> Vi—&‘)&é _  (38)

and also we see that

SV, i = (9"4— A (39)
3 e th%) Sé- | | |

satisfies (7)'. Proceeding in the standard way one then finds Irather

messy result: Mag) P~
L= fiymaz
=z e —_ ' l ' . |
O I = Pt Yo Fe |y W Yo 4-1&., -ZW(%’ (};3{.\4,_3%)_ (40)

which, in case the Schr'c;dinger equation is satisfied on av:erage3 i.e., so

that L‘\'.L, (&- Q) Y= (Wg‘, (=- 9 V) Whorn e

L’\g'kz \f‘k t-},l\): \e'

. 4 .
reduces te the form of the known result for exact functlon‘s.l ‘However

of itself (40) does not seem especially interesting. Also it is not at
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all clear to us how to ensure that (37) and (39) are possible variations
so we will noet pursue the matter further. The case ,QL;_Q+.4A, 4+ 3
yields similar results. In Section VIII we will derive rather nicer

theorems for these cases.

VI. THE VIRIAL THEOREM

We now observe, essentially following Robinson and Hirschfelderl5

that

Wt = (pd _pa o (41)
——— S— m
4 dve &*‘) QGL = __%;QCV—)L) C"’(‘Lﬁ“l’-\-z) :
Thus
é q’y; = &‘c W q'j, ‘ “2

satisfies (7) with

S M- —3 ) Se
%

(43)
Inserting these results in (li) and (12) we therefore have
0= -~ j—i WM Y $2wa m‘k,‘Ct—f- Do) W ) (44)
and
0= (w h, (e—VYe) %) 45

_Since .~ GE:*%J \HL-,,vanishes-asympteticaily»onemmay freely inte-

grate !o'?, parts in (45) in order to transfer the 4/02& to the mgh{:
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transfer the A/O) i< to the right by noting

Also one may daedasfrfais

that differentations of (6) yields

SO o dPe o (2h |
e ( S >E %) bon i, D ) G

Then using these results one finds, after a bit of rearranging, that

(45) can be written as

—

(p Wle-Hdwy) + L 4[7‘3 \ | - 47 |
. ‘) 2 ._3:& -'z.v-\k_t?‘: _3(5-\1,@-\\-0 q’e,) (47)

Subtracting this from (44) then yields

= =) KTre) dom Mo LE-v )Wl
R )

(48)
! —2 @y, (B-Y) e )
which becomegi on evaluating the commutator,
Os -3 wln) 4+om (Ve (C2v + RV 1) (49)
% ’ N ' :

.Which for exact wave functions is the virial theorem16 (Note that in
(49) \/ can also be replaced by T ).

in a variation calculation one can ensure that (42) is a .possible
variation of \‘('Q' by introducing a variation (scaling) parameter
as follows? Let f‘p’. c{: (lﬂ, RY ' satisfy the asymptotic
conditions. Then oﬁe readily sees. that-

K
A (50)
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will also satisfy the cenditions, and further omne sees that

. Y '
Sewv, = E_,i Se (51)
o€
where € =L_Jlﬂn‘2/ , as desired. The triaifunctions used in the

first of references 2 are (aside from a difference,fﬁgnotationé) precisely
of the class (50). More generally if I times the set of trial
functions is invariant to wafzﬁi) t~> B then (49) will be sat-

-isfied.
VII. HYPERVIRIAL THEOREMS

See £he,secend,of References 1.
VIII. GENﬁRALIZED TIETZ'THEOREMS

Returning to the case

i': JLQM"'

‘which we considered in Sec. V we now note from (35) that we can make a

o _ 0
rather simplefconnection between =§1: and \%KQ » namely
V o)
\ JFV )
[ 2 L L g Gep—aTy A0
I« -arfi L —a) \h_j_ Co- (Wl—&g) (52)
so thati

o\ = (L e’ -—-\\’e,)é@:

& Qe (53)

satisfies (7) with — - -~ ~ 7 T
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O M- [y w3 Se (54)

Thus we find from (11) that

0= - Dn) ¥ 2o O cesyy B (55)
' e

However from (36) we also have

Ly A (e
e Th T Tl W BT o0y o (e £ (56)
50

SN = (,\kzi + %; %;%//) & &

(57)
satisfies (7); whence (12)' yiélds
0= W, te-wpyyy + (% “f‘i NCEORY (58)
or, integrating by parts
0 = Moy E-00 %) ~ ¢ (%, j&z_ce’%’ %) (59)

Multiplying this by Zam and adding to (55) then yields the result

Oz Tl -Iy1 4'%'(%)(34‘!&9"(4"%})%9 (60).

Unhappily it is net clear to us how one could arrange for (60) to be
satisfied in a variation calculation, i.e., for (53) and (57) to be possible

variations.
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Equation (60) is7fof exact wave functions)in fact essentially the
same as results given already by Tietz17 (in the case‘Q\:qQ}\ | ) and
more generally by Fradkin and Calogero.18 To see this one first notes that
in carrying out the operations in the integrand of (60) one encounters
derivatives of ﬂ&&) . However thege can be eliminated as follows:
Evidently

SWo= BT My Q-0 ‘S\?’U:‘ 2t ooy -
(61)

satisfy (7) and (7') respectively with
Erp= &0 =p | (62)
From (11) and (12'") then welfind
0= (W, (e-9e) L %) NG
b= (b, Ceoned )
‘(’
which by subtractien yields
- L )
(?, (Q@Lw Por—We R-) ) | (65)

Carrying out the operations in the integrands of (60) and (653 and com-
bining themw,yields
@
0= [hed-D, 1+ 2:( [ Y 4 [0™) rew >cw~)’5w
- i Zps 7 (66)
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which, for exact wave functions, 1S the result given by Fradkin and

Calogero .‘18 The case

/Q‘: B %i“'\./v\ +2

can be l\%uﬁ in a similar way and yields the result given in Reference

18 but with 'E_}] )5 instead of ) '_s again. For /Q\: K+~ and
,QL RENm+ 2 the straightforward results are more complicated (involving
‘_ b_o.-tj.h, '},\L and .__‘]:7."53 ~as in (40)) and presumably even less inter-
‘ esting (to repeat, we really don't know ﬁow, in a practical way, to

guarantee any of the _,-resvul‘ts of thié section variational:ly) so we will
_mot go into _d_e»ltail.‘s. '

1 .
o
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