An Experimental and Theoretical Analysis of Increased Thermal Diffusivity Phase Change Devices

CSM-CPR-R472

Chemical and Petroleum-Refining Engineering Department Colorado School of Mines
Golden, Colorado 80401
AN EXPERIMENTAL AND THEORETICAL EVALUATION OF INCREASED THERMAL DIFFUSIVITY PHASE CHANGE DEVICES
by
S. P. White
J. O. Golden
F. J. Stermole

Annual Summary Report No. 1
21 January 1971 - 31 January 1972

Contract NAS 8-30511 Mod 2
for

National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812
School Control No. CSM-CPR-R472
March 2, 1972

PREFACE

This report was prepared by Colorado School of Mines, Golden, Colorado, urder Contract NAS 8-30511 Mod 2 "Research in Phase Change Thermal Control Technology" and under Colorado School of Mines Fourdation Contracts F-6911 and F-6915. The work was administered under the direction of the Space Sciences Laboratory, George C. Marshall Space Flight Center, with Mr. T. C. Bannister acting as the contracting officers' technical representative.

This report covers work from 21 January 1971 to 31 January 1972.

The work at Colorado School of Mines was carried out by Dr. J. O. Golden, Dr. F. J. Stermole and S. P. White.

ABSTRACT

The goal of this study was to experimentally evaluate and mathematically model the performance of phase change thermal control devices containing high thermal-conductivity metal matrices. Three aluminum honeycomb fillers were evaluated at five different heat flux levels using n-octadecane as the test material. Initially phase change performance was evaluated with no filler in the n-octadecane so that a base line performance for each heat flux level could be established.

The experimental equipment consisted of a test cell, two electric heaters, a watt meter, two ammeters, and a multipoint recorder. The test chamber measured $15.24-\mathrm{by}$ -7.62-by-2.54 centimeters (6-by-3-by-1-inches). The cell was heated by two $7.62-b y-7.62$ centimeters (3-by-3-inch) electric heaters, which were held at a constant heat flux. The amp and watt meters provided the measurement of the heat flux to the heaters. Temperature responses to the upset were measured by 16 copper-constantan thermocouples located throughout the test cell.

The system was mathematically modeled by approximating the partial differential equations with a three-dimensional-implicit-alternating direction technique. This implicit method was used so that the small time step required by
the presence of the metallic filler in the explicit method could be eliminated. The boundary conditions used in this model were a temperature profile on the copper heating plate and insulated on the other five sides.

The mathematical model predicts the system quite well. All of the phase change times are predicted. The heating of the solid phase is predicted exactly while there is some variation between theoretical and experimental results in the liquid phase. This variation in the liquid phase could be accounted for by the fact that there are some heat losses in the cell and there could be some convection in the experimental system.

TABLE OF CONTENTS

Page
INTRODUCTION 1
LITERATURE SURVEY 3
TILEORY 7
EXPERINERTAL EQUIPMENT AND PROCEDURE. 32
DISCUSSION OF RESULTS. 39
RECOMMENDATIONS AND CONCLUSIONS 99
LITERATURE CITED 102
NOMENCLATURE 104
APPENDIX I 107

LIST OF TABLES

Table Page

1. Literature values of the physical properties for n-octadecane and aluninum 25
2. Thermocouple locations 38
3. Geometry data for the aluninum hexagonal fillers. 40

LIST OF FIGURES

Figure Page

1. Three-dimensional nodal system 9.
2. One-dimensional nonhomoseneous
nodal system 13
3. Boundary conditions 18
4. Filler system 26
5. Experimental nodal system 27
6. Test cell - exploded view 36
7. Front and side views of test cell 37
8. Power input measuring system 38
9. Theoretical and experimental temperature profiles for filler no. 2 at 40 watts with the literature value for the liquefaction enthalpy. 43
10. Time below a pseudo control temperature as a function of filler weisht 44
11. Experimental and theoretical temperature profiles at 20 watts for pure paraffin 47
12. Experimental and theoretical
temperature profiles at 30 watts for pure paraffin 49
13. Experimental and theoretical temperature profiles at 40 watts for pure paraffin 51
14. Experimental anci theoretical temperature profiles at 50 watts for pure paraffin 53
Figure Page
15. Experimertal and theoretical temperature profiles at 100 watts for pure paraffin 55
16. Hot plate temperature profiles for the pure paraffin runs 56
17. Experimental and theoretical temperature profiles at 20 watts
for filler no. 1 58
18. Experimental and theoretical temperature profiles at 30 watts
for filler no. 1 60
19. Experimental and theoretical temperature profiles at 40 watts
for filier no. 1 62
20. Experimental and theoretical temperature profiles at 50 watts
for filler no. 1 64
21. Experimental and theoretical temperature profiles at 100 watts for filler no. 1 66
22. Hot plate temperature profiles 67
23. Experimental and theoretical
temperature profiles at 20 watts for filler no. 2 70
24. Experimental and theoretical temperature profiles at 30 watts
for filler no. 2 72
25. Experimental and theoretical temperature profiles at 40 watts
for filler no. 2 74
26. Experimental and theoretical temperature profiles at 50 watts for filler no. 2 76
Figure Page
27. Experimental and theoretical temperature profiles at 100 watts for filler no. 2 78
28. Hot plate temperature profiles
for filler no. 2 79
29. Experimental and theoretical tenperature profiles at 20 and 30 watts for filler no. 3 82
30. Experimental and theoretical temperature profiles at 40 and 50 watts for filler no. 3 84
31. Experimental and theoretical temperature profiles at 100 watts
for filler no. 3 86
32. Hot plate temperature profiles
for filler no. 3 87
33. Theoretical temperature profiles for different filler thicknessess 89
34. Theoretical temperature profiles in the $x-y$ plane at $t=600 \mathrm{sec}$ 91
35. Theoretical temperature profiles in the $x-y$ plane at $t=1200 \mathrm{sec}$ 93
36. Theoretical temperature profiles in the $x-y$ plane at $t=1800 \mathrm{sec}$ 95
37. Theoretical temperature profiles in the $x-y$ plane at $t=2400 \mathrm{sec}$ 97

INTRODUCTION

Phase-change phenomena have received wide scientific attention for some time. Phase change is of significant importance in many technical problems such as solidification of an asphalt layer, melting and solidification of metals and alloys and general crystal growth. In recent years solid-liquid phase change has been used for thermal control devices in space vehicles. In concept, such materials would be used in passive systems that employ the process of melting or solidification to remove or add thermal energy from or to a system.

In a study by Northrop Corporation (1), the properties that phase-change materials must have in order to control the temperature of electronic equipment were found. The phase-change material should be nontoxic, chemically inert, stable and noncorrosive. The material should also have small density variations with a high latent heat of fusion. The material should also melt in 283 to $338^{\circ} \mathrm{K}$ (50-to 150° F) range. N-paraffins with an even number of carbon atoms are the most promising phase-change materials. N-octadecane was used in this study.

Virtually all of the currently used phase-change materials have a low thermal diffusivity. Therefore, their use in phase-change thermal control units is hampered
by their inability to conduct heat: Their thermal conductivities are on the same order of magnitude as thermal conductivities of some of the best insulating materials. A method to improve heat transfer rate of the phase-change material is to surround the phase-change material with a high thermally conductive metal matrix. The metal would conduct the heat and the phase-change material would absorb the heat load.

Bentilla, Sterrett and Karre (1) evaluated a number of metallic fillers in a phase-change environment. They evaluated aluminum foam, aluminum wool, aluminum honeycomb and copper foam. Their work showed that the most advantageous type of filler was the aluminum honeycomb. Hale, Hoover and 0^{\prime} Neill (2) developed a method using ar overall energy balance to predict the performance of thermal control phase-change devices. In their study they found that by neglecting three-dimensional heat transfer significant errors were introduced. The goal of this study was to increase the understanding of increased thermal diffusivity phase-change devices by experimentally evaluating and mathematically modeling them. With the aid of the threedimensional mathematical model developed in this study engineers will be able to design phase-change thermal control units more efficiently.

LITERATURE SURVEY

There has been a large amount of literature published on the subject of phase-change phenomena. This literature survey deals with only a small portion of the published material. One of the first studies of phase change was made by Carslaw and Jaeger (3). In their study they developed an approximate mathematical model for semiinfinite bodies. They discussed the problem of modeling a system with a moving interface. No exact solutions were given for the mathematical modeling of finite bodies with phase change.

At this institution two studies have been completed which are concerned with the one-dimensional interface equation given by Arpaci (4). In the first study Pujado, Stermole and Golden (5) developed a theoretical model for the one-dimensional melting of a finite paraffin slab. Finite difference methods were used to solve the partial differential equations governing the physical system. This model solved the two-phase one-dimensional heattransfer equations with phase change and variable thermal properties. In their theoretical analysis Pujado, Stermole and Golden neglected free convection in the liquid phase. The results from the study were in agreement with those of an earlier study by Northrop Corporation. The second study
by Ukanawa, Stermole and Golden (6) was the investigation of the solidification of a finite amount of liquid paraffin. A mathematical model was developed to solve the two-phase heat-transfer equation with phase change. This model used constant thermal properties for each phase and moveable boundary conditions. The model neglected convection, supercooling and nucleation effects. The comparison was good between theoretical and experimental results. There have been three studies at this institution which concern the two-dimensional phase-change problem. Shah (7) investigated the solidification of n-octadecane using microphotographic equipment and a temperature recorder. In this study a two-dimensional mathematical model was developed to predict the temperature profiles in the freezing paraffin and the average interfacial height during the solidification process. The model neglected convection. An approximate method was used to calculate the phase change. A presentation of the various types of phasechange calculations is given by Dusinberre (8). Reasonably good agreement was obtained between the experimental and theoretical results. The second study by Bair, Stermole and Golden (9) was an investigation of the gravity-induced free convection in the melting of a finite paraffin slab. Temperature profiles were measured when the test cell was inclined at different angles to produce the free convection. In this study a two-dimensional pure-conduction model was
presented. Finite difference methods were used to solve the governing partial differential equations while the method of excess degrees was used to calculate the phase change. Since the model neglected convection there were significant differences between the theoretical and experimental results. This study showed that gravityinduced free convection can be important in the melting process. The third investigation by Ukanawa (10) studied the effect of gravity-induced free convection upon the solidification of a finite paraffin slab. A two-dimensional heat-transfer model was developed in this study. The model used an important velocity profile and a limiting velocity in the convection calculation. A pseudo heat-capacity was used to calculate the phase change.

Other papers have also been published which deal with the melting of finite slabs. Chi-Tien and Yin-Chao Ten (11) presentcd an approximate solution for the temperature distributions and melting rate. The heat transfer was by natural convection caused by buoyancy forces. Goodman and Shea (12) developed a series solution to solve the onedimersional problem of the melting of a finite slab.

Crank and Nicholson (13), Douglas and Rachford (14), Peaceman and Rachford (15) and Brian (16) all developed three-dimensional finite difference techniques to solve the unsteady state heat-conduction partial differential equation. The three-dimensional alternating direction
technique developed by Brian was used in this study. Brian showed this technique is unconditionally stable and has the accuracy of the Crank-Nicholson method.

Grodzka (17) suggested two methods to increase the thermal diffusivities of phase-change materials and thus the heat-transfer rate into the thermal control unit. One was to put metallic panels in with the phase-change material. The other was to mix the phase-change material with a compatable but higher thermal diffusivity material. She pursued the second method and suggested several possible materials that could be mixed with the phase-change material. In their recommendation for the improvements of thermal control phase-change packages, Shlosinger and Bentilla (18) recommended that a metallic filler be added to increase the heat transfer rate. Bentilla, Sterrett and Karre (1) evaluated a number of metallic fillers in a phase-change environment. These fillers included aluminum wool, aluminum foam, aluminum honeycomb and copper foam. Their work shoved that the aluminum honeycomb was the most advantageous geometry for a high thermal. diffusivity filler material. Hale, Hoover and 0'Neill (2) developed a method by which the ratio of the phase-change material to the filler material may be optimized. They used an overall energy balance to optimize the ratio of the filler material area to phase-chance material area as a function of the hot plate temperature.

THEORY

The finite difference equation which can be used to mathematically model a nonhomogeneous system with phase change will be developed in this section. The test cell was heated from the top to minimize convection, however, presence of the metal matrix is likely to cause convection. The paraffin closer to the metal matrix will heat up faster due to the high rate of heat transfer through the metal and this situation will cause some convection. The convection caused in this way will be considcred negligible. Since the assumption was made that convection currents have no significant effect on the heat transfer in the test chamber, this development will neglect convection. For a discussion of mathematically modeling a phase-change system with convection see reference 10 . The general threedimensional heat-conduction model will be developed first, then the three-dimensional alternating direction technique of Brian (16) will be discussed. Finally, the general heat-conduction equation and the three-dimensional alternating direction technique will be applied to the nonhomoreneous phase-change problem in this study.

General Three-Dimensional Equation

The general heat-conduction equation may be derived by making an energy balance on a three-dimensional non-
homogencous nodal system. Making an energy balance on node i, j, k in figure 1 yields

$$
\begin{align*}
& \text { Energy in - energy out }+ \text { energy generated } \\
& \text { = energy accumulated } \tag{1}
\end{align*}
$$

or,

$$
\begin{align*}
\frac{\left(\rho C_{p} V\right)_{e f f}}{\Delta t}\left(T^{*}(i, j, k)-T(i, j, k)\right) & =\left(q_{x} A_{x}\right)_{i n}-\left(q_{x} A_{x}\right)_{\text {out }} \\
& \left.+\left(q_{y} A_{y}\right)_{i n^{-}}\left(q_{y} A_{y}\right)\right)_{\text {out }} \\
& +\left(q_{z} A_{z}\right)_{i n^{-}}\left(q_{z} A_{z}\right)_{\text {out }} \\
& +G V^{\prime}
\end{align*}
$$

where

$$
\begin{aligned}
& q_{x}=\text { the heat flux in the } x \text {-direction } \\
& q_{y}=\text { the heat flux in the } y \text {-direction. } \\
& q_{z}=\text { the heat flux in the } z \text {-direction } \\
& A_{x}=\text { the cross sectional area of the node } i, j, k \\
& \text { perpendicular to the } x \text {-direction } \\
& A_{y}=\text { the cross sectional area of the node } i, j, k \\
& \text { perpendicular to the } y \text {-direction } \\
& A_{z}=\text { the cross sectional area of the node } i, j, k \\
& \text { perpendicular to the z-direction } \\
& G=\text { energy generated per volume } \\
& V^{\prime}=\text { volume of the material generating energy } \\
& T^{*}=\text { the temperature at time } t+\Delta t \\
& T=\text { the temperature at time } t \\
& t=\text { time }
\end{aligned}
$$

Figure 1

$$
\begin{aligned}
\Delta t= & \text { time increment } \\
\left(\rho C_{p} V\right)_{\text {eff }}= & \text { the effective }\left(\rho C_{p} V\right) \text { for a nonhomo- } \\
& \text { geneous system }
\end{aligned}
$$

The heat flux may be found in terms of the temperature difference of the nodal system from Fourier's law. From Fourier's law one obtains

$$
\begin{equation*}
\left(q_{x}\right)_{\text {in }}=K(T(i-1, j, k)-T(i, j, k)) / \Delta x \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
K= & \text { the thermal conductivity of the material } \\
\Delta x= & \text { the incremental distance between nodes in the } \\
& x \text {-direction }
\end{aligned}
$$

Writing a similar equation for each of the other heat flux terms in equation (1) and substituting back into equation (1) yields

$$
\begin{align*}
& \frac{\left(\rho C_{p} V\right)_{e f f}}{\Delta t}(T *(i, j, k)-T(i, j, k))= \\
& \left((K A)_{x}\right)_{\operatorname{eff}}(T(i-1, j, k)-T(i, j, k)) / \Delta x- \\
& \left((K A)_{x}\right)_{\operatorname{eff}}(T(i, j, k)-T(i+1, j, k)) / \Delta x+ \\
& \left((K A)_{y}\right)_{\operatorname{eff}}(T(i, j-1, k)-T(i, j, k)) / \Delta y- \\
& \left((K A)_{y}\right)_{\operatorname{eff}}(T(i, j, k)-T(i, j+1, k)) / \Delta y+ \\
& \left((K A)_{z}\right)_{\operatorname{eff}}(T(i, j, k-1)-T(i, j, k)) / \Delta z- \\
& \left((K A)_{z}\right)_{\operatorname{eff}}(T(i, j, k)-T(i, j, k+1)) / \Delta z+G V ' \tag{4}
\end{align*}
$$

where

$$
\begin{align*}
& \left((K A)_{x}\right)_{e f f}=\text { the effective thermal conductivity times } \\
& \text { the effective area in the } x \text {-direction for } \\
& \text { a nonhomogeneous system } \\
& \left((K A)_{y}\right)_{\text {eff }}=\text { the effective thermal conductivity times } \\
& \text { the effective area in the } y \text {-direction for } \\
& \text { a nonhomogeneous system } \\
& \left((K A){ }_{z}\right)_{e f f}=\text { the effective thermal conductivity times } \\
& \text { the effective area in the } z \text {-direction for } \\
& \text { a nonhomogeneous system } \\
& \Delta y \quad=\text { the incremental distance in the } y \text {-direction } \\
& \Delta 7 \quad=\text { the incremental distance in the } z \text {-direction } \\
& \text { Equation (4) is the general three-dimensional heat- } \\
& \text { conduction equation written in an explicit finite difference } \\
& \text { form. To use this equation one must define and evaluate the } \\
& \text { effective } \rho C_{p} V \text { and the effective } K A \text { terms. The effective } \\
& \rho C_{p} V \text { will be defined as the sum of the } \rho C_{p} V \text { terms repre- } \\
& \text { senting each material present in the node or, } \\
& \left(\rho \mathrm{C}_{\mathrm{p}} \mathrm{~V}\right)_{\text {eff }}={ }^{N} \rho_{\mathrm{n}} \mathrm{C}_{\mathrm{pn}} \mathrm{~V}_{\mathrm{n}} \tag{5}
\end{align*}
$$

where

$$
\begin{aligned}
N= & \text { the number of different materials present in the } \\
& \text { node }
\end{aligned}
$$

This is just the sum of the heat capacitance of each of the different materials. An expression for the effective

KA term can be found by looking at the one-dimensional steady state energy balance on a nonhomogeneous node. A three-dimensional system could be used to derive this expression, but the analysis is simpler in one-dimension while the same result is obtained. An energy balance on node m in figure 2 yields

$$
\begin{equation*}
(q A)_{\text {in }}-(q A)_{\text {out }}=0 \tag{6}
\end{equation*}
$$

The heat flux into node m is the sum of the heat which flows through each of the different materials, or

$$
\begin{equation*}
(\mathrm{qA})_{i n}=\mathrm{A}_{1} \mathrm{q}_{1}+\mathrm{A}_{2} \mathrm{q}_{2}+\mathrm{A}_{3} \mathrm{q}_{3} \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{q}_{1}= & \text { the heat flux through material } 1 \\
\mathrm{q}_{2}= & \text { the heat flux through material } 2 \\
\mathrm{q}_{3}= & \text { the heat flux through material } 3 \\
\mathrm{~A}_{1}= & \text { the area of material } 1 \text { perpendicular to the } \\
& \text { heat flux } \\
A_{2}= & \text { the area of material } 2 \text { perpendicular to the } \\
& \text { heat flux } \\
A_{3}= & \text { the area of material } 3 \text { perpendicular to the } \\
& \text { heat flux }
\end{aligned}
$$

From Fourier's law the heat flux terms may be evaluated as follows:

$$
\begin{align*}
& (\mathrm{qA})_{\text {in }}=(\mathrm{KA})_{\text {eff }}\left(\mathrm{T}_{1}-\mathrm{T}_{\mathrm{m}}\right) / \Delta \mathrm{x} \tag{8}\\
& \mathrm{~A}_{1} \mathrm{q}_{1}=\left(\mathrm{KA}_{1}\left(\mathrm{~T}_{11}-\mathrm{T}_{1 \mathrm{~m}}\right) / \Delta \mathrm{x}\right. \tag{9}
\end{align*}
$$

莫 Material no. 3
W/A Material no. 4
8 Material no. 5

Figure 2
One-Dimensional Yonhomogeneous
Nodal System

$$
\begin{align*}
& A_{2} q_{2}=(K A)_{2}\left(T_{21}-T_{2 m}\right) / \Delta x \tag{10}\\
& A_{3} q_{3}=(K A)_{3}\left(T_{31}-T_{3 m}\right) / \Delta x \tag{11}
\end{align*}
$$

Substituting equations (8) through (11) into equation (7) yields

$$
\begin{align*}
& (K A)_{\text {eff }}\left(\mathrm{T}_{1}-\mathrm{T}_{\mathrm{m}}\right)=(K A)_{1}\left(\mathrm{~T}_{11}-\mathrm{T}_{1 \mathrm{~m}}\right)+(K A)_{2}\left(\mathrm{~T}_{21}-\mathrm{T}_{2 \mathrm{~m}}\right) \\
& +(K A)_{3}\left(\mathrm{~T}_{31}-\mathrm{T}_{3 \mathrm{~m}}\right) \tag{12}
\end{align*}
$$

Since there is assumed to be no gradients in a node in a finite difference network the following is true.

$$
\begin{align*}
& \mathrm{T}_{1}=\mathrm{T}_{11}=\mathrm{T}_{21}=\mathrm{T}_{31} \tag{13}\\
& \mathrm{~T}_{\mathrm{m}}=\mathrm{T}_{1 \mathrm{~m}}=\mathrm{T}_{2 \mathrm{~m}}=\mathrm{T}_{3 \mathrm{~m}} \tag{14}
\end{align*}
$$

The effective $K A$ may be found by substituting equations and (14) into equation (12) and dividing by $T_{1}-T_{m}$. This procedure yields

$$
\begin{equation*}
(K A)_{\text {eff }}=(K A)_{1}+(K A)_{2}+(K A)_{3} \tag{15}
\end{equation*}
$$

or more generally

$$
\begin{equation*}
(K A)_{\text {eff }}=\stackrel{N}{\Sigma} K_{n} A_{n} \tag{16}
\end{equation*}
$$

For the nonhomogeneous system we must define an effective $\rho C_{p} V$ for each node and an effective $K A$ for each of the six sides for each node. Equation (4) may now be rewritten in terms of the above relations as

$$
\begin{aligned}
& T^{*}(i, j, k)-T(i, j, k)= \\
& \frac{\Delta t\left(k \Lambda(i, j, k){ }_{x}\right)_{e f f}}{\Delta x\left(\rho C_{p} V(i, j, k)\right)}(T(i-1, j, k)-T(i, j, k))
\end{aligned}
$$

$$
\begin{align*}
& -\frac{\left.\Delta t(K A(i+1, j, k))_{x}\right)_{e f f}}{\Delta x\left(\rho C_{p} V(i, j, k)\right)_{e f f}}(T(i, j, k)-T(i+1, j, k)) \\
& +\frac{\Delta t\left(K_{1}(i, j, k)_{y}\right)}{\Delta y\left(\rho C_{p} V(i, j, k)\right)} \operatorname{eff}(T(i, j-1, k)-T(i, j, k)) \\
& -\frac{\Delta t(K A(i, j+1, k))_{\text {eff }}}{\Delta y\left(\rho C_{p} V(i, j, k)\right)_{e f f}}(T(i, j, k)-T(i, j+1, k)) \\
& +\frac{\Delta t\left(K A(i, j, k)_{z}\right) \operatorname{eff}}{\Delta z\left(\rho C_{p} V(i, j, k)\right)_{e f f}}(T(i, j, k-1)-T(i, j, k)) \\
& -\frac{\Delta t\left(K A(i, j, k+1) z_{z}\right)}{\Delta z\left(\rho C_{p} V(i, j, k)\right)_{e f f}}(T(i, j, k)-T(i, j, k+1)) \\
& +\frac{G V^{\prime} \Delta t}{C_{p} V(i, j, k) e f f} \tag{17}
\end{align*}
$$

where

$$
\begin{aligned}
\left(K A(i, j, k)_{x}\right)_{e f f}= & \text { the effective KA term perpen- } \\
& \text { dicular to the } x \text {-direction on the } \\
& \text { left side of the node } \\
\left(K A(i+1, j, k)_{x}\right)_{e f f}= & \text { the effective KA term perpen- } \\
& \text { dicular to the } x \text {-direction on the } \\
& \text { right side of the node } \\
\left(K A(i, j, k)_{y}\right)_{e f f=}= & \text { the effective KA term perpen- } \\
& \text { dicular to the y-direction on the } \\
& \text { left side of the node } \\
\left(K A(i, j+1, k)_{y}\right){ }_{\text {eff }}= & \text { the effective KA term perpen- } \\
& \text { dicular to the y-direction on the } \\
& \text { right side of the node }
\end{aligned}
$$

$$
\begin{aligned}
\left(K A(i, j, k){ }_{z}\right)_{e f f}= & \text { the effective KA term perpen- } \\
& \text { dicular to the z-direction on the } \\
& \text { left side of the node } \\
\left(K A(i, j, k+1)_{z}\right)_{e f f}= & \text { the effective KA term perpen- } \\
& \text { dicular to the } z \text {-direction on the } \\
& \text { right side of the node } \\
\rho C_{p} v(i, j, k)_{e f f}= & \text { the effective } \rho C_{p} V \text { term for the } \\
& \text { node } \quad .
\end{aligned}
$$

A simpler form of equation (17) can be written in terms of variable constants in place of the effective terms.

$$
\begin{align*}
& T *(i, j, k)-T(i, j, k)=C_{11}(T(i-1, j, k)-T(i, j, k)) \Delta t \\
& -C_{12}(T(i, j, k)-T(i+1, j, k)) \Delta t \\
& +C_{21}(T(i, j+1, k)-T(i, j, k)) \Delta t \\
& -C_{22}(T(i, j, k)-T(i, j+1, k)) \Delta t \\
& +C_{31}(T(i, j, k-1)-T(i, j, k)) \Delta t \\
& -C_{32}(T(i, j, k)-T(i, j, k+1)) \Delta t+G C_{4} \Delta t \tag{18}
\end{align*}
$$

where the constants are defined as follows ard are evaluated for each node as indicated.

$$
\begin{align*}
& C_{11}=\frac{\left(K A(i, j, k)_{x}\right)_{e f f}}{\rho C_{p} V(i, j, k)_{e f f}^{\Delta x}}=\frac{\sum K A(i, j, k, n)_{x}}{\Delta x \sum \rho C_{p} V(i, j, k, n)} \tag{19}\\
& C_{12}=\frac{\left(K A(i+1, j, k)_{x}\right)_{\text {eff }}}{\rho C_{p} V(i, j, k)_{e f f} \Delta x}=\frac{\sum K A(i+1, j, k, n)_{x}}{\Delta \times \sum \rho C_{p} V(i, j, k, n)} \tag{20}\\
& C_{21}=\frac{(K A(i, j, k))_{\text {eff }}}{\rho C_{p} V(i, j, k)_{e f f}^{\Delta y}}=\frac{\sum K A(i, j, k, n) y}{\Delta y \sum \rho C_{p} V(i, j, k, n)} \tag{21}
\end{align*}
$$

$$
\begin{align*}
& C_{22}=\frac{\left(K A(i, j+1, k)_{y}\right)_{e f f}}{\rho C_{p} V(i, j, k)_{e f f}^{\Delta y}}=\frac{\sum K A(i, j+1, k, n)_{y}}{\Delta y \sum \rho C_{p} V(i, j, k, n)} \tag{22}\\
& C_{31}=\frac{\left(K A(i, j, k)_{z}\right)_{e f f}}{\rho C_{p} V(i, j, k)_{e f f}^{\Delta z}}=\frac{\sum K A(i, j, k, n)_{z}}{\Delta z \sum \rho C_{p} V(i, j, k, n)} \tag{23}\\
& C_{32}=\frac{\left(K A(i, j, k+1)_{z}\right)_{e f f}}{\rho C_{p} V(i, j, k)_{e f f}^{\Delta z}}=\frac{\sum K A(i, j, k+1, n) z}{\Delta z \sum \rho C_{p} V(i, j, k, n)} \tag{24}\\
& C_{4}=V^{\prime} /\left(\rho C_{p} V(i, j, k)_{e f f}=\frac{V V^{\prime}}{\rho C_{p} V(i, j, k, n)}\right. \tag{25}
\end{align*}
$$

Equation (18) may be used over the entire nodal system by just varying the above constants in order to define the effective terms for each node. By redefining the constants in equation (18) it may be used on the boundaries also. To see how this may be done look at the one-dimensional form of equation (18). Again a three-dimensional analysis will give the same result, but the one-dimensional analysis is simpler.

$$
\begin{align*}
T^{*}(i, j, k)-T(i, j, k) & =C_{11}(T(i-1, j, k)-T(i, j, k)) \Delta t \\
& +C_{12}(T(i, j, k)-T(i+1, j, k)) \Delta t \\
& +G C_{4} \Delta t \tag{26}
\end{align*}
$$

Figure 3 shows the four types of boundary conditions that can be used. Each type will be described in the follcwine section.

Type I: This boundary condition represents a system in which there is heat transfer to a fluid. An energy balance on node 2 of this nodal system yields

\section*{| T_{1} |
| :--- | :--- | :--- | :--- |
| h |
 Type I}

Type II

Type III

Figure 3
Boundary Conditions

$$
\begin{equation*}
T *_{2}-T_{2}=\frac{\Delta t h A\left(T_{1}-T_{2}\right)}{\rho C_{p} V(1)_{\text {eff }}}-\frac{\Delta t \mathrm{KA}(2)_{\text {eff }}\left(\mathrm{T}_{2}-T_{3}\right)}{\Delta x \rho C_{p} V(1)_{\text {eff }}} \tag{27}
\end{equation*}
$$

Comparison of equation (27) to equation (26) shows that

$$
\begin{align*}
& C_{11}=\frac{h A}{\rho C_{p} V(1) \text { eff }} \tag{28}\\
& C_{4}=0 ; \text { since there is no generation of } \tag{29}\\
& \text { energy in this node }
\end{align*}
$$

C_{12} is defined by equation (20).
Types II and III: These are two types of insulated boundary conditions. An energy balance on node 2 of these two systems yields

$$
\begin{equation*}
\mathrm{T}_{2}-\mathrm{T}_{2}=\frac{-\Delta \mathrm{t} K \mathrm{~K}(2) \mathrm{eff}\left(\mathrm{~T}_{2}-\mathrm{T}_{3}\right)}{\Delta \times \rho \mathrm{C}_{\mathrm{p}} \mathrm{~V}(1) \text { eff }} \tag{30}
\end{equation*}
$$

Comparing equation (30) with equation (26) indicates that

$$
\begin{align*}
& C_{11}=0 \tag{31}\\
& G=0 \tag{32}
\end{align*}
$$

Type IV: This type of boundary is insulated and energy is being generated in the boundary node. An energy balance on this system yields

$$
\begin{equation*}
T_{2}^{*}-T_{2}=\frac{-\Delta t K A(2)_{\text {eff }}\left(T_{2}-T_{3}\right)}{\Delta \times \rho C_{p} V(1)_{\text {eff }}}+\frac{U^{\prime \prime} V^{\prime} \Delta t}{\rho C_{p} V(1)_{\text {eff }}} \tag{33}
\end{equation*}
$$

A comparison of this equation with equation (26) yields

$$
\begin{align*}
& C_{11}=0 \tag{34}\\
& G=U^{\prime \prime} \tag{35}
\end{align*}
$$

By setting G equal to the energy source in any node in the system, there nay be a generation term in any node or boundary equation.

Three-Dimersional Alternating Direction Technique

The time step required by the stability criteria in the explicit solution of equation (18) is extremely small due to the presence of the metallic matrix. The required time step is such that the computer time required to model an experimental run exceeds the actual experimental run time. Therefore, an implicit technique was used to eliminate the stability requirement on the size of the time step. The implicit method used in this study is the three-dimensional alternating direction technique developed by Brian (16). This method is a variation of the DouglasRachford method that has the accuracy of the CrankNicholson method and has been shown to be unconditionally stable.

The three-dimensional technique of Brian solves for three intermediate half-time-step temperatures and then uses these to solve for the new full-time-step temperature. The equations that demonstrate this method are as follows:

$$
\begin{align*}
& \Delta_{x}^{2}(C T *(i, j, k))+\Delta_{y}^{2}(C T(i, j, k))+\Delta_{z}^{2}(C T(i, j, k))= \\
& \frac{T *(i, j, k)-T(i, j, k)}{\Delta t / 2} \tag{36}
\end{align*}
$$

$$
\begin{align*}
& \Delta_{\mathrm{x}}^{2}\left(\mathrm{CT}^{*}(\mathrm{i}, \mathrm{j}, \mathrm{k})\right)+\Delta_{\mathrm{y}}^{2}(\mathrm{CT} * *(\mathrm{i}, j, \mathrm{k}))+\Delta_{\mathrm{z}}^{2}(\mathrm{CT}(\mathrm{i}, j, k))= \\
& \frac{T * *(i, j, k)-T(i, j, k)}{\Delta t / 2} \tag{37}\\
& \Delta_{\mathrm{x}}^{2}(\mathrm{CT} *(\mathrm{i}, \mathrm{j}, \mathrm{k}))+\Delta_{\mathrm{y}}^{2}(\mathrm{CT} * *(\mathrm{i}, \mathrm{j}, \mathrm{k}))+\Delta_{\mathrm{z}}^{2}\left(\mathrm{CT}^{*} * *(\mathrm{i}, \mathrm{j}, \mathrm{k})\right)= \\
& \frac{T \neq \ldots(i, j, k)-T(i, j, k)}{\Delta t / 2} \tag{38}\\
& \Delta_{\mathrm{x}}^{2}(\mathrm{CT} *(\mathrm{i}, \mathrm{j}, \mathrm{k}))+\Delta_{\mathrm{y}}^{2}(\mathrm{CT} * *(\mathrm{i}, \mathrm{j}, \mathrm{k}))+\Delta_{\mathrm{z}}^{2}(\mathrm{CT} * * *(\mathrm{i}, \mathrm{j}, \mathrm{k}))= \\
& \frac{T^{\prime}(i, j, k)-T(i, j, k)}{\Delta t} \tag{39}
\end{align*}
$$

where

$$
\begin{align*}
\Delta_{x}^{2}(\operatorname{CT}(i, j, k)) & =C_{11} T(i-1, j, k)-\left(C_{11}+C_{12}\right) T(i, j, k) \\
& +C_{12} T(i+1, j, k) \tag{40}\\
\Delta_{y}^{2}(\operatorname{CT}(i, j, k)) & =C_{21} T(i, j-1, k)-\left(C_{21}+C_{22}\right) T(i, j, k) \\
& +C_{22} T(i, j+1, k) \tag{41}\\
\Delta_{z}^{2}(\operatorname{CT}(i, j, k)) & =C_{31} T(i, j, k-1)-\left(C_{31}+C_{32}\right) T(i, j, k) \\
& +C_{32} T(i, j, k+1) \tag{42}
\end{align*}
$$

$T=$ the temperature at time t
$T^{\prime}=$ the temperature at the new full time step $t+\Delta t$ $T *, T * *, T * * *=$ the intermediate half-time-step temperatures
$C_{11}, C_{12}, C_{21}, C_{31}$ and C_{32} are evaluated for each node and are defincd by equations（19）through（24）．For stability it is imperative that $T *$ be used in the x－ direction difference，$T * *$ be used in the y－direction difference and $T * * *$ be used in the z－direction differerice． A simpler form of the equations（36）through（39） were used to solve the problem presented in this thesis． When $T ⿲ 幺 幺$ ：is eliminated from equations（36）through（39）， the following set of equations results．

$$
\begin{align*}
& \Delta_{x}^{2}\left(C T^{*}(i, j, k)\right)+\Delta_{y}^{2}(C T(i, j, k))+\Delta_{z}^{2}(C T(i, j, k))= \\
& \frac{T *(i, j, k)-T(i, j, k)}{\Delta t / 2} \tag{43}\\
& \Delta_{y}^{2}(C T * *(i, j, k))-\Delta_{y}^{2}(C T(i, j, k))= \\
& \frac{T * *(i, j, k)-T *(i, j, k)}{\Delta t / 2} \tag{44}\\
& \Delta_{z}^{2}\left(C T T^{\prime}(i, j, k)\right)-\Delta_{z}^{2}(C T(i, j, k))= \\
& \frac{T^{\prime}(i, j, k)+T(i, j, k)-2 T * *(i, j, k)}{\Delta t / 2} \tag{45}
\end{align*}
$$

Equation（44）is the difference between equations（36） and（37），while equation（45）is found by eliminating $T * * *$ from the difference of equations（37）and（38）and the difference of equations（38）and（39）．Equation（43） relates the unknown $T *$ values along a row parallel to the x－axis．When equation（43）is solved for the urknown $T *$ values a system of simultaneous equations results：

$$
\begin{align*}
& \mathrm{b}_{1} \mathrm{~T}_{1} *+\mathrm{c}_{1} \mathrm{~T}_{2} * \quad=\mathrm{d}_{1} \\
& \mathrm{a}_{2} \mathrm{~T}_{1}{ }^{*}+\mathrm{b}_{2} \mathrm{~T}_{2}{ }^{*}+\mathrm{c}_{2} \mathrm{~T}_{3}{ }^{*} \quad=\mathrm{d}_{2} \\
& \mathrm{a}_{3} \mathrm{~T}_{2}{ }^{*}+\mathrm{b}_{3} \mathrm{~T}_{3}{ }^{*}+\mathrm{c}_{3} \mathrm{~T}_{4}{ }^{*} \quad=\mathrm{d}_{3} \tag{46}\\
& a_{n-2} T_{n-3}+b_{n-2}{ }^{T *}{ }_{n-2}+c_{n-2}{ }^{T *}{ }_{n-1}=d_{n-2} \\
& a_{n-1} T_{n-2}+b_{n-1}{ }^{T *}{ }_{n-1}=d_{n-1}
\end{align*}
$$

The values of the coefficient a_{i}, b_{i} and c_{i} are the coefficients of the unknown T^{*} temperatures and d_{i} is the sum of the remaining terms. It is supposed that the grid points are designated by $0,1,2,3, .: . n-1, n$ and that T_{0} and T_{n} are determined from the boundary conditions.

The matrix of the coefficients $a, b, a n d y$ is tridiagonal. There is a very efficient method of the solution for the tridiagonal system. The value of $T_{i}{ }^{*}$ in equation (46) can be found by following procedure:

$$
\begin{align*}
& T_{n-1}^{*}=F_{n-1} \tag{47}\\
& T{ }_{i}=F_{i}-c_{i} T_{n+1} / w_{i} \tag{48}
\end{align*}
$$

where W_{i} and F_{i} are determined by the following recursion formula

$$
\begin{align*}
& w_{i}=b_{i}-\frac{a_{i} c_{i-1}}{w_{i-1}} \text { with } w_{1}=b_{1} \tag{49}\\
& F_{i}=d_{i} \frac{a_{i} F_{i-1}}{b_{i}} \text { with } F_{i}=d_{1} / b_{1} \tag{50}
\end{align*}
$$

Equation (44) is then solved in a similar manner, but this time the simultancous equations relate $T^{*} *$ values along a row parallel to the y-axis. The solution of equation (45) is then found in a similar manner with sets of tridiagonal simultaroous equations relating T*** values along a row parallel to the z-axis.

Nonhomogeneous Phase-Change Problem

The system in this study consists of a hexagonal aluminum matrix in n-octadecanc. The physical properties of aluminum and n-octadecane are given in reference 19 and 20 and are tabulated in table 1. Due to the symmetry of the system only a small portion of the test cell must be modelled. Figure 4 a shows how the test cell can be broken down by lines of symmetry in the two horizontal directions. Using these lines of symmetry the filler system can be broken down into the system shown in figure 4 b . The sides in the x and y directions are considered insulated from lines of symmetry. The botton of the cell will be considered insulated in this analysis. Actually this may not be the case but fairly good asreement between theoretical and experimental data results if the bottom is considered insulated in the thcoretical analysis. The nodal system will be defined as shown in figures $5 a$ and $5 b$. The x-direction is indicated by i, j indicates the y-direction and k represents

Table 1

Literature values of the physical properties for n-octadecane and aluninum.

N-OCTADECANE
Density
$\rho($ solid $)=(-0.0003336) \mathrm{T}+1.0918 ; \mathrm{g} / \mathrm{cc}$
$\rho(1 \mathrm{iquid})=(-0.0012505) \mathrm{T}+1.1316 ; \mathrm{g} / \mathrm{cc}$
Heat Capacity

$$
\begin{aligned}
& C_{p}(\text { solid })=2.164 ; \text { watt-sec } / \mathrm{gm} /{ }^{\circ} \mathrm{K} \\
& C_{p}(\text { liquid })=(0.008213) \mathrm{T}-0.14237 ; \text { watt-sec } / \mathrm{gm} /{ }^{O_{K}}
\end{aligned}
$$

Conductivity
$K($ solict $)=\left(-0.50054 \times 10^{-5}\right) \mathrm{T}+0.002914 ;$ watt $/ \mathrm{cm} /{ }^{\circ} \mathrm{K}$
K (liquid) $=\left(-0.50054 \times 10^{-5}\right) \mathrm{T}+0.002914 ;$ watt $/ \mathrm{cm} /{ }^{\circ} \mathrm{K}$
Melt point $=300.60{ }^{\circ} \mathrm{K}$
$H_{f}($ liquefaction enthalpy $)=243.9$; watt-sec $/ \mathrm{gm}$

ALUVINUM

$$
\begin{aligned}
\rho & =2.685 \mathrm{gm} / \mathrm{cc} \\
\mathrm{C}_{\mathrm{p}} & =0.9792 \text { watt-sec } / \mathrm{gm} /{ }^{\circ} \mathrm{K} \\
\mathrm{~K} & =0.1282 \text { watt } / \mathrm{cm} /{ }^{\circ} \mathrm{K}
\end{aligned}
$$

Figure 4 a

Figure 4b

Figure 4
Filler System

Figure 5a
X-Y Plare of Nodal Systen

Figure 5b
One Nodal Colum Parallel to the z-axis

Figure 5
Experimental Nodal System
the z-direction. When the system of equations (43) throusch (44) is applied to equation (18) the following systems of equations results, where $\Delta t=\Delta t / 2$

For all i., j and k the a_{i}, b_{i}, c_{i} and d_{j} are defined as follows for equation (43).

$$
\begin{align*}
& \mathrm{a}_{\mathrm{i}}=-\mathrm{C}_{11} \Delta t \tag{51}\\
& \mathrm{~b}_{\mathbf{i}}=1+\left(\mathrm{C}_{11}+\mathrm{C}_{12}\right) \Delta t \tag{52}\\
& \mathrm{c}_{\mathrm{i}}=-\mathrm{C}_{12} \Delta t \tag{53}\\
& \mathrm{~d}_{\mathbf{i}}=T(i, j, k)+\left(\Delta_{y}^{2}(C T(i, j, k))+\Delta_{z}^{2}(\operatorname{Cr}(i, j, k))\right) \Delta t \tag{54}
\end{align*}
$$

$C_{11}, C_{12}, C_{21}, C_{31}$ and C_{32} are calculated for each node according to equations (19) and (24). If there is no filler in the node the volume and area of the filler in those calculations is set equal to zero. The insulated boundary conditions are evaluated as follows:
when i and/or $j=2$ for $3<k<\kappa$

$$
\begin{align*}
& c_{11}=0 \tag{55}\\
& c_{21}=0
\end{align*}
$$

when $i=I$ and/or $j=J$ for $3<k<\kappa$

$$
\begin{align*}
& c_{12}=0 \tag{56}\\
& c_{22}=0
\end{align*}
$$

A temperaturc boundary condition was used on the copper heating plate in this study. This condition is taken care of by setting $T(i, j, 2)$ equal to the heating plate tempcrature.

For all i, j and k the a_{j}, b_{j}, c_{j} and d_{j} are defined as follows for equation (44),

$$
\begin{align*}
& \mathrm{a}_{j}=-\mathrm{C}_{21} \Delta t \tag{58}\\
& \mathrm{~b}_{\mathrm{j}}=1+\left(\mathrm{C}_{21}+\mathrm{C}_{22}\right) \Delta t \tag{59}\\
& \mathrm{c}_{\mathbf{j}}=-\mathrm{C}_{22} \Delta t \tag{60}\\
& \mathrm{c}_{\mathrm{j}}=\mathrm{T} *(\mathrm{i}, \mathrm{j}, \mathrm{k})-\left(\Delta_{\mathbf{y}}^{2}(\mathrm{CT}(\mathrm{i}, \mathrm{j}, \mathrm{k}))\right) \Delta t \tag{61}
\end{align*}
$$

The boundary condition coefficients are calculated by equations (55) through (57).

For all i, j and k the a_{k}, b_{k}, c_{k} and d_{k} are defined as follows for equation (45).

$$
\begin{align*}
& a_{k}=-C_{31} \Delta t \tag{62}\\
& b_{k}=1+\left(C_{31}+C_{32}\right) \Delta t \tag{63}\\
& c_{k}=-C_{32} \Delta t \tag{64}\\
& d_{k}=2 T * *(i, j, k)-T(i, j, k)-\left(\Delta_{z}^{2}(C T(i, j, k))+E\right) \Delta t \tag{65}
\end{align*}
$$

where

$$
\begin{align*}
& E=0 \text { for } 2<i<I ; 2<j<J ; 4<l<\kappa \tag{66}\\
& E=C_{31} T(i, j, 2) \text { for } 2<j<I ; 2<j<J ; k=3 \tag{67}\\
& c_{k}=0 \text { for } 2<i<I ; 2<j<J ; k=3 \tag{68}
\end{align*}
$$

A summary of the various phase-change calculation technicques is given by Dusinberre (8). A modification of the mothod of excess degrees was used in this study. Since the n-octadecane used in this study was not a pure material (practical grade) it was allowed to melt over a $1.76^{\circ} \mathrm{K}\left(3^{\circ} \mathrm{F}\right)$ temperature rance. Since the heat capacity of n-octadccane is the same above and below the melting point, a term which has the units of degrees results wher the latent heat is divided by the heat capacity. This term is called the excess degrees, which is the number of degrees the node would have risen if the phase change had not occurred. The following procedure is used to calculate the phase change.

$$
\begin{equation*}
T(i, j, k) \cdot R \cdot T_{m} \tag{69}
\end{equation*}
$$

Tf $\quad T(i, j, k)<T_{\text {mo }}$
the node is still solid.
If $\quad T(i, j, k)>T_{m o}$
the node is in the process of melting.
If equatior: (71) holds then the following procedure is followed.

$$
\begin{align*}
& T_{e^{(i, j, k}}\left(i, j(i, j, k)-T_{m o}\right) \cdot R \cdot H_{f} / C_{p} \tag{72}\\
& \text { If } \quad T_{e}(i, j, k)<H_{f} / C_{p} . \tag{73}
\end{align*}
$$

the node is partially molted and its temperaturo is defined by

$$
\begin{equation*}
T(i, j, k)=T_{1 n o}+T_{e}(i, j, k) * C_{p} * 1.76 / H_{f} \tag{74}
\end{equation*}
$$

But if

$$
\begin{equation*}
T_{e}(i, j, k)>H_{f} / C_{p} \tag{75}
\end{equation*}
$$

the node has molted and the temperature of the now liquid node is given by

$$
\begin{align*}
T(i, j, k)= & T_{m o}(i, j, k)+1.76+ \\
& \left(T_{e}(i, j, k) * C_{p}-H_{f}\right) / C_{p} \tag{76}
\end{align*}
$$

Each now full-time-step temperature is corrected by the above phase-change calculation.

A computer program was written using the above procedure to solve the nonhomoseneous heat-transfer problem with phase-change presented in the study. The results are shown and described in the discussion of results.

EXPERTMENTAL EQUIPMENT AND PROCEDURE

A description of the experimental equipment and the experimental proceclure are given in this section.

Equipment

The equipment used in this study can be seperated into three sections which are the test cell, the power input measuring system and the temperature recording system. Thesc sections are discussed below.

Test Cell: The test cell (figures 6 and 7) consisted of a rectangular test chamber and a heating plate. The test chamber, 7.62-by-15.24-by-2.54 centimeters (3-by-6-by-1-inches) was milled out of a block of plexiglass to minimize the sources of leaks. The heating plate was a 10.16-by-17.78-by-0.625 centimeter (4-by-7-by-0.25-inch) copper plate upon which two 7.62-by-7.62 centimeter (3-by-3-inch) electric heaters were epoxied. The electric heaters werc obtained from Electrofilm Incorporated of North Hollywood California. The cell was sealed by compressing the 0 -ring. Durinc the run the cell was encased in approximately 3.81 centimeters (1.5 inches) of styrofoam.

Power Input Peasuring System: This system, shown in
fimure 8, consisted of a seven and one half ampere powerstat, a Hickok watt meter and two Nelch A.C. ammeters. The powerstat provieled a variable source of power
to the elcctric heaters. This power was measured by the watt meter. The output of the watt meter is a direct measure of the heat flux liberated by the electric heaters. The function of the ammeters was to insure that each heater received the same current and thus provide even heating.

Temperature Recording Systcm: Sixteen copper-

 constatan thermocouples and a Bristol multipoint recorder comprised the temperature recording system. The recorder was able to record each point every two seconds with an accuracy of $\pm 0.4267^{\circ} \mathrm{K}\left(\pm 0.75^{\circ} \mathrm{F}\right)$. The thermocouple wires in the test cell were encased in glass probes. The glass probes served two purposes. One was to insulate the thermocouple wire from the metallic filler, the other was to keep the thermocouple at a constant height. The thermocouple Incations arc given in table 2, where coordinate $0,0,0$ is the left front upper corner of the test chamber.
Experimental Procedure

Experimental runs were made using the following procedure.

1. The cell was filled with n-octadecane after the filler material had been put into the test chamber. The cell was then bolted down to seal it.
2. The coll was leveled to help minjmize convection.
3. The recorder was turned on to record the initial
temperature of the cell.
4. When the test chamber had reached a constant initial temperature the powerstat was turned on to start the run.
5. The run was allowed to continue until the hot plate reached a temperature of $338.61^{\circ} \mathrm{K}\left(150^{\circ} \mathrm{F}\right)$. At this temperature the plexiglass began to deform around the copper plate.

Figure 6
Test Cell - Exploded View

Figure 7
Frount and Side Views of Test Cell

Power input Measuring System

Table 2

THERMOCOUPLE LOCATIONS

The location of the coordinate $0,0,0$ is the left front upper corner of the test chamber. The x-axis is along the 15.24 cm side of the test chamber, the y-direction is alorg the 7.62 cm ::ide while the z-direction is along the vertical 2.54 cm .

Thermocounle Mo.

DISCUSSTON OF RESULTS

Three types of fillers were evaluated in this study at five different levels of heat flux. A set of runs was made i.ithout a filler to set a performance base line for each power level. The three fillers that were tested are presented in table 3. The thickness giver in the table is the wall thickness of the filler, while the depth is the length of the filler in the z-direction. In the theoretical analysis, average physical propertics were used for n-octadecane, while the literature values, given in table 1, were used for the aluminum filler. The average physical properties that were used are as follows:

Density
ρ (solid) $\quad=0.8969 \mathrm{gm} / \mathrm{cc}$
$\rho($ liquid $)=0.8545$ ©m/cc
Heat Capacity
C_{p} (solid)
$=2.164$ watt-sec $/ \mathrm{sm} /{ }^{\circ} \mathrm{K}$
C_{p} (liquid)
$=2.406$ watt-scc $/ \mathrm{sm} /{ }^{\circ} \mathrm{K}$

Thermal Conductivity
K (solid) $\quad=0.001521$ watt $/ \mathrm{cm} /{ }^{\circ} \mathrm{K}$
K (liquic!)
$=0.00735$ watt $/ \mathrm{cm} /{ }^{\circ} \mathrm{K}$
When the literature value of the latent heat of fusion was used in the mathematical model, the phasechange times were not predicted. This can be scen by

Table 3

GEOMETRY DATA FOR THE ALUMINUM HEXAGONAL FILLERS

The thickress is the wall thickness of the filler, the cell size is the distance across one cell of the filler, while the dopth is the distance in the z-direction.

Filler lio.	Thickness cm	Cell Size 1.	cin
2.	0.00889	Depth cm	
3.	0.011938	0.905	2.54
	0.05969	0.635	2.54
			1.7

comsarinf figures $9 \mathrm{a}-\mathrm{d}$ and $25 \mathrm{a}-\mathrm{d}$. Therefore, a reduced value of the latent heat of fusion was used. When this value was used it predicted the phase-change times more accurately. The latent heat of fusion for n-octadecare used in this study is given by Dain (21) and is as follows.
$H_{f}=182.83$ watt-sec/gm
If the addition of fillers increases the heattransfer rate into the phase-change material, the hot plate temperature should remain below a given control temperature for a longer period of time as the amount of filler is increased. In figure 10 the ratio of filler weight to n-octadecane weight is plotted against a pseudo control temperature. This pseudo control temperature is the hot plate control temperature minus the initial temperature. This figure is not intended to be used for design, but rather to show that the experimental data is corsistant. However, if the control temperature minus the initial temperature should be $22^{\circ} \mathrm{K}$, this figure could be used for approximate design purposes. This graph should not be extrapolated beyond the experimental data.

Fissures 11 through 34 represent the theoretically predicted temperature profiles compared with the correspording experimental data. The thermocouple locations are given in table 2. Response data from orly one thermocouple will be plotted for each height since there

Figure 9

Theoretical and experimental temperature profiles for filler io. 2 at 40 watts with the literature value for the liquefaction enthalpy

Figure
9a $\quad 0.635 \mathrm{~cm}$ from the heating plate
9b $\quad 1.27 \mathrm{~cm}$ from the heatirg plate
9c $\quad 1.905 \mathrm{~cm}$ froin the heating plate
$9 \mathrm{~d} \quad 2.54 \mathrm{~cm}$ from the heating plate

Legera
\triangle F2-40-1
O $\mathrm{F} 2-40-2$
—— Theoretical

Figure 10
Time Beluw a pseudo Control
Temperature
is little difference between the temperature profiles recorded by each thermocouple for a given heisht.

Jn figures 11 through 16 the theoretical and experimental data from the pure paraffin or no filler runs are plotted. Due to the low heat-transfer rate of n octadecane and the hot plate temperature limitation discussed earlier only a small portion of the n-octadecane melted during these runs. In these figures .the paraffin at 0.635 cm has melted and the temperature of the liquid is rapidly rising for all power levels. At 1.27 cm the paraffin has just melted in the 20 and 30 watt runs while it has just reached the melt point in the 40 watt run. It is still below the melt temperature in the 50 and 100 watt runs. In the 20 and 30 watt runs the paraffin is in the process of melting at 2.905 and 2.54 cm. In the 40,50 and 100 watt runs the paraffin at 1.905 and 2.54 cm is still heating up to the melt temperature. The hot plate temperature profiles for the pure paraffin runs are presented in figure 16.

The filler runs are presented in figures 17 through 34. The fillers will be discussed in the order in which they are presented in table 3 , and referred to by the number indicated in the table. In figures 17 to 22 the theoretical and experimental data for filler number 1 are plotted. In these rurs more of the n-octadecane has

Figure 11

Theoretical and experimental temperature profiles at 20 watts for pure n-octadecare \because

Figure

11 a	0.635 cm from the heatirg plate
11 b	1.27 cm form the heating plate
11 c	1.905 cm from the heating plate
11 d	2.54 cm from the heating plate

Legend

$\triangle \mathrm{P}-20-1$
O $p-20-2$
—— Theoretical

Figure 12
Experimental ard theoretical temperature profiles. at 30 watts for pure r-octadecane

Figure

$12 \mathrm{a} \quad 0.635 \mathrm{~cm}$ from the heating plate
12b 1.27 cm from the heating plate
12 c .1 .905 cm from the heating plate
12 d 2.54 cm from the heating plate

Legend
$\triangle \mathrm{P}-30-1$
O $\mathrm{P}-30-2$
—— Theoretical

Figure 13
Experinental and theoretical temperature profiles at 40 watts for pure n-octadecane

Figure
13a 0.635 cal from the heating plate
13b 1.27 cm from the heating plate
13c $\quad 1.905 \mathrm{~cm}$ from the heating plate
13d 2.54 cm from the heating plate

Legend
$\triangle \mathrm{P}-40-1$
($P-40-2$
Theoretical

Figure 14

Experimental and theoretical temperature profiles at 50 watts for pure $n^{-o c t a d e c a n e}$

Figure
$14 \mathrm{a} \quad 0.635 \mathrm{~cm}$ from the heating plate
$14 \mathrm{~b} \quad 1.27 \mathrm{~cm}$ from the heating plate
$14 \mathrm{c} \quad 1.905 \mathrm{~cm}$ from the heating plate
14d 2.54 cm from the heating plate
legend
$\triangle \mathrm{P}-50-1$
O $\mathrm{P}-50-2$
Theoretical

Figure 15

Experimental and theoretical temperature profiles at 100 watts for pure n-octadecane

Figure

15a 0.635 cin from the heating plate
15b 1.27 cm from the heating plate
$15 \mathrm{c} \quad 1.905 \mathrm{~cm}$ from the heating plate
15 d 2.54 cin from the heating plate

Legend

$\triangle \mathrm{P}-100-1$
O $\mathrm{p}-100-2$
Theoretical
20 watts30 watts40 watts50 watts
$\oplus 100$ watts

Figure 16
Hot Plate Temperature Profiles for the Pure N-Octdecane Runs

Experimential and thecretical temperature profiles at 20 watts for filler no. 1

Figure

$17 \mathrm{a} \quad 0.635 \mathrm{~cm}$ from the heating plate
17b 1.27 cm from the heatins plate
$17 \mathrm{c} \quad 1.905 \mathrm{~cm}$ from the heating plate
17 d 2.54 cm from the heating plate

Legend
\triangle F1-20-1
O F1-20-2
Theoretical

Figure 18

Experimental and theoretical temperature profiles at 30 watts for filler no. 1

Ficure

18a 0.635 cm from the heating plate
18b 1.27 cm from the heating plate
18c $\quad 1.905$ cin from the heating plate
18 d 2.54 cm from the heating plate

Legend
\triangle F1-30-1
O F1-30-2
Theoretical

Experimental and theoretical temperature profiles at 40 watts for filler no. 1

Figure

19a 0.635 cm from the heating plate
19b 1.27 cm from the heating plate
19c $\quad 1.905 \mathrm{~cm}$ from the heating plate
19 d 2.54 cm from the heating plate

Legend

\triangle F1-40-1
○ F1-40-2
Theoretical

Figure 20

Experimental and theoretical temperature profiles at 50 watts for filler no. 1

Figure

20a 0.635 cin from the heating plate 20b 1.27 cm from the heating plate $20 \mathrm{c} \quad 1.905 \mathrm{~cm}$ from the heating plate 20 d 2.54 cin from the heating plate

Legend
\triangle F1-50-1
○ F1-50-2
_ Theoretical

Figure 21

Experinental and theoretical temperature profiles at 100 watts for filler no. 1

Figure

$21 \mathrm{a} \quad 0.635 \mathrm{cin}$ from the heating plate
21b 1.27 cm from the heating plate
21c 1.905 cm from the heating plate
21 ci 2.54 cm from the heating plate

Legene
\triangle F1-100-1
O F1-100-2
Theuretical

$\triangle 20$ watts
$\square 30$ watts
$\square 40$ watts
$\bigcirc 50$ watts
$\oplus 100$ watts

Figure 22
Hot Plate Temperature profiles for Filler No. 1
melted compared to the pure paraffin runs. The theoretical curves in all cases predict the solid-phase temperaturc profiles exactly, while there is some variation in the liquid phase. The liquid phase deviations are always on the high side. If the theoretical analysis had considered the heat losses, the theoretical temperature profiles could possibly have been brought down in line with the experimental data. The phase chance times are all predicted. The theoretical profiles that curve up smoothly through the melt point are nodes closer to the aluminum filler, figure 17, while those that jump sharply after the phase-change are nodes farther away from the filler, figure 17 b . The hot plate temperature profiles for filler rumber 1 are shown in figure 22.

Figures 23 to 28 show the experimental and theoretical results for filler number 2 . The same statements that were made for filler number 1 can be made for filler number 2.

The results from filler number 3 are plotted in figures 29 to 32. Note that the theoretical temperature profilos deviate sharply from the experimental profiles at the 1.27 cm level. Tn this case the filler is only 1.27 cm dicep, and when all of the n-octadecane has melted in the thooretical analysis, the whole cell will heat up rapidly as shown in figures $29 \mathrm{~b}, 29 \mathrm{~d}, 30 \mathrm{~b}, 30 \mathrm{~d}$ and 31 b .

Figure 23
Experinental and theoretical temperature profiles at 20 watts for filler no. 2

Figure
$23 \mathrm{a} \quad 0.635 \mathrm{~cm}$ from the heating plate
23b 1.27 cm from the heating plate
23c $\quad 1.905 \mathrm{~cm}$ from the heating plate
$23 \mathrm{~d} \quad 2.54 \mathrm{~cm}$ fron the heating plate

Lecernd
$\triangle \mathrm{F} 2-20-1$
($\mathrm{F} 2-20-2$
Theoretical

Figure 24
Experimental and theoretical temperature profiles at 30 watts for filler no. 2

Figure
24a 0.635 cm from the heating plate
$24 \mathrm{~b} \quad 1.27 \mathrm{~cm}$ from the heating plate
$24 \mathrm{c} \quad 1.905 \mathrm{~cm}$ from the heating plate
24d 2.54 cm from the heating plate

Legend
$\triangle \mathrm{F} 2-30-1$
O $\mathrm{F} 2-30-2$
Theoretical

Figure 25
Experiacntal and theoretical temperature profiles at 40 watts for filler no. 2
Figure
$25 \mathrm{a} \quad 0.635$ cin from the heating plate
25b 1.27 cin from the heating plate
25c 1.905 cm from the heating plate
$25 \mathrm{~d} \quad 2.54 \mathrm{~cm}$ from the heating plate

Legend
$\triangle \mathrm{F} 2-30-1$
〇 $\mathrm{F} 2-30-2$
Theoretical

Figure 26

Experimental and theoretical temperature profiles at 50 watts for filler no. 2

Figure
26a 0.635 cm from the heating plate
26b 1.27 cm from the heating plate
$26 \mathrm{c} \quad 1.905$ cnn from the heating plate
26 d 2.54 cm from the heating plate

Legend
\triangle F2-50-1
O F2-50-2
— Theoretical

Figure 27
Experimental and theoretical temperature profiles at 100 watts for filler no. 2

Figure

27a 0.635 cm from the heating plate
27b 1.27 cm from the heating plate
27c 1.905 cm from the heating playe
27 d 2.54 ca from the heating plate

Legent

\triangle F2-100-1
O F2-100-2
Theoretical

$\triangle 20$ watts

$\square 30$ watts
O 40 watts
○ 50 watts
(1) 100 watts

Figure 28
Hot Plate Temperature Frofiles For Filler No. 2

This is due to the fact that the bottom is considered insulated and there is no more solid to change phase and thus absorb heat. In the experimontal cell there is definately heat loss through the bottom, which could account for some of this deviation. Also the 2.54 cm deep cell was modified to test the 1.27 cm deep filler by inserting a 1.27 cm plexiglass plate. It was necessary to drill holes in this plate to accomodate the existirs thermocouples. These holes filled with paraffin. With this extra n-octadecane around the cold plate or 1.27 cm thermocouples considerable more heat is absorbed, thus keeping the thermocouple temperature down. The hot plate temperature profiles for the third filler are shown in figure 32. It should be noted that the inflection in the hot plate temperature profiles are probably due to the presence of air bubbles.

Figures 33 through 37 demonstrate some of the theoretical studies that can be made with the mathematical model developed in this study. In figure 33 the temperature profiles from various filler wall thicknessess are plotted. It can be seen from these plots that as the filler thickness increases sc does the heat-transfer rate. This is shown by the way in which the slope of the curve above the melt point increases as the wall thickness of the filler incroascs.

Figure 29

Experimental and theoretical temperature profiles at 20 and 30 watts for filler no. 3

Figure
29a 0.635 cm from the heating plate - 20 watts
29b 1.27 cm from the heating plate - 20 watts Legend
$\triangle \mathrm{F} 3$-20-1
O F3-20-2
Theoretical
Figure
29c 0.635 cm from the heating plate - 30 watts
$29 \mathrm{~d} \quad 1.27 \mathrm{~cm}$ from the heating plate - 30 watts
Legend

$$
\begin{aligned}
& \triangle \mathrm{F} 3-30-1 \\
& \bigcirc \mathrm{~F} 3-30-2
\end{aligned}
$$

Theoretical

Time sec.

Figure 30
Experimental and theoretical temperature profiles at 40 and 50 watts for filler no. 3

Figure
30a 0.635 cin from the heating plate - 40 watts
30 b 1.27 cm from the heating plate - 40 watts Legend
\triangle F3-40-1
O $\mathrm{F} 3-40-2$
Thecretical
Figure
$30 c \cdot 0.635 \mathrm{~cm}$ fro the heating plate -50 watts
$30 \mathrm{~d} \quad 1.27 \mathrm{~cm}$ from the heating plate - 50 watts
Legend

```
\triangle F3-50-1
O F3-50-1
    Theoretical
```


Figure 31

Experimental and theoretical temperature profiles at 100 watts for filler no. 3

Figure

30a. 0.635 cm froa the heating plate
$30 \mathrm{~b} \quad 1.27 \mathrm{~cm}$ from the heating plate

Legend
\triangle F3-100-1
O F3-100-2
Theoretical

Figure 32
Hot Plate Temperature Profiles for Filler No. 3

Figures 34 through 37 are included to show the temperature profiles ir the $x-y$ plare. In figure 34, there is not much deviation. in the $x-y$ plane. This is intuitively correct sirce the graphs were made from data taken at a time early in the run. As time increased so does the temperature variation in the $x-y$ plane. (Figures 35,36 and 37) fote that the n-octadecane closer to the filler rises to a higher temperature than that farther away at any given time. This type of heating profile is exactly what is expected with a high thermally conductive metal inatrix in a phase-change enviromment.

The experimental data ir this section could be used for desicn providing that the design requirements fall within the experimental data and situation as presented in this study. The computer program writteli for this study can be used to predict the capabilities of other thermal-control devices by varyine the physical properties of either the filler or phase-charge material. If a different filler geometry is to be studied the subroutire which calculates the areas of the filler and phase-change material must be changed to accommodate the different geometry. If heat loss from the system is to be considered, the computer progran can be modified as described in the theory section to provide for this. The computer proeram written for this study can also be

Theoretical Temperature Profiles for Different filler Thicknessess

Figure 34

Theoretical temperature profiles in the $x-y$ plane at $t=$ 600 sec
a

Figure	Temperature profile along line	$\begin{gathered} z \\ \mathrm{~cm} \end{gathered}$	$\begin{aligned} & \mathrm{Th} \\ & \mathrm{~cm} \\ & \hline \end{aligned}$
34-a	$a-b$	0.625	0.002985
34-b	$a-b$	0.625	0.011938
34-c	$a-b$	0.625	0.017907
34-d	$a-b$	0.625	0.23876
34-e	$c-d$	0.625	0.002985
34-f	c-s.	0.625	0.011938
34-g	c-d	0.625	0.017907
34-h	c-d	0.625	0.23876
34-i	$a-b$	1.27	0.002985
34-j	$a-b$	1.27	U.0i1938
34-k	$a-b$	1.27	0.017907
34-1	$a-b$	1.27	0.23876
34-m	$\mathrm{c}-\mathrm{d}$	1.27	0.002985
34-n	c-d	1.27	0.011938
34-0.	c-d	1.27	0.017907
34-p	$\mathrm{c}-\mathrm{d}$	1.27	0.23876
34-q	$a-b$	1.905	0.002985
34-r	$a-b$	1.905	0.011938
34-s	$a-b$	1.905	0.017907
34-t	$a-b$	1.905	0.23876
34-u	c-d	1.905	0.002985
34-v	c-d	1.905	0.011938
34-w	c-d	1.905	0.017907
34-x	c-d	1.905	0.23876

Figure 35

Theoretical temperature profiles in the $x-y$ plane at $t=$ 1200 sec

Figure	Temperature profile \qquad along line	2 cm	$\begin{aligned} & \mathrm{Th} \\ & \mathrm{~cm} \\ & \hline \end{aligned}$
35-a	$a-b$	0.625	0.002985
35-b	a-b	0.625	0.011938
35-c	$a-b$	0.625	0.017907
35-d	$a-b$	0.625	0.23876
35-e	c-d	0.625	0.002985
35-f	c-d	0.625	0.011938
35-¢	$\mathrm{c}-\mathrm{d}$	0.625	0.017907
35-h	c-d	0.625	0.23876
35-i	a-b	1.27	0.002985
35-j	$a-b$	1.27	0.011938
35-k	$a-b$	1.27	0.017907
35-1	$a-b$	1.27	0.23876
35-m	c-d	1.27	0.002985
35-n	c-d	1.27	0.011938
35-o	c-d	1.27	0.017907
35-p	c-d	1.27	0.23876
35-q	$a-b$	1.905	0.002985
35-r	$a-b$	1.905	0.011938
35-s	a-b	1.905	0.017907
35-t	$a-b$	1.905	0.23876
35-u	c-d	1.905	0.002985
35-v	c-d	1.905	0.011938
35-w	c-d	1:905	0.017907
35-x	c-d	1.905	0.23876

Figure 36

Theoretical temperature profiles in the $x-y$ plane at $t=$ 1800 sec
a

Ficure	Temperature profile along line	$\begin{aligned} & z \\ & \mathrm{c}: \mathrm{n} \end{aligned}$	Th cm
36-a	a-b	0.625	0.002985
36-b	$a-b$	0.625	0.011938
36-c	a-b	0.625	0.017907
36-ci	$a-b$	0.625	0.23876
36-e	$\mathrm{c}-\mathrm{d}$	0.625	0.002985
36-f	c-d	0.625	0.011938
36-g	c-d.	0.625	0.017907
36-h	c-d	0.625	0.23876
36-i	$a-b$	1.27	0.002985
36-j	$a-b$	1.27	0.011938
36-k	$a-b$	1.27	0.017907
36-1	$a-b$	1.27	0.23876
36-m	$\mathrm{c}-\mathrm{cl}$	1.27	0.002985
36-n	c-d	1.27	0.011938
36-0	c-d	1.27	0.017907
36-p	c-d	1.27	0.23876
36-q	a-b	1.905	0.002985
36-r	$a-b$	1.905	0.011938
36-s	$a-b$	1.905	0.017907
36-t	$a-b$	1.905	0.23876
36-u	$\mathrm{c}-\mathrm{d}$	1.905	0.002985
36-v	c-d	1.905	0.011938
36-w	$\mathrm{c}-\mathrm{d}$.	1.905	0.017907
36-x	c-d	1.905	0.23876

Theoretical temperature profiles in the $x-y$ plane at $t=$ 2400 sec

Figure
37-a
$37-\mathrm{b}$
Temperature profile
along line

$$
37-c
$$ along line

2
$a-b$
$a-b$
$a-b$
$a-b$
$c-d$
$c-d$
$c-d$
$c-d$
$a-b$
$\overline{0.625} \quad \overline{0.002985}$
$0.625 \quad 0.011938$
$0.625 \cdot 0.017907$

$$
37-\mathrm{d}
$$

$0.625 \quad 0.23876$

$$
37-e
$$

$0.625 \quad 0.002985$

$$
37-f
$$

$0.625 \quad 0.011938$

$$
37-E
$$

$0.625 \quad 0.017907$

$$
37-\mathrm{h}
$$

$0.625 \quad 0.23876$

$$
37-i
$$

1.270 .002985

$$
37-j
$$

$$
37-k
$$

$\begin{array}{ll}1.27 & 0.011938 \\ 1.27 & 0.017907\end{array}$
$a-b$

$$
37-1
$$

1.27
1.27
0.23876

$$
37-\mathrm{m}
$$

1.27
0.002985

$$
37-\mathrm{n}
$$

1.27
0.011938

$$
37-0
$$

1.27
0.017907
c-d

$$
37-\mathrm{p}
$$

1.27
0.23876

$$
37-q
$$

$a-b$
1.905
0.002985

$$
37-r
$$

$a-b$
1.905
0.011938

$$
37-s
$$

$a-b$
$a-b$
$\mathrm{c}-\mathrm{d}$
$\mathrm{c}-\mathrm{d}$
c-d
c-d
1.905
0.017907

$$
37-t
$$

1.905
0.23876

$$
37-u
$$

1.905
0.002985 .

$$
37-v
$$

1.905
0.011938

$$
37-w
$$

1.9050 .017907

$$
37-x
$$

1.905
0.23876

used to predict the performance of thermal-control phase-change devices under different heat loads by modifing it to use a heat-flux bounclary condition as described in the theory section.

RECOMMENDATIONS AND COFCLUSTONS

Conclusions

Based upor the results of this study, the following conclusions are presented.

1. As the weight of the filler material increases the heat-transfer rate of the thermal-control phase-change device increases.
2. The computer program writter for this study predicts the experimental solid-phase-temperature profiles and the phase-change times correctly. While the maximun deviation between the theoretical and experimental solid-phase-temperature profiles is $2.8^{\circ} \mathrm{K}\left(5^{\circ} \mathrm{F}\right)$, there is essentially no deviation in most of the runs. There is as much as $14^{\circ} \mathrm{K}\left(25^{\circ} \mathrm{F}\right)$ deviation between the theoretical and experimental results in liquid phase. This deviatior. could possibly be corrected by changing the boundary condition alorg the botton plate, in the computer profram, to one in which heat loss is allowed.
3. The mathematical model preserted in this study is general in terms of variable filler geometry, physical properties of the filler and phase-change material and the types of boundary conditions that can be placed on the theoretical model. The computer prograin written for this study is general in terms of variable physical properties
of the filler and phase-change material and sizes and shapes of the hexagonal filler. While the computer progran is written for insulated boundaries along the bottom and four sides, it can be easily nodified to allow for heat loss or gain along these boundaries. The computer prograin uses a temperature profile on the heatirg plate but this boundary, as discussed earlier, can also be changed to utilize a heat-flux boundary condition.
4. A three-dimensional analysis is needed to see the detailed temperature profiles in the $x-y$ plane. As shown in the discussion of results section these theoretical temperature gradients can be as much as $11.1^{\circ} \mathrm{K}$ $\left(20^{\circ} \mathrm{F}\right)$.
5. This study has shown that to correctly model the experimental system the heat losses must be known or predicted. If a heat-flux bourdary condition is to be used in the theoretical model, the heat-flux into the test chamber must be accurately known.

Recominencations

The following recommenclations are presented based on the results of this study.

1. The test chamber should be redesigned in such a way as to eliminate air bubbles.
2. Since the n-octadecane used in this study tended
to trap air in the solidification process, other phasecharge materials should be consiclered. These other materials could include lithiun nitrate trihydrate and acetamicie.
3. Since the filler material adds weight to the phase-change therinal-control unit, and subtracts from its heat-absorbine capacity, other filler materials and geometries should be studied with the goal of optimizing the ratio of filler material to phase. change material.

LITERATURE CITED

1. Bentilla, E. W., Sterrett, K. F., and Karre, L. E., Thermal control by use of fusible materials: Final Report, Northrop Corporation, NSL65-16-1, Contract NAS8-11163, April 1966.
2. Hale, D. V., Hoover, M. J., and O'Neill, M. J., Phase change materials handbook: Lockheed Missijes and Space Company, Contract NASA CR-61363, Sept. 1971.
3. Carslaw, II. S. and Jaeger, J. C., Conduction of heat in solids: Oxford University Press, 1959.
4. Arpaci, V. S., Conduction heat transfer: AddisonWesley Publishing Company, Reading, Massachusetts, 1966.
5. Pujado, P. R., Stermole, F. J., and Golden, J. 0., Nelting of a finitc paraffin slab as applied to phase-chanme thermal control: Journal of Spacecraft and Rockets, V. 6, No. 3, March 1969, pp. 280-284.
6. Ukanawa, A. 0., Stermole, F. J., and Golden, J.o., Phase change solidification dynamics: Journal of Spacecraft and Rockets, V. 8, Feb. 1971, pp. 193-196.
7. Shah, A. P., A microscopic and thermal study of the solidification of n-octadecane: Thesis No. T-1334, Colorado School of Mines, Golden, Colorado, 1970.
8. Dusinberre, G. M., Heat trarsfer calculation by finite differences: International Textbook Corporation, Scrarton, Pennsylvania, 1961.
9. Bain, R. L., Stermole, F. J., and Colcien, J. O., Gravity induced free convection effects in melting phenomena for thermal control: Journal of Spacecraft and Rockets, V. 8, No. 9, Scpt. 1971, pp. 10001002 .
10. Ukarawa, A. 0., Thermal mordeling of phase-chance solidification in thermal control devices including natural convection effects: Thesis No. T-1422, Colorado School of Mines, Golden, Colorado, 1971.
11. Chi-Tien and Yin-Chao, Approxinate solution of a meltiner problem with natural convection: Chemical Engineering Progress Symposium Series, V. 62, No. 64, pp. 77-85.
12. Goodman, T. R. and Shea, J. J., The melting of finj.te slabs: Journal Applied Mechanics, Transactions A.S.M.E., Feb. 1960, pp. 161-166.
13. Crank, J. and Nicholson, P., Proc. Cambridge Phil. Soc., 1947.
14. Douclas, Jim, Jr. and Rachford, H. H., Jr., Transactions Amer. Math. Soc., 1956.
15. Peaceman, D. W. and Rachford, H. H., Jr., Soc. Ind. Appl. Math., 1955.
16. Brian, P. L. T., A finite-difference method of highorder accuracy for the solution of three-dimensional transient heat conduction problems: A.I.C.H.E. Journal, Sept. 1961, pp. 367-370.
17. Grodzka, P. G., Space thermal control by freezing and melting: Lockheed Missiles and Space Company, Second Interim Report, Contract NAS8-21123, May 1969.
18. Shlosinger, A. P. and Bentilla, E. W., Tnterim Report: Contract NAS8-11163, Northrop Corporation, Feb. 1965.
19. Perry, J. H., Chemical engineers handbook: McGrawHill Book Company, New York, New York, 1950.
20. Pujado, P. R., Meltinr of a finite paraffin slab: Thesis No. T-1215, Colorado School of Mines, Golcen, Colorado, 1968.
21. Bain, R. L., Stermole, F. J., and Golden, J. 0., An experinental and theoretical irvestigation of the liquefaction dyanics of a phase-change material in a normal gravity environment: Armual Sumary Report, Coloracio School of Nines, Contract NAS8-30511, Mod. 2, January, 1972.

NOMENCLATURE

a, b, c	Coefficient of the unkrown temperatures in the tridiagonal matrix
A	The cross sectional area perpendicular to the heat flux; cm^{2}
C_{p}	The heat capacity; watt-sec/gn/ ${ }^{\circ} \mathrm{K}$
G	Amount of energy generated per urit volune; watt-sec/cc
h	The heat-transfer coefficient; watt/sec/cmi ${ }^{2}$
H_{f}	Enthalpy of liquefaction; watt-sec/gn
I	The last rode in the x-direction in the nocial network
J	The last node in the y-direction in the nodal network
κ	The last node in the z-direction in the nodal network
K	Thermal conductivity; watt/cm/ ${ }^{\circ} \mathrm{K}$
q	The heat flux; watt-sec/cmi
T	Temperature; ${ }^{\circ} \mathrm{K}$

T_{e}	The excess degrees; ${ }^{\circ} \mathrm{K}$
Th	Wall thickness of the filler; cm
T_{mo}	The initial melting temperaturc; ${ }^{\circ} \mathrm{K}$
T_{m}	The meltirg temperature; ${ }^{\mathrm{o}} \mathrm{K}$
t	Time; sec
Δt	Incremental time; sec
V^{\prime}	The volume of the material that generates enerey; cc
V	Volune; ce
ρ	Density; gm/cc
$\left(\rho c_{p} V\right)_{\text {eff }} .$	The effective $\left(\rho C_{p} V\right)$ for a norhomogeneous node; watt-sec/ ${ }^{\circ}{ }_{K}$
(KA) eff	The effective (KA) for a nonhomogeneous node watt-cm/ $/{ }^{\circ} \mathrm{K}$

Subscripts
x
X-direction which is along an axis parallel to the 15.24 cm side of the test chamber

Y-direction which is along an axis parallel to the 7.62 cm side of the test chamber

Z-direction which is along an axis parallel to the 2.54 cm sicie of the test chamber
i
Indicates the x-direction in the finite difference formulation

Indicates the y-direction in the finite difference formulation
k
Indicates the z-direction in the firite difference formulation

APPENDIX I

Computer program to solve the norhomoireneous phase-change problem.

This computer proerran was written in FORTRAN IV to solve the nonhomogeneous phase-change problem presented in this study. This program uses 14 cards of input data. The coefficients of the three straight-line fits for the hot plate temperature profiles are read on the first $\mathbf{3}$ carcis. The physical properties of the filler and phasechange material are read on the next 9 cards. The filler geometry is specified by the last 2 cards. The following table specifies the exact variable to be read on each card.

VARIABLE

Card 1

A 1
B1
TII
Card 2
A2
B2
TI 2

Card

Coefficient of t in $T=A t+B ;{ }^{\circ} F / m i n$
B in $T=\Lambda t+B ;{ }^{\circ} F$
The last time for which A1 and B1 hold; min

Sanie as A1
Same as D1
The last time for which A2 and B2 hold; min

VARIABLE

Card 3
A3 Same as A1
B3 Same as B1
Card 4
DIF
TM
TA
Card 5
CPM

HF
Enthalpy of liquefaction; BTU/lr,
TS
The ending time of the run; min
Card 6
ATI
XIC

Card 7

TH
RF
CPF
Card 8
FK
Card 9
DX Length of the node in the x-direction; in

DZ
The wall thickness of the filler; in
Density of the filler; lb/cf
Heat capacity of the filler; BTU/Ib/ ${ }^{\circ} \mathrm{F}$

Thermal conductivity of the filler; BTU/ft/hr/ ${ }^{\circ} \mathrm{F}$

Length of the node in the z-direction; in

VARIABLE

Card 10
DT Time increment; sec
PKS

PKL

Card 11
RPS
RPL
CPS
Density of the solid phase-change material; lb/cf Density of the liquid phase-change material; lb/cf Heat capacity of the solid phase-change material; BTU/1b/ F

Card 12
CPL
Heat capacity of the liquid phase-change material; BTU/lb/ F

Card 13
NX
The number of nodes in the x-direction plus 1
The first node of the angular section of the filler

I2

The last rode of the angular section of the filler
Card 14
NY The last node in the y-clirection plus 1
N2
Set equal to 3
N4
The last rode ir the z-direction plus 2

DIMENSION VP(7,7),VF(7,7)
DIMENSIDA A(32), A(32),CC(32),D(32),T(32)
OJMESSION APXI(7,7), AFXI(7,7)
OIMESSION APY! (7,7:,AFYI(7,7)
DIMENSION T1(7,7,32),T2(7,7,32),93(7,7,32)
OIMENSIDiN TE(7,7,32),KJ(7,7,32)
DIMENSION APZ(7,7), AFZ $(7,7)$
commoin /Si/ is4,liJok
COMMON /E?./ VP, VF
COMMON /53/ APXI, AFXI, NX
COMMON IS4/ APYI,AFYI,NY
COMMON /S5/ ADZ,AFZ, IZZ
COMPOM /S6/ A,B,CCIO
COMMON /S7/ TM,HF,CPH,DIF,VT
COMAOA /SR/ A1, A2, A3,B1, B2,B3, FII, YI2,TI
COMEOG: /S9/ FKS,PKL
COMMON /SIE/ RPL,RPS,CPS,CPL
CO.......... N2 NODE THAT STARTS THE TEST MATERIAL C...........NAt TKE NO. OF NDDES IN THE TEST MATERIAL C.,.........VF=VOL OF FILLER ROE(F)』CP(F)/OT
$C \ldots \ldots, \ldots, \ldots V F=V O L$ OF $P A R A, * R D E(F) H C P(P) / D T$
C............. $N=$ NO, OF NODES IN X DIR,

C!.......... $A Y=$ NO, OF NODES IN Y DIR,
C….........NZF ND, OF NOUES IN Z DIR.
C,M.........TM: MELT TEMP, OF PARA.
C!.........HFF $=$ HEAT OF FISSSION OF THE PARA.
CH..............CPN=HEAT ©APACITY OF THE PARA, AT THE MELT TEMP,
CPREIEAT CAPACITY OF PARA,
CPF: لLEAT CAPACITY OF FILLER
RF = DEUS! TY OF F ILLER
OP EDENSITY OF PARA.
PK=THERMAL COND, OF PARA,
FK=THERMAG COND, OF FILLER
READ (2,6\%2) A1, B1, TI1,A2, B2, T12, A3, B3
REAO(2,60O) DIF,TM,TA,CPM,HF,TS,ATI,XIC
READ (2, GON) TH, RF, CPF,FK.
REAO ($2,6,2,3$) DX,DY,DZ,DT,PKS,PKL
READ(2,602) RPS,RPL,CPS,CPL
READ(2,601) MX,I1, 12, MY, N2,NA
format (3F)
FORMAT(3F)
FORMAT(31)
WRITE(1,662) A1,B1,TII,A2,B2,T12,A3,B3
WRITE(1, 603) DIF,TM,TA,CPM,HF,TS,ATI,XIC
WRITE(9,604) TH, RF,CPF,FK
WRITE(1,GA5) DX,OY,DZ,OT,PKS,PKL
WRITE(1,607) RPS,RPL,CPS,CPL
WRITE(1, 606) Mx, I1, I2, MY, 22,44
FORMAT(4X,'ヘ1=1,F8,4,1 DEGF/MIN1,7X, 1B1=',F8,4,' DEGF!
25X,1TII=1,FB,4,1 MIN'/,4X, A ? $=1, F 8,4,1$ OEGF/MIN1

$34 X,{ }^{\prime} A 3=1, F 3, A, 1$ DEGF/HIN', 7X,'B3=1,FB,A,' DEGF1)

 3F8,4,1 M!N1)

FORMAT(4X,'DX:1,F8,4,1 lHCHES', $9 x, 10 Y=1, F 8,4,1$ INCHES' 1, 4X, 'OZ:1,FB,4,1 INCHES1,/,4X,'DT=1,FB,4,1 SEC,1,4X,'PKS=1,FB,4,
121X, 'N2 $\left.=1,13,16 x_{1}, N 4=1,13\right)$

13X,'CPS=1,F8,4,' BTU/LB1,/,4X,'CPL=1,FB,4,' BTU/LB')
N3 eiv2 1
$N Z Z=N 4+1$
$T I=0$.
$N Z=N 4$
$D T=D T / 60.160$.
NX=HX+1
NYOMY+1
$D X=D X / 12$.
OY $=D Y / 12$,
$O Z=O Z / 12$.
VTEDX*DYaOZ
THT.TH/I2.
CALL AREA (II,12,TH,DX,DY,DZ,OT,RF,CPF,FK)
$005 \mathrm{~K} \equiv 2, N Z$
005 Jeziny
DO 5 I=?, NX
$T 1(1, J, K)=T A$
$T 2(I, J, k)=T A$
$T 3(l, j, k)=T A$
KJ(I, J, K) =i
CONTINLE
CALL TRN(TBg)
$T I=T I+2,40 T * 60$,
CAbL TBN(TE2)
TBE(TB1+TB2)/2;
DO 7 J=?,NY
00 7. IE2,NX
$T 1(1,1,2)=T B$
$T 2(1, J, 2)=T B$
T3(1, J, 2) $=T B$
CONTINUE
SOLVING FOR T2
DO $15 \mathrm{k}=3 \mathrm{NZ}$
$K K=K+1$
OO 15 Jこ2,NY
$J J=J+1$
DO $101=2, N X$
CALL KC(C,KJ(I,J,K))
1]El+1
CALL KI(C11,I,KJ(I,J,K))
CALL KI(C12,1!,KJ(I, N,K))
CALL K?(col,,$k J(I, J, K))$
CALL K2(C2?,JJ,KJ(l, J,K))
CALL K3(C3q, K,KJ(I,J,K)
CALL K3(C32,KK,KJ(1,N,K))
FORMAT(1 CS1,312.4E)
FORMAT(1 COE'312.5E)
A(1)=aC11/C/0X
$B(1)=1,+(011+012) / C / D X$
CC(I) $=-C 12 / C / D x$
$D(1)=\uparrow 1(1, d, K)$

$D(1)=D(1)+z 1$
$Z 2=(C 314 T 1(1, J, K-1)-(C 31+C 32) * T 1(1, J, K)+C 324 T 1(1, J, K+1)) / C / 0 Z$
FORMAT(3X,4E)
$D(1)=D(1)+z$.
ORMAT(3E)
10 CONTINUF
CALH SOLVE (T,2,NX)
$0012 \mathrm{Kl=2,NX}$
$12 \quad T 2(k!, J, k)=T(K I)$
15 CONTINUE
C.......SOLVING FOR T3

DO $251=2, N X$
$11=1+1$
DO $25 \mathrm{~K}=3 \mathrm{MZ}$
$K K=K+1$
0020 JF2,NY
CAbL KC(C,KJ(I,J,K))
JJ=J+1
CAbL K2(C21,J,KJ(I,J,K)
CALL K?(C?2,JJ,KJ(li, J, K))
$A(J): \quad 21 / C / D Y$
$B(\lambda)=\ldots+(C 21+C 22) / C / D Y$
$C C(J)=-C 22 / C / D Y$

$Z \equiv Z / C / D Y$
$D(J)=T 2(1, J, K)+Z$
CONTINUE
CALL SOLVE (T,2,NY)
DO $22 \mathrm{Kl}=2$ NiY
T3(l, Kl, K) =T(Kl)
22 CONTINUE
DO $28 \mathrm{~K}=2, \mathrm{NZ}$
DO 28 N=2,NY
0028 I $\quad 2, N X$
T2(liJ,K)=TI(li,J,K)
28 CONTINUE
C.......SOLVING FOR T1

DO $35 \quad 1=2$, NY
$\checkmark J=j+1$
DO 35 I $2, \mathrm{NX}$
$1!=1+1$
DO $30 \mathrm{~K}=3, \mathrm{k}=$
CALL KC(C,KJ(I,J,K))
$K K \leq K+1$
CALL K3(C31, $K, K J(!, J, K))$
CALL K3(C32,KK,KJ(! $, \mathrm{J}, \mathrm{K}))$
C33:C31
ECEO.
IF(K,GI, 3) GO TO 29
ECET2(! J, K-1) aC31/C/DZ
C33日:
$A(K)=-C 33 / C / D Z$
B(K):1,*(C31+C32)/C/DZ
CC(K)=-C32/C/OZ
$D(K)=2, \# T 3(1, J, K)=T 2(!, J, k)$

$Z=7 . C / 07$.
$D(K)=D\left(K^{\prime}\right)+Z+E C$
CONTINUE
CALL. SOIVE (T, $3, N Z)$
DO $32 \mathrm{Kl}=3 \mathrm{NZ}$
TI(I.J.KI)=T(KI)

32	CONTINUE
35	CONTINUE
	DO $37 \mathrm{keN2,Nz}$
	$0037 \mathrm{~J}=2 . \mathrm{NY}$
37	CONTINUE
38	IF(TJIGT,ATI) GO TO 6
	WRITE(1,42) Tl, TE
	$0042 \mathrm{~K}=$ 2, NZ7.14
	L. $5 \mathrm{~K}=1$
	L2EK+1
	WRITE(: 41) L1, (T1 (1, 2, m1), $1=2, N X)$
	WRITE(1, 11) 61, $(T 1(1,3,61), I=2, N X)$
	WRITE(1, 41) K, (T1 (1, 2, K), ! $2, \mathrm{~N}, \mathrm{NX}$)
	WRITE (1, 41) K, (Ti (1, 3, K), $1=2, N X)$
	WRITE (1, 41) L2, (Ti ($1,2, L 2), I=2 ; N X)$
	WRITE(1,41) L2, (T1 (1,3,12), $1=2, N X)$
	WRITE (1,444)
40	continue
444	FORMAT(/)
45	FORMAT(4 (3x,312,F6,1))
41	FORMAT(3X, 13,4(3X,F6,1))
42	
43	FORMAT(11x,12(212,5x))
	ATI $=A T I+X!C$
	1F(TI,GT.TS) GO TO 999
	GOTO 6.
999	STOP
	END
	SUBROUTINE AREA(11, 12,TH, DX, OY, DZ, OT, RF, CPF,FK)
	DIMENS!ON VP(7,7),VF(7,7)
	OIMENSION APXI 77,7$),$ AFXI $(7,7)$
	DIMENSION APY! 77,7$)$, AFY! $(7,7)$
	DIMENSION APZ (7,7),AFZ 7,7$)$
	COMMON /S2/ VP, VF
	COMMON /S3/ APXI, AFX!,NX
	COMMON /S4/ APY!,AFYI,NY
	COMMON /S5/ APZ, $A F E, N Z$
	$\because \because D X>O Y /(T A N(A A-8 \cap, D E G 1)$
	$\cdots \cdots \cdots \mathrm{MHEREJ}$....
	..!......AA
11 = NO. OF NODES TO THE ANGLE PART OF THE FIGLER
	(12.......12F NO, MUST BE INTERGERS
C.	
C	
	...!...'.יDY=DELTA Y
	$\ldots \ldots \ldots \ldots$ AREA OF FILLER IN THE Z DIR. IN NOUE IN
C,	

$I U=N X-1$
$J U=N Y=1$
16=1
$J=1$
TAEFLOAT(12-11)/FLOAT(JUNJ6*1)
$A A=A T A N(T A)$
REFLOAT (12:I1)*DX*FGOAT(11)ADX
DO 50 J=ル, JU
YLEFLOAT (JU-J+1) \#OY
YU=FLOAT (JU-J)هDY

$X U E$ QeTA\#Y!
$005 \% 1=161 U$
IF(I,LE,11) GOTO 10
1F(!.LE,I2) GOTO 20
JF(I.LE,IU) GO TO 33
IF(J,GT, JL) GO TO 14
$A P X I(I, J)=D Z *(D Y-T H / 2$,
APYI $(1, J)=0$.
$A F Z(1, N)=0 X * T H / 2$,
$A F X I(I, J)=0 Z W T H / 2$.
AFYI($!, J)=\xi^{\prime}$
IF(I,EQ,IL) GO TO 12
IF (J,EQ,JU) GO TO 34
GOTO 52
$\triangle P \times 1(1,0)=0$,
$A F \times 1(1, d)=\pi$,
GO TO 52
APXI(1, J) $=D Y \# D Z$
APYI(I, J) =DXADZ
$A F X I(1, J)=G$,
AFYI $(1, J)=0$.
$A F Z(1, J)=0$.
IF (XBL,EQ, XL) GO TO 18
IF(XQL-DX,EQIXU) 60 TO 19
$I F(I, E O, I L) A P X I(I, J)=0$,
IF (J.EQ1JL) APYI(IIJ)=0.
GO TO 52
$A P Y!(1, J)=O Z(D X-T H / 4$,
AFYI(ll, J) $=0 \times T H / 4$,
GO TO 16
$A P X 1(1, J)=D Z(D Y-T H / 4$,
AFXI(1, J) $=D Z W H / 4$,
GO TO 16
XBL=FLOAT(1)*DX
IF (Xi?L,LE, XL) GO TO 14
IF (XBL=DX,GE, XU) GO TO 14
$X 1=X B L \sim X L$
IF (X1,GT,0X) GO TO 28
IF $(X U, L T, X E L) X 1=X U=X L$
HI:X1/SIN(AA)
YiEX1/TA
$A P X I(1, J)=D Z \# D Y$
$\operatorname{APYI(1,J)=DZ\# (OX\rightarrow TH)}$
$A F Z(1, j)=H 1 \pm T H$
$A F X!(1, J)=6$.
$A F Y I(1, J)=[, Z * T H$
IF (XELMOX,EQ, XL) GOTO 31
IF(I=1,EN.II,ANO".J,EO.JL) GO TO 26
IF (J.EO.JL) GO TO 25

```
    GO T0 52
    APYI(1,J)=0.
    AFY|(1,d)=(1.
    G0 T0 5%
    APX!(1,J)=DZA(DY-TH/2,)
    AFXI(1,J)=DZ:GTH/Z.,
    G0 TO 2J
    Y2FDY-Y1
    HIFYR/COS(AA)
    APXI(I,J)=DZ*(OY-TH)
    APY\(1,J)=0X*OZ
    AFZ(I,J)=TH@HI
    AFX!(l,J)=OZ.4TH
    AFYI(1,J)=0,
    G0 TO 21
    APX!(1,N)=OZO(DY-TH/4,)
    AFXI(I,J)=חZロTH/4.
    APYI(I,J)=0Z#(OX-TH/4,)
    AFYl(ll,J)=AFXl(I,J)
    GO TO ?2
    IF(J,EG,JU) GO TO 11
    GO TO 14
    APYI(1,J)=OZ*OX
    60T052
    APZ(1,J)=0XAOY-AFZ(!,J)
    VP(1,J)=1.PZ(I,J)*JZ
    VF(1, J)=AFZ (1,N)a!z
    APX|(||+1,N)=2,
    APYI(1:JU+1)={1
    AFX!(1|:1,N)=7,
    AFYI(I,JU+1)=0,
    XBL=0,
    X2=0,
    VF(l,J)=VF(I,J)*RF*CPFF/DT
    VP(I,J)=VP(1,J)/59
    AFX!(!,N)=AFX!(I,J)*FK
    AFY!(I,J)=AFY!(I,J)HFK
    AFZ(!,J)=AFZ(!,J)AFK
    CONTIINE.
    FORMAT(1X,2{2,4E)
    FORIAT(IX,AE)
    APXI(IU+1,JU+1)=?,
    APYI(IU+1,NU+{)={,
    AFX!([U+1,NU+1)={,
    AFYI(IU+1,JU+1)=?:
    OO 2?0 I=|U,ILI-1
    DO 2昭J=JU,JL-1
    AFXI(I+1,j+1)=APXI(I,j)
    APY!(I+1,j+1)=APY!(I,J)
    AFXI(!+1,J+1)=AFY!(I,J)
    AFY!(|+1,J+1)=AFY!(I,J)
    APZ (I+I, J+1)=APZ (!1J)
    AFZ(I+1,J+1)=4FZ([l, J)
    VP(1+1,N+1)=VP(1,j)
    VF(I+1,J+I)=VF(I,J)
200
```

```
CONTINIE
\(00210 \quad 1=1,10\)
APXI（1，ル）＝：
\(A F \times 1(1, N)=:\)
```



```
            AFYI(!,JL)=0,
            AFZ(1,JL)明,
            AFZ(1, JL)=,1,
            VP(1,NL)=0,
            VF(I,JL)=O,
210
    CONTINUE
            DO 215 J=i,ju
            APXI([l,J)=0,
            AFXI(IL,J)=(x,
            APYI(IL,J)=0,
            AFYI(IL,J)=0,
            APZ(ll,J)=0,
            AFZ(lL,J)=Q.
            VP(|L,N)=0.
            VF(IL,J)=D,
215 CONTINUE
501 FORMAT(2X,212,2F)
            RETURN
            END
            SUBROUTINE KC(C,KZ)
            OIMENSION VP(7,7),VF(7,7)
            COMMON /SI/ N4,I.d.K
            COMMON /S?/ VP,VF
            GALL HC(KZ,RP,CPP)
            VI=RPaCPP@VP(I,J)
            VREvF(1,J)
            Cev1+V2
            IF(K,EO,N4) C=C/2,
            FORMAT(1 SC',3E)
100
            FORMAT(1 SC1,3:2.4E)
            RETURN
            END
            SURROUTINE K1(C1,11,6)
            OIMENSION APXI(7,7),GFX1(7,7)
            COMMON/S1/ NA,I.jok
            COMMON /S3/ APXI,AFX!,NX
            lF(ll,En,Nx+1) G0 90 60
            IF(II,FQ,2) 60 TO 60
            CALL YH(L,PK)
            AIEAPXI(I|,J)#PK
            AZEAFXI(II,N)
            1F(K,EQ,N4) 00 TO 40
CO...'iPARAFFIN AND FIGLER NODES
            60 T0 65
40
    A1EA1/2,
    AZ = A 2/2.
    GO TO 65
60
6 5
100 FORMAT('SC1',3I2,2E)
101 FORMAT(4E)
    RETURN
    END
    SUBROUTINE K2(C2,JN,L)
    DIMENSIDN APYI(7,7),AFYI(7,7)
    COMMON /SI/ N4,l.d.K
    CDMMON /S4/ APYI,AFYI,NY
    lF(JJ,EQ_NY+1) G0 T0 60
    IF(JJ,EQ,2) GO TO 60
```

C

```
    CALL TH(I,PK)
    A1=APYI(I,JJ)*PK
    A2=AFY!(I,JJ)
    IF(K,EO.N4) GO TO 40
c."....'PARAFFIN AND FIGLER NODES
    G0 T0 65
    40 A1=A1/?.
    A2=42/2.
    60 T0 65
60 A1=0.
    A2=0.
65 C2=A1+L2
100 FORMAT(' SC2',312,2E)
101 FORMAT(4E)
    RETURN
    ENO
    SURROUTINE KZ(C3,KK,L)
    DIMENSI0, APZ(7,7),AFZ(7,7)
    COMMON./S1/ NA,I.J.K
    COMMON/S5/ APZ,AFZ,NZ
    EC=3.
    IF(KK,EQ,NZ&1) GOTO 60
    CALL TH(L,PK)
    A1=APZ(1,J)*PK
    A2=AFZ(I,N)
c".....'PARAFFIN AND FILGER NODES
    G0T065
    A1=0.
    A P=0,
    65 C O = A1+A2
    100 FORMAT{'SC31,312,3E)
    101 FORMAT(4E)
    RETURN
    END
    SUBROUTINE SOLVE (T,JI,J4)
    DIMENSION A(32),B(32),CC(32),D(32),T(32)
    DIMENSION N(32),G(32)
    COMMON /S6/ A,B,CC,D
    J2=
    J3= J4-1
    W(N1)=8(J1)
    G(N1) =O(J1)/W(N1)
    DO 20 i= J2,N4
    xECC(!-1)/W(I-1)
    W(I)=B(I)=A(I)mX
    G(I)=(0(1)-A(!)PG(I-1))/W(!)
20 CONTINUE
    T(N4)=G(14)
    00 30 [= J3,J1,=1
    x=cc(1)/以(1)
    T(I)=G(1)-X*T(I+1)
    FORMAT(/)
    FORMAT(5E)
    RETURN
    END
    SUBROUTINE PHASE(T,KZ,TX,V,TO,DT)
    COMMON/ST/ TM,HF,CPM,DIF,VT
    VPEVADT
    IF(KZ,GT,1) GO TO 20
    IF(T,LT,TM) GO TO 20
```

```
    SUM=T=TO+TX
    IF(SUM&VTACPM/VF,GE,HF) GO TO 12
    TX=SUM
    TETM&DIFOSUM#CPMAVT/VP/HF
    GO TO 20
    T=DIF*TH+(SUH*CPM*VT/VP-HF)/CPM
    KZ=2
    RETURN
    END
    SUBROUTINE TH(L,PK)
    COMMON /S9/ PKS.PKL
    IF(L,GT,1) GO TO 10
    PKEPKS
    GO TO 20
    PK=PKL
    CONTINUE
    RETURN
    END
    SUBROUTINE HC(L,RP,CPP)
    COH.4ON /S10/ RPL,RPS,CPS,CPL
    IF(L,GT,1) GO TO 12
    CPP=CPS
    RF=R的S
    GO TO 14
1 2
1 4
    CPP=CPL
    RETURN
    END
    SUBROUTINE TBN(TB)
    COMMON /S3/ A1,A2,A3,B1,B2,B3,T11,T12,TI
    IF(TI.LE.TII) GO TO 1%
    IF(TI.LE.T!2) GO TO 26
    GO TO 3%
10
20
30
40
```

```
\(S U M=T=T O+T X\)
IF(SUMaVTACPM/VP,GE,HF) GO TO 12
\(T X=S \cup M\)
\(T=T M+D I F O S U M+C P M A V T / V P / H F\)
GO TO 20
KZ=2
RETURN
EIND
SUBROUTINE TH(L,FK)
COMMON /S9/ PKS.PKL
IF(L,GT,1) GO TO 10
PKEPKS
GO TO 20
PK=PKL
CONTINUE
RETURN
END
COHATIN/S10/RPL,RPS,CPS,CPL
IF(L,GT, 1) GO TO 12
\(C P P=C P S\)
GOTO 14
\(R F=R P L\)
\(C P P=C P L\)
RETURN
END
SUBROUTINE TBN(TB)
COMMON /S3/ A1,A2,A3,B1,B2,B3,T11,T12,TI
IF(TI.LE.TII) GO TO 17
IF(TI.LE.T!2) GO TO 26
GO TO 38
\(T B=A 1 A T I+B 1\)
GO TO 40
\(T B=A 24 T+B 2\)
GO TO 40
\(T B=A 34 T 1+B 3\)
CONTINUE
RETURN
ENO
```

