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HIGH RESOLUTION POWER SPECTRA OF DAILY ZURINCH SUNSPOT NUMBERS

SUMMARY

High resolution power spectra of 77 years of daily Zurich sunspot

numbers were computed using various maximum lags and data point intervals

Major harmonic peaks of the 124-month period showed up strongly. Har-
monics of the 27-day solar rotational period were also present on the

spectral plots,

I. TINTRODUCTION

Sunspots were first observed by Galileo in 1610. Through his
newly constructed telescope, Galileo watched the behavior of dark spots
on the solar disk, drew pictures of them, and noted their motion across
the solar disk with daily changes in number. Then, for over two hundred
years there was little interest in sunspot numbers. In 1818, observers
again began counting and recording sunspot numbers, but even then on
an irregular basis. A continuous record was not begun until 1848 when
Rudolf Wolf of the Swiss Federal Observatory in Zurich, Switzerland,
began recording relative sunspot numbers on a daily basis. Wolf
developed the following formula for calculating relative sunspot numbers:

R = k(10g + £)

where R is the relative daily sunspot number, k is a scale factor usually
less than 1.0, g is the number of isolated cluster groups, and f is the
number of individual observable spots on the visible solar disk,

From incomplete records left by previous observers, Wolf was able
to estimate yearly sunspot numbers as far back as 1700 and monthly
values as far back as 1749, The recording of sunspot numbers was con-
tinued after Wolf by Wolfer, Brunner, and Waldmeier., At present, we
have daily Zurich sunspot numbers on a computer tape from January 1,
1890, through Dec., 31, 197L The data used in this analysis, are



the daily, monthly, and smoothed quarterly sunspot numbers are listed
in the literature by Waldmeier [ 1],

Provisional Zurich sunspot numbers are dependent upon observations
at the Zurich Observatory and its stations at LaCarno and Arosa. These
numbers are compiled by M. Waldmeier of the Swiss Federal Observatory in
Zurich and are distributed monthly, At the end of the year, Waldmeier
compares the results of his three observatories with reports sent to
him during the year from other observatories. After a few months of
the new year, Zurich Observatory personnel revise their provisional
values and issue final daily Zurich sunspot numbers for the previous
year.

In 1843, Schwabe noticed an average ll-year period appearing in
sunspot data. Although there have been many sunspot numbers prediction
studies since Schwabe's discovery, few efforts have yielded accurate
long-range predictions. In this eéport, we will examine high resolution

power spectra computed from sunspot data. These results are intended
to be combined with other studies to aid solar activity predictions,

IT. POWER SPECTRAL DENSITY FORMULAS

The power spectral density function P(w) is the Fourier transform
of the autocorrelation function R(7).

o0

P(w) =f R(7) e ¥4, (1)

-00
Since the autocorrelation function R(t) is even,

o0

P(w) = 2f R(T) e ““Tar. (2)

o
We then use the cosine transform, where

o]

P(w) = 2 L/\R('r) cos (wrt) dr. (2a)

(o]




The Fourier transform of a function is the integral of the product
of that function times an exponential, One special case of the Fourier
trangform is power spectra where the transformed function is the auto-
correlation function. Although a statistician would recommend a standard
form and symbol for the autocorrelation function, various symbols and
notations are used in the literature, Here we will use a notation as
used in some computer programs, An autocorrelation is a correlation of
one data point of a series with another data point of the same series
at an interval of time later.

The autocovariance function C(L) is computed and then divided by
the variance to give the normalized autocorrelation function. The auto-
covariance C(L) is

N-L
C(L) =

T ) Gy -G, - P, 3)
n=1

where the mean value x was subtracted from each data point before com-
putation and L = lag number = 0, 1, 2, ..., M<<N, M = maximum number
of lags used beyond which the autocorrelation function is truncated

in the integral summation approximation for the power spectra, n =
data point number =1, 2, 3, ..., N, N = total number of data points
used,

When L = O,
N=0
1 - - 1
CO) =55 2: (x, - X)X g - %) = N 4)
n=1
n
}: (x, = x)2 = variance = g2, (5)
n=1

where the variance is a measure of the variability of the data. Then
the normalized autocorrelation function R(L) is the covariance divided
by the variance;

R(L) = (C:—(@d))- ) (6)



For example, when the lag L = 0O, the normalized autocorrelation is 1:

r(o) = S0 - g, @)

Integrating equation (2a) by the trapezoid summation method, we
obtain the raw power line spectrum P(k):

M-1

P(k) = 2At [R(O) +2 Z R(L) cos (2nLk/2M) + (’-1)kR(M)] > (8
=1

where k is the harmonic number,

Since the numerical procedures and data both contain errors, the
line spectra estimates are averaged over a few points, using the follow-
ing Hanning method to give the smooth spectra.

For the first point of line spectra, we use the simple average of
the first two points,

P(0) = .5 P(0) + .5 P(1). (9)

For the non-end points of line spectra, we use a simple three-point
average with end points given half weight.

P(k) = .25 P(k - 1) + .5 P(k) + .25 (k + 1), (10)
where k =1, 2, ..., M -1,

For the last point of line spectra, we use the simple average of
the last two points,

PQM) = .5 P(M - 1) + .5 P(M). (11)




III. POWER SPECTRA PERIOD

The x-axis on the power spectra plots was originally in units of
harmonic number k which was then converted to period by the following
equation:

t
period = fm—f— , (12)

where M is the maximum number of lags used, and At is the time interval
between data points. Increasing M increases the length of the auto-
correlation function used and also increases the resolution of the
lower frequencies,

IV. POWER SPECTRA INTERPRETATION

Care must be exercised in the interpretation of the power spectra
results. Present methods of numerical evaluation may produce "false"
peaks that are not really present., For this reason, power spectra are
usually averaged over a few points and smoothed, Even then, false peaks
may still be present., Only when the amplitude exceeds the noise level
of both the data and the numerical evaluation procedure will a peak be
significant,

Sometimes a three-point zigzag of the power spectra may only indicate
numerical errors in the program methods or random errors in the data. A
significant peak, usually requires more than three or four points over
which the spectra increases and decreases.

V. LAGS USED

Doubling the maximum number of lags used doubles the number of
harmonics considered with a new set of harmonic numbers between the
harmonic numbers of the original undoubled set. As a rule of thumb,
we used a maximum lag number equal to about 10 percent of the total
number of points used. The machine time increases rapidly above 10
percent, To find the low frequencies, we used many points and lags.
When the machine time increased significantly, we increased our data
interval, skipping over points to conserve machine time.



VI. RESULTS

1., Monthly Power Spectra Results

First, we will look at power spectra of monthly Zurich sunspot
numbers over a long time interval of over 200 years, and note long-
period variations, To accurately compute these long-period variationms,
we need a long time sample, Figure lashows a log-log plot of the smooth
normalized power spectra of monthly Zurich sunspot numbers from January
1749 through December 1967 using 500 lags. Notice the large spectral
peak near 125 months, the second harmonic peak at 67 months, and the
fifth harmonic peak near 26 months. These harmonic peaks of the so-
called ll-year cycle may be due to the nonsinusoidal shape of most solar
cycles. The rapid rise and slow decay can be Fourier curve-fit using a
fundamental plus a few odd harmonics. From other studies on Fourier
curve-fits of solar cycles, there are some indications that the harmonic
periods of the fundamental actually exist at least once during the time
interval under consideration. Although it is difficult to detect any
26-month period in the data listings, we can pick the extreme monthly
value of a solar cycle and also see a large monthly value off by itself
above the smooth data about 26 months before the maximum and about 26
and 52 months after the maximum,

Figure 1b shows the raw (unsmoothed) normalized power spectra of
monthly Zurich sunspot numbers from January 1749 through December 1967
using 500 lags with At = 1 month, Figure 1b shows a major peak around
125 months as in cycles 15, 16, and 17. Figure 1b also shows an indica-
tion of a peak near 200 months, Although none of the observed cycles
were that long, cycle 4 had a fundamental period near 158 months, Figure
1b indicates a hint of a peak near 100 months, Cycles 2 and 3 had a
fundamental period somewhere near 100 and 109 months, respectively.

Figure 2 shows the smooth normalized power spectra of daily Zurich
sunspot numbers from 1 January 1890 through 29 December 1967 using 486
lags with At = 27 days. The main peak is near 3749 days, which is
equal to about 122.9 months. Again, we have the first few harmonics of
the main peak to show up. The second and third harmonics of 3749 days
are 1874 days and 1249 days, respectively.

Figure 3 shows the smooth normalized power spectra of daily Zurich
sunspot numbers from 1 January 1890 through 8 December 1967 using 162
lags with At = 6 days. Notice the main solar rotation period near
27 .38 days with a secondary peak at 31,86 days, and also the appearance
of a period near 42 and 97 days. We see that (31.86)(3) = 95.58 and
that this 97-day peak could possibly be just a recurrence of an active
region three solar rotations later. The existence or nonexistence of a

29-day period in solar activity data has been discussed by Shapiro and
Ward [ 275 Bell and Defouw [3],ia8d others.
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Figure 4 shows the smooth normalized power spectra of daily
Zurich sunspot numbers from 1 January 1890 through 8 December 1967
using 486 lags with the data interval At = 6 days. Figure 4 contains
the same input data as Figure 3 except that the maximum number of lags
used is increased from 162 lags to 486 lags with a data interval At
remaining at 6 days. With this increase in resolution, we notice a
period at 253.6 days. Note the band of power spectra peaks between
25 through 30 days with a major peak near 27.5 days. The 32-day peak
may be due to the solar rotation of active regions at high solar lati-
tudes near the beginning of a solar cycle with the 25-day peaks due to
those regions at low latitudes near the end of a solar cycle. In fig-
ure 4, the 29-day peak does not show up clearly as a substantial peak
by itself,

Figure 5a shows the smooth normalized power spectra of daily
Zurich sunspot numbers from 1 March 1954 through 1 March 1966 using
500 lags with data interval At = 1 day, which includes cycle 19 with
part of the beginning of cycle 20. Notice the twin peaks near 31,25
and 27.77 days and the broad flat peak near 90.9 days, and at 41,6 days.
In figure 3a, because of the low resolution, we need to either increase
the lag number or increase At to resolve the 90.9-day peak. Notice the
13,.7-day period near the second harmonic of the fundamental,

Figure 5b has the same input data as figure 5a except the data
interval has been increased from At = 1 to At = 2. By increasing this
data interval, we were able to resolve the 90.9-day period shown in
figure 5a. We increased the data interval At from 1 to 2 using every
other point to conserve computer time, We now notice a 95.23-day peak,
with a 125-day peak on the left of it and a 74.07 day peak on the right.
Examining the computer printout, we noticed a peak at k = 231, where
the period is

0
b = 2(MI)<At - 205 0%(2) = 8.65 days.

23

When we assume that this period of 8.65 days is the third harmonic of
the main rotational period during this time sample, the third harmonic
shows up as a harmonic of the solar rotation frequency at a maximum of
solar activity, that is, at 25.95/3 = 8.65 days.

In some of the previous figures, we saw the long period variations
from spectra analysis of long-time series samples. To get the best
resolution of the lower frequencies, we had to increase the number of
lags, When we used many lags over a long time sample, the computer
time required began to increase rapidly,



Therefore, to save computer time, we skipped over a number of
points in the sample using a data interval At = 2, 6, and 27 days., To
obtain the high frequencies or short periods shown on the right-hand
side of the log-log graphs in the next figure, we need only take a short
time interval sample and use a moderate number of lags of 10, 20, or 30
percent of the total number of points used.

Since, at high frequencies, we are using relatively few points, we
can afford to use a greater percentage of a lag number (that is, a
greater percentage of the total number of points) without increasing the
machine time significantly. Figure 6 shows the smooth normalized power
spectra of daily Zurich sunspot numbers from 19 January 1957 through
11 July 1962 using 200 lags. The main sunspot rotation period was
about 28.57 days. On the right side of this peak, we note the second
harmonic of 13.79 days. This 27/2-day period could be interpreted as
(1) a harmonic of the fundamental rotational period, (2) a tendency
for two sunspot groups to exist simultaneously, separated by 180 degrees
of solar longitude, or (3) possible independent 13.79-day period with
a phase shift from the main 28,57-day peak.

2., Interpretation of Results

High resolution power spectra of daily Zurich sunspot numbers
have a major peak at 3749 days and at the second, third, fourth, fifth,
and sixth harmonics. There is a possibility that these periods may not
be due to independent sine wave frequencies, but rather to the non-
sinusoidal wave shape of sunspot cycles. The periods centered around
eleven years are non-stationary and usually change gradually from cycle
to cycle. As expected, when we look at the periods centered around
27 days, we see that time series samples at the beginning of a solar
cycle (when the active centers are at high latitudes) have long rota-
tion periods of 32 days, or more than when the active centers are at
low latitudes at the end of a cycle where the rotational periods are
less than 27 days. Power spectra of the rotational periods also show
the presence of harmonics of the solar rotational period.




CONCLUSION

Although constant periodic variations in solar activity were not
found, it appears that there is some evidence of systematic behavior
or modulation in the solar active regions. Of interest are the twin
peaks noted near 27.38 days and 31.86 days. Also of possible interest
is the peak around 95 days or 97.2 days. Of course, one possible explanation
of the 97.2 day period is that it may be due to a rotation peristence
where a new highly active region on the sun may continue to exist and

reappear over 3 solar rotations.
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