# NTIS AK \#17.75 

# Study of <br> V/STOL Aircraft Implementation 

Volume II: Appendices

Prepared by
A. ANDROSKY, S. C. MILLER, J. A. NETS, W. J PORTENIER, and H. M. WEBB

Air Transportation Group

November 1972

Prepared for ADVANCED CONCEPTS AND MISSIONS DIVISTG
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Moffer Field, California 94035

Contract No. NAS 2.6473


Civil Programs Division
THE AEROSPACE CORPORATION


## STUDY OF

V/STOL AIRCRAFT IMPLEMENTATION
VOLUME II: APPENDICES

Prepared by
A. Androsky, S. C. Miller, J. A. Neiss, W. J. Portenier and H. M. Webb

Air Transportation Group
Civil Programs Division
THE AEROSPACE CORPORATION

November 1972

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

Prepared under Contract No. NAS 2-6473 by THE AEROSPACE CORPORATION

El Segundo, California

Prepared for Advanced Concepts and Missions Division NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Moffett Field, California
1
1

## PRECEDING PAGE BLANK NOT FLLMED

## STUDY OF <br> V/STOL AIRCRAFT IMPLEMENTATION VOLUME II: APPENDICES



Preceding page blank

## PRECEDING PAGE BLANK NOT FILMMED

## FOREWORD

This report on the study of V/STOL aircraft implementation is published in two volumes. Volume I presents a summary of the findings in eight areas:

- Introduction
- Summary of Study Results
- Short Haul Transportation Needs
- Aircraft Technology
- Aircraft Production Estimates
- Airport and Air Traffic Control Requirements
- Implementation Costs and Funding
- Implementation Action

The present document, Volume II, is an appendix containing the essential supporting reference data and methodology.

APPENDIX A
SHORT HAUL AIR TRANSPORTATION REQUIREMENTS
$A-i, 1$

## CONTENTS

A. 1 CHARACTERISTICS OF THE EXISTING HIGH DENSITY SHORT HAUL MARKET. ..... A-1
A. 2 PREDICTION OF THE HIGH DENSITY SHORT HAUL MARKET IN 1980 AND 1990 ..... A-6
REFERENCES ..... A-63
FIGURES
A-1. Distribution of High Density O\&D Passengers by Distance . ..... A-11
A-2. Distribution of High Density City Pairs by Distance ..... A- 12
A-3. Percent of Total Air O\&D Passengers in FY 1970 Versus Distance Between City Pairs ..... A-13
A-4. U. S. Total Seats Available by Air Carrier for all 87 High Density Short Haul City Pairs ..... A-14
A. 5 U. S. Total Seats Available by Aircraft for all 87 High Density Short Haul City Pairs ..... A-15
A-6. Total Direct Operating Cost by Stage Length ..... A-16
A-7. Indirect Operating Expense for Aircraft Traffic \& Service Expense vs Number of Airports Served. ..... A-17
A-8. Intercity Travel Demand Model Application. ..... A- 18
A-9. Air Modal Split - West Region. ..... A-19
A-10. Air Modal Split - Northeast Region ..... A -20
A-11. Air Modal Split - South Region ..... A. 21
A-12. Air Modal Split - North Central Region ..... A. 22
A-13. Air Modal Splits ..... A-23
A-14. Comparison of VTOL \& STOL Market Shares, Los Angeles-San Francisco. ..... A-24

FIGURES (Continued)
A-15. Comparison of VTOL \& STOL Market Shares, Chicago-ClevelandA. 25
A-16. Comparison of VTOL \& STOL Market Shãres, Chicago-Detroit

## TABLES

A-1. United States Domestic Air Passengers O\&D for 1970. . A-27
A-2. United States Domestic City Pair Air Passengers O\&D for 1970, for all City Pairs Less Than 500 Statute Miles Apart (Arranged in Descending Order of Passenger Traffic). .

A-28
A-3. 1970 Geographical Region Summary of United States Domestic O\&D City Pair Air Passengers for all City Pairs with 100, 000 or Greater O\&D Air Passengers and City Pairs Separated Less than 500 Statute Miles

A-4. Geographical Region Tabulation of United States Domestic City Pair 100, 000 or Greater Air Passengers Separated Less than 500 Statute Miles

A-5. United States Domestic City Pair Air Passengers, Origin \& Destination for 1970, for All City Pairs Less than 500 Statute Miles Apart with 100, 000 or More Passengers (City Pairs Arranged in Ascending Order of Non-Stop Mileage.

A-6. Mix and Type of Aircraft and Air Carrier in Service by Seats Available on All 87 High Density Short Haul Routes (by Air Hub for Cities with Two or More High Density Short Haul Routes) . . . . . . . . . . . . . . . . .

A-7. Comparison of Operating, Traffic, and Financial Statistics for Airlines with Approximately 5 Million Passengers in Year Ending 31 December 1970. . . . . . . . . .

## TABLES (Continued)

A-8. Comparison of Operating Expenses for Airlines with Approximately 5 Million Passengers in Year Ending 31 December 1970. ..... A. 54
A-9. Indirect Operating Costs for Single Class Service. ..... A- 55
A-10. Indirect Operating Cost (IOC) Comparison ..... A- 56
A-11. Initial Indirect Operating Cost Analysis, PSA-CY 1970. ..... A-57
A-12. Revised Indirect Operating Cost Analysis per Departure IOC Derivation ..... A. 58
A-13. Trunk System Load Factors ..... A-59
A-14. Populations. ..... A- 60
A-15. Predicted Travel Demand ..... A. 61

## APPENDIX A

## SHORT HAUL AIR TRANSPORTATION REQUIREMENTS

This appendix comprises two sections, the first characterizing the existing high density short haul market and the second the predicted market in 1980 and 1990. Each section contains supporting discussion, detailed data and figures judged to be too voluminous for inclusion in Volume $I$, the summary report.

## A. 1 CHARACTERISTICS OF THE EXISTING HIGH DENSITY

SHORT HAUL MARKET
a. Existing Travel Demand

The high density short haul market was defined as one in which air traffic between all city pairs in 1970 satisfied two criteria: travel by 100,000 or more annual origin and destination ( $O \& D$ ) air passengers and intercity air distances of less than 500 miles. In FY 1970 there were 193 city pairs with 100,000 or more $O \& D$ passengers. The percent distribution of passengers traveling between these city pairs as a function of trip distance is presented in Figure A-1. As shown, almost half ( $48 \%$ ) of the O\&D passengers travel less than 500 miles, while an additional $21 \%$ travel 500 to 1,000 miles. Figure A-2, which presents the distribution of city pairs as a function of distance, indicates there are 87 city pairs with intercity distances of less than 500 miles and 44 city pairs with distances of 500 to 1,000 miles between them. The 87 city pairs less than 500 miles apart account for $45 \%$ of all high density routes and are well representative of all geographical regions of the United States. Figure A-3, which is a plot of the percent of total O\&D passengers in 50 mile increments, illustrates that the percent of $O \& D$ passengers diminishes rapidly for routes beyond 500 miles.

Table A-1 summarizes the high density short haul travel and total domestic air travel data by type of carrier while Table A-2 shows the FY 1970
ranking of the 87 city pairs that meet the high density short haul market definition. Table A-3 tabulates and ranks this high density short haul travel by geographical region, Table A-4 lists each of the city pairs by geographical region and, finally, Table A-5 ranks the 87 city pairs by intercity air trip distance.

To understand the operations in the existing high density short haul market an examination was made of each of the air hubs (cities with two or more high density short haul routes) to determine the mix and type of air carriers and the mix and type of aircraft in service on a seat available basis. This data is given (with the hubs listed alphabetically) in Table A-6 and the hub summary is given in Figures A-4 and A-5.

## b. Comparison of Airline Operating Statistics and Costs

Pacific Southwest Airlines (PSA) is a recognized efficiently run California intrastate air carrier operating exclusively in the high density short haul market. It was selected as a convenient standard for comparing operating data with other domestic airlines carrying a similar number of passengers. In 1970, PSA--and three other airlines, Allegheny, Braniff and Continental-carried approximately 5 million passengers.

A tabulation was made of the operating, traffic and financial statistics for the four airlines. The PSA data was obtained from the PSA Financial Statements for the 12 months ending December 31, 1970 A-2 and from the PSA Annual Stockholder Report for 1970.A-3 The information for the other three airlines was obtained from the CAB Air Carrier Traffic Statistics for the 12 months ending December 31, 1970, A-4 the CAB Air Carrier Financial Statistics for the 12 months ending December 31, 1970A-5 and the Annual Stockholders Report for Braniff, Continental and Allegheny for 1970.A-6,7,8 These statistics are discussed in the following paragraphs.

Operating Revenue
Line 13 of Table A-7 lists the fare per revenue passenger mile for each of the airlines. The comparison shows that PSA, operating at fare
yields from $20 \%$ to $55 \%$ less than the other airlines, was able to earn an operating profit of $5.6 \%$ of total operating revenue. The review of the operating expenses that follows will identify the cost differentials that allow PSA to operate profitably at this lower fare per revenue passenger mile.
(2) . Direct Operating Expense

The PSA direct operating cost matches the direct operating cost (for PSA's average seating capacity and average stage length) calculated using the ATA direct cost formula. A-1 It was found, however, that the ATA direct cost formula predicts a higher direct cost for the short stage lengths (Allegheny) and a lower cost for the longer stage lengths (Braniff and Continental) than the airline's actual direct cost. The reason for this cost difference ( $10 \%$ to $30 \%$ ) was not identified.

Line 26 of Table A-7 lists the total direct operating expense expressed in percent of total operating revenue. This shows PSA with the highest total direct expense of the four airlines, $53.9 \%$ of total operating revenue. An examination of the direct expense items on lines 22, 23, 24 and 25 of Table A-7 shows that PSA flight operations expense is equal to or lower than that of the other three airlines, the PSA maintenance direct expense is about equal to the maintenance direct expense of the other airlines and the PSA maintenance indirect expense is less than that of the other airlines. However, depreciation of flight equipment is a much higher expense for PSA. A review of reference material $A-3,6,7,8$ reveals that PSA has the newest and most modern jet fleet which requires a larger depreciation expense.

Airlines sometimes express the direct operating cost in cents per available seat mile versus stage length in miles to account for large cost items such as fuel and crew salaries which vary both as a function of distance flown and aircraft seating capacity. Therefore, the cost for each airline in cents per available seat mile (Line 7, Table A-8) first was normalized to reflect a single class of service with PSA density seating and then was plotted (Figure A-6) against the average stage length flown (from

Line 11 Table A-7). The data points from the four airlines plot as a smooth curve (Figure A-6) showing that the PSA direct operating cost is consistent with the direct operating costs of the other airlines.

## Indirect Operating Expense

The total indirect operating expense for each of the four airlines is given on Line 33, Table A-7. The PSA indirect operating expense is $33 \%$ of the total operating revenue compared to $43-45 \%$ for each of the other airlines. Table A-8, Lines 8 through 12 , itemizes the indirect operating expenses for each of the airlines in terms of cost in cents per available seat mile, cost in cents per revenue passenger mile, and cost in dollars per pas senger. Because each airline offers different classes of service and consequently different seating densities the cost information in Table A-7 requires normalization to a standard seating configuration. After normalization, to a single class of service using PSA coach density seating, the indirect cost is presented in Table A-9 in two forms: cost in cents per available seat mile and cost in cents per revenue passenger mile. An item by item examination of these costs revealed the following:

- Depreciation, Other: (Line 6, Table A-9) shows consistency at $\approx .032$ cents / available seat mile.
- General and Administrative: (Line 5, Table A-9) shows consistency at $\approx .30$ cents/revenue passenger mile.
- Promotion and Sales: (Line 4, Table A-9) shows that Allegheny, Braniff and Continental agree at $\approx 30$ cents/available seat mile while PSA has a cost of . 22 cents /available seat mile. This can be explained as the difference in promotional sales and ticket counter costs between a market spread over many cities (average 39) over a large geographical area involving several states and a market that is dense with only 8 cities all within one state.
- Passenger Service: (Line 2, Table A-9) shows that Allegheny, Braniff and Continental costs agree at $\approx .57$ cents/revenue pas senger mile while PSA spends only . 35 cents. The cost of serving meals could account for this cost differential. PSA is the only airline of the four that does not serve meals.
o Aircraft Traffic and Service: (Line 3, Table A-9) shows a correlation when the costs are plotted against the number of airports served by each airline. This data is presented in Figure A-7.

These indirect cost parameters were then combined giving the following empirical formula for predicting the total indirect operating expense.

$$
\text { IOC }=(.0063+.0022 \text { with meals }) \times R P M+(.0054+.008 F+C) \times \text { ASM }
$$

where:
IOC: Indirect Cost in Dollars/One-Way All Coach Jet Trip
RPM: Revenue Passenger Miles = (Number of Passengers) (Stage Length)
F: $\quad 1$ If not Dense Commuter Market 0 Otherwise
C: Cost as a Function of Number of Airports in System; Value Read from Figure A-7
ASM: Available Seat Miles $=$ (Aircraft Capacity) (Stage Length)
Table A-10 is a comparison of the indirect operating cost per average trip for PSA, Allegheny, Braniff and Continental. The IOCs were calculated by: the initial IOC study based on the 1970 PSA data (Table A-11), the empirical method developed in the preceding paragraph, and the airline actual IOCs. Both the initial IOC and the empirical IOC agree for the average PSA trip. However, the initial IOCs are too high for stage lengths shorter than the PSA average stage lengths. Hence, the initial IOC method does not reflect sufficiently the variation of indirect operating cost with stage length. An examination of the Aerospace Cost Allocation in the initial IOC analysis (Table A-11) shows that all cost items circled with the broken lines could be reapportioned to available seat miles and to revenue passenger miles to reflect the variation of indirect operating costs with stage length. In addition, most of the indirect cost items do not appear sensitive to variations in either revenue or load factor. This suggests that the indirect costs should be apportioned to the system capacity (available seat miles) with a smaller portion assigned to load factor (revenue passenger miles). The indirect cost formula was revised with the new cost allocations shown in Table A-12. The last line of Table A-10 lists the revised IOCs calculated for the average stage lengths and average seating capacities of each of the
four airlines. This revised IOC formula now gives good agreement as a function of airline stage length.
A. 2 PREDICTION OF THE HIGH DENSITY SHORT HAUL MARKET IN 1980 AND 1990

The methodology used to predict the short haul demand in 1980 and 1990 is described in the main body of the report. This section includes detailed discussions of the models and data used in the prediction of demand.
a. The Intercity Travel Demand Model

The Intercity Travel Demand Model previously developed by Aerospace ${ }^{\text {A-9 }}$ was used to predict total travel demand because it has proved to be more accurate than the conventional gravity model.

Actual travel demand for cities in the California and Midwest Corridors was plotted as a function of the associated population products. These data are indicated in Figure A-8. According to the conventional gravity model approach, for any given intercity distance, the slope of the line connecting the city pair data should be a constant on a log-log plot. It is seen from the data that the slope is not constant, but decreases as the population product and the total number of daily person trips increase. This is quite reasonable in that, as cities grow, the services available to any resident in his local area tend to increase, and thus his need to travel to a distant city to satisfy his needs is lessened, resulting in a reduced rate of growth in intercity trips.

It was determined that the slope of the data segments is a linear function of the total daily person trips and, using this relationship, a series of demand curves was constructed. These curves are shown together and with the general equation for the curves in Figure A-8.

Using the calibration constants shown, the fit of the Aerospace model to the California data was considerably better than that of the conventional gravity model, with errors generally under 10 percent for any city pair. Unlike the gravity model, the Aerospace model requires a single survey
data point for each city pair which effectively takes into account nonpopulation travel demand factors for that pair. City pairs which generate a large demand would be expected to have a calibration point on one of the upper curves while those with relatively less attractiveness would yield a calibration point on one of the lower curves.

Using the Aerospace model, potential demand for a future time period can be calculated from only the city pair population product and demand for a given year, and the forecast population product for the desired year. Total travel demand for 1980 and 1990 was calculated in this way for each of the 87 city pairs comprising the high density short haul market.
b. Prediction of Modal Splits
(1) Current Air Modal Splits

Current air modal splits as a function of intercity distances are presented in Figures A-9 to A-12 for each of the four standard census regions. These were derived from the 1967 Census of Transportation data tape and used to calculate the current air modal split for each of the 87 city pairs in the short haul market.
(2) Load Factor Considerations

Recent air carrier and CAB statistics were used to determine the load factors obtainable in competition and non-competition markets. The domestic trunks which typically serve long haul high density markets had a five year adjusted load factor of $55 \%$ in 1969 as shown in Table A-13. PSA achieved a system load factor of $50.2 \%$ in 1970 , when overcapacity existed throughout the airline industry. Taken together, these facts indicate that a $55 \%$ load factor is both reasonable and achievable in a short haul high density market. The load factor achievable in a non-competition market was determined by considering the 1967 load factor of $62 \%$ experienced on routes served by one carrier. Assuming optimum scheduling, a $65 \%$ load factor was chosen as characteristic of the non-competition market.

Potential Air Modal Split Growth
Minimum and maximum short haul markets in 1980 and 1990 were estimated based on potential air passenger capture (air modal split) possible through improved air service. The minimum passenger growth case is derived from the Pacific Southwest Region (California Corridor), one of the regions in the U.S. that currently has excellent short haul air service. This region has many air service paths between cities, high frequency of service, high density aircraft seating, and low existing air fares. Thus, it will be more difficult to offer an improved service that can increase the percent of the total travel demand that will travel by air. The North Central Region (Midwest Triangle) was chosen to be indicative of a market with maximum growth potential. This region has few service paths between cities, low density aircraft seating and relatively high (CAB) fare levels. Here, there is an opportunity to select more convenient airport locations, add service paths and increase seating density so as reduce fares and create a large increase in air passenger demand.

In addition, both types of market growth (minimum and maximum) were examined to determine the impact on air passenger demand ff fares were established to reflect the costs of operating at either the $55 \%$ or $65 \%$ average passenger load factor noted above as being representative of competitive and non-competitive markets. The $55 \%$ load factor is representative of two or more airlines operating in competition on a route, while the $65 \%$ load factor is representative of a single airline operating on a route (non-competition market).

The range of air modal splits resulting from the se four types of short haul air market growth is shown in Figure A-13. Curve (A) represents the maximum potential air passenger demand created by a maximum growth market achieved with the lower fare obtained by operating at a $65 \%$ (noncompetitive) load factor. The next highest demand, represented by curve (B), is again that in a maximum growth market with the airlines operating at a higher fare based on the increase in costs associated with operating at a $55 \%$
(competitive) load factor. Curves (C) and (D) represent the minimum growth market air passenger demand again obtained by utilizing fare levels based on costs of operating at $55 \%$ and $65 \%$ load factors, respectively.

## (4) Potential V/STOL Demand

Table A-14 contains the current and predicted populations for the cities comprising the 87 city pairs. The predicted travel demand is presented in Table A-15 for all modes of transportation and for air service for each of the city pairs.

V/STOL Market Shares in 1990
A comparison was made of VTOL and STOL market shares for three additional city pairs simulated by the modal split program. The market shares for each of the intercity modes of transportation (air, bus and rail, auto) are shown for Los Angeles-San Francisco, Chicago-Cleveland, and Chicago-Detroit in Figures A-14, A-15 and A-16, respectively.

The left-hand side of Figure A-14 shows the calibration data for Los Angeles-San Francisco for 1970 where an existing 13 service path CTOL system charges a fare of $\$ 16.50$. The figure shows that $42 \%$ of the travel is by air, $3 \%$ by bus and rail, and $55 \%$ by auto.

The center of Figure A-14 illustrates the Los Angeles-San Francisco percentages of travel by each travel mode in 1980 with the addition of a sixpath non-CBD STOL service. The CTOL fare remains $\$ 16.50$ (dotted line) while the STOL fare is varied between $\$ 14$ and $\$ 22$. At a fare of $\$ 22$, STOL service captures only $13 \%$ of the total travel demand while at a fare of $\$ 14$ it captures $47 \%$. At the lower fare, most of the additional travel demand is captured from the CTOL service.

The right-hand side of Figure A-14 depicts the Los Angeles-San Francisco travel in 1990 with the CTOL and STOL service the same as in 1980 but with the addition of a single path CBD to CBD VTOL system. With STOL and CTOL fares fixed at $\$ 16.50$ the VTOL fare was varied. At a fare of $\$ 22$,

VTOL captures only $4 \%$ of the total travel demand while at a fare of $\$ 16.50$ it captures $18 \%$ of the total demand leaving $8 \%$ of the travel by CTOL, $22 \%$ by STOL, $50 \%$ by car and the balance ( $3 \%$ ) by bus and rail.

Figures A-15 and A-16 show the same analysis for Chicago-Cleveland and Chicago-Detroit.


Figure A-1. Distribution of High Density O\&D Passengers by Distance


Figure A-2. Distribution of High Density City Pairs by Distance


Figure A-3. Percent of Total O\&D Passengers in FY 1970 Versus Distance Between City Pairs


Figure A-4. United States Total Seats Available by Air Carrier for all 87 High Density


Figure A-5. United States Total Seats Available by Aircraft for all 87 High Density Short Haul City Pairs


Figure A-6. Total Direct Operating Cost vs Stage Length
A-16


Figure A-7. Indirect Operating Expense for Aircraft Traffic \& Service Expense vs Number of Airports Served

- UNLIKE GRAVITY MODEL REQUIRES SINGLE SURVEY DATA POINT FOR EACH CITY-PAIR INVESTIGATED
- all non-population travel demand factors ASSUMED TO BE ACCOUNTED FOR IN SURVEY DATA POINT
- SUBSEQUENT CHANGES IN TRAVEL DEMAND RELATIVE TO SURVEY DATA POINT, RELATE TO POPULATION GROWTH
$T_{1}=\left[C\left(\log \left(P P_{1}\right)-\log \left(P P_{0}\right)\right)+T_{0}^{K}\right]^{1 / K}$
WHERE: THE CALIBRATION CONSTANTS
AND
$C=15.3417$ AND $K=0.328$
$\mathrm{PP}_{0}=$ SURVE PDATA POINT POPULATION PRODUCT
$T_{0}=$ SURVEY DATA POINT
PP $_{1}$ - PROJECTED POPULATION
PRODUCT FOR YEAR OF INTEREST
$\mathrm{T}_{1}=$ DERIVED DAILY PERSON TRIPS FOR YEAR OF INTEREST


Figure A-8 Intercity Travel Demand Model Application


Figure A-9. Air Modal Split - West Region


Figure A-10. Air Modal Split - Northeast Region


Figure A-l1. Air Modal Split - South Region


Figure A-12. Air Modal Split - North Central Region


Figure A-13. Air Modal Splits


Figure A-14. Comparison of VTOL and STOL Market Shares, Los Angeles - San Francisco


Figure A-15 Comparison of VTOL and STOL Market Shares, Chicago-Cleveland


Figure A-16. Comparison of VTOL and STOL Market Shares, Chicago-Detroit

Table A-1. United States Domestic Air Passengers, Origin \& Destination for FY 1970

| CAB Trunk Plus Local Air Passengers, |
| :--- | :--- |
| Unduplicated Origin \& Destination |
| UAB Commuter Air Carriers Air Passengers, |
| Unduplicated Origin \& Destination 2,4 |$\quad 110,708,000$

1. Origin-Destination Survey of Airline Passenger Traffic, Domestic, 2nd Quarter of 1970, Volumes III-2-1 through III-2-7, Compiled by Civil Aeronautics Board, Published by the Air Transport Association of America.
2. Commuter Air Carrier Traffic Year Ended December 31, 1970, Civil Aeronautics Board, September 1971.
3. California Public Utility Commission Reports for 1970.
4. Official Airline Guides for 1970.

Table A-2. United States Domestic City Pair Air Passengers O\&D for 1970, for all City Pairs Less Than 500 Statute Miles Apart (Arranged in Descending Order of Passenger Traffic)

| $\begin{gathered} \text { City Pair } \\ \text { Rank } \\ \hline \end{gathered}$ | $\begin{gathered} \frac{\text { City Pairs }}{} \\ \text { (Less Than } 500 \text { Miles Apart) } \\ \hline \end{gathered}$ | Non-Stop Mileage | Total Air Passengers/ Y r <br> Origin \& Destination |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Trunk \& Local | Commuter | Commuter | Total |
| 1 | Los Angeles Metro, Ca. -San Francisco Metro, Ca. | 354 | 1,023,050 |  | 4,039,713 | 5, 062, 763 |
|  | A. Los Angeles, Ca. -San Francisco, Ca. |  | 1,015,150 |  | 1,005,880 | 2,021,030 |
|  | B. Los Angeles, Ca.-Oakland, Ca. |  | 96,080 |  | 638,513 | 734,593 |
|  | C. Los Angeles, Ca. -San Jose, Ca. |  | 27,900 |  | 621,958 | 649,858 |
|  | D. Burbank, Ca.-San Francisco, Ca. |  | 280 |  | 396,598 | 396,878 |
|  | E. Santa Ana, Ca.-San Francisco, Ca. |  | 100 |  | 274,617 | 274,717 |
|  | F. Burbank, Ca. -San Jose, Ca. |  | 30 |  | 248, 538 | 248, 768 |
|  | G. Ontario, Ca.-San Francisco, Ca. |  | 60,330 |  | 157,153 | 217,483 |
|  | H. Burbank, Ca. -Oakland, Ca. |  | -- |  | 204,983 | 205,109 |
| $\begin{aligned} & p \\ & p \\ & \sim \\ & \infty \end{aligned}$ | I. Santa Ana, Ca.-San Jose, Ca. |  | 150 |  | 186,612 | 186,762 |
|  | J. Santa Ana, Ca.-Oakland, Ca. |  | -- |  | 145, 268 | 145, 268 |
|  | K. Ontario, Ca. -San Jose, Ca. |  | 110 |  | 84,221 | 84,331 |
|  | L. Ontario, Ca. -Oakland, Ca. |  | 2,070 |  | 71,553 | 73,623 |
|  | M. Long Beach, Ca.-San Francisco, Ca. |  | 61,350 |  | 3,137 | 64,487 |
|  | N. Long Beach, Ca. -Oakland, Ca. |  | 10 |  | -- | 10 |
| 2 | Boston, Mass. - New York, N. Y./Newark, N. J. | 190 | 2,201,880 | 9,150 |  | 2,211,030 |
| 3 | New York, N. Y./Newark, N. J.-Washington, D. C. | 216 | 1,768,770 | 24,961 |  | 1,793,731 |
| 4 | Los Angeles Metro, Ca.-San Diego Metro, Ca. | 102 | 162,480 |  | 778, 085 | 940,565 |
|  | A. San Diego, Ca. - Los Angeles, Ca . |  | 160,420 |  | 578, 246 | 738,686 |
|  | B. San Diego, Ca. -Burbank, Ca. |  | -- |  | 182,347 | 182,347 |
|  | C. San Diego, Ca. -Ontario, Ca. |  | 2,610 |  | 17,369 | 19,979 |
|  | D. San Diego, Ca. -Long Beach, Ca. |  | 8,500 |  | 123 | 8,623 |
|  | E. San Diego, Ca.-Santa Ana, Ca. |  | 1,750 |  | -- | 1,750 |

## Table A-2 (Continued)

|  | $\begin{aligned} & \text { City Pair } \\ & \text { Rank } \\ & \hline \end{aligned}$ | City Pairs <br> (Less Than 500 Miles Apart) | $\begin{aligned} & \text { Non-Stop } \\ & \text { Mileage } \\ & \hline \end{aligned}$ | Total Air Passenger/Yr Origin \& Destination |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { CAB } \\ \text { Trunk \& Local } \end{gathered}$ | $\begin{gathered} \text { CAB } \\ \text { Commuter } \end{gathered}$ | $\begin{gathered} \text { PUC } \\ \text { Commuter } \end{gathered}$ | Total |
|  | 5 | Las Vegas, Nev, -Los Angeles Metro, Ca. | 226 | 880, 218 |  |  | 880,218 |
|  |  | A. Las Vegas, Nev. -Los Angeles, Ca. |  | 653,338 |  | -- | 653.338 |
|  |  | B. Las Vegas, Nev. -Burbank, Ca. |  | 90,850 |  | -- | 90,850 |
|  |  | C. Lae Vegas, Nev. -Santa Ana, Ca. |  | 77,820 |  | -- | 77,820 |
|  |  | D. Las Vegas, Nev. -Ontario, Ca. |  | 46,560 |  | -- | 46,560 |
|  |  | E. Las Vegas, Nev. -Long Beach, Ca. |  | 11,650 |  |  | 11,650 |
|  | $\checkmark$ | Detroit \& Ann Arbor, Mich. -New York, N. Y./Newark, N. J. | 489 | 858,280 |  |  | 858, 280 |
|  | 7 | San Diego Metro, Cal. -San Francisco Metro, Cal. | 456 | 94,010 |  | 574,414 | 668,424 |
|  |  | A. San Diego, Cal. -San Francisco, Cal. |  | 83.800 |  | 345, 268 | 429,068 |
|  |  | B. San Diego, Cal. -San Jose, Cal. |  | 1,820 |  | 93, 307 | 95,127 |
| P |  | C. San Diego, Cal. -Oakland, Cal. |  | 8,390 |  | 135,839 | 144,229 |
| N | 8 | New York, N. Y. /Newark, N. J. -Pittsburgh, Pa. | 330 | 667,830 |  |  | 667,830 |
|  | 9 | Los Angeles Metro, Ca. -Sacramento Metro, Ca. | 380 | 221,600 |  | 431,800 | 653,400 |
|  |  | A. Sacramento, Ca. -Los Angeles, Ca. |  | 189.310 |  | 370,400 | 559,710 |
|  |  | B. Sacramento, Ca, -Burbank, Ca. |  | 40 |  | 51,700 | 51,740 |
|  |  | C. Sacramento, Ca.-Ontario, Ca. |  | 32,250 |  | 9,700 | 41,950 |
|  | 10 | Cleveland, Ohio-New York, N. Y./Newark, N.J. | 410 | 649,990 |  |  | 649,990 |
|  | 11 | Chicago, Inl. -Detroit \& Ann Arbor, Mich. | 238 | 552,777 | 20,246 |  | 573, 023 |
|  | 12 | Chicago, Ill. -Minneapolis/St. Paul, Minn. | 345 | 559, 220 | 12,468 |  | 571,688 |
|  | 13 | Boston, Mass.-Washington, D.C. | 406 | 542,870 |  |  | 542,870 |
|  | 14 | Buffalo \& Niagra Falls, N. Y. - New York, N. Y. /Newark, N. J. | 289 | 531,140 |  |  | 531,140 |
|  | $\begin{aligned} & 15 \\ & 16 \end{aligned}$ | Chicago, Ill. -St. Louia, Mu. Los Angeles Metro, Cal. - Phoenix, Ariz. A. Phoenix, Ariz. -Los Angeles, Cá. | $\begin{aligned} & 256 \\ & 358 \end{aligned}$ | $\begin{aligned} & 441,890 \\ & 407,700 \\ & 335,230 \end{aligned}$ |  |  | $\begin{aligned} & 441,890 \\ & 407,700 \\ & 335.230 \end{aligned}$ |
|  |  | B. Phoenix, Ariz. Santa Ana, Ca. |  | 38,480 |  |  | 38.480 |
|  |  | C. Phoenix, Ariz. -Ontario, Ca. |  | 27.700 |  |  | 27,700 |
|  |  | D. Phoenix, Ariz. -Burbank, Ca. |  | 5,860 |  |  | 5,860 |
|  |  | E. Phoenix, Ariz. -Riverside, Ca. |  | 360 |  |  | 360 |
|  |  | F. Phoenix, Ariz. -Long Beach, Ca. |  | 70 |  |  | 70 |

Table A-2 (Continued)

|  |  | City Paire |  |  | otal Air Pas Origin \& Des | ${ }_{n} / Y_{r}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Rank | (Leses Than 500 Miles Apart) | Non-Stop Mileage | $\begin{gathered} \text { CAB } \\ \text { Trunk \& Local } \end{gathered}$ | CAB Commuter | PUC Commuter | Total |
|  | 17 | Now York, N. Y. / Newark, N. J. -Rochester, . N. Y. | 252 | 398, 440 |  |  |  |
|  | 18 | Boston, Mass, -Philadelphia, Pa./Carnden, N. J. | 274 |  |  |  | 398,440 |
|  | 19 | Chicago, Ill. -Cleveland, Ohio |  | 396,650 |  |  | 396,650 |
|  | 20 |  | 311 | 377,410 |  |  | 377,410 |
|  |  | Honoluly, Hawaii-Lihue, Kauai, Hawaii | 101 | 361,470 |  |  | 361.470 |
|  | 21 | Dallas \& Ft. Worth, Tex. -Houston, Tex. | 223 | 352,950 |  |  | 361,470 |
|  | 22 | New York, N. Y./Newark, N. J. -Syracuse, N. Y. |  | 352,950 |  |  | 352,950 |
|  |  | York, N. Y. Mewark, N. J.-Syracuse, N. Y. | 197 | 342,600 |  |  | 342,600 |
|  | 23 | Hilo, Hawaii-Honolulu, Hawaii | 216 | 340,820 |  |  |  |
|  | 24 | Fhiladelphia, Pa./Camden, N. J. -Pittsburgh, Pa. | 274 |  |  |  | 340,820 |
|  | 25 | Honolulu, Hawait Kahulut Mail |  | 307, 430 |  |  | 307. 430 |
|  |  | Honolula, Hawari-Kahului, Maui, Hawaii | 100 | 293,980 |  |  | 293,980 |
|  | 26 | Chicago, Ill. -Kansas City, Mo. | 407 | 293, 920 |  |  |  |
| $p$ | 27 | Chicago, Ill. - Pittsburgh, Pa. | 403 |  |  |  | 293,920 |
| $\omega$ | 28 |  |  | 276,610 |  |  | 276,610 |
|  | 28 | Baltimore, Md - New York, N. Y. /Newrark, N. J. | 180 | 267,940 |  |  | 267,940 |
|  | 29 | Columbus, Ohio-New York, N. Y. /Newark, N. J. | 472 | 235,480 |  |  |  |
|  | 30 | Detrolt \& Ann Arbor, Michi. -Washington, D. C. |  |  |  |  | 235,480 |
|  |  | Ster | 391 | 232,660 |  |  | 232,660 |
|  | 31 | Miami, Fla. -Tampa \& St. Petersburg/Clearwater \& Lakoland, Fla. | 199 | 192, 000 | 28,391 |  | 220,391 |
|  | 32 | Detroit \& Ann Arbor, Mich. -Philadelphia, Pa. /Camden, N. J. | 452 | 218, 220 |  |  | 20, 39 |
|  | . 33 | Las Vegas, Nev. -San Francisco Metro, Ca. |  |  |  |  | 218,220 |
|  |  | Las Vegas, Nev. -San Francisco Metro, Ca. | 419 | 214,680 |  |  | 214,680 |
|  |  | A. Las Vegas, Nev. -San Francisco, Ca. |  | 162,890 |  | -- |  |
|  |  | B. Las Vegas, Nev. -San Jose, Ca. |  | 38,730 |  |  | 162,890 |
|  |  | C. Las Vegas, Nev. -Oakdand, Ca. |  | 13, 060 |  |  | 38,730 |
|  | 34 | Reno, New -San Francisco Metro, Ca. | 187 |  |  |  | 13,060 |
|  |  |  | 187 | 209, 070 | 5, 047 |  | 214,117 |
|  |  | A. Reno, Nev. -San Francisco, Ca. |  | 160, 270 |  | -- |  |
|  |  | B. Reno, Nev. -Oakland, Ca. |  | 26,990 |  |  | 160,270 |
|  |  | C. Reno, Nev. -San Jose, Ca. |  | 21,810 |  |  | 21,810 |

Table A-2 (Continued)


Table A-2 (Continued)


Table A-2 (Continued)

| $\begin{aligned} & \text { City Pair } \\ & \text { Rank } \\ & \hline \end{aligned}$ |  | $\frac{\text { City Pairs }}{\text { (Less Than }} 500 \text { Miles Apart) }$ | Non-Stop Mileage | Total Air Passengers/Yr Origin \& Destination |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CAB <br> Trunk \& Local |  | $\begin{gathered} \text { CAB } \\ \text { Commuter } \\ \hline \end{gathered}$ | PUC <br> Commuter | Total |
|  | 74 |  | New York, N. Y./Newark, N. J.-Richmond, Va. | 287 | 116,170 |  |  | 116, 170 |
|  | 75 | Milwaukee, Wisc. -Minneapolis/St.. Paul, Minn. | 298 | 111,170 | 4,870 |  | 116,040 |
|  | 76 | Detroit \& Ann Arbor, Mich. -Pittsburgh, Pa. | 197 | 115,410 |  |  | 115,410 |
|  | 77 | Jacksonville, Fla. -Miami, Fla. | 330 | 102,600 | 12,203 |  | 114,803 |
|  | 78 | Sacramento, Ca. -San Francisco Metro, Ca. | 74 | 47,290 |  | 64,700 | 111,990 |
|  |  | A. Sacramento, Ca. -San Francisco, Ca. |  | 1,190 |  | 64,700 | 65, 890 |
|  |  | B. Sacramento, Ca. -San Jose, Ca. |  | 45,460 |  | -- | 45,460 |
|  |  | C. Sacramento, Ca.-Oakland, Ca. |  | 640 |  | -- | 640 |
|  | 79 | Fresno, Ca.-Los Angeles, Ca. | 213 | 107, 180 |  |  | 107, 180 |
| P | 80 | Buffalo \& Niagara Falls, N. Y. -Chicago, Il. | 467 | 106,590 |  |  | 106,590 |
| $\stackrel{\omega}{\omega}$ | 81 | Fresno, Ca. -San Francisco, Ca. | 164 | 104,370 |  |  | 104,370 |
|  | 82 | Boston, Mass.-Buffalo \& Niagara Falls, N. Y. | 396 | 103,770. |  |  | 103, 770 |
|  | 83 | Detroit \& Ann Arbor, Mich. -Indianapolis, Inc. | 241 | 91,380 | 11.150 |  | 102,530 |
|  | 84 | Buffalo \& Niagara Falls, N. Y. -Philadelphia, Pa. /Camden, N. J. | 282 | 101,610 |  |  | 101,610 |
|  | 85 | Dallas \& Ft. Worth, Tex.-Kansas City, Mo. | 448 | 101,400 |  |  | 101,400 |
|  | 86 | Atlanta, Ga. -Memphis, Tenn. | 332 | 100,640 |  |  | 100,640 |
| 87 |  | Austin, Tex.-Dallas \& Ft. Worth, Tex. | 187 | 100,370 |  |  | 100,370 |
|  |  | 87 City-Pair Totals |  | 23,900,985 | 390,041 | 5,888,712 | 30,179,738 |

Table A-3. 1970 Geographical Region Summary of United States Domestic Origin \& Destination City Pair Air Passengers for all City Pairs With 100, 000 or Greater O\&D Air Passengers and City Pairs Separated Less than 500 Miles

|  | $\begin{gathered} \text { Regional } \\ \text { Rank } \\ \hline \end{gathered}$ | Region | Number of City Pairs | Number of Cities | Passengers/Yr Origin <br> \& Destination | Percent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 a | North East (North South) | 17 | 12 | 6,990,223 | 23.2 |
|  | lb | North East (East West) | 16 | 11 | 5,283,120 | 17.5 |
|  | 2 | Pacific South West | 13 | 10 | 9,634,367 | 31.9 |
|  | 3 | North Central | 22 | 18 | 4,776,144 | 15.9 |
| $\begin{aligned} & \stackrel{p}{d} \\ & 山 \\ & \stackrel{1}{n} \end{aligned}$ | 4 | South Central | 7 | 7 | 1, 158, 810 | 3.9 |
|  | 5 | Hawaian | 4 | 5 | 1,133,330 | 3.7 |
|  | 6 | South East | 5 | 5 | 706,207 | 2.3 |
|  | 7 | Pacific North West | 2 | 3 | 373,360 | 1.2 |
|  | 8 | Rocky Mountain | 1 | 2 | 123,448 | . 4 |
|  |  | Total | 87 | 6 | 30,179, 738 | 100.0\% |

Table A-4. Geographical Region Tabulation of United States Domestic City Pair Air Passengers, Origin \& Destination for 1970, For all City Pairs with 100,000 or Greater Air Passengers Less Than 500 Statute Miles Apart

## Hawaiian Region

| Regional City-Pair Rank | United States City Pair Rank | City $\cdot$ Pairs <br> (Less Than 500 Miles) | ```Total Air Passengers/Yr Origin & Destination``` | Nonstop Mileage |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 20 | Honolulu, Hawaii - Lihue, Hawaii | 361, 700 | 101 |
| 2 | 23 | Honolulu, Hawaii - Hilo, Hawaii | 340,820 | 216 |
| 3 | 25 | Honolulu, Hawaii - Kahului, Hawaii | 293,980 | 100 |
| 4 | 50 | Honolulu, Hawaii - Kailua, Kona, Hawaii | 136,830 | 170 |
|  |  | Hawaii Total | 1, 133, 330 |  |

```
Table A-4 (Continued)
```


## South East Region

|  | Regional City Pair Rank | United States City. Pair Rank | $\begin{gathered} \text { City Pairs } \\ \text { (Less Than } 500 \text { Miles) } \\ \hline \end{gathered}$ | ```Total Air \\ Passengers/Yr Origin``` $\qquad$ | Nonstop Mileage |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 31 | Miami, Fla. - Tampa Metro, Fla. | 220,391 | 199 |
|  | 2 | 55 | Atlanta, Ga. - Jacksonville, Fla. | 142,850 | 275 |
| $p$ | 3 | 65 | Atlanta, Ga. - Tampa Metro, Fla. | 127,523 | 409 |
| $\stackrel{\omega}{\sigma}$ | 4 | 77 | Miami, Fla. - Jacksonville, Fla. | 114,803 | 330 |
|  | 5 | 86 | Atlanta, Ga. - Memphis, Tenn. | 100,640 | 332 |
|  |  |  | South East Tota | 706,207 |  |

Table A-4 (Continued)

Pacific Northwest Region

| Regional City Pair Rank | United States City-Pair Rank | $\begin{gathered} \text { City Pairs } \\ \text { (Less Than } 500 \text { Miles) } \end{gathered}$ | Total Air Passengers/Yr Origin <br> \& Destination | Nonstop Mileage |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 36 | Seattle, Wash. - Portland, Ore. | 198,430 | 132 |
| 2 | 41 | Seattle, Wash. - Spokane, Wash. | 174,930 | 223 |
|  |  | Pacific Northwest Total | 373, 360 |  |

Pacific Southwest

|  | Regional City Pair Rank | United States City. Pair Rank | $\begin{gathered} \text { City Pairs } \\ \text { (Less Than } 500 \text { Miles) } \\ \hline \end{gathered}$ | Total Air <br> Passengers/Yr Origin <br> \& Destination | Nonstop Mileage |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 1 | Los Angeles Metro - San Francisco Metro | 5,062,736 | 354 |
|  | 2 | 4 | Los Angeles Metro - San Diego, Cal. | 940,565 | 102 |
|  | 3 | 5 | Los Angeles Metro - Las Vegas, Nev. | 880, 218 | 226 |
|  | 4 | 7 | San Francisco Metro - San Diego, Cal. | 668,424 | 456 |
|  | 5 | 9 | Los Angeles Metro - Sacramento, Cal. | 653,338 | 380 |
| $\underset{\sim}{1}$ | 6 | 16 | Los Angeles Metro - Phoenix, Arizu | 407,700 | 358 |
|  | 7 | 33 | San Francisco Metro - Las Vegas, Nev. | 214,680 | 419 |
|  | 8 | 34 | San Francisco Metro - Reno, Nev. | 214,117 | 187 |
|  | 9 | 56 | Los Angeles Metro - Tucson, Ariz. | 139,440 | 439 |
|  | 10 | 63 | Los Angeles Metro - Salinas/Monterey, Cal. | . 130,480 | 273 |
|  | 11 | 78 | San Francisco Metro-Sacramento, Cal. | 111,119 | 74 |
|  | 12 | 79 | Los Angeles Metro - Fresno, Cal. | 107, 180 | 213 |
|  | 13 | 81 | San Francisco Metro - Fresno, Cal. | 104,370 | 164 |
|  |  |  | Pacific Southwest Total | 9,634,367 |  |

North Central Region

|  | Regional City Pair Rank | United States City Pair Rank | $\begin{gathered} \text { City Pairs } \\ \text { (Less Than } 500 \text { Miles) } \\ \hline \end{gathered}$ | Total Air <br> Passengers/Yr Origin <br> \& Destination | Nonstop Mileage |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 11 | Chicago, Ill. - Detroit, Mich. | 573,023 | 238 |
|  | 2 | 12 | Chicago, Ill. - Minneapolis, Minn. | 571,688 | 345 |
|  | 3 | 15 | Chicago, Ill. - St. Louis, Mo. | 441,890 | 256 |
|  | 4 | 19 | Chicago, Ill. - Cleveland, Ohio | 377,410 | 311 |
| P | 5 | 26 | Chicago, Ill. - Kansas City, Kan. | 293,920 | 407 |
| $\stackrel{\omega}{\omega}$ | 6 | 27 | Chicago, Ill - Pittsburgh, Penn. | 276,610 | 403 |
|  | 7 | 35 | Chicago, Ill. - Indianapolis, Ind. | 212,155 | 168 |
|  | 8 | 38 | Chicago, Ill. - Cincinnati, Ohio | 192,830 | 254 |
|  | 9 | 40 | St. Louis, Mo. - Kansas City, Kan. | 179,580 | 230 |
|  | 10 | 42 | Detroit, Mich. - Cleveland, Ohio | 171,024 | 93 |
|  | 11 | 48 | Chicago, Ill. - Columbus, Ohio | 161,300 | 287 |
|  | 12 | 58 | Chicago, Ill. - Louisville, Ken. | 136,850 | 277 |
|  | 13 | 62 | Chicago, Ill. - Dayton, Ohio | 132,320 | 231 |
|  | 14 | 64 | Detroit, Mich. - Milwaukee, Wisc. | 127,364 | 244 |

## Table A-4 (Continued)

## North Central Region (continued)

|  | Regional City Pair Rank | United States City Pair Rank | $\begin{gathered} \text { City Pairs } \\ \text { (Less Than } 500 \text { Miles) } \\ \hline \end{gathered}$ | ```Total Air Passengers/Yr Origin & Destination``` | Nonstop Mileage |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 15 | 67 | St. Louis, Mo. - Detroit, Mich. | 123, 390 | 451 |
|  | 16 | 68 | Chicago, Ill. - Omaha, Neb. | 123, 390 | 423 |
|  | 17 | 69 | Chicago, Ill. - Memphis, Tenn. | 123, 310 | 485 |
| > | 18 | 71 | Chicago, Ill. - Des Moines, Iowa | 117,520 | 306 |
| A | 19 | 75 | Minneapolis, Minn. - Milwaukee, Wisc. | 116, 040 | 298 |
|  | 20 | 76 | Detroit, Mich. - Pittsburgh, Penn. | 115,410 | 197 |
|  | 21 | 80 | Chicago, Ill. - Buffalo, N. Y. | 106,590 | 467 |
|  | 22 | 83 | Detroit, Mich. - Indianapolis, Ind. | 102,530 | 241 |
|  |  |  | North Central Total | 4,776,144 |  |

## South Central Region

|  | Regional City Pair Rank | United States City Pair Rank | $\begin{gathered} \text { City Pairs } \\ \text { (Less Than } 500 \text { Miles) } \\ \hline \end{gathered}$ | Total Air <br> Passengers/Yr Origin <br> \& Destination | Nonstop Mileage |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 21 | Dallas/Ft. Worth, Tex. - Houston, Tex. | 352,950 | 223 |
| \$ | 2 | 37 | Houston, Tex. - New Orleans, La. | 193,600 | 303 |
| $\stackrel{\stackrel{\rightharpoonup}{*}}{\stackrel{\sim}{*}}$ | 3 | 50 | Dallas/Ft. Worth, Tex. - San Antonio, Tex | 156,450 | 254 |
|  | 4 | 57 | Dallas/Ft. Worth, Tex. - New Orleans, La | 137,650 | 423 |
|  | 5 | 72 | Dallas/Ft. Worth, Tex. - Oklahoma City, | kla.116,390 | 185 |
|  | 6 | 85 | Dallas/Ft. Worth, Tex.-Kansas City, Mo. | 101,400 | 448 |
|  | 7 | 87 | Dallas/Ft. Worth, Tex. -Austin, Tex. | 100,370 | 187 |
|  |  |  | South Central Total | 1,158,810 |  |

Table A-4 (Continued)

## Rocky Mountain Region

## Table A-4 (Continued)

North East (North South) Region

|  | Regional City Pair Rank | United States City Pair Rank | City Pairs <br> (Less Than 500 Miles) | ```Total Air Passengers/Yr Origin \& Destination``` | Nonstop Mileage |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | New York Metro - Boston Metro | 2,211,030 | 190 |
|  | 2 | 3 | New York Metro - Washington, D. C. | 1,793,731 | 216 |
|  | 3 | 13 | Boston, Mass. - Washington, D. C. | 542,870 | 406 |
| $\begin{aligned} & \text { p } \\ & \text { p } \end{aligned}$ | 4 | 18 | Boston, Mass. - Philadelphia, Penn. | 396,650 | 274 |
|  | 5 | 28 | New York Metro - Baltimore, Md. | 267,940 | 180 |
|  | 6 | 39 | New York Metro - Providence, R. I. | 192,790 | 149 |
|  | 7 | 43 | Washington, D. C. - Philadelphia, Penn. | 170, 300 | 133 |
|  | 8 | 46 | New York Metro - Albany, N. Y. | 166,846 | 138 |
|  | 9 | 49 | New York Metro - Raleigh/Durham, N. C. | 156,560 | 425 |
|  | 10 | 51 | New York Metro - Philadelphia, Penn. | 156, 375 | 84 |
| - | 11 | 52 | New York Metro - Hartford./Springfield/ Westfield | 151,275 | 106 |
|  | 12 | 53 | New York Metro - Greensboro, N. C. | 149,460 | 456 |


|  | North East (North South) Region (continued) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Regional City Pair Rank | United States City Pair Rank | City Pairs <br> (Less Than 500 Miles) | Total Air <br> Passengers/Yr Origin \& Destination | Nonstop Mileage |
| $\begin{aligned} & \text { p} \\ & 1 \\ & \stackrel{\rightharpoonup}{P} \end{aligned}$ | 13 | 54 | New York Metro - Norfolk, Va. | 147,580 | 292 |
|  | 14 | 61 | Boston, Mass. - Baltimore, Md. | 133,760 | 370 |
|  | 15 | 70 | Washington, D. C. - Hartford/Springfield/ Westfield | 120,526 | 319 |
|  | 16 | 73 | Washington, D. C. - Norfolk, Va. | 116,360 | 149 |
|  | 17 | 74 | New York Metro - Richmond, Va. | 116,170 | 287 |
|  |  |  | North East North South Total | 6,990,223 |  |

```
Table A-4 (Continued)
```


## North East (East West) Region

|  | Regional City Pair Rank | United States City Pair Rank | $\begin{gathered} \text { City Pairs } \\ \text { (Less Than } 500 \text { Miles) } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Total Air } \\ & \text { Passengers/Yr } \\ & \text { Origin } \\ & \text { \& Destination } \end{aligned}$ | Nonstop Mileage |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 6 | New York Metro - Detroit/Ann Arbor, Mich. | 858,280 | 489 |
|  | 2 | 8 | New York Metro - Pittsburgh, Penn. | 667,830 | 330 |
| p | 3 | 10 | New York Metro - Cleveland, Ohio | 649,990 | 410 |
| $\stackrel{\rightharpoonup}{*}$ | 4 | 14 | New York Metro - Buffalo/Niagara Falls, N. Y. | 531, 140 | 289 |
|  | 5 | 17 | New York Metro - Rochester, N. Y. | 398,440 | 252 |
|  | 6 | 22 | New York Metro - Syracuse, N. Y. | 342,600 | 197 |
|  | 7 | 24 | Philadelphia, Penn. - Pittsburgh, Penn. | 307, 430 | 274 |
|  | 8 | 29 | New York Metro - Columbus, Ohio | 235,480 | 472 |
|  | 9 | 30 | Washington, D. C. - Detroit/Ann Arbor, Mich. | 232,660 | 391 |
|  | 10 | 32 | Philadelphia, Penn. - Detroit/Ann Arbor, Mich. | . 218,220 | 452 |
|  | 11. | 44 | Washington, D. C. - Pittsburgh, Penn. | 168,590 | 194 |
|  | 12 | 45 | Philadelphia, Penn. - Cleveland, Ohio | 167,990 | 366 |

Table A-4 (Continued)

## North East (East West) Region (continued)



# Table A-5. United States Domestic City Pair Air Passengers, Origin \& Destination for 1970, for All City Pairs Less than 500 Statute Miles Apart with 100, 000 or More Passengers (City Pairs Arranged in Ascending Order of Non-Stop Mileage) 

50-100 Miles

| City Pair | City-Pair | Non-Stop <br> Mile: ge | Total Air Passengers Per <br> Year, Origin \& Destination | Percent of Total Air O\&D Passengers Per Year | Cumulative Total Percent |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 78 | Sacramento, Cal. -San Francisco Metro, Cal. | 74 | 111.990 | . 09 | . 09 |
| 51 | New York, N. Y./Newark, N. J. -Philadelphia, Penn. | 84 | 156,375 | . 13 | . 22 |
| 42 | Cleveland, Ohio-Detroit, Michigan | 93 | 171,024 | . 14 | . 36 |
| 25 | Honolulu, Hawaii-Kahului, Matu, Hawaii | 100 | 293,980 | . 24 | . 61 |
|  | 4 City-Pair Subtotals |  | 733, 369 | .61 | . 61 |
| 101-150 Miles |  |  |  |  |  |
| City Pair Rank | City-Pair | Non-Stop <br> Mileage | Total Air Passengere Per Year, Origin \& Destination | Percent of Total Alr O\&D Passengers Per Year | Cumulative Total Percent |
| 20 | Honolulu, Hawaii-Lihue, Kauai, Hawaii | 101 | 361,470 | . 30 | . 91 |
| 4 | Lob Angeles Metro, Cal. -San Diego, Cal. | 102 | 940, 565 | . 78 | 1.69 |
| 51 | Hartford/Springfield/Westfield, Conn, -N. Y., N. Y. | 106 | 151,275 | . 13 | 1.82 |
| 36 | Portland, Oregon-Seattle, Washington | 132 | 198, 430 | . 16 | 1.98 |
| 43 | Philadelphia, Pa. /Camden, N. J.-Washington, D. C. | 133 | 170, 305 | . 14 | 2.12 |
| 46 | Albany, N. Y. -New York, N. Y./Newark, N. J. | 138 | 166,846 | . 14 | 2.26 |
| 39 | New York, N. Y./Newark, N. J. -Providence, R. I. | 149 | 192,790 | . 16 | 2.42 |
| 73 | Norfolk, Va. - Washington, D. C. | 149 | 116,360 | . 10 | 2.51 |
|  | 8 City-Pair Subtotals |  | 2,298,041 | 1.91 | 2.51 |
| 151-200 Miles |  |  |  |  |  |
| City Pair <br> Rank | City-Pair | $\begin{aligned} & \text { Non-Stop } \\ & \text { Mileage } \end{aligned}$ | Total Air Passengers Per <br> Year, Origin \& Destination | Percent of Total Air O\&D Passengers Per Year | Cumulativ: Total Percent |
| 81 | Fresno, Cal. -San Francisco, Cal. | 164 | 104,370 | . 09 | 2.60 |
| 35 | Chicago, Ill. -Indianapolis, Ind. | 168 | 212, 155 | . 18 | 2.78 |
| 59 | Honolulu, Hawaii-Kailua, Kona, Hawaii | 170 | 136.830 | . 11 | 2.89 |
| 28 | Baltimore, Md. - New York, N. Y./Newark, N. J. | 180 | 267,940 | . 22 | 3.11 |
| 72 | Dallas, Ft. Worth, Tex. -Oklahoma City, Okla. | 185 | 116,390 | . 10 | 3.21 |
| 34 | Reno, Nev. -San Francisco Metro, Cal. | 187 | 214,117 | . 18 | 3. 38 |
| 87 | Austin, Texas.Fort Worth, Texas | 187 | 100, 370 | . 08 | 3.47 |

City Pair
Rank
2
44
22
76
31

City Pair
Rank
79
3
23
21
41
5
40
62
11
83
65
1

## City Pair

 Rank
## City Pair

Boston, Mase, -N. Y., N. Y./Newark, N. J.
Pittsburgh, Pa. - Washington, D. C.
New York, N. Y./Newark, N. J.-Syracuee, N. J.
Detroit/Ann Arbor, Mich. -Pittsburgh, Pa.
Miami, Fla. - Tampa/St. Petersburg, Fla.
12 City-Pair Subtotals

## City-Pair

Fresno, Cal., Los Angeles, Cal.
New York/Newark, N. J.-Washington, D. C.
Hilo, Hawail-Honolulu, Hawaii
Dallas/Ft. Worth, Tex, -Houston, Tex.
Seattle, Wash. -Spokane, Wash.
Las Vegas, Nev. -Los Angeles Metro, Cal.
Kansas City, Mo. -St. Louis, Mo.
Chicago, Ill.-Dayton, Ohio
Chicago, Ill. -Detroit/Ann Arbor, Mich.
Detroit/Ann Arbor, Mich. -Indianapolis, Ind. Detroit/Ann Arbor, Mich. -Milwaukee, Wis.
11 City-Pair Subtotals

## City-Pair

New York, N. Y./Newark, N. J./Rochester, N. Y. Chicago, Ill. -Cincinnati, Ohio
Dallas/Ft. Worth, Tex. -San Antonio, Tex.
Chicago, Ill. -St. Louis, Mo.
Los Angeles Metro, Cal. -Salinas/Monterey, Cal.
Boston, Mase. -Philadelphia, Pa./Camden, N. J.
Philadelphia, Pa./Canden, N. J.-Pittsburgh, Pa.

## 151-200 Miles (Continued)

| Non-Stop <br> Mileage | Total Air Passengers Per <br> Year, Origin \& Destination |
| :--- | :---: |
| 190 | $2,211,030$ |
| 194 | 168,590 |
| 197 | 342,600 |
| 197 | 115,410 |
| 199 | 220,391 |
|  | $4,210,193$ |

Non-Stop
Mileage $\quad$ Total Air Passengers Per

| 213 | 107,180 |
| :--- | ---: |
| 216 | $1,793,731$ |
| 216 | 340,820 |
| 223 | 352,950 |
| 223 | 174,930 |
| 226 | 880,218 |
| 230 | 179,580 |
| 231 | 132,320 |
| 238 | 573,023 |
| 241 | 102,530 |
| 244 | 127,364 |

## 251-300 Miles

## $\begin{array}{lr}\text { Non-Stop } & \text { Total Air Passengers Per } \\ \text { Mileage } & \text { Year, Origin \& Destination }\end{array}$

| Percent of Total Air <br> O\&D Passengers Per Year | Cumulative <br> Total Percent |
| :---: | :---: |
| 1.84 | 5.30 |
| .14 | 5.45 |
| .29 | 5.73 |
| .10 | 5.83 |
| .18 | 6.01 |
| 3.50 | 6.01 |

## Percent of Total Air

 O\&D Passengers Per Year| .09 |
| ---: |
| 1.49 |
| .28 |
| .29 |
| .15 |
| .73 |
| .15 |
| .11 |
| .48 |
| .09 |
| .11 |
| 3.95 |

Cumulative Cumulative
6. 10
7. 59
7.87
8.10
8. 31
9.04
9.19
9. 30
9. 77
9.86
$\frac{9.96}{9.96}$

Percent of Total Alr O\&D Passengers Per Year Total Percent

Table A-5 (Continued)

| City Pair Rank | City ${ }^{\text {Pair }}$ |
| :---: | :---: |
| 55 | Atlanta, Ga. -Jacksonville, Fla. |
| 58 | Chicago, In.-Louisville, Keno |
| 84 | Buffalo/Niagara Falls, N. Y. -Phlladolphia, Pa. $/$ Camden, N. J. |
| 48 | Chicago, Ill.-Columbus, Ohio |
| 74 | New York, N. Y./Newark, N. J.-Richmond, Va. |
| 14 | Buffala N. Y.-New York, N. Y./Newark, N. J. |
| 54 | New York, N. Y./Newark, N. J. -Norfolk, Va. |
| 47 | Cleveland, Ohio-Washington, D. C. |
| 75 | Milwaukee, Wisc.-Minneapolis/St. Paul, Minn. 16 City-Pair Subtotals |

$\underset{\text { Rank }}{\substack{\text { City Pair } \\ \text { Ran }}}$

## City-Pair

Houston, Tex. -New Orleans, La,
Chicago, Ill-Des Moines, Iowa
Chicago, Ill-Cleveland, Ohio
Hartford/Springfield, Conn. -Washington, D. C.
New York/Newark, N. J.-Pittsburgh, Pa,
Jacksonville, Fla.-Miami, Fla.
Atlanta, Ga.-Memphis, Tenn.
Chicago, Ill-Minneapolis/St. Paul, Minn.
8 City-Pair Subtotals

251-300 Miles (Continued)

| Non-Stop <br> Mileage | Total Air Passengers Per <br> Year, Origin \& Destination |
| :---: | :---: |
| 275 | 142,850 |
| 277 | 136,850 |
| 282 | 101,610 |
| 287 | 161,300 |
| 287 | 116,170 |
| 289 | 531,140 |
| 292 | 147,580 |
| 298 | 164,230 |
| 298 | 116,040 |
|  | $3,641,940$ |
| $301-350$ Miles |  |


| Non-Stop | Total Air Passengers Per |
| :--- | ---: |
| Mileage | Year, Origin \& Destination |

## Percent of Total Air

 O\&D Paseengers Per Year| .12 |
| :--- |
| .11 |
| .08 |
| .13 |
| .10 |
| .44 |
| .12 |
| .14 |
| .10 |
| 3.02 |

## Percent of Total Alr O\&D Passengers Per Year

| .16 |
| :--- |
| .10 |
| .31 |
| .10 |
| .56 |
| .10 |
| .08 |
| .48 |
| 1.89 |

Cumulative Total Percent
13. 14
13. 24
13. 55
13.65
14.21
14.31
14.39
$\frac{14.87}{14.87}$
Cumulative
Total Percent
11.76
11.87
11.96
12.09
12.18
12.63
12.75
12.88
$\frac{12.98}{12.98}$

351-400 Milea

## Non-Stop <br> Mileage

Total Air Passengers Per Year, Origin \& Destination

Lós Angeles Metro, Cal. -San Francisco Metro, Cal. Los Angeles Metro, Cal. -Phoenix, Ariz.
Cleveland, Ohio-Philadelphia/Camden, N. J.
Baltimore, Md.-Boston, Mase.
354

358
366
370

5,062,763
407,700
167,990
133,760

Percent of Total Air O\&D Passengers Per Year
4.21
.34
.14
.11
19.42
19.56
19.67

Table A-5 (Continued)


## Table A-5 (Continued)

City Pair
Rank
7
29
69
6
60

451-500 Miles (Continued)

| Non-Stop <br> Mileage | Total Air Pasaengers Per <br> Year, Origin \& Destination |
| :---: | :---: |
| 456 | 668,424 |
| 472 | 235,480 |
| 485 | 123,310 |
| 489 | 858,280 |
| 496 | 134,860 |
|  | $2,618,014$ |
|  | $30,388,698$ |


| Percent of Total Air <br> O\&D Pasaenger Par Year | Cumulative <br> Total Percent |
| :---: | :---: |
| .56 | 23.93 |
| .20 | 24.13 |
| .10 | 24.23 |
| .71 | 24.94 |
| $\frac{.11}{2.18}$ | $\frac{25.05}{25.05}$ |

San Diego Metro, Cal. -San Francisco Metro, Cal. Columbus, Ohio-New York/Newark, N. J.
Chicago, Ill.-Memphis, Tenn.
Detroit/Ann Arbor, Mich. -New York/Newark, N. J.
Boston, Mass.-Pittsburgh, Penn.
9 City-Pair Subtotals
87 City-Pair Totals
30,388,698.
25. 05
25. 05

Table A-6. Mix and Type of Aircraft and Air Carrier in Service by Seats Available on all 87
High Density Short Haul Routes (By Air Hub for Cities with Two or More High Density Short Haul Routes)

| Hub City | Type of Aircraft, Percent |  |  |  | Type of Carrier, Percent |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Short \& Medium Haul 2\&3 Eng. Jet | $\begin{array}{\|c} \text { Long Haul } \\ 4 \text { Engine } \\ \text { J et } \end{array}$ | Wide Body Jet | Other | Trunk | Local | Intrastate | Commuter |
| Atlanta | 57.2 | 34. 4 | 5.0 | 3. 4 | 94. 0 | 6.0 | -- | -- |
| Boston | 89. 1 | 8. 9 | - | 2. 0 | 49.5 | 50.5 | -- | - |
| Chicago | 65.4 | 23.1 | 5.1 | 6.6 | 85.0 | 13.7 | -- | 1. 3 |
| Dallas | 79.4 | 15.3 | -- | 5.4 | 66.4 | 19.6 | 14.0 | -- |
| Denver | 85. 7 | 10.7 | -- | 3.6 | 70. 7 | 29.3 | - | -- |
| Detroit | 59.0 | 24. 7 | 4. 1 | 12. 1 | 87.5 | 10.5 | -- | 2. 0 |
| Honolulu | 97.6 | -- | -- | 2. 4 | - | 97.6 | - | 2. 4 |
| Houston | 78.0 | 21. 3 | -- | 0.7 | 59.2 | 20.0 | 20.8 | -- |
| Kansas City | 90.9 | 4. 0 | -- | 5. 1 | 91.5 | 8. 2 | -- | 0. 3 |
| Los Angeles | 80.5 | 18.6 | -- | 0.9 | 52.7 | 8.8 | 38.5 | -- |
| Miami | 52.1 | 30.5 | 13.6 | 3.8 | 97.7 | - | -- | 2. 3 |
| New York | 78.4 | 15.4 | -- | 6.1 | 83. 1 | 16.5 | -- | 0.4 |
| Philadelphia | 70.9 | 22. 1 | -- | 7. 0 | 66.4 | 33.2 | -- | 0. 4 |
| San Francisco | 84.8 | 12.1 | -- | 3.3 | 41.2 | 5. 7 | 52.2 | 0.9 |
| Seattle | 58.3 | 37.4 | -- | 4. 3 | 84.9 | 13. 1 | -- | 2. 0 |
| Washington, D. C. | 78.4 | 12.6 | -- | 9.1 | 81.3 | 18.5 | - | 0. 2 |
| Hub City Total | 75.0 | 18.0 | 2. 0 | 5.0 | 71.0 | 18.0 | 10.0 | 1.0 |

Table A-7. Comparison of Operating, Traffic, and Financial Statistics for Airlines with Approximately 5 Million Passengers in Year Ending 31 December 1970

| $\begin{array}{r} 1 \\ 2 \\ 2 \\ 2 \\ .4 \\ 5 \\ 6 \\ 7 \end{array}$ | $\frac{\text { Trese Statistics }(000)}{\text { Hevenue passengers }}$ | Braniff 1970 Doricestic |  | Continental 1970 | Allegheny 1970 | PSA 1970, Airline Only |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Kovenue Passengers <br> licrono Passenger A!los (R PM) | 5703 $3,375,320$ |  | 5070 $4,433,201$ | 5917 $1,682,840$ | 5162 | - |
|  | Available Seat Miles (ASM) | 7, 278,961 | = | $4,433,201$ $8,668,211$ | $1,682,840$ $3,897,075$ | $\begin{aligned} & 1,585,392 \\ & 3,150,000 \end{aligned}$ |  |
|  | Revenue Passenger Load Factor | 46. $4 \%$ |  | . $51.2 \%$ | 43. $2 \%$ | 50.2\% |  |
|  | Operating Statistics |  |  |  | - : . | i. |  |
|  | Number of Aircraft in Service, Ave | 63 |  | 62 | 68 | 25 |  |
| 8 | Number of Airports Served ... | 33 |  | 27 | 57 | 8 |  |
| 9 | Number of Employees | Not Available |  | 8329 | 4876 | 2300 |  |
| 10 | Average Passenger Trip Length | 593 |  | 873 | 294 | 307 |  |
| 11 | Average Stage Length | 435 |  | 559 | 190 | 228 |  |
| 12 | Average Available Seats/Aircraft | 107. 1 |  | 107.8 | 79.1 | 144.3 |  |
| 13 | Fare Per Revenue Passenger Mile | 6.2¢ |  | 5. $5 ¢$ | 8. 4 ¢ | 4. 6 ¢ |  |
| 14 | Financial Statistics (000) |  |  |  |  |  |  |
| 15 | Operating Revenues | Amount, \$ | $\underline{\text { Percent }}$ | Amount, \$ Percent | Amount, \$ . Percent | Amount, \$ | Percent |
| 16 | Passenger | 209, 575 | 89.6 | 242,579 . 84, 1 | 141,812 91,5 | 72,950 | 97.7 |
| 17 | Other Transport | 23,479 | 10.1 | 47,798 16.4 | 10,313 : 6.7 | 1,018 | 1.3 |
| 18 | Incidental \& Subsidy | 678 | . 3 | (1,011) $\sim$ (.5) | 2,512 1.8 | 715 | 1.0 |
| 19 | TOTAL OPERATING REVENUE | 233,732 100.0 | 100.0 | 289,366 $\because 100.0100 .0$ | $154,635 \quad 100.0 \quad 100.0$ | 74,694 100.0 | 100.0 |
| 20 | Operating Expenses |  |  |  |  |  |  |
| 21 | Direct Expenses | Amount | Percent | Amount Percent | Amount Percent | Amount | Percent |
| 22 | Flight Operations | 73,937 | 60.3 | 73,466 51.2 | 46,731 58.3 | 19,778 | 49.3 |
| 23 | Maintenance, Direct | 22,739 | 18.6 | 27.613 . 19.2 | 14,121 18.9 | 8,226 | 20.4 |
| 24 | Maintenance, Indirect | 10,690 | 8.7 | $17,095 \quad 11.9$ | 9,785 . 13.0 | 1,639 | 4.1 |
| 25 | Depreciation, Flt. Equip. | 15,203 | 12.4 | 25,383 $\quad 17.7$ | 7,367 - 9.8 | 10,579 | 26.2 |
| 26 | TOTAL DIRECT EXPENSE | 122,569 $\quad .52 .4$ | 100.0 | $143,557 \quad 49.6 \quad 100.0$ | 78, $004 \quad 50.5 \quad 100.0$ | 40,222 53.9 | 100:0 |
| 27 | Indirect Expenses |  |  | $\therefore$ |  |  |  |
| 28 | Passenger Service | 21,473. | 20.4 | 33,370 $\quad 26.9$ | 10,206 15.4 | 5,509 | 22.4 |
| 29 | Aircraft \& Travel Service | 45,062 | 42.8 | $40,349 \quad 32.4$ | $33,093 . \quad 50.0$ | 7,503 | 30.5 |
| 30 | Promotion \& Sales | 25,291 | 24.0 | 30.829 . 24.9 | 13,834 . 20.9 | 5,943 | 24.1 |
| 31 | General \& Administration | 10,820 | 10.3 | 15.115 12.2 | 7,095. .. 10.7 | 4,755 | 19.3 |
| 32 | Depreciation, Other | 2,617 | 2.5 | $4.423 \quad 3.6$ | 1,290 2.0 | 925 | 3.7 |
| 33 | total indirect expense | 105,263 $\quad 45.1$ | 100.0 | $124086 \quad 42.9 \quad 100.0$ | 65,518 42.4 1 100.0 | 24,635 33.0 | 100.0 |
| 34 | TOTAL OPERATING EXPENSE | 227,832 |  | 267.643 | 143,522 | 64,857 |  |
| 35 | NET OPERATING INCOME | 5,900 |  | 21, 723 | 11,113 | 9,827 |  |
| 36 | Other Expenses |  |  |  |  |  |  |
| 37 | Non Op. Income (000) \& Exp. | (270) | (1.9) | (359) (2.2) | 571 . 5.4 | 0 | 0.0 |
| 38 | Interest Expense | 10,929 | 72.8 | 15.338 93.0 | 8,369 79.1 | 5,612 | 100.0 |
| 39 | Amortization of Develop. | 4,378 | 29.1 | 1.519 | 1,645: 15.5 | 0 | 0.0 |
| 40 | TOTAL OTHER EXPENSES | 15,037 6.4 | 100.0 | 16,498 $\quad 5.7100 .0$ | 10,585 6.8 100.0 | 5,612 7.5 | 100.0 |
| 41 | TOTAL EXPENSE | 242,869 |  | 284,141 | 154, 107. | 70,469 |  |
| 42 | OPERATING PROFIT BEFORE TAXES | (9,136) (3.9) |  | 5., 2251.8 | 528 0.3 | 4,215 5.6 |  |

Table A-8. Comparison of Operating Expenses for Airlines with Approximately 5 Million Passengers in Year Ending 31 December 1970


Table A-9. Indirect Operating Costs for Single Class Service (PSA Density Seating)*

|  | Cost in Cents/Avail. Seat Mile |  |  |  |  | Cost in Cents/Revenue Pass. Mile |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Braniff | Cont. | Allegh. | PSA | 3-Avg. | Braniff | Cont. | Allegh. | PSA | 3-Avg. |
| 1. Direct Expenses <br> 2. Passenger Service | . 25 | . 31 | 24 | . 21 | . 27 | 53 | 62 | . 56 | 35 | . 57 |
| 3. Aircraft Traffic \& Service | . 51 | . 39 | 78 | . 28 | . 56 | 1. 10 | . 76 | 1.79 | . 47 | 1. 21 |
| 4. Promotion \& Sales | . 29 | . 30 | . 32 | . 22 | . 30 | . 62 | . 58 | . 75 | . 38 | . 65 |
| 5. General \& Administrative | . 12 | . 14 | . 16 | . 18 | . 14 | . 26 | . 28 | . 38 | . 30 | . 31 |
| 6. Depreciation, Other | . 03 | . 04 | . 03 | . 03 | . 03 | . 08 | . 07 | . 06 | . 06 | . 07 |
| 7. Total Indirect Expense | 1. 20 | 1.18 | 1. 51 | . 92 | 1. 30 | 2.56 | 2.30 | 3.54 | 1.56 | 2. 82 |

* Costs have been modified to adjust to PSA configuration seating by using Boeing 727-200 available seats for each airline divided by the PSA Boeing 727-200 available seats. The factors are:

$$
\begin{array}{ll}
\text { Braniff } & =130 / 158 \\
\text { Continental } & =130 / 158 \\
\text { Allegheny } & =144 / 158 \\
\text { PSA } & =158 / 158
\end{array}
$$

Table A-10. Indirect Operating Cost (IOC) Comparison


IOCs in Dollars/Trip

| Actual IOC | 306 | --- | 255 | --- | 650 | --- | 860 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Empirical IOC | 305 | 133 | 245 | 406 | 678 | 617 | 870 |
| Initial Study IOC | 306 | 166 | -- | 338 | -- | 398 | -- |
| Revised Study IOC | 306 | 159 | -- | 396 | -- | 604 | -- |

Table A-11. Initial Indirect Operating Cost Analysis, PSA - CY 1970


Table A-12. Revised Indirect Operating Cost Analysis Per Departure IOC Derivation

| ITEM | FSA \% | IOC SEGMENT DISTRIBUTION |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CONSTANT | NO. PAX |  | CAPACITY |  | AVSM |  | RPMI |  |
| PASSENGER SERVICE |  |  |  |  |  |  |  |  |  |  |
| STEWARDESS EXPENSE | 12.77 |  |  |  |  |  | (80) | 10.2160 | (20) | 2.554 |
| PASSENGER FOOD | 0.48 |  |  |  |  |  | (80) | 0.3840 | (20) | 0.0960 |
| PASSENGER LIABILITY INS. | 5.32 |  |  |  |  |  |  |  | (100) | 5.3200 |
| OTHER PAX SERVICE | 3.80 |  | (47) | 1.7860 |  |  | (30) | 1.1400 | (23) | 0.874 |
| AIRCRAFT \& TRAFFIC SERVICE |  |  |  |  |  |  |  |  |  |  |
| LANDING FEES | 6.85 |  |  |  | (100) | 6.8500 |  |  |  |  |
| AIRPORT TERMINAL OPS | 23.62 | (30) 7.0860 | (42) | 9.9204 | (28) | 6.6136 |  |  |  |  |
| RESERVATIONS \& TICKET SALES |  |  |  |  |  |  |  |  |  |  |
| PASSENGER COMMISSIONS | 6.08 |  |  |  |  |  |  |  | (100) | 6. 0800 |
| RESERVATIONS \& TICKET OFF | 9.76 |  | (42) | 4.0992 |  |  | (58) | 5.6608 |  |  |
| ADVERTISING \& PUBLICITY | 8.26 |  | (40) | 3.3040 |  |  | (60) | 4.9560 |  |  |
| GENERAL \& ADMINISTRATIVE | 19.30 |  |  |  |  |  | (100) | 19.3000 |  |  |
| DEPRECLATION (GROUND PROP | 3.76 |  |  |  | (49) | 1.8424 | (51) | 1.9176 |  |  |
| TOTAL | 100.00 | 7.0860 |  | 19.1096 |  | 15.3060 |  | 43.5744 |  | 14.9240 |

FROM PSA DATA: AVERAGE CAP $=144.319$, NON-STOP STAGE LENGTH $=227.7819 \mathrm{MI}$, AVSM $=32873.256$ $\mathrm{DEP} / \mathrm{YR}=80379$, ANNUAL $1 O C=\$ 24,625,900, \mathrm{IOC} / \mathrm{DEP}=306.27$
ASSUME: AVERAGE LOAD FACTOR $=0.60$, THEN: AVE. NO. PAX $=86.5914$, RPMI $=19723.9536$ THEN IOC $/$ DEP $=\frac{306.37}{100}\left[7.086+\frac{19.1096}{86.5914}(\right.$ NO PAX $)+\frac{15.3060}{144.319}($ CAP $)+\frac{43.5744}{32873.256}(A V S M)+\frac{14.9240}{19723.9536}$ (RPMI) $]$
$=21.7094+0.676119(\mathrm{NoPAX})+0.324926(\mathrm{CAP})+0.00406102(\mathrm{AVSM})+0.00231813(\mathrm{RPMI})$

Table A-13. Trunk System Load Factors


Table A-14. Populations (000)

| SMSA | 1970 | 1980 | 1990 | SMSA | 1970 | 1980 | 1990 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ALEAII | 721.0 | 784.5 | 840.2 | I.Y./IT.J. |  |  |  |
| ATLAJTA | 1390.0 | 1604.9 | 1820.2 | OKLAİOLA CIty | 14166.0 641.0 | 15138.1 717.5 | 15951.3 756. |
| A USITIV | 296.0 | 344.7 | - 397.2 | OMAİA | 541.0 | 717.5 587.8 | 756.7 |
| BALTIMORE | 2071.0 | 2234.4 | 2377.7 | Phi ladelpilia | 4818.0 | 5187.5 | \% 548.5 |
| EOSTOM | 2754.0 | 2898.7 | 3012.2 | PGOEIIX | 968.0 | 1188.5 | 5482.8 1301.3 |
| BUFPALO | 1349.0 | 1415.2 | 1460.5 | PITTGBURG | 2401.0 | 1128.0 2450.5 | 1301.3 2485.9 |
| CiIICAGO | 6979.0 | 7503.2 | 7983.4 | PORTLAND | 1009.0 | 1122.5 | 1233.9 |
| CIUCI idd Ac' 1 | 1373.0 | 1426.4 | 1542.6 | PROVIDEITCE | 900.0 | 1403.5 | 1465.9 |
| CLE VELAND | 2064.0 | 2204.6 | 2316.1 | RALEI GII | 419.0 | 474.4 | 1465.4 541.5 |
| COLULiBUS | 916.0 | 1002.6 | 1079.8 | REWO | 121.0 | 145.8 | 541.5 171.2 |
| DALLAS/FT. | 2318.0 | 2699.9 | 3115.9 | RICHMOND | 516.0 | 563.7 | 611.7 |
| DEAVER | 1228.0 286.0 | 1405.6 | 1577.2 | ROCHESTER | 883.0 | 971.8 | 1057.7 |
| DETROIT | 4434.0 | 301.6 4705.5 | 315.6 4927.3 | SA CRAMEITTO | 801.0 | 930.0 | 1037.7 |
| FRESIIO | 413.0 | 462.6 | 486.0 | SALT LAKL | 250.0 | 284.4 | 327.4 |
| GREEILSBORO | 604.0 | 662.2 | 719.5 | SAN AMTOIIIO | 558.0 864.0 | 623.8 958.6 | 683.3 |
| AARTFORD | 1220.0 | 1351.7 | 1474.5 | SAII DIEGO | 1358.0 | 1503.1 | 1054.3 1661.7 |
| HOUSTOA | 1958.5 | 2246.0 | 2535.0 | SEATEME | 1422.0 | 1596.2 | 1763.9 |
| INDIAIVAPOLIS | 1110.0 | 1215.1 | 1311.5 | S.F. $10 A K L A I D D$ | 4174.0 | 4515.3 | 4827.3 |
| JACKSOUVILLE KAISAS CIFY | 529.0 1254.0 | 600.0 1371 | 670.3 | SPOKAIIE | 287.0 | 304.1 | 318.3 |
| LOS ARI CELE'S | 1254.0 9596.0 | 1371.7 10497.5 | 1486.4 11200.2 | SH. LOUIS SYRACUSE | 2363.0 | 2565.6 | 2766.2 |
| LAS VLGAS | 273.0 | 320.3 | 364.3 | T'AMPA | 636.0 1106.0 | 694.3 1234.6 | 750.3 1115.6 |
| LOUISVILLE | 819.0 | 886.1 | 945.6 | TUCSOiT | 1102.0 | 1234.6 396.4 | 1115.6 439.6 |
| MEMPHIS | 770.0 | 848.3 | 921.7 | WASHINGTOM D C |  |  |  |
| MIAMI | 1268.0 | 1464.1 | 1661.7 | DAYTON | 10070.8 | 1087.0 | 1319.0 |
| MI LIVAUKEE | 1404.0 | 1513.9 | 1611.8 | HONOLULU | 629.0 | 757.0 | 885.0 |
| MITIEAPOLIS | 1814.0 | 1990.3 | 2195.8 | LIHUE, KAUAI | 300 | 31.3 | 32.3 |
| VEW ORLEAMS | 1046.0 | 1182.9 | 1320.0 | HILO, HAWAII | 26.0 | 26.7 | 27.1 |
| NORFOLK | 681.0 | 730.2 | 767.5 | KAHULI | 46.0 | 48. 0 | 49.3 |
|  |  |  |  | KAILUE | 34 | 35.5 | 36.5 |

CITY－PAIR

## LOS AINGELE＇S－SAN FRANCISCO

 BOSTOII－NEV YORK NEW YORK－WASH IN GTON LOS AHGELES－SAN DIEGO LOS AIIGELES－LAS VEGAS NEV YORK－DETROIT SAil drego－san frailcisco NEW YORK－PITTSBURG LOS ANGLLES－SACRAMEITO CI YORK－CLEVELAM BOSTON－HASHIMGTON ばV yORI＇ーBUFFAIO CHICAGO－ST LOS AIIGELES－PHOTIIX NED YORK－ROCHESTER BOSTOAT－PHILADE＇LPHIA CII CAGO－CLEVVELAIID HONOLULU，LIIUUZ＇，KAUAI，HAWAII DALLAS／FT．WORTIT－HOUSTON
WE＇W YORK－SYRACUSE
HOIOLULU－HILO，IAWAII
PHILADELPIIIA－PITTSBURG
HON OLULU，KAIIULUI，MAUI，HAVAII
CHICAGO－KAllSAS CITY CHICAGO－PITTSB URG BALTIMORE－IVEW YORK WEW YORK－COLUMBUS DETROIT－WASHINGTOIV MI AMI－T AMPA
DETROIT－PHILADELPBIJ． SAV Frailcisco－LAS VEGAS an Frailcinco－rewo SEATTLE－PORTLAIDD HOUSTON－IIEW ORLEAAS CIICAGO－CINCTHOATI
NEH YORK－PROVIDEHCE KAIISAS CITY－ST LOUIS SEATTLE－SPOKAID DETROTT－CLEVELAMD

Annual Person Trips（000）
Car Air

| ir | All－Modes |  |  |  |  |  |  | Non－Competiti |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dist． | 1970 | 1980 | 1990 |  |  |  |  | Min 80 | Max 80 | Min 90 | Ma |
| 354 | 11969.3 | 14544.8 | 16073.0 | 6174.7 | 693 | 826． | 7669.7 |  | 8188.7 | 8056.7 | 9052.5 |
| 190 | 6502.9 | 707 | 9209.8 | 2908.0 | 334 | 488. | 34. |  | 4025.2 | 4155.6 | 4828.3 |
| 216 | 7800.0 | 10015.5 | 12203.3 | 2726.4 | 4136.2 | 3322.0 | 5039.7 | 457. | 4276.6 | 4213.3 | 5210.8 |
| 02 | 24763.2 | 29729.7 | 32928.4 | 1164.2 | 1308.1 | 1289.5 | 1448 | 1878 | 2110.8 | 2080. | 2337.9 |
| 26 | 5176.5 | 7480.3 | 8411.6 | 1715.2 | 2901.9 | 1928.7 | 3263.2 | 2261.8 | 3161.3 | 2543. | 3554.9 |
| 89 | 1050.0 | 1415.7 | 1858.2 | 868.2 | 1037.6 | 1139.6 | 1362.0 | 1010.3 | 1183.7 | 1326 | 1553.7 |
| 465 | 1568.1 | 2393.7 | 3273.0 | 1235.6 | 1388.3 | 1689.5 | 1898.4 | 1299.5 | 1460.2 | 1776. | 1996.5 |
| 330 | 2055.4 | 2456.2 | 023.9 | 1028.5 | 1441.2 | 1266.2 | 1774. | 1190.8 | 1619.3 | 1466. | 9 |
| 380 | 1984.8 | 3153.6 | 3857.9 | 1037.5 | 1094.3 | 1263.2 | 1338.7 | 1237.8 | 1390.7 | 1514.2 | 701.3 |
| 10 | 413.0 | 1909.2 | 2506.6 | 1112.5 | 1396.5 | 460.6 | 1833. | 1228.7 | 1506.6 | 1613.2 | 1978.0 |
| 8 | 50．2 | 40 | 159.5 | 952.7 | 1545.7 | 1222.9 | 1984.1 | 1187.3 | 1814.6 | 1524.0 | 2329.3 |
| 345 | 158.5 | 309 | 99．1 | 149 | 1659.7 | 1595.3 | 2302.8 | 1344 | 1905.7 | 1865. | 2644.2 |
| 06 | 034.3 | 590．1 | 185．2 | 015 | 270.0 | 395．3 | 1745.3 | 1112.5 | 1394.8 | 1528.8 | 1916.8 |
| 289 | 1009.1 | 2058．8 | 2719.5 | 884. | 228.2 | 168.6 | 622．3 | 1017.4 | 1386.1 | 1343. | 1831.0 |
| 256 | 2055.8 | 2863.4 | 3935.8 | 798.7 | 1261.7 | 1097.9 | 1734.2 | 1006. | 1377.4 | 1383. | 1893.2 |
| 358 | 364.5 | 1797.0 | 2541.7 | 940.4 | 1239.9 | 1330.1 | 1753.8 | 105 | 1378.4 | 3.6 | 1949.6 |
| 252 | 1372.4 | 2013.4 | 2525.0 | 737.3 | 1073.1 | 924.6 | 1345.8 | 878.9 | 1183.8 | ． 2 | 1484.5 |
| 274 | 1369.0 | 1320.9 | 2453.7 | 655.0 | 954.7 | 882.6 | 128 | 785.4 | 1041.0 | 10 | 1402.7 |
| 311 | 1128.7 | 1592.7 | 2150.7 | 664.2 | 911.0 | 896.8 | 1230.2 | 773.2 | 1030.5 | 1044.1 | 1391.5 |
| 101 | 361 | 565.3 | 779.8 | 565.3 | 565.3 | 779.8 | 779.8 | 565.3 | 565.3 | 779 | 8 |
| 223 | 1908 | 352 | 5260.2 | 815.0 | 1330.6 | 1217.6 | 1987.8 | 1073.6 | 1397.5 | 1603.9 | 2087．8 |
| 197 | 1319. | 190 | 276 | 536.1 | 887.0 | 864.1 | 1286.8 | 736.4 | 937.3 | 1067.6 | 1358.7 |
| 216 | 341.0 | 520 | 70 | 520.4 | 52 | 70 | 709.2 | 520.4 | 520.4 | 709．2 | 709.2 |
| 274 | 1980.6 | 2.400 | 299 | 36. | 930.8 | 669 | 1160.3 | 709.2 | 1041.4 | 884.1 | 1298.2 |
| 100 | 294 | 473. | 66 | 3. | 73.0 | 663. | 66 | 473.0 | 473.0 | 663.9 | 663.9 |
| 407 | 632． | 37. | 8 | 09 | 64.1 | 29.9 | 1166.4 | 672.2 | 825.7 | 1026.1 | 1260.5 |
| 403 | 1178.7 | 90．4 | 925. | 27. | 758.6 | 80.9 | 980.1 | 617.0 | 866.8 | 797.2 | 1119.9 |
| 180 | 1246.5 | 1754.6 | 2352.4 | 429.5 | 634.9 | 575.9 | 851.2 | 551.4 | 637.3 | 739 | 85 |
| 472 | 568.7 | 916.1 | 1278.6 | 492.7 | 617.7 | 687.7 | 862.2 | 553.8 | 624.1 | 773 | 871.1 |
| 391 | 568.3 | 975.5 | 1413.6 | 520.9 | 660.2 | 754.8 | 956.7 | 582.2 | 696.7 | 843. | 1009.7 |
| 199 | 1571.4 | 2870.2 | 4392.6 | 54.3 .0 | 972.2 | 831.0 | 1487.9 | 754.0 | 1036.0 | 1153.9 | 1585.6 |
| 452 | 573.7 | 855.2 | 1248.4 | 424.9 | 535.1 | 620.2 | 781.1 | 89.3 | 493.5 | 714.2 | 720.4 |
| 419 | 682.5 | 1329.0 | 1805.5 | 578.8 | 754.9 | 786.3 | 1025.6 | 672.4 | 730.3 | 913.5 | 992.2 |
| 187 | 4755.6 | 7218.5 | 10038.6 | 634.2 | 1656.9 | 882.0 | 2304.3 | 1162.1 | 1763.5 | 1616.1 | 2452.5 |
| 168 | 3854.5 | 5102.6 | 5830.6 | 439.6 | 1053.6 | 502.3 | 1203.9 | 797.3 | 1066.4 | 911.0 | 1218.5 |
| 132 | 1922.3 | 3078.5 | 4487.7 | 400.9 | 739.9 | 584.4 | 1078.5 | 610.3 | 737.8 | 889.6 | 1075.6 |
| 303 | 946.3 | 1360.1 | 2980.9 | 549.5 | 862.7 | 880.7 | 1382.4 | 674.0 | 992.3 | 1080.2 | 1590.2 |
| 254 | 612.7 | 930.3 | 1240.0 | 356.2 | 508.6 | 474.8 | 677.9 | 423.1 | 550.6 | 564.0 | 733.9 |
| 149 | 2474.4 | 4578.7 | 7553.0 | 482.9 | 990.4 | 796.6 | 1633.7 | 795.0 | 988.2 | 1311.5 | 1630.1 |
| 230 | 705.9 | 1176 | 1814.3 | 356.2 | 530.4 | 549.4 | 818.0 | 442.7 | 554.6 | 682.7 | 855.3 |
| 23 | 1029.4 | 160 | 24 | 36.3 .6 | 614.9 | 550.8 | 931.3 | 481.3 | 664.9 | 729.1 | 1007.1 |
| 3 | 110 | 17 | 15 | 238 | 267 | 308. | 346. | 249. | 318. | 322.7 | 412.1 |

CITY-PAIR WASHIVGTON-PAIL ADELPHI WASIIINGIOIT-PITTSBURG MII LADELPHIIA-CLEVELAND WASAIIGTOIJ-CLEVELAID WANCAGO-COLUMSUS
INEH YORK-RALEIGII DE L
DALLAS-SAA ALITOIIIO TEEH YORK-PHILADELPHIA IVEN YORN-HARTFORD WE: YORK-GREEATSBORO NEW YORK-MORFOLA ATLANI'A-JACKS̃OIVILLE LOS AHGLLES-TUSCOI DALLAS-IVE ORLLANS HOVOLULU-KAIL UA,KONA, HAWAII BOSTOII-PITTSB URG ALIFMORE-BOSTO. LOS ANGELES-SALINA TMANA-TAMPA DETROIT-MILWAUKES DETROIT-ST. LOUIS CaICAGO-OMAILA CAI CAGO-MEMPHIS NASHIUGTOIV-HARTFORD DALLAS-OKLAHOMA CITY DASHINGTON-NORFOLK WE W YORK-RICHMOND MILWAUKEE'MIWHEAPOLIS DETROTT-PITTSB URG ACKSONVILLT-MIAMI SACRAMEITTO-SALI FRAICISCO OUS AMGELES-FRESHO III CAGO-B UFFALO AAI FRAIICISCO-FRESNO BOSTON-BUFFALO DETROIT-INDIANAPOLIS PIII LADELPHIA-BUFFAL DALLAS-KANSAS CIT TLIANTA-MEMPHIS DALLAS |FT. WORTH-AUSTII

Car Air Annual Person Trips (000) $\begin{array}{llll}\text { Car } & \text { Air } & & \text { All-Modes } \\ \text { Dist. } & \text { Dist. } 1970 & 1980\end{array}$

Annual Person Trips by Air (000)
 Min 80 Min 80
314.1 314.1
314.1
299.8

341.5 | 341.5 |
| :--- |
| 242.0 |
| 29.7 | $\begin{array}{ll}298.7 & 617.1\end{array}$ $\begin{array}{ll}29.7 & 617.1 \\ 384.1 & 585.7\end{array}$ 384.1

346.1 $\begin{array}{lll}346.1 & 601.0 & 537.3 \\ 403.2 & 514.2 & 71.2\end{array}$ $\begin{array}{ll}403.2 & 514.2 \\ 415.1 & 702.1\end{array}$ $\begin{array}{ll}503.4 & 1026.4 \\ 388.8 & 1174.8\end{array}$ $\begin{array}{rr}388.8 & 1174.8 \\ 345.5 & 430.1\end{array}$ $\begin{array}{ll}302.8 & 416.9\end{array}$ $\begin{array}{ll}302.8 & 416.9 \\ 424.0 & 711.8 \\ 379.6 & 511.0\end{array}$
511.6
$472.1 \quad 635.5$
$\begin{array}{ll}293.9 & 635.5 \\ 243.2 & 243.9\end{array}$ $\begin{array}{ll}243.9 & 295.9 \\ 213.1 & 263.2 \\ 263.6\end{array}$
$\begin{array}{lll}213.1 & 263.6 & 376.7 \\ 265.4 & 347.8 & 389.3\end{array}$
$\begin{array}{lll}241.1 & 363.3 & 389.8 \\ 368.9 & 676.7 & 542.1\end{array}$
$\begin{array}{ll}368.9 & 676.7\end{array}$
$\begin{array}{ll}427.6 & 584.2 \\ 268.4 & 397.1\end{array}$
432.2
289.6
289.6
293.5
313.7
$\begin{array}{ll}293.5 & 387.7 \\ 313.7 & 428.9\end{array}$

| 313.7 | 428.9 |
| :--- | :--- |
| 323.2 | 448.7 |

$\begin{array}{ll}240.7 & 368.3 \\ 286.7 & 502.4\end{array}$
286.7
245.1

| 552.7 |
| :--- |
| 7 |
| 278.7 |

244.0
358.1
358.1
870.0
870.0
226.3
221.4
226.3
221.4
$\begin{array}{ll}221.4 & 277.0 \\ 270.2 & 763.0\end{array}$
$\begin{array}{ll}270.2 & 763.0 \\ 189.6 & 231.9 \\ 210.9 & 317.3\end{array}$
210.3
204.8
313.1
289.8
$\begin{array}{ll}284.2 \\ 213.1 & 476.9 \\ 289.8 & 580.1\end{array}$
$\begin{array}{ll}284.2 & 322.9 \\ 467.8 & 624.6 \\ 476.9 & 546.2 \\ 580.1 & 499.8\end{array}$
$580.1 \quad 499.8$

Min 80
536.6
371.8

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 415.0 | 791.9 | 536.6 | 586.7 | 709.0 | 775.1 |
| 404.6 | 596.5 | 371.8 | 459.1 | 501.8 | 619.6 |
| 501.1 | 673.8 | 386.3 | 517.1 | 566.8 | 758.6 |
| 405.6 | 838.0 | 517.6 | 605.8 | 702.9 | 822.6 |
| 537.3 | 819.3 | 464.2 | 669.5 | 649.3 | 936.5 |
| 464.2 | 806.9 | 460.5 | 666.0 | 617.6 | 893.3 |
| 719.7 | 906.5 | 453.5 | 547.6 | 799.5 | 965.5 |
| 686.7 | 1161.5 | 548.7 | 761.3 | 907.7 | 1259.5 |
| 591.0 | 1205.0 | 768.9 | 1001.9 | 902.7 | 1176.3 |
| 473.5 | 1430.8 | 1051.9 | 1144.5 | 1281.0 | 1393.9 |
| 574.9 | 715.7 | 378.8 | 468.0 | 630.4 | 778.7 |
| 434.2 | 597.8 | 346.4 | 472.1 | 496.6 | 676.9 |
| 759.4 | 1274.9 | 545.8 | 805.3 | 977.5 | 1442.4 |
| 534.0 | 719.6 | 435.7 | 554.5 | 612.9 | 780.0 |
| 918.3 | 1236.1 | 538.5 | 701.1 | 1047.3 | 1363.6 |
| 437.2 | 737.7 | 382.1 | 553.1 | 568.5 | 822.8 |
| 376.7 | 376.7 | 249.2 | 249.2 | 376.7 | 376.7 |
| 304.3 | 366.1 | 244.5 | 249.2 | 339.6 | 346.1 |
| 389.8 | 510.7 | 297.0 | 386.9 | 436.1 | 568.2 |
| 318.1 | 479.4 | 295.5 | 395.0 | 389.9 | 521.3 |
| 542.8 | 995.5 | 499.8 | 774.5 | 735.4 | 1139.5 |
| 761.8 | 1040.7 | 487.7 | 659.7 | 868.9 | 1175.3 |
| 382.9 | 566.6 | 318.8 | 453.5 | 454.8 | 647.0 |
| 666.6 | 1023.7 | 527.0 | 753.6 | 812.8 | 1162.2 |
| 443.2 | 609.3 | 335.6 | 434.1 | 513.6 | 664.2 |
| 484.0 | 639.4 | 330.4 | 430.6 | 544.9 | 710.2 |
| 499.8 | 683.4 | 362.1 | 468.5 | 577.0 | 746.5 |
| 526.4 | 730.9 | 374.6 | 495.2 | 610.2 | 806.7 |
| 361.2 | 552.7 | 293.2 | 414.8 | 440.0 | 622.5 |
| 450.5 | 789.5 | 403.2 | 517.1 | 633.6 | 812.7 |
| 319.9 | 669.4 | 402.9 | 517.0 | 525.7 | 674.7 |
| 393.5 | 554.4 | 295.5 | 392.5 | 460.2 | 611.3 |
| 435.9 | 663.9 | 339.8 | 484.0 | 531.6 | 757.2 |
| 298.7 | 622.3 | 362.1 | 575.6 | 443.3 | 704.7 |
| 697.2 | 1074.6 | 436.5 | 627.4 | 849.8 | 1221.4 |
| 1015.7 | 1141.3 | 1010.8 | 1135.8 | 1180.1 | 1326.0 |
| 293.8 | 568.4 | 341.0 | 451.9 | 442.6 | 586.6 |
| 356.8 | 446.4 | 248.7 | 279.3 | 400.8 | 450.1 |
| 352.5 | 995.2 | 555.2 | 775.1 | 724.2 | 1011.1 |
| 301.5 | 368.7 | 205.8 | 252.4 | 327.3 | 401.3 |
| 255.5 | 384.3 | 260.1 | 340.0 | 315.1 | 411.8 |
| 322.9 | 448.1 | 235.5 | 320.9 | 371.2 | 505.8 |
| 624.6 | 853.7 | 395.2 | 510.4 | 721.1 | 931.4 |
| 546.2 | 832.0 | 377.1 | 549.1 | 657.9 | 958.1 |
| 499.8 | 1000.8 | 457.1 | 587.9 | 788.5 | 1014.1 |

1014.1

## REFERENCES

| A-1 | Standard Method of Estimating Comparative Direct Operating Costs <br> of Turbine Powered Transport Airplanes, Air Transport Association <br> of America, December 1967. |
| :--- | :--- |
| A-2 | Pacific Southwest Airlines Financial Statement for the 12 Months <br> Ending 31 December 1970, as filed with California Public Utilities <br> Commission. |
| A-3 | Pacific Southwest Airlines Annual Report for 1970. |
| A-4 | Air Carrier Financial Statistics, Civil Aeronautics Board, <br> December 1970, Volume XVIII-4. |
| A-5 | Air Carrier Traffic Statistics, Civil Aeronautics Board, <br> December 1970, Volume XVI-12. |
| A-6 | Braniff Airways, Incorporated Annual Report, 1970. |
| A-7 | Continental Airlines 1970 Annual Report. |
| A-8 | Allegheny Airlines, Inc. 1970 Annual Report. |

## APPENDIX B

## AVAILABLE AIRCRAFT TECHNOLOGY

## CONTENTS

Page
B. 1 Aircraft Definition. ..... B-2
B. 1. a Design Selection. ..... B-2
B. 1.b 1980 Externally Blown Flap STOL ..... B-3
B. 1.c 1990 Augmentor Wing STOL ..... B-5
B. l.d 1990 Lift-Fan VTOL. ..... B-5
B. 2 Aircraft Noise Definition. ..... B-6
B. 2. a 1980 EBF-STOL. ..... B-6
B. 2. b 1990 AW-STOL ..... B-9
B. 2. c 1990 Lift-Fan VTOL ..... B-9
References ..... B-47
FIGURES
B-1. Propulsive Lift Concept ..... B-11
B-2. 1980 Externally Blown Flap STOL. ..... B-12
B-3. 1980 STOL Externally Blown Flap Weight and Thrust Versus Passenger Capacity ..... B-13
B-4. Takeoff Gross Weight Summary. ..... B-14
B-5. 1990 Augmentor Wing STOL ..... B-1 5
B-6. Mission Performance Profiles - 150-Passenger STOL. ..... B-1 6
B-7. 1990 Lift Fan VTOL Aircraft . ..... B-1 7
B-8. Mission Performance Profiles - Baseline Lift Fan 100-Passenger ..... B-1 8
B-9. Principal Internal and External Noise Sources ..... B-19
B-10. Comparison of Aircraft Noise Levels Relative to FAA- FAR 36 ..... B-20
B-11. Externally Blown Flap Noise ..... B- 21
B-12. Estimated 1980 EBF Takeoff and Landing Noise. ..... B-22

## FIGURES (Contined)

Page
B-13. NASA EBF Noise Estimates. ..... B- 23
B-14. Estimated 1980 STOL Noise. ..... B-24
B-15. Conversion of PNL at 500 ft to EPNL vs Distance ..... B-25
B-16. 1980 EBF Takeoff and Landing Noise Levels ..... B-26
B-17. 1980 EBF Sideline Noise Levels ..... B-27
B-18. 1980 STOL EBF Desired Noise Levels ..... B-28
B-19. 1980 Augmentor Wing Takeoff and Landing Noise Levels ..... B-29
B-20. 1980 Augmentor Wing Sideline Noise Levels ..... B-30
B-21. Augmentor Wing Noise ..... B-31
B-22. 1990 STOL Takeoff and Landing Noise Levels ..... B-32
B-23. 1990 STOL Sideline Noise Levels ..... B-33
B-24. 1990 STOL-AW Desired Noise Levels ..... B-34
B-25. 1990 VTOL Approach, Takeoff and Sideline Noise Levels ..... B-35
B-26. 1990 Lift Fan VTOL Desired Noise Levels ..... B-36

## TABLES

B-1. EBF STOL Aircraft Geometry ..... B-37
B-2. $\quad 1980$ STOL Aircraft Characteristics Summary ..... B-38
B-3. 1980 EBF-STOL Block Performance ..... B-39
B-4. 1990 Augmentor Wing STOL Aircraft Geometry ..... B-40
B-5. $\quad 1990$ STOL Aircraft Characteristics Summary ..... B-41
B-6. 1990 Augmentor Wing STOL Block Performance ..... B-42
B-7. $\quad 1990$ Lift Fan VTOL Aircraft Geometry. ..... B-43
B-8. $\quad 1990$ VTOL Aircraft Characteristics Summary ..... B-44
B-9. 1990 Lift Fan VTOL Aricraft Block Performance ..... B-45

## APPENDIX B

## AVAILABLE AIRCRAFT TECHNOLOGY

Any study of the economic viability of short haul air transportation and its environmental impact requires the definition of aircraft compatible with the projected time of introduction of the service and the transportation objectives. The pertinent considerations for this study were: a 1980 initial operating capability (IOC) and an advanced system for 1990, the use of existing airfields where possible, and the minimization of noise impact. These considerations have a significant effect upon the requirements for aircraft technology. There are a number of potential options in aircraft design to be considered. These include the powered lift STOL systems such as the externally blown flap or the augmentor wing concepts, and the VTOL systems such as the lift fan concepts. In addition to the aircraft design concept, there are the type and degree of sound suppression, the engine technology and the structures technology.

Since the first opportunity to phase in a STOL system would be as a replacement for and supplement to present CTOL aircraft used on the short haul routes, the 1980 time period is of interest, for at this time a part of the CTOL fleet will be approaching the end of normal service life. Therefore, a set of four STOL aircraft of varying passenger capacity was defined for each design type. The aircraft represent a minimum technological advancement for the 1980 IOC having the capability to use shorter runways and reduce noise significantly. The 1990 IOC allows for the consideration of a more advanced STOL technology, and the inclusion of a VTOL capability. Again, a set of four aircraft of varying passenger capacity was defined for each design type. The aerodynamic, structural and propulsion technology was defined for each aircraft and the block performance determined as a function of range to permit an economic evaluation.

The noise impact was evaluated for nominal operational paths and airport categories and capacities. These noise data were generated in the form of NEF contours for relative comparison and determination of the impacted area. The resulting designs provide for a relative assessment of technology for STOL/VTOL service introduction and implementation.

## B. 1 AIRCRAFT DEFINITION

a. Design Selection

In view of the number of options in aircraft design and operations that are possible for the 1980 and 1990 time periods, it was decided to define a single type of STOL design that would represent a reasonable aircraft to be anticipated for 1980 , and to define a more advanced STOL and a VTOL for 1990. The most salient characteristics selected were: 1980 STOL

Field Length 3,000 ft.
Powered Lift System Externally Blown Flap (EBF)
Passenger Size

Range
150.Primary

50, 100, 200 - Secondary
500 smi.
Structures
Aluminum Technology
Noise
$\mathrm{M}_{\mathrm{Cr}}$
Suppression to provide 95 EPNdB @ 500 ft . desired
0.8 @ 30, 000 ft .

1990 STOL
Field Length 2,000 ft.
Powered Lift System Augmentor Wing (AW)

study. This engine is typical of current "paper" engines and could be available for 1980, but additional noise suppression would have to be incorporated into the design to approach the desired noise levels.

Reference to the section on airport requirements and capacities (Appendix D) will indicate that there is no requirement for a field length capability of less than 3000 ft . where available airports, traffic requirements and passenger convenience are considered. This field length tends to reduce the aircraft design problem in terms of weight, wing loading and power requirements. The aircraft geometry and mission characteristics are summarized in Table B-1. The weight and propulsion characteristics are summarized in Table B-2 which also shows a complete weight statement for the 150 passenger basic design airplane. The empty weight, engine weight and thrust of aircraft with other passenger capacities are listed in Figure B-3 and the variations as a function of passenger capacity are also shown.

A comparison of the takeoff gross weight as a function of passenger capacity is shown in Figure B-4 for 1980 EBF-STOL relative to other V/STOL design aircraft and the other aircraft of this study. A simplistic check was made of the impact of range, cruise altitude and fuel reserves by considering the additional fuel in terms of equivalent passengers. A nominal increase in TOGW of approximately $20,000 \mathrm{lb}$ for the 1980 EBF STOL 150 -passenger aircraft results from an increase in design range from 500 smi to 500 nmi , an increase in reserves from 100 nmi at $30,000 \mathrm{ft}$ to 200 nmi at $20,000 \mathrm{ft}$, plus 15 min at $10,000 \mathrm{ft}$ and cruise at 0.76 M at $20,000 \mathrm{ft}$ instead of 0.8 M at $30,000 \mathrm{ft}$. Considering the differences in aircraft design range, field length requirement, fuel reserves, cruise altitude, and material technology, a reasonable level and variation relative to the other studies are shown for the basic 1980 EBF STOL.

The block performance for the 1980 EBF-STOL is shown in Table B-3 for stage lengths from 50 to 500 statute miles. These data were used in the determination of operating costs.
c. 1990 Augmentor Wing STOL

A conceptual illustration of the basic aircraft design is shown in Figure B-5. The geometry and design mission are summarized in Table B-4. The primary changes from the 1980 EBF-STOL are in the engine configuration and the wing and tail surfaces geometry. The weight and engine characteristics are summarized in Table B-5. The use of composites in the structure and a more advanced engine technology result in a lower weight than for the 1980 EBF-STOL even though a 2000 ft field length capability is specified in place of the 3000 ft for the 1980 case.

The block performance for the 1990 AW-STOL is summarized in Table B-6. The block performance mission flight profiles are shown in Figure B-6. The higher cruise Mach number for the 1990 STOL results in reduced block times, as might be expected. The reduced field length capability will result in a reduced noise impact area, but is not required for the available fields selected for STOL operations. Where a new STOLport might be considered, the necessary size is reduced.

## d. 1990 Lift-Fan VTOL

A conceptual illustration of the basic aircraft design is shown in Figure B-7. The geometry and design mission are summarized in Table B-7. The wing geometry has been altered to accommodate the lift-fan engines, and the cruise engines have been placed in a single nacelle because of the reduced wing span. The weight and engine characteristics are summarized in Table B-8. The use of composites and advanced engine technology results in a lower weight for this aircraft also. This aircraft has a vertical takeoff capability, but a reasonable ground area is required for aircraft parking, taxiing and turning.

The block performance of the 1990 LF-VTOL is summarized in Table B-9. The block performance mission flight profiles are shown in Figure B-8. The block times are further reduced from those for the 1990

AW-STOL. The VTOL capability allows the implementation of a CBD VTOLport with minimum land acquisition requirements.

## B. 2 AIR CRAFT NOISE DEFINITION

A potential benefit to be derived from the introduction of V/STOL aircraft is the significant reduction in noise impact on the area surrounding the airport. Partial benefits result from the reduced field length requirements with steeper approach and departure flight path angles. The full potential for noise reduction, however, requires the maximum use of noise suppression techniques on the V/STOL aircraft. The combination of V/STOL operations and full realization of noise suppression would permit the use of municipal and general aviation airports where CTOL aircraft are not welcome or are not permitted.

The definition of noise levels and of noise suppression methods is currently receiving considerable attention and study by government agencies and industry. The principal internal and external noise sources for a turbofan engine are illustrated in Figure B-9. A nominal comparison of current aircraft noise levels relative to FAA-FAR 36 is illustrated in Figure B-10. In general, most of the current aircraft are above the FAR 36 level, and are far above the desired noise level of 95 EPNdB for the 150passenger $1980 \mathrm{~V} / \mathrm{STOL}$ aircraft, 85 EPNdB for the 1990 STOL and 90 EPNdB for the 1990 VTOL. While these were the designated desired noise levels for this study and provided the basis for the NEF impact, a buildup of predicted noise level was constructed for each of the aircraft designs to provide an assessment of the $R \& D$ technology requirements.
a. $1980 \mathrm{EBF}-\mathrm{STOL}$

The externally blown flap concept was selected for the 1980 STOL design, as indicated in the aircraft section. The noise sources for this
concept are illustrated in Figure B-11. In addition, current EBF programs are indicated, the requirements to reach the desired noise level are summarized, and some new research areas to improve noise alleviation are noted. A noise buildup was made for the current study using available engine data and NASA noise test results. The noise estimate assumptions for this case were:

- Engine exhaust velocity characteristics of the P\&W STF-344 design used for the aircraft.
- Flap interaction noise based on NASA research results.
- Attenuation with distance based on spherical radiation.
- Atmospheric absorption of 1 dB per 100 ft .
- No tone corrections required.
- Duration correction based on scaled CTOL data.

Considering the assumptions above and the available data, there were two possible approaches to the noise derivation:
(1) Use the NASA research data to predict the PNL at 500 ft .
(2) Use the $P \& W$ engine noise prediction and scale up for flap effects to predict PNL at 500 ft .

It was decided to derive the noise using both approaches and compare the results. In applying approach (1) a core velocity of 935 fps was used to yield 114 PNdB at 500 ft . for takeoff and a core velocity of 750 fps yielded 114 PNdB at 500 ft for landing. It was decided to use the same curve for takeoff and landing. In approach (2) a P\&W estimate of 94 PNdB at 500 ft for a single engine at takeoff thrust and 90 KIAS provided the initial print. A 6 PNdB increment was added for four engines. A 10 PNdB increment was added for flap interaction and reflection effects. The result is a 114 PNdB noise level for approach (1) and a 110 PNdb noise level for approach (2), both for the 150 -passenger size aircraft. The noise levels as a function of passenger size for the two approaches are compared in Figure B-12. A NASA EBF noise estimate from Reference B-1 is shown in Figure B-13 for
the same class of engine. Since this reference was the basis for approach (1) the results are comparable. However, the results for both approaches are well above the desired goal.

In addition to the EBF-STOL, an evaluation was made of the AWSTOL concept for 1980. The $1980 \mathrm{AW}-\mathrm{STOL}$ did not include the sonic inlet noise suppression option as this was considered questionable for the 1980 operational capability. The resulting noise level is compared with the EBF design in Figure B-14. While a reduction in noise level is realized, it is well above the desired level. It was not considered sufficient to alter the basic 1980 aircraft design selection. The evaluation and RDT\&E costing of the 1980 EBF-STOL have included factors to account for the necessary technology in the appropriate time period (i. e., 1980 IOC). Current studies indicate that in the 1980 time period the desired noise levels are more likely to be obtained with an AW design than with the EBF. However, it is felt that the choice of propulsive lift concept would not significantly affect the costing and modal split study. The PNdB data developed were converted to EPNdB by application of distance and atmospheric attenuation and duration corrections. These corrections are illustrated in Figure B-15. The resulting predicted takeoff and landing and sideline EPNDB variations with distance and aircraft size are shown in Figures B-16 and B-17 for the 1980 EBF-STOL. This represents a normal development for the EBF, but the noise level is above the NASA quiet STOL desired goal of 95 EPNdB at 500 ft . An EPNdB variation with distance and aircraft size (both takeoff and landing and sideline) that matches the design goal is shown in Figure B-18. Progress toward this goal would require accelerated RDT\&E effort. The desired EPNdB noise level was used to determine noise impact, and allowance for RDT\&E acceleration was made in the cost study.

The 1980 augmentor wing estimates developed for comparison are shown in Figures B-19 and B-20. These predictions do not include the sonic inlet effect. These data are for information only since the 1980 EBF-STOL was used in the study.

## b. $1990 \mathrm{AW}-\mathrm{STOL}$

The augmentor wing concept was selected for the 1990 STOL. An augmentor wing installation is illustrated in Figure B-21. Noise sources are indicated on the illustration. In addition, listed in the figure are areas of research, engine requirements and augmentor requirements for reduced noise levels. On the basis of the data available at the time of the prediction, it was determined that a 95 EPNdB level at 500 ft could be realized. These data are sufficiently promising to indicate that this noise level might be available well before 1990. On this basis, a desired noise level of 85 EPNdB was selected for the 1990 AW-STOL. The EPNdB variation with aircraft size and distance is shown in Figures B-22 and B-23 for the initial prediction of 95 EPNdB at 500 ft for the 150 -passenger aircraft. The EPNdB variation for the desired level of 85 EPNdB at 500 ft is shown in Figure B-24. The desired level was used for the noise impact analysis.
c. 1990 Lift-Fan VTOL

The lift-fan VTOL concept utilizes four low BPR turbofan cruise engines and four lift fan-in-wing installations. The sound suppression techniques for the cruise engines will be the same as for CTOL or EBF turbofan engines. The lift-fans will use the standard techniques for the gas generators, but the fans will require special attention. The predicted noise levels are shown as EPNdB as a function of aircraft size and distance in Figure B-25. The desired noise levels for the LF-VTOL are shown in Figure B-26.

As previously indicated, the desired noise levels have been used to determine noise impact relative to current CTOL operations. This provides an index of what might be achieved in terms of relative noise reduction. Achievement of the desired noise levels will require favorable development of the current and future noise suppression studies. There may be changes in engine and aircraft weight and performance characteristics that will result from such things as the reduction of exhaust velocities to the 550 fps level. These changes have not been estimated here, nor has any allowance been made for such effects in the aircraft and engine performance or weights.


Figure B-1. Propulsive Lift Concepts


Figure B-2. 1980 Externally Blown Flap STOL


Figure B-3. 1980 STOL Externally Blown Flap Weight and Thrust Versus Passenger Capacity


Figure B-4. Takeoff Gross Weight Summary

1. Douglas 1980 EBF Design Condition A, $\mathrm{M}_{\mathrm{cr}}=0.7$
2. Aerospace 1980 EBF Design (modified)

Condition A, $\mathrm{M}_{\mathrm{Cr}}=0.76$
3. Lockheed 1980 EBF Design

Condition $A, \mathrm{M}_{\mathrm{Cr}}=0.8$
4. Aerospace 1980 EBF Design

Condition B, $\mathrm{M}_{\mathrm{cr}}=0.8$
5. ACMD/Aerospace 1990 VTOL Design

Condition $\mathrm{C}, \mathrm{M}_{\mathrm{Cr}}=0.9$
6. ACMD/Aerospace 1990 AW Design

Condition D, $\mathrm{M}_{\mathrm{cr}}=0.9$
Condition A - 500 nmi Range; 200 nmi at $\mathrm{h}+15 \mathrm{~min}$ at 10000 ft Reserves; $\mathrm{h}_{\mathrm{cr}}=2000^{\mathrm{ft}}$.
Condition B - 500 smi Range; 100 nm at $h_{\text {cr }}$ Reserves $h_{c r}=30000 \mathrm{ft}$.
Condition C - 500 smi Range; 0.5 hr at S. L. Reserves $h_{c r}=30000 \mathrm{ft}$.
Condition D - 500 smi Range; 1.25 hr . at 10000 ft Reserves $\mathrm{h}_{\mathrm{cr}}=30000 \mathrm{ft}$.


Figure B-5. 1990 Augmentor Wing STOL


Figure B-6. Mission Performance Profiles - 150-Passenger STOL


Figure B-7. 1990 Lift-Fan VTOL Aircraft


Figure B-8. Mission Performance Profiles - Baseline Lift Fan
150-Passenger
internal noise sources


EXTERNAL NOISE SOURCES


Figure B-9. Principal Internal and External Noise Sources

## take-off (fily over) noise


approach noise


Figure B-10. Comparison of Aircraft Noise Levels Relative to FAA-FAR 36


- CURRENT EXHAUST/FLAP INTERACTION NOISE TESTING PROGRAMS LEWIS COLD FLOW $1 / 13$ AND $1 / 2$ SCALE LANGLEY COLD FLOW PROP FAN EDWARDS FULL SCALE HOT EXHAUST
- ENGINE REQUIREMENTS FOR 95. PNdB AT 500 FT
1.2 FAN PRESSURE RATIO
12.0 BYPASS RATIO

550 FPS EXHAUST VELOCITY
0 NEW RESEARCH AREAS
MIXER NOZZLES
OVER-THE-WING ENGINE INSTALLATION
Figure B-11. Externally Blown Flap Noise


Figure B-12. Estimated 1980 EBF Takeoff and Landing Noise


Figure B-13. NASA EBF Noise Estimates


Figure B-14. Estimated 1980 STOL Noise


Figure B-15. Conversion of PNL at 500' to EPNL vs Distance


Figure B-16. 1980 EBF Takeoff and Landing Noise Levels


Figure B-17. 1980 EBF Sideline Noise Levels


Figure B-18. 1980 STOL EBF Desired Noise Levels


Figure B-19. 1980 Augmentor Wing Takeoff and Landing Noise Levels


Figure B-20. 1980 Augmentor Wing Sideline Noise Levels


- AUGMENTOR RESEARCH

MOLTIPLE NOZZLES SCREECH SHIELDS LINED FLAPS

- ENGINE REQUIREMENTS FOR 95 PNdB AT 500 FT

800 PFS CORE VELOCITY
SONIC INLET
3.0 FAN PRESSURE RATIO
2. 3 BYPASS RATIO
a. AGMEMTOR REQJIREMENTS FOR 5 PNUB AT 500 FT
2.6 NOZZIE PRESSURE RATIO
1.4 THRUST AUGMENTATION

AU POSSIBIE SUPPRESSION TECHNIQUES
Figure B-21. Augmentor Wing Noise


Figure B-22. 1990 STOL AW Takeoff and Landing Noise Levels


Figure B-23. 1990 STOL AW Sideline Noise Levels


Figure B-24. 1990 STOL-AW - Desired Noise Levels


Figure B-25. 1990 VTOL - Approach, Takeoff and Sideline Noise Levels


Figure B-26. 1990 Lift Fan VTOL - Desired Noise Levels

## Table B-1. EBF STOL Aircraft Geometry

| PASSENGER SIZE | 50 | 100 | 150 | 200 |
| :---: | :---: | :---: | :---: | :---: |
| FUSELAGE LENGTH | -- | -- | 129 | -- |
| FUSELAGE WIDTH | -- | -- | 13. 34 | -- |
| WING LOADING | 90 | 90 | 90 | 90 |
| WING AREA | 569 | 975 | 1,358 | 1,715 |
| THRUST/WEIGHT | 0. 544 | 0. 544 | 0.544 | 0. 544 |
| FIELD LENGTH | 3,000 | 3, 000 | 3,000 | 3, 000 |
| NUMBER OF ENGINES | 4 | 4 | 4 | 4 |
| THRUST / ENGINE (LB) | 6,960 | 11,850 | 16,600 | 21,000 |
| DESIGN MISSION |  |  |  |  |
| Taxi Out 3 |  |  | $\begin{array}{r} 250 \mathrm{I} \\ \mathrm{Ma} \end{array}$ | to $10,000 \mathrm{ft}$. C above |
| Taxi In 3 |  |  |  | 00 ft . |
| Takeoff |  |  | $\text { it } \quad \theta_{\mathrm{f}}^{\circ} \leq$ | Flight Idle |
| App. \& Land. $\quad \frac{4}{11}$ Min. |  |  | $\begin{aligned} & \mathrm{t} \\ & \mathrm{l} 15 \\ & 500 \end{aligned}$ | $30,000 \mathrm{ft} \text {. }$ |

Table B-2. 1980 STOL Aircraft Characteristics Summary

$$
\text { TOFL: } 3,000^{\prime}, \mathrm{M}_{\mathrm{Cr}}=0.8 @ 30 \mathrm{~K}^{\prime}
$$

Table B-3. 1980 EBF-STOL Block Performance


Table B-4. 1990 Augmentor Wing STOL Aircraft Geometry

| PASSENGER SIZE | 50 | 100 | 150 | 200 |
| :---: | :---: | :---: | :---: | :---: |
| FUSELAGE LENGTH (FT) | 70 | 105 | 132 | 159 |
| FUSELAGE WIDTH (FT) | 12.4 | 14.1 | 14.1 | 14.1 |
| WING LOADING (psf) | 90 | 90 | 90 | 90 |
| WING AREA ( $\mathrm{FT}^{2}$ ) | 494 | 882 | 1,239 | 1,595 |
| THRUST/WEIGHT | 0. 45 | 0. 45 | 0.45 | 0.45 |
| FIELD LENGTH (FT) | 2,000 | 2,000 | 2,000 | 2,000 |
| NUMBER OF ENGINES | 4 | 4 | 4 | 4 |
| THRUST/ENGINE (LBS) | 6,431 | 10,824 | 14,363 | 17,807 |

DESIGN MISSION

| TAXI OUT | 3 Min | CLIMB - | 250 KEAS to $10,000 \mathrm{ft}$. Max R/C Above |
| :---: | :---: | :---: | :---: |
| TAXI IN | 3 Min | CRUISE - | . $90 \mathrm{M} @ 30,000 \mathrm{ft}$. |
| TAKEOFF | 1 Min | DESCENT - | $\theta_{\mathrm{f}} \leq-6^{\circ}$ @ Flight Idle |
| APP. \& LAND. | 4 Min | RESERVE - | $1.25 \mathrm{hr} @ 10,000 \mathrm{ft}$. |
|  | 11 Min | RANGE - | 500 s m |

ENGINE:

```
BPR = 2. 8, OVERALL PR = 20, TIT = 2860
```

Table B-5. 1990 STOL Aircraft Characteristics Summary

$$
\text { TOF L: } 2000^{\prime}, \mathrm{M}_{\mathrm{Cr}}=0.9 @ 30 \mathrm{~K}^{\prime}
$$

Passenger Size
Weight Statement

| Weight Statement |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Structure |  |  |  |  |
| Composites | 7,135 | 14,629 | 21,648 | 28,888 |
| Aluminum | 1,840 | 3,211 | 4,124 | 5,098 |
| Total | 8,975 | 17,840 | 25,772 | 33,986 |
| Flight Controls | 1,068 | 1,728 | 2,326 | 2,921 |
| Fixed Equipment | 7,700 | 11,200 | 14,700 | 18,100 |
| Engines (Bare) | 3,515 | 6,044 | 8,157 | 10,261 |
| Engine Equipment | 1,968 | 2,962 | 3,630 | 4,269 |
| Weight Empty | 23,226 | 39,774 | 54,585 | 69,537 |
| Useful Load | 1,100 | 1,800 | 2,500 | 3,200 |
| OWE | 24,326 | 41,574 | 57,085 | 72,737 |
| Payload | 11,000 | 22,000 | 33,000 | 44,000 |
| Fuel | 9,101 | 15,843 | 21,393 | 26,833 |
| TOGW | 44,427 | 79,417 | 111,478 | 143,570 |

Engine Specifications

| Cycle: | AW |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: |
| BPR: | 2.8 |  |  |  |  |
| PR: | 20 | Nominal | Differential Pressure: 16508 | 17,807 |  |
| SLST: |  | 6,431 | 10,824 | 14,363 |  |
| No: | 4 |  |  |  |  |
| TTI: | $2860^{\circ} \mathrm{R}$ |  |  |  |  |
| SLSFC: | 0.452 Est., Based on Fuel for T. O. and SLST |  |  |  |  |

Lift Engine Ops.

$$
\begin{aligned}
& \text { T. O. } .021 \mathrm{hr} \\
& \text { Lndg. } .080 \mathrm{hr}
\end{aligned}
$$

OWE, Operating Weight Empty; TOGW, Take-Off Gross Weight; BPR, By-Pass Ratio; PR, Pressure Ratio; SLST, Sea Level Strategic Thrust; $\mathrm{T}_{\mathrm{TI}}$, Turbine Intlet Temp;
SLSFC, Sea Level Specific Fuel Consumption.

Table B-6. 1990 Augmentor Wing STOL Block Performance

| STAGE <br> LENGTH <br> (S. M. ) |  | 50 PASS |  | 100 PASS |  | 150 PASS |  | 200 PASS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \hline \text { BLOCK } \\ \text { TIME } \\ \text { (HRS) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { BLOCK } \\ \text { FUEL } \\ \text { (LBS) } \\ \hline \end{gathered}$ | BLOCK TIME | BLOCK FUEL | BLOCK TIME | BLOCK FUEL | BLOCK TIME | BLOCK FUEL |
|  | 50 | . 326 | 1,532 | . 324 | 2,650 | . 322 | 3,614 | . 321 | 4,570 |
|  | 100 | . 385 | 2,324 | . 386 | 3,947 | . 386 | 5. 283 | . 387 | 6,590 |
| 0 | 200 | . 556 | 3,397 | . 558 | 5,791 | . 559 | 7,777 | . 560 | 9, 720 |
| A | 300 | . 730 | 4,288 | . 731 | 7,304 | . 734 | 9,804 | . 735 | 12,254 |
|  | 500 | 1. 058 | 6,524 | 1. 060 | 11,096 | 1. 062 | 14,866 | 1.063 | 18,541 |

Table B-7. 1990 Lift-Fan VTOL Aircraft Geometry

| PASSENGER SIZE | 50 | 100 | 150 | 200 |
| :--- | :---: | :---: | :---: | :---: |
| FUSELAGE LENGTH (FT) |  |  |  |  |
| FUSELAGE WIDTH (FT) | 76.5 | 105.4 | 132.5 | 159.8 |
| WING AREA (FT) | 14.1 | 14.1 | 14.1 | 14.1 |
| WING LOADING (PSf) | 425 | 765 | 1112 | 1458 |
| LIFT/CRUISE THRU ST | 100 | 100 | 100 | 100 |
| LIFT THRUST | 23,804 | 40,680 | 57,612 | 74,470 |

DESIGN MISSION

| TAXI OUT | 1 Min | CLIMB - | $@ \operatorname{Max} . \operatorname{R} / \mathrm{C}$ |
| :--- | :--- | :--- | :--- |
| TAXI IN | 1 Min | CRUISE $-\quad \mathrm{M}=.9 @ 30,000 \mathrm{ft}.$. |  |
| TAKEOFF | 1 Min | DESCENT $-\theta_{\mathrm{f}} \geq-6^{\circ}$ |  |
| APP. \& LAND. | $\frac{4 \mathrm{Min}}{7 \mathrm{Min}}$ | RESERVE $-.5 \mathrm{hrs} @ 10,000 \mathrm{ft}$. |  |
|  |  | STAGE LENGTH $-500 \mathrm{s.m}$. |  |

Table B-8. 1990 VTOL Aircraft Characteristics Summary

```
TOF L: 0, Mcr = 0. 9 @ 30K'
```

| Passenger Size | 50 | 100 | 150 | 200 |
| :---: | :---: | :---: | :---: | :---: |
| Weight Statement |  |  |  |  |
| Structure |  |  |  |  |
| Composites | 6,796 | 12,117 | 18,005 | 24, 024 |
| Aluminum | 1,752 | 2,660 | 3,430 | 4,239 |
| Total | 8, 548 | 14,777 | 21,435 | 28, 263 |
| Flight Controls | 1, 340 | 1, 829 | 2,320 | 2,806 |
| Fixed Equipment | 7,700 | 11,200 | 14,700 | 18,100 |
| Engines (Bare) |  |  |  |  |
| Lift/Cruise | 2, 639 | 4,270 | 5,905 | 7,534 |
| Lift | 1,458 | 5,253 | 9,165 | 13,066 |
| Engine Equipment | 1,889 | 3,822 | 5,787 | 7,743 |
| Weight Empty | 23,574 | 41,151 | 59,313 | 77,512 |
| Useful Load | 1, 200 | 1,900 | 2, 700 | 3,400 |
| OWE | 24,774 | 43, 051 | 62, 013 | 80,912 |
| Payload | 11,000 | 22, 000 | 33, 000 | 44, 000 |
| Fuel | 6,699 | 11, 444 | 16,201 | 20,906 |
| TOGW | 42,474 | 76,495 | 111,214 | 145,817 |
| Engine Specifications |  |  |  |  |
| Cycle: T |  |  |  |  |
| BPR: 2 |  |  |  |  |
| PR: 20 |  | Nominal Diffe | 1 Pressure: | 16508 |
| SLST: 14404; 22512 |  |  |  |  |
| Lift/Crui | 5,951 | 10,170 | 14,403 | 18,618 |
|  | 8,155 | 15,225 | 22,513 | 29, 780 |
| $\begin{array}{ll} \text { No: } & 4 \\ \mathrm{~T}_{\mathrm{TI}}: & 2 \end{array}$ |  |  |  |  |
| SLSFC: . 3 |  |  |  |  |

OWE, Operating Weight Empty; TOGW, Take-Off Gross Weight; BPR, By-Pass Ratio; PR, Pressure Ratio; SLST, Sea Level Strategic Thrust; $\mathrm{T}_{\mathrm{TI}}$, Turbine Inlet Temp; SLSFC, Sea Level Specific Fuel Consumption.

Table B-9. 1990 Lift-Fan VTOL Aircraft Block Performance

| $\begin{aligned} & \text { STAGE } \\ & \text { LENGTH } \\ & \text { (S. M. ) } \end{aligned}$ | 50 PASS |  | 100 PASS |  | 150 PASS |  | 200 PASS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \text { BLOCK } \\ \text { TIME } \\ \text { (HRS) } \end{gathered}$ | BLOCK FUEL (LBS) | $\begin{aligned} & \text { B LOCK } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { BLOCK } \\ \text { FUEL } \end{gathered}$ | $\begin{aligned} & \text { BLOCK } \\ & \text { TIME } \end{aligned}$ | $\begin{gathered} \text { BLOCK } \\ \text { FUEL } \end{gathered}$ | BLOCK <br> TIME | $\begin{gathered} \text { BLOCK } \\ \text { FUEL } \end{gathered}$ |
| 50 | . 224 | 1684 | . 223 | 2894 | 221 | 4106 | 221 | 5309 |
| 100 | . 317 | 2140 | . 314 | 3623 | . 312 | 5107 | 311 | 6566 |
| 200 | . 491 | 2973 | . 485 | 5059 | . 482 | 7137 | . 480 | 9199 |
| 300 | . 663 | 3735 | . 657 | 6382 | . 653 | 9024 | . 650 | 11643 |
| 500 | . 994 | 5360 | . 987 | 9153 | . 983 | 12965 | . 980 | 16747 |

## PRECEDING PAGE BLANK NOT FILMED

## REFERENCES

B. 1 Robert G. Dorsch, Eugene A. Krejsa and William A. Olsen, Blown Flap Noise Research, AIAA-SAE Paper 71-745, NASA Lewis Research Center, 7 th Propulsion Joint Special Conference, Salt Lake City, Utah.

Preceding page blank

## APPENDIX C

## AIRCRAFT PRODUCTION REQUIREMENTS

## CONTENTS

Page
C. $1 \quad$ V/STOL Replacement Potential. ..... C-1
C. 2 Demand Sensitivity and Operating Costs ..... C -2
C. 3 International Demand for STOL. ..... C-4
References ..... C-17
FIGURES
Page
Figure C-1 U. S. Airline Jet Aircraft ..... C-7
Figure C-2 Methodology for Estimating System Fleet Requirements ..... C-8
TABLES
Table C-1 Introduction of Aircraft-U. S. Carrier Fleet Pressurized Aircraft ..... C-9
Table C-2 U. S. Carrier Fleet - Available for Service 1964-1971, CAB Certificated, Supplemental and California Intrastate Air Carriers Two and Three Jet Aircraft ..... C-10
Table C-3 Forecast Replacement Schedule, CAB Certificated, Supplemental and California Intrastate Air Carriers Two and Three Engine Turbine Aircraft ..... C-11
Table C-4 Domestic Jet Aircraft Ownership by Air Carrier (1971) ..... C-12
Table C-5 1980 STOL Fleet Requirements ..... C-13
Table C-6 1990 STOL Fleet Requirements ..... C-14
Table C-7 1990 VTOL Fleet Requirements. ..... C-15
Table C-8 World Fleet - Turbine Powered Aircraft ..... C-16

## APPENDIX C

## POTENTIAL AIRCRAFT PRODUCTION REQUIREMENTS

The potential STOL and V/STOL production for the 1980 and 1990 time periods is presented in Volume I, Section V as a summary of replacement potential, demand sensitivity and costs, high density short haul fleet requirements and possible international demand. The high density short haul market demand and load factor determination are discussed in Appendix A.2. The determination of indirect and direct operating costs is dis cussed in Appendix F. This appendix provides additional background and supporting data on the replacement potential, sensitivity and potential international demand in combination with the results from Appendixes A. 2 and $F$ to define potential aircraft production requirements.

## C. 1 V/STOL REPLACEMENT POTENTIAL

The profiles of the number of aircraft in service, by type, as a function of time shown in Figure C-1 indicate a replacement market develops from 1978 onwards for short to medium haul aircraft. These profiles are based upon the number of and service life history of U.S. carrier aircraft since 1946. The service introduction dates for different aircraft are shown in Table C-1. In the different categories, the introduction of replacement types varies from 6 to 11 years. The number of 2 and 3 engine jets in carrier service is shown in Table C-2. A leveling off in the total number is indicated for the 1969 through 1971 time period. It is not clear from these data whether this is due to market saturation or a recession. However, it may be conservatively assumed that the air modal split for this market will not drastically change without significant service changes that are not presently obvious. Assuming a 15 -year service life as a reasonable maximum, the entire fleet for the short and medium haul market will have to be replaced
by 1983. This replacement schedule could be accelerated by environmental noise requirements that may make engine retrofit uneconomical. For example, quiet $S T O L$ is a replacement candidate for the high density short haul portion of this market. A suggested schedule for this replacement is shown in Table C-3.

The data shown in Figure C-1 also include four engine jets and widebody jets. The number and type of aircraft operated by U.S. carriers in 1971 are shown in Table C-4. Air carriers often sell an aircraft before it has been fully depreciated to replace it with a newer, larger aircraft. For example, while sales of 727 s have continued, the fleet size for 2 and 3 engine jets has remained almost constant (see Table C-3) due to the replacement of smaller aircraft with the 727 s . These data tend to confirm the estimate of a nearly constant level of 2 and 3 engine jets in the U.S. carrier fleet from 1972 through 1980.

## C. 2 DEMAND SENSITIVITY AND OPERATING COSTS

While all of the 2 and 3 engine jet fleet will be replaced, only the use of a quiet STOL in the short haul high density market has been examined. The details of the definition of the demand for this market and probable load factors are given in Appendix A.2. There, both maximum and minimum growth markets and competitive and noncompetitive load factors are defined. The DOC and IOC developments for the STOL and V/STOL aircraft are detailed in Appendix F. The cost data, market data and aircraft utilization were then studied in combination to determine sensitivities and fleet sizes.

Examples of DOC and IOC variation with stage lengths, and the variation of fare and air modal split, also as functions of stage length, are included in Volume I, Section V. These data are a summary of what is considered to be the most significant case of those examined. The
complete matrix included fare levels varying from the California intrastate case to the CAB fare level, as indicated in Figure 15, Volume I; the competitive 55 percent load factor and the non-competitive 65 percent load factor; the maximum and minimum growth markets; and aircraft annual utilization levels of 2500,3000 , and 3500 hours. The resulting short haul high density market fleet sizes are shown in Tables C-5, C-6, and C-7. The data are for the 1980 STOL, 1990 STOL and 1990 V/STOL, respectively. These data represent the domestic fleet sizes as a function of utilization and aircraft size for the market growth and load factor conditions indicated. The data were derived by determining the number of aircraft flights required to serve each city pair route as a function of the parameters just indicated.

The methodology utilized for estimating the STOL fleet size is illustrated in Figure C-2. As the figure shows, the number of annual flights necessary to provide service to satisfy a city pair demand is determined as a function of aircraft size and load factor. A minimum service level of 4 flights per day is provided for any city pair route, even where demand does not require 4 flights. The aircraft annual utilization and the city pair route block time provide the number of annual flights given aircraft can make on a city pair route. The flights required and the flights available per aircraft give the required number of aircraft for that city pair route. Since most of the traffic is to and from hub cities, fractional aircraft can be obtained by scheduling adjustments between different routes at that hub. Fleet spares requirements are added to the total obtained for the routes.

Different regions of the country have market elasticities that are dependent on the local economics, competitive transportation modes, short haul service characteristics and fares. Thus, the fare reduction which is made possible by increasing the passenger load factor from $55 \%$ to $65 \%$ produces an increase in total air demand which varies differently under different market elasticities. The minimum growth market, characterized by the California Corridor, has an elasticity which requires an increased number of aircraft to satisfy the short haul air demand created by the air fare reduction associated with the load factor increase. The maximum growth market,
characterized by the Midwest Corridor, has a different elasticity. Here, the increased number of air passengers is less than the additional aircraft seats made available in going from $55 \%$ to $65 \%$ passenger load factor, and, hence, a fewer number of aircraft are required. Each region will have a slightly different market elasticity characterized by local conditions. The results here are approximations of the total U.S. short haul fleet requirements and do not necessarily predict the exact requirements for any route or region, although the extreme values should be indicative of the potential fleet requirements.

As indicated in Volume I, the 150 -passenger aircraft with 2500 hours per year of utilization at a 55 percent load factor in the maximum growth market was selected for primary emphasis. The 150 -passenger size was selected as this size of aircraft is currently successfully used in this market and similar studies have indicated this is a satisfactory to near optimum size for this application. The 2500 hour annual utilization represents current good service practice. The load factor, as discussed in Appendix A. 2, represents the average load factor obtained when two or more airlines operate in competition on a given route, while the maximum market is representative of the potential in most of the U.S. The 100 -passenger VTOL was selected since even with new construction for 1990 there will be relatively fewer CBD VTOLports than STOLports. Therefore, better service can be offered with the smaller aircraft.

A sensitivity check was made for the 1980 STOL case. These data are summarized in Figure 16 of Volume $I$ and are discussed there.

## C. 3 INTERNATIONAL DEMAND FOR STOL

The international market for U.S. built commercial aircraft has often been a significant portion of the production of a given type. While this cannot be guaranteed for STOL or VTOL because of the high interest in STOL development in European countries, it may still be the case since past history indicates a tendency to buy U.S. aircraft even whe re a given type was first produced elsewhere. An indication of the international market is given by Table C-8
where the world fleet of turbine powered aircraft is listed. Table 7 of Volume I indicates the percent of foreign sales for several major U.S. jet aircraft. An average foreign sales potential of 40 percent of total sales was indicated by this survey. The potential foreign market was not used for basic costing, but a potential reduction in domestic fare ( 3 to 5 percent) was determined if the full domestic plus foreign production was realized.


Figure C-1. U.S. Airline Jet Aircraft


Figure C-2. Methodology for Estimating System Fleet Requirements

Table C-l. Introduction of Aircraft - U. S. Carrier Fleet Pressurized Aircraft


* No Longer in Passenger Service

Table C-2. U. S. Air Carrier Fleet - Available for Service 1964-1971
CAB Certificated, Supplemental \& California Intrastate Air Carriers Two and Three Engine Turbine Aircraft

|  | YEAR ENDING |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 |
| Three Engine |  |  |  |  |  |  |  |  |
| 727 (94-189) | 88 | 169 | 287 | 395 | 540 | 643 | 657 | 672 |
| Two Engine |  |  |  |  |  |  |  |  |
| DC-9 (80-125) |  | 5 | 54 | 143 | 266 | 328 | 334 | 441 |
| 737 (80-113) |  |  |  |  | 70 | 149 | 148 | 148 |
| BAC-111 (65-109) |  | 20 | 54 | 57 | 61 | 60 | 6 | 63 |
| Caravelle (64-104) | 20 | 20 | 20 | 20 | 20 | 20 | 15 | 10 |
| Total Two Engine | 20 | 45 | 128 | 220 | 417 | 557 | 564 | 662 |
| Total Two and Three Engine | 108 | 214 | 415 | 615 | 957 | 1,200 | 1,221 | 1,334 |

Initial Service

```
727 Feb 1, 1961
DC-9 Nov 29, 1965
737 Dec 29, 1967
BAC-111 Apr 25, 1965
Caravelle Jul 14, 1961
```


## Source:

Aviation Data Services 1970-1971, Reference C-1. PSA Annual Report, 1970, Reference C-2.
Air California Financial Statements, 1971, Reference C-:

Table C-3. Forecast Replacement Schedule
CAB Certificated, Supplemental and California Intrastate Air Carriers Two and Three Engine Turbine Aircraft

YEAR ENDING

| 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 | 1986 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



Table C-4. Domestic Jet Aircraft Ownership by Air Carrier (1971)
(Reference C-4)

| Airline | Jet 2,3 <br> Engine | No. In Fleet | Jet 4 <br> Engine | No. In Fleet | Jet <br> Wide Body | No. In Fleet | Other | No. In Fleet |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aloha Allegheny | 737 | 5 |  |  |  |  |  |  |
|  | BAC | 28 |  |  |  |  | CV580 | 40 |
|  | DC9 | 30 |  |  |  |  | F27 | 2 |
| American | 727 | 100 | 707 | 97 | 747 | 16 |  |  |
|  | BAC | 24 | 720 | 9 | DCl0 | 14 |  |  |
| Braniff | 727 | 44 | 707 | 7 | 747 | 1 |  |  |
|  | BAC | 5 | 720 | 6 |  |  |  |  |
|  |  |  | DC8 | 7 |  |  |  |  |
| Continental | 727 | 23 | 707 | 9 | 747 | 4 | DC6 | 1 |
|  | DC9 | 16 | 720 | 8 | DCl0 | 5 |  |  |
| Delta | DC9 | 76 | 880 | 16 | 747 | 5 | L382 | 3 |
|  |  |  | DC8 | 41 |  |  |  |  |
| Eastern | 727 | 101 | DC8 | 26 | L1011 | 3 | AC5001 | 1 |
|  | DC9 | 80 |  |  |  |  | L188 | 17 |
|  |  |  |  |  |  |  | L1329 | 1 |
| Frontier | 737 | 12 |  |  |  |  | B99 | 2 |
|  |  |  |  |  |  |  | CV580 | 32 |
|  |  |  |  |  |  |  | DHC 6 | 2 |
| Hawaian | DC9 | 8 |  |  |  |  | CV640 | 4 |
| TWA | 727 | 72 | 707 | 103 | 747 | 19 |  |  |
|  | DC9 | 19 | 880 | 25 | L1011 | 1 |  |  |
| United | 727 | 150 | 720 | 28 | 747 | 14 |  |  |
|  | 737 | 71 | DC8 | 112 | DC10 | 14 |  |  |
| Western | 727 | 9 | 707 | 5 |  |  |  |  |
|  | 737 | 30 | 720 | 28 |  |  |  |  |
| Hughes National | DC9 | 19 |  |  |  |  | F27 | 24 |
|  | 727 | 38 | DC8 | 15 | $\begin{aligned} & 747 \\ & \mathrm{DC} 10 \end{aligned}$ | 2 5 |  |  |
| North Central Northeast | DC9 | 15 |  |  |  |  | CV580 | 34 |
|  | 727 | 21 |  |  |  |  | FH227 | 2 |
|  | DC9 | 14 |  |  |  |  |  |  |
| Northwest | 727 | 56 | $\begin{aligned} & 707 \\ & 720 \end{aligned}$ | 32 7 | 747 | 15 |  |  |
| Ozark | DC9 | 17 |  |  |  |  | DHC6 FH227 | 3 21 |
| Piedmont | 737 | 13 |  |  |  |  | FH227 | 9 |
|  |  |  |  |  |  |  | YS | 21 |
| Southern <br> Texas Int'l. | DC9 | 16 |  |  |  |  | M404 | 17 |
|  | DC9 | 15 |  |  |  |  | B99 CV600 | 3 25 |
| Air Calif. PSA | 737 | 7 |  |  |  |  | L1 88 | 1 |
|  | 727 737 | 18 |  |  |  |  |  |  |
|  | 737 | 9 |  |  |  |  |  |  |
|  |  | 1161 |  | 581 |  | 118 |  | 265 |

Table C-5. 1980 STOL Fleet Requirements (87 City-Pairs)

| ANNUAL UTILIZATION (HRS) | AIRCRAFT CAPACITY (SEATS) | $\begin{aligned} & \text { COMPETITIVE MARKET } \\ & 55 \% \text { LOAD FACTOR } \\ & \hline \end{aligned}$ |  | NON-COMPETITIVE MARKET65\% LOAD FACTOR |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { MINIMUM } \\ & \text { GROWTH } \end{aligned}$ | $\begin{gathered} \text { MAXIMUM } \\ \text { GROWTH } \\ \hline \end{gathered}$ | MINIMUM GROWTH | $\begin{aligned} & \text { MAXIMUM } \\ & \text { GROWTH } \end{aligned}$ |
|  |  | 700 | 980 | 720 | 910 |
|  |  | 350 | 490 | 360 | 455 |
|  |  | 230 | \% 8325888 | 240 | 300 |
|  |  | 175 | 245 | 180 | 225 |
| 3000 | 50 | 580 | 815 | 600 | 760 |
|  | 100 | 290 | 410 | 300 | 380 |
|  | 150 | 195 | 300 | 220 | 260 |
|  | 200 | 145 | 205 | 150 | 190 |
| 3500 | 50 | 500 | 700 | 515 | 650 |
|  | 100 | 250 | 350 | 260 | 325 |
|  | 150 | 165 | 235 | 170 | 215 |
|  | 200 | 125 | 175 | 130 | 160 |


| ANNUAL <br> UTILIZATION <br> (HRS) <br> 888 | $\begin{aligned} & \text { AIRCRAFT } \\ & \text { CAPACITY } \\ & \text { (SEATS) } \end{aligned}$ | COMPETITIVE MARKET 55\% LOAD FACTOR |  | NON-COMPETITIVE MARKET65\% LOAD FACTOR |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { MINIMUM } \\ & \text { GROWTH } \end{aligned}$ | $\begin{aligned} & \text { MAXIMUM } \\ & \text { GROWTH } \end{aligned}$ | MINIMUM GROWTH | $\begin{aligned} & \text { MAXIMUM } \\ & \text { GROWTH } \end{aligned}$ |
| : |  | 830 | 1170 | 860 | 1090 |
|  |  | 415 | 585 | 430 | 545 |
|  |  | 280 | 8883908 | 285 | 365 |
|  |  | 210 | 295 | 215 | 270 |
| 3000 | 50 | 690 | 980 | 715 | 905 |
|  | 100 | 345 | 490 | 360 | 455 |
|  | 150 | 230 | 325 | 240 | 300 |
|  | 200 | 175 | 245 | 180 | 225 |
| 3500 | 50 | 590 | 840 | 610 | 775 |
|  | 100 | 295 | 420 | 305 | 390 |
|  | 150 | 200 | 280 | 205 | 260 |
|  | 200 | 150 | 210 | 150 | 195 |

Table C-7. 1990 VTOL Fleet Requirements, No STOL ( 87 City-Pair)

| ANNUAL UTILIZATION (HRS) | $\begin{aligned} & \text { AIRCRAFT } \\ & \text { CAPACITY } \\ & \text { (SEATS) } \end{aligned}$ | COMPETITIVE MARKET 55\% LOAD FACTOR |  | NON-COMPETITIVE MARKET 65\% LOAD FACTOR |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{aligned} & \text { MINIMUM } \\ & \text { GROWTH } \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { MAXIMUM } \\ & \text { GROWTH } \end{aligned}$ | $\begin{aligned} & \text { MINIMUM } \\ & \text { GROWTH } \end{aligned}$ | $\begin{aligned} & \text { MAXIMUM } \\ & \text { GROWTH } \end{aligned}$ |
|  |  | 740 | 1035 <br> \%xxox <br> $\times x \times 20$ <br> 345 <br> 260 | 760 | 960 |
|  |  | 370 |  | 380 | 480 |
|  |  | 245 |  | 250 | 320 |
|  |  | 185 |  | 190 | 240 |
| 3000 | 50 | 615 | 865 | 630 | 800 |
|  | 100 | 310 | 430 | 315 | 400 |
|  | 150 | 205 | 290 | 210 | 270 |
|  | 200 | 155 | 215 | 160 | 200 |
| 3500 | 50 | 525 | 740 | 540 | 685 |
|  | 100 | 265 | 370 | 270 | 345 |
|  | 150 | 175 | 245 | 180 | 230 |
|  | 200 | 130 | 185 | 135 | 170 |

Table C-8. World Fleet - Turbine Powered Aircraft This summary shows, by types, the turbine-powered airlines in service with, and on order, by the world's airlines (excluding Aeroflot, the USSR operator) on May 15, 1972. (Reference C-5)
TERBOJJ T.powi kFi) AlRCRAFT

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Comvar C.V880
(3) issault fan Jet Faicon

Dassauit Mercure
Douplis) I)C. 8
Douttan DC-9
rohker VIW F28
Gates Learje
Grunuran Gulfstream 2
Hiwher Siddeley HS 125
t.iwher Siddeley Comet

Hawker Sidueley Trident
lit es 320 Ilansa Je
Iyushin 1162
1 ochhed L 1011 TriStar
Mcinumatll Douglas DC-10
NA.K. Acro Coinmatider
rupuler $111.10-$
upoler 14-124
Tupolev Tu-134
upol- Tu-15t
WW-rokher 614
Y.skorlev YAK. 40

## TUKHOPROP-POWERED AIRCRAFT

Aeruppatiazle 262
Antenov An-10
Antonoy An-2
Antid SiOL
BAC Yanguard
BAC Viscount
Hecel King Air
Hecth King Air
Hechioratit 49
fleceheraft 99
Cialladar C L -14
Conaditir CL -44
Oonvair CV 580

- onvair C:V 600/640
lolle 2 Tubo Beaver
DHE a 'Twin Otter
Faia hild thiller F. $27 /$ FH. 227
Fohker VI WF. 27
Giumbiaan Gultsiream :
Girumbian Alatlard
Hewaltue Turbolmer

Hamaley Fatge Jetsicam
H.twhe Siddeley Argosy

Hawher Sidactey HS 748
II) ushan 11-18

1. A. Jehstream
1.11. 410

I wheneal L 188 I lectra
Iochlued Hercules
Atioubrshi AUU
NABIC YS-II
N.AK. Aero Turbo Commander

PAC/bech 1 ratuewind
Pilatus Tarbo Porler
Sionders ST 27 Heron
Short Shyran
Swearngen Merlin
Volpar Beech


ON ORDER
TOTAL BY TYPES

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

0

## 

## REFERENCES

C. 1 Aviation Data Services, private communications, 1970-1971.
C. 2 PSA Annual Report, 1970.
C. 3 Air California Financial Statements, 1971.
C. 4 Air Transport World, World Aviation Publications, Washington, D. C. (November, 1971).
C. 5 ESSO, as reproduced in Aviation Daily (1972).

APPENDIX D
AIRPORT REQUIREMENTS

$$
\text { D }-i .1
$$

## CONTENTS

Page
D. 1 STOLport Requirements for Passenger Convenience. ..... D-1
D. 2 Runway Capability and Availability ..... D. 3
D. 3 Typical Urban Airport Complex. ..... D-3
D. 4 Airport Category and Operations ..... D-3
D. 5 Reliever Port Impact ..... D-4
D. 6 Noise Impact Effects. ..... D-5
D. 7 Airport/STOLport ATC Requirements ..... D-6
D. 8 STOLport Requirements Summary. ..... D-7
References ..... D-74

## FIGURES

D-1. Percent Modal Split Required for an Economically Viable ..... D- 8Service Path .
D-2. California Corridor Service Path Evaluation Process ..... D-9
D-3. Airports With Runways $\geq 3000$ feet Within a 25 Mile Radius - Chicago, Illinois ..... D- 10
D-4. Airports With Runways $\geq 3000$ feet Within a 30 Mile Radius - New York, New York ..... D-11
D-5. Airports With Runways $\geq 3000$ feet Within a 25 Mile Radius - Boston, Massachusetts ..... D- 12
D-6. Airports With Runways $\geq 3000$ feet Within a 25 Mile Radius - Detroit, Michigan ..... D- 13
D-7. Airports With Runways $\geq 3000$ feet Within a 15 Mile Radius - Houston, Texas. ..... D- 14
D-8. Airports With Runways $\geq 3000$ feet Within a 15 Mile Radius - Kansas City, Kansas ..... D- 15

## FIGURES (Continued)

Page
D-9. Airports with Runways $\geq 3000$ feet Within a 15 Mile Radius - Minneapolis/St. Paul, Minnesota. ..... D-16
D-10. Typical Airport Capacities - FAA 1980 Prediction PANCAP Maximum Practical Annual Capacity (000) ..... D-1 7
D-11. NEF Noise Program ..... D-18
D-12. NEF Noise Program ..... D-19
D-13. 1980 General Aviation Airport. ..... D-20
D-14. 1980 Reliever Airport ..... D-21
D-15. 1980 Major Domestic Airport. ..... D-22
D-16. 1980 Major International Airport ..... D-23
D-17. 1990 Basic Airport 1 - General Aviation ..... D-24
D-18. 1990 Basic Airport 2 - Reliever Airport ..... D-25
D-19. 1990 Basic Airport 3 - Major Domestic Airport ..... D-26
D-20. 1990 Basic Airport 4 - Major International Airport ..... D-27
D-21. Effective Block Speed ..... D-28
D-22. Upgraded Third Generation CONUS ATC System (Phase 1) ..... D-29
D-23. Scanning - Beam MLS Antenna Radiation Patterns ..... D-30
D-24. Expected Number of Terminal Facilities ..... D-31
D-25. Variation in Aircraft Gate Time With Passenger Capacity, Load Factor, and Servicing. ..... D. 32
D-26. Peak Hour Passengers in Terms of Annual Passengers (FAA). ..... D-33
D-27. Terminal Building Floor Area Requirements (FAA) ..... D 34
D-28 Terminal Building and Parking Area Requirements ..... D. 35

## TABLES

|  | Page | Los Angeles-San Francisco Service Path Selection Data, |
| :--- | :--- | :--- |
| D-1. |  |  |
|  | Percent Total Demand (Service Paths 16, STOL Frequency |  |
| of Service 1 flight/hour). . . . . . . . . . . . . . . . D- 36 |  |  |

## TABLES (Continued)

Page
D-2. Los Angeles-San Francisco Service Path Selection Data, Percent Total Demand (Service Paths 10, STOL Frequency of Service 0. 73 flight/hour). ..... D-37
D-3. Los Angeles-San Francisco Service Path Selection Data, Percent Total Demand (Service Paths 7, STOL Frequency of Service 0. 73 flight/hour). ..... D-38
D-4. Los Angeles-San Francisco Service Path Selection Data, Percent Total Demand (Service Paths 4, STOL Frequency of Service 0. 73 flight/hour). ..... D-39
D-5. Los Angeles-San Francisco Service Path Selection Data, Percent Total Demand (Service Paths 2, STOL Frequency of Service 0. 73 flight/hour). ..... D-40
D-6. Los Angeles-San Francisco Service Path Selection Data, Percent Total Demand (Service Paths 1, STOL Frequency of Service 0. 73 flight/hour) ..... D-41
D-7. Typical Available Airport Complexes ..... D-42
D-8. Existing Facilities at the 71 Selected 1980 Reliever Ports ..... D-43
D-9. Airport/Aircraft Operations Mix - FAA 1980 Projection. ..... D-46
D-10. Airport/Aircraft Operations Mix for 1980 STOL Introduction ..... D-47
D-11. 1980 CTOL Airport Relief ..... D-48
D-12. Atlanta Aircraft Movements (000) ..... D-49
D-13. Boston Aircraft Movements (000) ..... D-50
D-14. Chicago Aircraft Movements (000) ..... D-51
D-15. Cleveland Aircraft Movements (000) ..... D-52
D-16. Dallas Aircraft Movements (000) ..... D-53
D-17. Detroit Aircraft Movements (000) ..... D-54
D-18. Honolulu Aircraft Movements (000) ..... D-55
D-19. Houston Aircraft Movements (000). ..... D- 56
D-20. Kansas City Aircraft Movements (000) ..... D-57
D-21. Los Angeles Aircraft Movements (000) ..... D-58
D-22. Miami Aircraft Movements (000) ..... D-59
D-23. Milwaukee Aircraft Movements (000) ..... D-60

## TABLES (Continued)

Page
D-24. New York Aircraft Movements (000). ..... D-61
D-25. Philadelphia Aircraft Movements (000) ..... D-62
D-26. Pittsburg Aircraft Movements (000). ..... D-63
D-27. San Diego Aircraft Movements (000). ..... D- 64
D-28. San Francisco Aircraft Movements (000). ..... D- 65
D-29. Seattle Aircraft Movements (000) ..... D- 66
D-30. Washington/Baltimore Aircraft Movements (000). ..... D-67
D-31. 1980 Airport Capacity Prediction (Maximum Number of Operations ..... D-68
D-32. Noise Analysis Flight Conditions ..... D-69
D-33. Major Elements of ATC System. ..... D- 70
D-34. ATC System Generations. ..... D-71
D-35. Airport Auto Traffic Per Enplaned Passenger ..... D- 72

## APPENDIX D

## AIRPORT REQUIREMENTS

The results presented in Volume I have indicated that the successful implementation of STOL short haul operations is dependent upon providing increased passenger convenience at acceptable fare levels, and upon meeting the environmental criteria anticipated for the time period. Major elements in the airport requirements are that the reduction of air and surface congestion at these STOLports should be such as to increase passenger convenience without providing for uneconomical service paths. The STOLports must be configured to reduce passenger access and processing time. The environmental impact of noise due to STOL operations must meet the community acceptance level. While the requirements generated by these criteria were summarized in Volume $I$, the subsequent sections of this appendix provide additional background and amplification to the summary data.
D. 1 STOLPORT REQUIREMENTS FOR PASSENGER CONVENIENCE

The number of STOLports and service paths for passenger convenience in a large metropolitan area is dependent on the area demography and the city pairs being served. For a given city pair, the number of ports and paths may be increased until the gain in air travelers by the addition of another new port-path is not sufficient to justify its addition. This methodology and route analysis is detailed in Reference D-1, and the results obtained were utilized here. Summary results presented in Volume I show that the incremental increase in air modal split decreases at some point as additional port-paths are made available. The number of port-paths where this decrease occurs represents the point where fare economics and convenience are no longer attractive to the air traveler. Some additional results to further illustrate the methodology are presented here.

An aircraft is assigned to fly each given route and/or service path. In Figure D-1 one Augmentor Wing aircraft was assigned to the Los AngelesSan Francisco route which has only one service path between the Chavez Ravine STOLport in Los Angeles to the Crissy Field STOLport in San Francisco. For each given aircraft capacity ( 40 passenger increasing in increments of 20 seats to 200 passenger) the fares are varied and the STOL air modal split and load factors are determined. This gives a carpet plot of aircraft capacity and load factor as a function of modal split (the percent of the total travel demand between Los Angeles and San Francisco that is captured by this particular STOL service.)

Independent of the above calculations, the economics portion of the program calculates for each given capacity and several load factors the DOC, IOC, ROI and fare required to get a fair return on investment for the aircraft operating on the route and service path. A 10.5 percent ROI was used and the results are shown as broken lines for fares of $\$ 16.00$ and $\$ 21.50$. At any point along the line the ROI is $10.5 \%$ and the aircraft capacity, load factor, and percent modal split associated with the given fare are available from the plot.

As additional service paths and aircraft are assigned to the route the travelers on the route are served more conveniently and more travelers utilize the STOL service increasing the modal split. This is shown in Figure D-2 for fares of $\$ 16.00$ and $\$ 21.60$, still maintaining a ROI of 10.5 percent for all aircraft assigned to the route. The results for the combined service paths are shown by the solid upper line while the results for the weakest service path are shown by the lower broken line. The weakest service path loses travelers to the other service paths as they are added. This is the result when some of the STOL air travelers switch from one STOLport to a new one that has been added, which is more conveniently located. These data are representative of the California, Midwest and Northeast arenas that were considered to obtain the approximation of Volume I.

## D. 2 RUNWAY CAPABILITY AND AVAILABILITY

The data presented in Volume I indicate that there were 472 airports available for consideration for the 61 cities of the study. This number was arrived at by examining all of the airports within reasonable proximity to the urban developed area of the subject cities. Examples for several cities are illustrated in Figures D-3 through D-9. As examination of the figures will show, the radius within which airports were considered varies with the size of the urban developed area. These maps were developed for each of the subject cities. The figures selected here illustrate how the availability of airports varies in each of the cities, and examples of typical airport complexes are given in Table D-7.

The list of airports selected for short haul service for the 61 cities is given in Table D-8. The list does not include the major CTOL airports if they are not used for short haul traffic. The tabulation indicates that most of these airports have adequate runways and landing aids for reliever port operation.

## D. 3 TYPICAL URBAN AIRPORT COMPLEX

The example of Chicago was shown in Volume I. This is effectively an enlargement of a portion of Figure D-3. The complex for other cities is obtained in a similar manner once the STOL reliever airports have been selected.

## D. 4 AIRPORT CATEGORY AND OPERATIONS

The definition of airport category and capacity is very much a function of the individual airport. It was not within the scope or purpose of this study to do a detailed study of each of the candidate airports and STOLports. Rather, it was desired to apply a uniform measure of capacity to the candidates for both operational capability and noise impact. The data and method of Refer-
ence D. 2 provide the desired information. The basic operations definition of the reference is shown in Table D-9. These are the same data shown in Table 12 of Volume I, but there an additional descriptive name is given to the airport categories and it is indicated that the STOL operations are substituted for the 2 and 3 engine jet operations. This is illustrated here by Table D-10 where different arbitrary levels of substitution are shown. These levels are applicable primarily to noise impact. Reference D. 2 also gives the practical annual capacity (PANCAP) of operations for different runway configurations. This is illustrated in Figure D-10 and is based on the operations mix of Table D-10. The pertinent assumptions made in the reference are also listed in Figure D-10. The PANCAP data of the reference were matched to the appropriate runway configuration of the candidate airport to define its capacity in terms of the nominal operations mixes of Table D-10. These data provide an assessment of the relative capacity of the airport, and are used to determine its impact as a reliever STOLport.

## D. 5 RELIEVER PORT IMPACT

The airport capacity data described in the previous section were matched with the predicted level of operations to determine the potential STOL reliever port impact. The prediction of the 1980 STOL demand is described in Section III of Volume I and Appendix A of Volume II. These data can then be used to determine the 1980 STOL peak hour O\&D passengers. These operations and passengers represent a maximum that can be diverted to reliever STOLports. These data are shown in Table D-11 for the major hub cities. The CTOLport PANCAP, determined as described previously, is also listed. In addition, the predicted total 1980 air carrier operations are shown. The total air carrier operations were derived from the FAA data of References D. 3 and D. 4. Reference D. 3 gives the FAA ten year prediction for 1982, and the 1980 level was interpolated from this. This procedure gives a 1971 to 1980 air carrier aircraft operations growth factor of 1.128 . The
total growth factor including air carrier and general aviation is 2.07. The air carrier growth factor was applied to the operations data of Reference D. 4, the FAA summary for 1971 . These data are shown in Figure 23 of Volume I. The distribution of the STOL traffic among the candidate STOL ports in the various cities was somewhat arbitrary, except that all O\&D STOL traffic was removed from the major CTOL port where capacity required or it was advantageous to do so. In cases like Boston, where the major CTOL port is also in a CBD port location, some STOL traffic was left at this location. An optimum split could be determined by use of the traveler preference modeling methods, but this was beyond the scope of this study. The economic impact of a CBD port is examined in Appendix $F$. The nominal distributions of STOL operations to reliever ports are shown in Tables D-12 through D- 30 for the major hub cases.

## D. 6 . NOISE IMPACT EFFECTS

The aircraft noise technology background is given in Appendix B. The aircraft noise levels were converted into airport noise impact by the use of the computer program described in Reference D-5. The output from this program is a set of NEF (noise exposure forecast) contours for a given airport operations level, aircraft mix, day/night distribution and flight paths. This program procedure is summarized in Figures $D-11$ and $D-12$. It was decided to confine the NEF effects study to single runway airports operating at maximum PANCAP for the appropriate operations mix. This is typical of the nominal "worst" condition to be encountered at most airports where STOL would be operating. Operations at the Category 1 and 2 airports were assumed to be confined only to daytime (0700-2200) while at Categories 3 and 4 they are divided: $90 \%$ daytime ( $0700-2200$ ) and $10 \%$ nighttime (2200-0700). These operations are summarized in Table D-3l. Nominal typical flight conditions were assigned, as shown in Table D-32. The NEF contours were then generated for these data by using the 1980 and 1990 STOL aircraft desired
noise levels for each category of airport. Contours were developed for these cases: all CTOL aircraft, half two or three engine CTOL and half STOL, and all two or three engine CTOL replaced with all STOL. Current aircraft noise level data were used for all CTOL aircraft. The resulting NEF contours are shown in Figures D-13 through D-20. The zero point represents the beginning of the runway in all cases. The resulting contours show the effect of quiet STOL relative to noise levels for current type aircraft operations.

## D. 7 AIRPORT/STOLPORT ATC REQUIREMENTS

Air traffic control requirements are a continuing concern of the FAA. Studies and prototype installations have been conducted on instrument landing systems and area surveillance systems. It is assumed that these systems will be installed by the FAA at major airports for the 1980 time period. Therefore, expenses for such systems will not be STOL peculiar and are not charged to the system. In addition to the air safety and control aspects, the reduction of the increment between flight block speed and operational block speed (the increment shown in Figure D-21) would be a primary benefit. This would be a realizable objective for STOL and reliever port traffic.

The major elements of the system -- area navigation, terminal guidance and the instrument landing system -- are briefly described in Table D-33. The upgraded third generation system that is of interest to this study is illus trated in Figure D-22. The MLS antenna patterns are illustrated in Figure D-23. The coverage of this system is adequate for both STOL, VTOL and CTOL operations. Actual, planned and assumed levels of ATC deployment are illustrated by Figure D-24. The number of systems available for the 1980 to 1985 time period is more than adequate, since complete STOLport coverage would be achieved by shifting approximately 10 installations.

## D. 8 STOLPORT REQUIREMENTS SUMMARY

The STOLport requirements provide for effective STOLport operations through improved passenger convenience, reduced processing time and expedited V/STOL aircraft operations. In all airports where STOL operations were to take place, a special STOL terminal area was provided. This terminal area must have its own gate/apron area, parking area and passenger processing procedure. The terminal/parking requirements were based on Aerospace in-house studies of V/STOL port requirements. The parking area requirement is a function of the number of inbound vehicles (auto) per. enplaned passenger, as shown in Table D-35. These vehicle traffic data were based on Reference D-7. The gate/apron requirements were based on the relation:

$$
G=\frac{\left(T+T_{c}\right)(P H P)}{60\left(P_{e}+P_{d}\right)}
$$

where:
$G=$ Number of gates required.
PHP = Peak hourly passengers (enplaning plus deplaning). (Fig. D-26).
$P_{e} \quad=$ Average number of enplaning passengers per aircraft.
$P_{d} \quad=$ Average number of deplaning passengers.
$T=$ Average gate time (minutes) per aircraft. (Fig. D-25)
$\mathrm{T}_{\mathrm{c}} \quad=\quad$ Time to clear gate and next aircraft to park (minutes).
The terminal area requirements are shown in Figure D-27 and the parking area requirements in Figure D-28.


Figure D-1. Percent Modal Split Required for an Economically Viable Service Path


Figure D-2. California Corridor Service Path Evaluation Process


Figure D-3. Airports with Runways $\geq 3000$ Feet Within a 25 Mile Radius Chicago, Illinois


Figure D-4. Airports with Runways $\geq 3000$ Feet Within a 30 Mile Radius New York, New York


Figure D-5. Airports with Runways $\geq 3000$ Feet. Within a 25 Mile Radius Boston, Massachusetts


Figure D-6. Airports with Runways $\geq 3000$ Feet Within a 25 Mile Radius Detroit, Michigan


Figure D-7. Airports with Runways $\geq 3000$ Feet Within a 15 Mile Radius Houston, Texas


Figure D-8. Airports with Runways $\geq 3000$ Feet Within a 15 Mile Radius Kansas City, Kansas


Figure D-9. Airports with Runways $\geq 3000$ Feet Within a 15 Mile Radius Minneapolis/St. Paul, Minnesota


Figure D-10. Typical Airport Capacities - FAA 1980 Prediction PANCAP Maximum Practical Annual Capacity (000)

- CALCULATE NEF CONTOUR
- ASSUMES

STRAIGHT-IN APPROACH TO LANDING STRAIGHT-OUT DEPARTURE FROM TAKEOFF

- INPUT DATA
- EPNdB PROFILE

- ALTITUDE PROFILE (TAKEOFF AND LANDING)


Figure D-11. NEF Noise Program

- INPUT DATA (CONTINUED)
- AIRCRAFT DESCRIPTION
- SPEED
- Altitude
- NOISE CHARACTERISTICS
- VOLUME OF OPERATIONS ACCORDING TO
- NUMBER DAYTIME OPERATIONS (0700-2200) PER TYPE AND ALTITUDE PROFILE
- NUMBER NIGHT OPERATIONS (2200-0700) PER TYPE AND ALTITUDE PROFILE
- OUTPUT DATA - TABULATED COORDINATES FOR EACH NEF CONTOUR


Figure D-12. NEF Noise Program







Figure D-18. 1990 Basic Airport 2-Reliever Airport



Figure D-19. 1990 Basic Airport 3 - Major Domestic Airport



Figure $\overline{\mathrm{D}}-20.1990$ Basic Airport 4 - Major International Airport


Figure D-21. Effective Block Speed


Figure D-22. Upgraded Third Generation CONUS ATC System (Phase 1)


Figure D-23. Scanning - Beam MLS Antenna Radiation Patterns


Figure D-24. Expected Number of Terminal Facilities


Figure D-25. Variation in Aircraft Gate Time With Passenger Capacity, Load Factor, and Servicing


Figure D-26. Peak Hour Passengers in Terms of Annual Passengers (FAA)


Figure D-27. Terminal Building Floor Area Requirements (FAA)


Figure D-28. Terminal Building and Parking Area Requirements

Table D-1. Los Angeles-San Francisco Service Path Selection Data, Percent Total Demand (Service Paths 16, STOLfrequency of service 1 flight/hour)

STOL Fare $\$ 16.00$, incl tax

| L. A. Ports | Chavez Ravine | Fullerton | Morrow | Van Nuys | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
| S. F. Ports |  |  |  |  |  |
| Crissy Field | 3.56 | 4.68 | 2.28 | 2.8 | 13.32 |
| Palo Alto | 4.32 | 3.44 | 2.0 | 2.64 | 12.40 |
| Concord | 2.36 | 1.96 | .72 | 1.04 | 6.08 |
| Marin | 1.48 | 1.16 | .64 | .92 | 4.2 |
| Total | 11.72 | 11.24 | 5.64 | 7.4 | 36.0 |

STOL Fare $\$ 21.60$, incl tax

|  | L. A. Ports | Chavez Ravine | Fullerton | Morrow | Van Nuys |
| :--- | :---: | :---: | :---: | :---: | :---: | Total

Table D-2. Los Angeles-San Francisco Service Path Selection Data, Percent Total Demand (Service Paths 10, STOL freq of serv $0.73 \mathrm{flt} / \mathrm{h}$ )

STOL Fare $\$ 16,00$, incl tax

| L.A. Ports | Chavez Ravine | Fullerton | Morrow | Van Nuys | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
| S. F. Ports | 7.68 | 5.20 | 3.16 | 3.28 | 19.32 |
| Crissy Field | 4.16 | 3.08 | 1.72 | 2.00 | 10.96 |
| Palo Alto | 3.08 | 2.36 | - | - | 5.44 |
| Concord | - | - | - | - |  |
| Marin | 14.92 | 10.64 | 4.88 | 5.28 | 35.72 |
| Total |  |  |  |  |  |

STOL Fare $\$ 21.60$, incl tax

| L. A. Ports | Chavez Ravine | Fullerton | Morrow | Van Nuys | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Crissy Field | 2.40 | 2.16 | 1.60 | 1.20 | 7.36 |
| Palo Alto | 1.04 | .92 | .64 | .44 | 3.04 |
| Concord | 1.08 | 1.24 | - | - | 2.32 |
| Marin | - | - | - | - |  |
| Total | 4.52 | 4.32 | 2.24 | 1.64 | 12.72 |

Table D-3. Los Angeles-San Francisco Service Path Selection Data, Percent Total Demand (Service Paths 7, STOL freq of serv 0. $73 \mathrm{flt} / \mathrm{h}$ )

STOL Fare $\$ 16.00$, incl tax

| - L. A. Ports | Chavez Ravine | Fullerton | Morrow | Van Nuys | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
| S. F. Ports | 7.84 | 6.16 | 3.80 | 3.44 | 21.24 |
| Crissy Field | 5.52 | 3.48 | - | - | 9.00 |
| Palo Alto | 4.08 | - | - | 4.08 |  |
| Concord | - | - | - | - |  |
| Marin | 17.44 | 9.64 | 3.80 | 3.44 | 34.32 |
| Total |  |  |  |  |  |

STOL Fare $\$ 21.60$, incl tax

| L.A. Ports | Chavez Ravine | Fullerton | Morrow | Van Nuys | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
| S.F. Ports | 2.44 | 2.56 | 1.72 | 1.20 | 7.92 |
| Crissy Field | 1.20 | 1.16 | - | - | 2.36 |
| Palo Alto | 1.52 | - | - | 1.52 |  |
| Concord | - | - | - | - |  |
| Marin | 5.16 | 3.72 | 1.72 | 1.20 | 11.80 |
| Total |  |  |  |  |  |

Table D-4. Los Angeles-San Francisco Service Path Selection Data, Total Percent Demand (Service Paths 4, STOL freq of serv $0.73 \mathrm{flt} / \mathrm{h}$ )
STOL Fare \$16.00, incl tax

| L.A. Ports | Chavez Ravine | Fullerton | Morrow | Van Nuys | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
| S. F. Ports |  |  |  |  |  |
| Crissy Field | 12.80 | 7.44 | - | - | 20.24 |
| Palo Alto | 6.36 | 3.88 | - | - | 10.24 |
| Concord |  |  |  |  |  |
| Marin | - | - | - | - | - |
| Total | - | - | - | - | - |
| $\omega$ |  |  |  |  |  |

STOL Fare \$21.60, incl tax

| L. A. Ports | Chavez Ravine | Fullerton | Morrow | Van Nuys | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Crissy Field | 3.68 | 2.88 | - | - | 6.56 |
| Palo Alto | 1.40 | 1.24 | - | - | 2.64 |
| Concord | - | - | - | - |  |
| Marin | - | - | - | - |  |
| Total | 5.08 | 4.12 | - | - | 9.20 |

Table D-5. Los Angeles-San Francisco Service Path Selection Data, Percent Total Demand (Service Paths 2, STOL freq of serv $0.73 \mathrm{flt} / \mathrm{h}$ )

STOL Fare $\$ 16.00$, incl tax

| L. A. Ports | Chavez Ravine | Fullerton | Morrow | Van Nuys | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
| S. Forts | - | 13.24 | - | - | 13.24 |
| Crissy Field | 10.96 | - | - | - | 10.96 |
| Palo Alto | - | - | - | - |  |
| Concord | - | - | - | - |  |
| Marin | 10.96 | 13.24 | - | - | 24.20 |
| Total |  |  | - |  |  |

STOL Fare $\$ 21.60$, incl tax

| L. A. Ports | Chavez Ravine | Fullerton | Morrow | Van Nuys. | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
| S. Forts | - | 4.12 | - | - | 4.12 |
| Crissy Field | 1.88 | - | - | - | 1.88 |
| Palo Alto | - | - | - | - |  |
| Concord | - | - | - | - |  |
| Marin | 1.88 | 4.12 | - | - | 6.00 |
| Total |  |  |  | - |  |

Table D-6. Los Angeles-San Francisco Service Path Selection Data, Percent Total Demand (Service Paths 1, STOL freq of serv $0.73 \mathrm{flt} / \mathrm{h}$ )
STOL Fare $\$ 16.00$, incl tax

| L.A. Ports | Chavez Ravine | Fullerton | Morrow | Van Nuys | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
| S.F. Ports |  |  |  |  |  |
| Crissy Field | 20.44 | - | - | - | 20.44 |
| Palo Alto | - | - | - | - | - |
| Concord | - | - | - | - | - |
| Marin | - | - | - | - | - |
| Total | 20.44 | - | - | - | 20.44 |

STOL Fare $\$ 21.60$, incl tax

| - L.A. Ports | Chavez Ravine | Fullerton | Morrow | Van Nuys | Total |
| :--- | :---: | :---: | :---: | :---: | :---: |
| S. F. Ports | 5.04 | - | - | - | 5.04 |
| Crissy Field | - | - | - | - |  |
| Palo Alto | - | - | - | - |  |
| Concord | - | - | - | - |  |
| Marin | 5.04 | - | - | - | 5.04 |
| Total |  | - | - |  |  |

Table D-7. Typical Available Airport Complexes

| Chicago | O'Hare, Midway and Meigs represent a CTOL, <br> STOL reliever and STOL CBD complex. |
| :--- | :--- |
| New York | Kennedy and LaGuardia are major CTOL, a <br> number of available STOL reliever, no STOL <br> CBD site. |
| Boston | Logan, major CTOLport is located near CBD, <br> Hanscom provides STOL reliever. |
| Detroit | Has CTOLport at Detroit Metro and STOL <br> reliever at Detroit City, also near CBD. |
| Houston | Hobby provides STOL reliever, but no CBD site <br> available. |
| Kansas City | K. C. International, well out of town, STOL <br> reliever not required, but K. C. Municipal provides <br> CBD and so is used for convenience. |
| Minneapolis/St. Paul | Reliever ports are available, but are not more <br> convenient and STOL traffic does not justify. |

Table D-8. Existing Facilities at the 71 Selected 1980 Reliever Ports
$\left.\begin{array}{lccccc}\text { Airport } & & & & \text { Approach } \\ \text { Lights }\end{array}\right]$

Table D-8. Existing Facilities at the 71 Selected 1980 Reliever Ports (Continued)

| Airport | Tower | $\underline{\text { ILS }}$ | Lighting | Approach Lights |
| :---: | :---: | :---: | :---: | :---: |
| Orange County, CA | Yes | Yes | Yes | Yes |
| Standiford Field, KY | Yes | Yes | Yes | Yes |
| Memphis Intl, TN | Yes | Yes | Yes | Yes |
| Opa Locka, FL | Yes | No | Yes | No |
| Gen Mitchell Fld, WI | Yes | Yes | Yes | Yes |
| Minn-St Paul Intl, MN | Yes | Yes | Yes | Yes |
| Lakefront, LA | Yes | No | Yes | Yes |
| Teterboro, NJ | Yes | Yes | Yes | No |
| Newark, NJ | Yes | Yes | Yes | Yes |
| Westchester Co, NY | Yes | Yes | Yes | Yes |
| Norfolk Regional, VA | Yes | Yes | Yes | Yes |
| Will Rogers World, OK | Yes | Yes | Yes | Yes |
| Eppley Airfield, NE | Yes | Yes | Yes | Yes |
| North Philadelphia, PA | Yes | Yes | Yes | Yes |
| Allegheny County, PA | Yes | Yes | Yes | Yes |
| Sky Harbor Intl, AZ | Yes | Yes | Yes | Yes |
| Portland Intl, OR | Yes | Yes | Yes | Yes |
| T. F. Green State, RI | Yes | Yes | Yes | Yes |
| Raleigh-Durham, NC | Yes | Yes | Yes | Yes |
| Reno Intl, NV | Yes | Yes | Yes | Yes |
| R. E. Byrd Intl, VA | Yes | Yes | Yes | Yes |
| Rochester-Monroe Co, NY | Yes | Yes | Yes | Yes |
| Sacramento Executive, CA | Yes | Yes | Yes | No |
| Monterey Peninsula, CA | Yes | No | Yes | Yes |
| Salt Lake City Intl, UT | Yes | Yes | Yes | Yes |
| San Antonio Intl, TX | Yes | Yes | Yes | Yes |
| San Diego Intl- <br> Lindberg Fld, CA | Yes | Yes | Yes | Yes |

Table D-8. Existing Facilities at the 71 Selected 1980 Reliever Ports (Continued)

| Airport | Tower | ILS | Lighting | Approach Lights |
| :---: | :---: | :---: | :---: | :---: |
| San Francisco Intl, CA | Yes | Yes | Yes | Yes |
| Metropolitan Oakland Intl, CA | Yes | Yes | Yes | Yes |
| San Jose Muni, CA | Yes | Yes | Yes | Yes |
| Boeing Field Intl, WA | Yes | Yes | Yes | No |
| Spokane Intl, WA | Yes | Yes | Yes | Yes |
| Weiss, MO | No | No | Yes | No |
| Syracuse Hancock Intl, NY | Yes | Yes | Yes | Yes |
| Tampa Intl, FL | Yes | Yes | Yes | Yes |
| Tucson Intl, AZ | Yes | Yes | Yes | Yes |
| Washington Natl, DC | Yes | Yes | Yes | Yes |
| Greensboro-High Point/ <br> Winston-Salem Regional, NC | Yes | Yes | Yes | Yes |
| Lihue-Kauai, HI | Yes | Yes | Yes | Yes |
| Honolulu Intl, HI | Yes | Yes | Yes | Yes |
| Hilo, HI | Yes | Yes | Yes | Yes |
| Ke Ahole, HI | Yes | Yes | Yes | Yes |
| Kahului, HI | Yes | Yes | Yes | Yes |
| La Guardia, NY | Yes | Yes | Yes | Yes |

Table.D-9. Airport/Aircraft Operations Mix FAA 1980 Projection

| AIRPORT CATEGORY | TYP ICAL AIRPORTS | TYPE AIRCRAFT PERCENT DISTRIBUTION |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 4 \text { ENGINE } \\ \text { JET } \end{gathered}$ | $\begin{gathered} 2 \text { OR } 3 \\ \text { ENGINE } \\ \text { JET } \end{gathered}$ | EXEC. JET OR 2 ENGINE PISTON | $\begin{gathered} 1 \text { OR } 2 \text { ENG. } \\ \text { LIGHT } \\ \text { PISTON } \\ \text { AIRCRAFT } \end{gathered}$ |
| 1 | VAN NUYS, OPA LOCKA-MIAMI | 0 | 0 | 10 | 90 |
| 2 | SANTA FE, WICHITA MUNI | 0 | 30 | 30 | 40 |
| 3 | GREATER CINC INNATI, K. C. INT'L | 20 | 40 | 20 | 20 |
| 4 | L.A. INT'L., J.F. KENNEDY, O'HARE | 60 | 20 | 20 | 0 |

Table D-10. Airport/Aircraft Operations Mix For 1980 STOL Introduction

| AIRPORTS | OPERATING MIX , PERCENT |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 4 ENGINE JETS | $\begin{gathered} 2 \text { OR } 3 \\ \text { ENGINE } \\ \text { JETS } \end{gathered}$ | STOL | EXEC. JETS 4 ENG. PISTON | 1 OR 2 <br> ENGINE JETS |
| $\begin{gathered} \text { CATEGORY } \\ -2 \end{gathered}$ | 0 | 30 | 0 | 30 | 40 |
|  | 0 | 15 | 15 | 30 | 40 |
|  | 0 | 0 | 30 | 30 | 40 |
| $\begin{aligned} & \text { CATEGORY } \\ & -3 \end{aligned}$ | 20 | 40 | 0 | 20 | 20 |
|  | 20 | 20 | 20 | 20 | 20 |
|  | 20 | 0 | 40 | 20 | 20 |
| $\begin{gathered} \text { CATEGORY } \\ -4 \end{gathered}$ | 60 | 20 | 0 | 20 | 0 |
|  | 60 | 10 | 10 | 20 | 0 |
|  | 60 | 0 | 20 | 20 | 0 |

Table D-11. 1980 CTOL Airport Relief

| Hub | Total Annual Aircarrier Operations (000) | Maximum Annual STOL Operations (000) | CTOL Ports PANCAP (000) | Maximum Peak <br> Hour Passengers Diverted to STOL Ports |
| :---: | :---: | :---: | :---: | :---: |
| New York | 887.5 | 186.0 | 740 | 3,945 |
| Chicago | 700.8 | 138.0 | 640 | 3,372 |
| Los Angeles | 468. 4 | 186.0 | 560 | 4,260 |
| Atlanta | 412.4 | 21.5 | 440 | 784 |
| San Francisco | 390. 9 | 113.5 | 370 | 2,717 |
| Washington | 320. 2 | 39.9 | 330 | 680 |
| Dallas | 305. 2 | 51.1 | 390 | 1,547 |
| Miami | 264.0 | 20.0 | 390 | 696 |
| Boston | 241.1 | 25.0 | 340 | 692 |
| Philadelphia | 220.6 | 58.1 | 275 | 1,709 |
| Detroit | 206.5 | 68.7 | 395 | 1,950 |
| Pittsburgh | 206.0 | 52.7 | 360 | 1,583 |
| Houston | 162. 3 | 26.6 | 310 | 926 |
| Cleveland | 142. 0 | 43. 9 | 395 | 1,372 |
| Seattle | 134.2 | 16.4 | 295 | 635 |
| Kansas City | 130.8 | 21.4 | 310 | 780 |
|  | 5,192.9 | 1, 068.3 |  | 27,648 |

Table D-12. Atlanta Aircraft Movements (000)

| 1971 |  |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Airport Category | Operations |  | Air Carrier Operations |  |  | Proposed <br> Airport Category | Practical Annual Capacity (PANCAP) |
| Airport |  | Scheduled Air Carrier | Total | STOL Min. | STOL Max. | Total Including STOL |  |  |
| Hub Total | -- | 387.8 | 689. 9 | 14.1 | 21.5 | 437.4 | -- | 750 |
| Atlanta Int ${ }^{1} 1$ | 3 | 387.8 | 438.7 | 0 | 0 | 412.4 | 3 | 440 |
| Fulton Co. | 1 | 0 | 251.2 | 14. 1 | 21.5 | 25 | 2 | 310 |

Table D.-13. Boston Aircraft Movements (000)

| 1971 |  |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Airport Category | Operations |  | Air Carrier Operations |  |  | Proposed Airport Category | Practical <br> Annual Capacity (PANCAP) |
| Airport |  | Scheduled Air Carrier | Total | STOL Min. | STOL Max. | Total Including STOL |  |  |
| Hub Total |  | 214.3 | 603.6 | 63. 7 | 85 | 241.7 | -- | 535 |
| Logan | 3 | 213.6 | 316.7 | 44 | 60 | 215.7 | 3 | 340 |
| Hanscom | 1 | . 7 | 286. 9 | 19.7 | 25 | 26 | 2 | 195 |

Table D-14. Chicago Aircraft Movements (000)


Table D-15 Cleveland Aircraft Movements (000)

| $\begin{aligned} & 0 \\ & 1 \\ & N \\ & N \end{aligned}$ | 1971 |  |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Airport | Airport Category$\qquad$ | Operations |  | Air Carrier Operations |  |  | Proposed Airport Category | Practical Annual Capacity (PANCAP) |
|  |  |  | Scheduled "Air Carrier | Total | STOL Min. | STOL Max. | Total Including STOL |  |  |
|  | Hub Total |  | 125. 9 | 334.6 | 33. 2 | 43.9 | 142.0 |  | 725 |
|  | - Hopkins Int'l. | 3 | -125. 9 | 272.9 | 0 | 0 | 98 | 3 | 395 |
| - | Burke Lakefront | 1 | 0 | 61.7 | 33.2 | 43. 9 | 44 | 2 | 330 |

Table D-16 Dallas Aircraft Movements (000)

| $\begin{aligned} & \underset{0}{0} \\ & \dot{N} \\ & \omega \end{aligned}$ | 1971 |  |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Airport | Airport Category | Operations |  | Air Carrier Operations |  |  | Proposed Airport Category | Practical Annual Capacity (PANCAP) |
|  |  |  | Scheduled Air Carrier | Total | STOL Min. | STOL Max. | $\qquad$ Including STOL |  |  |
|  | Hub Total |  | 270.6 | 933.6 | 31.8 | 51.1 | 305.2 |  | 1135 |
|  | Love Field | 2 | 270.6 | 387. 1 | 31.8 | 51.1 | 305. 2 | 3 | 390 |
|  | Red Bird |  | 0 | 17.0 | 0 | 0 | 0 | 1 | 220 |
|  | Addison |  | 0 | 229.3 | 0 | 0 | 0 | 1 | 215 |
|  | Ft. Worth Mecham |  | 0 | 300. 2 | 0 | 0 | 0 | 2 | 310 |

Table D-17 Detroit Aircraft Movements (000)


Table D-18 Honolulu Aircraft Movements (000)

| Airport | 1971 |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Airport Category | Operations |  | Air Carrier Operations |  |  | Proposed Airport Category | Practical Annual Capacity (PANCAP) |
|  |  | Scheduled Air Carrier | Total | STOL Min. | STOL Max. |  |  |  |
| Honolulu Int'l. | 4 | 129.5 | 325.3 | 21.9 | 62.4 | 146.1 | 4 | 365 |

Table D-19 Houston Aircraft Movements (000)

| $\begin{aligned} & 0 \\ & i \\ & G \\ & \sigma \end{aligned}$ | 1971 |  |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Airport | Airport Category | Operations |  | Air Carrier Operations |  |  | Proposed Airport Category | Practical Annual Capacity (PANCAP) |
|  |  |  | Scheduled Air Carrier | Total | STOL Min. | STOL Max. | $\begin{aligned} & \text { Total } \\ & \text { Including } \\ & \text { STOL } \end{aligned}$ |  |  |
|  | Hub Total |  | 143.9 | 430.6 | 16. 5 | 26.6 | 162.3 |  | 620 |
|  | Houston Inter continental | 3 | 143. 2 | 185.8 | 0 | 0 | 132.3 | 3 | 310 |
|  | Hobby | 1 | . 7 | 244. 8 | 16.5 | 26.6 | 30 | 2 | 310 |

Table D-20 Kansas City Aircraft Movements (000)

| Airport | 1971 |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Airport Capacity | Operations |  | Air Carrier Operations |  |  | Proposed Airport Category | Practical <br> Annual Capacity (PANCAP) |
|  |  | Scheduled Air Carrier | Total | STOL Min. | STOL Max. | Total Including STOL |  |  |
| Hub Total |  | 116.0 | 332.9 | 15.9 | 21.4 | 130.8 |  | 505 |
| Municipal | 3 | 115.5 | 230.6 | 15. 9 | 21.4 | 30 | 2 | 195 |
| Kansas <br> City Int'l | 2 | . 5 | 102. 3 | 0 | 0 | 100.8 | 3 | 310 |

Table D-21 Los Angeles Aircraft Movements (000)

| $\begin{aligned} & 0 \\ & 1 \\ & \mathbf{1} \\ & \infty \end{aligned}$ | 1971 |  |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Airport | Airport Category | Operations |  | Air Carrier Operations |  |  | Proposed Airport Category | Practical Annual Capacity (PANCAP) |
|  |  |  | Scheduled Air Carrier | Total | STOL Min. | STOL Max. | Total Including STOL |  |  |
|  | Hub Total |  | 464.7 | 2330.8 | 146 | 186 | 524.2 | -- | 1770 |
|  | L. A. Int'l | 4 | 373.8 | 493. 2 | 0 | 0 | 324.2 | 4 | 560 |
|  | Long Beach | 1 | 10.2 | 587.8 | 29.2 | 37.2 | 40 | 2 | 430 |
|  | Hollywood/ Burbank | 2 | 30.8 | 223.5 | 29.2 | 37.2 | 40 | 2 | 195 |
|  | Hawthorne | 1 | 0 | 228.6 | 29.2 | 37.2 | 40 | 2 | 195 |
|  | Ontario | 2 | 28.0 | 141.8 | 29.2 | 37.2 | 40 | 3 | 195 |
|  | Orange Co. | 2 | 21.9 | 555. 9 | 29.2 | 37.2 | 40 | 2 | 195 |

Table D-22 Miami Aircraft Movements (000)

| Airport | 1971 |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Airport Category | Operations |  | Air Carrier Operations |  |  | Proposed Airport Category | Practical Annual Capacity (PANCAP) |
|  |  | Scheduled Air Carrier | Total | STOL Min. | STOL Max. | Total Including STOL |  |  |
| Hub Total |  | 234. 0 | 693.0 | 10.9 | 18.5 | 264.0 |  | 790 |
| Miami Int'l. | 3 | 234.0 | 343. 2 | 0 | 0 | 244. 0 | 3 | 390 |
| Opa-Locka | 1 | 0 | 349. 8 | 10.9 | 18.5 | 20 | 2 | 400 |

Table D-23. Milwaukee Aircraft Movements (000)

| 1971 |  |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Airport | Airport Category | Operations |  | Air Carrier Operations |  |  | Proposed Airport Category | Practical <br> Annual <br> Capacity <br> (PANCAP) |
|  |  | Scheduled Air Carrier | Total | STOL Min. | STOL Max. | Total Including STOL |  |  |
| Hub Total |  | 78.6 | 342.4 | 6.6 | 10.0 | 88. 7 |  | 495 |
| Mitchell | 2 | 78.6 | 224.3 | 6.6 | 10.0 | 88. 7 | 3 | 275 |
| Timmerman | 1 | 0 | 118.1 | 0 | 0 | 0 | 1 | 220 |

Table D-24. New York Aircraft Movements (000)

| 1971 |  |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Airport | Airport Category | Operations |  | Air Carrier Operations |  |  | Proposed Airport Category | Practical Annual Capacity (PANCAP) |
|  |  | Scheduled Air Carrier | Total | STOL Min. | STOL Max. | Total Including STOL |  |  |
| Hub Total |  | 786.8 | 1,236.8 | 182 | 266 | 887.5 |  | 1,545 |
| JFK Int ${ }^{\text {l }}$ | 4 | 333.6 | 380.0 | 0 | 0 | 300 | 4 | 380 |
| La Guardia | 3 | 287.2 | 363.5 | 55 | 80 | 277.5 | 3 | 360 |
| Newark | 3 | 166.1 | 223.8 | 36 | 53 | 160 | 3 | 225 |
| Teterboro | 1 | 0 | 269.5 | 55 | 80 | 90 | 2 | 270 |
| Westchester Co. | 1 | 5. 7 | 281.5 | 36 | 53 | 60 | 2 | 310 |

Table D-25 Philadelphia Aircraft Movements (000)

| 1971 |  |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Airport | Airport Category | Operations |  | Air Carrier Operations |  |  | Proposed Airport Category | Practical Annual Capacity (PANCAP) |
|  |  | Scheduled Air Carrier | Total | STOL Min. | STOL Max. | ```Total Including STOL``` |  |  |
| Hub Total |  | 195.6 | 458. 7 | 36.1 | 58.1 | 220.6 |  | 470 |
| Philadelphia Int'l | 3 | 191.2 | 292.3 | 0 | 0 | 170.6 | 3 | 275 |
| $\begin{aligned} & \text { North } \\ & \text { Philadelphia } \end{aligned}$ | 1 | 4. 4 | 166.4 | 36. 1 | 58. 1 | 50 | 2 | 195 |

Table D-26 Pittsburgh Aircraft Movements

| 1971 |  |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Airport | Airport Category | Operations |  | Air Carrier Operations |  |  | Proposed Airport Category | Practical Annual Capacity (PANCAP) |
|  |  | Scheduled Air Carrier | Total | STOL Min. | STOL Max. | Total Including STOL |  |  |
| Hub Total |  | 182.6 | 464. 8 | 34.6 | 52. 7 | 206. 0 |  | 555 |
| Gr.Pittsburgh | 3 | 182.6 | 276.3 | 0 | 0 | 151.0 | 3 | 360 |
| Allegheny Co. | 1 | 0 | 188.5 | 34.6 | 52. 7 | 55 | 2 | 195 |

Table D-27 San Diego Aircraft Movements (000)

| Airport | 1971 |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Airport Category | Operations |  | Air Carrier Operations |  |  | Proposed Airport Category | Practical <br> Annual Capacity (PANCAP) |
|  |  | Scheduled Air Carrier | Total | STOL Min. | STOL Max. | Total Including STOL |  |  |
| Hub Total |  | 74. 73 | 742. 41 | 29.1 | 32. 7 | 84. 2 |  | 1040 |
| Lindberg | 3 | 74. 73 | 202. 99 | 29.1 | 32. 7 | 84. 2 | 3 | 180 |
| Montgomery |  | 0 | 260.99 | 0 | 0 | 0 | 1 | 430 |
| Gillespie |  | 0 | 278.43 | 0 | 0 | 0 | 1 | 430 |

Table D-28 San Francisco Aircraft Movements (000)


Table D-29 Seattle Aircraft Movements (000)

| Airport | 1971 |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Airport Category | Operations |  | Air Carrier Operations |  |  | Proposed Airport Category | Practical <br> Annual Capacity (PANCAP) |
|  |  | Scheduled Air Carrier | Total | STOL Min. | STOL Max. | Total Including STOL |  |  |
| Hub Total |  | 119.0 | 488.5 | 9. 3 | 16.4 | 134. 2 |  | 590 |
| SeattleTacoma | 3 | 114.4 | 155.1 | 0 | 0 | 117.8 | 3 | 295 |
| Boeing Field | 1 | 4.6 | 333.4 | 9. 3 | 16.4 | 16.4 | 2 | 295 |

Table D-30 Washington/Baltimore Aircraft Movements (000)

| Airport | 1971 |  |  | 1980 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Airport <br> Category | Operations |  | Air Carrier Operations |  |  | Proposed Airport Category | Practical Annual Capacity (PANCAP) |
|  |  | Scheduled Air Carrier | Total | STOL Min. | STOL Max. | Total Including STOL |  |  |
| Hub Total |  | 385.5 | 748.3 | 80. 9 | 118.6 | 434.8 | -- | 980 |
| Washington National | 3 | 222. 7 | 330.0 | 52. 5 | 78. 7 | 251.2 | 3 | 330 |
| Baltimore Friendship | 3 | 101.9 | 223. 7 | 28. 4 | 39. 9 | 114.9 | - | 275 |
| Dulles | 4 | 60.9 | 194.6 | 0 | 0 | 68.7 | 4 | 375 |

Table D-31. 1980 Airport Capacity Prediction (Maximum Number of Operations)

| Airport Category | Traffic | Single <br> Runway |
| :---: | :---: | :---: |
| 1 | $\begin{aligned} & \text { PANCAP }\left(\times 10^{3}\right)^{*} \\ & \text { Daily } \\ & \text { Day/Night } \end{aligned}$ | $\begin{gathered} 213 \\ 584 \\ 584 / 0 \end{gathered}$ |
| 2 | PANCAP $\left(\times 10^{3}\right)^{*}$ <br> Daily <br> Day/Night | $\begin{array}{r} 194 \\ 531 \\ 531 / 0 \end{array}$ |
| 3 | PANCAP $\left(x 10^{3}\right)^{*}$ <br> Daily <br> Day/Night | $\begin{gathered} 180 \\ 493 \\ 444 / 49 \end{gathered}$ |
| 4 | PANCAP ( $\left.\times 10^{3}\right)^{*}$ <br> Daily <br> Day/Night | $\begin{gathered} 170 \\ 466 \\ 419 / 47 \end{gathered}$ |

*PANCAP - Practical Annual Capacity

Table D-32. Noise Analysis Flight Conditions

| AIR CRAFT TYPE | STOL | CTOL |
| :--- | :---: | :---: |
| $V_{\text {T. O. KNOTS }}$ | 90 | 130 |
| $\mathrm{~V}_{\text {APP KNOTS }}$ | 90 | 130 |
| T. O. PR OFILE <br> (CLIMB-OUT ANGLE) | $10^{\circ}$ | $6^{\circ}$ |
| APPROACH PROFILE <br> (DESCENT ANGLE) | $8^{\circ}$ | $3^{\circ}$ |
| OPERATIONS MIX | AS INDICATED ON OPERATIONS MIX CHARTS |  |
| NUMBER OF OPERATIONS | AS INDICATED ON CAPACITY CHART |  |

Table D-33. Major Elements of ATC System

| Area Navigation | RNAV - 3D <br> Ruidance between way points <br> "Pinpoints horizontal position and altitude. " |
| :---: | :--- |
| RNAV - 4D | "Adds dimenstion of time, thus eliminating <br> holding pattern delays, permits precise control <br> of arrival time. " |
| Terminal System Guidance "Advance Radar Terminal System" |  |

Table D-34. ATC System Generations

|  | Generation |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Seeund | Thi rd | Uperaded third |  |
|  |  |  | Phare I | Plase it |
| DEPLOMENT MEARS | 1950-1970 | 1970-1975 | 1975-1978 | 1978-19RS |
| Ravication |  |  |  |  |
| Alrborme | Point-to-Point | Same plua eome area navigation | More area navifation applications | Same |
| Ground stations | VOR/Dere/tacan | Same plua more accurate VOR | Same plus hipher capacity DPE | Same |
| Landing and Terminal | VHF ILS (Category II) | Same plus limited Category II any III plusinterim V/stol | Same plus initial mis | Increased numbers of M.S rumays |
| AIRPORTS Rumway Operationa | Parsilel ILS (6000 ft) | Same | Dual l lane rumasya | Preciston mas approachen to closed-speced parallel runways ( 2500 ft ) |
| Ground Guidance and Control | Altport surface detection equipment | Initial Airport Ground Traffic Cantrol (AGTC) | Improved Alrport Ground Survatllance \& Guidence | Comprehensive Aipport Ground Traific Contrul |
|  |  |  |  |  |
| Primery eurvelllance | Rader | Beacon (4096 code for aititude and identity) | Same | Discrete Addrese Rescon Sygtem (DABS) introduced |
| Secondary aurveillance | Bemcon (64 code) | Radar | Same | Same |
| maza transmission |  |  |  |  |
| Fímary communicatione | VHF/UHF Voice | Same | Same | DARS deta link and vif/limp Voice |
| Secondary comunt cations : |  |  |  |  |
| Ground | None | Backup emergency conmunications (BUEC) | Same | Same |
| Alirorne | Emergency Beacon Code | Same | Same | UIF/ViF Volee |
| DATA PROCESSIMG AND CONTROL |  |  |  |  |
| Flow Control | Decentralized | Centralized-manual | Centralized-automated | Contralized-automated |
| Clearance processing | Manual | Simplified manual procedure | Autionatic Generation | Antomatic Delivery via date LI nk |
| Separation s Sequeacing | Manua 1 | Automated alds to controller | Automated conflict \|detection \& resolution | Astomatic safety command: via data link: IPC to VFR |
| Merering $\in$ Specing $^{\text {mat }}$ (precise time scheduling) | Hatumi, when performent | Same | Automated-votce control | ATC to IFR <br> Automated - data link control |
| CONTROL COORDINATION |  |  | - - - - - |  |
| Intrafacility | Voice | Via controller display or volee | Fully eutometed or via controller dieplay or vulce | Same |
| OCEANIC MAV \& ATC |  |  |  |  |
| Survellianca | Pllot reporte-voice | Same | Same plus some automatic reporta | Automatic reports via data link/atetilite survelltance |
| Cormunications | LF/MF voice (non-ATC) | Same pius bome dediceted VHF | Seme | Same plus "L" bend data link via matellite |
| Control | Manual | Mancul-some computer alds | More computer alds to controller | Same |
| mevigation | Self-contained alrborne plue LoRas | Same | Primently inertial | Inertial and Loran/oricia |
| might seavices | Manuel | Tanuml-reconfigured | Automated alda to p8S apecialiats | Pllot self-aervice sutumation (fitght plan ething os briefing |

Table D-35. Airport Auto Traffic Per Enplaned Passenger

|  | Inbound Vehicles <br> Per Enplaned <br> Passenger |
| :--- | :---: |
| Los Angeles | 2.55 |
| Washington Natl | 1.56 |
| Boston | 1.88 |
| Philadelphia | 1.83 |
| Pittsburgh | 1.85 |
| Denver | 2.41 |
| St. Louis | 2.32 |
| Minneapolis | 2.38 |
| Seattle | 2.76 |
| Baltimore | 1.76 |
| Phoenix | 1.68 |
| Washington Dulles | 2.01 |
| Weighted Average | 2.12 |

## REFERENCES

H. L. Solomon, Interim Report, Study of Short Haul High Density
D. 3 Aviation Forecasts, FY 1972-1983, Federal Aviation Administration,
D. 4 FAA Air Traffic Activity, Fiscal Year 1971, Federal Aviation
D. 5 Horonjeff, R. D. and Paul, A., A Digital Computer Program for
D. 6 Concepts, Design and Description for the Upgraded Third Generation
D. 1
D. 2
D. 7 V/STOL Transportation Systems, Aerospace Report No. ATR-72(7301)-1, Vol. I, NASA Report No. CR-114466, The Aerospace Corporation, El Segundo, California (July 1972).
Airport Capacity Criteria Used in Long Range Planning, 5060-3A, Federal Aviation Administration, Washington, AL 150/ (December 24, 1969). Washington, D.C. (September 1971). Administration Report. Computation of Noise Exposure Forecast Contours, Federal Aviation Administration Report FAA-ND-70-6, June 1970 (Prepared by Bolt, Beranek and Newman). Air Traffic Control System, Report FAA-ED-01-1, Mitre Corporation, McLean, Virginia (January 1972).
S. G. Lardiere and F. E. Jarema, Impact of Projected Air Travel Demand on Airport Access, Highway Research Record No. 274, Washington, D. C. (1969).

APPENDIX E

## ROLES AND RESPONSIBILITIES

## CONTENTS

Page
E. 1 Principal Roles and Responsibilities Applied to Various Aspects of V/STOL Applications. ..... E-2
E.1.a National Aeronautics and Space Administration ..... E-4
E.1.b Federal Aviation Administration. ..... E-6
E.l.c Civil Aeronautics Board. ..... E- 8
E.1.d Secretary of Transportation ..... E-9
E.1.e Urban Mass Transportation Administration ..... E-10
E.l.f Federal Highways Administration. ..... E-10
E.l.g State, Regional and Local Agencies. ..... E-11
E.l.h Organization of Aeronautical Activities in California .....  E-1 3
E. 2 Timing of V/STOL Implementation Activities .....  E-25
E.2.a V/STOL Aircraft and Related Equipment Manufacturers. .....  E-26
E.2.b Airports. ..... E-27
E.2.c Airline Operations ..... E-27
E.2.d Airways and Air Traffic Control. ..... E-28
E.2.e Airport Access. ..... E-28
References. ..... E-37
FIGURES
E-1. Principal Role Interactions ..... E-30
E-2. Rapid Transit Milestones ..... E-31
E-3. California Freeway Development Milestones ..... E-32
TABLES
E-1. Sources of Laws and Regulations Pertinent to V/STOL Applications. ..... E-33
E-2. State Organizations for Aeronautics. ..... E-35

## ROLES AND RESPONSIBILITIES

An airport and its accompanying operations can radically change the environment of a large contiguous territory and may even influence property and persons only remotely connected to it geographically. As a consequence, vigorous and serious debates frequently result over whether an airport is needed, how it is to be developed, the kind of equipment it is to use, how it is to operate, the nature and extent of its environmental and economic influence, and the extent of compensation to be awarded to those persons claiming losses from the introduction of the airport and its operations into the community. In response to such issues, laws and regulations have emanated at the local, regional, state and national level to help bring about orderly and effective development of air transportation. These laws and regulations establish the roles of the various government agencies. Some of these laws and regulations may constitute V/STOL airport and aircraft design objectives or constraints. Other laws affect the operations of the airport and the aircraft and, just as importantly, other laws establish roles and responsibilities to foster air transportation.

In view of the widespread and important impact of air operations, it is not surprising that a great number of government organizations have interests, of varying degrees and kinds, in air transportation activities. These organizations exist at the national, state, regional and local levels. The roles and responsibilities of the various agencies are of critical importance. The timing of their actions may be equally significant because of the interdependence of the agencies with each other and with aircraft manufacturers, the airlines, airport authorities, and those responsible for surface access.

In the following paragraphs, the roles and responsibilities of selected key organizations will be discussed in terms of their impact on airports,
airport access, aircraft development, air traffic control and landing aids, and airline operations.

## E. 1 PRINCIPAL ROLES AND RESPONSIBILITIES APPLIED TO VARIOUS ASPECTS OF V/STOL APPLICATIONS

As can be seen from Table E-1, the organizations having defined responsibilities toward air transportation are both numerous and varied. ${ }^{\mathrm{E}-1}$ However, the nature and importance of the responsibilities differ. In the cases of the Civil Aeronautics Board and Federal Aviation Administration, aeronautical activities constitute the primary rationale for the organizations' existence and the corresponding air transportation responsibilities they bear overshadow those of other organizations. In some instances, such as the National Aeronautics and Space Administration and the Congress, other organizational responsibilities are borne in addition to the specific ones related to air transportation. Congress, for example, affects virtually all aspects of civil aviation through the legislative powers to define the regulatory authority, to grant or deny appropriations that fix expenditure levels and to investigate the performance of, as well as needed changes in, legislation and organizational responsibilities. In some cases, organizational responsibilities are relatively minor, as in the cases of the Interior Department and Agriculture Department which bear air transportation responsibilities only when national park or forest lands are involved.

For the purpose of this report, major discussion is to be focused upon a selected set of organizations considered to be of special importance to air transportation, in general, and V/STOL applications in particular. At the Federal level, these include the National Aeronautics and Space Administration, the Civil Aeronautics Board, and the Federal Aviation Administration. At the state level, the organizations to be concentrated upon are organizations such as the departments of aeronautics. At the regional level, the discussion will be limited to those regional organizations whose specific purpose relates
to air transportation. At the local level, the discussion will center upon organizations such as the airport authority, the planning agencies, and agencies concerned with surface access to the airport.

It can be seen in Figure E-1 that government agencies at all levels interrelate with airlines and airline operations. The principal agencies to be considered here are the CAB, the FAA, and various agencies at the state, regional and local level.

A variety of traveler and community needs seem to be served by the various agencies in carrying out their functions. Thus, the costs to the traveler are regulated for interstate travel by the CAB; schedules are controlled by the CAB to assure accessibility; safety of airline operations is provided through certification of aircraft, crews and maintenance personnel by the FAA; and passenger comfort is considered among the many criteria leading to aircraft certification by the FAA. Various government agencies such as the CAB and FAA seek to encourage economic growth as a consequence of improvements in air service. NASA and the FAA are actively engaged in programs to reduce noise and air pollution... The FAA and $C A B$ are both concerned with the reduction of air space congestion for a variety of reasons.

Agency responsibilities concerning airports are also of importance. Any significant alteration of airport characteristics, operations and location may affect a wide variety of community, as well as traveler, needs. For example, the decision to use reliever airports in conjunction with hub airports for the 1980 STOL should provide an increased accessibility for significant parts of the traveling population. The increased accessibility is significant in reducing the individual's total travel time through a reduction in the amount of time spent on surface travel. Correspondingly, total travel costs may be reduced since the traveler may benefit directly from the lower surface fares as well as from the reduced time spent on surface modes. The
environmental impact of an airport is a matter of concern for local, regional, and state agencies as well as the Federal Environmental Protection Agency.

NASA, the FAA and the CAB bear major Federal responsibilities for aircraft development, airports, airlines, and airways; however, the responsibilities for airport access, frequently a limiting factor in the effectiveness of these agencies, fall almost entirely outside their purview. Other agencies at the Federal level do play critical roles. These include the Aviation Advisory Commission, the Office of the Secretary of Transportation, the Urban Mass Transportation Agency, the Federal Highway Administration, and the Department of Housing and Urban Development. Important roles and responsibilities are also carried out by government agencies at the state, regional and local levels.
a. National Aeronautics and Space Administration
(1) V/STOL Aircraft and Related Equipment Manufacturers.

NASA's roles and responsibilities for V/STOL aircraft research and development evolve from the National Aeronautics and Space Act of 1958, as amended. E-2 One of the assigned statutory functions of NASA described by the Act is to conduct research for the solution of the problems of flight and the development, construction, test, and operation of aeronautical vehicles. Its relationships with the aeronautical industry are extensive since the Act calls for the widest practicable and appropriate dissemination of information concerning NASA's activities and their results. While planning, coordination, and control of NASA's programs are vested in Headquarters Directorate of NASA's field centers, other NASA installations, such as the Ames Research Center, are responsible for execution of NASA's programs, largely through contracts with research, development, and manufacturing enterprises.

One such contract, under Ames Research Center's project responsibility, is the QUESTOL program -- an acronym for quiet, experimental, short-takeoff-and-landing aircraft. Lockheed Aircraft Corporation, McDonnell Douglas Corporation and Grumman Aerospace Corporation are sponsored by NASA for the initial phase of QUESTOL design and development. The objective of the program is to provide propulsive and lift technology required for the development of quiet STOL transport aircraft that can help reduce community noise, ease airport congestion and improve short haul air transportation. Subsequent contracts will provide for industry fabrication of two aircraft to be delivered to NASA for testing as experimental transports. Data from the program will then be made available to the aircraft industry for use in the development of V/STOL aircraft.

Other NASA technological research and development activities of relevance to potential $\mathrm{V} / \mathrm{STOL}$ manufacturers include the quiet engine, jet augmentation wing and lift fan, and externally blown flap programs. Its basic research on aerodynamic noise is of particular relevance in view of the critical importance of aircraft noise for the future of V/STOL applications.

Since non-technical considerations frequently constrain or modify aircraft development, NASA also engages in non-technological research of relevance to V/STOL applications. These activities include studies of aircraft in short haul transportation systems, noise considerations for V/STOL air transports, and time-value analysis of short haul passenger transportation.

NASA's support of industrial research and development activities along with its in-house R\&D activities is supplemented by the availability of various government facilities, such as wind tunnels at NASA field installations,' to potential V/STOL manufacturers.
(2) Airways and Air Traffic Control

NASA's research and development activities, of relevance to airways and air traffic control, include programs to provide automatic landing systems
for V/STOL aircraft, communications systems, and the launching of meteorological, navigation and communications satellites.
b. Federal Aviation Administration
(1) Aircraft and Related Equipment Manufacturers

The FAA interactions with V/STOL aircraft and related equipment manufacturers may significantly influence the characteristics of any V/STOL aircraft manufactured for the airline industry. The FAA roles and responsibilities include the sponsorship of aircraft researchand development, the establishment of certification standards for V/STOL aircraft, and type and prototype certification. E-3

## (2) Airports

The Administrator of the FAA administers programs to identify the type and cost of development of public airports required for a national airport system and provides grants of funds to assist public agencies in airport system planning, airport master planning, and public airport development. The Airport and Airway Development Act of 1970 constitutes a comprehensive effort by the Congress to provide for the expansion and improvement of the airport and airway system in the United States. It provides that the Secretary of Transportation is to formulate and to recommend to Congress a National Transportation Policy. In revising and formulating the national airport system plan, the Secretary is to take into consideration the relationship of each airport to the rest of the transportation system in the particular area, its relationship to the forecasted technological developments in aeronautics, and the relationship to other developments such as those in intercity transportation. These considerations are of particular significance to V/STOL applications since potential travelers between cities, particularly - for relatively closely spaced cities, are faced with a choice among travel modes.

The FAA engages in a number of research and development activities of immediate significance to airports. It is engaged in technological R\&D on airport and airways traffic capacity. It provides aviation forecasts for approximately ten years into the future. It forecasts the composition of the National Airport System, again for about ten years into the future. The FAA studies the problem of airport congestion for approximately five years into the future. It engages in studies on the influence of the airport on the local communities. It establishes criteria relating to airport development grants and studies problems of airport expansion and long range planning.

Since only the use of existing airports is envisioned by this study for the 1980 STOL, many of the problems associated with the development of an entirely new airport are eased. In particular, the high cost of "landside" development diminish. With the Airport and Airways Development Act of 1970 providing for matching funds on a 50-50 basis for 'airside" developments, the problems of persuading the local communities to help create a 1980 STOL capability are eased somewhat further.

Airlines and Airline Operations
The FAA, along with the CAB, plays perhaps the more significant of the government roles regulating airlines and airline operations.

The FAA participates in the CAB route proceedings. It issues and administers air safety regulations and certifies the safety of aircraft for operations. The FAA establishes the standards, gives the appropriate tests and issues licenses for airmen and maintenance personnel. It provides also preflight and enroute briefings to airline personnel.

The FAA's aviation forecasts provide useful market data to airline planners. Through the establishment of uniform safety standards, the FAA permits both manufacturers and airlines to be assured that sacrifices in safety features by competitors will not allow them unfair competitive advantage.

Airways and Air Traffic Control (ATC)
While the responsibilities for other aspects of V/STOL applications are generally allocated to a number of $F$ ederal and non-Federal agencies, the Federal Aviation Administration bears almost sole responsibility for the Federal Airways System. Its research and development are supplemented by those of NASA.

The FAA plans, finances, owns and operates the Federal Airways System. It operates the air traffic control towers and trains the ATC personnel.

FAA's research and development programs include R\&D of a semiautomatic ATC system, improved long-distance navigation, large screen displays for ATC, and improvements in its Airport Surveillance Radar.

Currently planned FAA equipment and facilities have an inherent capability for handling a 1980 STOL. However, in the absence of firm definitions of the 1980 STOL, increased FAA attention to the uses of the equipment and facilities may be required in order to exploit the potential benefits of a STOL system.
c. $\quad$ Civil Aeronautics Board
(1) Airports

The CAB also fulfills important roles and responsibilities with respect to airports. ${ }^{-4}$ It approves particular airports to serve particular areas with air service. It authorizes routes which influence airport planning and design. With the Interstate Commerce Commission, the CAB establishes air cargo zones and ground pickup zones.

Like the FAA, the CAB actively undertakes or sponsors a variety of research activities of significance to STOL and V/STOL applications. It has studied problems of airport congestion by 1975. It forecasts the growth of scheduled domestic passenger air traffic. It conducts origin-destination surveys of airline passenger traffic.

The CAB plays a particularly important role in terms of its regulation of airlines and airline operations. Under the terms of the Federal Aviation Act of 1958, particularly Title X of the Act, the Civil Aeronautics Board has powers to regulate virtually every facet of the airline industry's structure, operations, and relationships to other industries. The CAB's powers include: licensing or granting of operating authority; regulation of airline rates; enforcement of laws, regulations and procedures; the regulation of relationships among air carriers and between air carriers, common carriers, and other aeronautical firms.

In carrying out its responsibilities the CAB studies are important to airline and airline operations as well as airports. The CAB studies of special relevance to airlines and airline operations include: airport congestion, air travel demand, forecasts of the growth of scheduled domestic passenger air traffic; fare structures and effects of competition in selected areas; air carrier financial and traffic statistics; local service air carrier costs; and studies of freight rates.
d. Secretary of Transportation
(1) Airport Access

The Airport and Airways Development Act of 1970 authorizes the Secretary of Transportation to grant funds to planning agencies for airport system planning and to public agencies for airport master planning. The terms of the act make approval of a project conditional upon its being reasonably consistent with existing planning agency projects for development of the area where the airport is located. The Secretary is also required to withhold approval unless the Secretary is satisfied that fair consideration is given to the interests of communities in which or near which the project may be located. Nor is the Secretary to authorize airport development projects
which he determines will have an adverse effect upon the environment, unless there is no feasible alternative. If there is no feasible alternative, the Secretary is to assure that all possible steps are taken to minimize the adverse effect. No airport development project is to be approved unless the public agencies sponsoring the project certify that the public has been given the opportunity for a hearing. The governor of the state in which the project is located is to certify that the project will comply with proper air and water quality standards.

No Federal funds are to be used under the Act for the cost of construction of public parking facilities for passenger automobiles as part of the airport development project. Similarly, the Act precludes funding of the cost of construction, alteration, or repair of a hangar or of any part of an airport building unless those buildings or parts of buildings are intended to house facilities or activities directly related to the safety of persons at the airport.
e. Urban Mass Transportation Administration
(1) Airport Access

The Urban Mass Transportation Agency (UMTA) of the Department of Transportation provides grants or loans to public bodies for acquiring or improving capital equipment and facilities needed for public or privately operated mass transit systems. While neither these loans, nor UMTA's "demonstration grants" have yet provided an adequate means of solving airport access problems, the potential for such help remains.
f. Federal Highways Administration
(1) Airport Access

The Bureau of Public Roads of the Federal Highway Administration (still another part of the Department of Transportation) provides funds to
state highway departments for constructing the interstate highway system and for building or improving primary and secondary roads and streets. Funding for the interstate highway system is authorized by the Congress to be spent from the Highway Trust Fund on a matching basis, with the Federal share being $90 \%$ and the State share $10 \%$. The funding for building or improving primary and secondary roads is on a $50-50$ basis.
g. State, Regional and Local Agencies
(1) Airports

In view of the very great impact -- for good and for bad -- that an airport may have upon a local community, it is not surprising that a number of agencies at the state, regional and local levels involve themselves in airport activities.

At the state level, the state may provide planning and technical aid for airport development and under some circumstances may assist the local or regional agencies with financial help concerning airport planning and development. The organization at the state level varies from state to state In some instances, the organization concerned with aeronautical activities functions as part of a higher state organization (e. g., in California the Department of Aeronautics is part of the Business and Transportation Agency) while in other instances the organization concerned with aeronautical activities represents the highest level of government agency (e. g., the Alabama Department of Aeronautics). Responsibilities and roles also vary from state to state. In California, for example, the Department of Aeronautics is assisting in the development of statewide system of airports, including responsibilities concerned with airport site and heliport site approvals. It also cooperates with Federal authorities in the development of a national system of civil aviation and in the coordination of aeronautic activities within the State of California.

Regional agencies also have critical roles and responsibilities concerning airports. In some instances, a regional authority may determine the location for a new airport. In other instances, a regional authority may plan, finance and develop the airport system. In Los Angeles County, for example, the Los Angeles County Aviation Commission makes recommendations to the County Board of Supervisors on the acquisition of sites for County airports and heliports, the establishment of regulations for the management and operation of these facilities, and other such matters. The Commission also makes recommendations to the County Engineer on regulations and plans for developing aviation in the County. These may include proposals for enlarging existing facilities or adding new ones to serve the aviation industry. For a county such as Los Angeles, the development of reliever airports may also call into play the Los Angeles County Engineer who also serves as Director of Aviation for the Los Angeles County.

The Los Angeles Department of Airports has charge, supervision, direction and control over the Los Angeles municipal airports (which include LAX, Van Nuys and Ontario). The Board of Airport Commissioners establishes rules and regulations governing the use of the airports and the operation of aircraft in connection with the airports. The Los Angeles Planning Commission and the City Planning Department provide a master plan for the physical development of the city, including its airports. The City Planning Commission also acts as the Airport Zoning Commission. The Planning Department regulates the use of privately owned property through zoning ordinances and through the approval of proposed subdivisions and passes upon zoning variations, as well as the city's acquisition of land.
(2) Airlines and Airline Operations.

A state may limit aircraft operations to particular areas or times and is empowered to have jurisdiction over intrastate tariffs. A regional
authority may seek to specialize a particular airport for a particular kind of air service. Agencies of the local community, in particular the airport authorities, participate with the $C A B$ in the route authority proceedings. The local community may restrict unacceptable aircraft, the hours during which airline operations will be permitted, and the uses to which the airline äctivities may be directed.

## (3) Airport Access

Since each state highway department has considerable discretion in determining what the state's interstate highway, primary and secondary road system should be, the state has the ability to help provide airport access improvements. County planning commissions may administer a "master plan for highways" for the unincorporated areas of a county with various city planning departments bearing similar responsibilities in the urban areas. Other departments are usually charged with making surveys for street improvements and for street maintenance.

## (4) State Organizations for Aeronautics

Organizations for aeronautical activities at the state, county and local levels vary from state to state (Table E-2). In some instances, the state organization concerned with aeronautical activities functions as part of a higher state organization (e. g., in California the Department of Aeronautics is part of the Business and Transportation Agency) while in other instances it represents the highest level of government agency (e.g., the Alabama Department of Aeronatutics). In Colorado and Nevada, separate state organizations for aeronautics are not identified.
(h) Organization of Aeronautical Activities in California

A variety of organizations at the state, county and local level are of significance to aeronautical activity. It is the purpose of this section to
describe briefly some of the organizations affecting air operations and airports including airport access in the State of California. While California is not necessarily representative of other states, the description of the organizations and their responsibilities still provide a feel for the problems to be encountered elsewhere.
(1) California Department of Aeronautics

As an example of government organization for aeronautics, the State of California Department of Aeronautics activities include: encouragement of the development of private flying and general use of air transportation, the fostering of air safety, assisting in the development of a statewide system of airports, and providing for cooperation with federal authorities in the development of a national system of civil aviation as well as coordination of aeronautics activities of federal authorities with the State of California. E-5 It is charged with airport and heliport site approval as well as airport operating permits.

The programs administered by the California Department of Aeronautics to accomplish its objectives include: (a) development of aviation and navigation facilities, (b) aviation safety and education, and (c) administration.

The objective of the aviation and navigation facilities program is to plan for the optimum use of available air space and to provide technical and financial assistance toward the development of aviation and navigational facilities. On-going elements of the program in FY 1970-71 included: (a) allocation of airport assistance revolving funds, (b) regulation of airports and heliports, (c) inspection of schools and state building sites, (d) leasing the navigational system, (e) noise standards for airports, and (f) the State Airport Master Plan.

During the 1969 Session, the California Legislature enacted legislation which required the Department of Aeronautics to develop and adopt noise
standards governing the operation of aircraft and aircraft engines for airports operating under a valid permit issued by the department to the extent not prohibited by law. The act, Chapter 1585, Statutes of 1969, established an advisory committee to assist the department in the adoption of standards and directed that the regulations be presented to the Legislature by April 1970; which, in the absence of legislative action they were to become effective January 1, 1971.

The bill provided $\$ 50,000$ from the General Fund to be repaid by the Airport Assistance Revolving Fund from the revenue realized from a newly imposed tax on aircraft jet fuel.

Further, the bill specifically provided that the counties would be responsible for the enforcement of the regulations and directed that the officer in charge of the airport provide the enforcement authority, to be designated by the county, such information as is required by the noise standard regulations to permit their efficient enforcement.

The objectives of the California Department of Aeronautics aviation and safety program in the fiscal year 1970-1971 were to develop and promote a safety program and to insure the adequacy of training equipment, facilities and procedures in aeronautical activities and schools. Elements within the program included: (a) regulation of parachute jumping, (b) financial responsibility, (c) safety and education, (d) regulation of commercial flight schools, (e) search and rescue, and (f) airmarking.

The Department of Aeronautics in FY 1970-1971 was also in the process of developing the first phase of a two-phase master plan for aviation. When compiled, the plan was to provide a logical basis for the distribution of the Airport Assistance Revolving Fund and was to relate the needs of the state to the potential financing of airport development. The study is a 28 -month study which uses regional and local planning data as basic inputs. The Bay Area Regional Airports study is thus a basic
component of the statewide master plan. Once developed the study will be drawn into a more general multi-mode plan which will include ground transit as well as aviation.

The California State Master Plan of Aviation is a two-part study involving the air element of the overall transportation picture. When completed, the plan will encompass all 58 California counties. Phase I of the plan is primarily concerned with inventory and data gathering, analysis of the existing system, the forecasted supply and demand, postulated future systems and the evaluation of the proposed alternatives. It will, in effect, describe where California is today with respect to air transportation, what California can expect in the future, and alternative ways of coping with the future.

Phase II is to develop the actual aviation program based on the data and results stemming from the Phase I activity. It will produce an implementation program to be pursued in putting the Master Plan into effect. An additional feature of the Phase II activity will be a computerized information Data Bank which will store all collected and inventoried data assembled during the course of the study. This Data Bank will be updated on a selected element basis, to be available to all types of users as their needs for data arise.

The Department of Aeronautics contends that the long-term plan for future development of an overall Statewide Aviation System is necessary if the Department of Aeronautics is going to carry out its objectives in the State of California. To effect uniformity of the laws and regulations relating to aeronautics in order that persons may engage in every phase of aeronautical activity with the least possible restrictions consistent with the safety and rights of others, a need exists for a means of coordination and cooperation with Federal authorities.

In the development of a national system of civil aeronautics, it is necessary to provide a means for coordination of the aeronautical activities of the Federal authorities in the State of California. A number of needs arise:

- There is a need to develop an economically and technically appropriate system of general aviation airports financed out of user charges as distinct from other sources of funds.
o There is a need to develop a system of reliever airports and airstrips for accommodating the overflow of general aviation and the diversion of training flight operations to maintain capacity at existing airports.
o There is a need to develop a system of recreational airports consistent with recreational values and needs.
o There is a need to determine the need for the Business and Transportation Agency, the Department of Aeronautics, the Aeronautics Board, and possibly the State Transportation Board to administer future state and federally supported aviation trust funds.
o There is a need to establish an information data system for existing and future projected aviation data in a computer based form.
o There is a need to evaluate the adequacy of the system to determine future demands and surplus and to provide optimum alternative systems, recognizing cost effectiveness differences.
o There is a need to formulate an implementation program designed to meet the needs of the physical and policy elements of the California Master Plan including capital improvements, legislative actions, administrative measures and responsibilities, and regulatory implications.
o There is a need for the establishment of a state agency which will be responsible for final accomplishment of the program, including the coordination of the aviation planning, administrative and implementation functions, with other state, regional, local and federal agencies involved in transportation planning.
- There is a need to provide liaison with DOT/FAA as to which airports may qualify for federal grants-in-aid as part of the total airport system within the context of the National Airport System Plan and the State Master Plan of Aviation.
- There is a need to determine and update airport standards relating to physical plan versus facilities, noise, environment and other physical requirements.
(2) California Public Utilities Commission

The California Public Utilities Commission, a constitutional agency composed of five members appointed by the Governor with the advice and consent of the Senate, is responsible for the regulation of privately owned public utilities. The term "public utility" includes such businesses as truck, bus, airline companies and pipeline corporations (comprising the "transportation" group of utilities), telephone, gas and electric companies, and warehouse companies. The commission's primary objective is to insure adequate facilities and services for the public at reasonable and equitable rates consistent with a fair return to the utility on its investment.

The commissions' authorized staff of 807 positions (FY 1971) was organized into six divisions: Administrative, Transportation, Utilities, Finance and Accounts, Examiner, and Legal. The commissions' two major programs are the Regulation of Transportation (receiving about 62 percent of the budgeted funds) and the Regulation of Utilities (receiving about 38 percent of the funds). Direct operating responsibility for these two programs is handled, respectively, by the Transportation Division and the Utilities Division, each of which receives supporting services from the other four divisions.

Operating Procedures. The commission reviews and passes judgment on all changes in operating methods and rate schedules proposed by regulated utilities and transportation companies. It investigates complaints registered
against utilities and may initiate an investigation of a utility company on its own volition. In all such cases, data are accumulated by the staff, hearings are held, decisions rendered, and compliance secured through enforcement procedures. No state court may review a commission decision except the California Supreme Court whose review power is limited to questions of law.

An application or complaint presented to the commission by or against a transportation company, for example, would be studied by the Transportation Division. Any financial implications would be reviewed and evaluated by the Finance and Accounts Division. The Legal Division would advise the commission on legal matters and the Examiner Division would conduct the hearings. The Administrative Division provides staff supervision, administers commission policies, and maintains housekeeping services.

Support of the Commission. The commission is supported by the General Fund and the Transportation Rate Fund. The Transportation Rate Fund finances only those commission activities relating to the rates, charges, and practices of motor carriers hauling freight. All other commission functions are supported by the General Fund.

Revenues for the Transportation Rate Fund are derived from a fee paid by the regulated motor carriers which is equal to one-third of one percent of their gross operating revenues. Additional revenue to the Transportation Rate Fund is produced by a $\$ 4$ quarterly "filing fee" which is paid by all motor and rail freight carriers at the time they file with the commission their reports on gross operating revenue. Other revenues are derived from a miscellany of penalties, application fees for permits and certificates, and from the sale of documents.

Applications to California Air Transportation. The California Public Utilities Commission has the authority to regulate and the responsibility to regulate intrastate air carriers and to regulate intrastate fares of carriers certificated by the Civil Aeronautics Board. The commission also regulates surface carriers which serve the various airports in California, with the exception of those carriers which are operated by other governmental or municipal agencies. It has relations with the Association of Bay Area Governments (San Francisco region) and the Regional Airport Systems Study Committee as it is the commission's belief that it can contribute to the solution of the regional transportation problem by the adoption of a program designed to shape its regulation of air carriers and airport surface transit to comport with an integrated and dispersed usage of the San Francisco Bay area airports.

The Commission has adopted a policy of promoting cooperation with the Civil Aeronautics Board on questions of air carrier service by the establishment of an air team which coordinates their common activities. Although the Commission has full regulatory authority over intrastate airlines, its authority over interstate airlines is limited to the fixing of rates for their intrastate operations. In effect the two regulatory agencies must work harmoniously toward the same objectives to insure the most convenient, economic and balanced utilization of airport facilities. Some phases of cooperation between the two agencies may require additional legislation on both the state and federal levels. Where this is found to be necessary, the respective agencies should take steps to secure the introduction of the appropriate bills.
(3) California Division of Highways

The activities of the California Division of Highways are of special importance to the development of adequate airport access. The Division of Highways is a part of the Department of Public Works which, in turn, is a part of the Business and Transportation Agency. The Highways Division
plans, supervises construction of, and maintains the State Highway System. It also issues transportation and encroachment permits. One of its district offices conducts the Los Angeles Regional Transportation Study.
(4) Los Angeles County Board of Supervisors

At the County level organizations vary from county to county. In Los Angeles County the Los Angeles County Board of Supervisors serves as the governing body of the County and many special districts, including Flood Control, Air Pollution Control and Fire Protection Districts. The Board enacts ordinances and rules; determines County and special district policies; supervises activities of the Chief Administrative Officer; County departments and special districts; and sits each July as the County Board of Equalization to hear appeals from property assessments.

It has the unique function of serving as the executive and legislative head of the largest and most complex County Government in the entire United States.

## Los Angeles County Regional Planning Commission

The Regional Planning Commission establishes a master plan for Los Angeles County (plans which provide, among other things, for airport locations and related activities); maintains orderly and effective administration of existing plans; and provides comprehensive and precise zoning for unincorporated areas of the County. Its Development Planning Division administers the Master Plan of Highways and reviews public land acquisition for conformity with master plans. The Regional Planning Division's County Wide Planning Division handles all the technical work regarding the creation of master plans, community plans, and special planning assignments involving unincorporated areas of the County distinct from regional plans.

Los Angeles County Aviation Commission
The Los Angeles County Aviation Commission makes recommendations to the County Board of Supervisors on the acquisition of sites for County airports and heliports, the establishment of regulations for the management and operation of these facilities, and other such matters.

The Commission also makes recommendations to the County Engineer on regulations and plans for developing aviation in the County. This may include proposals for enlarging existing facilities or adding new ones to serve the aviation industry. The Commission also recommends programs for the promotion and growth of the aviation industry.

Los Angeles County Engineer -- Aviation Division
The Los Angeles County Engineer is also Director of Aviation for Los Angeles County. The County Engineer's overall functions include the performance of engineering services in the unincorporated area of the county and in contract cities as directed by the Los Angeles County Board of Supervisors.

Los Angeles County Road Department
The Los Angeles County Road Department is responsible for planning, designing, constructing, maintaining, and repairing County highways, roads, bridges, and culverts, and for making the related surveys; design, installation and maintenance of traffic signals; administration, construction and maintenance of County Lighting Districts.

The Road Departme nt also controls right-of-way requirements; determines acceptability of Record of Survey maps and subdivision maps in regard to dedication of streets; issues permits for excavations, construction, and moving of buildings on public highways.

## Los Angeles County Air Pollution Control District

The Los Angeles County Air Pollution Control District develops and enforces measures to control air contaminating emissions from stationary sources; administers air monitoring, research, source testing, instruments and methods development, meteorological and control engineering services in support of this basic mission; performs air monitoring projects for State and Federal agencies; provides atmospheric radiological monitoring and protection services for the County.

Los Angeles City Planning Commission
To guide orderly growth the Los Angeles City Planning Commission is appointed to study city growth and recommend policies to the governing body of the city. This usually results in the County Master Plan. They also recommend which particular areas of the city should be used for certain purposes. The planning and zoning laws adopted by the city are for the health and welfare of the public thus serving one of the requisites for the exercise of the police power of the community. Planning commissions usually pass on any new subdivision development to determine that they conform to the overall interests of the community. By law the planning commis sions may control street alignment, improvements, size and shape of lots, etc. The commissions usually pass on all subdivision maps before they are presented to the City Council or Board of Supervisors. The City Planning Commission usually works closely with county planning commissions (sometimes called Regional Planning Commissions, as in the case of Los Angeles County) in planning through highways and other matters requiring coordinated action.

## (11) Los Angeles City Planning Department

The Los Angeles City Planning Department prepares and maintains a master plan for the physical development of the city including such elements
as highways, the Civic Center, public works facilities, branch administrative centers, schools, recreational facilities, airports and the shore line. All matters which would affect any portion of this plan must be approved by the City Planning Commission (which also acts as the Airport Zoning Commission). The Department regulates the use of privately owned property through zoning ordinances and through the approval of proposed subdivisions. The Department investigates and reports on applications for amendments to the zoning ordinances and passes upon zone variance applications. The acquisition of land by the City of Los Angeles for public use must be approved by the City Planning Department.

## Los Angeles Department of Airports

The Los Angeles Department of Airports has charge, supervision, direction, and control over the Los Angeles municipal airports. The Board of Airport Commissioners establishes rules and regulations governing the use of the airports and the operation of aircraft in connection with the airports. The municipal airports include Los Angeles International Airport, the Van Nuys Airport and the Ontario Airport.

## (13) Los Angeles City Engineering Bureau

The Los Angeles City Engineering Bureau, a part of the Public Works Department, prepares surveys and engineering plans for street improvements, bridges, sewers, storm drains, and other public works, and is the custodian of all maps, plans and records pertaining to such work.

Los Angeles Right of Way and Land Bureau
The City of Los Angeles Right of Way and Land Bureau acquires rights-of-way, makes appraisals and purchases property required for public use. It examines property titles, maintains records, and collects rentals for the use of City-owned land and improvements.

## Los Angeles Streets

In Los Angeles, streets are primarily the responsibility of the city. Three agencies of the city -- the Planning Department, the Traffic Department, and the Public Works Department -- are involved in the provision and maintenance of the city streets. The Planning and Traffic Departments evaluate capabilities of existing streets and define requirements for future streets, while the Public Works Department is responsible for construction and maintenance. Each of these departments is, in turn, responsible to a citizen's commission, or board, which is in turn responsible to the City Council and Mayor for the activities of these departments.

## E. 2 TIMING OF V/STOL IMPLEMENTATION ACTIVITIES

Whatever the importance of the roles and responsibilities of the government agencies for V/STOL applications, the timing of their activities is a critical determinant of the future of V/STOL applications. The webs of interdependency are such that the action of one group is frequently dependent upon the prior completion of some other activity by another group. Unfortunately, in some instances a considerable period of inactivity results because each is awaiting the other's move.' This may be at least partially descriptive of V/STOL activities. The manufacturers are unwilling to commit funds and resources to the development of a V/STOL aircraft in the absence of firm aircraft purchase orders. The aircraft purchases from the manufacturers are withheld pending granting of route authority to the airline by the CAB for a particular $\mathrm{V} / \mathrm{STOL}$ route. Also, delivery of the aircraft may be held up pending certification of the aircraft by the FAA. The CAB, on the other hand, may be hesitant to provide route certification in the absence of firm information about the number and type of aircraft to be used, the scheduling of the airline operations, the characteristics of the aircraft, the nature of the market, and the effects upon other transportation activities. Similarly, local agencies may be hesitant to accord support for a V/STOL applications program in the absence of firm data about the noise and air
pollution likely to be produced by the aircraft as well as its impact upon both air and surface congestion.

Figure 32, Volume I, depicts in summary fashion some of the timerelated interdependencies. In each facet of V/STOL applications many of the decisions and implementing acts are dependent upon some preceding act. Thus, in the aircraft category, the availability of the 1980 STOL depends upon prior STOL certification by the FAA, the FAA certification of a STOL, prior flight tests of the STOL aircraft, and so forth. Time-related dependencies span categories. Thus, with respect to the airline category STOL aircraft revenue service depends upon the availability of certified STOL aircraft (from the aircraft category line) and STOL landing aids (from the air traffic control line).

It is important to bear in mind that the time requirements for the decisions and implementation acts are subject to considerable variations. In some instances, the time requirements are established by law, as in the stipulation that a certain number of days will elapse between notice of a $C A B$ hearing and the hearing itself. In other cases, the time requirements cannot be defined with any precision because of uncertainties associated with technical developments of a revolutionary nature. Often, however, the times are difficult to define because of an agency's caution in making a decision in order to safeguard all interested parties.

## a. V/STOL Aircraft and Related Equipment Manufacturers

The dependence of V/STOL aircraft and related equipment manufacturers for funding of research in the manufacturer's facilities and information resulting from sponsored research and in-house government research was described earlier. The manufacturers may delay their own work on the development of a V/STOL aircraft pending the completion of such $R \& D$ activities. But the aircraft manufacturer is also likely to wait for
government endorsed definitions of a market particularly as a result of CAB route authorization and airline interests in an aircraft to service that market. And if it does develop the aircraft, the manufacturer is dependent upon meeting FAA standards in order to have its aircraft certified. Figure 11, Volume I, gives an example of the time requirement for STOL development as a composite of the time requirement for the NASA QUESTOL, plus the time required for the $\mathrm{DC}-10$ development, plus one additional year between the two programs for contingencies.

## b. Airports

This study does not envision the creation of new airports for the 1980 STOL, although new airports may be required to implement 1990 VTOL.

Since no new airport is to be developed for the 1980 STOL, problems related to decision and implementation are greatly minimized principally since costly and time-consuming land acquisition procedures are avoided. However, for new airports to be developed for a $1990 \mathrm{~V} / \mathrm{STOL}$ site, selection studies and air space determination should be initiated by 1982.

## c. Airline Operations

In view of the unwillingness of manufacturers to design and develop V/STOL aircraft prior to the establishment of a market and the CAB's route authorization, the speeding of government decisions in these areas may greatly accelerate the V/STOL applications process. A speeding up of CAB's decision making process would permit earlier decisions of STOL routes to be made. If such decisions are made, airlines may then firm up their plans on the number and type of aircraft required to service the new markets. The manufacturers would then be in greatly improved positions to move ahead with the development of aircraft to satisfy the airline needs. Communities concerned with planning for airport developments would then
be in a position of having firm data on operational characteristics of the airplanes programmed to service their communities. The difficulties of the $C A B$ should not be minimized, however. It is required to protect the interests of a variety of parties and in order to do so it must generally follow a set of time consuming procedures. Figure 30, Volume I, shows the times required for three different $C A B$ decisions. While the current law does not permit basic changes in the procedures, significant speedups could occur in the scheduling time requirements if the judge's and the board's decisions could be speeded.
d. Airways and Air Traffic Control

Since ownership and control of the Federal Airways System is vested in the FAA, no delays are expected in implementing V/STOL applications as a consequence of the necessity for air space studies or for the construction of whatever additional ATC and landing aids might be required.

## e. Airport Access

Significant improvements in existing airport access are generally time consuming and costly. If new rapid transit systems are to be constructed for airport access, the time delays are indeed very great. Figure E-2 shows the time requirements for the San Francisco BARTS program, and for the Washington, D.C. subway. If freeways are to be developed to provide airport access, the State of California experience has shown optimistic scheduling to require about seven years (Figure E-3). The development of surface street improvements, particularly if rights of way have already been acquired, provides the speediest solution if not the best long-term solution.

Fortunately, the 1980 STOL and the 1990 V/STOL envision reliever airports being used in conjunction with the hub airports. The use of the
reliever airports may serve to reduce airport congestion at the hub airports while adding acceptable levels of increased traffic at the reliever airports


Figure E-1. Principal Role Interactions


## WASHINGTON D.C. SUBWAY



Figure E-2. Rapid Transit Milestones


Figure E-3. California Freeway Development Milestones

Table E-1. Sources of Laws and Regulations Pertinent to V/STOL Applications


Table E-l. Sources of Laws and Regulations


## Highest Level of State Organ.

| Alabama | Dept. of Aeronautics |
| :--- | :--- |
| Arizona | Dept. of Aeronautics |
| Arkansas | Dept. of Aeronautics |
| Idaho | Dept. of Aeronautics |
| Illinois | Dept. of Aeronautics |
| Indiana | Aeronautics Commission |
| Iowa | Aeronautics Commission |
| Kentucky | Dept. of Aeronautics |
| Maine | Dept. of Aeronautics |
| Maryland | Aviation Commission |
| Massachusetts | Aeronautics Commission |
| Michigan | Aeronautics Commission |
| Minnesota | Dept. of Aeronautics |
| Mississippi | Aeronautics Commission |
| Montana | Aeronautics Commission |
| Nebraska | Dept. of Aeronautics |
| New Hampshire | Aeronautics Commission |
| New Mexico | Aviation Department |
| North Dakota | Aeronautics Commission |
| Ohio | Division of Aviation |
| Oklahoma | Aeronautics Commission |
| Oregon | Boardof Aeronautics |
| South Carolina | Aeronautics Commission |
| South Dakota | Aeronautics Commission |
| Tennessee | Aeronautics Commission |
| Texas | Aeronautics Cornmission |
| Utah | Division of Aeronautics |
| Vermont | Board of Aeronautics |
| Washington | Aeronautics Commission |
| West Virginia | Aeronautics Commission |
| Wyoming | Aeronautics Commission |
|  |  |


| Subsumed under Other Organ. |  | No. Ident. Org. |
| :---: | :---: | :---: |
| Alaska | Division of Aviation | Colorado |
|  | Dept. of Public Works | Nevada |
| California | Dept. of Aeronautics |  |
|  | Bus. \& Trans. Agency |  |
| Connecticut | Bureau of Aeronautics |  |
|  | Dept. of Transportation |  |
| Delaware | Div. of Transportation |  |
|  | Dept. of High. \& Transp. |  |
| Florida | Div. of Public Transp. |  |
|  | Dept. of Transportation |  |
| Georgia | Division of Aviation |  |
|  | Dept. of Industry \& Trade |  |
| Hawaii | Dept. of Transportation |  |
| Kansas | Aviation Division |  |
|  | Dept. of Econ. Devel. |  |
| Louisiana | Aviation Division |  |
|  | Dept. of Public Works |  |
| Missouri | Aviation Section |  |
|  | Div. of Comm, \& Ind. Dev. |  |
| New Jersey | Division of Aeronautics |  |
|  | Dept. of Transportation |  |
| New York | Aviation Section |  |
|  | Department of Transportation |  |
| North Carolina | Dir. of Aviation |  |
|  | Div. of Comm. \& Ind. |  |
|  | Dept. of Conser. \& Dev. |  |
| Pennsylvania | Bureau of Aviation |  |
|  | Dept. of Transp. |  |
| Rhode Island | Division of Airports |  |
|  | Dept. of Transportation |  |
| Virginia | Division of Aeronautics |  |
|  | Corporation Commissioner |  |
| Wisconsin | Division of Aeronautics |  |
|  | Dept. of Transportation |  |

## REFERENCES

| E. 1 | Bernard A. Schreiver and William W. Seifert, Cochairmen. Air Transportation 1975 and Beyond - A Systems Approach, The M.I. T. Press, Cambridge, Mass. (1968) pp. 84-121. |
| :---: | :---: |
| E. 2 | Code of Federal Regulations, Title 14, Chapter V, National Aeronautics and Space Administration, (January 1, 1970). |
| E. 3 | Code of Federal Regulations, Title 14, Chapter I, Federal Aviation Administration, Department of Transportation, (January 1, 1970). |
| E. 4 | Code of Federal Regulations, Title 14, Chapter II, Civil Aeronautics Board, (January 1, 1970). |
| E. 5 | California Legislature, Analysis of the Budget Bill of the State of California for Fiscal Year 1970-1971, pp. 878-884. |

## Preceding page blank

## APPENDIX $F$

COST AND FUNDING REQUIREMENTS

$$
F-i, 1
$$

Page
F. 1 Summary of 1980 and 1990 V/STOL Systems ..... F-1
F. 2 1980 STOL System. ..... F-2
F.2.a Aircraft Development and Production Costs. ..... F-3
F.2.b Airline Acquisitions and Introduction Costs. ..... F-5
F.2.c STOLport Development Costs ..... F-5
F. 2. d Air Traffic Control System Costs ..... F-5
F. 3 1990 VTOL System. ..... F-6
F.3. a Aircraft Development and Production Costs. ..... F-6
F. 3.b Airline Acquisition and Introduction Costs ..... F-7
F.3.c VTOLport Development Costs ..... F-8
F. 3. d Air Traffic Control ..... F-8
F. 4 Operating Cost Analysis ..... F-8
F.4. a Direct Operating Cost (DOC) ..... F-8
F.4.b Indirect Operating Cost (IOC) ..... F-9
F.4. c Return on Investment (ROI) ..... F-10
References ..... F-70
FIGURES
F-1 1980 STOL and 1990 VTOL Implementation Schedule ..... F-11
F-2 1980 STOL and 1990 VTOL System Costs ..... F-12
F-3 Cumulative 1980 STOL and 1990 VTOL System Implementation Costs ..... F-13
F-4 Comparison of Fare Levels, 1980 STOL and 1990 VTOL Systems (Adjusted Domestic Trunk IOC) . ..... F-14
F-5 1980 STOL and 1990 VTOL System Cumulative Funding ..... F-15

$$
F-i, 2
$$

FIGURES (Continued)

|  |  | Page |
| :---: | :---: | :---: |
| F-6 | 1980 STOL Implementation Schedule. | F-16 |
| F-7 | Cumulative Time-Phased Summary of Implementation Costs (1980 STOL System - 150 Passenger Aircraft) . | F-17 |
| F-8 | Airframe Development Cost | F-18 |
| F-9 | Composite Structures, Cost Estimating Relationship | F-19 |
| F-10 | Airframe Cost Estimating Relationships. | F-20 |
| F-11 | 1980 STOL System Aircraft Flyaway Costs. | F-21 |
| F-12 | Implementation Costs by Year for 1980 STOL System Airline Acquisition \& Introduction | F-22 |
| F-13 | 1980 STOL System Time Phased STOLport Development Costs - Airfield and Support Area | F-23 |
| F-14 | 1980 STOL System Air Traffic Control Facilities Cost | F-24 |
| F-15 | 1980 STOL System Time Phased Air Traffic Control Facilities Cost | F-25 |
| F-16 | 1990 VTOL Implementation Schedule | F-26 |
| F-17 | 1990 VTOL Aircraft Lift Turbofan Engine Development Costs | F-27 |
| F-18 | 1990 VTOL Aircraft, Lift Turbofan Engine Production Costs | F-28 |
| F-19 | 1980 STOL System, EBF 3000 ft., Direct Operating Costs | F-29 |
|  | TABLES |  |
| F-1 | STOL and VTOL Port Development Costs by Region | F-30 |
| F-2 | Summary of Implementation Costs - 1980 STOL System, 150-Passenger Aircraft. | F-31 |
| F-3 | Engine Technology Assessment and Cost | F-32 |
| F-4 | NASA Funded STOL Development. . | F-33 |

## TABLES (Continued)

Page
F-5 Airline Investment Cost Factors Per Aircraft. ..... F-34
F-6 STOLport Improvement Costs, Airfield and Support Facilities 1980-1984 ..... F-35
F-7 Time Phased STOLport Development Costs, Airfield and Support Facilities ..... F-37
F-8 STOLport Improvement Costs, Airfield Area ..... F-44
F-9 STOLport Improvement Costs, Support Area ..... F-50
F-10 STOLport Improvement Unit Costs. ..... F-57
F-11 Aircraft Maintenance Facility Costs ..... F-58
F-12 Maintenance Facility Locations ..... F-59
F-13 Air Traffic Control Facilities ..... F-60
F-14 Time Phased Implementation Costs - 1990 VTOL System, Airline Acquisition and Introduction, 100-Passenger Aircraft ..... F-62
F-15 Summary of Implementation Costs, 1990 VTOL System ..... F-63
F-16 Estimated NASA VTOL Funding Requirements ..... F-64
F-17 VTOLport Development Costs ..... F-65
F-18 VTOLport Development Construction Cost Factors ..... F-66
F-19 Air Traffic Control Facilities and Equipment Cost ..... F-67
F-20 Direct Operating Costs, 1990 VTOL Lift Fan, 100-Passenger Aircraft ..... F-68
F-2l Comparison of Indirect Operating Costs (1970 Cost Levels) ..... F-69

## APPENDIX $F$

## COST AND FUNDING REQUIREMENTS

## F.l SUMMARY OF 1980 AND 1990 V/STOL SYSTEMS

A time-phased implementation schedule and funding analysis for the forced scenario 1980 STOL and fostered scenario 1990 VTOL system has been developed based on the technology, performance and costs of developing, acquiring, and introducing STOL service in 1980 and VTOL service in 1990.

The implementation schedules for the 1980 and 1990 scenarios are shown in Figure $\mathrm{F}-\mathrm{l}$ and indicate the key milestones associated with aircraft development, airline introduction, V/STOL port development and availability of the necessary air traffic control facilities and equipment.

A summary of implementation costs for the 1980 STOL and 1990 VTOL systems is shown in Figure F-2. The aircraft cost which consists of flyaway costs and spares for the specified fleet sizes required is seen to be the largest system cost element. VTOLport development costs are significantly higher than STOLport costs because of the costs of land acquisition and new facility construction. Similarly, VTOLports require new air traffic control facilities instead of additional facilities as for the STOL system.

A time-phased summary of these implementation costs is shown in Figure F-3 for both the 1980 STOL and 1990 VTOL systems. Peak implementation costs are shown for both systems during the initial year of service which is also the peak in aircraft production, V/STOL port development, and installation of air traffic facilities and equipment.

Fare levels for these aircraft are shown in Figure F-4 with the 1990 VTOL requiring the highest fare level because of the characteristics of its
lift and cruise engine system. These fare levels are determined from an analysis of direct and indirect operating costs, return on investment, and load factor.

Sources of funding for development of the 1980 STOL and 1990 VTOL systems are shown in Figure F-5. Commercial banks are shown to provide the largest funds for aircraft development, airline acquisition, and STOL and VTOL port development.

A summary of STOL and VTOL port development costs by region is shown in Table F-1. The Northeast Region is seen to require the largest investment compared to other regions for both STOL and VTOL ports.
F. 21980 STOL SYSTEM

The implementation schedule for the 1980 STOL system is shown in Figure F-6 which illustrates the key milestones associated with aircraft development, airline acquisition and introduction, airport development, and the supporting air traffic control facilities and equipment.

The pacing item in aircraft development is the availability of a quiet, lightweight, and efficient engine. Go-ahead of aircraft manufacture requires that airlines receive appropriate route certification. STOLport development follows go-ahead of aircraft manufacture and airline route certification. Availability of air traffic control facilities and equipment is shown required during the aircraft certification phase.

A summary of the implementation costs for the 150 -passenger aircraft is shown in Figure F-2. A cost breakdown by major system element is contained in Table F-2.

Commercial banks will finance $70 \%$ of aircraft and engine development and manufacture. Airlines will finance $30 \%$ of the flyaway price, spares, and GSE and $100 \%$ of introduction costs.

$$
F-2
$$

For the 1980 STOL system, airport authorities and the FAA will share airfield development costs on a 50-50 basis. Support facility costs covering passenger terminal and airport parking will be provided by airport authorities. Airport authorities will obtain $30 \%$ of all required implementation costs from available funds and $70 \%$ from sale of revenue bonds. Airlines will finance aircraft maintenance facilities, $30 \%$ from available funds and $70 \%$ from commercial banks. Air traffic control facilities will be provided by the FAA.
a. Aircraft Development and Production Costs
(1) Aircraft Development Costs

Airframe. Airframe development costs for the 1980 EBF STOL, 1990 AW STOL, and 1990 Lift Fan VTOL are illustrated according to aircraft size in Figure F-8. These costs represent an Aerospace estimate and are based on analysis of available data.

Engine. A recently completed engine technology and assessment cost study by the Rand Corporation ${ }^{F-1}$ was utilized to estimate engine development and production costs. The Rand study is based on performance and cost data of 29 turbojet and 9 turbofan engines and utilizes engine thrust, weight, temperature, total pressure and SFC to develop a technology/time assessment and cost estimate. Based on the STOL and VTOL performance parameters, developed engine technology appears available to meet the developmental schedules. Table F-3 provides a summary of engine performance, technology assessment, and engine costs and quantities.

This method, although extremely sensitive to engine weight, temperature, and SFC, does not consider the impact of noise reduction which is a large uncertainty. Cost experience in developing and producing a quiet engine is at best limited. Current indications are that engines meeting the noise goals forecast for 1980 and 1990 will be more than double the cost of current equivalent thrust engines.

NASA STOL Development. The STOL airframe and engine development schedules and costs assume that NASA funded STOL development activities will accelerate in areas of quiet engine and QUESTOL aircraft development. Projected NASA funding in support of 1980 STOL development is shown in Table F-4. These development activities are essential to the necessary technology, operational hardware, and system planning being available to meet the system implementation schedule for the 1980 STOL system. The results of these activities must provide aircraft and engine manufacturers with design and test criteria and specifications for the development and manufacture of production aircraft.

## (2) Production Costs

Airframe. Cost estimating relationships covering aluminum and composite structures and other equipment and controls were developed from analysis of available industry data. A large cost reduction in the cost of composite structures was forecast for 1990. Cost estimating relationships for composite structures are illustrated in Figure F-9, while Figure F-10 illustrates the cost relationships for aluminum structures and other equipment and controls.

To determine unit cost as a function of quantity, the above costs, which are based on quantity, were multiplied by 2.644 to obtain a first unit cost. Average cost was then obtained by: Average cost = lst airframe unit cost (quantity of airframes). ${ }^{497}$.

Engine. Engine production costs for the cruise engine were obtained from the engine technology and cost method and were shown in Table F-3.

Flyaway Costs
Flyaway costs for the airframe and engine for the $50,100,150$, and 200 passenger aircraft are illustrated in Figure F-ll.
b. Airline Acquisition and Introduction Costs

Time phased airline acquisition and introduction costs are shown in Figure F-12 and cover flyaway costs of the aircraft and spares and GSE and introduction costs. Airline investment cost factors related to payment schedules for the aircraft and allowances for various categories of introduction costs are shown in Table F-5.
c. STOLport Development Costs

A time phased summary of STOLport development costs is shown in Figure F-13 and covers costs of improving or adding runways, taxiways, taxiway access, aprons, and passenger terminals, airport parking, and aircraft maintenance facilities.

A summary of these costs by state for both minimum and maximum demand levels is shown in Table F-6. A time phased summary for each STOLport in each state is contained in Table F-7. A cost breakdown of airfield and support facilities for each STOLport is shown in Tables F-8 and F-9، STOLport cost factors for the landing area, terminal building, and parking area are listed in Table F-10. Aircraft maintenance facility costs for centralized and regional bases are contained in Table F-ll. Maintenance facility locations are shown in Table F-12.

## d. Air Traffic Control System Costs

A summary of air traffic control facility costs is shown in Figure F-14 and covers additional control towers, microwave ILS, and approach lighting systems required at various STOLports. Time phased costs for these facilities are shown in Figure F-15. A cost breakdown of each category of facilities necessary for each STOLport is shown in Table F-13.

## 1990 VTOL SYSTEM

The implementation schedule for the 1990 VTOL system is shown in Figure F-16 which illustrates the key milestones associated with aircraft development, airline acquisition and introduction, VTOLport development, and the supporting air traffic control facilities and equipment.

As in the STOL system, the pacing item in aircraft development is the availability of quiet, lightweight, and efficient cruise and lift engines. Go-ahead of aircraft manufacture and VTOLport development requires that airlines receive appropriate route certification.

A time phased summary of implementation costs for the 100-passenger aircraft is shown in Table F-14. A cost breakdown into major system elements is contained in Table F-15. System financing similar to the STOL system has been assumed. It is recognized that current FAA funding criteria excludes the costs of terminal and parking facilities; however, since these facilities are integral to the VTOLport, a change in funding criteria has therefore been made. This funding appears to be essential to VTOLport development if airport authorities are to be able to finance their share.

The flyaway cost estimate for the 100 -passenger lift fan VTOL was derived using the same costing estimation techniques used for the 1980 STOL which are:

| Airframe | $\frac{(000)}{\$ 5,764}$ |
| :--- | ---: |
| Engine | $\frac{\$ 3,187}{\$ 8,951}$ |
| Total |  |

a. Aircraft Development and Production Costs
(1) Aircraft Development Costs

Airframe development costs for VTOL aircraft as a function of size were illustrated in Figure F-8. Cruise engine development costs were shown
in Table F-3 and were based on the Rand Corporation engine technology and assessment cost study. Lift engine development costs represent Aerospace estimates and are based on analysis of available data. Development costs as a function of engine thrust are illustrated in Figure F-17.
(2) NASA VTOL Development Costs

The VTOL airframe and engine development schedules and costs assume that NASA funded VTOL development activities are required in areas of quiet lift fan engine and quiet VTOL aircraft. Projected NASA funding in support of 1990 VTOL development is shown in Table F-16. These development activities are essential to the necessary technology, operational hardware, and system planning being available to meet the system implementation schedule for the 1990 VTOL system. The results of these activities must provide aircraft and engine manufacturers with design and test criteria and specifications for the development and manufacture of production aircraft.
(3) Production Costs

For the airframe, cost estimating relationships covering aluminum and composite structures and other equipment and controls as shown in Figures F-9 and F-10 were used to develop aircraft production costs. A reduced cost for composite materials was forecast in 1990. Cruise engine costs were obtained from the engine technology and cost method. Lift engine costs as a function of thrust are illustrated in Figure F-18. These costs are Aerospace estimates based on available industry data.

## b. Airline Acquisition and Introduction Costs

Time phased airline acquisition and introduction costs were shown in Figure F-12 and cover flyaway costs of the aircraft and spares and GSE and introduction costs.
c. VTOLport Development Costs

A summary of VTOLport development costs by type of facility for each hub city is shown in Table F-17. These costs consist of land and construction costs of ground level, small elevated and large elevated ports. Costs of centralized and regional aircraft maintenance facilities are also included. Land and construction cost factors for each of the VTOLports are listed in Table F-18.
d. Air Traffic Control

For the 1990 VTOL system new terminal air control, communications, data acquisition, and navigation landing aids will be required and are listed for a typical VTOLport in Table F-19.
F. 4 OPERATING COST ANALYSIS
a. Direct Operating Costs (DOC)

DOC for STOL aircraft were based on the utilization of a modified Boeing 1971 DOC method ${ }^{F-2}$ which updates cost factors to 1970 levels and reflects airline experience. The following modifications were made to the Boeing 1971 method to bring the costs to 1972 levels and reflect the impact of a new STOL aircraft design in initial airline service.

| Flight Crew | - | Increase $15 \%$ |
| :--- | :--- | :--- |
| Fuel \& Oil | $-\quad \$ .115 / \mathrm{Gal} \mathrm{vs} \$ .095 / \mathrm{Gal}$ |  |
| Insurance | - | $2 \%$ vs $1 \%$ |
| Maintenance | $-2,000^{\prime} \mathrm{STOL}$ Increase $30 \%$ |  |
|  | $-3,000^{\prime} \mathrm{STOL}$ Increase $20 \%$ |  |
| Depreciation | - | 14 Years, $2 \%$ Residual vs 12 Years, |
|  |  | $0 \%$ Residual |

The resulting DOC per available seat mile as a function of distance is illustrated in Figure $F-19$.

The DOC for VTOL aircraft utilized the above modified Boeing 1971 method with the exception of ancrease in the insurance rate to $2.5 \%$ and the addition of lift engine maintenance equations obtained from an Eastern Airline Guideline for V/STOL systems. ${ }^{\text {F }} \mathbf{- 3}$ The DOC per block hour based on 500 statute miles are shown in Table F-20.

## b. Indirect Operating Costs (IOC)

The IOC were based on the operational characteristics of a V/STOL system limited to high density short haul markets. The IOC formulas were developed on the basis of (1) intrastate carrier cost of operation in the California Corridor, and (2) typical domestic trunk carriers experience. adjusted for STOL service. F-4

The resulting IOC formulas are as follows:

California Corridor $=\$ 21.71+(0.3249 \mathrm{X} \mathrm{CAP})+$ (0.67161 X NO PAX) $+(0.004061 \mathrm{X}$ ASM) + (0. $002318 \mathrm{X} \mathrm{RPM)}$

Domestic Trunk $=\$ 47.30+(0.6438 \mathrm{X} \mathrm{CAP})+$ (1. 972 X NO PAX) $+(.004383$ X ASM) + (0. $001307 \mathrm{X} \mathrm{RPM)}$

CAP $=$ Airport Size (No. of Seats)
NO PAX = Number of Passengers
ASM = Available Seat Miles
RPM $=$ Revenue Passenger Miles
The IOC vary widely depending upon the service characteristics of airlines such as fleet size, airports served, and average stage length. Table F-2l illustrates the different IOC obtained from various industry methods. The level of California Corridor IOC can be seen to be far lower than any method based on domestic trunk IOC. This comparison indicates that more research is required to determine the level of IOC that can be achieved by domestic trunk airlines in performing high density STOL service.

## c. Return on Investment (ROI)

A return on investment analysis was incorporated into the system economics to provide a means to evaluate the economic viability of various aircraft designs and operational concepts.

The ROI developed represents a rate averaged over a number of years. The rate of return on investment utilized is based on current practices of regulatory agencies. For the California Corridor, the rate of return used is $10.5 \%$ which is established by the California Public Utilities Commission. ${ }^{-5}$ A $10 \%$ ROI on the total investment base is equivalent to an ROI of $13.8 \%$ per year based only on the aircraft investment.

For domestic trunk carriers, the rate of return used is $12 \%$ which is established by the Civil Aeronautics Board. ${ }^{\text {F-6 }}$ A $12 \%$ ROI on the total investment is equivalent to an ROI of $19.7 \%$ per year based exclusively on the aircraft investment.

| Activity | Calendar Year |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aircraft Development <br> Engine <br> Aircraft | $737475$ $-\square-1$ | $\begin{aligned} & 7677787980 \\ & \Delta-\Delta-0-1 \end{aligned}$ | $8182838485$ $\square$ | $\begin{aligned} & 8687888990 \\ & \Delta-\Delta- \end{aligned}$ | $91$ |
| Airline Introduction <br> Route Certification <br> Aircraft Acceptance <br> Revenue Service |  | $\longmapsto$ |  |  | $\longrightarrow$ |
| STOL and VTOL Port Development <br> Land Acquisition <br> Construction |  |  |  |  |  |
| Air Traffic Control |  |  | - | - |  |

## Symbols:

| $\Delta$ | Prototype Test |
| :--- | :--- |
| $\Delta$ | MQT |
| Airline Options |  |
| 0 | Aircraft Program Go-Ahead |
| 0 | Start Fab |
| $\diamond$ Start Certification |  |
|  | Receive Certification |

Figure F-1. 1980 STOL and 1990 VTOL Implementation Schedule


Figure F-2. 1980 STOL and 1990 VTOL Systems Costs


Figure F-3. Cumulative 1980 STOL and 1990. VTOL System
Implementation Costs


Figure F-4. Comparison of Fare Levels
1980 STOL \& VTOL Systems
(Adjusted Domestic Trunk IOC)


Figure F-5. 1980 STOL and 1990 VTOL System Cumulative Funding

AIRCRAFT DEVELOPMENT ENGINE

AIRCRAFT

AIRLINE INTRODUCTION ROUTE CERTIFICATION AIRCRAFT ACCEPTANCE REVENUE SERVICE

AIRPORT DEVELOPMENT LAND ACQUISITION AIRPORT CONSTRUCTION ACCESS ROADS \& PARKING

AIRPORT/AIRWAYS SYSTEM

LANDING AIDS
TERMINAL AIDS


Figure F-6. 1980 STOL Implementation Schedule


Figure F-7. Cumulative Time Phased Summary of Implementation Costs (1980 STOL System - 150 Passenger Aircraft)


Figure F-8. Airframe Development Cost


Figure F-9. Composite Structures, Cost Estimating Relationships


Figure F-10. Airframe Cost Estimating Relationships


Figure F-11. 1980 STOL System Aircraft Flyaway Costs


Figure F-12. Implementation Costs by Year for 1980 STOL System - Airline Acquisition \& Introduction


Figure F-13. 1980 STOL System Time Phased STOLport Development Costs Airfield \& Support Area


Figure F-14. 1980 STOL System
Air Traffic Control Facilities Cost


Figure F-15. 1980 STOL System
Time Phased Air Traffic Control Facilities Cost

AIRCRAFT DEVELOPMENT ENGINE

## AIRCRAFT

AIRLINE INTRODUCTION ROUTE CERTIFICATION AIRCRAFT ACCEPTANCE REVENUE SERVICE

VTOLPORT DEVELOPMENT
LAND ACQUISITION VTOLPORT CONSTRUCTION ACCESS ROADS \& PARKING

AIRPORT/AIRWAYS SYSTEM
LANDING AIDS
TERMINAL AIDS


Figure F-16. 1990 VTOL Implementation Schedule


Figure F-17. 1990 VTOL Aircraft
Lift Turbofan Engines Developmental Costs


Figure F-18. 1990 VTOL Aircraft, Lift Turbofan Engines Production Cost


Figure F-19. 1980 STOL System - EBF 3000 Ft.
Direct Operating Costs

Table F-1. STOL and VTOL Port Development Costs by Region Cost in Thousands (000)

| Region | 1980 <br> STOL <br> System | 1990 <br> VTOL <br> System | Total <br> $1980 \& 1990$ <br> System |
| :--- | :---: | :---: | :---: |
| Northeast | $\$ 79,301$ | $\$ 282,950$ | $\$ 362,251$ |
| Pacific Southwest | 67,492 | 113,350 | 180,842 |
| North Central | 60,256 | 154,700 | 214,956 |
| South Central | 16,354 | 12,850 | 29,204 |
| Hawaiian | 24,326 | 24,900 | 49,226 |
| Southeast | 20,180 | 12,850 | 33,030 |
| Pacific Northwest | 7,460 | 6,851 |  |
| Rocky Mountain | $\$ 282,220$ | $\$ 601,600$ | $\$ 883,820$ |
| Total STOL \& VTOLport <br> Development | $\$ 2820$ |  |  |

## Table F-2. Summary of Implementation Costs - 1980 STOL System 150-Passenger Aircraft (Cost in Millions)

Aircraft Development ..... \$ 603
Airline Acquisition \& IntroductionAircraft
Flyaway Cost ..... \$2, 623
Spares\$2,965
GSE ..... 163
Introduction Cost ..... 114\$3, 242
STOLport DevelopmentAirfield Area\$ 27
Support Facilities ..... 255\$ 282
Air Traffic Control ..... \$ 6
Total Implementation Cost
Including Development\$4, 133
Excluding Development ..... \$3,530

Table F-3. Engine Technology Assessment \& Costs

|  | 1980 STOL |  | 1990 STOL | 1990 VTOL |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} 100 \\ \text { Passenger } \\ \hline \end{gathered}$ | $\begin{gathered} 150 \\ \text { Passenger } \\ \hline \end{gathered}$ | $\begin{gathered} 150 \\ \text { Passenger } \end{gathered}$ | $\begin{gathered} 100 \\ \text { Passenger } \end{gathered}$ |
| Performance |  |  |  | Cruise Engine |
| Weight (lbs) | 1,990 | 2,800 | 2,037 | 1,067 |
| Thrust (lbs) | 11,850 | 16,600 | 14,363 | 10,170 |
| Temperature ( ${ }^{\circ} \mathrm{R}$ ) | 2,860 | 2,860 | 2,860 | 2,900 |
| Max Q x Pressure Ratio | 13, 043 | 13,043 | 16,508 | 16,508 |
| SFC (lbs/hr) | . 303 | . 303 | . 452 | . 330 |
| Engine T/W | 5.95 | 5. 93 | 7.04 | 9. 53 |
| Technology Assessment |  |  |  |  |
| Technology Required | Jul 1977 | Jul 1977 | Jul 1987 | Jul 1987 |
| Technology Available | Jan 1973 | Jan 1975 | Jan 1975 | Oct 1977 |
| Engine Cost |  |  |  |  |
| Development Cost (MQT)-Millions | \$ 100 | \$ 117 | \$ 109 | \$ 93 |
| Production Unit Cost (000) | 410 | 534 | 494 | 431 |
| Flyaway Cost (000) | 445 | 591 | 588 | 519 |
| Production Quantity | 2,440 | 1,630 | 1,155 | 1,060 |

Table F-4. NASA Funded STOL Developments (In Millions of Dollars)

| Calendar Year | 72 | 73 | 74 | 75 | 76 | 77 | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| System Studies | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 12.0 |
| Quiet Engine Development | 1.2 | 2.0 | 6.0 | 18.0 | 30.0 | 4.0 | 61.2 |
| QUESTOL Aircraft | 15.0 | 28.0 | 42.0 | 18.0 | 6.0 | 2.0 | 111.0 |
| C-8 Buffalo AW Aircraft | 2.2 | 1.5 |  |  |  |  | 3.7 |
| Total Yearly Cost | 20.4 | 33.5 | 52.0 | 38.0 | 38.0 | 8.0 | 189.9 |
| Cumulative Cost | 20.4 | 53.9 | 105.9 | 143.9 | 181.9 | 189.9 |  |

## Table F -5. Airline Investment Cost Factors Per Aircraft

|  | Aircraft |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $5 \%$ Purchase Contract <br> $25 \%$ Progress Payments <br> $70 \%$ Delivery (Financed) |  |  |  |
|  | Spares |  |  |  |
|  | $\begin{array}{lr} \text { Engine } & 30 \% \\ \text { Airframe } & 6 \% \end{array}$ |  |  |  |
|  |  |  | Aircraft Size |  |
|  |  | 50-100 | 101-150 | 151-200 |
| $\begin{aligned} & \text { \|r\| } \\ & \dot{\sim} \\ & \underset{\sim}{2} \end{aligned}$ | GSE (000) | \$400 | \$500 | \$600 |
|  | Introduction Costs (000) |  |  |  |
|  | Training |  |  |  |
|  | Flight Crew <br> Maintenance \& Other Ground Support <br> Simulator \& Other Training Aids | \$120 | \$150 | \$180 |
|  |  | 30 | 40 | 50 |
|  |  | 110 | 140 | 170 |
|  |  | \$260 | \$330 | \$440 |
|  | Other |  |  |  |
|  | Advertising, Facilities, Administrative, Legal | \$ 10 | \$ 20 | \$ 30 |
|  | Total Introduction Cost | \$270 | \$350 | \$430 |

Table F-6. STOLport Improvement Costs (000) Airfield \& Support Facilities 1980-1984

| State | Minimum Demand |  |  | Maximum Demand |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Airfield | Support <br> Facilities | Total | Airfield | Support <br> Facilities | Total |
| Arizona | \$ 332 | \$ 3,081 | \$ 3,413 | \$ 382 | \$ 3,741 | \$ 4, 123 |
| California | 6,011 | 52,381 | 58, 392 | 6, 160 | 59,632 | 65,792 |
| Colorado | 1,273 | 4,231 | 5,504 | 1,273 | 4,617 | 5,890 |
| Connecticut | 166 | 1,644 | 1,810 | 216 | 2,938 | 3,154 |
| District of Columbia | 315 | 5, 725 | 6, 040 | 365 | 7,746 | 8,111 |
| Florida | 498 | 8,769 | 9,267 | 648 | 11, 158 | 11, 806 |
| Georgia | 216 | 2, 313 | 2,529 | 516 | 3,131 | 3, 347 |
| Hawaii | 880 | 23, 446 | 24,326 | 880 | 23, 446 | 24, 326 |
| Illinois | 1,638 | 24, 305 | 25,943 | 1,787 | 25, 775 | 27,562 |
| Indiana | 166 | 1,545 | 1,711 | 216 | 2,601 | 2, 817 |
| Iowa | 166 | 826 | 992 | 166 | 1,069 | 1,235 |
| Kansas | 216 | 5,565 | 5,781 | 216 | 6,168 | 6,384 |
| Kentucky | 166 | 929 | 1, 095 | 166 | 1,293 | 1,459 |
| Louisiana | 498 | 2,111 | 2,609 | 548 | 2,772 | 3, 320 |
| Maryland | 216 | 3,525 | 3, 741 | 315 | 4,635 | 4,950 |
| Massachusetts | 1,638 | 10,099 | 11,737 | 1,688 | 11,842 | 13,530 |
| Michigan | 1,422 | 5,755 | 7, 177 | 1,472 | 6,789 | 8,261 |
| Minnesota | 216 | 2,677 | 2, 893 | 216 | 3,531 | 3,747 |
| Missouri | 1,273 | 2, 780 | 4, 053 | 1, 323 | 3, 868 | 5,191 |
| Nebraska | 166 | 930 | 1,096 | 166 | 1, 105 | 1,271 |
| Nevada | 382 | 5, 305 | 5,687 | 531 | 8, 343 | 8,874 |
| New Jersey | 2, 745 | 22,895 | 25,640 | 2,894 | 25,691 | 28,585 |
| New York | 2,352 | 14,361 | 16,713 | 2,551 | 19,332 | 21,883 |

Table F-6. STOLport Improvement Costs (000) Airfield \& Support Facilities 1980-1984 (Continued)

| State | Minimum Demand |  |  | Maximum Demand |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Airfield | Support <br> Facilities | Total | Airfield | Support <br> Facilities | Total |
| North Carolina | \$ 332 | \$ 2,169 | \$ 2,501 | \$ 332 | \$ 2,502 | \$ 2,834 |
| Ohio | 1, 035 | - .8,030 | 9,065 | 1, 085 | 10,081 | 11,166 |
| Oklahoma | 166 | 916 | 1,082 | 166 | 1, 302 | 1,468 |
| Oregon | 166 | 1,127 | 1,293 | 166 | 1,689 | 1, 855 |
| Pennsylvania | 630 | 9, 052 | 9,682 | 680 | 12,678 | 13, 358 |
| Rhode Island | 166 | 1,271 | 1,437 | 166 | 2, 066 | 2,232 |
| Tennessee | 166 | 1,509 | 1,675 | 166 | 1,940 | 2,106 |
| Texas | 764 | 11,899 | 12,663 | 863 | 15, 740 | 16,603 |
| Utah | 166 | 1,181 | 1,347 | 166 | 1,567 | 1, 733 |
| Virginia | 332 | 5,282 | 5,614 | 332 | 6,072 | 6, 404 |
| Washington | 332 | 5,835 | 6,167 | 382 | 7, 115 | 7,497 |
| Wisconsin | 166 | 1,379 | 1,545 | 166 | 1,819 | 1,985 |
|  | \$27,372 | \$254, 848 | \$282, 220 | \$29, 065 | \$305, 794 | \$334, 859 |

Figure F-7. Time Phased STOLport Development Costs (000) Airfield and Support Facilities

| Hub City | STOLport | 1978 | 1979 | 1980 | 1981 | 1982 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Phoenix <br> Tucson | Skyharbor <br> Tucson International | \$ | \$ | \$ 600 | $\begin{array}{rr} \$ 1,556 \\ 327 \end{array}$ | \$ 930 | $\begin{array}{rr} \$ \quad & 2,156 \\ 1,257 \end{array}$ |
|  |  |  |  | \$ 600 | \$ 1,883 | \$ 930 | \$ 3,413 |
| California |  |  |  |  |  |  |  |
| Fresno <br> Los Angeles | Hawthorne <br> Hollywood-Burbank <br> Long Beach <br> Ontario <br> Orange County |  |  |  | \$ 388 | \$ 1,071 | \$ 1,459 |
|  |  |  | \$ 800 | \$ 3, 2,079 |  |  | 3, 2879 |
|  |  |  | 800 | 2,079 |  |  | 2,879 |
|  |  |  | 5,330 | 12,649 |  |  | 17,979 |
|  |  |  | 800 | 2,079 |  |  | 2,879 |
| Monterey <br> Sacramento <br> San Diego <br> San Francisco | Monterey Peninsula Sacramento Executive Lindberg Field Oakland International San Francisco Int'l. San Jose |  |  |  | 320 | 915 | 1,235 |
|  |  |  |  | 992 | 2, 530 |  | 3,522 |
|  |  |  |  | 1,174 | 2, 955 |  | 4,129 |
|  |  |  |  | 1,292 | 3, 330 |  | 4,622 |
|  |  |  | 850 | 3,307 |  |  | 4, 157 |
|  |  |  | 2, 173 | 6,493 |  |  | 8,666 |
|  |  |  | \$11, 553 | \$35, 330 | \$ 9,523 | \$ 1,986 | \$ 58,392 |
| Colorado |  |  |  |  |  |  |  |
| Denver | Stapleton |  |  |  | \$ 1, 269 | \$ 4,235 | \$ 5,504 |

Table F-7. Time Phased STOLport Development Costs (000) Airfield and Support Facilities (Continued)

| Hub City | STOLport | 1978 | 1979 | 1980 | 1981 | 1982 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\text { Connecticut }}{\text { Hartford }}$ | Bradley Field |  |  |  | \$ 493 | \$ 1,317 | \$ 1,810 |
| $\frac{\text { D. C. }}{\text { Washington }}$ | Washington Nat'l | \$ 1,718 | \$ 4, 322 |  |  |  | \$ 6, 040 |
| Florida <br> Jacksonville <br> Miami <br> Tampa | Jacksonville Int'l Opa-Locka Tampa Int'l. |  |  |  | $\begin{array}{r} \$ 526 \\ 580 \\ 1,526 \end{array}$ | $\begin{array}{r} \$ 1,392 \\ 1,518 \\ 3,725 \\ \hline \end{array}$ | $\begin{array}{ll} \$ & 1,918 \\ 2,098 \\ 5,251 \end{array}$ |
|  |  |  |  |  | \$ 2, 632 | \$ 6,635 | \$ 9, 267 |
| $\frac{\text { Georgia }}{\text { Atlanta }}$ | Fulton County |  |  |  | \$ 694 | \$ 1,835 | \$ 2,529 |
| Hawaii <br> Honolulu | Honolulu <br> Lihue <br> Hilo <br> Maui <br> Kailua, Kona |  |  | $\begin{array}{r} \$ 5,617 \\ 406 \\ 389 \\ 374 \end{array}$ | $\begin{array}{r} \$ 13,323 \\ 1,112 \\ 1,073 \\ 1,040 \\ 248 \\ \hline \end{array}$ | 744 |  |
|  |  |  |  | \$ 6,786 | \$16, 796 | \$ 744 | \$ 24, 326 |

Table F-7. Time Phased STOLport Development Costs (000) Airfield and Support Facilities (Continued)

| Hub City | STOLport | 1978 | 1979 | 1980 | 1981 | 1982 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\text { Illinois }}{\text { Chicago }}$ | Midway <br> Meigs Field | $\begin{array}{r} \$ 6,132 \\ 1,160 \\ \hline \end{array}$ | $\begin{array}{r} \$ 14,622 \\ 4,029 \\ \hline \end{array}$ |  |  |  | $\begin{array}{r} \$ 20,754 \\ 5,189 \\ \hline \end{array}$ |
|  |  | \$ 7, 292 | \$18,651 |  |  |  | \$ 25,943 |
| Indiana <br> Indianapolis | Weir Cook |  | \$ 464 | \$ 1,247 |  |  | \$ 1,711 |
| Iowa <br> Des Moines | Des Moines |  |  |  | \$ 248 | \$ 744 | \$ 992 |
| Kansas <br> Kansas City | K. C. Municipal |  | \$ 1,670 | \$ 4, 111 |  |  | \$ 5,781 |
| Kentucky <br> Louisville | Standiford Field |  |  | \$ 279 | \$ 816 |  | \$ 1,095 |
| $\frac{\text { Louisiana }}{\text { New Orleans }}$ | New Orleans Lakefront |  |  | \$ 633 | \$ 1,976 |  | \$ 2,609 |
| Maryland <br> Baltimore | Friendship |  |  | \$ 1,058 | \$ 2, 683 |  | \$ 3,741 |

Table F-7. Time Phased STOLport Development Costs (000) Airfield and Support Facilities (Continued)


Table F-7. Time Phased STOLport Development Costs (000) Airfield and Support Facilities (Continued)


Table F-7. Time Phased STOLport Development Costs (000) Airfield and Support Facilities (Continued)

|  | Hub City | STOLport | 1978 | 1979 | 1980 | 1981 | 1982 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 1 \\ & 1 \\ & \stackrel{1}{N} \end{aligned}$ | $\frac{\text { Pennsylvania }}{\begin{array}{l} \text { Philadelphia } \\ \text { Pittsburgh } \end{array}}$ | North Philadelphia Allegheny County | \$ 1,336 | \$ 3,431 |  | \$ 1,380 | \$ 3,535 | $\begin{array}{r} \$ 4,915 \\ 4,767 \end{array}$ |
|  |  |  | \$ 1,336 | \$ 3,431 |  | \$ 1,380 | \$ 3,535 | \$ 9,682 |
|  | $\frac{\text { Rhode Island }}{\text { Providence }}$ | T. F. Green |  |  |  | \$ 381 | \$ 1,056 | \$ 1,437 |
|  | $\frac{\text { Tennessee }}{\text { Memphis }}$ | Memphis |  |  |  | \$ 453 | \$ 1,222 | \$ 1,675 |
|  | Texas <br> Austin Dallas Houston San Antonio | R. E. Mueller Love Field Hobby San Antonio |  |  | $\begin{array}{r} \$ 2,168 \\ 778 \end{array}$ | $\begin{array}{r} 278 \\ 5,276 \\ 2,030 \\ \quad 346 \\ \hline \end{array}$ | $\begin{array}{rr} \$ & 813 \\ & 974 \\ \hline \end{array}$ | $\begin{array}{r} \$ 1,091 \\ 7,444 \\ 2,808 \\ 1,320 \\ \hline \end{array}$ |
|  |  |  |  |  | \$ 2,946 | \$ 7,930 | \$ 1,787 | \$12,663 |
|  | Utah <br> Salt Lake City | Salt Lake City |  |  |  | \$. 354 | \$ 993 | \$ 1,347 |
|  | $\frac{\text { Virginia }}{\text { Norfolk }} \begin{aligned} & \text { Richmond } \end{aligned}$ | Norfolk <br> R. E. Byrd |  |  |  | $\begin{array}{r} \$ 1,329 \\ \hline 256 \\ \hline \end{array}$ | $\begin{array}{r} \$ 3,266 \\ 763 \\ \hline \end{array}$ | $\begin{array}{r} \$ 4,595 \\ 1,019 \\ \hline \end{array}$ |
|  |  |  |  |  |  | \$ 1,585 | \$ 4, 029 | \$ 5,614 |

Table F-7. Time Phased STOLport Development Costs (000) Airfield and Support Facilities (Continued)

| Hub City | STOLport | 1978 | 1979 | 1980 | 1981 | 1982 | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Washington |  |  |  |  |  |  |  |
| Seattle Spokane | Boeing Field Spokane Int'l |  |  |  | $\begin{array}{r} \$ 1,432 \\ 318 \\ \hline \end{array}$ | $\begin{array}{r} \$ 3,509 \\ 908 \\ \hline \end{array}$ | $\begin{array}{r} \$ 4,941 \\ 1,226 \\ \hline \end{array}$ |
|  |  |  |  |  | \$ 1, 750 | \$ 4,417 | \$ 6, 167 |
| Wisconsin |  |  |  |  |  |  |  |
| Milwaukee | Mitchell Field |  |  |  | \$ 414 | \$ 1,131 | \$ 1,545 |
| Total Airfield \& Support Area |  | \$25,946 | \$88, 284 | \$63, 402 | \$62,327 | \$42, 261 | \$282, 220 |

## Table F-8. STOLport Improvement Costs (000) <br> Airfield Area <br> Minimum Demand 1980 Initial Service





Table F-8. STOLport Improvement Costs (000)
Airfield Area
Minimum Demand 1980 Initial Service (Continued)

| Hub City | STOLport | Runway | Taxiway |  | Taxiway Access | Apron |  | Airfield |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nebraska |  |  |  |  |  |  |  |  |
| Omaha | Omaha |  |  |  |  | \$ | 166 | \$ 166 |
| Nevada |  |  |  |  |  |  |  |  |
| Las Vegas | McCarren |  |  |  |  | \$ | 216 | \$ 216 |
| Reno | Reno International |  |  |  |  |  | 166 | 166 |
|  |  |  |  |  |  | \$ |  | \$ 382 |
| North Carolina |  |  |  |  |  |  |  |  |
| Greensboro | Greensboro |  |  |  |  | \$ |  | \$ 166 |
| Raleigh | Raleigh-Durham |  |  |  |  |  | 166 | 166 |
|  |  |  |  |  |  | \$ |  | \$ 332 |
| New Jersey |  |  |  |  |  |  |  |  |
| Newark | Newark | \$ 855 | \$ |  | \$ 34 | \$ | 216 | \$1,323 |
| Teterboro | Teterboro | 855 |  | 218 | 34 |  | 315 | 1,422 |
|  |  | \$1,710 | \$ |  | \$ 68 | \$ |  | \$2,745 |
| New York |  |  |  |  |  |  |  |  |
| Albany | Albany |  |  |  |  | \$ |  | \$ 166 |
| Buffalo | Buffalo |  |  |  |  |  | 216 | 216 |
| New York | La Guardia Westchester County | \$ 855 | \$ |  | \$ 34 |  | $\begin{aligned} & 315 \\ & 216 \end{aligned}$ | $\begin{array}{r} 1,422 \\ 216 \end{array}$ |
| Rochester | Rochester-Monroe |  |  |  |  |  | 166 | 166 |
| .. Syracuse | C. E. Hancock |  |  |  |  |  | 166 | 166 |
|  |  | \$ 835 | \$ | 218 | \$ 34 |  | 245 | \$2,352 |

Table $\mathrm{F}-8 . \quad$ STOLport Improvement Costs (000)
Airfield Area
Minimum Demand 1980 Initial Service (Continued)


Table F-8. STOLport Improvement Costs (000)
Airfield Area
Minimum Demand 1980 Initial Service (Continued)

| Hub City | STOLport | Runway | Taxiway | Taxiway Access |  | pron | Total Airfield |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Utah |  |  |  |  |  |  |  |  |
| Salt Lake City | Salt Lake City |  |  |  | \$ | 166 | \$ | 166 |
| Virginia |  |  |  |  |  |  |  |  |
| Norfolk | Norfolk |  |  |  | \$ | 166 | \$ | 166 |
| Richmond | R. E. Byan |  |  |  |  | 166 |  | 166 |
|  |  |  |  |  | \$ | 332 | \$ | 332 |
| Washington |  |  |  |  |  |  |  |  |
| Seattle | Boeing Field |  |  |  | \$ | 166 | \$ | 166 |
| Spokane | Spokane International |  |  |  |  | 166 |  | 166 |
|  |  |  |  |  | \$ | 332 | \$ | 332 |
| Wisconsin |  |  |  |  |  |  |  |  |
| Milwaukee | Mitchell Field |  |  |  | \$ | 166 | \$ | 166 |
| TOTAL AIRFIELD AREA |  | \$9,833 | \$2,507 | \$391 | \$14 | , 641 | \$27,372 |  |

```
Table F-9. STOLport Improvement Costs (000)
Support Facilities
Minimum Demand 1980 Initial Service
```

| Hub City | STOLport | Passenger <br> Terminal | Airport Parking | Aircraft <br> Maintenance | Total <br> Support <br> Facilities |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Arizona |  |  |  |  |  |
| Phoenix <br> Tucson | Skyharbor <br> Tucson Int'l | \$ 1,776 | \$ 214 |  |  |
|  |  | - 976 | +115 |  | $1,091$ |
|  |  | \$ 2,752 | \$ 329 |  | \$ 3,081 |
| California |  |  |  |  |  |
| Fresno <br> Los Angeles | Fresno | \$ 1, 156 | \$ $\begin{array}{r}137 \\ 291 \\ 291 \\ 291 \\ 291 \\ \\ 291\end{array}$ | \$15, 100 | \$ 1, 293 |
|  | Hawthorne | 2,372 |  |  | - 1, 663 |
|  | Hollywood-Burbank | 2,372 |  |  | 2,663 |
|  | Long Beach | 2,372 |  |  | 2,663. |
|  | Ontario | 2,372 |  |  | 17,763 |
|  | Orange County | 2,372 |  |  | 2,663 |
| Monterey Sacramento | Monterey Peninsula | 2,956 | 113 |  | 1, 069 |
| Sacramento | Sacramento Executive | 2,948 | 358 |  | 3,306 |
| San Francisco | Lindberg Field | 3,488 | 425 |  | 3,913 |
|  | Oakland Int'l | 3,836 | 471 |  | 4, 307 |
|  | San Francisco Int'l | 2,524 | 310 |  | 2,834 |
|  | San Jose | 3,736 | 458 | 3,050 | 7,244 |
|  |  | \$30,504 | \$3,727 | \$18, 150 | \$52,381 |
| Colorado |  |  |  |  |  |
| Denver | Stapleton | \$ 1, 056 | \$ 125 | \$ 3, 050 | \$ 4,231 |
| Connecticut |  |  |  |  |  |
| Hartford | Bradley Field | \$ 1,468 | \$ 176 |  | \$ 1,644 |
| D. C. |  |  |  |  |  |
| Washington | Washington Nat'l | \$ 5, 100 | \$ 625 |  | \$ 5,725 |

```
Table F-9. STOLport Improvement Costs (000)
    Support Facilities
    Minimum Demand 1980 Initial Service (Continued)
```

| Hub City | STOLport |  | Terminal | Airport Parking |  | Aircraft <br> Maintenance | Support <br> Facilities |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Florida |  |  |  |  |  |  |  |  |
| Jacksonville | Jacksonville Int'l |  | 1,564 | \$ | 188 |  | \$ | 1,752 |
| Miami | Opa-Locke |  | 1,724 |  | 208 |  |  | 1,932 |
| Tampa | Tampa Int'l |  | 1,816 |  | 219 | \$ 3, 050 |  | 5, 085 |
|  |  |  | 5,104 | \$ | 615 | \$ 3, 050 | \$ | 8,769 |
| Georgia |  |  |  |  |  |  |  |  |
| Atlanta | Fulton County |  | 2,064 | \$ | 249 |  | \$ | 2,313 |
| Hawaii |  |  |  |  |  |  |  |  |
|  | Honolulu |  | 3,280 | \$ | 344 | \$15, 100 | \$ | 18,724 |
|  | Lihue, Kauai |  | 1,200 |  | 152 |  |  | 1, 352 |
|  | Hilo |  | 1,160 |  | 136 |  |  | 1,296 |
|  | Maui |  | 1, 120 |  | 128 |  |  | 1,248 |
|  | Kailua, Kona |  | 740 |  | 86 |  |  | 826 |
|  |  |  | 7,500 | \$ | 846 | \$15, 100 |  | 23,446 |
| Illinois |  |  |  |  |  |  |  |  |
| Chicago | Midway |  | 4,756 | \$ | 583 | \$15,100 | \$ | 20,439 |
|  | Meigs Field |  | 3,444 |  | 422 |  |  | 3,866 |
|  |  |  | 8,200 | \$ | 1,005 | \$15,100 |  | 24,305 |
| Indiana |  |  |  |  |  |  |  |  |
| Indianapolis | Weir Cook |  | 1,380 | \$ | 165 |  | \$ | 1,545 |

Table F-9. STOLport Improvement Costs (000)
Support Facilities
Minimum Demand 1980 Initial Service (Continued)

|  | Hub City | STOLport | Passenger Terminal | Airport <br> Parking |  | Aircraft <br> Maintenance | Total Support Facilities |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Iowa |  |  |  |  |  |  |
|  | Des Moines | Des Moines | \$ 740 | \$ | 86 | \$ | \$ 826 |
|  | Kansas |  |  |  |  |  |  |
|  | Kansas City | Kansas City Muni. | \$ 2, 244 | \$ | 271 | \$ 3,050 | \$ 5,565 |
|  | Kentucky |  |  |  |  |  |  |
|  | Louisville | Standiford Field | \$ 832 | \$ | 97 |  | \$ 929 |
|  | Louisiana |  |  |  |  |  |  |
| N | New Orleans | New Orleans Lakefront | \$ 1,884 | \$ | 227 |  | \$ 2,111 |
|  | Maryland |  |  |  |  |  |  |
|  | Baltimore | Friendship | \$ 3, 1.44 | \$ | 381 |  | \$ 3,525 |
|  | Massachusetts |  |  |  |  |  |  |
|  | Boston | Logan Hanscom Field | $\begin{array}{r} \$ 4,396 \\ 1,884 \\ \hline \end{array}$ | \$ | $\begin{array}{r} 538 \\ 231 \\ \hline \end{array}$ | \$ 3, 050 | $\begin{array}{r} \$ 7,984 \\ 2,115 \\ \hline \end{array}$ |
|  |  |  | \$ 6,280 | \$ | 769 | \$ 3,050 | \$10,099 |
|  | Michigan |  |  |  |  |  |  |
|  | Detroit | Detroit City | \$ 5, 128 | \$ | 627 |  | \$ 5,755 |

```
Table F-9. STOLport Improvement Costs (000)
Support Facilities
Minimum Demand 1980 Initial Service (Continued)
```



```
Table F-9 . STOLport Improvement Costs (000)
                Support Facilities
    Minimum Demand 1980 Initial Service (Continued)
```

| Hub City | STOLport | Passenger Terminal |  | Airport <br> Parking | Aircraft Maintenance | Support Facilities |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| New York |  |  |  |  |  |  |
| Albany | Albany | \$ 840 | \$ | 99 |  | \$ 939 |
| Buffalo | Buffalo | 2,248 |  | 272 |  | 2,520 |
| New York | La Guardia | 4, 166 |  | 512 |  | 4,678 |
|  | Westchester County | 2,776 |  | 341 |  | 3,117 |
| Rachester | Rochester-Monroe | 1,468 |  | 180 |  | 1,648 |
| Syracuse | C. E. Hancock | 1,304 |  | 155 |  | 1,459 |
|  |  | \$12,802 |  | 1,559 |  | \$14,361 |
| Ohio |  |  |  |  |  |  |
| Cincinnati | Lunken Field | \$ 936 | \$ | 110 |  | \$ 1, 046 |
| Cleveland | Burke Lakefront | 3,852 |  | 469 |  | 4, 321 |
| Columbus | Columbus | 1,640 |  | 197 |  | 1,837 |
| Dayton | Dayton | 740 |  | 86 |  | 826 |
|  |  | \$ 7,168 |  | 862 |  | \$ 8,030 |
| Oklahoma |  |  |  |  |  |  |
| Oklahoma City | Oklanhoma City | \$ 820 | \$ | 96 |  | \$ 916 |
| Oregon |  |  |  |  |  |  |
| Portland | Portland Int'l | \$ 1,008 | \$ | \$ 119 |  | \$ 1, 127 |
| Pennsylvania |  |  |  |  |  |  |
| Philadelphia | North Philadelphia | \$ 4, 100 |  | \$ 500 |  | \$ 4,600 |
| Pittsburg | Allegheny County | 3,968 |  | 484 | - | 4,452 |
|  |  | \$ 8,068 |  | \$ 984 |  | \$ 9,052 |

```
Table F-9.. STOLport Improvement Costs (000)
Support Facilities
Minimum Demand 1980 Initial Service (Continued)
```



```
Table F-9 : STOLport Improvement Costs (000)
Support Facilities
Minimum Demand 1980.Initial Service (Continued)
```

| Hub City | STOLport | Passenger <br> Terminal | Airport Parking | Aircraft Maintenance | Total Support Facilities |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\underline{\text { Wisconsin }}$ |  |  |  |  |  |
| Milwaukee | Mitchell Field | \$ 1,232 | \$ 147 |  | \$ 1,379 |
| Total Suppor |  | \$151, 712 | \$18,336 | \$84, 800 | \$254, 848 |

Table F-10. STOLport Improvement Costs

|  | Unit Cost <br> (Per Sq. Ft.) |
| :---: | :---: |
| Landing Area |  |
| Runway (18' ${ }^{\prime \prime}$ Thickness) |   <br> Taxiway 1.90 <br> Taxiway Access 1.10 <br> 1.10  <br> Apron 1.70 <br> Terminal Building $\$ 40.00$ <br> Parking Area $\$ .80$ |

Table F-1l. Aircraft Maintenance Facility Costs

|  |  |  | $\begin{gathered} \text { Area } \\ (\mathrm{Sq} \mathrm{Ft}) \\ \hline \end{gathered}$ | $\begin{gathered} \text { Cost Per } \\ \text { Sq Ft } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Total } \\ \text { Cost }(000) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Centralized Maintenance Base |  |  |  |  |
|  | Shop Area |  | 350, 000 | \$ 20 | \$ 7,000 |
|  | Hangar Area |  | 60,000 | 25 | 1,500 |
|  | Engine Test Cell |  |  |  | 430 |
|  | Overhaul Equipment |  |  |  | 5,570 |
|  | Tools \& Stands |  |  |  | 600 |
|  |  |  |  |  | \$15, 100 |
| 的 | Regional Maintenance Base |  |  |  |  |
| $\cdots$ | Shop Area |  | 55,000 | \$ 20 | \$ 1, 100 |
|  | Hangar Area |  | 60,000 | 25 | 1,500 |
|  | Tools \& Stands |  |  |  | 450 |
|  |  |  |  |  | \$ 3, 050 |
|  | Total Maintenance Facility Costs (000) |  |  |  |  |
|  | (4) Centralized Maintenance Bases | \$60, 400 |  |  |  |
|  | (8) Regional Maintenance Bases | 24,400 |  |  |  |
|  |  | \$84, 800 |  |  |  |

Source: Study of Aircraft in Intraurban Transportation Systems, San Francisco Area, The Boeing Company, September 1971.

Table F-12. Maintenance Facility Locations

|  | Centralized Maintenance Bases | Shops |
| :---: | :---: | :---: |
| $\begin{aligned} & 1+1 \\ & 1 \\ & G \end{aligned}$ | California Ontario <br> Hawaii Honolulu <br> Illinois Midway <br> New Jersey Teterboro | Instrument <br> Avionic \& Electrical <br> Hydraulic <br> Engine Overhaul - Major <br> Wheels, Tires, Brakes <br> Sheet Metal \& Seat Repair <br> Engine Replacement <br> Pneumatics <br> Standard \& Special Tool Rooms <br> Engine Test Cell |
|  | Regional Maintenance Bases | Shops |
|  | California San Jose <br> Colorado Denver <br> Florida Tampa <br> Massachusetts Logan <br> Missouri Kansas City <br> Texas Dallas <br> Virginia Norfolk <br> Washington Seattle | Wheels, Tires \& Brakes <br> Sheet Metal \& Seat Repair <br> Engine Replacement <br> Standard \& Special Tool Rooms |

Table F-13. Air Traffic Control Facilities

| Hub City | STOLport | $\begin{aligned} & \text { Control } \\ & \text { Tower } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Microwave } \\ \text { ILS } \end{gathered}$ |  | Approach Lighting |  | Total <br> ATC <br> Facilities |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| California |  |  |  |  |  |  |  |  |
| Los Angeles | Hawthorne |  | \$ | 500 | \$ | 200 | \$ | 700 |
|  | Long Beach |  |  |  |  | 200 |  | 200 |
| Monterey | Monterey Peninsula |  |  | 500 |  |  |  | 500 |
|  | Sacramento Executive |  |  |  |  | 200 |  | 200 |
|  |  |  |  | , 000 | \$ | 600 |  | , 600 |
| Florida |  |  |  |  |  |  |  |  |
| Miami | Opa-Locka |  | \$ | 500 | \$ | 200 | \$ | 700 |
| Georgia |  |  |  |  |  |  |  |  |
| Atlanta | Fulton County |  |  |  | \$ | 200 | \$ | 200 |
| Illinois |  |  |  |  |  |  |  |  |
| Chicago | Meigs Field |  | \$ | 500 | \$ | 200 | \$ | 700 |
| Kansas |  |  |  |  |  |  |  |  |
| Kansas City | Kansas City Municipal |  |  |  | \$ |  | \$ | 200 |
| Louisiana |  |  |  |  |  |  |  |  |
| New Orleans | New Orleans Lakefront |  | \$ | 500 |  |  | \$ | 500 |
| Michigan |  |  |  |  |  |  |  |  |
| Detroit | Detroit City |  |  |  | \$ | 200 | \$ | 200 |

Table F-13. Air Traffic Control Facilities (Continued)

|  | Hub City | STOLport | Control Tower |  | $\begin{gathered} \text { Microwave } \\ \text { ILS } \\ \hline \end{gathered}$ |  | Approach Lighting |  | $\begin{gathered} \text { Total } \\ \text { ATC } \\ \text { Facilities } \\ \hline \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Missouri |  |  |  |  |  |  |  |  |  |
|  | St. Louis | Weiss | \$ | 400 | \$ | 500 | \$ | 200 |  | 100 |
|  | New Jersey |  |  |  |  |  |  |  |  |  |
|  | Teterboro | Teterboro |  |  |  |  | \$ | 200 | \$ | 200 |
|  | Ohio |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { n } 1 \\ & \text { ó } \end{aligned}$ | Cleveland | Burke Lakefront |  |  |  |  | \$ | 200 | \$ | 200 |
| - | Washington |  |  |  |  |  |  |  |  |  |
|  | Seattle | Boeing Field |  |  |  |  | \$ | 200 | \$ | 200 |
|  | Total Air Traffic Control Facilities |  | \$ | 400 |  | 000 |  | 400 |  | 800 |

Table F-14. Time Phased Implementation Costs - 1990 VTOL System Airline Acquisition \& Introduction 100-Passenger Aircraft

|  | Aircraft | $\underline{1984}$ | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | 1992-94 | 198 | $\begin{aligned} & \text { otal } \\ & -1994 \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Flyaway Cost Spares | $\begin{array}{r}\$ 29 \\ \hline\end{array}$ | $\begin{array}{r} \$ 43 \\ \\ \hline \end{array}$ | $\begin{array}{r} \$ 43 \\ \quad 6 \\ \hline \end{array}$ | $\begin{array}{r} \$ 80 \\ \quad 12 \\ \hline \end{array}$ | $\begin{array}{r} \$ 87 \\ 13 \\ \hline \end{array}$ | $\begin{array}{r} \$ 135 \\ 20 \\ \hline \end{array}$ | $\begin{array}{r} \$ 437 \\ \quad 63 \\ \hline \end{array}$ | $\begin{array}{r} \$ 407 \\ \quad 59 \\ \hline \end{array}$ | $\begin{array}{r} \$ 637 \\ 93 \end{array}$ |  | $\begin{array}{r} 1,898 \\ 276 \end{array}$ |
| A |  | \$ 33 | \$ 49 | \$ 49 | \$ 92 | \$100 | \$155 | \$500 | \$466 | \$730 |  | 2, 174 |
| $\stackrel{1}{\sim}$ | GSE |  |  |  |  |  | \$ 3 | \$ 27 | \$ 28 | \$ 48 | \$ | 106 |
|  | Introduction Costs |  |  |  |  |  | 3 | 18 | 19 | 34 |  | 74 |
|  | Total Airline Acquisition Introduction | \$ 33 | \$ 49 | \$ 49 | \$ 92 | \$100 | \$161 | \$545 | \$513 | \$812 |  | , 354 |

Table F-15. Summary of Implementation Costs 1990 VTOL System (Cost in Millions)

|  | 100 Pass. |
| :---: | :---: |
| Aircraft Development |  |
| Airframe | \$ 530 |
| Engine | 199 |
|  | \$ 729 |
| Airline Acquisition \& Introduction |  |
| Aircraft |  |
| Flyaway Cost | \$1,898 |
| Spares | 276 |
|  | \$2,174 |
| GSE | 106 |
| Introduction Costs | 74 |
|  | \$2,354 |
| VTOLport Development |  |
| Ground Level | \$ 88 |
| Elevated | 441 |
| Aircraft Maintenance | 73 |
|  | \$ 602 |
| Air Traffic Control | \$ 55 |
| Total Implementation Cost |  |
| Including Development | \$3,740 |
| Excluding Development | \$3, 011 |

Table F-16. Estimated NASA VTOL Funding Requirements (In Millions of Dollars)


Table F-17. VTOLport Development Costs Cost in Thousands (000)


Table F-18. VTOLport Development Costs (000) Construction Cost Factor

|  | Typical Ground Level | Typical Small Elevated | Typical <br> Large <br> Elevated |
| :---: | :---: | :---: | :---: |
| Land Costs |  |  |  |
| Ground \$25/sq ft | \$ 4, 200 | \$ 6,200 | \$15,000 |
| Over Water \$5/sq ft | 1,200 | 1,200 | 3,000 |
| Over RR Tracks \$8/sq ft | 2, 000 | 2,000 | 4,800 |
| Construction Costs |  |  |  |
| Land Clearing |  | 1,400 | 1,800 |
| Over Water Foundations | 700 | 1, 200 | 1,600 |
| Over RR Tracks | 400 | 600 | 800 |
| Basic Structure | 7,000 | 38,500 | 58,500 |
| Total V TOLport Cost |  |  |  |
| Land | \$11,200 | \$46, 100 | \$75,300 |
| Over Water | 8,900 | 40, 900 | 63, 100 |
| Over RR Tracks | 9,400 | 41,100 | 64,100 |
| Average VTOLport Cost | \$ 9, 800 | \$42, 700 | \$67,500 |

## Table F-19. Air Traffic Control Facilities \& Equipment Cost in Thousands (000)

Typical VTOLport
Terminal Air Traffic Control
Control Tower ..... \$ 400
Terminal Radar Approach Control ..... 670
Radar Beacon Display Equipment100
\$1, 170
Communications
Remote Transmitter Receiver ..... \$ 100
Automatic Terminal Information System ..... $\begin{array}{r}5 \\ 15 \\ \hline\end{array}$
Voice Recorder
FDEP ..... 20
\$ 140
Data Acquisition
Airport Surveillance Radar ..... \$ 600
Airport Surface Detection Equipment600
\$1, 200
Navigation Landing Aids
ILS Cat III\$ 630
Outer, Middle \& Inner Marker ..... 30
LOM/LMM ..... 20
Run way Visual Range ..... 30
Approach Lighting System with ..... 240Sequenced Flashers
\$ 950
Total Air Traffic Control ..... $\$ 3,460$

Table F-20. Direct Operating Costs, 1990 VTOL Lift Fan 100-Passenger Aircraft

|  | Per Block Hour (500 st. miles) |  |
| :---: | :---: | :---: |
| Flying Operations |  |  |
| Flight Crew | \$ | 94.04 |
| Fuel \& Oil |  | 166. 76 |
| Insurance |  | 78. 39 |
|  | \$ | 339. 19 |
| Maintenance |  |  |
| Labor - Airframe | \$ | 25. 23 |
| Material - Airframe |  | 56. 16 |
| Labor - Cruise Engine |  | 14. 30 |
| Material - Cruise Engine |  | 85. 55 |
| Labor - Lift Engine |  | 3. 70 |
| Material - Lift Engine |  | 11. 30 |
| Maintenance Burden |  | 86.45 |
|  | \$ | 282.69 |
| Depreciation | \$ | 287. 09 |
| Total DOC Per Block Hour | \$ | 908.97 |
| Per Aircraft Mile | \$ | 1. 79 |
| Per Available Seat Mile | \$ | 1. 79 |

## Table F-2l. Comparison of Indirect Operating Costs 1970 Cost Levels

| IOC Item |  | Boeing 1971 Method | Ames Lockheed-Douglas Modified Method | Aerospace Modified Boeing 1971 Method | Aerospace California Corridor |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I | System Expense | \$ 41.93 | \$ 24.05 | \$ 41.93 | \$ 22.83 |
| II | Local Expense | 132.42 | 181.91 | 132.42 | 40.50 |
| III | Aircraft Control | 19.84 | 14.71 | 19.84 | 4.55 |
| IV | Cabin Attendant Expense | 68.84 | 88.17 | 68.84 | 79.20 |
| V | Passenger Food | 168.65 | 16.72 | 16.86 | 4.86 |
| $\stackrel{1}{\circ} \mathrm{O}$ VI | Passenger Handling \& Reservations | 305. 10 | 292. 50 | 305.10 | 80.88 |
| VII | . Baggage Handling | 216. 54 | 19.91 | 38.22 | 11.12 |
| VIII | Other Passenger Expense | 121.50 | 198.00 | 121. 50 | 160.68 |
| IX | Other Cargo Expense | -- | -- | -- | -- |
| $\mathbf{x}$ | General \& Admin. Expense | 74.96 | 98. 15 | 61.85 | 119.80 |
|  | Total IOC | \$1149.78 | \$ 933.62 | \$ 806. 56 | \$ 524.42 |

150 Passenger Capacity, 500 St. Mi. Trip, $60 \%$ L. F., No Cargo Onboard

## REFERENCES

F.l. Artur J. Alexander and J. R. Nelson, Measuring Technological Change, Aircraft Turbine Engines, R1017, ARPA/PR (May 1972), and Personal Communication Concerning Follow-on Analysis Relating Technology to Cost for Aircraft Engines.
F.2. Boeing 1971 DOC and IOC Formula Update, DC-22514, The Boeing Company, Seattle, Washington (July 1971).

F3. Operational Requirements and Guidelines for V/STOL Systems, Eastern Airlines, August 1969.
F.4. H. L. Solomon, Interim Report, Study of Short Haul High Density V/STOL Transportation Systems, Aerospace Report No. ATR-72(7301)-1, Vol. I, NASA Report No. CR-114466, The Aerospace Corporation, El Segundo, California (July 1972).
F.5. Estimated Result of Operation of Pacific Southwest Airlines, Application 50847, California Public Utilities Commission, Transportation Division (May 1969).
F.6. Civil Aeronautics Board Docket 21866-8, Domestic Passenger Fare Investigation, Phase 8 -Rate of Return, Civil Aeronautics Board, Washington, D. C., (April 9, 1971)

