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CRACK GOING THROUGH THE INTERFACE*
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ABSTRACT

The plane problem of two bonded elastic half planes con-
taining a finite crack perpendicular to and going through the
interface is considered. The problem is formulated as a system
of singular integral equations with generalized Cauchy kernels.
Even though the system has three irregular points, it is shown
that the unknown functions are algebraically related at the
irregular point on the interface and the integral equations
can be solved by a method developed previously. The system of
integral equations is shown to yield the same characteristic
equation as that for two bonded quarter planes in the general
case of the through crack, and the characteristic equation for
a crack tip terminating at the interface in the special case.
The numerical results given in the paper include the stress
intensity factors at the crack tips, the normal and shear com-
ponents of the stress intensity factors at the singular point
on the interface, and the crack surface displacements.
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1. INTRODUCTION

In considering the fracture of composite materials, one

may approach^the prdbl em~~fYonTtwo ~d"iTfeT~elTt"~poTrfts"o~f' v~iew.

In the first approach the primary interest is in studying and

in estimating the "bulk strength" of the given structure under

a known system of external loads and environmental conditions.

In this type of studies it is usually assumed that the existing

imperfections such as voids, cracks, and inclusions are ran-

domly distributed throughout the composite medium and the mate-

rial is statistically homogeneous. Thus, the very nature of

the problem requires that some kind of a statistical strength

theory be used as a guide in the investigations.

In the second approach to studying the fracture of com-

posites, one is basically interested in the initiation of frac-

ture from the "localized" imperfections which are known (or

assumed) to exist in the material. In this type of studies it

is usually assumed that the composite medium consists of per-

fectly bonded elastic components and the localized imperfection

may be idealized as a plane crack or as a flat elastic inclu-

sion. The problem of a finite crack lying parallel to or at

a bimaterial interface in composites with various geometries

was discussed in [1-5]. The similar problem for a flat inclu-

sion was studied in [6]. An up-to-day review of the general

fracture problems in composite materials and a summary of some

of the known results may be found in [7]. The distinguishing

feature of the solutions given in [1-7] as well as the other
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known solutions which appeared in literature within the past

decade is that the strength of the stress singularity at the

imperfection front is -1/2 and, in the case of a crack, the

quasi-static stress state in the neighborhood of the crack

front remains autonomous as the crack propagates. That is,

aside from a slight change in a multiplicative constant known

as the stress intensity factor, the asymptotic nature of the

stress state in the vicinity of the crack front remains

unchanged.

On the other hand, when the crack front terminates at a

bi-material interface in the composite medium the strength of

the stress singularity is no lorvger -1/2 and the angular dis-

tribution of stresses differs considerably from that of a crack

tip imbedded in a homogeneous medium. After reaching the inter-

face, further propagation of the crack may be in the form of

(a) a cleavage crack into the second medium (Figure 1), (b) a

debonding crack along the interface, or (c) a "reflected" crack

back into the first medium. The basic problem of a finite

crack terminating at a bi-material interface was discussed in

some detail in a previous paper [8]. [8] also presents a ten-

tative fracture criterion which may be used in predicting the

mode of the fracture propagation (such as (a)-(c), mentioned

above) as well as the level of the external loads initiating

the fracture provided the fracture strengths of the two adjoin-

ing materials and of the interface are known.

In this paper we consider the problem of a crack going
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through the interface into the second medium. From the analyt-

ic a 1 _vie w p oj n t__t he UJHIsua 1 _featuj-e pjf ̂ e j>rob Jem is that it

has three irregular points (two crack tips and the intersection

of the crack with the interface) at which the stress state is

generally singular. One of the objectives of the paper is the

development of the necessary theoretical and numerical tech-

niques for handling problems of this nature.

2. THE INTEGRAL EQUATIONS

Consider the plane elasticity problem shown in Figure 1.

In this paper only the symmetric problem will be considered;

that is, it is assumed that in the composite medium without

the crack and subjected to the same external loads as the

cracked medium, the planes (r > 0, 9 = ir) and (r > 0, 6 = 0)

are free from shear and are acted upon by normal stresses p-j(r)

and P2(r)» respectively. Thus, through a proper superposition,

the singular part of the problem may be reduced to that shown

in Figure 1, where the self-equilibrating crack surface trac-

tions -p-j(r) and -P2(r) are the only external loads. In the

special case of uniform loading p, and p2 are constant and the

continuity conditions require that

Pi P?
•^- = -f=- , for plane stress,
El E2

\

1 - v,2 1 - v *
—F—— p, = —F—— Po , for plane strain. (l.a.b)t] I t2 i

To solve the problem shown in Figure 1 we will first



Figure 1. The geometry of the crack going through the
interface of two bonded elastic half planes,

Figure 2. Two cracks imbedded into adjacent half planes



consider the problem described in Figure 2 where each half

_p_l.a.n.e _cp_n_ta_i_ns_ a_ fjinite crack perpendjculjir to the interface,

and then let the distances a, and a~ go to zero.

Because of symmetry, it is sufficient to consider the

problem in the half plane 0 < r < °°, 0 < 6 < ir (Figure 2). The

related elasticity problem has to be solved under the following

boundary conditions:

Tlr0(r,ir) = 0 , 0 < r < '«,

Tlee(r,Tr-0) = - p 1 ( r ) , a-, < r < b-j ,

ule(r,ir) = 0 , 0 < r < a1 , b1 < r < »; (2.a-c)

U16 = U29 ' ulr = U2r 5 T l ee = T20e '

T l r 6 = T 2r6 • 8 = 7 r / 2 > ° - r < °°; ( 3 . a -d )

T 2 r e ( r , 0 ) = 0 , 0 < r < ~,

T 2 0 e ( r , + 0 ) = - P 2 ( r ) , a2 < r < b2,

u 2 Q ( r , 0 ) = 0 , 0 < r < a2, b2 < r < ». ( 4 . a - c )

Let the unknown functions f-| and f2 be defined as follows:

f^ = - 2 If "16̂ '-°) •

f2(r) = 2 ff u2Q(r,+0) . (S.a.b)

From (2.c), (4.c) and (5) it follows that



= 0 , 0 < r < a,, b-j < r < °°,

f(r) = 0 , 0 < r < a, b < r < ».,

bl b2
/ f,(r)dr = 0 , / f?(r)dr = 0 . (6.a-d)
al a2

Using Mel l i n transforms and following the procedure out-

lined in [8], after somewhat routine manipulations the problem

can be reduced to the following system of integral equations

for the functions f, and f«:

i bl Ms) , bl
i / 4r-ds +1/ ^^ r .s j f ^s jds

al al

« / k,9(r,s)f9(s)ds = - 7-—
TT It C. £.\i -\a2 1

1 ^ 1+K2+ ^ / k22(r,s)f2(s)ds = - -£~ p2(r) , a2 < r < b2>
a? 2

(7.a,b)
where the kernels k.. are given by

3 c r 3 c r
kn(r,s) = I' 1k . . ko?(r,s) = £ 2k

 k .
11 k=l (s+r)k ZZ k=l (s+r)k

2 d,,,rk"1 2 d9.r
k'1

k12(r,s) = f
 IK . , k21(r,s) = f ^K k ; (8.a-d)

12 1 (s+r)k ^ 1 (s+r)k



C12 = l + m < ' C13

! m2(l-Hc2) 3(l-m2)
C21 ? " 2 ( m + K ) ~ Z(l+mK

6(l-m2) 4(l-m2)
C22 = l+mic ' C23 l + m K

3(1+^) I+KI I+KI I+KI
n I , \ ~ O / 1 4. r- , d -I « = T~T ~ T
tinirt+KiJ t t | T n i _ K _ l |£ I+H1OKO ITlo + K

3 / w \ • , -
(1+K?) I+K? 1+K? 1+K,

d = _ 1_ _ £ ^ ^ d = £_ _ £_

ml = y2/yl ' m2 = Vll/y2 '

In (9) y, and y2 are the shear moduli, K. = 3-4v^ for plane

strain and K.. = (3-v.j )/(l+v..) for the generalized plane stress,

(i = 1,2), v^ being the Pois son's ratio.

From (8) it is seen that for a, > 0, a2 > 0 the kernels

k.j.jfr.s), (i.j = 1,2) are bounded and continuous. Hence (7)

is a simple system of singular integral equations with an index

K = 1 and the additional conditions (6.c and d) which are re-

quired for a unique solution. These equations can be solved

for the unknown functions f-i and f? in a standard manner. A

simple and highly effective numerical method has been described

in [9]. After obtaining f1 and f2, all the desired field
i

quantities may be expressed as and evaluated from the definite



integrals with kernels corresponding to the particular field

quantity and the density functions f ̂ , (i = 1,2) (see, for

example, [8] for the case of one crack). From the practical

viewpoint of particular interest are the stress intensity fac-

tors defined by

2y,
k(a,) = 11m /2(a,-r) T, Q e(r,ir) = lim y^ /2(r-a,)f,(r),

r+a-j r-»-a1 1

r 2y,
k(b]) = lim /Zd-bj) Tlee(r,ir) = -lim ^^- /2(brr) f^r)

r+b, r+b-t 1

_ _ 2y?
k(a2) = lim /2(a2-r) T2Q6(r,0) = lim ^- /2(r-a2) f2(r),

r-»a2 *• fcuu r+a0 2

k(b2) = lim /2(r-b2) T200(r,0) = -lim ^- /2(b2-r) f2(r).

(lO.a-d)

For the bonded planes Material 1 Aluminum (E^ = 10 psi,

v] = 0.3), and Material 2 Epoxy (E2 = 4.45xl0
5 psi, v? = 0.35),

Tables 1 and 2 show some of the calculated plane strain results.

In these tables p, and p2 refer to constant pressures applied

to the crack surfaces and are related by (1). As a basis of

comparison the special case of a homogeneous plane containing

two collinear cracks may be mentioned. For y-| = y2, v1 = v2,

a, = a2 = a, b1 = b2 = b, the stress intensity factors are

given by

See Section 4 below.



Table 1. Stress Intensity Factors for a > 0, > 0
Material—I -:—A-l uminumT-Mater-i-a-l—2•:- Epoxy;

A2 = (bz-a2)/2 = 1/2,

= 1.5, A-j = (b}-a-| )/2 vari

a2 = 1 ,

1

0.05

0.10

0.15

0 .25

0 .50

0 .75

1 .00

1.25

1.40

k(a, )

PI^T
1 .0015

1 .0023

1 .0037

1 .0082

1 .0326

1.0836

1.1832

1 .4094

1 .8046

k(b 1 )

Pl/i7

1 .0014

1 .0021

1 .0033

1 .0069

1 .0231

1.0492

1 .0869

1.1437

1 .2012

k(a 2 )

P2/^

0.97417

0 . 9 7 5 1 5

0 .97679

0.98212

1 .0086

1 .0590

1 .1474

1.3118

1.5047

k(b 2 )

P2/*7

0.98165

0.98241

0.98369

0 .98775

1 .0079

1 .0454

1 .1089

1.2210

1.3451

Table 2. Stress Intensity Factors for a1 > 0, a2 > 0.

Material 1: Aluminum, Material 2: Epoxy;
a2 = = °'5' cl = variable

Cl

1.50

1.25

1.00

0.75

0.60

k(a,)

PT̂
1 .0326

1 .0494

1 .0844

1.1849

1.4114

Mb^

Pl^T

1 .0231

1 .0326

1 .0499

1 .0881

1.1454

k(a2)

P2/^

1.0086
1.0187
1.0344
1.0624
1 .0965

k(b2)

P2/^

1 .0079
1.0143
1 .0236
1.0393
1.0576
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k(a) = [b
2E(m)/K(m) - a2]/2

po/l (b-a)/a(b+a)

_' Mb) . /2 b2[1 - E(m)/K(m)] (11.a,b)
Po/F (b-a)/b(b+a)

(A = (b-a)/2, m = 1 - a2/b2) ,

where p is the constant pressure applied to the crack surfaces

and K and E are the complete elliptic integrals of first and

second kind, respectively. For example, for b = 2a which corre-

sponds to the row A, = 0.5 in Table 1 (or to GI = 1 . 5 in Table

2), we have k(a) = 1.01762 p0/JT, k(b) = 1.01249 pQ/£.

As £•] -»• 1.5 in Table 1 and- c-j -> 0.5 in Table 2, k(a-j) -»• »

while the remaining three stress intensity factors approach

some finite values. The reason for this is that in this limit-

ing case a, = 0 and the singular behavior of the stresses around

the crack tip is of the form R~a with 0.5 < a < 1 whereas the

definition of k(a-|) is based on R type singularity (see (10))

where R is a small distance from the crack tip a-j (see [8]).

The results for another special case are shown in Figure 3 where

&y = by. This is the problem considered in [8] where only one

of the adjoining materials contains a crack. Because of the

change in the power a of the stress singularity when the crack

terminates at the interface, again as a ->- 0 k(a) -> ~ for

u, > \iy and k(a) -»- 0 for y-, < y2» whereas k(b) in both cases

remains bounded.



Figure 3. Stress intensity factors for a crack perpendicular
to the interface (materials: aluminum and epoxy;
external load: crack surface pressure p ).
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3. CRACK GOING THROUGH THE INTERFACE. a-| = 0 = a2

We now consider the main problem in which the crack goes

through the interface, occupying both materials. In this case

it is clear that the integral equations (7) are still valid,

with a^ = 0 = &2' Thus, the equations have only three irregular

points (b,,Tr; 0; b_,0), meaning that one has to be more careful

in examining the singular behavior of the solution. Unlike the

problem considered in the previous section for which a, > 0,

&2 > 0» as seen from (8), here the kernels k. . are no longer

bounded for all values of r and s in the closed intervals [0,b,]

and [0,b«]. At the irregular point 0 they become unbounded,

indicating that at r = 0 the behavior of f^r), (i = 1,2), will

be affected by k..(r,s).
' J

To examine the behavior of f, and fy around the irregular

points, following [10] we assume that the unknown functions may

be expressed as

Tri3,
9,(s) 9i(s)e

 J

f,.(s) =—*—«- r« (12)

sa(brs) J s0(s-bj) J

0 < Re(a) < 1, 0 < Re(B-) < 1 , (j = 1,2),
J

where a, 3-| and 32 are the powers of the singularity at the

three irregular points, the function g- satisfies a Holder
J

condition in the closed interval 0 < s < b., (j = 1,2), and
3 •

the function sa(s-b.) J is any definite branch which varies
J

continuously on 0 < s < b^, (j = 1,2). Consider now the fol-
J

lowing sectionally holomorphic functions:

13



! bj f.(s) ! bj g.(s)e jds

""o S~*~ " ° ~s"(Vb.)3j(s-z)
J (13)

where the complex variable z = r + ip is defined in such a way

that in each case the cut (p = 0, 0 < r < b.), (j = 1,2) lies
J

along the positive real axis. Separating the leading terms at

the end points of the cuts, (13) may be expressed as [10]

Gj(z) =J^J~ ^ ' "̂ TT̂  L~TT + 6oj(z)' (14)

where 6 . is bounded everywhere except possibly at the ends,

e .. , near which

|eoj(z)| < - — , (j,k = 1,2) (is)
lz-ejkl Jk

ejl = 0, Pjl < Re(a); ej2 = b . , Pj2 < Re(6j),

C.k and p-k being real constants.

Using now the Plemelj formula [10]

1 bJ fi< $) 1 +
7 / -î r- ds = 1 [Gj (r) + Gj-(r)]. (0 < r < b.,) (16)

the terms with the Cauchy singularity in (7) may be expressed

as

14



Ms) g,(0)
-T- ds = -V-

+ G1;j(r) , (0 < r < bjf j = 1,2), (17)

where the behavior of G..(r) in the closed interval [0,b.] is
• J J

similar to that of G . (j = 1,2). The remaining terms in the

integral equations (7) may be obtained directly from (14)

through differentiation. From (7), (8) and (13) it is seen

that in these terms z = -r which is outside the cut 0 < r < b.,
J

j = 1,2. As r varies in the interval (0,b.), z will vary in
J

the interval (-b-,0) in which G,(z) is holomorphic, (j = 1,2).
J J

Thus, from (13) and (14) we obtain

J f,(s)ds g.(0) ,

b. simra
J

j rf.(s)ds cxg.(O)

b, Jsimra
J

kj r 2 f i ( s ) d s 2 d2 a ( a + l ) g . ( 0 ) ,
^— = T~ ^ G j ( " r ) = ^— a + G 4 j ( r )

(0 < r < b., j = 1,2), (18.a-c)

where it may easily be shown that the behavior of Gj<-j(i
r>) in

the closed interval [0,b.]y (j = 1,2, k = 2,3,4), will again
J

be similar to that of G . given by (15).

If we now substitute from (17), (18) and (8) into (7),

15



and multiply first both sides of each equation by ra and let

$1
r -»• 0, then (7.a) by (b^-r) ' and let r -»• b] , and (7.b) by

g
~(b~2-r) and let r -»• b2, we obtain the following system of

equations:

( cos™*

9 ( 0 )

simra

81b-. sinTra

x 9 i (0)
(d,, + ad,,)21 "U22y .8,

b simra

-

simra

* 0

cotTr3n = 0 ,
I

L *-b2

= 0 . (19.a-d)

g . (0 ) and g - ( b . ) » (J = 1 » 2 ) , are non-zero constants wh ich will
J J J

be shown to be related to the s t ress intensity fac tors . Thus,

(19. c) and (19. d) give the fo l lowing character is t ic equat ions

to determine 3, and 32:

cotir$, =0 , cotire2 = 0 . (20. a, b)

From (20) the va lues of 3^ and $2 sa t is fy ing the condit ion

0 < Re (3 j ) < 1, (J = 1,2), are found to be 31 = 32 = l / 2 , iwh i ch

16



is the well-known result.

On the other hand, since a f 0 and a f 1 , for (19. a) and

(19. b) to give a non-zero solution for g-(0), the determinant
J

of the coefficients must vanish, giving the characteristic

equation to determine a as follows:

cosiraD(a) = (cosira + c^ + ac-|2 +
 a(«+1 ' c-, 3) (

= 0 .

(21)

From (19) it is clear that the constants g-|(0) and g2(0) are

not independent and are related by

_____ cosira + c,, + ac19 +
 a^A + 1 1 c,

g2(o) - - 9l(o) n

(22)

As will be pointed out later, the use of (22) will be necessary

in order to obtain a unique solution for the integral equa-

tions (7).

In the special case of homogeneous medium, m . •*• 1 ,
J

<1 -»--K 2. cjk + 0 (j = 1,2; k = 1,2,3), d^ + 1, d]2 ->- 0,

d2l = lj d22 "*" °* the cnaracteristl'c equation (20) becomes
o

cos ua - 1 = 0 , giving a = 0 as the acceptable root and

g2'(d)/"/b~2~ = - g-|(0)//BY. Considering the definitions (5) and

(12), this indicates that, as expected, at r = 0 the derivative

of the crack surface displacement becomes finite and continuous,

17



In the problem of two bonded half planes containing a

through crack perpendicular to the interface (Figure 1), the

singular behavior of the solution at and around r = 0 must be

the same as that for two bonded quarter planes (see, for exam-

ple, [11] and [12]). Defining the constants

K! = 2(mrl) , K2 = m^H-iCj) - (l+<2) ,

K3 = 1^(1+^) + (1+K2) ,- (23)

after some manipulations (21) may be reduced to

[(KrK2) cos
2 f- - K^a-1)2]2

+ K 2 sin2 p cos2 **•- K,2 (a-1)2 = 0 . (24)
o 2 f. £•

(24) is identical to the characteristic equation found in [11]

and [12] which indicates that the two solutions will have the

same singular behavior*.

In the special case of only one of the cracks terminating

at the interface, i.e., for b-j > a, = 0, b« > a2 > 0, the

kernels k12, k^ and k22 in (7) will be bounded and will have

no contribution to the singularities. For this problem the

solution Is of the form

As shown in [11] the weak power singularity 0 < Re(a) < 1 as
assumed in this paper is not the only possible singularity for
two quarter planes. Theoretically it is possible to have a
logarithmic singularity as well as bounded stresses. However,
if one studies the conditions in detail, it is not difficult
to show that for all practical material combinations, the
power singularity is the only possibility.

18



g^s) g(s)
Ms) = — -J - g- , f2(s =I Ct-i P C.-i PI C. .n «

s 1(brs) ' (s-a2) *(b2-s) *

(25. a, b)

and, following the procedure outlined above, the characteristic

equations for a and 6 (i = 1,2) are found to be

0 ,n ]2 13

cot7rB1 = 0 , cotTra2 = 0 , cotTr32 = 0 . (26.a-d)

(26. a) is the equation found in [8] for the single crack and

(26.b-d) give p] = a2 = B2 = 1/2.

4. STRESS INTENSITY FACTORS

Using the results of the previous section it can be shown

that the strength of the stress singularity at the crack tips,

conventionally known as the stress intensity factor, is related

to and can be evaluated from the density functions or the dis-

placement derivatives f^r), (j = 1,2), defined by (5). First,
J

consider the case of two cracks imbedded into the adjacent

homogeneous materials (i.e., b. > a, > 0, j = 1,2) for which
J J

the functions f • and the related holomorphic functions 6,(z)
J J

may be expressed as

.fj.">..- g } a . - . . - (27'a)

19



(z\ =rz j

b. f / s x d s

1 f j
ff a s'2

j (I

a .
f b . - a . ) ^simrR

II 1 U •

• j<«J>" J

81> . - a . ̂  si niro. . (
J J J

1 + C
3, Coj

. (7-h } J

1
ai

z-a . }aj ;

( 7\\ f - l »

(27.b)

where a. = 3j = 1/2. We now note that in equations (7) the

left hand sides are the expressions for [(l+K-)/2y .]T .0Q for

(0 < r < a., b. < r < «°) as well as for (a. < r < b.) as indi-j j j j
cated in (7). Thus, noting that the terms involving k. . are

' J

bounded, outside the cuts G.(r) directly gives T.Q6 on the real

axes, from which the stress intensity factors may be readily

evaluated. For example, at the end r = b, from (27) we obtain

lim
r+b

T10e(r,Tr) = lim
1

2y
lip

(28)

The other expressions given in (10) follow from (27) in a simi-

lar way which, in terms of g., become
J

k(b2) = -

2y.
k< aj> =TTi (J = 1,2) (29.a,b)

Consider now the second typical case, that is, a crack tip
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terminating at the interface (e.g., b-j > a1 = 0, b2 > a2 > 0).

In this case the stress intensity factor will be defined as

k^O) = lim /2~ r ̂ (̂r.O) , (30)
1 r-0 Z69

where o^ is obtained from (26.a) and T2eQ(r,0) is given by

(7.b). Since b2 > a2 > 0, at r = Q the first and third terms

on the left hand side of (7.b) will be bounded, and only the

second term will contribute to the stress singularity. In the

second term a-, = 0, 0 < s < b, , r > 0, and k2,(r,s) is given

by (8.d). Hence, the asymptotic value of the integral for small

r may be obtained from (8.d) and (18.a,b). Using the definition

(30) and ignoring the bounded terms, we then obtain

a, 2y? , bl 2 d^r*'1
k,(0) = lim /2 r ' ̂~r- i / J ——r- f-,(s)dsi r^Q n-<2 TT Q k=1 (s+rjK i

* 9i(°) * ai
= /2~ y] — = lim /2 y] r '̂ (r) ,

* 2^i d91 + ad99
+K, s i n Trot

= mlyl ( l+m1K1 ) (m1+K2 )s imra1 ' (31. a, b)

Similarly for b, > a, > 0, b2 > a2 = 0, we find

a? * 9 o ( 0 )
k 2 ( 0 ) = lim /2 r Z T l 6 6 ( r ,7 r ) = rf y2 -^— (32)

r->-0

where y/> is obtained from (31. b) by interchanging the indices
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1 and 2 in y., m,, K-, (j = 1,2), and replacing a, by a? which,
J J J * £•

in turn, is obtained from (26. a) by substituting for c ,.

(k = 1,2,3). It should be noted that the bielastic constant

y* is identical to y given in [8] which was obtained by a

different method. Needless to say, in this case for the remain

ing three end points the expressions given by (28) and (29)

will remain valid.

For the third case in which the crack goes through the

interface, i.e., for a-, = a~ = 0, b, > 0, b~ > 0, we define

the normal and the shear components of the stress intensity

factor as foll,ows

k = 11m raT.(r,7r/2) ,
r->-0

.Qe kf = 11m r
a
T . (r ,Tr/2) ,

r+0

(j = 1 or 2). (33)

Thus, to obtain k. and k., the expressions for the interfaceo r
stresses are needed. These expressions may be obtained as

definite integrals with the density functions f., (j = 1,2),
J

In this case, the asymptotic expressions of the stresses for
small values of r and for 0 < 6 < IT are of the form

Tij(r'e) = i'j = r'8; Re(a)

where hQQ and h . are bounded and continuous in [0,ir], includ-
UD r t)

ing at 6 = ir/2, and the bounded function hfr has a discontinu-
ity at e = TT/2. Here, because of the physical importance of
the interface and simplicity of the calculations, the stress
intensity factors are defined in terms of the normal and
shear stresses along the interface, i.e., kQ = k(0)heQ(Tr/2) ,
kr = k(0)hre(Tr/2). As the results of this section show, with-
in a multiplicative constant, k(0) is nothing but the constant
g^O) (which is related to g2(0) through (22)).
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and the appropriate kernels which are evaluated from the origi-

nal Mellin Transform solution (see [8]). After some manipula-

tions, the components of the stress vector at the interface are

found to be

+ i/' s +r

l A,s

A4s(3r^-«

(s2+r2)

— Bf^sjds

_ 1 '1 B, B,r(r2-3s2)
— IfjCsJds

b2 B,r Bdr(r
2-3s2)

o s

Al m+< ' A

(s2+r
2)'

]f2(s)ds , (34.a,b)

y2 ^i^ A — I •
km Z » "Q ~ " ^ 4T^ > ">

Bn = B, ) •

(35)

The kernels in (34) can easily be expressed as the sum of terms

containing

1 1
s + ir ' s-i r '

ir
(s+ir)2 ' (s-ir)2 '

(36)

It is clear that since r > 0, at z = ± ir the functions G.(z)
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defined by (13) will be holomorphic and, following the same

procedure which led to (18) in the previous section, the inte-

grals—in (-34-) may be evaluated—in- term-s-of— G-(-z-)--•a-n-d-i-t-s deriv-

ative (at z = ±ir). For example,

, bl sf,(s)ds , bl , ,

1 rbj simra

9l(0) 1
-4 -^r + Mr) •

bl
/ 1r ( }—^ I—y )f,(s)ds
o (s+ir)2 (s-ir)2 '

where F, and F« are bounded functions. Carrying out the neces-

sary manipulations, from (33-37) we obtain

i 9i(o) g«(o)
[AT - d-2«)A2] - -— [A3 - (i-2«)A4]}

'2~

g,(0) g0(o)

(38. a, b)

where the constants g^O) and g2(0) are linearly related through

(22) and the constants Af and Bn- (i = 1....4) are given by (35).
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5. CRACK SURFACE DISPLACEMENTS

The crack surface displacements u,Q and u20 are related

to the density functions f^ and f2 through (5). Hence, noting

that uifl = 0 for r > b,, (j = 1,2), after evaluating f, and f?jo j \ c.

the displacements may be obtained from

u1e(r,iT-0) = \ I f^sjds ,
r

b«
u20(r,+0) = - \ I f2(s)ds . (39.a,b)

6. SOLUTION OF THE INTEGRAL EQUATIONS AND NUMERICAL RESULTS

In deriving the integral equations (7), instead of the

conditions (2.c) and (4.c) the conditions (6.a,b) are used;

that is, the problem is formulated on the assumption that out-

side the cuts (a.,b.), the displacement derivatives f, rather
J J J

than the displacements u.fl, (j = 1,2), are zero. Thus, in the
V "

case of nonintersecting cracks (i.e., for a1 > 0, a2 > 0, or

a1 = 0, a2 > 0), the Integral equations (7) must be solved

under the single-valuedness conditions (6.c,d). Referring to

[10], since the general solution of the system of singular

integral equations [7] will contain two arbitrary constants,-

the two additional conditions (6.c,d) are needed for a unique

solution. On the other hand for-the intersecting cracks, that

is, for a, = 0 = a2, there is only one single-valuedness con-

dition, namely, -ule(0,ir-0) = u2e(0,+0), or
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bl b2
/ f^sjds = / f2(s)ds . (40)
0 0

The second condition which is necessary for a unique solution

is provided by (22) relating g1(0) and g2(0), or the functions

f1 and f2 at r = 0.

For a-, = 3p = 0, even though the special cases of the

resulting system of singular integral equations with generalized

Cauchy kernels (7) have been considered in [13] and [14], there

is no known method which can be used to regularize the integral

equations of this type. To solve these equations we first nor-

malize the intervals (a-,b.), (j = 1,2), through the following
J J

change in variables:

2s - (bj+aj) _ 2s - (b2+a2)
51 = b1 - a]•

 ?2 b2 - a2 '

(a. < s < bj, -1 < £. < 1, J = 1,2). (41.a,b)

Next we let

(s-a)

giving

b.-a. uj pj

Also defining
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2r - (b.+a.)

(aj < r < bj' -1 < t.. < 1 , j = 1.2), (44)

and suppressing the subscripts in £. and t., the system of
J J

integral equations (7) may be expressed as

(-1 < t < 1), (45)

where

W.U) = (l+£)"aj(l-O~ j , (J = 1.2) (46)
J

are the fundamental functions of the system, and the kernels

K.: • may be obtained from k . i by means of appropriate transfer-
' J . * J .

mations. Now, observing that the fundamental functions w.(£)

of the system of integral equations are weights of the Jacobi

polynomials P J J (?), the equations may be solved numer-

ically for the unknown functions <J> • by using the Gauss-Jacobi
J

integration formulas described in [15]. After evaluating <j>.,
J

the values of g. at the end points, which are needed to calcu-
J

late the stress intensity factors, may be obtained from (43)

in terms of <|> .(±1 ) .
J

For the material pairs Al uminum-Epoxy some of the calcu-

lated results for the plane strain case are shown in Tables

3-5 and Figures 4-13. For b, -> 0 or bp -»• 0 (i.e., for the case

of a single crack terminating at the interface), the results
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of [8] are obtained as the limiting values. In the numerical

examples given in this paper it is assumed that the composite

-medium~is~Voaded~paral~1~e1~to~the~interf ace~and~away~f rom~the

crack region in such a way that the stresses p-i(r) and P2(r)

are approximately constant. Thus, in the singular part of the

problem considered in this paper, the crack surface tractions

will be constant pressures -p1 and -p2 which are related

through (1).

In the example shown in Table 3 and Figures 4 and 5, the

material 1 is aluminum, material 2 is epoxy, one of the crack

tips b, is fixed at a unit distance from the interface, and

by varies between 0 and 2b, . In Figure 4 as well as 6 and 8

the constants k, and k2 refer to k(b,) and k(b2), respectively.

Table 3. The Stress Intensity Factors for Through Crack,
a] = &2 ~ °- Material 1: Aluminum, Material 2:
Epoxy (v1 = 0.3, v2 = 0.35, f-l/E2 = 22.447);
b-j = 1 = constant, I = (b-|+b2)/2, b2 variable,
.(B = e = 0.5, a = 0.273592).

Vbi
0.00

0.05

0 .25

0.50

0 .75

1.00

1 .25 .

1 .50

1.75

2.00

Mb,)/?!/!

1 .3552*

1.40374

1.33240

1.23789

1.15887

1,09312

1.03767

0 .99020

0.94902

0.91286

k(b 2 ) /p 2 /JT

->- 00

4 .36065

2.13917

1 .55615

1.31166

1.17874

1.09693

1 .04261

1 .00462

0.97701

ypi*0

->- -00

-0 .22477

-0.08113

-0.05906

-0.04636

-0.03839

-0.03266

-0.02822

-0.02462

-0.02160

k r/Pl*
a

->• 00

0.08215

0.03184

0.02158

0.01694

0.01403

0.01194

0.01032

0.00900

0.00789

*Taken from Reference [8].
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Table 4. The Stress Intensity Factors for Through Crack,
a-j = a2 = 0. Material 1: Aluminum, Material 2:
Epoxy; 21 = b-|+b2 = 2 = constant, c = (b2-bj)/2
variable, (3-j = B2 = 0.5, d = 0.273692).

c/ fc

-1.00

-0.95

-0.75

-0.50

-0 .25

0.00

0.25

0.50

0.75

0.95

1.00

ktb^/p,/!

1.3552*

1 .40333

1 .37532

1.29929

1.20448

1.09312

0.96213

0.80281

0.59068

0.29854

•*• 0

- k (b 2 ) /p 2 /£

->• 00

5.69903

2.76781

1.87137

1 .43765

1.17874

1 .01590

0.91834

0.87340

0.87519

0.8827*

VPI*°
-> -00

-0 .34124

-0.11960

-0 .07423

-0.05310

-0.03839

-0 .02575

-0.01293

0.00313

0.02903

-»• 00

k r /P la
a

-»• 00

0.12472

0.04371

0.02713

0.01941

0.01403

0.00941

0.00473

-0.00114

-0.01061
->• -00

*Taken from Reference [8].

Table 5. The Stress Intensity Factors for Through Crack,
a-j = a2 = 0. Material 1: Epoxy, Material 2:
Aluminum; b^ = 1 = constant, I = (b-|+b2)/2,
b2 variable, (a = 0.273692, 61 = 32 = 0.5).

b2 /bl

0.00

0.05

0 .25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

k(b1)/p1/ i

0.8827*

0.87141

0.89435

0.97701

1.07647

1.17874

1.27901

1 .37559

.1.46797
;1. 55615

. k (b 2 ) /p 2 /£

-»• 0

0.39001

0.72689

0.91286

1.02106

1.09312

1.14476

1.18357

1 .21377

1.23789

kQ /P l*
a

-»• 00

0 .44554

-0.16129

-0.48485

-0.69736

-0.86170

-0.99895

-1.11885

-1 .22669

-1 .32567

k r/Pl*
a

-»• CO

0.16283

-0.05895

-0.17720

-0.25487

-0.31493

-0 .36509

-0.40891

-0.44832

-0.48449

*Taken from Reference [8].
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0.20

0.15
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21

M

1.00
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1.50

Figure 5. Stress intensity factors for normal and shear
stresses on the interface for the through crack
(materials: 1 aluminum, 2 epoxy; b = constant).



Table 4 and Figures 6 and 7 show the results for the same mate-

rial combination. In this second example it is assumed that

the total length 2£ = b^+b2 of the crack is constant, and the

distance c = (b2-b^)/2 from its center to the interface is

variable. The stress intensity factors for the case of epoxy-

aluminum are shown in Table 5 and Figures 8 and 9.

The tables also show the limiting values of the stress

intensity factors for b2 •* 0 and c -»• ±1 . These limiting values

are obtained by observing that in the case of a through crack

(i.e., for b. > a. = 0, (j = 1,2)), for the material pair
J J

aluminum-epoxy (21) gives the power of the stress singularity

as a = 0.2737. On the other hand, for the limiting case of a

crack tip terminating at the interface, i.e., for b^ = 0 or

by - 0, and for the material pair under consideration, from

(26.a) the power a1 of the stress singularity is calculated to

be:

a, = 0.8258 , crack in aluminum,

a, = 0.3381 , crack in epoxy. (47.a,b)

Thus, for example, in the example shown in Table 3 and Figures

4 and 5, as b,, ->• 0 the powers of singularity become a -»• a-j ,

3p •* a-i • Therefore, for this limiting case, since a-, = 0.8258

> a = 0.2737 and a, > 82
 = °-5» at r = 0 the stresses would

have a stronger singularity and consequently the stress inten-

sity factors kQ and k . which are defined on the basis of r~a,o r
and k(b2), which is defined on the basis of r" ' , would all

go to infinity. Similar arguments apply to the limiting values
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6.00

5.00

4.00

3.00

2.00

1.00

1.00

Figure 6.

0.50
6*

0.50
0=0

c/A

1.00

Stress intensity factors for through crack
(materials: 1. aluminum, 2 epoxy; 21 - 2 -
constant, c variable).
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0.40

0.3O

0.20-

0.10

-0.10
1.00 0.50 0.50 1.00

9-0
c/1

Figure 7. Stress intensity factors for normal and shear
stresses on the interface for through crack
(materials: 1 aluminum, 2 epoxy; 2i = 2 =
constant, c variable).
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1.75

1.50

1.00-

0.50

0.50

Figure 8

1.00

Jt
1.50

Stress intensity factors for through crack
(materials: 1 epoxy, 2 aluminum; b^ = 1 =
constant, i variable).
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Figure 9
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Stress intensity factors for normal and shear
stresses on the interface for through crack
(materials: 1 epoxy, 2 aluminum; b
constant, t variable). 1 1 =
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shown In Tables 4 and 5.

From Tables 3-5 and Figures 5, 7, 9 it is seen that the

normal component of the stress intensity factor, kQ, (hence,

the normal component of the bonding stress along the interface

in the neighborhood of r = 0) may be positive or negative de-

pending on the relative penetration depths b, and b« of the

crack into the adjacent materials. As the ratio bg/b^ *n~

creases, kQ increases if y-i > p2 (Figures 5, 7), and decreases

if y < y (Figure 9) .

Figure 10 shows a sample distribution of the density

functions f-| and f2 defined by

f^s) = F^^) , (0 < s < blt -1 < ̂  < 1),

f2(s) = F2(C2) , (0 < s < b2, -1 < C2 < I)- (48. a, b)

The calculated values shown in the figure correspond to the

example given in Table 3 with b2/b-j = 0.05 (i.e., material 1

is aluminum, material 2 is epoxy). The important feature of

the distribution of the density functions f^ and f2 is that at

r = 0, because of the common r~a type singularity, they become

infinite, -f-i and f2 having the same sign (i.e., at r = 0 the

derivative of the crack surface displacement is discontinuous

and unbounded) .

Sample results for the crack surface displacement calcu-

lated from (J39) are shown in Figures 11-13, where the variables
i

are again the normalized quantities ? and £ defined by (41).
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The results shown in Figures 11, 12, and 13 correspond to the

examples given in the Tables 3, 4, and 5, respectively. In

Figures 11 and 13 the length unit for displacements is b, and

in Figure 12 it is £ = (b1+b2)/2. A careful examination of the

crack surface displacements in the adjacent materials around

r * 0 would indicate that the crack opening in the medium with

the higher modulus is greater than that with the lower modulus,

both having an infinite slope.

The results given in this paper may be used in the analy-

sis of fracture propagation in the composite medium by using

any of the standard fracture criteria if the crack extension

takes place at the singular point r = b-j or r = b? where the
1/2singularity is of the form (r-b-) ' . However, in studying

J

a possible fracture initiation at r = 0 (where the singularity

is of the form r"a), i.e., initiation of a debonding crack

along the interface or a cleavage crack in one of the adjacent

materials, a criterion similar to that outlined in [8] may

have to be used.

39



Page Intentionally Left Blank



-* C
u o
10 0
t-
o n

3 H
o

»- s
O 3

01 CM
U
It) «•
r- >>
Q. X
M O
•r- O.
t9 01

V-
U
IB ••

H- </»
kr-

fc.
^ 0)
o**
IB 19
t- E

01
s-

42



REFERENCES

1. F. Erdogan and G. D. Gupta, "Stress Analysis of Multi-
Layered Composites with a Flaw", Int. J. Solids, Struc-
tures, Vol. 7, p. 39 (1971).

2. F. Erdogan and G. D. Gupta, "Layered Composites with an
Interface Flaw", Int. J. Solids, Structures, Vol. 7,
p. 1089 (1971).

3. K. Arin and F. Erdogan, "Penny-Shaped Crack in an Elastic
Layer Bonded to Dissimilar Half Spaces", Int. J. Engng.
Sci. , Vol. 9, p. 213 (1971).

4. F. Erdogan and K. Arin, "Penny-Shaped Interface Crack
Between an Elastic Layer and a Half Space", Int. J. Engng,
Sci. Vol. 10, p. 115 (1972).

5. F. Erdogan and T. Ozbek, "Stresses in Fiber-Reinforced
Composites with Imperfect Bonding", J. Appl. Mech., Vol.
36, p. 865, Trans. ASME, Series E (1969).

6. F. Erdogan and G. D. Gupta, "Stresses Near a Flat Inclu-
sion in Bonded Dissimilar Materials", Int. J. Solids,
Structures, Vol. 8, p. 533 (1972).

7. F. Erdogan, "Fracture Problems in Composite Materials",
J. Engineering Fracture Mechanics (to appear, 1972).

8. T. S. Cook and F. Erdogan, "Stresses in Bonded Materials
with a Crack Perpendicular to the Interface", Int. J.
Engng. Sci. (to appear, 1972).

9. F. Erdogan and G. D. Gupta, "On the Numerical Solution
of Singular Integral Equations", Quarterly of Applied
Mathematics, p. 525 (1972).

10. N. I. Mu s k h e l i s h v i l i , Singular Integral Equations, P.
Noordhoff, Groningen, The Netherlands (1953).

11. D. B. Bogy, "Edge-Bonded Dissimilar Orthogonal Elastic
Wedges Under Normal and Shear Loading", J. Appl. Mech.,
Vol. 35, Trans. ASME, Series E, p. 460 (1968).

12. V. L. Hein and F. Erdogan, "Stress Singularities in a
Two-Material Wedge", Int. J. Fracture Mechanics, Vol. 7,
p. 317 (1971).

13. H. F. Bueckner, "On a Class of Singular Integral Equa-
tions", J. Math. Analysis and Applications, Vol. 14,
p. 392 (1966).

14. G. T. Bierman, "A Particular Class of Singular Integral
Equations", SIAM J. Appl. Math., Vol. 20, p. 99 (1971).

15. F. Erdogan, "Complex Function Technique", in Treatise on
Continuum Physics, A. C. Eringen, Editor, V o l " I I , Part
III, Chapter 2. (1972).

NASA-Langley, 1973 —— 32 CR-2181 ,43



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON. D.C. 2O546

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE S3OO SPECIAL FOURTH-CLASS RATE
BOOK

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION
451

POSTMASTER : If Undeliverable (Section 158
Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof."

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS
TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

N A T I O N A L A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N

Washington, D.C 20546


