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On the Inviscid Rolled-Up Structure

of Lift-Generated Vortices

by

Vernon J. Rossow

ABSTRACT

A simple form is presented of the relationships derived by Betz for the

inviscid, fully developed structure of lift-generated vortices behind aircraft

wings. Betz' method is then extended to arbitrary span-load distributions by

inferring guidelines for the selection of rollup centers for the vortex sheet,

along with rules for calculating the fully developed structure of the resulting

multiple vortices. These techniques yield realistic estimates of the rolled-up

structure of vortices produced by a wider variety of span-load distributions

than possible with the original form of Betz' theory.
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INTRODUCTION

Lift-generated vortices behind aircraft usually consist of two adjacent,

well organized, oppositely rotating flow fields that persist longer than ordi-

nary eddies. The amount of time that the region remains hazardous to other

encountering aircraft is determined by how soon the vortices dissipate, move,

or are blown out of the airspace to be used by a following aircraft. Since

these factors are governed by the characteristics of the lift-generated vortices,

it is highly desirable to predict, easily and accurately, the structure of the

vortex pair for a wide variety of lift configurations. It will then be possi-

ble to assess better the potential hazard produced by the wake vortices of one

aircraft on a second encountering aircraft and to explore ways to alleviate

dangerous situations.

This paper presents several improvements made by the author on such a

theory by A. Betzl for the vortex structure behind wings. The theory, as

presented by Betz, uses the three conservation equations for vortex systems to

relate the structure of the vortex sheet behind an isolated wingtip (isolated

half span) to the structure of a single, fully developed vortex. Although this

theory does not appear to have been used extensively in the past, it has

recently been demonstrated by Donaldson2 to be useful and often more accurate

than more complex methods. The favorable publicity given to Betz' method by

Donaldson led to an elaboration of the theory and more examples by Mason and

Marchman3 and to use by Brown4 of the rollup theory to predict the axial flow

velocity in the vortex. These papers used the rollup equations in about the

same form presented by Betz. A new form of the rollup relationships is derived
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here that is simpler in form and easier to use. These equations are then

applied to several conventional and several not-so-conventional span-load

distributions to illustrate the variations in vortex structure that can be

produced by various span-load distributions. The method is then generalized

to include situations wherein the vortex sheet would roll up into several

vortices on each side of the fuselage. Guidelines are then given for select-

ing likely vortex centers for the beginning of rollup along with a method

for calculating the structure of the resulting fully developed vortices. A

span-load distribution typical of current large aircraft is then analyzed by

use of these techniques to illustrate how these extensions of Betz' theory

provide a more reasonable estimate of the rolled-up structure of vortex sheets

for a larger variety of span-load distributions.

DERIVATION OF SIMPLIFIED FORM OF ROLLUP EQUATIONS

The three-dimensional shape of the vortex sheet as it rolls up behind a

lifting wing is often approximated by considering the sheet at its intersection

of the so-called Trefftz plane, which is defined as a plane behind the wing

that is perpendicular to the direction of, and that moves with, the freestream.

See Fig. 1. This approximation makes it possible to treat the vortex sheet as

a two-dimensional, time-dependent calculation without axial flow through the

plane in which the motion is assumed to take place. For a modest expenditure

of effort, this technique, although approximate, usually yields results that

are in good agreement with experimental data.

The Betz method does not treat the transition or intermediate stages

between the initial vortex sheet behind the wing and the final rolled-up
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vortex structure. It simply-uses the three conservation relations for two-

dimensional vortex distributions to relate the span-load distribution to the

fully developed vortex structure. Such a calculation is well suited to analyses

of vortex hazards because the vortex sheet is usually completely rolled up

within several span lengths behind the aircraft, so that the region in which

rollup occurs is not a part of the hazard volume. The inviscid relationships

derived by Betz between the initial and final stages of the vortex sheet bypass

the difficult calculation of the rollup process and provide the radial distri-

bution of circulation in the trailing vortices. To derive the needed equations,

it was necessary to assume not only that the flow was two-dimensional, inviscid,

and incompressible, but also that one-half of the vortex sheet rolls up inde-

pendently of the other half so that the final structure would be axially sym-

metric. This, in effect, assumes that the portion or segment of the vortex

sheet that rolls into a given vortex does so as if it were isolated completely

from the rest of the sheet and the other vortices.

To achieve a unique result, Betz also assumed that the rollup process is

orderly so that the vorticity shed at the wingtip goes into the center of the

vortex located at the spanwise centroid of vorticity. Each inboard portion of

the sheet then forms a layer of vorticity around all of the previous wrappings

until the entire sheet is rolled around the original center, as indicated in

Fig. 1.

In summary, we assume that (1) the flow field is two-dimensional, invis-

cid, and incompressible and that there are no variations in streamwise velocity,

(2) half of vortex sheet is isolated from other half so that developed vortex
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is axially symmetric, and (3) rollup of vorticity from sheet into vortex is

orderly and sequential.

The spanwise variation of lift on the wing, Z(y), is taken to be

represented by

Z(y) = pUrw(y) (1)

where p is the air density, UO, the free-stream velocity, and r (y) the

spanwise variation of circulation or bound vorticity on the wing. The total

lift is of course the integral of k(y) over the wing span b. The vor-

ticity shed by such a lift distribution into the wake is given by

_ drw(Y)

Yw(y) - dy

and the total circulation on one side, or in one vortex, is given by

b/2 b/2dr (y)

r =z Yw(Y)dy=f d dy = rw(°) (3)

since r w(b/2), the bound vorticity at the wingtip, is usually zero.

The three conservation laws that relate the circulation in the vortex

sheet to that in the fully developed vortex state that:

I. The circulation is conserved,

~b/2 lrmax

ro= Jb2 Yw(Y)dy = 2r ryv(r)dr

or,) (r)

rb/2 -ax dr d(r)r f d y dr dr (4)
m dy dr
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where Yv(r) and r (r) are, respectively, the vorticity and circulation

distribution in the fully developed vortex.

II. The centroid of vorticity remains at a fixed spanwise location.

That is, the first moment of vorticity is conserved so that the center of the

final vortex, r1 = O, is located at y(O), where y(O) is the centroid

of the portion of the vortex sheet that rolls up into the vortex and is given

by

1 r b/2 0 dr (Y)

o 2
Y(O) r YYW (y)dy y 1 dy dy (5)

o0 b/2

III. The second moment of vorticity is conserved; J = J = J.
v w

b/2 2 rmax

J = C [y(o) - y] Yw(y)dy = r2 [2Iryv(r)]dr

0 0

or

=J [y(o) -] W dy = r2 v dr (6)
2dy dr

where r is the radius within which all of the circulation is contained

in the fully-developed vortex.

The three global relationships given by Eqs. (4), (5) and (6) are next

assumed by Betz to apply piecewise, beginning at the wingtip, to successive

portions of the sheet in toward the wing root. These segments of vortex

sheet are assumed to be wrapped in the same sequence from the span loading

onto the center of the vortex out to rmax. The equations that relate the

vorticity in the sheet to that in the vortex may then be written as
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rW(Y 1) = dy dy= r(rl) =

b/2

Y(y) = r1 fy1 drw(Y)
w= (y

1
) y dy

b/2
Y1 2 drw(Y)

JW(Yi) = [j(Y1) - Y] dy dy

/2

= Jv(rl

drv(r)
dr dr (7)

(8)

(9)
r l dr d(r)

dr) = r2 dr drfo
where the relationship between the two independent variables, r1 and Yl,

in the rollup process is yet to be determined. It should be noted that Eq. (9)

becomes equivalent to Eq. (6) when Yl + O. The second moment of each seg-

ment was referred to y(yl) rather than y(O) so that the circulation shed

at the wingtip would enter the vortex at r1 = 0, and successive adjacent

segments of the sheet would be wrapped in a continuous manner around previous

layers of vorticity in the developed vortex. Since the rollup is assumed to

occur continuously from the wingtip inboard to the wing root, Eqs. (7) and (9)

can be applied piecewise so that

drw(yi) drv(rl)
dyl dyl= drl dr

and

2 drw(yi) d r(rl)
- [Y(Yi) - Y1] dy

l
dy1 = r drl dr
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or, these two relationships can be combined to yield

rl = IY(yi) - yil (10)

where r1 > 0 . Eq. (8) for y(yl) can be simplified further by integrating

by parts to yield

1 ylrf(y ) rrw (b) ¥ r (y)dy )Y(yi) = r(y (yl (Y) 2�- Y
1

or since rw (b) = 0 in most cases,

1 yYY

Y(Y1) = YI - r (yi) I rw(y)dy L (11)

The radius at which a given portion of the vortex sheet rolls up is then

related to the spanwise coordinate by Eq. (10) as

rl = r(yl) rw(Y)dy (12)

This result expresses the same relationship originally put forth by Betz but

it is much simpler in form and easier to use. A consequence of the postulated

rollup that is immediately apparent from Eq. (10) is that rmax = y(O).

Since the vortex is axially symmetric, the circumferential velocity is given

by the definition of circulation as

ve = rv(rl)/2wrl (13)
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The foregoing simplified form of the Betz rollup equations permits the

evaluation in closed form of the vortex structures for a variety of span-load

distributions. For example, the radial variation of circulation and velocity

in the vortex for elliptic span loading are [with rv(rl) = rw(yl) and

v
e

= rv(rl)/2wrl]

1 -21/2
r = (2)]Fo

-= 1 sin 1 2l
2r, 4 2 b L

1 b ) 

and for parabolic span loading the results are

rw(Yl) = 1)2

rO b

2r 2 b ( b ) _!
b 3 -2(la) b

which agrees with the result presented by Brown.4 The expressions for tri-

angular span loading are

rw(Yl) 1 

2r = (1 o_ 2y1)/2
b

so,

v
e

= ro/
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where, as mentioned previously, the radial velocity in the vortex is zero

and the axial velocity is equal to the freestream value, U,.

To gain an understanding of how the structure of the rolled-up vortex

changes with variations in span-load distribution, a series of cases were

calculated using Eqs. (12) and (13). The function used for the span load is

w(y)/rO = GAM(Y) = (1 - yN)M (14)

where Y = 2y/b, V = bve/2ro and W(z = 0) = bw)
z

/2ro with z = 0

defined as the horizontal plane through the center of the developed vortex.

The velocity components are related to the freestream velocity, U.,

through the lift (or weight of the aircraft) by

b/2
L = pU b/2r (y)dy.

-b/2

The curves in the various parts of Fig. 2 present the spanwise loading, the

circulation, and the vertical velocity for the rolled-up vortex for several

values of N and M, assuming that rollup begins at the wingtip as postulated

in the original Betz theory. Instead of plotting r v(r)/r and va as a function

of radius R = 2r/b, the results are presented at their position on the Y = 2y/b

axis to better illustrate their spanwise location. The curves for velocity

in these figures, and in the ones to follow, terminate at the edges of the

region where vorticity is located and so do not present the velocity in the

irrotational part of the flow field. Since Eq. (14) can be integrated in

closed form for only a few values of N and M, the results shown in Fig. 2
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were obtained by integrating Eq. (12) numerically. The double-valued portions

(solid curve) of the results in Fig. 2e are a consequence of choosing the

incorrect rollup center in the original vortex sheet. To eliminate these

unrealistic results, guidelines are inferred in the next section of this

paper for the rollup centers in order to yield a better estimate of the struc-

ture of fully developed vortices.

EXTENSION TO ARBITRARY SPAN LOADINGS

The double-valued character of the circulation and of the velocity in the

developed vortex shown in Fig. 2e suggests that something is incorrect in

Betz' theory, and a broader more general set of rules is required if realistic

results are to be achieved consistently. Experience with, and numerical cal-

culation of, the rollup of vortex sheets has shown that the beginning point

for rollup in the sheet is not always at a given end (say the wingtip) but

rather that it can occur at either end of the vortex sheet or somewhere in

the middle. In this section, several approximate criteria are presented for

finding suitable spanwise locations for these beginning points of rollup.

Rules are then given for using the equations in the previous section to

calculate the structure of the one or more vortices that result from these

postulated rollup starting points.

An exact evaluation of the starting points for rollup would require a

calculation of the complete time history of the change of the originally

flat vortex sheet into the final individual vortices. This is probably

unnecessary for most cases because time-dependent calculations of the rollup

indicate that the centers of the vortices appear to form closely behind the
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wing and not to be altered greatly, if at all, as rollup proceeds to com-

pletion. Hence, an estimate based on the initial downwash velocity at the

wing trailing edge would probably be a sufficient indicator for most purposes.

It is, therefore, necessary to derive an expression that relates the downwash

velocity (-w(y)) at the wing to the span-load distribution, and then to

infer guidelines for choosing locations for the beginning of rollup that will

conform with other ways for identifying these centers of rollup.

Since the vortex sheet is taken as flat when it leaves the wing trailing

edge, the vertical velocity of the sheet is given by

+b/2 n~

w(y) = +_ I-
/ y-n

Since the integral cannot be evaluated in the closed form for the general case,

an estimate of the relationship between w(y) and y w(y){ = -[drw(g)/dy]}

can be obtained by expanding Eq. (15) in the series

w(y) = - 2 Yw ( y) ln + y dyy) 
n=lnn! dyn

The most common sites for the beginning of rollup are at places where

the vertical velocity of the sheet w(y) changes sign or changes abruptly.

Eq. (16) indicates that these locations are tied to the strength of the

vortex sheet Yw(y) and its derivatives. Hence, vortices originate at

those places on the sheet where dyw(y)/dy is at maximum or changes abruptly.

For example, dy w(y)/dy is infinite at the wingtip for elliptic loading

-12-



(Yw is also infinite there). For the triangularly loaded case, the

derivative dyw(y)/dy is infinite at both wingtips and at midspan (y = 0)

because yw(y) is discontinuous there. It is known from experiments and from

time-dependent calculations that these are the sites for the beginning of the

rollup process. In Figs. 2e and 2f, the strength of the inboard or wing root

portion of the vortex sheet is at maximum and the vortex strength would, in

fact, be discontinuous across the junction of the left and right wing, so

that rollup should begin at center span rather than at the wingtip in both of

those cases. The parabolic and contoured loading shown in Figs. 2b and 2d

have their maximum values of yw ' respectively, at the tip and about half-

way out (i.e., at Y/b/2 = 0.4444). As already mentioned for parabolic load-

ing, the wingtip is chosen as the rollup site because y w(y) is discontinuous

b b
there, being finite for y < and zero for y > b

If two or more vortices are produced on each side of the wing, the

vortex sheet is divided into rollup segments at those places where Y (y)

or its derivative is zero. In triangular loading, the sheet is divided at

y = b/4 , so that the two vortices are of equal strength. Such a division

is exact if the other half of the wing does not influence the rollup.

These considerations indicate that only the two curves shown in Figs. 2a

and 2b for elliptic and parabolic span loading are correct; the others are

incorrect because, in those four cases, the wingtip is either the incorrect

rollup starting point or more than one vortex per side occurs. Correct

application of the rollup Eqs. (12) and (13) involves changing the integration

in Eq. (12) to begin at the correct rollup site, y = YB ' on the sheet
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rather than at the wingtip, y = b/2 . That is, Eq. (12), in the general

case, should be written as,

1 )d
r1 r(yl) - r yB) [rw(y) - rw(YB)]dy (17)

If the rollup site occurs at midpoint in the sheet, Eq. (17) is applied

to the two segments of the sheet separately, and the two resulting curves

for rv(rl) are added. That is, it is assumed that the two parts of sheet

roll up within one another without interacting. The final variation of

rv(rl)[= rleft(rl) + rright(rl)] is then used in Eq. (13) for the calculation

of the velocity. The center of the vortex is, of course, located at the

centroid for the entire portion of the sheet that is rolled into the vortex.

Fig. 3 shows the application of these techniques to the four cases that

do not have the entire rollup beginning at the wingtip. These new rules pro-

duce results that are more realistic and that are in better agreement with

other theoretical and experimental findings.

The cases presented in Figs. 2 and 3 may each be considered parts or

segments of the vortex sheet that trails behind the more general span load-

ings that occur on present day aircraft. A calculation of the vortices to

be expected far behind a current large aircraft with flaps deflected is shown

in Fig. 4. It was made by first choosing rollup sites and then dividing the

span-loading or vortex sheet into the segments that enter each vortex. The

rules presented for Eq. (17) are then used according to whether the rollup

site is at an end or at the center of the segment in order to calculate the

radial variation of the circulation and velocity for each vortex.
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Since these calculations are made as if each vortex were isolated from

all the others, overlap of the various vorticity distributions occurs in both

of the cases shown in Fig. 4. As before, the velocity is shown only for that

region where vorticity is nonzero and as if the vortex were isolated from all

the others. An approximate correction for overlap of the individual vortices

is to superimpose all of the individual vortex fields so that non-axially

symmetric streamlines are obtained. The streamlines in their new locations

each possess the same vorticity as before superposition, so that the centroids

are no longer necessarily located at the centers of the vortices. This refine-

ment usually ignores this shift and also ignores any relative motion of the

vortices that occurs as they orbit about one another during their development

and after they are fully formed. The superimposed flow field would then be

applicable at only one instant of time, if at all. For these reasons, it is

felt that the effort required to superimpose the vortex flow fields and to

calculate new streamline paths is not warranted.

CONCLUDING REMARKS

The simplified form of the Betz rollup equations derived and the exten-

sions suggested in this paper make it possible to estimate easily the structure

of vortices that trail behind wings with arbitrary span-load distributions.

The rules inferred for subdividing the vortex sheet into separate segments

and for identifying the beginning points of rollup for each segment can be

summarized as follows:

1. Vortex rollup sites are located at maxima of sheet strength and at

abrupt changes in sheet strength.
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2. The edges of the segment of vortex sheet that rolls into a vortex

occur where the sheet strength vanishes or changes sign, or where

the sheet strength is at minimum.

These improvements in the estimate for the rollup structure of vortex

sheets are still approximate in that the interaction of the vortices with

one another is ignored, along with viscosity and variations in the axial

velocity. Also, it is assumed that vorticity from the sheet enters the

vortex in sequence from its position relative to its neighbors in the sheet,

so that orbiting or interchanging of positions of elements of the sheet is

ruled out.
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