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"INTRODUCTION

Tensile testing of nominally prismatic round and flat bars
has long provided a basis for eva]uation of the properties of
metals. The primary data from such tests, load, extension and
minimum deformed cross-sectional afea may be used to infer stress-
strain relations taken to be characteristic.of the material tested.
Inference of such material property relations is appropriate so long
as the deformation and associated stress field may be assumed
uniform over the cross-section in some region or gage length of
the tensile bar.

For ductile metals the assumption of uniformity of the
deformation and stfess field clearly breaks down for extensions in
excess of some material dependent critical value. Once the
extension exceeds this value the axial load decreases and subsequent
prescribed overall specimen extension is observed to concentrate
in a‘high]y strained Tocal neck. Within this necked region
inhomogeneous deformation and a complex multi-axial Stress field
must. exist. The phenomenon 1is reférred to as tensile instability.

Evaluation of the validity of stress-strain relations inferred
from post-instability tensile test data as well as study of tensile
failure by fracture and/or rupture requires detailed knowledge of -
the stress and strain fields existing in a neckihg tensi]é bar.

This need has motivated extensive experimental investigations, most



notably by Bridgeman [1 ] and Nadai [ 2], as well as a variety of
approximate analyses incorporating idealized models of material |
behavior. Typically these analyses neglect either elastic deforma-
tion or work hardening, or both.

The absence of a complete theory suitable for analysis of
problems of general finite deformation of elasto-plastic continua,
such as necking in metal tensile bars, has provided the motivation
for development of such a formulation.

Analysis of finite deformation of elasto-plastic materials
requires explicit consideration of nonlinear effects arising from
 both inelastic material behavior and deformation magnitude. While
the recent Titerature contains many examples of analyses incorporating
either material or geometric nonlinearity, few attempts have been
made at solution of the combined problem.* Excellent surveys of
these efforts are provided by Marcal [4 ] and Stricklin et. al. [5].
These previous developments typically employ finite element
techniques based ﬁpon energy principles and are primarily intended
for analysis of problems involving large deflections of plates
and shells in which local strains are small. .. The application of .

these analyses to the tensile instability problem is of questionable

*0den [3] provides extensive development of theory and solution
techniques for finite deformation of hyperelastic materials. The
approaches employed, while incorporating both material and geometric
nonlinearity, do not admit application to the elasto-plastic case.



value since the necking process involves large disb]acements, strains
and rotations distributed over a continuum of arbitrary shape. ‘The
kinematic assumptions underlying analyses of plates and shells are
of Timited validity under these conditions. Solution of a general
elasto-plastic continuum problem requires a formulation appropriate
for analysis of deformétions of any magnitude irrespective of the
configuration of the deforming solid.

The adoption of what is herein termed the rate viewpoint*
toward the mechanics of finite deformation of an elasto-plastic
solid has led to the development of a complete theoretical
formulation of the problem. Rather than seeking equations
governing the total deformation attention is restricted to the
time rates of the independent variables, stress rate and velocity.
Equations are derived governing the time dependent velocity field
in a deforming elasto-plastic solid.

The formulation differs from previous deve]opmenté in two

fundamental respects.

*A similar viewpoint is taken by Cowper and Onat [6] in establishing

admissible solutions for tensile necking in plane strain but they
do not attempt full solution for deformation and stress histories.



1. The entire development proceeds in an Eu]efian or §patia]
reference frame rather than the Lagrangian, or material,
frame usually employed in nonlinear analyses of plates
and shells.

2. Constitutive equations for finite elasto-plastic deformation
are obtained by generalizing those of the -infinitesimal
theory in the spatial rather than material frame. The
fundamental features of the infinitesimal theory are
preserved without introducing problem dependent deviations
associated with the use of material frame stress tensors.

A complete initial- and boundary-value problem is posed in which
finite elasto-plastic deformation is viewed as a time dependent
process. The formulation reduces to well established results in
the 1imit of infinitesimal deformation.

7 The governing équations of the finite problem are distinguished
by their quasi-linear nature. This feature, which follows directly
from adoption of the rate viewpoinf in an Eulerian frame, enables
the use of an incremental technique for accurate and efficient
numerical solution of finite deformation problems. Finite element ~
solution capability may be developed directly from the governing
differential equations. |

Numerical procedures have been developed for analysis of finite



deformation under conditions of plane stress or plane strain. The
capabilities of these procedures have been investigated by considering
a number of problems of homogeneous finite deformation for which
analytic solutions are available. Comparison of numerical and
analytic resu]té for these problems indicates that accurate numerical
solutions can be obtained for problems involving dimensiona] changes
of an order of magn1tude and rotations of forty-five degrees.

~ The numerical analysis has been employed in an investigation of
symmetric necking in flat tensile bars of elasto-plastic material.
Solutions are obtained for the limiting cases of plane stress and
plane strain extension of bars containing a small initial geometric
imperfectioh. Full histories of neck geometry and internal stress
and deformation fields are obtained. The development of inhomogeneous
internal fields as the necking process proceeds is clearly demonstrated,
as is elastic unloading of pfevious]y yielded material in regions
outside the neck. Thevsolutions also provide a vehicle for assessment
of the validity of stress-strain relations inferred from tensile
data over the full range of a test from initial yield through the

development of a significant neck.



I. THEORETICAL DEVELOPMENT

The Rate Viewpoint

‘ The equations describing finite deformation of elasto-plastic
solids may be derived in what is termed a rate form. That is, atten-
tion islfocused not upon field quantities such as stress and strain
but rather upon their rates of change with respect to time. The
approach is conceptually analogous to that employed by Swedlow [ 7 ]
for infinitesimal deformation. Even with this analogy, however,
analyses of infinitesimal and finite deformation are operationally
distinct.

In anaiysis of infinitesimal deformation stress and strain
tensors as well as all governing equations are referred to a single
configuration of the body. Either deformed or undeformed states
may be employed as they are by assumption indistinguishable from
one another. "Thus time derivatives of field quantities reflect only
changes in component magnitudes with respect to an invariant frame
of reference. Should the deformation be regarded as finite, however,
deformed and undeformed configurations must be distinguished. Time
derivatives of field quantities such as stress and strain must
reflect changes in the fundamental reference frame provided by the
deforming configuration of the body.

The present theory incorporates equations of elasto-plastic

behavior and stress equilibrium which reflect the foregoing implica-




tions of finite deformation. The equations are assembled to define
a complete initial -and boundary-value problem for the time dependent
- velocity field in a deforming body.

The .development of the constitutive and equilibrium equations is
predicated upon the character of certain tensorial measures of stress
and strain and their time rates of change. In the next few sections
these quantities are defined and discussed; Subsequently the field
equations are derived, boundary and initial conditions developed.

and the full velocity problem is assemb]ed.



I.1 Fundamental Concepts

General concepts of nonlinear continuum theory are developed
below to the extent necessary to support the ensuing analysis. More
extensive discussions* may be found in Eringen [8 ] and Truesdell |
and Toupin [ 9 ].

Descriptions of continuum deformation and loading are developed
in a fixed or laboratory reference frame. Deformation, deformation
rate, stress and stress rate>tensors are defined. All definitions
"~ are subject to the constraint of material objectivity, or spatial
invariance, which requires that the analysis be independent of

rigid motion of a deforming continuum.

Continuum Motion: Consider a three dimensional body whose

"~ undeformed reference configuration is B, with boundary 3B,. The
deformed configuration of the body is B with boundary 3B. Material

I in an

points in the reference state are located by coordinates X
orthogonal curvilinear coordinate system. In the deformed state
these points are located by coordinates x' in the same system.

Thus the time dependent deformation may be given as the mapping**

*Much of the discussion in this section has been abstracted from
the texts.cited.

**General tensor notation is employed. Repeated indices in subscript-
superscript_pairs imply summation over 1,2,3. A comma denotes -
partial and a semi-colon covariant differentiation.



from B, to B in Figure (1).

, t) (1)

The nature of the motion (1) is limited only by the constraint of

material continuity:
RN (2)

In the special case where the mapping of B, to B given by (1)
is such that angle and distance are everywhere preserved the motion

is termed rigid. In this case (1) admits the representation

x = Qx4 b (3)
In (3) the tensor QiK is orfhogona], (4)*, and both QiK and bi are
functions of time.**
o' ot =g oW

Reference Frames and Time Derivatives: We may define a

velocity field v! for the motion (1) by noting that the XK are

constant and differentiating_(]) with respect to time.

*In (4) overscript T denotes transpose. The mixed metric tensor
913 is equivalent to the Kronecker delta 53.

**In cartesian coordinates QK. is a rotation and b' a translation.
In general coordinates no s1mp1e physical interpretation is possible.



Figure 1 Deformation Mapping
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Vosaxizet = v oK 0Lt = vk (5)

Note that the coordinate dependence of vi may be given in terms
of either xi or XK.

The choice of coordinate dependence in (5) is characteristic
of all tensor field quantities employed in finite deformation
analysis. Analysis employing the XK is termed material or Lagrangian

whi]e‘that employing the xi is termed spatial or Eulerian. The
present theory is developed in Eulerian form.

In differentiating Eulerian field variables with resbect to
time, the time dependence of the xi'must be fully taken into account.
Thus if ¢(xi,t) is a tensor field 6f any order its time derivative
& is

BxT,t) = ae/at + o4V o (6)

The derivative (6) is the total or material derivative'df $.

Unless specific exception is noted it is the only typé of time

derivative employed in the present theoretical development.

Material Objectivity: Any theory attempting to describe physical

'phenomena must be independent of the observer of an event. This
constraint is known as objectivity. A familiar example of its
significance is the restriction of Newtonian mechanics to inertial

reference frames.

11



In continuum analysis objectivity is most conveniently expressed
as the requirement that any theory be independent of rigid motion.
The constraint may be expressed operationally by considering tensor
fields referred to deforming bodies whose motions differ by a rigid
component. Objectivity requires that components of such tensors
be related by the transformation re]afing the two mqtions.

Consider, for example, the velocity fields corresponding to two
such motions, yi and y*, which are.termed objectively equivalent.
From (3)
yie gl e (7)
Differentiating (7) with respect to time we find:

Ve P el e (8a)
J J
However the tensor transformation of Vﬁ from }4 to yi defines

components v given by

Ve Y ) WV (8b)

Thus velocity compdnents referred to yi and yﬁ are not related
by a tensor transformation. We therefore conclude, not unexpectedly,
that velocity is not an objective tensor.

Necessary conditions for objectivity may be developed for

tensor fields and functions of any order. Employing the two motions

12



y1 and }q defined above, the following objectivity constraints are
found for vectors q1, second order tensors t'J and second order
tensor functions f]J(tk]). Recalling that the transformation Q]j

is a function of time we require the following to hold for all

~ times.
Veetons :
q =, (9)
Tensons:
¢ = oy o) B (10)

Tenson Functions*:

) (11)

ij i s
g = ol oI, P @ ¢

Strain and Strain Rate: The initial and deformed lengths of

a differential material line segment are given by dS and ds

respectiveTy,

N\

J

2 I
JdX™ dX GIJ (12)

i

ds

ds2

o

T 4,d
dx  dx 95 _ (13)
wherevgijiand GIJ are the metric tensors of the deformed and

undeformed coordinates. The change in length may be

*Tensor functions satisfying constraints of the form (11) are termed
hemitropic functions of their arguments.

13



represented as

ds?-ds? = dxidxIg; s-dxlaxIey
The differentials dx1 and dx! are related by the deformation
mapping (1)
dax! = XI,idxi
Therefore (14) may be written entirely in terms of the deformed
coordinates xi
I JJ

X* XY .G )dxidxj

2 .2 i
ds®-ds® = (g;,-X" ;X" 5614

The local deformation may therefore be described by the Almansi

strain tensor eij'

, o 1
eij = (1/2)(gi5-X" X7, 5619)

Similarly the local rate of deformation may be characterized by

considering the time derivative of ds® in (13).

d(ds?)/dt

igyd

(172)(vi 5 + vy,4)

d'ij

The Euler deformation rate dij provideé a complete, objective

(14)

(15)

(16)

(18)
(19)

representatiqn of the Tocal non-rigid component of the velocity field.

It is of particular consequence in the present analysis by virtue of

its ]inear’dependenge on tﬁe velocity gradient. In the presence of

local rotation the angular velocity oK of its principal axes is found

14



from the skew-symmetric velocity gradient, or spin tensor, w; .

1)
ok = ekijwij (20)
w'ij = (]/2)(V1' ;J'—Vj;,i) (2])
where €Ki is the permutation operator.
Almansi strain and the deformation rate are related as:
=yl .yJd d
d]J =X 31X »J '(E (xm,Ixn ,Jemn)- (22)

Stress and Stress Rate: The Cauchy stress tensor 61J referred
th

to the deformed configuration is the i
th

component of traction
on a surface normal to the j*" coordinate direction. The symmetric,
objective Cauchy stress provides a complete description of the loading
state at aApoint in a deformed body. Components of traction ti on

planes of arbitrary orientation having normal vector components V5

are found as linear chbinations of the oij
t1 = gy, (23)

The time rate of traction ii is found by differentiating (23),

noting that the normal vector is itself time dependent.

SR LRI N 2
t (¢'d-6""v ;P)vj (24)

The stress rate 61j'1n (24) is not objective.

We must therefore seek an alternative objective characterization of

15



the time rate of stress for use in the constitutive equations of
elasto-plastic flow.

The objectivity constraint (10) is necessary but not sufficient
to define a unique objective stress rate. Such tensors have been
developed by a number of investigators including Jaumann [10],
Truesdell [11], aﬁd Oldroyd [12]. As suggested by Prager [13] for
use in analysis of elasto-plastic flow the present analysis employs
the Jaumann rate.

Consider a stress S1J referred to the principal axes of the
deformation rate (19). The rotation of these axes at a point in
a deforming body is given by the spin w4 5 of (21). The relative
orientation of the rotating coordinates and a fixed frame is given

by an orthogonal mapping Qij, defined by

mij = Q1prj (25)

The strésses SiJ and o' are at all times related by
51 2 of i 4Pa

=0 @ (26)

The time derivative of S'J is objective. Differentiating (26) and
transforming the result back to a fixed reference yields the

symmetric objective Jaumann stress rate g1d

Q
e
<.

1]

igd <Pq
= Q' 0S (27)

A_i.=oi. _i mj_ ..im
oW =61 +¢ o chm _ (28)

16



The Jaumann stness nate provides a measure of the time nate of stress
as seen by an observer pa@téaipating in notgzion 0§ a deﬁonmin@
continuum at every point.

A Jaumann rate'may be constructed as above for any tensorial
quantity. If the quantity is intrinsically objective the Jaumann

rate and material derivative (6) are equivalent.

17



1.2 Constitutive Theory

Genenal Characten of the Theory

A constitutive formulation is derived for elasto-plastic flow
of metals undergoing finite deformation. The theory is derived as a
generalization of an elasto-plastic flow theory appropriate for
analysis of infinitesimal deformation (See Fung [14]). Its
application is restricted to analysis of homogeneous isotropic metals
undergoing quasi-static isothermal deformation. | |

The character of the finite deformation constitutive formula-
tioﬁ is dictated by the adoption of three fundamental characteris-
tics of the 1nfinitesima1 theory.

1. The flow mode, elastic or elasto-plastic, is dictated

by the behavior of a scalar loading function f which

is dependent upon current stress state and deformation

history.
f=0 ;3 f=0 : the cases of loading, elasto-
plastic flow, and neutré] load-
ing, elastic flow, may be
(29)
identified.
f<0 : elastic flow or unloading

2. The deformation rate is a priondi assumed to be separable
into elastic and plastic components whose dependence upon

stress is independently defined.

18



3. The constitutive equations take the form of first order
differential equations relating time rates of stresé and
deformation.

The generalization to the finite case emp]dys consistent
interpretation of the time derivatives of stress and deformation
appearing in the constitutive differential equations. The resulting
formulation obeys the constraint of material objectivity. Deforma-
tion magnitude is limited only by an assumption that recoverable,
elastic, deformation is infinitesimal.

In the following sections elastic and plastic flow modes are
separately defined and then assembled to provide governing equations

relating Jaumann stress rate and total deformation rate.

Elastic Flow Mode: Following Green and Naghdi [15] an elastic

strain component is defined as the difference between total and
permanent deformation. Explicit representation of this recoverable
strain component* Eij(e) in térms of problem kinematics is neither
.sought nor necessary. It is defined only as the time integral of
dij(e), fhe elastic component of the deformation rate tensor.
Stress and elastic strain are assumed to be related through

a positive definite strain energy density function w(e). The

energy density is defined such that

o1 = aw(e)/aeij(e) (30)

+() is not an index.

19



Since the strain energy is positive definite and the elastic strain
is infinitesimal we may approximate w(e) as a quadratic function
of Eij(e)' It may then be inferred* from (30) that the stress and

elastic strain are related as
Gij = EiJk]eki(e) (31)
Taking a Jaumann time derivative of (31) and inverting the result,

yields an objective relation between the elastic deformation rate

and the Jaumann stress rate.

(e) _ k1

For an isotropic material the constitutive compliance tensor Mi k1

has the simplest isotropic form for a fourth order tensor.
-1 — .V
Mijk] = [1/2(91k9j] + gilgjk) T:Q'gijgkl] (33)

The constants y and v in (32) are the shear modulus and Poisson's

ratio of classical l1inear elasticity.

Plastic Flow Mode: Equations governing infinitesimal plastic

flow of work hardening materials may be inferred from a hypothesis

*This portion of the development follows that employed in Green's
method for development of the generalized Hooke's law of classical
linear elasticity. (See Eringen [ 8], chapter 5.)

20



first enunciated by Drucker [16]. It is postulated that plastic flow
produced by application and removal of a self-equilibrated stress

field is restricted by -the rate* inequality.

01Jeij(p), >0 (34)

*%
Three characteristics of plastic flow theory are implied by (34).

1. The loading function, f.=-const., is a convex closed
figure in stress space.

2. The plastic §train rate is normal to f = const.

3. Plastic strain rate and stress rate are linearly related.

Development of a similar formulation for finite deformation |
is impeded by the absence of a uniqué choice of an objective stress
rate tensor for use in a generalized form of (34). In the present
theory the Jaumann rate is chosen for its conceptual simplicity
and obvious physical interpretation. The implications of Drucker's
hypothesis are postulated as operational characteristics of the
finite theory.

The loading function is taken to be of the form

F=glo) - K(u(P)y (35)

*¥For infinitesimal deformation these rates may be taken as partial
time derivatives, for which objectivity is an unnecessary constraint
since the deformed and undeformed states are indistinguishable.

**Demonstration of these consequences of Drucker's hypothesis is also
provided by Naghdi (17).

21



In (35) ¢ is the yield surface and K is a work hardening parameter
determined solely by prior plastic work, w(p).

Yield surface dependence upon current stress state is restricted
to the invariants of the deviatoric stresses. Plastic flow inde-
pendence of hydrostatic stress, and material isotropy are thereby
guaranteed. This restriction also eliminates the Bauschinger
effect since the yield surface will expand isotropically in stress

space. Hence ¢ in (35) is written

¢ = ¢(J2ad3)
where J, = (1/2)si.sd;
? RS (36)
Jg = (1/3)s1jsJks ;
LU I k.
The plastic éomponent of the deformation rate is taken to
be normal to the loading function.
415 = 1 a/00"3 (37)
The proportionality constant A in (37) may be found from-a
consistency condition for plastic flow given in (29) as
f=0 (38)

22



Taking the Jaumann time derivative of (35) obtains
f=4-K= (a0/200) gHokylP) =g (39)
K' = dk/du(P) (40)

The Jaumann rate appears explicitiy in (39) only for stress since
material derivatives of all other quantities present are objective.
The rate of plastic work ﬁ(p) in (39) may be expressed as

w(p) = Oijdij(p)‘ _ (41)

Substituting (41) and (37) into (39) one may solve for A in (37).

The resulting expression for the plastic deformation rate is

da. () = | (eerac'd) (aerack!) | -k (42)

1 K'(a¢/ao"s)c'“5
in which a linear relation between plastic deformation rate
and Jaumann stress rate is apparent.

Plastic flow is fully defined by (42). Practical use of this
result requires a choice of an explicit form for the yield surface
&-and definition of the work hardening function K. To Eomp]ete
the formulation we employ a construction proposed by Swedlow [7 ]
for the infinitesimal case. . ‘

Dimensional consistency in (42) is established by assuming ¢

23



to have the dimensions of stress. It is therefore plausible and
convenient to consider it as an equivalent stress* Teq- We then

may define an equivalent plastic strain rate de (p) conjugate

q

to Teq in the sense that

Teq deq = wip) %' Oijdij(p) (43)

Substituting for'dij(p) in (43) leads after some manipulation to

the equivalence

K' = (1/7gq) (Taq/deq P (44)

This expression for K' provides means for its determination
from experimental data. Defining a total equivalent plastic strain

Eeq(p) as the integral of deq(p), (44) may be written

2heq P/ 7eq (45)

where we have defined an equivalent plastic modulus Ueq(p)

dependent so]ely on the equivalent stress.
oq P [req] = (1/2) dr, /e P (46)

Derivation of the plastic modulus from uniaxial tensile test data

is described in detail in Appendix I.

*eq not indices
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Introducing the equivalent stress and modulus in the flow equations

(42) yields

A9t /351d ki
0 ) e (brq/907 ) (0eq/30° ) | .y (47)
1] 2ueq P (BTeq/acrs)ors

For convenient reference (47) is written as

(p) - k1
dij Nijk] o (48)

Nijk] is hemitropic function of the deviatoric stresses. The full

flow equation is objective.

Elasto-Plastic Flow: The total deformation rate is simply

the sum of its elastic and plastic components. Assembling
equations (32) and (48)

It is convenient to rewrite (49) as

1]
= - . .. . - v
Bisky = (1/2)L9ik951*941195 1 - 9% (50)
ij k1
(p) (3t /3013)(31 /30 )
+ e
. (u/ueq )Teq eq q

(areq/aors) oS

In (50) u is the shear modulus of linear elasticity.

25



w o= E/[2(1 +v)] (51)
()

The flow mode is controlled in (50) by the modulus ratio “/“eq

For elastic loading and unloading the plastic modulus becomes

infinite and (50) reduces to the elastic equations (32).
Perfect plasticity is specifically excluded from the

formulation. Hence

ueq(P) £ 0 (52)

and (51) may be inverted.

~ij _ Pijk] q
o o4 (53)
In (53)
pidkl = G ¥G:1G., F —— (..
| n(95,957%957195 s 9i9q)]
. (54)
(3t /ac1d) (ot /Bokl)
_ 211Y2 . eq eq ]
2 mn ¥S ) Mr,Ns
T+y (Breq/ao )(aTeq/ao )g"'g
2 - (p) rsy rs
¥2 = Teq(u/ueq )/ [(Bteq/ao )07 ] (55)
The tensor Pijk] is a hemitropic function of the deviatoric
stresses. It possess the symmetries
Pijk] - Pjik1 - Pklji (56)
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and cannot be decomposed into elastic and plastic components.

The inverse constitutive equations (53) are objective. The

equations are expanded for planar flow in Apendix II.

Examination of the constitutive equations reveals two

critical features of finite elasto-plastic flow.

1.

The constitutive equations cannot be integrated to

define relations between total stresses and strains

except under very restricted conditions.* The stresses

must be proportional and the deformation must be homogeneous.
The total strain, found as the time integral** of dij’
cannot in general be decomposed into elastic and plastic
components. The elastic and plastic'deformation rate
components are defined with respect to the instantaneous
configuration of a body. This configuration reflects the
previous history of both e]astié and plastic flow. Hence

the total deformatidn reflects problem dependent coupling

of elastic and plastic behavior.

These facets of finite elasto-plastic deformation provide the

motivation for the rate viewpoint adopted for the entire analysis.

*The usual distinction between incremental and deformation fheories
of plasticity (Fung [14], p. 476]) is identified but must be
extended to exclude local rotation.

**See (22).
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1.3 Equilibrium Theory

The Concept of Rate Equilibrium

The rate nature of the cohstitutive'equations for elasto-
plastic materials dictates that their deformation be viewed as
a time dependent flow process. Hence requirements of mechanical
equilibrium must be applied not only to instantaneous states
of a deforming body but also to the flow itself.

Equilibrium equations governing total stresses and their
rafes of change are developed below. The derivation of the
total stress equations provides a model for establishment of
appropriate rate equations.

The flow is taken as quasi-static thereby allowing inertial

effects to be neglected.. Body forcés are also excluded.

‘Total Stress Equilibrium: The net load applied to a body

B in static mechanical equilibrium must be zero. The net load
is found as the integral of surface tractibn (23) over 3B the

boundary of B.
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/tids = 01‘]\)de = 0
2B

oB

Applying the divergence theorem* to (57) yields the volume

integral over the body

fo"j dv = 0
3J

B
Since B is arbitrary, ffefd equilibrium eqdations
o9 . = 0 inB
may be inferred from (58).
Equations (59) are the familiar stress equations of
equilibrium in terms of Cauchy stress o1J. These objective

equations are valid irrespective of material constitutive

behavior and deformation magnitude.

*Sufficient smoothness of o'J in B is assumed.
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‘Stress Rate Equilibrium: Rate mechanical equilibrium of a

deforming body requires that the time rate of net applied load
be zero. The net load rate is given by the material derivative

of (57). Existing stresses are assumed to satisfy (59).
g_t_ ftids = f({:i + oijvp;pvj)ds = 0

¢ in (60) is given by (24). The additional term derives from
the time dependence of 3B.

Applying the divergence theorem* to (60) yields

CLEI L B =
f(o 579 v ;p) dv 0
B

Again noting that B is arbitrary we infer field equations

S IR ) B, Y
o ‘] SRS v . 0 in B

Satisfaction of (62) guarantees that given an equilibrated stress
field equilibrium will be maintained in the presence of time

varying loading. The equations are objective.

*Sufficient smoothness of oY, 013, Vi is assumed.
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The stress rate equilibrium equations (62) have been derived
by a number of previous investigators. Similarly to the total
stress equations (59) they govern the stress field 1rrespectfve
of deformation magnitude and material behavior. In the case of
linear elasticity it may be argued (Hi1l [18]) that the first
term in (62) dominates.the second by the approximate order of
magnitude ratio (E/oij). Thus for elastic deformation of metals
under moderate stress (cij<§E) the rate equation may be approximated
as

c}"J';J. = 0 (63)

Since the total deformation is infinitesimal the time 1n£e§rated
equilibrium error introduced by dropping the additional term will
be small.

For elasto-plastic deformation, however, Rice [19] notes that
the dominance of the first term is diminished by the reduction in
material stiffness, (ueqp/u)<<1. .Thg_approximate form (63) may
still be employed.for infinitesimal deformation but the equilibrium
error will be larger, of more concern, and problem dependent. In
the present analysis for finite elasto-plastic deformation the

complete stress rate equilibrium.equations must be employed.
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1.4 Governing‘Equations of Finite Elasto-Plastic Flow

The Tnitial-and Boundary-Value Problem fon Velocity

The elements of a complete theory of finite elasto-plastic
flow are now in hand. Assembly of the constitutive and equilibrium
equations provides governing equations for the velocity field in
a deforming body. Initia] and boundary conditions admissible to
these equations may be defined. The formulation reduces to previous-
ly estab1ished results for infinitesimal deformation.

In principle the governing equations may be integrated over
space and time yielding solutions for complete stress and deforma-
tion histories. In practice su;h integration is possible in closed
form only in a limited number of simple cases. However, the quasi-
Tinear nature of the velocity equations facilitates efficient
numerical solution. The potenfia] for obtaining such solutions for
complex problems is a primary motivation for the present theoretical

development.

The Velocity Equilibrium Equatiohs: The velocity field in a

deforming body is chosen as the primary dependent variable thus
guaranteeing flow compatibility. Equations governing this velocity
field are foUnd by assembling the constitutive and stress rate
equilibrium equations. For convenient reference the equations are

reiterated below.

32



Constitutive Equations: 513 = pikl dyy (64)

Rate Eqiilibrium Equations: éij,j - opi,j vJ'_p = 0 (65)

Writing the Jaumann stress rate in terms of the material rate
13 the constitutive equations may be combined with the equi]ibkium
equations to obtain:

(P1IKTg =07 Mo Joim) 5 - opi;jvj;p =0 (66)

Using the definitions of the deformation rate (19) and spin (21)
)
tensors (66) may be written entirely in terms of velocity.

(172)097 (9%*gl-g% a™) - oTgkygt -gtTgk ol q0o™W, 11

+ [pk1ijvj;]];i ’ kavL;p1 - (67)
This result, the velocity equilibrium equations, governs the

instantaneous spatial dependence of the velocity fieid. Presuming

knowledge of the stress field, these differential equations are

Tinear at én instant of time. Furthermore they provide a quasi-

linear model for the entire deformation process. Their solution

involves simultaneous, but decoupled, integrations with respect to

space and time.

33



Immediate integration of the velocity equilibrium equations with
respect to time would provide equations governiné the total deforma-
tion. However such integration is possible only for homogeneous
deformation under proportional loading, the same restrictions which
1imit such integration of the constitutive equations. Thus the rate

viewpoint initially adopted proves to be a viable approach not

limited in app]ication to speéific classes of loading and deformation.

Complete Problem Definition: Complete definition of the finite

elasto-plastic deformation problem includes the governing equatidns
(67), specification of material properties, and prescription of
initial and boundary conditions for the dependent variables.
.Mateniaﬂ Propernties: The elastic constants defined by (33) must

be known. Work hardening plastic flow character of the material

is defined by fhe equivalent plastic modulus prescribed as a

function of equivalent stress <t Any history of prior plastic

eq*
deformation is reflected in this function.

Initial Conditions: The initial configuration, Bo, must be defined.
__Initial stress and velocity will normally be taken as null fields.

However certain non-zero initial fields are admissible; the stress

must be in equilibrium and the velocity single valued.
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Boundary Conditions: Admissible boundary conditions include
prescription of both traction rate* and velocity on the boundary
3B of the deforming solid. Traction rate and velocity vectors
prescribed at the same point on 3B must he orthogonal. Three
classes of problems may be identified.
1. fundamental problems in which either traction rate
or velocity are prescribed on the entirety of 3B,
2. mixed problems in which traction rate and velocity
are prescribed on distinct portions of 3B, and
3. mixed-mixed problems in which traction rate and
ve]oéity are prescribed on the same portions of B
and are limited by the orthogonality constraint cited

above,

*Traction rate £1 is prescribed either explicitly, as in the case
of pressure Joading, or implicitly from knowledge of the total
load rate, T1, applied to a finite portion, 3By, of 8B. In the
explicit case from (24)

e 2 (GTdogpiyd )

t (o'V-cPlv ;P)vj
Implicitly the traction rate is given by T! through (60)

o T £ iJ p .

T f(t + 0 VP, ug)ds

3By
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The Limit of Infinitesimal Deformation: The velocity

equilibrium equations (67) are valid irrespective of deformation
magnitude. Reduction of these equations to forms previously
established for infinitesimal deformation derives.from the
assumption that the stress-velocity gradient coupling terms

make negligible contribution to the nature of the total deforma-
tion. The distinction between deformed and undeformed coordinates

becomes unnecessary. Under these assumptions (67) becomes

These are the governing equations of infinitesimal elasto-plastic
flow developed by Swedlow [ 7].

In the absence of plastic flow pk1iJ 4 (68) reduces to the
constant linear elastic form Ek11j in (31).- The velocity
equilibrium equations may then be immediately integrated with
respect to time. The resulting equations (69) are the Navier

equations for displacement U of classical Tinear elasticity.

[/ (-29)1g"6  + o uy g =0 (69)
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IT. STRATEGY FOR PROBLEM SOLVING

The solution to a problem of finite deformation must include
complete histories of the deformation mapping xi(XK,F) and the
stress field oij(xk,t). Construction of this solution for the
elasto-plastic case requires simultaneous integration of:

1. the velocity equ111bf1um equations (67) to determine

the velocity field in the time varying domafn B,

2. the velocity field with respect to time in order to

determine B, and

3. the constitutive equations (64) with respect to time,

thus determining the stress field oij(xk,t) in B.
As has been previously noted analytic solutions may be found only
for homogeneous deformation under proportional loading. Numerical
solution is unavoidable for more general-problems. |

Solution for the dependent va;iab1es a§ continuous functions
of time requires an iterative approach. A variety of techniques
might be employed including, for example, relaxation or predictor-
corrector methods. While such iterative solution is feasible an
enormous amount of computing might be-énticipated with no guarantee

of numerical stability.

A more economic approach is suggested by the quasi-linearity
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of the problem. Rather than seeking a continuous solution for the
time varying configuration and stress field we restrict our attention
to'the behavior of these quantities at a finite number of times
during the deformation. The total deformation is approximated as

a sequence of incremental. deformations.

Adoption of the incremental viewpoint toward problem solving
allows spatial and time integration to proceed sequentially rather
than simultaneously. Spatial integration of the instantaneously
Tinear velocity équiTibrium equations provides the velocity field
in B at time t. Subsequent integration of the velocity field and
constitutive equations over a time increment 8t yields the con-
figuration and stress fie]d at a new time t + §t. A new spatial
problem for the velocity at t + st may then be defined. The
computational efficiency of the incremental approach is immediately
apparent. A complete problem is solved by a sequence of Tinear
analyses. No iteration isvrequired.*

The availability of the complete theoretical rate formulation
provides a distinct advantage for the incremental numerical
solution prOCedure; ProBTem solving capabi]jty'is not tied to -

particular numerical techniques.

*A single exception exists. If elastic unloading occurs during an
increment the plastic modulus becomes infinite and the analysis

for that increment must be repeated. The iteration is, however,
closed in the sense that it need be continued only until the local

modulus value.is consistent with. the. behavior of the point in
question.™ ) T ) o T T o e )
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Irrespective of the numerical procedures chosen solution
accuracy is controllable. The incremental model assumes that the
velocity equilibrium equations written at an instant during the
deformation provide an acceptable approximatidn over a finite
time step. Note, however, that the coefficients in these
equations are stress dependent and the configuration of the
deforming solid defines their domain of integration. Henbe the
degree of approximation is dependent upon the variation in stress
and configuration during a time step. The analyst retains
control over the error in modeling a problem through his choice
of time step size and is assured of convergence to a precise
representation as the step size tends to zero. Thus increased
time step size provides a less aécurate solution at reduced
expense and vice-versa, a measure of control not available
in iterative solutions.

The incremental approach to problem solving provides a
vehicle for realization of the full potential of the rate
formulation for finite deformation of elasto-plastic solids.

No inherent restrictions exist upon loading type, geometry
or deformation magnitude. The utility of the analysis is
-Timited only by the availability of requisite material property

data.
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ITI. NUMERICAL SOLUTION PROCEDURE

Overview

The incremental approach is adopted for numerical solution
of the finite e1asto-p1astic deformation problem. A finité
element technique is emp]oyed'to reduce spatial integration of
the field pfob]em of Section I.4 to algebraic form. The overall
procedure for analysis of a deformation‘increment is summarized
below and developed in detail in subsequent sections. The
procedures described are valid for analysis in three spatial
* dimensions in any coordinate system.

The deforming solid is partitioned into an array of contiguous
sub-regions or finite elements. Behavior of the complete solid
is.mode]ed by coupling these e1emehts at a finite number of
common points or nodes. Within each element spatial dependence
of field variables is approximated in terms of noda1 Values
which become the principal unknowns of the numerical problem.

Linear algebraic equations governing the nodal velocities
at the beginning of a time step are developed by applying the

Galerkin method* [20] to the velocity equilibrium equations.

- *Note that for finite elasto-plastic flow énergy principles are -
not available as a basis for finite element solutions. Hence

an approach based solely on the governing differential equations
is required. This point is further discussed in Section III.1.
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These equations, termed the rate stiffness equations are of the

form*
To = KoBYB  (a,p=1,...,M)

where Ta andAVB are nodal loading rates and velocities,
respectively. The range M is the total number of degrees of
freedom associated with the finite element model. The rate
sfiffness K®B in (70) depends upon the instantaneous configura-

tion, prior plastic deformation, and the existing equilibrated

stress field. Boundary conditions of the problem must prescribe

precisely half of the 2M variables, load rates and velocities.
Solution of the rate stiffness equations for the unknown
nodal quantities provides the basis for evaluation of a deforma-
tion increment. Nodal coordinates and loads as well as stress
and strain fields in the elements are found by integration with
respect to time. Values of these quantities ét the beginning
of the increment provide initial values for this integration. A
new problem for the nodal velocities, may then be defined and

the incremental procedure repeated.

*Greek superscripts indicate matrix character. Repeated Greek
superscripts are to be summed over an indicated range.

41

(70)



A single exception to the above procedure exists. Elastic
unloading is signalled by a decrease in the equivalent stress
in a region previously deforming plastically. When this occurs
the rate stiffness must be recomputed to reflect elastic behavior
in elements comprising that region at that time, and the incremental
solution repeated.

The incremental method described above has been implemented
for analysis of planar deformation in plane stress or plane strain.
Equations governing numerical solution of planar prob]ehs are

given in Append{x I11.
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II1.1 Spatial Integration: The Galerkin Method

The use of finite elements for spatial integration of the
ve]ocify equilibrium equations is contingent on the availability
of a method for transforming these equations to an algebraic form
involving a finite number of dependent variables. Discretization
procedures developed for analysis of infinitesimal deformation,
Zienkiewicz [21], provide a model for the present finite case.

Reduction to a finite number of variables is accomplished
by approximation of element field variables in terms of their
nodal values. These nodal values are taken as the dependent
variables of the numerical problem. Algebraic equations
governing these variables must be derived from the governing
differential equations.

In analysis of infinitesimal deformation advantage is
taken of the symmetric nature of the governing equations, e.qg.
the Navier equations of linear elasticity. Problems governed
by such equations admit alternative statément as the variation
of quadratic functionals. The variational problem may be
extremal, e.g. minimum potential energy, or stationary, e.g. the
Reissner [22] principle. The functional is written in terms of
the finite element field variable approximation, integrated over

each element and the variation taken with respect to the nodal
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variables. The resulting linear algebraic equations are then
solved for the nodal quantites. This entire procedure is known
as the Ritz method.

Application of the Ritz method to the present case of finite
e]asto-piastic deformation requires that the velocity equilibrium
equations be symmetric. Writing these equations in terms of a

Tinear differential operator Li, however,
Li‘{vj} =0 in B
and the boundary conditions as

fi(vj) =0 on 9B

we find

i i
f[U{vj}]wi £ /[L W3] vy dv
B B

In (73) v. and Wj are independent, single-valued velocity fields

J
satisfying (72). Symmetry requires that (73) be an equality.

Thus the Ritz method is not applicable in the present case. An
alternative integral method is required which, while admitting
the use of a finite element field variable approximation, does

not restrict the nature of the governing differential equations.
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The present numerical solution procedure employs the Galerkin
method which is applied directly to the governing differential
equations and is appropriate.irrespective of their character. Rate
stiffness equations are developed for single elements and assembled
to define master equations for.a complete problem.

The velocity field v; in an element Bm is approximated* by ;i

o T
R ra8v8¢‘13‘(xk) 0, 8=T,...,N (74)

where VP are nodal velocities, ref is dependent upon the nodal
coordinates, ¢$(xk) is a vector of functions of xK and N is the
number of degrees of freedom associated with the element. The

¢§ in (74) are prescribed functions of xK

providing an approximate
representation of the spatial variation of v; in Bm. The matrix
r%® js defined by requiring that evaluation of 91 at the nodal
positions yield VB,
The Galerkin method** is based on the observation that if
the ¢? in (74) are considered independent then requiring Gi to
satisfy (71) as N tends to infinity implies orthogonality of
*Combined matrix tensor notation is employed. Greek superscripts
denote matrix character and Latin indices denote tensor com-
ponents. Thus the elements of ¢ are first order tensor components.
The overscript T denotes a matrix transpose.
**This discussion is intended to communicate the essence of the

technique. Rigorous discussions may be found in Kantorovich
and Krylov [20] ‘and Rektorys [23].
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each of ¢? (e=1,...,N) to Li{vj} in Bm' Thus

/ [L"{vj}] ¢ vV =0 a=T,....N

B
m

The orthogonality conditions (75) provide N linear algebraic
equations for the unknown VB of (74). Expansion of (75) for
finite N yields the rate stiffness equations (76) for the

element Bm' The range of all Greek superscripts is N.

T . T T Tes ’
[ 1t/5t) rsafi-grns[efTgP gBle%, 413 10N ey

aB
m.
= Knava
K" = {1T~“B[q>B pidkl e
1j k1
B
m
T .
_ B éim
2¢ij e ¢
. T,
B ip 6]
¥ 4)j;i ° ¢ HY
ip © 3
and
= +
455 (172) (95,5 + 05,5
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The surface integral in {76) corresponds to the time rate of load
(See Section I.4) on the element boundary and may be taken to

define a vector of nodal Toad rates T®. Hence (76) is written
T = Khoye nsa=1,...,N

The rate stiffness matrix K"* is full; depends upon the element -
configuratidn through the nodal coordinates in r®P and upon the
‘existing equilibrated stress state. In general the rate
stiffness matrix is not symmetric. |

Having written (79) for each element, master rate stiffness
equations are written for the entire body by summing the load

rate components at each node. Thus follow the equations

T¢ = KBB4 p=1,... .M

where the range M is the total number of degrees of freedom
associated with the assemblage of finite elements used to model
a complete body. The stiffness matrix K“BIis M x M, sparse
and not symmetric. Banded coefficient structure may be achieved
in K“B by appropriate construction of the finite element map.

Solution Of the 1inear algebraic system (80) requires
specification of M of the 2M variables, T® and V%, At internal

nodes equilibrium requires T to be zero. At boundary nodes

(80)



either T® or V* may be prescribed* subject to the same ortho-
gonality restriction governing the boundary conditions of the
original field problem of Section I.4. Solution of the equations
may procede by any convenient technique and yields full knowledge
of the velocity field in B and loading rate on 3B as character- |

ized by their nodal values.

*Boundary loading is prescribed either as rate of total Toad T
at nodal positions or through the traction rate t, on 3B. In
the latter case the rate stiffness equations are émployed in

_the form (76) and the requisite surface integrations performed
numerically.
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[11.2 Time Integration

The solution of the rate stiffness equations at time ta
provides a basis for evaluation of ensuing changes in deformation
and loading occurring during a small but finite time step st.
Time dependent variables are expanded in Taylor series about to,
truncated to linear form and evaluated at t°+6t. The procedure
allows evaluation of the defprmation, nodal coordinates and
element strains, and loading, nodal forces and element stresses,
at t°+6t, the end of the time step. Requisite time;derivatives
are provided by the rate stiffness equation solution at to.

Thé_procedures of this section provide sufficient data,
nodal coordinates and element stresses, for evaluation of the
- rate stiffness KaB at t°+6t, the beginning_of the next time
step. Although more sophisticated tjme integration schemes
might be employed, including higher order Taylor series

representations, the linear technique proves adequate in practice.

Nodal Coordinates: The time dependent nodal coordinates

are expanded as

x*(t) = x*(t ) + [i“(to)]at T (81)
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Hence the nodal coordinates x* at the end of a deformation increment

may be approximated at (t°+6t)'as
~ []
X% = x®%+ V% 8t - (82)

o .
where x% are the nodal coordinates at to and V¢ are the nodal
velocities. Total nodal displacements U* are subsequently

defined by

o

u® = x* - x® o (83)

where X* are the nodal coordinates of the original (t=0)

undeformed configuration.

Element Strains: The element deformation .mapping function

(1) at (t +st) is written
[«

i I '
XTGIi -xlsu (84)

where the total displacement field UI

is taken as a function of
the undeformed field coordinates XI.

The element total displacement field is approximated in terms
of nodal quantities in the same manner as was the velocity field

in the development of the rate stiffness equations in Section III.]

. T
ol (k) 2 ro8 8 I (xK) (85)
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Substituting (85) into (84) the element deformation grédient is

written

. . T
o1 = ql i 0B (B ,ad
X\ Tty U* ¢ = (86)

Inverse deformation gradients aXI/axi are defined by observing

that
Gaxi/7axly (axl/axd) = gij | . (87)

A variety of strain measures may be computed from the
total deformation gradients (86). Almansi strain, for
example, 1is giveh by

e.. = (1/2)g. . - (axY7ax1) (ax97053) 6. ] (88)
1] 1] IJ _

It should be recalled that the strain is not separable into

elastic and plastic portions.

Nodal Loads: The time dependent nodal loads may be

expanded as
FE(t) = FO(t ) + [F*(t )] ot + ... (89)

Truncating this series to linear form the nodal loads at the

end of a time step are approximated as

F“(t°+st) = FO(t ) + T% st ~(90)

where T are the-noda1 load rates of (80).
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Element Stresses: Evaluation of tﬁé element stress field

- requires distinguishing between Cauchy stress o1d referred to
the instantaneous configuration of an element and a Kirchhoff
stress Sij referred to the configuration at to. Both oij and
s1J are time dependent and are equal at to. Denoting the

Cauchy stress at t as ;ij we define the Kirchhoff stress such

o

‘that

Tim  rcid, Ck _ %k _ ik
g [S(x5E)] = oM(x t) = o J(x) (91)

[« .
wherevxk are the element field coordinates at t . At t +st
[+ []

the two stress fields are related by
IR, + 1) = (177) (%1 70xK) (ax3/0%1)SKT (X7, t +st) (92)

where J = ]aii/a§j|, Hence the final Cauchy stress may be
found from the final Kirchhoff stress using the transformation (92).
sY is approximated at (t + t) by the truncated Taylor
[+ .

series
sHI(t +st) = ofd + st | . (93)
o .

The Kirchhoff stress rate éij in (93) is computed from the

Jaumann stress rate ¢'J at t .
[
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§id = 513 4 §1gk - 3ipgi - Gingd (94)
| k P p
where from (53)

A pidkl
o P dk]

and the deformation rate dij is computed from the element
velocity field abproximation (74).

Computation of oij using (92) is facilitated by approximating
the e]ément incremental deformation mapping ii(§j) in the same

manner as the total deformation of (86). Thus
= xt e ol (%K) (95)

The incremental displacement field u' s represented in terms

of .incremental nodal displacements uf

as
i o L |
u'(xk) = reBuB 4a7(xK) (96)

where the incremental nodal displacements are determined from (82)

ub = vB st (97)
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I11.3 The Limit of Infinitesimal Deformation

It has been noted in Section 1.4, that the velocity
equilibrium equations reduce to well established results in the
limit of infinitesimal deformation. It is therefore reasonable
to expect similar limiting behavior of the algebraic equations
~governing finite element solutions. This expectation is reinforced
by noting (Kantorovich and Krylov [20]) that application of the
Galerkin method to symmetric differential equations, such as those
governing the infinitesimal case, yields precisely the algebraic
equations derived from a Ritz approximation.

For infinitesimal deformation stress-velocity gradient
-COUpling is assumed neg]igible and deformed and undeformed element
configurations are taken to be indistinguishable. The rate stiff-

ness equations (76) become

™ = knéy® (98)

where

T o T
Ckne = f{rns¢$j pijkl ¢8,0%%) dv (99)

B
m

The stiffness matrix K™ is symmetric and positive definite and is
recognized as that governing infinitesimal deformation, see, for

example, Zienkiewicz [21] p. 16.
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For elasto-plastic flow T%, V* in (98) are interpreted as
increments of nodal load and displacement. Total strain (assumed
<<1) and stress are found as simple sums of incremental results
since the reference frame transformations of Section III.2 become
identity operations. In the case of elastic behavior (98)
integrates directly to provide Tinear relations between total

nodal loads and displacements.



IV. EVALUATION OF SOLUTION CAPABILITY

IV.1 The FIPDEF Program

The procedures of Section III have been implemented to
provide incremental solution capability for problems of planar
finite deformation. The computer program, FIPDEF (Flnjte
Plastic DEFormation), performs analysis of elastic and elasto-
_'pléstic materials deforming under conditions.of plane stress
or plane strain. Elastic unloading and éubsequent reverse
plastic loading are automatically treated.

The program employs triangular finite elements defined
by nodes at their vertices. The velocity field is approximated
within each element by assuming linear spatial variation. Rate
stiffness equations for these elements are developed in Appendix
III. General program logic is shown in Figure (2). The FIPDEF
program is written in Fortran IV and is operational on the
Univac 1108 system at Cérnegie—Me110n University.

Problem definition includes the initfa] finite element
map geometry, material properties and incremental hisfories of
nodal boundary conditions. Material behavior is described by
the elastic constants, a proportional limit value of oétahedra]
stress and pointwise specification of an octahedral stress-

octahedral plastic strain curve.*

*See Appendix I.
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Figure 2

GENERAL STRUCTURE OF THE FIPDEF PROGRAM

10.

Read and check input.

Set initial elastic material properties.
Generate rate stiffness matrix for the NEth
time step. (1<NsNINC)

Solve for nodal velocities and load rates for

step N.

. -Evaluate element stresses at the end of step N.

Check all elements for load reversal.

a. if reversal has occurred in any element(s); '
modify element material properties accord-
ingly and return to 3. to repeat the Nth step.

b. if loading continues in all elements evaluate
their material properties for step N+1.

Evaluate nodal Toads and coordinates and element

strains at the end of step N.

Output

If N < NINC: go to 3. for step N+I.

If N = NINC: STOP.
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IV.2 Verification Analysis

Evaluation of the finite deformation analysis capability
provided by the FIPDEF program is difficult since comparison
with analytic solutions is possible for a limited number of
problems. In particular analytic solutions may be obtained only
for homogeneous deformation under propoktiona] loading. Despite
their conceptual simplicity, however, such problems retain
considerable nonlinearity and therefore provide an acceptable,
albeit Timited, basis for assessment of numerical results.

Furthermore, since the deformation of individual finite

elements employed in FIPDEF analysis is restricted to homogeneous
form, the behavior of these elements may be completely evaluated.
Verification of the accuracy of individual element response is
significant for two reasons.

1. It demonstrates the viability of both the rate theory
and the incremental approach for solution of finite
deformation prob]emé.

2. Accurate prediction of individual element behavior is
a neéessary condition for accurate solution of inhomo-

~ geneous deformation problems requiring the use of

element arrays.
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It should be recognized that the use of element arrays to
solve inhomogeneous problems may of itself introduce error in
numerical solutions. Quantitative assessment of this discre-
tization error is not possible on the basis of the homogeneous
deformation problems for which analytic solutions are available.
Some indication of the potential significance of this type of
error can be inferred from the numerical solutions of planar
necking problems which are presented and evaluated in Section V.

FIPDEF and analytic results are compared below for three
classes of homogeneous finite deformation problems: extension,
simple shear and siﬁu]taneous extension and rigid rotation.
These three types of problems span the range of possible finite
deformations.: The non-rigid portion of any continuum motion
may be viewed as the simultaneous occurrence of dimensional
- changes, such as those associated with finite extension, and
combined shearing and rotation of the form found in simple

shear! The third problem, extension and rotation, provides

a means for verifying the objective character of the analysis

"since the solution must be tensorially independent of rotatidn.
Complete solutions for the verification probiems are

developed in Appendix IV. Salient features of these solutions

are discussed below and compared with the results of numerical




analysis. It is demonstrated that accurate, objective numerical
solutions can be obtained for deformations involving dimensional
changes of a full order of magnitude and rotations of up to 45
degrees. These upper limits do not reflect deterioration of
the numerical results but rather the judgement that most

deformations of practical interest will be within these bounds.

60




IV. 3 Finite Extension

The unit cube of Figure (3a) is deformed into a bar, Figure
(3b), by prescribing its horizontal or x dimension as a function of
time. The deformation at any time is fully described by the

coordinate stretch ratios

A = A1
- zy/!,o : (100)
AZE‘Q/Q

in which £, is the original unit dimension. No shearing deformation occurs.
The deformation is produced by uniaxial loading (oX#O,

oy=0) and may procede under conditions of plane stress or plane

strain. In plane stress we require

while in plane strain

P, =0o A (101)
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Figure 3 Kinematics of Homogeneous Extension
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where -

o = ox(ex) - (102)

.s = £ A

A=A (x)=2xrx2 (103)
In plane strain we have the additional result

o, = 0,(2) (104)

Full solutions for load, stresses and area are devéioped in
Appendix IV for plane stress and plane strain extension of elastic
and elasto-plastic materials.

For purposes of verification analysis elastic materials are
defined as those governed by (32) irrespective of deformation
hagnitude; To facilitate analytic solution elasto-plastic prob]éms
employ the bilinear material property representation of Figure (4).*

While the validity of material property models restricts
engineering application of the FIPDEF program, it does not

affect evaluation of solution accuracy. The only concern here

is consistent definition of verification probiems to be solved
numerically and analytically. |
*The effective stress and plastic strain of Figure (4) are directly

r?1ated to the "equivalent" quantities of Section I.2 (see Appendix
I).
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Figure 4 Bilinear Elasto-Plastic Properties
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FIPDEF and analytic solutions have been.compared for problems
of plane stress and plane strain extension for elastic and elasto-
plastic materials. All1 FIPDEF analyses employ the two element
model of Figure (3c). The deformation was prescribed in terms of
incremental x displacements of the appropriate nodes in this
model. With one exception all displacement increments were one
percent of the original unit dimension of the cube. For elasto-
p]asti§ problems plastic flow was first established by
prescription of a number of very small (<<.01) incremental
displacements. The increment sizes were arbitrarily chosen.
Detailed study of increment size effects was not undertaken.

Agreement between analytic and numerical results was
excellent in all cases. Applied load, stress and deformed
cross-sectional area were predicted within one percent of
the analytic results.

Figure (5) is a plot of Px’ S and Ax as functions of Ay
for an elastic material in plane stress. It illustrates a
distinguishing characteristic of all problems of finite extension.
The applied load-stretch relation is muitiple valued;* a maximum

load Pc is attained at a critical, property dependent, stretch Ac.

*The effect is observable in the data from any tensile test.
Discussion of its physical significance is undertaken in Section
V. .
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Finite Elastic Simple Extension

Figure 5
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The maximum load and critical stretch may be analytically predicted

by solving the equation

d(Py)/d(n) =(do,/da, )R, + o (dA,/dA,) = 0 - (105)

The plausibility of the maximum load phenomena is evident in
(105) since, for the materials considered, (dAX/dAX) < 0.
Analytic expressions for Pc and A, are given in Table (IV-1),
Appendix IV.

Numerical comparison of FIPDEF predictions and analytic
results are givén in Tables (1) and (2) for elastic and elasto-
plastic problems respectively. Critical stretch, maximum load
and crftica] axial stress are predicted within one percent. All
results are dependent upon elastic and plastic properties.
Sensitivity to the elastic Poisson ration-is shown in Tables
(1) and (2) to illustrate the resolution which is attainab]e.

Lbad-stretch results for plane stress and plane strain
extension of elastic and elasto-plastic materials are given in
Eigukes (6) and (7) respectively. The results -are normalized on
the critical values Pe and_AC. FIPDEF results and analytic

pfedictions coincide over the full range of deformation considered.
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© 7.such material. =~ L

Table 1

Homogeneous Extension of Elastic* Bodies

- Comparison of FIPDEF and Analytic Results

-at Maximum Load

Plane Stress:

PC >\C 9.

Poisson's -5 ? -6

Ratio (1bs x 10-7) (1b/in® x 10 °)

FIPDEF Analysis FIPDEF Analysis FIPDEF Analysis

0.3 6.15 6.13 5.27 5.30 1.67 1.67

0.4 4.62 4.60 3.48 3.49 1.25  1.25

0.5 3.70 3.68 2.71 2.72 1.00 1.00
Plane Strain:

0.3 9.46 9.43 10.16 10.29 2.57 2.56

0.4 6.59 6.57 4.46 4.48 1.79 1.79

0.5%* 2.93 4.91 2.71 2.72 1.34 1.34

FNote:r E = 10° 1b/in® in all cases.

**Poisson's ratio of 0.5 is inadmissible in plane strain analysis
(See Appendix II). Since it corresponds to elastic incompressi-
bility the present ana]yses were performed using a high ratio
of bulk modulus to Young s modu]us «/E = 103, which approximates
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Table 2

Homogeneous Extension of Elasto-Plastic* Bodies

Plane Stress:

Poisson's
Ratio
0.3
0.4
0.5

Plane Strain:

0.3
0.4
0.5%*
*Note: E
B
[0}
y

Comparison of FIPDEF and Analytic Results

at Maximum Load

P
c .

(bs x 107H
7.78 7.72
7.65  7.58
7.52  7.44
9.20  9.17
9.20  9.09
9.03  8.92
106 1b/in2

do/de(p) = 10
8 x 107 1b/in

}\C
1.27  1.27
1.25  1.24
1.23  1.22
1.44  1.43
1.42  1.41
1.36  1.36

g 1b/in2 for o 20

V .

g

94.74
93.29
91.45

127.6
125.1
121.7

(1b/in? x 1073

94.20
192.56

90.91

127.1 .
124.0
121.0

**Poisson’'s ratio of 0.5 is inadmissible in plane strain analysis

(See Appendix II).

Since it corresponds to elastic incompressi-

bility the present analyses were performed ysing a high ratio
of bulk modulus to Young's modulus «/E = 10°, which approximates
such material.
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Figure 6 Load-Stretch Response:
' Finite Elastic Extension
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Figure 7 Load-Stretch Response:

Finite Elasto-Plastic Extension
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IV.4 Simple Shear

Consider a uniform elastic continuum deforming according

to the prescribed velocity field

X (106)

The resulting deformation is homogeneous simple shear in x-y
planes of the material. Thus a unit cube of material, Figure
(8a), becomes an-oblique prism of unit depth, Figure (8b). The
deformation is completely described by the shear angle vy in

Figure (8b).

-1

y = tan ' T
(107)
T = 2kt
The solution for the time dependent stress field resulting from
this deformation is developed in Appendix IV. The non-zero
stress components are
%y =y sin 1
o, =W (1-cos 1) (108)
o6 =y (cos t-1
y ¥ )
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FIPDEF analysis was performed in both plane stress and plane
strain employing the two element model of Figure (8c). Simple
shearing deformation was developed by prescribing incremental x
displacements of the upper nodes of the element map. All other
displacements are null. For the unit dimension model these
incremental displacements correspond to inqrements of 1 in (107).
The increment size was 0.01.

Analytic and FIPDEF stress results are compared in Figure
(9). Shear stress 1§ predicted within one percent and normal
Astress within five percent over the deformation range 0 s T s 0.7.

Results from plane stress and plane strain analyses are identical.
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IV.5 Simultaneous Extension and Rotation

Consider the problem of simultaneous rotation and unidirectional
extension of a bar of elastic material. As shown in Figures
(10 a,b), the x' dimension of the bar is prescribed as a function
of time while its y' and z' dimensions are maintéined at their
original unit values. The bar simu]taheous undergoes a rigid
rotation 6(t). This motion may be described in two objectively
equivalent ways. In the primed, rotating coordinate frame
only the extension process is observed. In the unprimed, fixed
frame both extension and rotation must be faken into account.
Components of stress and surface traction corresponding
to the ‘above homogeneous deformation are readily found by
analyzing the problem in the rotating reference frame of Figure
(10). This solution is developed in Appendix IV. It predicts

non-zero normal stresses (o Tuis oz.) and normal tractions

x' Sy
(tx-, ty-) on x' and y' coordinate planes respectively. -
FIPDEF ana]ysfs, however, proceeds in a fixed non-rotating
reference frame. Solutions developed in such a reference frame
must be independent of rigid rotation, i.e., the analysis must
be objective. Hence the FIPDEF solution must be related to
the rotating frame solution by thg_objectivity conditiqnsrgfyi‘wé

Section I.1. Denoting the results of fixed frame analysis by

76



Figure 10 Kinematics of Combined
Extension and Rotation
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uhprimed quantities we require that the stresses be related as

2

- cos? ;

o, 0,1 COScO + oy sine

oy = oy sine + oy cosZe (109)
O'Z = O'Zl

%y = (ox._- oy.) cos® sing

and the in-plane nodal forces as

g (N)
X

Fx.(N) cos 8 - F ,(N) sin ¢

(110)
(N)

Fy = Fxl(N) sin ¢ + Fy,(N) cos 6

In (109,110) 6 is the time dependent orfentation of the extending
bar. 1In (110) FX(N) is the x component of total load at the
Nth node of a finite element mode]. FX,(N) is analogously defined
in the x' system but corresponds to the surface tractions of the
rotating frame solution.

The elastic extension-rotation problem was analyzed
using the two element model of Figure (10c). Incremental displace-
ments were prescribed at all nodes such that the body underwent

simultaneous increments of extension and rigid rotation about

node 1 in that figure. Extension increments were one percent of
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the original unit length. Rotation increments were 0.005 radians.
The final stretch ratio, A,:, was 2.6 and the final orientation
angle was 0.8 radians. .

Results obtained agreed with equations (109) and (110)
within one percent over the full range of deformation considered.
FIPDEF stress results are plotted in Figure (11) as functions of -
Ayt and 6. Representative nodal force results are given in Figure
(12).

On the‘basis of these results, as well as those of similar
analyses for p]ané stress, it is concluded that affects of finite.
rotation are properly treated in the FIPDEF program. The ob-

Jective character of the underlying rate theory is preserved.
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V. NECKING IN FLAT TENSILE BARS

The numerical solution capability which has been developed
for_pfoblems of two dimensional finite deformation of elasto-plastic
materials provides a basis for the investigation of necking in flat
tensile bars. The physical aspects of the problem as well as a
number of significant preyious analyses are discussed below.
Subsequently the numerical problem is described and results of
analyses under conditions of plane stress and plane strain are
presented and discussed. The results provide sohe’insight into
the mechanics of the necking process.as well as a basis forb
quantitative evaluation of the utility of stress-strain'relations

“inferred from post—instabiiity tensile test data.
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V.1 The Physical Problem

Consider a flat metal bar, Figure (13), initially of length
ﬂo, width W and thickness to. In a tensile test the bar is
quasi-statically extendéd in the y direction by prescribing its
deformed length (£ > Eo) as a function of time while the lateral
surfaces of the bar remain traction free. The present discussion
is limited to tensile testing of metals at room temperature
under atmospheric pressure. -

Under the above conditions the bar will initially undergo
a process of homogeneous extension requiring a‘monotonically
increasing applied Toad.* For extensions {n excess of some
critical value the applied load is observed to decrease with
increasing éxtension and subsequently a highly strained local
necked region develops in the bar. Extensions corresponding
to maximum Toad and necking initiation are found to vary with
the material and to a lesser degree with initial bar geometry.

As overall bar length continues to increase plastic straining
continpes in the necked region while previously yielded material
in the remainder of the bar unloads elastically. For convenience
we define the onset of necking as that point at which elastic
unloading first occurs.

*The upper and lower yield point phenomenon characteristic of
mild steel is excluded from this discussion.
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Figure 13 Flat Tensile Bar: Initial Geometry
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Neck development in flat bars is observed to be dramatically
dependent upon initial bar geometry. Nadai [2] reports that for
thin bars (wo/t; > 10) necking takes the form of local thinning
in oblique bands parallel to the x-y plane of Figure (13). For
thicker bars (wo/to < 7), however, necking appears as a symmetric
reduction in width in an x-z plane of that figure. In bars of
intermediate aspect ratio (7 < wo/t° <v10) complex combinatiens
of these necking modes are observed.

Experimental investigation of the necking instability
phenomenon has not provided a sufficient basis for.ideﬁtification
of criteria for either necking initiation or location of the
necking region in an initially prismatic bar. Criteria for
attainment of maximum load*, such as those employed in verifying
the FIPDEF program (Appendix IV), provide only a lower bound
for necking initiation. Experimental and very limited analytical
results indicate, however, that necking occurs somewhat later
than maximum load. The additional extension required is dependent
upon the properties of the material tested and possibly upon
initial bar geometry.

Presuming the existence of a stress- and/or stfain-based
*The earliest Erediction of maximum load criteria was provided

by Considere [24] who considered simple extension of incompres-
sible materials. ‘
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necking initiation criterion neck location might be determined
by the distribution of small imperfections in geometry or
material properties in seemingly perfect bars. Satisfaction of
the necking criteria in the vicinity of one such flaw, or in a
region of high flaw density,'Wi]] cause additional prescribed
bar extension to concentrate in the flaw region, thereby
developing a neck. It has been shown that the intentional
introduction of geometric flaws can be used to control neck
location. - Standard test procedures (ASTM [25] standard E-8)
for flat bar specimens allow a local reduction of area of up
to 10 percent for this purpose. It must be noted, however,
that the above interpretétion of necking initiation has not

to date yielded complete understanding of the mechanics of

the problem.

The present investigation is limited to consideration of
symmetric‘necking in flat bars of elasto-plastic material. In
lieu of analysis in three spatial dimensions, the present effort
is restricted to consideration of the limiting cases of plane
stress and plane strain deformation in the x-y plane of Figure
(13). Neck location is controlled by considering an initial
geometric flaw in the form of an 0.5 percent area reduction in

the plane y = 0, which becomes the root plane of the neck. The
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The analysis is further simplified by assuming the transverse

tractions on the ends of the bar (y = ££/2) to be zero.
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V.2 Previous Analyses

Tensile bar necking has been analyzed by a variety of
techniques. The utility of these analyses has been 1limited
largely by their consideration of idealized models of material
behavior as well as, in some cases, an inability to predict both
deformed geometry and internal stress and strain fields throughout
the necking bar. A number of these analyses are described below
to indicate the range of previous efforts as well as to provide
a basis for comparison with the results of the present analysis.

Bridgeman [1] developed a solution for the stress distributions
in the root planes of necks in round and flat tensile bars. The
ana]yses‘consider a material obeying a Mises yield criterion
and neglect elastic deformation. An assumption of uniform
strain in the root plane is made in both cases. The assumption
is corroborated for the axisymmetric case by the experimental
work of Bridgeman himself as well as that of Davidenkov and
Spiridonova [26]. No experimental evidence exists to support
the uniform strain assumption in the planar case. The solutions,
while physically plausible, are of limited use since a priord
knowledge of neck geometry is required and no relationship is
established between overall bar extension and development of

the neck. -~ . o

88



Full field solutions for tensile necking in flat bars have
been obtained by a number of investigators through analysis of
plane strain extension for rigid-plastic materials. The
perfectly plastic case has been considered by Richmond [27] and
onat and Prager [28] and hardening plastic by Cowper and Onat [6].

These solutions may also be distingdished by the manner in |
which necking deformation is introduced. Rijchmond considers the
prismatic bar as the 1imit of a V-notched bar and thereby has
in effect introduced an initial imperfection. Onat and Prager
explicitly consider initial shallow Tongitudinal grooves. Cowper
and Onat, on the other hand, develop admissible solutions correspond-
ing to incipient necking by demonstrating bifurcation of the
solution to the homogeneous exfension problem for a hardening
material.

Neck geométries are predicted by all three analyses.

Richmond predicts a boundary profile which is convex at the root
plane and tends to a Tinear profile away from the neck region.
Qualitative agreement with limited experimental data is
demonstrated. The Richmond profile, while differing drastically
with the V shaped neck predicted by Onat and Prager, is qualita-

tively similar to that shown to be admissible for hardening
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material by Cowper and Onat. This similarity perhaps indicatés
that analysis of necking emp]oying slight initia]_gedmetric
imperfections provides results indicative of behavior of perfect .
bars. - |

Analysis of necking has recent]y been extended to include
consideration of elasto-plastic (work-hardening) material
behavior by Chen [29] and Needleman [30]. Both investigators
havé developed numerical solutions for the axisymmetric case.
The two studies are significant in the context of the present
effort not only by virtue of their consideration of elastic
deformation but also because both ana]yses'indicate that necking
initiation is distinct ffom attainment of maximum load. The
observation is of increased significance since Chen considers
an initially imperfect bar while Needleman establishes necking

deformation using a bifurcation technique.
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V.3 The Numerical Problem

Two numerical analyses have been performed, one in plane
stress, the otherrin plane strain. Initial geometry, material
properties and in plane boundary conditions were identical in
both analyses.

The undeformed bar of Figure (13) is represented in two
‘dimensions by the finite element model of Figure (14). The
model employs 600 finite elements defined by the positions of
341 nodes. The finite element model is bounded by symmetry Tlines
at X = 0 and y = 0 and represents one quarter of a complete bar.
An initial geometric imperfection is introduced by reducing the
~ cross section at y = 0 by 0.5 percent. The amplitude of the
imperfection is shown greatly magnified in Figure (14).

The bar is taken to be of isotropic homogeneous material
whose inelastic deformatiqn is described by the constitutive
formulation of Section I.2. Elastic deformation ié characterized

by the constants

E

10 x 10% 1b/in2

A v=0.3
Work hardening plastic deformation is controlled by the effective
stress-effective plastic strain relation plotted on both linear

and logarithmic scales in Figure (15). Initial yield occurs for

Oef = oy = 35 x 103 1b/in?
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Thereafter the stress-strain relation is

A[(Gef/OY)']]N 0 < €é$)< 0.05 .
(p) - ' | (111)
f (6.0 - K) /8 (P). 005
ef ef :
- where
A = 5.0814 K =40 x 103 1b/in2
N=30 B =50 x 10° 1b/in?

The effective modulus ratio E /(doef/deef(p)) therefore varies
smoothly from zero at the yield point to a constant value of

200 for effective plastic strains in excess of 0.05. The
plastic stress-strain curve is input to the analysis in the form
of data points corresponding to (111). The spacing of these -
points in strain varies from 5eé$)=-10'5 at initial yield to

5séF)= 0.05 in the linear bortion of the cufye.

The initial stress-free configuration of the two dimensional
quarter symmetry model of the bar is shown in Figure (14). The
initial 1ehgth to width ratio is 3:1. The model is deformed by
prescribing the history of incremental boundary conditions. Within
each increment these boundary conditions are as follows:

1. Normal displacements and tangential traction are zero

on the symmetry boundaries x = 0 and y = O.
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2. The lateral boundary initially at x = w°/2 is traction
free throdghout the analysis.

3. Extension is imposed by prescription of uhiform positive
normal displacement of the boundary ihitia]]y at y = KO/Z.
Tangential traction on the boundary is zero.

The magnitude of the incremental extensions was varied over the
extension history. Initially small steps (a@/ﬂo T 10'3) were taken
.to establish plastic flow over the entire bar. ‘Incremental
extensions were then gradually increased according to the algorithm
62/(2—£°) = 0.05 until necking initiated. Subsequent incremental

- extensions were maintained at approximately 0.5 peréént of the ~
length of that portion of the bar which continued to deform
plastically. The final overall stretch ratio £/£° considered

was 1.43 in plane stress and 1.62 in plane strain.

Approximately 130 loading increments were employed in each
case, each increment requiring an average of one minute of
computing time on a Univac 1108. The analyses were terminated
when deformations were developed which were judged sufficient
tb permit reasonable assessment of the necking process. The
results do not suggest any breakdown in the ana]ysié. There is no
reason to suspecf that thé analysis could not have been extended
indefinitely although in the absence of quantitative criteria for

prediction of tensile fracture such effort was not warranted.
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The analyses provide full histories of deformation and stress
associated with the process of extension and necking in plane
stress and plane strain. The deformation is given explicitly by
the deformed configuration of the finite element model. The -
stress field is represented in terms of its component values at

the centroid of each finite element.
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V.4 Necking in Plane Stress and Plane Strain

Overall tensile bar behavior may be.characferized in'térms‘of
relationships Bétween extension and applied load provided by the
numerical analysis. These relationships are discussed below and
compared with the results of homogeneous analysis in whfch hecking
is not considered. Inspection of neck geometry and internal
stress field histories provides some insight into differences
between load-extension relations predicted for plane stress and

plane strain extension..

Load-Extension Response: Numerically established relationships

between applied load and extension or engineering strain e = GZ/ZO,
are given in Figure (16).for. both p]ané stress and plane strain.
Results are shown from the inhomogeneous analysis of Section V.3
as well as from homogeneous analysis in which necking is disallowed.
The inhomogeneous and homogeneous.numerical analyses are distinguished
only by the uéé in the latter case of a two member finite element
model of an initially prismatic bar. .The homogeneous aﬁproach
provides what might be termed fundahenta] solutions for finite
elasto-plastic exfension which provide a convenient reference in
discussion of the necking process.

A maximum load phenomenon is evident in all cases shown in

Figure (16). The critical extension Eh at which maximum
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Toad occurs is significantly larger in plane strain than in
plane stress. In both cases Eh for the perfect bar is slightly
larger than that for the initially imperfect bar.

These differences in critical extensibn may be exp]ained
qualitatively and in an approximate sense quantitatively on the
bases of the Considere [24] criterion for attainment of maximum -

load. By solving the equation

dPy/_dAy =0 . : | (112)
| for an incompressible material it may be inferred that at
maximum load

oy = ?y = doy/dey . | (]13)

The overscript bar denotes deformation measures averaged over the
entire bar as opposed to 1och va]ugs. In (112, 113) Py is the
'tensile'1oad,_i& =_1.+ E& = K/Ko is the uniform stretch of the’
bar,’oy_js:the so-calted true stress'(1oad:divided by current
area)‘and E& = Kni;’is the logarithmic or natural stfain.- The
assumption of incompressibility, which is not made in the numerical
analyses, is later shown to Be a reasonable approximation for

some purposes. Noting‘the linear nature of the stress-strain

curve for large plastic strains, Figure (15), it may be predicted
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using (113) that the maximum Toad natural strain in plane strain
is approximately 1.7 times the corresponding strain in plane stress.
The data of Figure (16) show the numericaT]y established ratios
to be 1.57 and 1.6 for the perfect and imperfect bars, respectively.
‘The deviation between the above prediction and the numerical
results is a consequence of the elastic dilatation considered in
the numerical analysis.

Therdifference in critical extension between the perfect
and imperfect bars is qualitatively explained by the presence
of the initial imperfection. In the 1mperfect bar the stress
at the location of the initial area'reductioh will be somewhat
higher than that existing in the perfect bar for the same overall
extension. Hence (113) is satisfied for a slightly smaller (~10%)
extension of the initially flawed bar. The difference in initial
minimum cross-sectional area similarly explains the development of
lower loads in the imperfect bar than in-thé initially prismatic
bar prior to.attainment of maximum load.
| Post-maximum load behavior in both plane stress and plane
strain is characterized by d mdre rapid reductioh,in.appTied load
than that demonstrated by the fundamental solutions of:Figure (16).
The load reduction in plane stress is noticeably greater than the

reduction in plane §tkain. Six stages in the load reduction process
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are noted in Figure (16) for convenient reference in discussing the
associated necking deformation. The first stage is the maximum
load point.

The difference between plane stress and plane strain load
réduction is more readily apparent in Figure (17a) in which pbst—
maximum load response is plotted normalized to the criticai.
values, maximum load PC and critical overall stretch_ié. The
fundamental solution is also shown for an incompressible
material. This solution, identical for plane stress and plane
strain, is found as.

P/Pe = (X /) [en(W/3) + 11 (114)

A more rapid deterioration of applied load in the case of
plane stress extension is apparent in Figure (17a). This
observation is consistent with the more rapid concentration of
stretch at the root plane of the neck in plane stress as shown
in Figure (17b). The figure shows_i, the average root plane
stretch, as a function of i, the stretch of the entire bar.

The data are again normalized to their values at the maximum
load point, stage 1. The root plane stretch}i is computed from

the numerical results as (assuming incompressibility)

A= A_/A (115)
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Figure 17 The Influence of Necking
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where A; (A) is the original (current) root plane area.

The data of Figures (16, 17) also suggest that necking does
not initiate until somewhat after maximum load is attained. This
observation has also been made by Chen [29] and Needleman [30]
based on analyses of the elasto-plastic axisymmetric case. The
preseht results also indicéte that necking initiation, signified
by the occurrence of elastic unloading away from the root plane,
occurs somewhat later in plane strain than in plane stress. The
normalized overall stretch ratio_i]ih at necking initiation is
approximately 1.03 in plane stress and 1.06 in plane strain for
the material and initial geometry considered in the present

analyses.

‘Necking Deformation: The physical character of the necking

process is illustrated by the deformation histories depicted in
Figure (18). Configurations of the_finite'eiement model are shown
which correspond to the undeformed state and the six stages in |
the hecking process previously identified in Figure (16). Results
are shown for both plane stress and plane strain. '

The geometric imperfection present in the undeformed state
appears slight1y‘amp1ified in the maximum load configuration,

stage 1. Shortly thereafter necking initiates and subsequent

103



Figure 18

THE NECKING PROCESS
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prescribed bar extension is increasingly concentrated in the vicinity
of the initial area reduction, stages 2-6. Simultaneously the
existance of decreasinj load in comb{nation with little of no.
reduction in area produces elastic unloading in regions removed
from the neck. Unloading first appears in the center (x = 0) of
the bar at the furthest boundary (y = £/2) from the initial flaw
and thereafter spreads dowh the bar. The elastic-plastic
boundary is shown in Figure (18) as an oblique solid line. As
bar extension proceeds this boundary moves down the bar, closer
to the center, material above the boundary recovering e]astica]]y,‘
material below it continuing to deform plastically. The position
of the boundary throughout the necking process qualitatively
corroborates Bridgeman's [1] experimental observation that
plastic deformation in necking bars is confined to the region
betweén the inflection points of the neck boundary profi]e.v

The neck profiles shown in Figure (18) for necking in plane-
strain are in qﬁa]itative agreement with results obtained by
Richmond [27] and Cowper and Onat [6] for rigid-perfectly plastic
and hardening plastic materials, respectively.

While the profile histories of Figure (18) provide a complete
picture of neck development in plane strain this is not the case

for plane stress. While the p]ané stress analysis proceeds in
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the x-y plane of that figure it admits and indeed, in a thickness
average sense, reflects the effect of out of b]ane deformation,

The nature of this deformation is shown in Figure (19) where
boundary profile histories in the three'symmetry planes (x,y,z = 0)
are shown. It is apparent that the necking process in plane '
stress is properly considered as a problem in three spatial
dimensions since a three dimensional neck develops.

In plotting the profiles of Figure (19) the bar has been
assumed to have an initial thickness of unity over its entire
‘length. Thus the symmetry model for which results are shown
is bounded by a symmetry plane at z = 0 and a traction free
surface initially at z = 0.5, Note that the initial imperfection
invo]ved a reduction only in width at y = 0 not in thickness.

The analysis does not predict the portion of the boundary
profile at y = 0 (the root plane) which is nominally parallel
to the z axis. The absence of shear in this plane and the
symmetry condition at z = 0 suggest the profile shown. Merchant
[31] has observed profiles of this nature in thin plate steel tensile
specimens.

The prediction of a three dimensional neck in plane stress is
consistent with the more rapid load reduction and root plane stretch

concentration previously noted, Figure (17), in this case as opposed
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to that of plane strain. The result also exemplifies the limited
utility of plane stress analysis which by definition neglects
stress field three dimensionality which must foi]ow from the

deformed profiles of Figure (19).

The Field Solution: The numerical results provide full

histories of stress and deformation over the two dimensional
domain of the analysis. The essential characteristics of these
results are discussed below in terms of distributions of field
quantities along the symmetry lines at x,y = 0. The numerical
analysis provides stress component values at finite element
centroids. The data plotted below represent averages of results
for paifs of adjacent elements and are plotted at the centroid
poéitions. No extrapo]atién has been performed. Thus results
réported at x,y = 0 are actually values obtained at centroid
pbsitions slightly removed from these symmetry lines.

Figures (20, 21) show histories of stress distributions at
x = 0 in plane stress and pTane strain, respectively. Distributions
are given at maximum load, stage 1, as well as at stages 2, 3, and
- 6 of the subsequent necking process. Associated x-y plane boundary
profiles and e]astic-p]asfic boundary locations are also provided
for convenient reference. The plane stress and plane strain results

are similar in form and variation during the necking process.
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Figure 20 Axial Stress Distribution:
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Stress (lbs/in2 x1073)

Figure. 21 Axial Stress Distribution:
' Plane Strain :
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They are distinguished by the previously noted greater localization
of the necked region in p1ane'stress-and the presence of a non-zero
o, compohent in plane strain. A number of observations may be
made which are equally applicable to both cases:

1.. The effect of the initial imperfection is apparent
at maximum load, stage 1. Noticeable although small
amplification of its effect upon the axial stresé
distribution has occurred. Réca]] that the initial
Tocal area reduction at y = 0 was 0.5 percent while
at maximum load the 1oad1ng direction normal stréss
cy varies by 5 percent over the half length of the bar.
The transverse stress o 1is non-zero only in the
vicinity of the initial f]awvand attains a maximum
value of approximately 2 percent of cy.

2. At subsequent stages (2, 3, 6) of the necking process

explicit correlation may be established between the
axial stress distribution and neck geometry. A1l stress
components respond dramatically tb neck development.
At stage 6 the root plane (y = 0) value of o (and in
in plane strain o, as well) is nearly twice that found
at the opposite end of the bar. This distribution is
directly related to the variation in cross-sectional

area along the length of the bar. The root plane transverse
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stress Oy responding to boundary curvature in the necked
region, fises to 20 percent and 7 percent of Oy in plane
stress and plane strain, respectively. Furthérmore the
sign of oy in both cases corre]ates with the sign of

the boundary curvature, positive when the bbundary is
concave and negative when it is convex.

3. The presence of elastic un]oading'behind (for greater

y) the elastic-plastic boundary is clearly evidenced by
the cusp in the oy distributibn occurring at the boundary
location. The boundary position is also reflected in
the relative magnitudes of the stress components Oys 0y
“at the various stages in the necking process. For
example, in plane stress °y at stage 6 exceeds cy at
stage 3 in the plastic region ( y < 1.0) while the
converse holds in the elastic region (y > 1.0). The
progress of the elastic-plastic boundary through the
baf may be fo]]owéd by inspection of the axial stress
distributions in the manner described above.

‘The distribution of stress and deformation in the root plane
of the neck is of particu]ar interest since material property
relations inferred from tensile data reflect averagé material
behavior in this plane. Distributions of stress and loading

direction stretch at several stages of necking are given in
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Figures (22) for plane stress and (23) for plane strain. The
field quantities are plotted as functions of x/xm where X is
the minimum width of the necked region. _

The distributions at maximum load, stage 1, again reflect
the presence of the initial imperfection. In both cases variations
in oy across the width is small (< 2 percent) while oy is no |
greater than 1 percent of cy at any point. As bar extension
proceeds, however, fhe difference between necking in plane
stress and plane strain is quite apparent. In plane stress the
variation of stress and stretch across the root plane is
significantly greater. | | |

The stress distribution in plane stress is the resu]t'of
both diminishing thickness toward x/x, = 0, see Figure (19),"
and the presence of hydrostatic tension derived from the in
plane boundary profile through the development of o, > 0 in
the root plane. The a9y variation is approximately 17 percent
at stage 6. Note that the variation in stretch is noticeably
1ess, about 10%, since it is the result of thickness variation
only, plastic flow being independent of hydrostatic tension.

In plane strain, on the other hand, variation of field
quantities across the root plane results only from in plane

neck geometry. This circumstance apparently provides sufficient
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"stiffening“ in the plane strain neck that boundary curvature
remains much larger than in plane stress despite significant
reduction in area at the root plane, 55 percent at stage 6.
Variation in stress 5 percent, and stretch, 12 percent, at stage
-6 are much smaller than in plane stress.

Figure (23) also provides a comparison of root plane stress
distributions in plane strain predicted by equations due to
Bridgeman [1] and by the present numerical analysis. Boundary
profile data required as input to the Bridgeman analysis are
extracted from the numerical resu]is. Bridgeman's equations
are seen to overpredict Gy while underpredicting both o, and
oy Wnile the absolute differences between the results are
not large in the present case thé trend of the comparison over
the necking history considered suggests that for smaller root
plane boundary profile radii the Bridgeman analysis may
significantly underpredict hydrostatic tension.* The present

results do not indicate under what circumstances such profiles

might develop.

*NeedTeman [30] draws a similar conclusion for the axisymmetric case.
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VI. INFERENCE OF STRESS-STRAIN RELATIONS

The numérica]vdata of Section V provide a basis for inference
~ of stress-strain relations utilizing procedures similar to those
employed for reddction of tensile data obtained experimentally.
This exercise provides a basis for assessment of the validity
of these fe]ations since the actual stress-strain curve (111)
for the materia]Atested (analyzed) is known. Comparison of
inferred and actual stress-strain behavior is undertaken over the
full range of deformation from initial yield through development
of a significant neck, Stage 6 of the plane stress and plane
strain necking processes of Section V.

The comparison is performed in terms of effective stress
and effective plastic strain. Procedures emp]oyéd for the
inference of these quantities from tensile data of Section V
are described below.

vPKane Stness: In plane stress the effective stress is
found as

qef = Ey = P‘y/A‘y (1]6)

where Py is the axial load and Ay the corresponding minimum
cross-sectional area of the tensile bar. The overscript bar

in (116) denotes a cross-section average value.
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Prior to initiation of necking the average plastic strain in
the bar may found in terms of overall bar extension as described
in Appendix I. Thereafter, however,bthe overall extension is not
indicative of minimum section, root plane, plastic strain.
Alternatively, therefore, average minihum section plastic strain
is computed directly from the minimum section area. The effective

plastic strain,Eég)is given by
=P). p,3(P)_ p
eég)— KnA§ )= Kn(AO/A§ ))

in which incompressibility of p]asfic deformation has been noted.
In (117) A° is the undeformed area and Aﬁp)is the deformed area
corrected for elastic deformation. The corrected afea A§p)is that
which would exist should the applied 1oad be removed and elastic

recovery occur. In plane stress
2
AlPY= A1 + E
v y[ v cy/ 1

where Ay is the deformed area under load.

It is apparent that for metals (E&/E << 1) the elastic area
corréction (118) will be small and of diminishing significance as
piéétic deformatibnrincreases. 7%he Aata in hand confirm that for
plastic strains in excess of several percent the elastic correction

(118) is negligible thus permitting the use of A§p): Ay in (117).
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PLane Strain: Procedures similar to those described above
are employed in plane strain. They are, however, complicated
by the impossibility of inferring the plane strain (z) direction
component of plastic strain from~expefimenta1 data. Recall that

in-plane strain
dZ dZ + dz =0 _ - (19)

where the elastic and plastic deformation rate components are
not'individua11y zero. To facilitate data reduction, however,

we assume E;p)= fdz(p)dt to be zero. The results below demonstrate
this approximation to be of increasing accuracy as in-plane
plastic deformatfon becomes large. The average effective plastic

strain is thereby found as

=(P) (P )= (p)

€af 1.157 Lnxy 1.157 tn(Ao/Ay ) (120)
The elaétically corrected area Ay(p) is found from

A}fp)= A, [0+ (v(1H)/E) 5] | (121)

which reflects the influence of the plane strain condition upon
elastic recovery. As for plane stress the assumption Aﬁp): Ay'
is demonstrated to be a reasonable approximétion for Tlarge

plastic strains.
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Computation of the effective stress is similarly impeded by
lack of precise knowledge of o The ratio oz/oy is given by
Poisson's ratio v at the yield point and tends toward 0.5 for
large plastic strains. - Its variation with increasing deformation,
however, cannot be ascertained experimenfa]]y. In Tieu of such

information we consider both 1imiting cases and find

Oeflv = 0.890 c{y’ for O’Z/(Iy =y =0.3
- _ ' (122)
etlo.5 = 0.866 5 for o /o = 0.5

The presénf numerical results are within these bounds prior to

necking initiation.

Effective stress-plastic strain data inferred from the
plane stress and plane strain results of Section V are given
in Figure (24). The actual stress-strain relation (111)
employed in the numerical analysis is also shown.

Comparison of the inferred data pofnts and the actual
property curve for small plastic strains (<0.01) indicates, not
unexpectedly, that noticeably more accurate prediction results when
the data are corrected for elastic deformation. The corrected data
for plane stress are quite accurate. Stress-strain data inferred

from the plane strain results, however, are significantly in error
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for effective plastic strains 1ess‘than one percent. The error
results from the assumption of zero plastic strain in the plane
strain direction. This observation indicates that the inference
of stress-strain data utilizing results of tensile testing of
flat bars is not appropriate unless specimen dimensions ensure
deformation under conditions c]ose)y approximating plane stress.
For effective plastic strains exceeding two percent the
results shown in Figure (24) clearly suggest that flat bar
tensile data provide an adequate basis for inference of stress-
strain data. The transition from the power 1aw'portion to the
linear portion of the actual stress-strain curve, occurring
for_eé¥)= 0.05, is accurately detected in both plane stress
and plane strain. Furthermore it fs evidént that for p]dstic
strains in excess of several percent the data need not be
- corrected for elastic deformation. The results also suggest
that in the absence of necking the data reduction procedures
employed are adequate for the inference of stress-strain data
'so long as the deformation is predominént]y plastic.
The effect of necking is evident in Figure (24). For
"~ effective plastic strains exceeding those corresponding to
maximum load the effective stress is increasingly over-pkedicted

in both plane stress and plane strain. At stage 6 of the necking
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processes the error is'approximately 10 percent in both cases,
being slightly larger in plane stress. It is also clear, however,
that the maximum load point does not provide a strict upper
bound upon the utility of inferred stress-strain relations. Thi§
observation is consistent with the previously noted fact that
-necking does not initiate until somewhat after maximum load is
-attained. The data of Figure (24) indicate thaf reasonable
prediction of material behavior may be obtained for effective
plastic strains up to 50 percent higher than those existing at
maximum Toad. |

The foregoing observations are, of course, strictly pertinent
to testing of materials whose behavior may be charécterized by |
stress-strain curves-of the modified linear fqrm»(lll). In
particular it should be noted that in the above ana]yses'the
effective plastic modulus (dcef/deffp)) is consfant'thrbughout
the necking.process. Consideration of a variable modulus
would quantitatively affect the quality of stress-strain relations
inferred from post-instabi]ity data.

In order to demonstrate the effect of arvariable modulus
the preceding plane stress and plane strain analyses have been
repeated for the power law stress-strain curve of Figure (25).

This curve is identical to the previously considered modified
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Tinear relation for 0 < e£2)< 0.05. For eég)g 0.05 the plastic
modulus associated with the power law curve diminishes rapidly.
Figure (25) provides a comparison of the two stress-strain curves
as well as their associated plastic moduli.

Effective stress-strain data inferred from the post-instability
results of plane stress énd plane strain analyses are compared
with the power law input relation in Figure (26). Two significant
effects of the variable and diminishing modulus are immediately
apparent. Maximum load is attained at an effective plastic strafn
much lower than that found in the case of a constant plastic
modulus. Furthermore, the error in stress-strain curve pfediction
-subsequent to attainment of maximum load develops more rapidly
for the power law material than is observed in Figure (24) for
a linear hardening material. |

The observed effects of a variable plastic modulus are
qualitatively consistent with the nature of the equations governing
the finite deformation process. Inspection of the velocity
equilibrium equations (67) reveals that the nature of the deformation
process is controlled by the relative magnitude of the existing
stresses and the material stiffness. In the present case of a
continuously diminishing modulus the governing equations are
dominated by the effect of existing stress for smaller total

deformation than would be the case for a constant modulus. Thus
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maximum load is attained for smaller uniform bar extension as
obserVed in the numerical results and predicted by the Considerée
criterion (113). Subsequent to necking initiation the plastic

" modulus of material in the necking region diminishes with increasing
overall bar extension. Thus a more localized neck, and consequently
higher root plane hydrostatic tension, will develop accounting for

a larger error'in inferred effective stress for the power law
material.

The preceding results suggest that stress-strain relations
inferred from flat bar tensile data are highly accurate only for
a bounded, material dependent range of plastic strain. This
range excludes both the vicinity of initial yield, wherein
non-proportional loading renders the inferred effective quantities
indeterminate, as well as the large strains associated with tensile
necking.

Of equal significance, however, is the demonstration of the
utility of finite deformation analysis capability in assessing the
validity of stress-strain relations developed from test data. The
presént solution capability admits consideration not only of
functional relations such as those considered above but also of

numerical relations provided directly by experimental data.
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The analysis might profitably be employed for evaluation of more
sophisticated property inference procedures as well as for the
prediction of experimental load-deformation data on the basis of
inferred stress-strain relations. The latter approach provides

a direct means of assessing the validity of stress-strain relations

subsequehtly to be employed in design analysis.
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VII. CONCLUDING REMARKS

A theoretical basis has been established for ané]ysis(of
finite deformation of metals. The observation tﬁat finite |
deformation of such e]asto-p1astic materials may be viewed as
a process rather than an event has led to the derivation of a
complete 1nit1a1- and boundary-value problem distinguished by
its quasi-linear nature. This feature of the formu]ation motivates
the adoption of an incremental approach to numerical problem
solving.

Efficient numerical solution capability has been deVe]oped
for problems of two dimensional deformation under cdnditions of :
either plane stress or plane strain. The validity of the
numerical analysis has been evaluated by considering a variety
of elastic and elasto-plastic finite deformation problems whose
homogeneous nature renders analytic solution possib]e. 1t is
demonstrated that accurate solutions may be obtained for problems
involving extremely large displacements and rotations.

The numerical analysis has been employed for the investigation
of necking in flat hetal tensile bars. The results of thié
investigation provide not only the first full numerical solutions

for tensile necking of metals in plane stress and plane strain
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but also an appraisal of the validity of stress-strain relations
inferred from tensile test data. It is demonstrated that such
relations inferred from the behavior of flat tensile bars are
erroneous for both very small and very large (post-instability)
plastic strains. The post-instability error is shown to be
significantly dependent upon material behavior and in particular
upon variation of the plastic modulus .

It is evident from the results obtained that present knowledge
of the mechanics of tensile testing is insufficient to enable
precise characterization of material behavior from tensile data
over the fu]] range of a test. The theory and numerical analysis
which have been developed provide the means for necessary further
study of tensi]e_festing mechanics and procedures. Such
investigations might consider, for example, the effects of material
properties and tensile bar geometry uﬁon the necking process.
The possibility exists of developing procedures for correcting tensile
test data to account for root plane hydrostatic tension and thereby
to provide a basis for inference of aécurate stress-strain relations
frqm‘postfinétabj]ity_testftesu1tsl The existence of such a
material independent correction procedure is suggested by the ' ' |
~experimental work of Bridgeman []].A .

The availability of analysis capability for finite elasto-plastic
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deformation also provides the basis for evaluation of alternative
material propefty tests. Two obvious’candidétes present themselves,
compression testing and indentation testing. Both of these are
attractive since neither involves an instability phenomenon. Since
full solutions for stress and deformation may be obtained the
inhomogeneous character of the indentation or hafdness tesf would
not necessari]y‘obstruct inference of effective stress-strain
data. The utility of these alternative procedures mighf be assessed-
lnbt only by analysis of the individuaT tests but also by comparison
of stress-strain data inferred from the results of analysis of
several test methods.

The present analysis bf necking in flat tensile bars, as well
as -the possible avenues of research identified above, suggest the
primary significance of the finite deformation solution capability
which has been developed. Precise characterization of inelastic
material behavior can be extracted from the results of mechanical
testing only if the mechanics of each test employed is understood
and, in particular, only if quantitative distinction can be made
between the effects of material and geometric nonlinearity. The
availability of an analysis incorporating treatment of both forms

of nonlinearity provides the means of distinguishing their effects.
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APPENDIX I

Operatiohal Form of the Elasto-Plastic Constitutive Equations

In order to utilize the elasto-plastic flow equations (50)
and the-inverse equations (53) we muét choose a_specific form
for the yield function ¢ = Teq of (39) and operationally define
the equivalent plastic modulus “eq(p) of (46). Means must be
provided for the evaluation of “eq(p) from test'data for
particular materials. '

In the present analysis ¢ is taken as the octahedral shear

stress T

o]

= = = ]/2
$ = Toq " % C [(2/3) Jz]

where J2 is the second invariant of the deviatoric stresses Ss s
' J

= iJ ..
J2 (1/2) s 543
An equivalent plastic strain rate deq(p) is defined (43) by

~ requiring the rate of plastic work w(p)'to be given as

from-which we find

d (P) - 3d (p)
eq o
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In (I-4) d (p) is the rate of octahedral plastic shear strain
d (P) - r(1/3) d,.(P) 4id(p)71/2 (1-5)
o 1] )

Integration of (I-4) with respect to time defines the equivalent

plastic strain Eeq(p) in terms of the octahedral plastic strain

Yo(p),

, (p) ’
Yo ’ f o (1-5)

eeq(p) = /deq(p) dt = 3fd°(p) dt = 3Y°(p)

The equivalent plastic modulus “eq(p) may now be expressed in

terms of an octahedral plastic shear modulus u (p).
o

=
—~
©
~—
Ll

= (172) drg/deg ) = (173) 4 (P) (1-7)

=
~~
©
N
I

= (1/2) dTO/dyo(p) | (1-8)

The octahedral plastic shear modulus may be evaluated for
particular materials utilizing data obtained by quasi-static
testing under simple loading conditions. In the case of uniaxial
tension* we have a single non-zero stress component cx(t)’> 0

and from (I-1) we find the octahedral shear stress

t = (/2/3) oy | (1-9)

*The discussion is restricted to tensile data obtained prior to
initiation of necking.
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Noté that oy is defined as applied load divided by actual specimen
cross-sectional area as discussed in detail by MacGregor [32].

As Oy increases with time the tensile specimen deforms in simple
extension. For an isotropic material this homogeneous elasto-
plastic flow process is described by the cartesian deformation

rate components

o
(]

d (p) & d.(e) >0
X X

(=8
1]

(p) (e)
d,(P) +4q (€) <o
y.oooy (1-10)

(=9
1]

d(p)+d(e)<0
z Z :

d =d
y z

Noting the incompressibility of plastic flow we find

(P) =4 (p) = - (p) ‘ -
d, d, P) = -(1/2) d, (1-11)
The plastic strain rate in the loading direction is given by

d (P) = (¢/) - o /E S (1-12)

where £ is the instantaneous x dimension of the tensile specimen’
~gage length and E is the elastic Young's modulus. Substituting

(I-12) into (I-5) and integrating with respect to time the octahedral
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plastic strain is found as
y V=) tem o e (1-13)

where Ay = £/£° and 20 is the original (undeformed) gage length.*

The octahedral prpperty relation ro(yo(p)) provided by
(1-9) and (I-13) may be approximated by a monotonic function 6r
retained in the numerical form provided by the experimental dat&.
The FIPDEF program utilizes the octahedral data directly and
employs a finite difference technique to re-evaluate uo(p) in"
each finite element at the beginning of each time step. The
value of t_ for which yo(P) tends to zero defines the initial
proporfiona] limit for the material. Elastic analysis is
performed until the octahedral stress exceeds this value.

It fs occasionally convenient to utilize materia] property
variables which reduce to the principal uniaxial quantities in
the case of simple extension under uniaxial loading. For thisv

purpose we define’

oo = [39,11/2
def(p) =A[(2/3) dij(p) dfj(P)]1/2 ' (1-14)

eef(ﬂp)':_ fdef(p_) dt

*Under the assumption of infihitesima] elastic strains (<<1) the
undeformed length defines an appropriate reference state for the
entire plastic deformation process.
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In the case of uniaxial tension-these reduce to
[e) =0
ef  x (1-15)

d (p) d (p)
ef X

These effective quantities (I-13) are related to the octahedra]

variables as

T‘ .
L]

(v2/3) cef

do(p)’ = (1//2) C,ef(p) - (1-16)

u (p) = (1/3) dqef/d;éf(p)

o

The elasto-plastic flow equations (50) and inverse equations

(53) may be written in terms of the octahedral quanfities as

2ud1j =G_"j ~(o/1+v) 3K, 51j+(u/u°(p))(3!;02)-151'3. sk]\Sk]‘ (1-17)

S DN i 2 (p) ;1771 i <kl
. = Ad” §' +2pdl -2 + -
o j k $; i i u[3T° (1 M /v)] s ; S dk,I (1-18)

where A,u are the Lame constants of linear elasticity.
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APPENDIX 11

Elasto-Plastic Constitutive Equations for

Plane Stress and Plane Strain

The general elasto-plastic constitutive equations of Section
1.2 are specialized in Appendix I for analysis of materials in
which plastic yielding is controlled by the octahedra] stress.
These equations (I-17, 18) are expanded below for analysis of
elasto-plastic flow under conditions of either plane stress
or plane strain.

It is convenient to develop the equations in matrix form.
For this purpose we define matrix vectors consisting of the
in plane cartesian components of the Jaumann stress rate S .

1]
and deformation rate dij'

o
Y
n

o

dey
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For either plane stress or plane strain the

equations may be written

and the inverse equations as
& = pt

The constitutive matrices B®

Specific forms of these matrices are developed below.

elasto-plastic flow

It
—
-
N
-
w

s T, &

Z pt

it
—
-
N
-
w

s T, €

€ and P%E are full and symmetric.

The

~notation employed is simiTar to that utilized by Swedlow [33].

‘Plane Stress: It is assumed

that

Under these conditions the constitutive matrices are found as

BZ& = (1/E)

. 2 2
1 + Sy /s°

(sym)

) 2 2

v + sxsy/so . st cxy/s°

1+ 2/s 2 2s o /s 2

y o Y Xy o
2(1+v+20xy2/502)
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pEE = £/(1-v2)

’ 2 - 2 ’
~P(s_+v -P(s + +
1 P(Sx sy) /so v P(Sx \)Sy)(sy VS

- 2/¢ 2
] P(sy+vsx) /s°

X

)/séz (v—])P(sx+vsy)cxy/s°2

(v—1)P(sy+vsx)oxy/s°2

(sym) [(1-0)/2]-(1—v2)chy /s ?
n : -
where
s % =62y PlE . (11-8)
[« [+] o
= 1ov2els 2 2 217e 2 i
1/P = 1-v +[sX +2vsxsy+sy + 2(1—v)cxy ]/so v (11-9)
In plane stress the octahedral stress is found from (I-1) and
#o(p) is the octahedral plastic shear modulus (I-8). o
e 2
7 2= (2/9) (00~ oxoy *of +3 TxyZ) | (11-10)
The deviatoric stresses are
Sy = (20X - oy) /3
= - 1-
Sy (ZGy cx) /3 (11-11)
s, o *0) /3
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The constitutive equations (I-17) also provide the auxiliary

relation

d, = (1/€) [(-v+s,s./s )5+ (-v+'szsy/s°2)3y+ 2(Szoxy/S°28Xy)] (11-12)

P]ahe'Strain: It is assumed that 5/5z is a null operator and

that
d =d,_=d_=0 . (I1-13)

Under these conditions the constitutive matrices become

BEE = 1
E(1+522/s°2)

1—v2+(sX2+2vsXsZ+szz)so2 -v(1+v)+(sxsy-2vszz)/s°2 2[(sx+vsz)oxy/s°2

200 2 2v/c 2 of(e + 2 | 1114y
1-v +(sy +2vsysz+sZ )/s° 2[(5y vsz)oxy/s° (11-14)

(sym) 2{(1+v)+2[oxy2+(1+v)522/s°2}

PEE = 1/ (1+v)

W) 022 } 2 } 2
3k(1-v) - Q Sy /so 3kv - Q sty/So Q sxoxy/so
2, 2 i 2 i
3k(1-v) - Q Sy /s° Q Syoxyloo (I1-15)
- 2/ 2
dey /So
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where é 2 is defined by (II-8) and
o

S

x (2oX - o, - cz) /3

Sy = (ZGy -0, - Ox) /3

-0 )/ 3

S X y

z (20z -0

2 _ 2, 2, 2_ - -
T, (2/9)(0X +ox +cz 0,0,70,0,70, 0
In (II-15)
Q= 2u/(1 + w/u_(P))

and k is the elastic bulk modulus.

= E/ 3(1-2v)

+ 30

Xy

(II-16)

2)-

Note that boundedness of « and thereby P%¢ in (1I-15) requires

v < 1/2. Hence plane strain analysis of elastically incompres-

- sible materials is not possible. Approximate analysis

of such materials may be accomplished by setting «/E >>1.

In addition to (II-14, 15) we have the auxiliary relation

Z

_ 2
(20 s 0, /s, ]dxy}
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APPENDIX III

The Rate Stiffness Matrix for Planar Analysis

The rate stiffness equations are specialized below for analysis
of planar problems under conditions of either plane stress or
plane strain. A triangular finite element is employed With the
assumption that the velocity field varies linearly within the

element.

"~ The Linear Velocity Element: Consider the triangular finite element

of Figure (III-1). The instantaneous configuration of the element
is defined by the coordinates of its vertices or nodes. These

nodal coordinates are represented in matrix form as X©

— —

X

X (I11-1)

1]
>
N

3

i

Y3

where X] (Y]) is the x (y) coordinate of node 1, etc.
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Figure ITI-1 Linear Velocity Finite Element
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Vectors of nodal velocity components V® and nodal loading -

rate components T% are similarly defined.

Vx]

Vy]

m

Vy2

Vx3

v
¥3]

x2[ - - - ' (1I1-3)
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The velocity field components within the element are

approximated as

T
- pO o
. a =1, b (I11-4)
v, = A by (x,y)

where the vector functions ¢* possess the components

o o
o Oy | ¢y
1 1 ' 0
2 0 1
3 X 0
(ITI-5)
4 0 X
5 y . 0
b 0 'y
Hence the velocity field approximation (III-4) is expanded as
v, (x,y) = A; + A x + Ay
X 1730 (111-6)

Vy (x,y) A2 + A4x + A6y

Evaluation of the velocity field approximation (III-6) at the

nodal positions (III-1) must yier the nodal velocities (III-Z).
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Substituting (III-1) into (III-6) and solving the resulting

equations for A% obtains

A® = poByB Gy B=1,...,6 {111-7)
reB = (1/24)
(Y3 45) 0 (RgVy¥gX) 0 (gYvx,) 0|
- 0 (X,Y3-YoX3) 0 (Xg¥q-Y3Xq) 0 (X;¥2-Y1X,)
(Y,-Y4) | 0 (Y4-¥7) b (Y4-Y,) 0
0 (Yp-Y3) 0 (g 0 (Y1-Y,)
(X3-X,) 0 (X,-X3) 0 (Xy=Xy) 0
|0 - (X57X,) 0 (x]-x3) 0o (xz—xl).d

and A is the area of the element.
A= (1/2) [X2(Y3—Y1) + X](Y2—Y3) + X3(Y]-Y2)] (I11-9)

Substituting (III-7) into (III-4) yields the velocity field
representation (III-10) corresponding to the general form (74)
of Section III.1.

The element deformation rate and Jaumann stress rate fields
in the x-y plane are giVen by the matrix vectors % and D%,

respectively (¢ = 1,...,3)
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- - - -
O'X X
S Dt = d _ 111-10
g O'y y ( )
5 2
| x| B

These in-plane rates are related by the constitutive equations

of Appendix II
ot = PEEDE 5 4, 8=1,...,3 (I1I-11)

where PCE = PE% takes a form appropriate for either plane

stress (II-7) or plane strain (II-15).

""The Planar Rate Stiffness Matrix: The preceding formulation of

the rate behavior of the linear velocity element provides the

. basis for specialization of the element rate stiffness matrix

KaB of (79) to a form appropfiate for two dimensional analysis.
The'geheral form of this matrix is given below employing cartesian
tensor notation*. The hatrix is decomposed into three éomponents

to facilitate the ensuing two dimensional specialization.

*The notation of Section III is employed here. The distinction -
‘between covariant and contravariant tensor components need
not be made in cartesian coordinates.
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ke = 08 + K08 + K3°‘3 0, B8=1,...,6 (111-12)

(!B - ’ § (SB
= an P

B
m
. _ Ta N ' T6 . Ts 58
o = n - . . )
K2 f{I' [d)j,i 01p¢j,p 2¢1'j %im $im , JroBydv
B
.m
afB T n,n T § 68
= re 0. ¢, .IOPYV
3 /»{ %i,p Cintig’
Bm

In (111-12) matrices K]“B and K2“3 are symmetric while K3“3 is not.
Latin indices take the values 1, 2, 3.

Expansion of (III-12) for analysis of plane stres; and plane
strain deformation procedes on the basis of the following
observations.

- 1. Since all quantities présent in (III-12) are uniform in a
single element the requisite volume integration over Bm reducés

to multiplication by Vm the volume of the element.

Vp = £, A (I11-13)

In (III-13) A is given by (III-9) and zm, the element thickness

in the z direction is computed by noting that in plane stress

dZ =.£m/£m (II1-14)
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where dZ is given by (1I1-12), while in plane strain
o= 1 (I11-15)

2. Substituting for ¢ija in K]"‘8 the matrix may be written as

&s - T . a8 = 1,...,6
K f T pEL LB gy (111-16)
B g’C = .l, 2’ 3
m

where PE% is the constitutive matrix in (III-11) and

(Y2-Y3) 0 (Y3-Y]) 0 (Y]—Yz) 0

T=(1/24) 0 (X3Xp) 0 (Xy-X3) 0 (Xp=xy)|  (111-17)

(XgXg) (Yp=Yg) (Xy=X3) (Yz-Y) (XpXy) (¥;-Y,)

s -

3. Reduction of K,*® to proper form for planar analysis is

2
accomplished by considering Latin indices to take the values

1, 2, corresponding to the x and y coordinate directions.

T
4, The matrix K3°‘B contains a factor ¢j j associated with
the dilatation rate v, 3’ i.e.,
15 réa y* =y, . =d A+ d +d (i11-18)
jsj \]’J X .y Z A . S
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In plane strain Vj,j is completely defined by the in-plane
dgformation rate components dX and dy (dZ = 0) and K3°‘B may be
employed as written in (III-12) for i,j,p = 1, 2. In plane
stress, however, dz»f-o and is given by (II-12). To accommodate

both of the above cases the matrix is written as

1(30“3 ) /{ran‘-q,;.‘ p pS rde}d" : (111-19)
B
m

where

pS = (1/3¢) [E,, + E (111-20)

For analysis of plane stress E, in (I11-20) are the P%% of

£
the constitutive equations (III-11); for plane strain we take

By = Epp =3

Erp=B3=Bp=0
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and in both cases k is the elastic bulk modulus k = E/3(1-2v).

In summary the rate stiffness matrix for planar problems is

written as
aB _ ¢ aB af af _
K |<1 + K2 + K3 (III-21)
where
o - Iua Er T8y .
K] (ZmA) {r%s p&L 1rsP}
Ko = (g A) {}‘-““[cb“ o, 1? ~2¢0. ¢ I‘S 1ré8}
2 S m J,i ipJsp 13 “jmim
K.eB = (2 A) {;d%" LS ro8y
3 m 1:p

In (III-20) Latin indices take the values 1, 2 while of the
Greek indices; &,z take the values 1,:2, 3, whiie the remainder
vary-over 1,...,6. Analysis of either plane stress or plane
strain procedes by choosing appropriate forms for P&% and P$
and setting the value of £m according to either of (III-14) or

(I11-15).

155



APPENDIX IV

Solution of Verification Problems

Homogeneous Finite Deformation

Problems of homogeneous finite deformation may be defined
by specification of velocity fields vi(xj,t) whose gradients

are spatially uniform, that is,

vig s fig®) - (1v-1)

The time dependent stress fields corresponding to velocity
fields of the form (IV-1) are likewise spatially uniform.
Conséquent]yAthe velocity equilibrium équafions (67) are
satisfied identically by any velocity field corresponding to
homogeneous deformation.

Complete solutions to such problems are developed by time
integration of the velocity field to define the deformed
configuration of a body and of the constitutive equations (53)
to define the stress field in the body. Solutions are developed
below for problems of finite homogeneous extension and simple
shear. Excepf as noted the solutions are developed in a fixed

cartesian coordinate system (x,y,z).
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A-1V.1 Finite Extension

Consider the problem of extension of an isotropic material

in the x-y plane as defined by the cartesian velocity components

(1v-2)

v Koy

y

where o is a constant and k is an unknown function of the material
properties and possibly the state of stress. We may consider

cases of plane strain for which

v, =0 (1v-3)

and of plane stress for which we expect

v, = kaz - (1v-4)

The deformation rate components for this velocity field are

dx = q
d = ka .
Yo (1V-5)
0 plane strain
d =
2 ke plane stress
d,=d,,=d_1=20

Xy Xz~ Tyz
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Integrating (IV-5) with respect to time the total deformation may

be described by the logarithmic strain components

e, = &n A, = at

X X

ey = Ln 3y = Kin xx (1Iv-6)
0 plane strain

e, =4dn X =

Ken'xx plane stress

In (IV-6)_(AX,Ay,AZ) are coordinate direction stretch ratios
and K is expected to be a function of material properties and
possibly the state of stress.

Non-zero stress components Oy oy and in plane strain o,
are found by substituting the deformation rate (IV-5) into
the constitutive equations (53) and integrating with respect
to time. The Jaumann stress rate .. in (53) reduces to a

1J
material derivative o;; since no rotation occurs.

1J
In plane applied loads are found by integrating the tractions
tx and ty over x and y coordinate faces of the body, respectively.
That is, for a body which is initially a unit cube, as in
Section IV, we find

P =g A on x faces
X X X (1v-7)

P = Uy A on y faces
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where

A =2x2

X Yz . (1v-8)
A =2,

y X"z

Elastic Material: Substituting the deformation rate components

(IV-5) into the -constitutive equations (53) for ”/“eq(p) =0

yields
o, = (A+2y) dx + A(dy+dz)
6 = (A+2u) d + A(d_+d_)
y y Xz (1v-9)
; = + + ‘
o, = (2u) d, +a(d+d )
.5 = Oxy = Gyz =0 )
Integrating (IV-9) with respect to time for an initially
stress free material obtains
0, = (20) g + aleyre,)
o, = (a2u) e + Ale_+e,)
y y X Z (1Iv-10)
S = +
Gz (A+2u) €, + A(ex ey)
c =g¢,.=90._=0

Xz Xy yz

where the strains (ex, Ey’ ez) are given by (IV-6).-
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Solutions to problems of plane stress and plane strain extension
may be given in terms of a prescribed stretch ratio in the x

direction A, = X

Plane Stress
o, = Edn A
g =g =0
y y4
Ay:\)& =, X—V
z (1v-11)
A = =a"2Y
X 'yz
= A = T-v
Ay )\X}‘Z A
- - 1 =2 .
Px = oA, = E A7V
= = 0
Py = oy
Plane Strain

o, = [E/(1-v9)] tn &
o, = [ E/(1-v))] 4n &

g, =0 (Iv-12)

Y

Xy = X[V/ (V“])]
A - 1

Z
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A = A A = 5\'[\)/(\)'])]

X y z

A = A, =X

y Xz (IV-12)
P = oA = [E/(1=8)1 AL/ (-1)1gy, |
Py = cyAy =0

Elasto-Plastic Material: Development of solutions for elasto-
plastic materials is facilitated by considering the flow
equations (51) rather than the inverse equations (53).
Substituting the deformation rates (IV-5) into these equations

and noting that the shear stresses are zero yields

4, = (/E)oy-v(0,+0,)14(3/2) (0 ¢/ 80, )Mo ~(1/3) (0,0 ¥o,)]
4 - (/BN ~(5,+9,) +(3/2) (qq/ 80 o, ~(1/3) (0,0, 40,

Co : | (1v-13)
dz = (1/5)[02'V(Gy+02)]+(3/2)(oef/Bcef)[oz-(1/3)(ox+oy+oz)]

d = dy, =dy =0
where o ¢ is defined by 1-14 and in the present case is given as

s’ = (1/2)[(o,-0,)2 + (0,-5,)% + (0,-0,)°]
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In (IV-13) we have
1/8= 0 for O < Oy 3 e]astjc flow
B f doef/deef(P) > 0 for Oof 2 Oy 3 elasto-plastic flow

where oy is the initial yield stress of the material.

Immediate integration of (IV-13) is not possible due to
the presence of the stress components in the equations. To
facilitate integration of these equations we assume proportional

loading, i.e.,
o5 = q(t) °ij° (Iv-14)

where cij° is a constant reference stress state defining stress
component proportionality. The time varying loading level is
controlled by the scalar q(t). Integration of (IV-13) subject
to (IV-14) provides equations relating total stresses and
logarithmic strains (IV-6).-VThis simplified formu]ation,'termed
deformation theory, is correct to the extent that the constraint
(Iv-14) is valid for particular problems. For plane stress |
extension‘the stresses have the form (IV-14). In plane strain,

however, the proportionality between the in plane stress

components (ox,oy) and out of plane component o, changes at the
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yield point. Hence the deformation theory is in a strict-sense
not appropriate for plane strain elasto-plastic analysis. For
the extension problem considered here the quantitative error
in deformation theory results is small and the availability of
those results in analytic form facilitates comparison with
FIPDEF numerical results. For more general problems, however,
the generaT flow fheory of Section I.2 must be employed.

~ For Tof < Oy the solutions for plane stress and plane
strain are given by (IV-11) and (IV-12), respectively.  In
each case a yield point value of A, A=,, may be found

corresponding to oef=0V' For Oef > Oy the solutions are as

follows.
" Plane StneAA
x> Xy .= em
o, = [8/(1+n)Ileni+y]
O_y =0, = 0
P = L8/ (1) Lenity )/} eT
Py, - 0

where e is the natural base.
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In (IV-15)

Plane Strhain

where e, n, v .

a

1}

1]

B/ e

=3
]

y = Gy/B

To = [n(1-2v) (£nr+y)1/(14n)

;\ > A, = e¢Yn(]-V2)
-y
Oy = H3A £n x + Hy
ory =0
o, =0, [142vn)/2(14n)] + o 9[(2v-1)/2(1+n)]
Px = H3Ay £n A + H4 ;y
re as defined previously and

-(1+2vn) [3+2n(1+v)]./ [4(1+n)8 ]
[v6/8(14n)] [4vn+2nt3+am?]

48(1+n) / [3+4n(2-v)+4n?(1-v2)]

(0,/6) (4m+3¢7) / [3+4n(2-v) + 4n? (1-v7)]

Tov + v2
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Maximum Load Phenomenon: The applied load in the direction of

extension may be written as

P.=gA =f(X) (Iv-17)
X X X '

VThis relationship PX(X) is characterized in all cases considered

here by a maximum value Pc occurring at some critical stretch

;. .The critical stretch may be found by solving

d/dx (P,) = 0 (I1v-18)

where PX(X)_is given by any of (IV-11, 12, 15, 16). The maximum
- load is evaluated by substituting_iv?lxc in the appropriate
load equation.

Expressions for Pc, AcAare;given in Table (IV-1) for each

of the four extension problems solved in this section.
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€1

[(u+1)¥]/(Z0€+up)

oseq |ednleu

= 9
Z040-| = z¢/L ssaals pLath LELxeLun = o
{L(as)uze](uog+L) H/D(Z0=1) Jub+(A-2)up+€] = S0 (Uag+l)/(Usl) = I Juelsuod = (d)3p/2op = 8
g/ho = A oL3eY S,uU0SSL0d =
.AC+_.V.V\NAC>N+_.VIN?C+_, = I g = U sninpoy m.m:30> = 3 :U0L3@]0N
¢ 2 $ uLeus
H(OMA)-AL -t gL (124 1) 1 1[(402+1) /8] o/(0-1) [3(n+1)01/3 aue 4
3
M“ $S3u3S
A= - -ABl(uaz+L) /9] a2/1 nz/a
| aue|d
. 5 —— = -
AU&V uy ) d A &V uy , d N

JI1SY1d-01Sv13

NOISN3LX3 SNOINIIOWOH

JI1Ssv13

THOLIYLS ANV av01 40 SINTYA WIILI¥D
(L-AI) 319Vl
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A-1V.2 ‘Unidirectional Extension

Consider the homogeneous deformation corresponding to the

velocity field components

Vyr = ax'

v =20 -

M (Iv-19)
vz. =0

where (x", y', z') is the rotating coordinate system of Figure

(10b). The_deformation rate components in the rotating system are

dyt = a
X (1v-20)
dyn = dz' = dx'y' = dxlzl = dy'z' =0
and the total deformation is described by the single non-zero -
‘strain component
Exl = £n )\xl (IV'Z])

For an elastic material the stress fie]d in the prime
system is found by writing (IV-10) in that system and setting
all strains to zero except Eyte The complete solution of the

problem in (x', y', z') 1is
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X
oy, = =1

o 0 = {{1-v) E/[(14v) (1-2v)1} £n A (1v-22)
oyt = oy = (v/1-v) G'x

Per = oyrfyr = o y‘kz' =1

Py- = Uy'Ay' = Uyl7I = (v/1-v) A oy

where the initial configuration has been taken as a stress free

unit cube.
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A-IV.3 Simple Shear

The velocity field (IV-23) is imposed upon an initially

stress free elastic continuum.

<
n

~
<

X (1v-23)

k = constant

Corresponding to (IV-23) are the non-zero deformation rate

components

dxy = dyx =k (Iv-24)

and non-zero spin components

Wyy = “uyy = k _ (Iv-25)
Recalling the definition of the Jaumann stress rate, Gk]
~k - 'k k m _m k '
oy <oy +0 m®q e (Iv-26)

(p)

The constitutive equations, (53) for u/ueq = 0, may be

written
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d/dt(cx)

ag
Xy

d/dr(oy) ~9yy

d/dcloy ) =+ (1/2) (o, = o)
where:

2u = E/(1+)

T = 2kt

Integrating (IV-27) subject to

obtains the solution

Q
1t

Xy

Q
1

Q
1l

initial conditions of zero stress

usin t

= (1-COS T)

p (cos t-1)
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