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LOW-SUBSONIC AERODYNAMIC CHARACTERISTICSOF A
SHUTTLE-ORBITER CONFIGURATION DESIGNED
FOR REDUCED LENGTH

By George M. Ware and Bernard Spencer, Jr.
Langley Research Center

SUMMARY

An investigation has been conducted in the Langley low-turbulence pressure tunnel
to determine the low-subsonic aerodynamic characteristics of a 0.01875-scale model
of a ""split-engine' shuttle-orbiter configuration. Tests were made at Mach numbers
less than 0.30 over an angle-of-attack range from about -2° to 22° at 0° and 6° of side-
slip. Most of the investigation was made at a Reynolds number of 13.9 X 106 pased on
body length. Configuration variations included either center or twin tails and cylindri-
cal or boattailed body as well as deflected longitudinal, lateral, and directional control
surfaces.

The results of the investigation indicated that boattailing the aft body increased the
maximum lift-drag ratio by about 1.1 to a value of 7.75 for the twin-tail case but gave
more negative (out of trim) values of pitching moment. The cylindrical-body configura-
tion with a center tail had a maximum trimmed lift-drag value of 7.0 with an elevon
deflection of 0°. In general, all configurations were slightly unstable longitudinally at
the lower angles of attack and had low values of stability at the higher angles of attack
about the center-of-gravity location of the present study (0.651 body length). All con-
‘figurations were directionally stable and had positive effective dihedral.

INTRODUCTION

The National Aeronautics and Space Administration and the aerospace industry are

currently investigating, both experimentally and analytically, a space shuttle system suit-
~ able for trarisportation of large payloads to and from near-earth orbit. Typically the

orbiters under current study (ref. 1) have the main propulsion system located aft of"the

cargo bay. In examining potential means of reducing vehicle size, Langley Research

Center has investigated a concept for which the engines were relocated in fairings on —~

top of the wing alongside the body (cargo bay). The resulting configuration, therefore,
-was considerably different from previous orbiters. :



The objective of the present study was to determine the effects of configuration
variations on the low-subsonic aerodynamic characteristics of a 0.01875-scale model
of the aforementioned ""split-engine' orbiter. The tests were made in the Langley low-
turbulence pressure tunnel at a Mach number of less than 0.30 over an angle-of-attack
range from about -2° to 22° at 00 and 6° of sideslip. Most of the tests were conducted
at a Reynolds number of 13.9 X 106 based on body length. Configurations investigated
included either twin dorsal tails at various roll-out angles mounted on the engine fair-
ings or a center-line vertical tail, a cylindrical afterbody, and boattailed.afterbody.

SYMBOLS

The longitudinal characteristics are presented about the stability axes, and the
lateral characteristics are presented about the body axes. All coefficients are normal-
ized with respect to wing-planform area, extended to the body center line, and wing mean
aerodynamic chord or wing span as defined in figure 1 and table I. The moment reference
corresponded to 65.11 percent of the body length (29.44 percent mean aerodynamic chord),
which was estimated to be the center-of-gravity location at landing without payload.

b - reference span (maximum wing span), m
c mean aerodynamic chord of wing, m
. . Drag
d coefficient, —=
Cp . rag co 101n,qS
-]
L, lift coefficient, Lift
S
o0
. C . rolling-moment coefficient, Rolling moment
l q_5Sb
AC
4 .
CZB =25 per deg, B =0°and 6°
. _— AC,
Clb rolling-moment coefficient due to aileron deflection, A5 per deg
a a
. . ' AC,
Clé rolling-moment coefficient due to rudder deflection, N per deg
r ' : r



Pitching moment .

Cm pitching-moment coefficient, —
. quc
Cm,o - pitching-moment coefficient at zero lift
. , . . Yawing moment
Ch yawing-moment coefficient,
qooSb
AC
Cp, = —2, per. de = 0° and 6°
nB AB ’ p g’ B
: - . : aAC,
Cné yawing-moment coefficient due to aileron deflection, x5 Per deg
a a
' . ACp
Ch 5 yawing-moment coefficient due to rudder deflection, N per deg
r r
Cy side-force coefficient, Side force
. qooS
AC
Cy =—2X, per deg, B =0°and 6° ]
Y Y per deg, B=0"an
. : : . ACy
C side-force coefficient due to aileron deflection, per deg
Yéa Ady’
. ACy
C side-force coefficient due to rudder deflection, ——=, per de
¥s AG,’ €
r - ' ,
L/D lift-drag ratio
a, free-stream dynamic pressure, N/m?2
R Reynolds number based on body length
S projected wing-planform area, m2
a angle of attack, deg
B angle of sideslip, deg
5 . . 6e,L - 6e,R . .
a aileron deflection angle, ———— |(positive for right-roll command), deg

2



elevon deflection angle measured normal to hinge line (po.sitive when trailing

e

edge deflected down), deg
o L*0rR

o rudder deflection angle, —’——2—’, measured normal to hinge line (positive
for trailing edge left, viewed from rear), deg

¢ ‘twin-tail roll-out angle (measured from vertical), deg

&bscripfs:

L left

max maximum

R right

TESTS AND CORRECTIONS

The tests were made in the Langley low-turbulence pressure tunnel at Reynolds
numbers, based on body length, ranging from 13.9 x 106 t0 20.9 x 106, with the major
portion of the tests made at 13.9 X 106 at Mach numbers less than 0.30. The angle of
attack was varied from about -2° to 22° at 0° and 6° of sideslip.

The model was sting supported and forces and moments were measured with a six-
component strain-gage balance. The balance and sting were calibrated for the effects of
bending under load in both the longitudinal and lateral planes. In all cases the drag pre-
sented herein represents gross drag since base drag is included. Standard wind-tunnel
corrections for the effects of tunnel blockage and jet boundary have been applied to the
data by the methods described in references 2 and 3.

DESCRIPTION OF MODEL

Sketches and photographs of the 0.01875-scale model are presented in figures 1 and
2, respectively. The wing had an aspect ratio of 2.4 with a 50° leading-edge sweep and a
-40 trailing-edge sweep. Engines were mounted in fairings above the wing and alongside
the body. The body was tested with both a ‘cylindrical aft section and a boattailed aft -
section.

Two dorsal tail configurations were investigated: a body-mounted center tail and
a set of twin tails mounted on the engine fairings alined with the model center line. The



twin tails were tested at roll-out angles, measured from the vertical, of 09, 159, and 30°.
For control surfaces, the model had elevons in the wing trailing edge which extended from
the engine fairings to the wing tips, rudders in both the center and twin tails, and a body-

mounted base flap which was fixed at 0° for this investigation. A more detailed descrip-

tion of model geometry is presented in table I.

RESULTS AND DISCUSSION

Longitudinal Aerodynamic Characteristics

Effect of Reynolds number.- The effect of increasing Reynolds number on the longi-
tudinal aerodynamic characteristics of the model is presented in figure 3. The boattailed
body with twin tails was selected for these tests as it was considered the configuration
most sensitive to changes in Reynolds number. The data show that increasing Reynolds
number had no effect on lift-curve slope or stability level at angles of attack below about
15° and produced only minor changes in these parameters at higher angles of attack.

_There were, in general, reductions in drag at lift coefficients greater than about 0.35
which are reflected in higher values of maximum lift-drag ratio with increasing Reyriolds
number. It appears, also, that drag due to lift had not become constant for the test
Reynolds number range. Because of the preliminary nature of the design and the num-
ber of configuration variables, it was decided, however, to expedite testing by conduct-
ing the remainder of the tests at a Reynolds number of 13.9 x 106 recognizing that val-
ues of (L/D)yax may be conservative.

Effect of boattail and various tail configurations.- The effect of various configuration
components on the longitudinal characteristics of the model is presented in figure 4.
Comparison of the data for the boattail afterbody model and the cylindrical afterbody
model with tails off indicates that the boattailed configuration produced considerably more
lift and less drag than the cylindrical-afterbody configuration. The addition of the twin
tails, acting as end plates, increased the effectiveness of the boattail giving higher values

of lift and lift-curve slope. The maximum lift-drag values varied from about 7.75 for the

boattail-body twin-tail configuration to about 6.65 for the cylindrical-body twin-tail con-
figuration. The cylindrical-body center-tail configuration had an (L/D)max of about 7.0.

With the center-of-gravity location of the present investigation (0.651 body length)
all configuratiéns were slightly unstable at angles of attack below that for (L/D)ma.x
and had low values of stability at the higher angles of attack. The cylindrical-body con-
figuration with either twin or center tails was trimmed (5e = 00) with neutral longitudinal
stability from angles of attack of about 7° to 119 which included the angles of attack for
maximum lift-drag ratio.

The boattailed twin-tail configuration, with large negative pressures over the aft
portion of the body, had negative Cm,o and negative values of pitching moments over



the angle-of-attack range with no longitudinal trim for zero elevon deflection. It is inter-
esting to note that negative Cm,o resulted from the addition of the center vertical tail
to the cylindrical-body model. Usually adding a drag-producing area above the center of
gravity results in a positive increment in pitching moment. In the present case, however,
“the flow expanding around the rather thick (12 percent of the chord, see table I) center
tail apparently reduced the pressure over the aft body creating additional lift and an
increment of nose-down moment. This assumption can be substantiated partially by
noting the slightly higher values of lift for the tail-on configuration. The same results
have been noted from unpublished data on an identical airfoil tail added to a configuration
having a similarly wide base.

Effect of twin-tail roll-out angle.- Rotating the twin tails from 0° to 15° and 30°

* from the vertical (see fig. 5) added lift aft of the center of gravity which resulted in low-
lift stability changes from -0.006T to 0.014T and 0.034T, respectively. Untrimmed maxi-
mum lift-drag ratios were also increased from 6.65 for ¢ = 0° to 6.75 for ¢ =159
and 6.95 for ¢ = 30°. '

Effect of elevon deflection.- Data for elevon deflection with the cylindrical-body
configuration having twin- or center-tail arrangements are shown in figures 6(a) and 6(b),

respectively. For the twin-tail configuration (fig. 6(a)), negative elevon deflection caused
a slight increase in lift-curve slope and an accompanying increase in longitudinal stability.
This effect on stability is somewhat unusual in subsonic incompressible flow and is not
present for the configuration with the center vertical tail (fig. 6(b)). It appears that when
the elevons were deflected, a change in local stream angle occurred which affected the
rolled-out twin tails, thereby increasing tail lift and resulting in an-overall stabilizing
effect.

Lateral-Directional Aerodynamic Characteristics

Effect of various tail configurations.- The lateral-directional stability characteris-
tics are presented as the variation of the stability derivatives Cy g’ ‘CnB, and C ZB with

angle of attack in figures 7 and 8. These parameters were obtained by taking the differ-
ence in lateral coefficients measured at angles of sideslip of 0° and 6° over the test angle-
of-attack range and therefore do not account for any nonlinearities which may occur in

the intermediate g-range.

The effect of various tail configurations was investigated with the cylindrical-body
model only. The data show that the model was directionally stable and had positive effec-
tive dihedral (—C l B) at positive angles of attack for all configurations. The center tail,

although somewhat smaller than the total area of the twin tails, was more effective in



stabilizing the model. Rolling the twin tails from the vertical progressively decreased
directional stability and increased the effective dihedral parameter. In addition, rolling
the tails out tended to linearize Cnﬁ with a by effectively moving the tail out of the

influence of vorticity produced at the wing-body juncture. The effect of boattailing the
aft body for the body-wing combinations without tails (see fig. 8) shows that there was a
loss in directional stability and an increase in positive effective dihedral resulting from
the loss in side area at the rear of the model. '

Lateral—directfonal control characteristics.- The effect of rudder deflection as a
yaw control and aileron (differential elevon) deflection as a roll control for the cylindrical
body model with center and twin tails is presented in figures 9 and 10, respectively.

Comparison of the rudder effectiveness Cr16 for center and twin tails shows that
r

the twin tails, even though they were rolled out to 15°, were more effective than the cen-
ter tail as a yaw control. This result should be tempered by the fact that the rudder area
was greater for the twin-tail configuration (see table I). Rudder deflection on both tail
arrangements caused adverse rolling moments.

The ailerons (fig. 10) were a more effective roll control when deflected in the pres-
ence of the center tail than in the presence of the twin tails. The reason for this is not
obvious but is probably associated with flow interference between elevon and twin tail as
was indicated in the longitudinal control characteristics of figure 6(a). Increasing the
aileron deflection angle for the twin-tail model from 2.5° to 10° reduced the value of

C A and had little effect on the unit yawing moment produced by aileron deflection.
a
Aileron deflection produced favorable yawing moments for both tail configurations.

SUMMARY OF RESULTS

Low-subsonic wind-tunnel tests have been made to determine the static longitudinal
and lateral aerodynamic characteristics of a shuttle-orbiter configuration designed for
reduced length. The results of the investigation may be summarized as follows:

1. Boattailing the aft body increased the maximum lift-drag ratio of the model by
about 1.10 from 6.65 for the cylindrical-body twin-tail configuration to 7.75 for the boat-
tailed twin-tail configuration but also gave more negative (out of trim) values of pitching
moment. - ' ’

2. The cylindrical-body center-tail configuration had a maximum trimmed lift-drag
value of 7.0 with an elevon deflection of 0°.



3. In general, all conﬁguratic;ns were slightly unstable longitudinally at the lower
angles of attack and had low values of stability at the higher angles of attack about the
center-of-gravity location of the present investigation (0.651 body length).

4. All éonﬁgurations were directionally stable and had positive effective dihedral.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., February 1, 1973.
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~ TABLE I.- GEOMETRIC CHARACTERISTICS OF 0.01875-SCALE MODEL

Body: .
Overall length, cm (in.)

Maximum height, em (in.) . . . . . . . . .. L L e e ’

Maximum width, cm  (in.)

Wing:
Root chord at body center line, cm (in.)
Tip chord, cm (in.)
*M.A.C., cm (in)
*Span, em (in.)

*Total planform area, m2 (ft2)
Elevon total planform area, m2 (ft2)
Leading-edge sweep, deg
Trailing-edge sweep, deg
Dihedral, deg
Incidence at body, deg
Incidence at tip, deg

Airfoil section at root

S T

Airfoil section at tip
Aspect ratio

Twin tails (each):? _
Root chord, cm (in.) . . . . . . L o o i e e e e e e e e e e e e
Tip chord, cm (in.)
Span, cm  (in.)

JArea, em2 (In2) L oL L L L L e e
Area, rudder,cm2 (in2) . . . . . . L L L L. e e e e e e e
Leading-edge sweep, deg . . . . . . . . . . . et e e e e e e e e e e e e e e e e e e e e e
Trailing-edge sweep, deg
Airfoil section

Aspect ratio

‘Center tail:a
Root chord, em (IN.) . . . . . . . v 0 v i e e e e e e e e e e e e e e e e e e e e e e
Tip chord, cm (in.)
Span, cm (in.)
Area, cm2 (in2)

Area, rudder,em2 (in2) . . . . . . .. ... e e e e .
Leading-edge sweep, deg . . . . . . . . . . . L i e e e e e e e e e e e e
Trailing-edge sweep, deg
Airfoil section
Aspect ratio

*Model reference dimensions.

53.101 (20.906)
10.620 (4.181)
20.320 (8.000)

34.996 (13.778)
4.991 (1.965)
23.937 (9.424)

48.577 (19.125)

0.098 (1.056)
0.014 (0.150)

...... 50

NACA 0008-64
NACA 0012-64
2.4

12.382 (4.875)
3.810 (1.500)
12.090 (4.760)
97.890 (15.173)
39.071 (6.056)

...... 45
...... 16

1.487

13.716 (5.400)
6.350 (2.500)
13.970 (5.500)
55.182 (21.725)
22.073 (8.690)

...... 45
...... 25

1.392

2 Theoretical values measured at or from a line parallel to the model center line passing through the juncture of

the rudder hinge line and the body. The dimensions include cutout areas of the rudder.
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(b) Three-quarter front view from below.

Figure 2.- Continued.
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