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STRUCTURAL MODELING OF AIRCRAFT TIRES

By

S. K. Clark, E. N. Dodge, J. I. Lackey, and G. H. Nybakken

SUMMARY

Techniques have been developed for producing small scale models of air-

craft tires. It has been shown that such a scaling can be achieved in theory

for the mechanical properties of aircraft tires, both static and dynamic, as

well as for the overall or macroscopic stress state of such tires but not for

their detailed or microscopic stress state. The question of thermal modeling

is still unresolved but theoretical indications are that tire temperature

distributions will not be similar or analogous between model and prototype.

Experiments have been conducted on a small scale model of a 1*0 x 12, lU

PR, Type VII aircraft tire, with a scaling factor of 8. 65. Agreement is ex-

cellent between the basic static tire mechanical characteristics in model

and prototype, referred to a dimensionless basis.

The structural modeling concept discussed in this report is believed to

be exact for mechanical properties of an aircraft tire, including static,

rolling and transient conditions.



INTRODUCTION

Measurement of the mechanical properties of aircraft tires is an expensive

and lengthy process. Such tires normally tend to be rather heavily loaded

as compared with conventional automobile and truck tires, and to be run at quite

high speeds, so that equipment to simulate field operating conditions is large

and expensive. Only one major facility exists in the United States for the con-

trolled study of aircraft tire characteristics under landing conditions. This

is the well known Landing Loads Simulator track at NASA, Langley Field, Virginia.

Considerable interest exists in obtaining dynamic or transient properties

of aircraft tires for use in shimmy analysis work. A number of recent attempts

at shimmy analysis followed by actual landing gear experience lead one to be-

lieve that current shimmy theories, using static mechanical properties of air-

craft tires, are not now capable of clearly defining the shimmy characteristics

of an aircraft landing gear system. There seems to be no obvious flaw in the

theoretical formulation of shimmy calculations. One possible short-coming lies

in the use of the elastic properties of tires as determined by static tests.

If such properties could be determined under dynamic conditions, the values

might be different enough so that better agreement between shimmy theory and

experience would ensue. Such data is difficult to obtain on full size tires,

again due to the size and complexity of the equipment needed to produce the ap-

propriate operating conditions for the tires.

In addition, problems occur from time to time in aircraft tire operation

which can only be solved by tests involving specific conditions. Such tests



may be difficult and expensive due to limited facilities, or due to the size

and complexity of the equipment needed at these facilities, or due to safety

considerations.

It was felt desirable to review the possibility of structural modeling

of aircraft tires, with the general thought that if such models could be de-

veloped then they-could be used to predict the effect of dynamic factors

upon static mechanical tire data by reproducing the actual operating condi-

tions of the aircraft tire. Such simulation, done on a small scale, should

be much easier and more economical to carry out than actual full scale mea-

surements. In addition, there would be available a scale modeling tool

which could be useful in supplementing full scale tests, and in some limited

cases even replacing such tests. It would appear that the ability to produce

a scale model aircraft tire which is capable of quantitative interpretation

would be a valuable contribution to aircraft preliminary design, as well as

to many practical operating problems.



THEORY OF MODELING

The theory of tire modeling may be divided into three separate categories

or sets of modeling requirements, involving tire mechanical properties, tire

stresses and tire temperatures. These will be discussed separately.

MODELING OF TIRE MECHANICAL PROPERTIES

The first, and least restrictive^ case is modeling of tire mechanical pro-

perties, which is the primary concern of this report. For that purpose, con-

sider the tire mechanical properties, both static and dynamic, to be defined

by the following engineering variables, as illustrated in Figure 1.

Figure 1. Tire geometry and nomenclature.

where F = load on the tire

C = moment on the tire

D = tire diameter, a characteristic length*

E = Young's modulus for the tire material

u = Poisson's ratio for the -tire material

Any characteristic length is satisfactory, but tire diameter is a readily
available measure of size.



p = tire inflation pressure
o

6 = tire deflection

p = tire material density

k = radius of gyration of tire and wheel
o

It should be noted that the tire carcass properties are represented as

single quantities E and u, although in actuality they are distributions of

elastic properties throughout the carcass. This dimensionless distribution

must be maintained in the model tire exactly as in the full size tire .in order

for modeling to be exact. This is a requirement which is analogous to the need

for geometric similarity between model and prototype, a well known and univer-

sally accepted condition.

Several obvious dimensionless variables may be identified by inspection.

These are

II = complete geometric similarity between model and prototype,

including the dimensionless distribution of elastic pro-

perties between model and prototype for the tire carcass.

n2 = B/D

k
o

3 ~ D



The remaining terms may be written in a general functional relation using

a typical dependent property, the relaxation length X of the tire. One may

express this as a function of the pertinent engineering variables remaining as

(-) = f(F, V, po, D, p) (1)

The method used to obtain the dimensionless variables from a relationship

such as Eq. (l) will be taken from Langhaar [1], and will not be derived here.

Using Langhaar's notation, the dimensional matrix for the pertinent engineering

variables is given by Eq. (2):

F V p D p
o

(2)

M

L

T

1

1

-2

0

1

-1

1

-1

-2

0

1

0

1

-3

0

Let the functional relationship between the relaxation length and the

other variables be of the form

k k k k, k.

Then the exponents are related through the expressions

k + k + k = 0
1 3 5

(3)

= 0



In Eq. (k) , the unknown exponents k , k, , k may be expressed in terms of

k and k in the form

^ = ~ \ - S - - "l + kl + I k2 = \ k2

(5)

The dimensionless terms governing the relaxation length may now be expressed

as a dimensionless matrix of coefficients:

\k2 S \

1 0 - 1 - 2 0
(6)

0 1 -1/2 0 1/2

From this, one obtains two additional II terms which must be held constant in

order that the model and prototype are identical:

\

Of these terms, IL> is the ratio of tire velocity to a characteristic wave

velocity, and is similar in concept to a Mach number. II_ is, however, the im-

portant scaling parameter since it relates the tire inflation pressure p , tire

diameter D and the force acting on the tire between model and prototype. In

view of the fact that complete geometric similarity is an additional requirement,



then any appropriate tire section width, tire diameter, or tire section height

could be used in place of the diameter D in II so long as the dimensional char-

acter of that term remains the same. The Russian R. K. Gordon [2] has arrived

at IT by a somewhat different line of reasoning.

A short discussion of the scaling parameter II is in order. If the

inflation pressures for model and prototype are known, and if the relative

sizes of model and prototype are known, then the appropriate forces between

model and prototype may be determined by the fact that IT must be equal for

model and prototype in a given test situation. The scale ratio or model'diam-

eter D is at the choice of the experimenter. The pressure p must, however,

be determined in conjunction with the required equality for II. . This latter

term demands that the ratio of inflation pressure of the model tire to its

modulus of elasticity must be identical to that ratio in the full size proto-

type. Under those conditions, it may be seen that one may construct the small

size model of a large aircraft tire using a purposely lower modulus of elas-

ticity in the small model. This will allow a lower inflation pressure p ,

since in the model the ratio (p /E) must remain the same as in the prototype.

This further means that in evaluating the dimensionless terra Jin, the influence

of velocity of travel will be amplified in the model. For example, if in the

model it is possible to use a low modulus of elasticity and a relatively low

pressure, reference to Eq. (7) shows that the model velocity can be made sig-

nificantly higher. This is seen by equating IL, for the model and prototype,

and solving for the model velocity. This gives

'E \ /p \
v B ,,JS -E) v (8)m ^ ' p



where the subscripts ra and p refer to model and prototype, respectively.

If the material densities of the prototype and model are essentially the

same, Eq. (8) shows that the model velocity V needed to obtain an equivalent

prototype velocity V may be substantially less than the prototype velocity
P

by the ratio of the square root of the model tire modulus to the prototype

modulus. Methods of controlling tire modulus are available and may be used to

advantage here. In effect, high speed tire testing on the model can be con-

ducted at relatively low speeds.

In general, this dimensional analysis shows that a typical tire response

quantity, relaxation length \, is related to the dimensionless II terms through

the relationship

5 = fdV n2, HQ) (9)

If the dimensionless relaxation length \/D is to be the same in both model

and prototype, then each of the terms H through IL. must be the same in model

and prototype. As discussed, this can be achieved by the use of geometric

similarity, by the use of the same materials, but with the degree of freedom that

the model tire elastic modulus may be substantially reduced over that of the pro-

totype provided that the modulus distribution is analogous or geometrically

similar in both cases. This will allow all n terms to remain the same and will

allow enhancement of velocity effects, which is desirable for high speed tire

testing. In effect, IT, = p /E represents the primary independent variable of

this analysis, since the modulus of elasticity of the tire carcass materials

represents one distinct input decision. The second basic variable is II = 6/D,



which defines a length scaling. From this, it may be concluded that tire

mechanical properties may be readily modeled between full size tire and small

scale tire provided that one learns how to use tire materials in such a way

that the distribution of carcass stiffness or elastic constants is the same

between model and prototype, and that preferably the absolute level of the

elastic constants be significantly reduced in the.model compared to the proto-

type, without changing the relative or dimensionless distribution.

MODELING OF TIRE STRESS LEVELS

A second level of sophistication in tire modeling theory may be brought

about by attempting to model the internal stress state between small scale

model and prototype, in addition to the appropriate mechanical properties.

Let us in this case imagine that the tire stress state is governed by the same

engineering variables as shown in Figure 1, where all symbols are the same as

before except for the stress level a.

It is recognized from the previous dimensional analysis that six dimension-

less products must be automatically satisfied by any model. These are

II = complete geometric similarity, including distribution

of elastic constants (10)

\

(12)

10



n = (j.(Poisson's ratio)

H6 = FD/C (15)

Assuming these to be true, the stress state in the moving tire may now be ex-

pressed in the general functional form

r- = f(p , D, v, F, p) (16)
o .

The right-hand side of Eq. (l6) is identical to that of Eq. (l), so that

the dimensionless quantities governing this are identical to those previously

gotten in Eq. (7), i.e.,

= -̂  (17)

nQ = ̂  (18)

Wow one may write

a = P^Y n2, Hg) (19)

Equation (19) shows that if one wishes to maintain the same stress level

in model and prototype, then all terms II , - - - - - IL> must be held identical,

and in addition the inflation pressure p must be the same in both model ando

full size tire. Since p must be constant, then from H, (Eq. (13)) it is

seen that modulus of elasticity E of both model and full size tire must also

be the same. In effect, this forces one to use the same materials for the

model as the full size tire.

11



The rules for one form of modeling a full size tire to small scale can now

be seen by a study of Eqs. (10) through (19). For example, the requirement of

complete geometric similarity again means that the small scale tire should be

geometrically proportional in all respects to the original tire. Since it is

necessary to use the same inflation pressure in the small scale tire as in the

full size tire, Eq. (lj) requires that the modulus of elasticity E remain the

same in the model as in the prototype. Then the stress level expressed in Eq.

(19) will remain the same between the small scale and full size tire. Equation

(ll) shows that the dimensionless deflection of the tire should be the same on

the model as on the full size tire. Equation (14) shows that the Poisson's

ratio of the material used to make the model tire should be the same as that

of the full sized tire, and this will of course be automatically satisfied if

the same materials are used. In addition, the distribution of cord angles and

materials should be identical between model and prototype. Equation (IT) shows

that under these conditions, the load applied to the model tire should be in

the ratio of the square of the scale factor. For example, if the model tire

is one fifth of the size of the full tire, then a load equal to one twenty-

fifth of the full scale load should be applied to the model tire. Finally,

Eq. (l8) shows that the model tire should be run at the same surface speed as

the full size tire, since both the material density p and the Young's modulus

E of the material will be the same in both model and full size tire.

If all of these conditions are met, then Eq. (19) predicts that the over-

all or macroscopic stress state in the model tire will be the same as in the

full size tire.

12



It should be noted that this set of requirements is somewhat stricter and

more confining than the previous set which dealt with mechanical properties of

the tire alone. Here, the pressure is specified as is the modulus of elasticity

of the model tire material. This was not the case in the previous analysis

describing only mechanical properties, where it was possible to reduce modulus

and pressure simultaneously and still retain dimensional similarity. This

simply means that in the previous case, the stress levels in the model tire

were not equal to those in the prototype. Here, where equal stress levels are

desired, the additional restrictions of pressure and modulus equality are neces-

sary.

In order that this situation be understood more clearly, it should be men-

tioned that in a practical sense it is essentially impossible to insure that a

textile-cord structure be made in small scale that is identical in all respects

to a similar structure in large size. Textile cords are manufactured only in

discrete sizes and in general cannot be scaled downward arbitrarily. The de-

tails of aircraft tire construction are sometimes so numerous as to render the

construction of a completely similar small model almost impossible, even though

the overall, macroscopic constants of the tire carcass material may be success-

fully modeled. For these reasons it is very probable that such effects as

durability and failure will be very difficult to assess on a scale model with

any significant scale ratio simply due to the basic unavailability of the proper

materials, and the great difficulty of producing a completely geometrically

similar structure. Put in other terms, the detailed construction cannot be

modeled practically, so that the microscopic or local stress state will not be

equal between model and prototype.

13



In the event that such tire stress comparisons are desired, it should again

be emphasized that the modulus of elasticity, or elastic constants, of the model

and full size tire must be held the same, that the inflation pressure of the model

must be identical to that of the prototype, and that the surface speeds must also

be equal between the two. Under these conditions, forces proportional to the

square of the scale factor arise between model and prototype, as indicated by

Eq. (17), while the overall or macroscopic internal stress state of the model

tire is the same as the full size tire.

MODELING OF TIRE EQUILIBRIUM TEMPERATURE

Now consider the somewhat more complex case of including in the analysis

the quantities which determine the equilibrium temperature of the running tire.

In order to do this, we adopt Eq. (20) as a basic statement of functional de-

pendence.

R0
— = f(p D, V, F, p, c , K, h) (20)

where the new symbols are as follows :

K = thermal conductivity of tire material

9 = temperature

c = specific heat of tire material

h = heat transfer coefficient between tire and atmosphere.

The particular form of the left-hand side of Eq. (20 ) is chosen so as to repre-

sent temperature in a dimensionless fashion. Other representations are possible,

but do not lead to anything different. The dimensional matrix involving these

Ik



variables is shown in the table below, where temperature 9 is taken as a basic

physical variable.

F V p D p c K h
o p

M

L

T

9

1

1

-2

0

0

1

-1

0

1

-1

-2

0

0

1

0

0

1

-3

0

0

0

. 2

-2

-1

1

1

-3

-1

1

0

-3

-1

(21)

A dimensional analysis of these variables leads to the following dimension-

less characteristics which must be equal between model and prototype, over and

above those given by Eqs. (10) through (19), previously derived:

Dh

h
V- p-c

(22)

(23)

Of these two dimensionless quantities, Eq. (23) will be automatically

satisfied provided that the conditions described in the previous dimensionless

analysis are fulfilled, that is, the velocity of running and density of the

tire material are the same between model and prototype. The heat transfer co-

efficient h and the material specific heat c will be approximately the same
P

in the full size tire as in the model, so that Eq. (23) will be automatically

the same for both model and prototype.

• However, IT very probably will not be equal between model and prototype,

since the heat transfer coefficient h and thermal conductivity K of both model

and full size tires will be approximately the same, while the characteristic

15



length D will vary as the scale factor. Based on this, Eq. (20) may be rewritten

as

e . £
C
P

From this, it may be seen that the temperature 9 of the model tire will be

the same as that of the prototype provided that the velocity of travel and the

specific heat of the tire material are the same as in the full size tire, and

in addition that all of the dimensionless factors II through IL. are held con-

stant between the scale model and the full size tire. As was just discussed,

it is possible to do this with the exception of the single dimensionless factor

IL. Its influence on the equilibrium temperature is not known but may be sub-

stantial, since in effect it represents the ratio between the volume of the

tire which generates heat due to hysteresis loss, and the convective heat trans-

fer surface area of the tire. It is possible under particularly fortuitous

conditions that a good approximation of the full size equilibrium temperature

may be obtained from a model tire, but it appears that no guarantee of this

exists. Therefore, it is concluded that in general thermal modeling of air-

craft tire temperature rise may not be possible without extensive experimenta-

tion and the development of suitable scaling factors based on experimental

data.

16



STATIC LOAD-DEFLECTION PROPERTIES OF MODEL AND PROTOTYPE TIRES-

From the discussion in the previous section, it is seen that the structural

modeling of an aircraft tire can only be assured if the pertinent dimensionles.s

variables are the same for both model and prototype. In general this means that

such quantities must be measured for both tires and compared. In this work, the

method used to do this relies on the measurement of several force-deflection and

geometric relationships in the model, followed by comparison with known full-size

tire data for these same properties.

In accordance with the previous section, all models are geometrically simi-

lar dimensionally and are approximately scaled in their cord content, although

the individual cord size has not been so scaled.

To facilitate an understanding of the various loading situations used in

this report, a co-ordinate system as shown in Figure 2 has been chosen.

(Rotation
about z-axis)

Figure 2. Tire co-ordinate directions.

17



With this co-ordinate system, then, fore-aft, lateral, and vertical forces

applied to the tire's contact patch have been denoted by F , F , and F , respec-
x y z

tively. A similar notation is used for the appropriate deflections, & , & , and

8 . A couple or twisting moment about the z-axis has been termed C , and the
z z

resultant angle of rotation, ty.

It is possible to use H_, II,, and n to describe basic load-deflection re-

lations in a dimensionless way so as to compare the prototype tire with the model

tire. Four basic mechanical properties have been chosen since they can be easily

measured:

(1) Vertical Load-Vertical Deflection -- (F vs. 5 )
z z

(2) Lateral Load-Lateral Deflection -- (F vs. 6 )
y y

(3) Fore-Aft Load-Fore-Aft Deflection -- (F vs. 5 )
X X

(k) Twisting Moment-Rotation — (C vs. ty) .
z

Each of these quantities may be expressed in a dimensionless way using the

dimensionless variables n , IL., and IL :

F &
(1) Vertical Load-Vertical Deflection — ( — ̂ - vs. -^)

PoD

(2) Lateral Load-Lateral Deflection . — ( — ̂ - vs.
PoD

F 8
y- \r

(3) Fore-Aft Load-Fore-Aft Deflection — ( - - vs. — )

C
n

(k) Twisting Moment -Rot at ion — ( - - vs.

18



Using these dimensionless parameters, comparisons with the prototype can be

made to gauge how well the model tire matches it.

These four load-deflection relations are extremely important since they

span a wide range of tire deformation effects, from that of an inflated mem-

brane to that of an elastic sheet. Some previous analytical and experimental

studies by the authors [j], [U], [5] lead us to believe that most tire mechan-

ical properties may be viewed as the sum or interaction of contributions from

the inflated nature of the tire, acting as a gas envelope, and from the elas-

tic nature of its carcass. If the four load-deflection relations just listed

are the same, on a dimensionless basis, between model and prototype, then it

is strong evidence that all tire mechanical properties are adequately modeled.

This is because:

(1) Vertical load-deflection appears to be primarily an inflation pres-

sure effect for aircraft tires. See Ref. [3].

(2) Lateral load-deflection, twisting moment-rotation, and fore-aft

load-deflection appear to be a mixture of'both inflation and carcass

elasticity effects. See Refs. [U] and [5].

Because tire structural differences, mostly cord angle differences, in-

fluenced fore-aft load-deflection data, all the model tires were normalized

to one fore-aft load-deflection curve. Using n and n

(k ) (D)
P • (P ) (25)

Then using this (p ) and II again, we have
o m 7

(F ) = . (F ) (26)ZB zp
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These two equations outline a procedure to find rated inflation and vertical

load for all other tests.

The heuristic estimate of 6800 Ib/in. for (k ) was used in Eq. (25) to
x p

find the rated inflation pressure. Then Eq. (26) was used to find rated load.

These conditions for the four model test tires are given in Table I. This

procedure insures that the fore-aft load-deflection data for the four model

tires will coincide with the estimated reference stiffness. It then remains

to check other mechanical properties to see if one has attained a successful

modeling of the prototype.

TABLE I

TIRE OPERATING CONDITIONS

Tire

40 x 12 - Ik PR Type \EII
Prototype

Model A-18
(2 Ply, 840/2 Nylon, 10 EPI)

Model A-15
(2 Ply, 81*0/2 Nylon, 10 EPl)

Model A-14
(2 Ply, 8UO/2 Nylon, 10 EPl)

Model A-13
(2 Ply, 840/2 Nylon, 10 EPl)

Po
(psi)

95

25

23

19

20

F

Ub)

1^500

1*8.2

1(8.2

38.2

38,2

D
(in.)

390

U.57

4.58

4.58

4.56

w*
(in.)

12.12

1.6?

1.66

1. 6k

1.62

w = Section Width

It is worth noting at this point that all data given for the model tires

in this report are for exercised tires. It was discovered very early in the
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project that the mechanical properties of the model tires became stable only

after they had been exercised for a period of time on a road wheel. These

changes were most pronounced at low inflation pressures, as one would expect.

Consequently, every tire was "run in" for three or four hours at fairly mod-

erate conditions, being the scaled equivalent of about 60 mph speed, 6000 Ib

vertical load, and 60 psi inflation pressure.

Static load-deflection properties of several model tires, specially con-

structed to scale the kO x 12 lU PR prototype (see Appendix), are shown in

Figures J through 6. Table I lists the operating conditions for each of the

models as well as for the prototype. The vertical load F shown in the table
z

was that used when obtaining twist, fore-aft, and lateral data.
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GEOMETRIC AND SLOW-ROLLING PROPERTIES OF MODEL AND PROTOTYPE TIRES

A previous section has shown that elastic modeling of an aircraft tire

can only be assured if certain dimensionless quantities are the same in both

model and prototype. In order to assure a comparable basis for comparison

of data, the following dimensionless variables are used in discussing the

mechanical properties measured in this section:

(a) The tire contact patch half length is expressed by the dimensionless

ratio £/D, where D is the tire characteristic length, in this case

the outside tire diameter.

(b) Lateral damping coefficient r\ is by definition dimensionless.
«y

(c) Yawed-rolling relaxation length X /D.

(d) Self-aligning torque (C /p IT).
z o

(e) Side force (F /p D ).
\|f O

(f) Pneumatic trail (q/D).

Summaries of the comparisons of the six tire mechanical properties, mea-

sured on four different model tires, with the full size data taken from

UO x 12 tire are shown in Figures 7 through 12. The model tires used for

these measurements were previously used in determining the static load-

deflection properties in the previous section.

The tire contact patch half length is shown for the model and full size

tires in Figure 7- This is a static tire property and generally the model

tires tested show contact patch lengths which agree well with the full size

tire, the variation between model tires probably being due to minor structural

variations.
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A tire mechanical property which is also quite important in shimmy

analysis is the tire lateral damping coefficient. Two comparisons between

model and prototype tires for this property are shown in Figures 8 and 9-

As can be seen, the agreement is very good in Figure 8, where the lateral

damping coefficient is defined as the ratio of the maximum half-height of

the corresponding force-deflection hysteresis loop to the maximum total

force, as defined by Home and Smiley [6]. The agreement is also good in

Figure 9, where the lateral damping coefficient is alternately defined as

the ratio of the energy loss per cycle to the energy contained in the area

beneath the loading portion of the load-deflection curve.

An important tire rolling property used in shimmy analysis is the

yawed-rolling relaxation length. This is defined as the distance a yawed

tire must roll to produce a side force equal to (l - 1/e) of the maximum

side force developed at the steady-state steer angle condition. A compari-

son of such measurements on the model tires with those taken on the proto-

type is shown in Figure 10. Again, agreement is good between the two sets

of data.

There are two additional tire mechanical properties important to shimmy

analysis which require a rolling tire for their definition. They are tire

side force and self-aligning torque caused by operating the tire at various

slip angles. These two properties were measured for the model tires used

here, and from this measured data the pneumatic trail was gotten by taking

the ratio of self-aligning torque to side force for a particular set of con-

ditions. All three of these properties are presented in the subsequent

graphs.
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One important characteristic of these three tire properties is imme-

diately evident. This is their strong dependence on the type of surface on

which the tire rolls. A total of ten surfaces were used in the experimental

measurement of side force and self-aligning torque. The range of values

gotten from these tests is shown in Figure 11, where it is seen that the

spread of data is quite significant, and illustrates a strong influence of

surface conditions. Generally the full size prototype tire data lies inside

the ranges shown, with the exception of the peak self-aligning torque. This

is possibly lower in these model tests since they were done against a cylin-

drical roadwheel, while the prototype data was taken on the runway. Our

contact patch will generally be somewhat shorter and our pressure distribution

somewhat less favorable for developing peak self-aligning torque than the flat

runway surface.

Figure 12 shows this data for four model tires, and for the prototype

tire, for a specific roadwheel surface. There is some variation among the

model tires due to structural difference, particularly in the self-aligning

torque. However, this surface is not particularly the best one for model

tire mechanical measurements, and "sharper" surfaces, with more asperities,

may tend to reduce this scatter.

This entire comparison represents an interesting and we feel fruitful

observation, applicable in general to the determination of tire mechanical

properties, since it seems to indicate that different observers and experi-

menters can only expect complete agreement between tire mechanical property

data taken on identical runway surfaces. This clearly has application to

cooperative testing programs where various agencies participate.



MEASUREMENT OF STATIC LOAD-DEFLECTION PROPERTIES

All static load-deflection data was collected on what will hereafter be

referred to as the Static Testing Device. This device was designed so that the

model tire could be tested to obtain each of the four basic mechanical spring

constants previously mentioned in this report, vertical load-deflection, lateral

load-deflection, fore-aft load-deflection, and twisting moment-rotation.

Construction of the device is very simple, consisting of a wooden base, two

steel loading plates, a tubular steel 90°-elbow arm,a rotating yoke, a steel

point hinge, and a counterweight. Figures 13 through 17 show different views of

a model tire under test in it. The bottom steel loading plate was attached to

Figure 1J. Vertical load-vertical deflection test for model tire.
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Figure 14. Fore-aft load-deflection test for model tire.

Figure 15. Close-up of fore-aft test showing brake.
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Figure 16. Lateral load-lateral deflection test for model tire.

Figure !?• Twisting moment-rotation test for model tire.



the wooden base, and the top loading plate had three . 1*37 in. dia. bearing balls

sandwiched between it and the bottom plate. The top plate had a high friction

surface bonded to it with contact cement so that tire slippage was held to a

minimum during loading.

The tires were inflated through a small hole along the axis of the axle,

opening into the interior of the rim with oil seals inserted within to main-

tain pressure. The pressure was regulated by a low-pressure regulator, which

was monitored periodically so that proper pressure was maintained. Inflation

pressures could be held to within ± 1/2 psi. with this regulator. It is

important to have close pressure control in these experiments due to the

large scale ratio, in this case 8.65.

Experimental reproducability was good for vertical load-deflection where,

on the average, data could be reproduced to within ± 5^- For twisting moment-

rotation, data variation was as high as ± 8$>, &nd for lateral and fore-aft

experiments, it was as high as ± 10$. To compensate for this, the tires were

tested a minimum of three times and also rotated to a new position before each

run. This amount of variation in properties is not particularly large, since

studies on full size tires indicate a similar set of variations.

As a matter of record, all the deflection data collected was taken at

"apparent equilibrium"; i.e., when all creep had ceased.

The first measurement on a model tire was that of its basic fore-aft

spring rate, as previously discussed. This was generally done at a relatively

high pressure (e.g., 20-25 psi). Then after obtaining (k ) , Eq. (25) was
x in

used to calculate the reference pressure for the model tire:
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(k ) (D)

' (P' (25)

Using the appropriate values for each of the variables the prototype,

(25) becomes:

(po}m = ToT"m 6800

(Vm

m

Using this calculated reference pressure, one may use IT = ( —) to cal-

culate the proper vertical load that should be used for the model tire to sim-

ulate the 1̂ ,500 Ib rated load of the kO x 12 prototype. This gives

(F ) = (p ) (D2) Ib , or
1 m (95)(390)2

Zm
 (Po}m (l))m "

For example, tire A-lU had a fore-aft stiffness (k ) = 160 Ib/in. From
x m

Eqs. (25a) and(26a), one would find that the reference pressure and vertical

load should be:

(po)n - 19Psi

(F ) - 39-8z m

With these new parameters, a second fore-aft measurement would be made to verify
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that the correct (k ) had been determined. When this had been done, then the
x m

other mechanical properties were measured and compared with the prototype.

It is worth listing some of the principles and techniques used in measur-

ing the various mechanical properties:

(1) All loads applied to the contact patch in the xy-plane were applied

away from the hinge of the static testing device to keep side move-
rs

ment of the hinge-arm to a minimum.

(2) The model tire was always relieved of vertical and side loads, i.e.,

allowed to relax in a free static position, a few minutes before pro-

ceeding with the next run for any particular test.

(j) The dial gauge was mounted between the moveable top plate and the

axle to obtain both lateral and fore-aft deflections. Yoke and rim

movement were observed to be negligible.

(k) The zero point for vertical deflection was defined as that point when

the tire just touched the top loading plate.

(5) Inflated dimensions of the model tires were obtained by averaging read-

ings taken at five places around the tire circumference. Both the

width and diameter were measured directly.



MEASUREMENT OF GEOMETRIC AND SLOW-ROLLING PROPERTIES

STATIC PROPERTIES

Model tire footprints were taken by the ink and paper method at standard

conditions of inflation pressure and vertical load. The contact length was

measured from the footprint. Figure 18 shows a typical footprint.

STANDARD
CONDITIONS

0 I 2
INCHES

Figure 18. Typical model tire footprint.

Lateral damping cycles were taken on the apparatus shown in Figures 19

and 20. This apparatus basically consists of the static testing device dis-

cussed in the previous section. Here the lateral force is generated by a Lead

screw and transmitted through a strain ring force-transducer to the movable

plate. The plate rests on three steel balls and translates with almost no

friction. The plate displacement relative to the rim of the tire is measured

by a LVDT inserted between the tire yoke and the plate. Both displacement and



Figure 19. Components of lateral damping test apparatus.

Figure 20- Lateral damping test apparatus.



force signals are fed into Sanborn carrier amplifiers with the outputs of the

amplifiers going into an X-Y recorder. Figure 19 shows the movable plate, tire

and transducers. Figure 20 shows an overall view of the testing machine,

Sanborn recorder and amplifiers and the X-Y recorder.

A typical lateral hysteresis loop is shown in Figure 21. Because of the

dimensionless nature of most damping coefficients, no scales are needed for

the axes. One definition of a lateral damping factor, used by Smiley and

Home [6], is the ratio of the maximum half-height of the force-deflection

hysteresis loop to the maximum total force. Referring to Figure 21, (T\ ) is
y F

equal to the ratio A/B of the forces. Another definition of damping factors

is based on energy or area measurements. The definition used in the preceding

section is the ratio of the energy loss per cycle to the energy per cycle

defined by the triangular area under the top curve. Referring to Figure 21,

is equal to the ratio of the areas AE/E.

SLOW ROLLING PROPERTIES

The slow rolling tests were performed on a JO-in. diameter, k-in. wide

cast iron roadwheel. Different adhesive surface are attached to the polished

cast iron surface to simulate different roadways. The tire and rim assembly

are mounted in a yoke such that forces normal to the plane of the wheel and

moments about the vertical axis can be measured. The yoke is mounted in

bearings attached to the end of a horizontal hinged arm, so that the whole

assembly can easily be swung up off the roadwheel and out of contact. The

roadwheel, yoke and arm are shown in Figure 22. The normal or side force,

EL , is measured by a strain ring force transducer shown in Figure 23 . The
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Figure 22. Model tire roadwheel, yoke and arm assembly.

Figure 2J. Transducers for measuring
side force and self-aligning torque.



model wheel bearings are mounted in the rim so that the non-rotating axles

can be mounted in linear ball bushings and attached to the force transducer.

The force transducer butts against a rigid harness attached to the yoke and

measures side force perpendicular to the wheel plane. The torque c about the
z

vertical axis is measured by a drag link transducer shown in Figure 23. The

yoke is mounted in ball bearings to allow rotation about the vertical axis. A

drag link with a built-in end at the arm and a pin joint at the yoke is

instrumented with strain gages. The pin joint is attached to a slider which

can be clamped at the desired yaw angle.

Relaxation length, \y, was measured by placing the tire at a yaw angle,

rotating the roadwheel one tire contact length and measuring the side force

build-up. The roadwheel displacement is measured by a precision potentiometer

circuit. The tire side force measurement is accomplished by the strain ring.

Both roadwheel displacement and side force are recorded by an X-Y plotter, as

shown in Figure 2h.

Figure 2U. Yawed-rolling relaxation-length test apparatus.
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Figure 25 shows a typical side force build-up curve obtained by this

system. The tire rotates one contact length, 21, the axle and force trans-

ducer rest against the rigid harness and the side force build-up is recorded.

The first horizontal slope is taken as the maximum side force. Variations

after this point are due to maximum side force variation around the circum-

ference of the tire. As shown in Figure 25, the maximum amplitude A is mul-

tiplied by (1 - 1/e) = .632. The distance the tire rolls to produce a side

force of . 6J2A is the measured relaxation length, Xy. A few tests using self-

aligning torque in place of side force gave basically the same relaxation

lengths.

Three other slow rolling quantities were measured on a steady state

basis. Side force, F^, self-aligning torque, Cz, and pneumatic trail, q =

, , were measured while the roadwheel was rotated by hand at a speed of

about 0.8 ft/sec. Figure 22 shows the test in progress. An individual pro-

cedure for finding zero yaw angle was used on each tire, and allowed it to

be located to within 1/U°. Once zero yaw angle is known, the tire was run at

increasing yaw angles while the steady state values of F^ and Cz, were recorded

on an oscillograph. Variations in these quantities, which at small yaw angles

could be very significant, were usually due to circumferential tire structure

variation and difference in tire mounting. To eliminate the effect of these

variations, the average value was computed using three measurements taken in

one direction of rolling. Then the tire was dismounted, turned around and the

procedure duplicated. Then averages of both sides of the tire were averaged

together to get the values used in the preceding section. Figure 2.6 shows
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TIRE A-13
SURFACE 10 (See Fig. 7)
Fz=38.25 Ibs. P0*20psi

O 40x12 F.S.
D MAX. AMPL.
• MIN. AMPL.

13 14 15 16 178 9 10 II
DEGREES

Figure 26. Variations in side force and self-aligning
torque due to circumferential variations of model tire.



the circumferential side force and self-aligning torque variation for one

side, while Figure 27 shows the variation in maximum amplitude from one side

of the tire to the other.

Another important variation in these three slow rolling properties is

due to roadwheel surface variations, as previously discussed. Many different

kinds of surfaces were tried. Figure 11 shows the variation in maximum ampli-

tude due to ten different surfaces. Rough surfaces, such as sandpaper, Safety

Walk and Safety Walk coated with dental stone, gave high forces and moments at

high yaw angles and tended to abrade the tires. Smooth surfaces, such as

clean cast iron, Scotch Tread and Scotch Tread coated with dental stone, gave

low forces and moments, but did no apparent damage to the tire0 Compromise

surfaces, such as Safety Walk coated with Rox and dental stone, gave the high-

est forces and moments which did not damage the tires. It is these smoother

surfaces which were used to obtain the data in the preceding section.
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SURFACE 10
(SEE FIG. 7)

TIRE A-13
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Figure 27. Variations in side force and self-aligning torque
caused by side to side variations of model tire.

51



CONCLUDING REMARKS

The research program described in this paper has produced data showing

that good correlation exists between the mechanical properties of carefully

made aircraft tire models and full size aircraft tires. It is anticipated

that this correlation could be useful in studying such diverse topics as

shimmy of aircraft landing gear, the action of anti-skid systems, and the

influence of tire construction and design variables on tire operating char-

acteristics.



APPENDIX

MODEL TIRE CONSTRUCTION AND DEVELOPMENT

GENERAL COMMENTS

The initial model tire experiments were carried out with a commercial

Veco model airplane tire of U.5 in. diameter. These experiments demonstrated

the general feasibility of small scale tire modeling, but also exposed serious

shortcomings in the Veco tire. These tires tended to creep, or grow with time,

so that their dimensions and mechanical stiffness properties changed slowly.

They had no cord structure, and so did not truly represent the elastic pro-

perties of an aircraft tire. Since scale modeling was our objective, it ap-

peared necessary to find ways of obtaining or making a model tire similar in

structure to a real tire.

Experiments showed that it was possible to form a small cord-structure

tire of model size using an inflatable bladder, similar to commercial tire

practice. Equipment was manufactured or purchased for making such tires.

The most important elements of this equipment were:

(a) A loom for hand winding tire carcass fabric, with provision for

variable cord end count. This is shown in Figure 28.

(b) A mold frame, or holder, in which the actual tire molds are in-

serted, and which serves to hold the two mold halves tightly to-

gether. This is shown in Figure 29.



Figure 28. Loom for stringing tire cord.

Figure 29. Mold inserts and holder.



(c) A tire mold, which forms the outer surface of the tire as also shown

in Figure 29.

(d) A bladder for forming the tire against the mold.

(e) A laboratory oven for curing the tire.

The materials used for these tires were conventional tire cord, dipped into

an adhesion promoter, and unvulcanized rubber sheet stock.

The bead of a tire is an area where considerable hand work is done in fabri-

cating a commercial, full size tire. It did not appear possible to be able to

duplicate bead constructions readily in small scale tires, nor did it seem par-

ticularly important to do so since the bead does not enter into any of the

mechanical properties of the tire. These considerations led to a choice of a

beadless tire design, which greatly simplifies tire construction and molding

but at the expense of a somewhat more complicated wheel and rim. This is be-

cause the rim must now center, locate and grip the tire, functions which nor-

mally are at least in part performed by the bead. Figure 30 shows the rim with

a dismounted tire. This rim has two side caps which screw inward and clamp

the tire against a flange, one side cap being shown separately on the right

hand side of Figure 30, along with its spanner.

Using this rim design, inflation is carried out through one hollow axle,

which is stationary, while the wheel is mounted on the axle with bearings and

seals. Leakage is minimal. This design allows various force transducers to

be built into the nonrotating axle without the use of slip rings.

SCALE MODELING OF 40 x 12 TIRE

The UO x 12 ±k PR Type VII tire was chosen as a specific prototype since
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Figure JO. Unmounted model tire, rim and spanner for dis-assembly.
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Figure 31. Mold and tire cross-section for model of kO x 12 tire.



it had been the subject of extensive mechanical property measurements by Home

and Smiley [6]. The mold was designed to be geometrically similar to the deflated

outside cross-section of this tire, but with additional section height as dic-

tated by the beadless design. Figure 31 shows the mold contour used. The

mounted section height would, of course, be geometrically similar due to the

presence of the rim flanges. Table I in a previous section shows the inflated

dimensions of the model tires to be approximately correct, although model tire

widths tend to be slightly high.

Molds were contour machined from aluminum, and wire inserts used to form

the tread grooves.

The first step in building a model tire is writing a specification sheet.

This is done so that a permanent construction record is available. A typical

specification sheet is given in Table II for a two ply bias tire.

Next, cord must be selected and the tire carcass fabric made up. Three

different cords were tested during this development, these being:

(a) An 8̂ 0/2 nylon, which is the most common cord now used in full

size aircraft tire construction

(b) One strand of the two-stranded QkO/2 cord

(c) A single strand from a three strand special elastic r-.ord. The

single strand had a strong helical winding set, and exhibited

a very low modulus

Of these three, it was found that the full QkO/2 nylon cord appeared to be

most adequate, and is further desirable since it is readily available commercially.
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TABLE II ,

SPECIFICATION SHEET'FOR TIRE A-14

Ply Stock: Cord - 840/2 nylon dipped cord
Rubber - .012" USR on each side
Loom - 10 cords/inch
Green cord angle - 60°
Ply width - 6-5/8"

Green Tire:

(2) Ply 1

(3) Separator
1 on £

on £

6-5/8" x .02V

2" x .02k"

(4) Ply 2

(5) Tread
2

1

2

3/4" from £

on £

1-7/8" from £

3/8" x .024"

2-1/2" x .024"

1/2" x .024"

Final Width - 6-1/2"

Bladder - made from bicycle tube

Curing: 2:40 PM

3:40 PM

3=55 PM

4:10 PM

4:25 PM

4:33 PM

-80 °F

270°F "I

300°F 4

320°F i

320°F 1

320°F •*

-

1/6

•1/3

•1/2

1/4

in oven

out

No.

(1)

of pieces

Liner
1

2

Location

5/8

on £

" from £

Width x

2-3/4

5/8

Thickness

" x

" x

.024"

.024"

Rubber

BFG

BFG

soft

soft

BFG soft

BFG soft

BFG soft

USR

USR
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The first step of the actual construction is the fabrication of the ply-

stock. The loom is strung as previously shown in Figure 28. A cord count of

10 ends per inch was chosen for the model tires used in this report, since two

plies of this material are approximately equal in elastic stiffness to one ply

of the actual tire fabric used in the prototype tire. A thin sheet of unvul-

canized rubber is laid on either side of the parallel cords, as shown in Figures

32 and 33 and is rolled down tightly. The completed ply fabric is then cut

to the proper bias angle as shown in Figure 3^-

The tread, liner and separator rubber pieces are cut to size, as given

in the specifications, from unvulcanized rubber sheet of the proper thickness°

As shown in Figure 35> a two-inch tube mounted in a metal-working lathe

serves as the building drum. The tube is covered with Saran Wrap to allow the

green tire to be removed easily after building. Typical is the layup of tire

A-6. First, a rubber liner is rolled on and stiched down, shown in Figure 36.

Then ply 1 is rolled on, Figure 37> followed by ply 2 and the first layer of

tread, Figure 38- Finally, after the tread is completed, a tread cover is

rolled on with the lathe knurling tool, Figure 39. The green tire cylinder

is then cut to desired length and labeled with a silver ink pen, which -.-'hen cured,

leaves a permanent identification marking. Figure kO shows the finished green

tire flanked by the mold inserts.

The tire is now ready for molding and curing. First the tire is covered

with talcum powder which serves as a mold release agent. The bladder is then

made ready by stretching it over its tapered end plugs, and is then inserted

into the uncured tire. This is shown in Figure hi. The most successful bladders
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Figure J2. First step in rubberizing the tire cord.
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Figure 33. Completing the rubberized fabric.

Figure J^. Finished fabric cut to a bias angle.

61



Figure 35* Mandrel for laying up the tire.

Figure 36. Rubber liner on building drum.
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Figure 37. First ply of fabric on building drum.

Figure 38. Ply 2 and tread on building drum.



Figure 39- Rolling on the tread cover.

•-.

ft

Figure UO. Completed green tire and mold inserts.



Figure kl. Bladder inserted in green tire.

Figure 1*2. Bladder and green tire inserted into one half the mold.



found for this work were short lengths of bicycle inner tube, although other

materials were occasionally used. In commercial tire production a bladder is

especially molded for this purpose, and that would undoubtedly be the best

solution for the model tire.

The uncured tire and bladder are carfully positioned in the mold halves

as shown in Figures U2 and Vj, where in the latter photograph the two halves

are partially closed together.

The partially closed mold halves are placed in a laboratory oven and at-

tached to an air line. The bladder is slowly inflated as the mold halves are

brought together. When they are completely closed, the air pressure is raised

to 60 to 100 psi and the oven temperature to j600F. The mold temperature is

monitored with a contact pyrometer, and the time-temperature curve of the

mold is integrated in an approximate, step-wise fashion to obtain the proper

total cure.

The cured tire is removed from the mold and finished by cutting off the

vents and end caps formed by the tapered plugs. Figure kk shows tire A-6

after curing. The tire is then mounted on the rim, Figure ^5, and exercised

on the road wheel for three to four hours. The tire is now ready for mechan-

ical property tests.
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Figure ^3- Mold assembly with green tire just visible, prior to lifting.

Figure W*. Completed tire A-6 after removal from mold and trimming.
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Figure Tire A-6 mounted on rim.

TIRE DEVELOPMENT

A number of tires were built and tested in order to develop the techniques

described in this report. A complete description of this work would be pro-

hibitively long. However, several important conclusions can be gleaned from

the mass of accumulated experience. These are given below:

A. The most important single property which the model tire builder must

control is modulus of elasticity of the tire carcass, since this con-

trols inflation pressures, loads and model test speeds.

B. Tire carcass elasticity can be controlled by:

1. End count of the fabric
2. Number of plies used
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3. Cord denier or modulus
k. Rubber modulus
5- Ply decoupling by means of a separator
6. Cord angle

All of these factors have been interplayed in the present work to

produce a low modulus model tire, yet one whose modulus distribution

is similar to that of the full size prototype.

C. Design changes can be readily seen in the model tires. For example,

Table III describes a set of eight model tires, one purchased com-

mercially and the other seven built especially for this project. Wide

variations in structure are present, from conventional bias-ply to

radial to pure rubber tires. Their dimensions are not too different

from one another, yet their mechanical properties differ widely, as

shown in Figure 46.

In general, it appears that the influence of tire structure should be as

readily apparent in these model tires as in their full sized counterparts.
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Figure U6. Comparison of model tires static load-deflection
at 12.5 psi inflation.
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