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ABSTRACT

A method for solving a general class of three-dimensional

boundary layer flows is developed. In the development, Levy-

Lees variables are extended to three-dimensions and equations

are placed in these similarity variables. An implicit finite

difference scheme which is stable for negative transverse

velocities is used to solve these equations. The method

developed is applied to obtain solutions for sharp and

spherically blunted circular cones at angle of attack.

Longitudinal and transverse distributions are presented for

these cases. Good agreement is found with the results

obtained by other numerical schemes and the experimental data

of Tracy, for sharp circular cones at angle of attack. For

spherically blunted cones at angle of attack, the results are

in good agreement with axisymmetric sphere results up to the

region where spherical symmetry holds.
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Coefficients used in (2.42) through

(2.45) and defined by (2.46) through

(2.59).

Coefficients in the difference equation

(3.23) and defined by (3.24) through

(3.27), (3.32) through (3.35),

(3.40) through (3.43) or (3.49)

through (3.52).

Coefficients in the general form of the

governing equation (3.04) and defined

by (3.05) through (3.09), (3.10)

through (3.14) and (3.15) through

(3.19) for E-momentum, n-momentum

and energy equation respectively.

Constant in Sutherland's viscosity law

as stated in (2.62).

Constant in Sutherland's viscosity law

as defined by (2.66).

Nondimensional specific heat at constant

pressure.

Longitudinal skin friction coefficient

defined by

Tw
1
_R C

rR9~ f C 1- - 2
-P Uo
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Transverse skin friction coefficient

defined by
T

1 1w
C = -n

/~ f 1- - 2

Coefficients in the recursion relations

(3.53) and defined by (3.56) and

(3.57) respectively.

Nondimensional longitudinal velocity.

Nondimensional transverse velocity.

Nondimensional surface scale factors

in S1, S2 and 33 directions respectively

Thermal conductivity.

Reference length.

Nondimensional viscosity defined by

(2.65).

Arc length.

Free stream mach number.

Prandtl Number defined to be

Pr =
k

Nondimensional pressure.

A parameter defined by (2.37).

Nondimensional heat transfer rate

defined by

1 Q

/Rep u 3
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R

Re

Sl'S2'S3

t

r

u

u

v

V

w

Gas constant.

Reference Reynolds number.

Arc lengths in i, n and ~ directions

respectively.

Nondimensional temperature.

Reference temperature defined by
-2

t =r R

Free stream velocity.

Nondimensional velocity component in

i-direction.

Nondimensional velocity component in

n-direction.

Transformed velocity in normal direction

defined by (2.36).

Nondimensional velocity component in

(-direction.

A velocity-like term and is a function

of u
e

Transformed normal co-ordinate.

Angle of attack.

Ratio of specific heats defined to be

z

Y

C
Y = P

C

Crank-Nicolson Number.

Normal distance as shown in Fig. 2.1.

A
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rg Surface co-ordinate as shown in Fig. 2.1.

Nondimensional temperature defined by

0 = t/te .

Nondimensional viscosity defined by

(2.63).

Reference viscosity evaluated at the

temperature t
r

Surface co-ordinate as shown in Fig. 2.1.

P. Free stream density.

p Nondimensional density.

Trw Wall shear stress component in C-

direction.

T
w

Wall shear stress component in rn-

direction.

Similarity parameter used for trans-

formation of the normal co-ordinate

(2.31) and defined by (2.41).

W Variable used to represent F, G or 0

in (3.04) to reduce the governing

equations to a general form.

AX Step size in (-direction.

An Step size in n-direction.

Step size in normal (Z) direction.

Subscripts

e Inviscid condition at the body surface.

w Conditions at the body surface
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o Stagnation conditions.

Free stream conditions.

Superscripts

Dimensional quantity.
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I. INTRODUCTION

The importance of three-dimensional effects in boundary

layer theory has long been recognized, as indicated by the

reviews of the literature by Cooke and Hall [1], Mager [2]

and Stewartson [3]. Due to the complexities of these flows,

the majority of the literature has been concerned with

approximate methods or with treating limiting cases where the

boundary layer equations reduce to quasi- two-dimensional

form. Yen and Thyson [4] have used integral methods and have

shown reasonable agreement with experimental heat transfer

data. By far, the most popular method of solution has been

developed through use of small cross flow theory, which reduces

the equations to a quasi- two-dimensional form. Chan [5] has

shown remarkable agreement of the small cross flow theory with

experimental data.

As compared to two-dimensional boundary layers, relatively

little work has been done on the computation of generalized

three-dimensional boundary layers even for the simple case of

the flow over axisymmetric bodies. Most of the work done in

this area is restricted to only the windward plane of symmetry,

e.g. Libby [6] and Watkins and Blottner [7]. Another case

which has received considerable attention is that of the

three-dimensional boundary layer on a conical body. The

general approach here is to transform the governing equations

so as to eliminate dependence on the streamwise independent

variable as has been done by McGowan and Davis [8], Dwyer [9]

and Boericke [10].
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Die.r 11..1 has used an explicit method developed by

1&,J(!t:'z 1[12J for r;olving the full three-dimensional boundary

lay(r equations through use of zones of influence and

dependence and the method has been applied to solve spherically

blunted cone problems.

The approach used here will be very similar to that of

McGowan and Davis [8] in as much as the finite difference

scheme and the general solution technique is concerned.

However, here we will use Levy Lees 'type variables rather

than working with the Grocco type variables of ref. [8].

An implicit finite difference scheme suggested by Krause [13]

will be used so that regions of negative transverse velocities

can be handled with the stability problem practically

eliminated.

The general three-dimensional boundary layer equations

will first be specialized to Geodesic co-ordinates. A

similarity type of transformation will then be introduced and

the equations will be put in Levy Lees type of variables.

Introduction of these variables will result in the correct

similarity form of the equations, dependent only upon the

normal transformed co-ordinate at stagnation points and sharp

edges. Since the dependence on one co-ordinate drops out

along the lines of symmetry, we can generate two planes of

starting solutions originating at the sharp edge (or the

stagnation point) from which the entire solution can be

obtained using step-by-step integration.

-2-



The purpose of this investigation is to develop the

three dimensional analogue of the Levy Lees variables that

can be used for a general class of three-dimensional boundary

layers and apply these to study the flow around sharp and

spherically blunted circular cones at angle of attack.

Calculations will first be made for 100 half-angle sharp

circular cone at an angle of attack and the results will be

compared with numerical calculations of McGowan and Davis [8].

The heat transfer data will be compared with experimental

data of Tracy [14]. Flows around a spherically blunted cone

of 10 ° half angle and at 40 and 80 angle of attack will be

investigated and the results will be compared with the

numerical results of Popinski [15]. The inviscid data for a

sharp circular cone has been taken from numerical calculations

of Jones [16] while for blunted cones the data has been taken

from numerical calculations of Rakich and Cleary [17].
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II. FORMULATION OF THE PROBLEM

The problem will now be put in a form suitable for finite-

difference analysis. The governing equations will first be

written in generalized body-oriented co-ordinates and then

specialized to the Geodesic co-ordinate system. Finally, a

Levy-Lees type of transformation will be introduced to put the

equations in the similarity variables so that similar solutions

can be obtained at proper points. As a result of this trans-

formation, the boundary layer growth is practically eliminated.

The governing equations for three-dimensional compressible

boundary layer flow in generalized body-oriented co-ordinates

as shown in Figure 2.1, are given by Mager [2] as:

6-momentum

- - - -- alT -2 ah2au v au w au u v 1 + + +

1 2 3 1 2 2 

- p A+ 1 a [a u, (2.01)

la h3 3 

q-momentum

u av v av w av -3 u 1 u av 2a + + _ +
>A ag h h a a12 an h lh2 aS
1 2 3 12 1 2

_ 1 1 a [P av], (2.02)
an a h3

phT2 p3 33
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Enercgy

v at w at

2 3

1 p _ ap

Cp p hl

+ 1 a
+ a
Cpph3

+ L a] + I- [ (2 2 + 2]
2 C ph32 ( a E2 . C ph 

(2.03)
k at

N a s
3

and Continuity

-(h2h3 iU) + I (hlh3 v) + I (h1 K2 pW) = 0 (2.04)

In addition, the equation of state and the viscosity law may

be written as:

Equation of State

(2.05)

and Viscosity Law

P = P(T)

Equations (2.01) through (2.06) are now nondimensionalized

according to the following scheme:

-5-
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h1
h -

L

h2

L

h3h3 = 
-

L

u

u

v = V
u

ww =

u

p1 = 'P

Pr

p = P
P ~

t = -
U2 /R

f

I

I

I

(2.07)

(2.08)

(2.09)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

0

A



p P (2.16)2
CO COU

and

C -P (2.16a)

p u L
where Re - (2.17)

Pr

In this scheme, Reynolds number is used in the nondimen-

sionalization of h 3 and w purposely so that any explicit

dependence of the final equations on the Reynolds number is

eliminated.

Introducing equations (2.07) through (2.17) into the

equations (2.01) through (2.06), we get the following set of

nondimensional equations:

G-momentum

u au v au w au v 2 uv ahl
1y~+ h

2
3 2 + h 2

2
alnh

1
aS + h 2 an h3 a hh a +

1 ap + 1 a (P au) (2.18)
phl ac ph3 a3 h3 ac

n-momentum

_2 ah uv ah2
u V v av v av w av u 2h 

1
+ - - + - + h h 

i 2a h2 an h3 a2 an hlh2 a

ap + 1 a [_ av
- - 22. + I- I- 3 ~ , (2.19)ph2 an ph3 aC h3 a](

-7-



Energy

U dt +v t w at ¥ y-l u ap v ap

h 1- a h2 an h
3

aC yp hl 3g h 2 an

+ y-1 p [(aU)2 + )2]
¥ ph 2 a( a 

3

+ 1 a ( at
pPrh

3
aC h

3
a)

Continuity

a (h2 h 3 pu) + a.n (h i h3PV) = 0

State

p = pt

and

Viscosity Law

p = p (t)

In general, an infinitesimal arc length is given by

d),2 = (hldg)2 + (h2 dn)2 + (h3dC)2

If we take dC to be the infinitesimal arc length along the surface in

the streamwise direction, h1 = 1 and assume the classical thin boundary

layer approximation, h3 = 1 equation (2.24a) may be written as

d1 '2 = (d )2 + h2 2 (dn)2 (dC)2 (2.24b)

-"8-

I (2.20)

(2.21)

(2.22)

(2.23)

(2.24a)



and wve let

h2 = h (2.25)

Using (2.24) and (2.25), the governing equations (2.18)

through (2.21) take the following form, whereas the equation

of state and viscosity law are still represented by equations

(2.22) and (2.23) respectively.

t-momentum

2
au v vu + au v ahu a + h +w
aa h a

1 ap + a au
p at p as 

n-momentum

v + v Vv av+ uv ah
'd h an a7 h 3a

= 1 ap + 1 a av)
ph an p a3 a

Energy

at v at at
u a + h + w 

c-:.1 In 1+v ~ + (-,) (.u)2, (.v-)2+¥(y-l ap a au 2 av 
- ag h an - Y p (~) 

1 a at
PPr a a)

(2.26)

(2'.27)

(2.28)I

-9-



and

Conti.nui ty

a a naa- (hpu) + an(pv) + (hpw) = O

or

hpw = - a f hpu d - a f pv d + hPw W

o o

Introducing the following transformation in the normal

direction

W h S
eZ = e f

r2 o

p dC

where

a = 9(tt,n)

and lettiny

F = u
u
e

and We =We(ue )e e

vG = v
v
e

and

(2.32)

(2.33a-c)e =
t
e

the continuity equation gives

e
hpw = -

e

Z

F2T f FdZ]

o

Z
a [Ve / f GdZ] + hp W
an W h ww

0

and since (a 

C,n

a= (I)
3~n,

we get

-10-
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u u

hPw = - a [-e 2 / f FdZ] - a we / F
e e

z

- [ -e _ GdZ] - aZ Ve /
an we h a We h

o

G + hp W
w w

Let us define a velocity-like term V as

V = _ .. 2/~ a Ue 
D_ e

Z

f FdZ] - a
q an

o

Ve 2
w h
e

z

f GdZ]

o

+ h PW W qw w q

where

q = Ple PWe h

Then the transformed continuity equation is

+V / _Su vaT
a~~~~ e 2 /~FlG)]aZ +q [ (- 2/T F) + (w -e e

= 0

and the normal velocity component is given by

hpw = Vq U ye / aZ G
w a F - - h ane e

Using this transformed continuity equation, the convective

operator takes the form

v G w
ua + v a + w u Fa + e a + e a

a h an ah e a' h an 2I-Vq 3Z

(2.39)

(2.40)

From similarity considerations, 4(E,n) is found to be of the form

(2.35)

(2.36)

(2.37)

(2.38)



2
6 = £ Pe Pe We h d + q(r) (2.

oe e
0

and We is chosen to be equal to ue in our case.

Using the transformation of the normal co-ordinate (2.31)

and the convective operator from (2.40) and letting

Q.- = _p

Pepe

the governing equations take the form:

t-momentum

A73F + A
1

(F2 - ) + A 3
(FG - 0) + A G aF

+ 1 (A 4 an

- A5 (G 2 ) + V aF (2 F (2.

rn-momentum

A7 F G + A2 (G2 - ) + (A8 + AO) (FG - 8)

+ A4G a + V G (2.
a4 az az a(

Energy Equation

30 38ae a+
A7 F a + All (F - G)e + A 4 G a n +

= £[A
1 3

(aF 2 aG 2] 1 a a (2.
()13 + A 1 4 () P+ Z Z(2

41)

.42)

.43)

.44)

-12-



anrd Continuity Equation

+ [an (WJ F) + a (e h G)] = 0(2.45)

The coefficients A -Al4 depend only on the inviscid quantities

and geometry and are defined as follows:

au
Ae~ 

7J., ag (2.46)

av
A = 21 e (2.47)2 qh u an '

e

A4 qh u t (2.49)

v au

2 e e

A _2) e e(2.48)A3 qh 2 a i

u

e

A 
(2.52)

-8 q v et (2.49)

u '

e

2

A _ 2= Ve h (2.50)

e

u

As C w 1 , (2.51)
e

(2.52)
A7 q

_ 24 1 e
A8 q v ~ (2.53)e

u,
A =h v (2.54)

e

_o 24 ah (2.55)

-13-



(2.56)
au ap av

2i (y-l) 1 e-1 e
A11 = q y t (e a pe aE aY e P e

(2.57)A12 = - A 1 1 ,

2

Y-1 Ue
A13 Y te

(2.58)

(2.59)

'2

A ¥- e
14 y t

e

the starting point where i= 0, the values of these coefficients

determined by a limiting process.

The boundary conditions on F, G and 0 are at Z = 0:

F 0,

G = 0,

t
_w

8 et
e

(2.60a-c)

where t is
w

as Z +

the wall temperature which is assumed specified and

F = 1,

G = 1,

and

0 = 1. (2.61a-c)

-14-
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The viscosity coefficient will be given by Sutherland's law:

*rr

(tr+C)

(t+C)
t3/2
t
r

where C is the Sutherland constant which is equal to 198.6° R

(3.62)

for air.

Nondimensionalizing the temperature by

2

t - wer R

1l+C'' t3/2

where C
C' = R

u
co

Therefore,

P 1 _ [O+C* 
f9e, ,0I 0 

where
C R

C* = C R2 t
U e

C)

From (2.65), we get

1 d9. _ (C*-o)
9, do 20(O+C*)

The nondimensional skin friction coefficients can be shown

to be

F Pe e h
Cf = 2j e UeP Z h '(2.68)

-15-
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and

aG Pepeh
Cf = 2 e v 9e (2.69)

Cf 2e e 3Z 2n

and the nondimensional heat transfer rate can be shown to be

¥ le 30 Pepeh
Q = (y-l)Pr te2 eZ e h (2.70)

Finally, the physical normal distance can be expressed as

z

= I u h 0 d Z (2.71)
e e

This formulation is very similar to that of McGowan and

Davis [8] except for the fact that similarity variables are used

here.

-16-



III. FORMULATION OF THE PROBLEM IN

FINITE DIFFERENCE FORM

The numerical scheme used to solve the coupled nonlinear

second-order partial differential equations (2.42) through (2.45)

is presented here. In principle, these three equations are

replaced by a set of consistent linearized algebraic equations.

The linearization is achieved by updating the coefficients

appearing in these equations through iteration. This set of

equations is of tridiagonal form which can be solved easily for

boundary conditions of the type (2.60) and (2.61).

The finite difference scheme used here is the one developed

by Krause [13] and it can be used for negative transverse

velocity regions. This being an implicit scheme, problems of

stability and mesh size are greatly reduced. The set of finite

difference equations so developed is uniformly valid to second-

order in the mesh spacings of the finite difference grid. The

general grid system used is shown in Fig. 3.1. The equations

are written at the mid point (C,n) and solved for the quantities

F, G and e at the point (2 ,n), assuming that these quantities

are known from previous calculations at the points (l,n), (3,n)

and (4,n). After solving the energy, C-momentum and n-momentum

equations, the continuity equation, which is a first-order

partial differential equation, is solved at the mid point (C,n)

subject to the boundary condition

at Z = 0 V(C,n) = 0.

-17-



An iterative scheme is used on all the 4 governing

equations, until the value of skin friction differs very

slightly from the previous calculations.

Three separate cases will be handled; a case in which

similarity exists in both surface variables E and n, a case

in which similarity exists in one of the surface variables,

say C or n and a scheme to be used in general case. Before

we discuss these cases, it will be more convenient to

rearrange the equations (2.42) through (2.44) as follows:

C-momentum

a 2F 1 d aeo V DF A 1 F+A3 G
- + [_ _ _ - [ I Faz2 k de a aZ X 

2 1 A7F F G F 01)
+ (A

1
O+A

3
O-A5 O+A5 G )-- A --- 0 , (3.01)

n-momentum

a 2G + [ d1 aZ -] Z 1
Z2 de a[ ] aG - (A2G+AsF+AlF) G

O A7 G 4 aG
+(A2 +A 8 +Alo) - - A F , F G aG =0 (3.02)

and

Energy Equation

32 1 d2 D V O Pr 
[ d Pr ] A (F-G)e

3F 2 DG 2 Pr OA Pr aO
+ Pr [A13 ()2 + A14 () - A7 r F A G = 0

113 at 14 az A 7 F 3E 4 2.

(3.03)
-18-



Thus it is clear that if W represents F, G or 6, whichever

is applicable, then all of these three equations can be

written in the general form

2
a2W + A n +A W +A

+ An an 2n n + A3n

+ A I+A i (3.04)4n A5n an 

where the coefficients Aln, A2 n, A 3 n, A 4 n and A5n are given by

For the E-momentum equation

A 1 dQ ae V (3.05)
An Q de aZ '

(A1 F + A3 G)
2n 1 3 (3.06)

(A O + A 3 0 -A 5 +A 5 G2 )
A (3.07)

A7F
A4 n = (3.08)
4n '

and

A4F
A5n , (3.09)5n

For the H-momentum equation

1 d). 90 V
J a -dO z TQ'(3.10)
Aln a d8 at Z

-19-



(A 2 G+A8F+A10F)
= t (3.11)

(A 2 + A8 + A10)
-~~~~1

A A F
4n = A 7

and

A5n

(3.12)

(3.13)

(3.14)
G

A4

and for the energy equation

1 do as Pr
ln = de OZ V

A 2 n
Pr
= , All (F-G)

(3.15)

I (3.16)

A Pr [A3 (-)aF
An Pr [A13 

2+ A
+ A14 ' Z' (3.17)

(3.18)
F

A4n = - Pr A 74n 72d

and

A 5 n = - Pr A44 X

The following discussion will refer to the general form

(3.04) of the governing equations, rather than the original

equations.
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Case I. Solution at C=0 and n=O

This refers to the case where similarity exists in both

the C and n directions. So the governing equations reduce to

ordinary differential equations. In this case (l,n) coincides

with (2,n) and (3,n) coincides with (4,n) because of the

similarity in n-direction whereas (2,n) coincides with (3,n)

because of similarity in i-direction. So the equations are

written at the point (2,n) and the solutions are also

generated at this point only. The non-zero partial derivatives

in equation (3.04), which are now actually total derivatives,

are of the form:

W W
aW W 2,n+l -2,n-1 220)

2Z+ 0(az) ,(320)Z 2,n 2AZ

and

a2W W2,n+1 -
2
W2 +Wa2 2 2,n+l 2,n-1 + 20()2 (3.21)

DZ21 =,n AZ

In this case, the governing equations are of the form

2
WA + AW W +A 0 .(3.22)

ln an 2n n 3n

a2 aw
Substituting for and from (3.20)-(3.21) into (3.22) we

3Z
2 z

get the tridiagonal form.

A n W2,n 1 + Bn W 2 ,n + Cn W2,n+ = Dn (3.23)

-21-



where

n Z2 2AlnA = (2 tB )2 -z (3.24)

B = 2 + n (3.25)
2 )

Z
C =( + n) , (3.26)

AZ 2AZ

and

Dn = - A3n (3.27)

Case II. Solution at_ =0 or n=O

This refers to the case where similarity exists in either

the s-direction or the n-direction. A Crank-Nicolson finite

difference scheme is used for the case E=0, while a truely

implicit-finite-difference scheme is used for n=0.

a. Similarity in the i-direction

In this scheme (Figure 3.2a), the equations are written

at the point (C,n) and solved for the quantities F, G and 8 at

the point (2,n) knowing the solution at the point (l,n). The

partial derivatives can be written in the form

WIC,n XW2 ,n + (1-) Wln + O(An) 2 (3.28)

az IC,n 2AZ
~W k(W2,n+1 -W2,n_1 ) + (l-k)(WlWn+ 1 -Wln_1 )+ 0(3.29)

(3.29)

-22-



. [W2,n+l-2W2,n+W2,nl ] + (l-X) [Wln+l-2Wl n+Wl,n-l]

A 2AZ

W2,n - W + 1 (A)
=,n ,n + 0(AT)2

where X = Crank-Nicolson number.

Substituting these in the equation (3.04) and rearranging it

in tridiagonal form, we get

A
A = 1 i) (3.32)n AZ

2 AA
Bn =( 2 + A 2 5,n (3.33)

A1 A

= (1 + 2)X (3.34)
n AZ 2 2az

and

A
-D A + (l-X) (1 + -) W n++ n) l n

n 3,n AZ, AZ

2

A2n2l1n
A Z2

A
+ (l-X) (1 - n

2 2-Z Wl,n-1
AZ

A 5
n

A n l,n (3.35)

b. Similarity in n-direction

Here the equations are written at the point (C,n) and

solved for values at the point (2,n), knowing the solutions at

-23-

2W,

C,n

+ 0 (an)2

and

a W

ar I ,n

(3.30)

(3.31)



the point (3,n). The finite-difference grid is shown in

Figure 3.2b. - The partial derivatives become

W C,n

W + W
2,n 3 ,n + 0(A)2

2

Z Cn
Cn

a2w
2,n
C,n

+ 0 ()2

W C,n

(W2,n+ - W2,n + 3n+l 3,n1W3 1 ) + 0(
.4AZ (3.37)

(W. 1 -2W +W 1 +W+ 1 2W +W 1 ),n+l- 2,n+W 2,n-1 +W3,n+l-2W3,n +W3,n-1

(3.38)

W 2,n -3n + 0(A ) 2

Substituting these in the equation (3.04) and putting it in

the tridiagonal form, we get

1 Aln
A = [ 1I
n 2AZ 2 4AZ

B 2n 1 A4n

Aln,
Cn = [1 + 4n]

2AZ

and

(3.39)

(3.40)

(3.41)

(3.42)
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-I) + A. +W1 Ain 1 A2n 4r
Inr + - ,l- .r , n+l (n1 Z 2 + + 3n 2 2 A +

~~2A2 % ~AZ

A
1 n (3.43)

3,n-1 2 4Z

Case III. General Case, E70, n70

Here the equations are written at the point (C,n) and

solved for the values at the point (2,n) knowing the solution

at the points (l,n), (3 ,n) and (4 ,n). The finite difference

scheme is sketched in Figure 3.1. The partial derivatives can

be written as

W + W
W 2,n 3,n+ 0(2) (344)

lC,n 2

aw aw
aW =W 2,n 2 W3,n + o(A2)

- - - Z~ ~+ 0 (A ) , (3.45)

= w Z2,n 3,n + 0(A2)

C,n W 2W +W W

W 2 ,n+l 2W2,n+W2,n-l+W3,n+l 2W3,n3,n-l + ( 2 ) (3.46)

2AZ

2 2

W2 2,n W 3n + 0(2) (3.47)

oC,n

andand
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;,W, (I2,n-W1 ,n) + (W4n,-W3,n) 2+ 0(A2 ) (3.48)
2Afl

Substituting these into the governing equations and rearranging

in the tridiagonal form, we get

1 Aln
A [ A (349)n 2AZ2 (349)

=[2n 1 +A4 n + 5n]
B [fl + 1 ' (3.50)n 2 2 ACAz

C = 2 A , (3.51)
n 2AZ2 4AZ

and

1 Aln 1 Ain
n = A3n +( 2 4+ Z )3,n+l+(' A W3 n-12AZ 2AZ2

A A A A
5n 2n 1 4n 5n3
27 jl,n ( 2 AZ2 -t 2An 3,n (3.52)

The solution of the equations of the tridiagonal form

(3.23) can be obtained by the standard methods for solving a

linear tridiagonal algebraic set of equations. Knowing the

values of the dependent variables F, G and 8 at n=l and at

n=IE (corresponding to the wall and the outer edge of the

boundary layer respectively) from the boundary conditions (2.60)-

(2.61), each of the sets of equations represented by the general

form (3.23) can be solved for IE-2, evenly spaced points from

n-2, one step away from the wall, to the point n=IE-1, one step
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aiway fromn thel outer edge of the boundary layer by applying

W2,n En + F (3.53)
, . n n 2,n+l n

which is the general solution of (3.23) as justified by

Richtmeyer [18].

Making use of the boundary conditions (2.60)-(2.61) and

the fact that (3.53) should hold independent of the step size,

we get

El = 0 (3.54)

for F, G and 8 and

Fl = 0, 0, t (3.55)
w

for F, G and e respectively.

It can be shown that the following recursion relations

hold

-C
E = (3.56)
n AnEn_

1
+ B

n

Dn - AFn-
F- n n (3n57)
Fn =AnEE + B (3.57)

Thus, En and Fn can be calculated knowing El and Fl in

addition to the coefficients An, Bn, Cn and Dn, and using the

above recursion relations. Making use of the outer edge

boundary condition, W2
n can be calculated at all the inner

points of the mesh from the equation (3.53).

-27-



After solving the equations (3.04) in this manner, the

coefficients Aln ,A2 n, A 3n, A4n, and A5n appearing in the

governing equations are recomputed, updating the variables

wherever needed and the equations are solved again. This

process is repeated until the desired accuracy is achieved.

General Solution Technique

The solution technique used here is similar to the one

used by McGowan and Davis [8], i.e. a step-by-step integration

is performed. As shown in Figure 3.3, two planes of starting

solution are needed for such an integration scheme, along with

the boundary conditions at the wall and at the outer edge of

the boundary layer.

At the intersection of these starting planes, the solution

must be independent of both i and n-co-ordinates. In the case

of sharp cone, this occurs at the sharp point while for blunt

body it occurs at the stagnation point. The solution technique

for this case has been described under Case I in this chapter.

Once the corner solution is obtained, the starting solution can

be generated in n-plane at E=0, using the method discussed

earlier in this chapter under Case II. Also, the starting

solution is generated on a line of symmetry with respect to

the G-axis or along the windward streamline in our case.

With the solutions known in these two starting planes, we

proceed along constant G lines around the body (in the n-

direction) and step down along the body (in the i-direction),

once the solution in a particular C-plane is completed.
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IV. SOLUTION TECHNIQUE

In this chapter we will discuss the treatment of the

inviscid data and the details of the solution technique

employed herein.

A. Inviscid Data

The inviscid data is treated in much the same manner as

by McGowan and Davis [8]. Thus we take the pressure distribu-

tion from independent numerical solutions to the inviscid

equations and then solve for the velocity distribution, such

that it satisfies the Bernoulli Equation, longitudinal and

transverse momentum equations'and the isentropic relation,

applied at the surface.

The compressible Bernoulli Equation applied at the surface

is,

2 2P u v
h (e Y1+ + e (4.01)

0 pe Y-l 2 2

The c-momentum equation applied at the surface is,

2
au v au v
aue ve aue ve ah 1 (4.02)

Ue - + h an h (4.02)
e

The n-momentum equation applied at the surface is,

au ve av vuv aPaUe Ve aVe e e h 1 Pe

e h a+ h P h an (4.03)
e
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and the isentropic relation, assuming that the entropy is

constant is,

P
k -e (4.04)

PeY

Differentiating (4.01) with respect to i

1 1
- - aP au

e
av

= e + v e
y-1 Y e aE e aS e aE

and using (4.04), we get

1 3Pe aue av

Pe e

Combining (4.05) with the (-momentum equation and rearranging

ue - -' (h ve) = o (4.0.6)

which is the zero-vorticity equation applied at the surface.

Note that if we differentiate the Bernoulli Equation with

respect to n and combine with the n-momentum equation we will

obtain (4.06) again. Thus, if we solve the Bernoulli Equation,

isentropic relation and zero-vorticity equation, the solution

will automatically satisfy the E-momentum and n-momentum

equations.

For the special case of a sharp cone, equation (4.06)

reduces to the simple form
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;) tl

v (4.07)
(: ') ,l

because for this case

h =

av e

and 0 since there is no variation in stream properties

along rays, for conical flow.

The general technique of generating the inviscid data from

a specified pressure distribution has been described in detail

by McGowan and Davis [8]. The same procedure is followed here

for the sharp circular cone at an angle of attack and the

pressure distribution for this case is taken from numerical

calculations of Jones [16].

A slightly different approach is used for the case of a

spherically blunted cone due to the nature of the problem. The

pressure data for this case is taken from the numerical

calculations of Rakich [17]. Up to the point where spherical

symmetry exists, the data is specified in wind co-ordinates

centered at the stagnation point (Figure 4.1) and from there

onwards, the body-oriented co-ordinates, centered at the

frontal point on the sphere are used for specifying the data.

The data is specified in 7 planes evenly spaced around the

body.

For the symmetric sphere, the data is fitted with least-

squares method to an even 14th order polynomial of the form

2 4 14
P = P (1 - P S -.. P14 (4.08)
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whre 'S is measured from the stagnation point.

In order to perform the 3-D calculations in body-oriented

co-ordinates, it is necessary to find an expression for the

pressure distribution as a function of S' measured from the

frontal point 0' as the origin.

An 11th order polynomial of the form

P = P1 + P2S' + P 3 S'2 + ..... P (4.09)

is found for each of the seven planes in which the pressure data

is available. For increased accuracy, separate polynomials are

found for the three regions marked I, II and III in Figure 4.2,

along the body. The pressure derivative in the longitudinal
aP

direction e , is found by differentiating the expressions

(4.08) or (4.09) analytically, in their respective regions.
aP

Knowing the pressure distribution (Pe and age), the

procedure for generating the inviscid data is the same as for

the sharp circular cone, except for the fact that we use a

more general equation (4.06), rather than the equation (4.07)

(which is applicable only for conical flows), in addition to

the Bernoulli Equation and the Isentropic relation.

Once the inviscid quantities are calculated at a convenient

number of points around the body, a five-point Lagrangian

interpolation is used to find the desired quantity,. if the point

of interest lies between the planes where inviscid data has been

generated.
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B. Solution to the Problem

As described under the section "General Solution Technique",

the planes of starting solutions can be generated, making.use

of the fact that a similar solution exists at the windward

streamline and then step-by-step integration can be performed

making use of the boundary conditions at the wall and at the

outer edge of the boundary layer. For the sharp cone, this

procedure does not present any difficulties, but for blunted

cones, some special attention is required to apply the

technique.

As mentioned earlier, the starting solution is obtained

at the stagnation point in the wind co-ordinate system

(Figure 4.1). The symmetric sphere calculations are carried

out up to S= 2 a, in a two-dimensional manner. The quantities

F, G and 0 obtained from symmetric sphere calculations are

stored as double arrays so that we can find their values as a

function of the co-ordinates E and Z.

Once we reach S=2a, we switch over to the body-co-ordinates.

The starting solution in the plane X' = 1 - cos a, of constant

E around the body in this new co-ordinate system is then

determined by interpolating the results of the symmetric sphere

calculations. Note that in this new co-ordinate system we have,

F' = F , (4.10a)

G' = F , (4.10b)

and

0' = 0, (4.10c)
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wh1-r ' refers to the quantities in the new co-ordinates.

Once the starting solution in the plane C= constant is

known, the general technique of step-by-step integration,

described earlier is used to march along the body.

A mention must be made of the manner in which the

similarity parameter ~ is handled in the new co-ordinates.

The parameter c is found to be of the form

= I Pe'eUe h dS . (4.11)

0

Let the calculation in a particular co-ordinate system be

performed up to i = Co. Then the expression (4.11) can be used

to calculate 0 up to the point where C - Eo.

Once we switch to a new co-ordinate system, the value of

Q should be calculated using the expression

+ f P e1 e ue h dg (4.12)

no

where 0o is the value of 4 in the starting plane C = Go,

obtained by using the equation (4.11), in the earlier co-ordinate

system and integrating up to the point of interest in the

starting plane. Knowing %o, the values of % can be obtained in

the new co-ordinates by direct application of the equation

(4.12).

The value of h is determined using the expression for the

arc length
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d 2 2 2 2d9)' = W) + h (dri) + dZ

and it is found that

h = 5 for sharp cone

while h = local radius for the blunted cone.
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V. RESULTS AND DISCUSSION

VWe shall now discuss the results obtained for the

particular cases solved. Comparison of heat transfer rates

with experimental data will be made for sharp circular cones.

The cases of sharp and blunted cones will be discussed

separately.

A. Sharp Circular Cone at Angle of Attack

The case chosen here is one for which experimental data on

heat transfer rate is available. The flow parameters for the

case chosen are:

M = 8.0,

t = 84.20 R,

tw/% = 0.46,

R = 1718 ft 2/sec2 -R,

Pr = 0.738,

C = 198.6°R,

0C = 100° ,

a = 80° ,

and

y = 1.4.

This particular case has been studied by Tracy [14]. The

calculations are performed using 101 points evenly spaced in the

normal direction and 31 points in the transverse direction,

evenly spaced from n=O to n=nmax.
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The inviscid pressure data of Jones [161 was used for these

calculations. In Fig. 5.1 is shown the comparison of the

pressure distribution used with Tracy's experimental data [141

for M = 7.95. Heat transfer rate distribution, nondimensionalized

by qo = -0.0550VRe- (which is the heat transfer rate for the

circular cone at zero degree angle of attack) is shown in

Figure 5.2. For comparison, numerical results of McGowan and

Davis [8] and experimental results of Tracy 114] are plotted in

the same figure. It is apparent that the results obtained are

very close to the numerical results of McGowan and Davis [8],

whereas agreement with experimental data is not as good, expecially

near the windward and leeward regions. This could be due to

differences in the pressure data of Jones [16] and Tracy [14].

In Figure 5.3, the longitudinal skin friction coefficient

nondimensionalized by Cf = .40040 (where C is the longi-

o0 g0
tudinal skin friction coefficient for the circular cone at zero

degree angle of attack) is shown. Numerical results of

reference [8] are shown for comparison. The results obtained

here are in good agreement for most of the region.

Figure 5.4 represents the transverse skin friction

coefficient nondimensionalized by Cf . Here also, the numerical

results of reference [8] are presented for comparison and they

show a close agreement with the results obtained here. In

conclusion we can say that for the sharp circular cone used here,

we are in good agreement with the numerical results of reference

[8] and experimental results of reference [14].
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B. Blunted Cone at Angle of Attack

The test quantities used for this case are:

HI = 8.0,

t = 418.870 R,

tw/t o = 0.6,

R = 1718 ft2/sec2=°R,

Pr = 0.7,

C = 198.60 R,

OC = 100° ,

a = 80 and 4° ,

and

y = 1.4.

The inviscid pressure distribution is taken from the

computer calculations supplied by Rakich [17]. This pressure

distribution, nondimensionalized by yP M 2, is presented in

Figures 5.6 (for a=8 0 ) and 5.10 (for a=4° ) for the windward and

leeward planes. This inviscid pressure data, which is available

for seven planes evenly distributed in the transverse direction

from Q=0 to n=nmax is represented by polynomial expressions for

each plane and the pressure for intermediate values of trans-

verse co-ordinate n are obtained by five point Lagrangian

Interpolation.

Figure 5.7 shows the heat transfer rate distribution along

the body for the windward and leeward planes, for 80 angle of

attack. Numerical results of Popinski [15] are also shown for

comparison. Figure 5.8 shows the longitudinal skin friction
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distribution for the same case and again the numerical results

of Popinski [15] are shown. It is found that there is a good

qualitative similarity between the two sets of results but

numerical values are off by a few percentage points. This can

be attributed to the manner in which the pressure data is

treated in the two methods. It is noted that there is a slight

kink in the pressure data near the sonic line from where

onwards a different method of generating the data is employed.

The kink results in a discontinuity in the pressure derivative

aPe/3a and it has been found necessary to smooth the pressure

distribution in order to avoid fluctuations in skin friction in

this region. The final results will therefore depend on the

degree of smoothing employed for the pressure distribution.

Figure 5.9 shows the variation of heat transfer rate and

the longitudinal and transverse skin friction distribution in

the meridian direction for a station at S = 620 from the nose

of the sphere.

The results for a blunted cone at 40 angle of attack are

presented in Figures 5.11 (heat transfer rate distribution),

5.12 (longitudinal skin friction distribution) and 5.13

(variation of heat transfer rate and longitudinal and trans-

verse skin friction distribution in meridian planes).

Essentially, the same nature is exhibited by heat transfer rate

and skin friction distribution as in the case of 80 angle of

attack. But as expected, the difference in the values of heat

transfer rate (or longitudinal skin friction) at the same
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longitudinal station for windward and leeward planes, in this

case is smaller than in the case of 80 angle of attack.
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Fig. 2.1. BODY ORIENTED CO-ORDINATE SYSTEM
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Fig. 3.3. GENERAL SET UP FOR STEP-BY-STEP INTEGRATION
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Fig. 4.1. CO-ORDINATE SYSTEM USED FOR SPECIFYING

INVISCID DATA FOR SYMMETRIC SPHERE (x,y)

AND FOR GENERAL 3-D BODY GEOMETRY (x',y')
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Fig. 4.2. SCHEMATIC DIAGRAM INDICATING THE

THREE REGIONS WHERE SEPARATE POLYNOMIALS ARE

USED FOR EACH REGION TO OBTAIN THE

INVISCID PRESSURE DATA
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