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ANALYSIS OF NOISE PRODUCED BY AN ORDERLY

STRUCTURE OF TURBULENT JETS*

By Jay C. Hardin
Langley Research Center

SUMMARY

The "orderly" structure which has been observed recently by numerous researchers
within the transition region of subsonic turbulent jets is analyzed to reveal its noise-
producing potential. For a circular jet, this structure is modeled as a train of toroidal
vortex rings which are formed near the jet exit and propagate downstream. The noise
produced by the model is evaluated from a reformulation of Lighthill's expression for the
far-field acoustic density, which emphasizes the importance of the vorticity within the
turbulent flow field. It is shown that the noise production occurs mainly close to the jet
exit and depends primarily upon temporal changes in the toroidal radii. The analysis
suggests that the process of formation of this regular structure may also be an important
contribution to the high-frequency jet noise. These results may be helpful in the under-
standing of jet-noise generation and in new approaches to jet-noise suppression.

INTRODUCTION

The problems created by the noise of jet aircraft are apparent to even a casual
observer and need no further documentation. Public interest has been aroused to the
point where noise has actually displaced aerodynamic and economic factors as the over-
riding design consideration in certain applications and has recently played a part in the
cancellation of a major aircraft development project. Thus, alleviation of this noise must
be a prime research goal for a viable aircraft industry. This paper presents an analysis
of noise production by an "orderly" structure of turbulent jets which yields new under-
standing of the generation of aerodynamic noise and suggests potential techniques for
suppression.

The acoustic-analogy theory of aerodynamically generated sound proposed by
Lighthill (refs. 1 to 3) showed that the intensity of the jet noise may be related to certain
fourth-order correlations of the turbulent velocities in the jet. The theory did not provide
a workable solution, however, as such correlations are extremely difficult to measure and

This paper is a result of research undertaken while the author held a NASA post-
doctoral fellowship at the Institute of Sound and Vibration Research, University of
Southampton, Southampton, England.



the coordinate system in which the measurements should be made is somewhat ambigu-
ously defined. Thus, in most jet-noise research, the question of the turbulent structure
of the jet has been in effect bypassed by attempts to relate the noise to certain gross jet
parameters such as mean velocity profile or mean density; Such research, however,
leads to a trial-and-error technology since the basic physics of the phenomena are not
understood.

If, on the other hand, one adopts the view that the gross jet parameters act upon the
turbulence, which in turn produces the noise, it is apparent that a better understanding of
the turbulent structure of the jet might well provide the insight necessary to further tech-
niques for suppression of jet noise. Fortunately, there have been some recent develop-
ments in this area. In the past few years, several research studies have been reported
which indicate that a large-scale, orderly structure lies hidden within the chaotic nature
of turbulent jets, particularly in the transition region where the jet is not yet fully devel-
oped, although such structure is not obvious from Eulerian measurements of the velocity
field (ref. 4). One of the first such research studies was reported in a paper by Crow and
Champagne (ref. 5), who used fog to photograph subsonic air jets with Reynolds numbers
up to 1()5. They found that the transition region of the jet flow consisted of a series of
"puffs" and stated that "The photographs led us to imagine turbulence in the transitional
region of a jet as a vortex train, a train of loosely packed vortex rings only weakly depen-
dent on the circumstances of their origin." These vortex rings are randomly generated
in time and form at an average Strouhal number of 0.3 based upon vortex shedding fre-
quency, exit velocity, and jet diameter. They are also highly structured and stable, since
ring production at the Strouhal number 0.3 is shown to be favored by a nonlinear satura-
tion mechanism.

In a second paper, Wooldridge and Wooten (ref. 6) report the results of hot-wire
anemometer measurements in the initial region of a subsonic jet. They found a coherent
pressure field across the core region of the jet and stated that "The potential flow fluctua-
tions in the core, which have a scale corresponding roughly to the local thickness of the
shear layer, might be produced by doughnut-like vortex rings propagating away from the
jet lip." These conjectures are substantiated by the experimental results of Beavers and
Wilson (ref. 7) on circular water jets with Reynolds numbers between approximately 500
and 3000. They found that for values of the Reynolds number above 470, the pattern con-
sists of a fairly regular stream of vortex rings being generated at the sharp edge and car-
ried downstream. These rings formed at an average Strouhal number of 0.63 based upon
shedding frequency, jet diameter, and average jet velocity. If, as seems likely, the jet
employed by Beavers and Wilson is supposed to have a parabolic rather than a "tophat"
velocity profile, then their result can be seen to agree with that of Crow and Champagne.
Reference 7 also gives a thorough historical survey of other instances of the phenomenon
of vortex-ring generation in jets.



A second fascinating feature of these studies is that the vortex rings may be respon-
sible for most of the jet noise. Discussing some previous additional work on water jets,
Crow and Champagne observe "we could see water waves radiating outward from above
the region of puff formation. The chaotic turbulence further downstream did not appear
to be a strong source of waves." In a further recent work, Michalke (ref. 8) has con-
structed a wave model of a turbulent jet. His analytical results indicate that axisymmet-
ric modes of jet turbulence are much more efficient sound generators than nonaxisymmet-
ric modes. He remarks that "It [the above result] suggests that a considerable reduction
of jet noise could be achieved by suppressing axisymmetric pressure components in the
jet."

It might be mentioned that the experimental results cited here were all obtained at
Reynolds numbers at least an order of magnitude smaller than those found for commer-
cial jets. However, there is some reason to believe this same phenomenon is present in
practical jet engines as well, since the preferred Strouhal number of vortex-ring forma-
tion corresponds to the peak frequency of jet noise spectra. Crow and Champagne note
that "the peak of the jet noise spectrum lies between [the Strouhal numbers of] 0.25 and
0.30 depending on angle from the jet axis. The coincidence [agreement with Strouhal num-
ber of vortex-ring formation] suggests that the vortex train is latent in jet turbulence at
high Reynolds numbers and contributes to the emission of sound."

The interesting possibilities raised by these studies prompted the present investiga-
tion of the implications of a model of jet turbulence based upon a train of vortex rings.
The model is developed for a circular jet and is rigidly axisymmetric. The rings are
defined mathematically as toroidal vortices with finite cores and are assumed shed at
random intervals. The analysis is entirely inviscid, on the basis of Lighthill's conclusion
that viscosity plays a negligible role in sound generation. This leads to a description of
the large-scale structure of turbulent jet flow. The sound generated by the structure is
then described by a relation involving the vorticity distribution within the flow. Several
conclusions about the nature of jet noise and potential methods of suppression are drawn
from the analysis.

The discussion is divided into three major sections. In the first section, Laghthill's
expression for the far-field acoustic density produced by a turbulent flow field is reformu-
lated to yield the dependence of the sound upon the vorticity in the flow. In the second sec-
tion, the aspects of the theory of toroidal vortices which are necessary to the model are
discussed. It is also shown, by employing the expression derived in the first section, that
a single vortex propagating in an inviscid, quiescent medium can produce no sound.
Finally, in the last section, a model of the jet as a train of toroidal vortices is developed
and the sound generated by the model determined.



The author wishes to express his appreciation to P. O. A. L. Davies, of the Institute
of Sound and Vibration Research, University of Southampton, for his enthusiastic assis-
tance and discussions regarding the effects of vorticity.

SYMBOLS

A cross-sectional area

B arbitrary vector

B magnitude of vector B

D dimension of region containing turbulence

E complete elliptic integral of the second kind

F(t) time function

Iz axial impulse of vortex

K complete elliptic integral of the first kind

L vector, j^ + —^~

Lj components of vector L

J^ Coriolis acceleration vector

j£j components of vector J^ .r •

n (k} •*cLj:V ' components of vector J£ contributed by kth vortex

M Mach number of eddy

Q (t) instantaneous source moment

Q,(t) instantaneous dipole moment

Qj.(t) instantaneous quadrupole moment
J
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Q0m (t) source tensor

R jet radius

S surface

T self-induced kinetic energy of vortex

Tk , self-induced kinetic energy of kth vortex

T. • Ldghthill's quadrupole moment density

U velocity

Uc self-induced convection velocity of vortex

U0 jet velocity

V volume

a ambient speed of sound

d distance from field point to observer point

e total kinetic energy of solenoidal field

S. eddy size

n" outward normal vector

p.. stress components

qfy",t) source distribution

r radial coordinate of field point in cylindrical coordinate space

ro radial coordinate of source point in cylindrical coordinate space



r
distance, [(r - 7?)2 + (z -

V2
2 2r« distance, r + 77) + (z -

P -,1/2
distance, [(r - ro)

2 + (z - zo)
2^

r0' distance, Ur + ro) + (z - z0)

s radial coordinate in polar coordinates

t time

tc age of vortex

u typical turbulent velocity

u0(r,z;?7,£,r) radial velocity due to vortex

u^ velocity components

ur radial velocity in cylindrical coordinate space

u .(r,z) radial source velocity

uj, j(r,z) externally induced radial velocity within kth vortex

U angular velocity in cylindrical coordinate space

u , angular velocity in polar coordinate space

v" solenoidal velocity vector

v magnitude of vector v"

v, components of vector v*



v"^ ' solenoidal velocity vector within kth vortex

v*' ' externally induced solenoidal velocity vector within kth vortex
_ fa\

v0
v ' self-induced solenoidal velocity vector within kth vortexs

w axial velocity in cylindrical coordinate space

w (r*,z;?],£,T) axial velocity due to vortex

WQ^ '(r,z) externally induced axial velocity within kth vortex

w.(r,z) axial source velocity

x position vector

x magnitude of vector x"

x. components of vector x

y" position vector

y. components of vector y" •

z axial coordinate of field point in cylindrical coordinate space

z axial coordinate of source point in cylindrical coordinate space

r circulation

IV circulation of kth vortex

At time interval of vortex generation

A measure of flow complexity

i// stream function

fi vorticity vector



a =

angular component of vorticity vector

r 2" r l
r 2 + r l

y circulation per unit length

6 core radius

6.. Kronecker delta function

C axial position of vortex

£^ axial position of kth vortex

rj toroidal radius

77, toroidal radius of kth vortex

0 angular coordinate in cylindrical coordinate space

A wavelength of sound

IJL, value of /j, for kth vortex

p density

p ambient density

Pa acoustic density

(f> angular coordinate in polar coordinate space

o> . typical sound frequency

An asterisk denotes evaluation at t - — .



AERODYNAMIC NOISE THEORY REVISITED

Lightnill, in his pioneering paper on aerodynamically generated sound (ref. 1),
showed by an acoustic analogy that the density p in the far-field region surrounding a
finite volume of turbulent flow must satisfy the equation

where a is the speed of sound in the ambient fluid and

is the quadrupole moment density of an equivalent acoustic source distribution. Here, u^
and p, . are, respectively, the velocity and stress components in the general fluid motion.
The basic free-space solution of equation (1) is

/ \ 1 r fi v °Pa(x,t) = p-p =-J— _L ±- Uy (2)a \ / ° 2 J 6 6 d

where p and pa are, respectively, the ambient and acoustic components of density,

d = |5T - y"|, and 5/6y^ implies partial differentiation with respect to y± with d held
fixed.

In a recent paper, Crow (ref. 9) noted that the structure of the sound emission prob-
lem must depend upon the ratios of three lengths: the eddy size i, the wavelength of the
sound X, and a dimension D of the region containing turbulence. In particular, the
Mach number of the eddies M <* SL/\ and a measure of the complexity of the flow
A cc D/jf were found to be critical parameters.

For A ~ 1 and M « 1, Crow applied the method of matched asymptotic expansions
to show that Lighthill's solution was valid to order M3 in the sound field if

where V; represents the solenoidal components of the velocity field. Thus, equation (3)
replaces Lighthill's approximation T. . ~p u.u., where u. is the total velocity field, by



an expression which depends only upon the vorticity in the flow. Since the conditions
A ~ 1 and M « 1 often hold in a subsonic jet, this result is employed in the following
analysis to obtain an expression from which the sound generated by a turbulent jet is
easily calculated when the vorticity field is known.

Note that since the divergence of a solenoidal field is zero,

r i - j j
(4)

where J3 = fixv", n = V x v" is the vorticity, v = jv"|, and the vector identity

(I • VJI = ¥2- + fv x I) x I

has been utilized. It might be noted that the vector ,£ is often referred to as the
Coriolis acceleration. Thus, employing equations (3) and (4) in equation (2) yields

' "a,

V d
(5)

where q(y",tj = V • L and L = Vv"

Now, by expanding about d = x, where x = |x"|, Doak (ref. 10) has

shown that equation (5) admits the multipole expansion

0 C,m,n=0 Q9x2
m_ n

(6)

where
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By summing terms having equal values of !_ + m + n, this expression may also be written
as

where

and

Pa(x,t) --!4
47ra

Q0(t) = q(f ,t)dy

'-I a Tt+ _ ^ L + .
9X

(7)

are the overall, instantaneous monopole, dipole, and quadrupole moments, respectively,
of the source distribution q(y",tj. Note that by referring all moments to the origin, this
series removes all difficulties regarding differences in retarded times.

Since qy\t = V • L and the volume of turbulence is finite,\t) =

Q (t) = C V . L d y = f L-n
O JTT Jo

(8)

by the divergence theorem, where n" is the outward normal vector to the surface S
surrounding the volume V. Now, Crow (ref. 9) has shown that v" — 0 as x~3 as
x ~ °°. From this result, it can be seen that L cc x~^. Thus, the second integral in equa-
tion (8) is zero since S may be taken large enough to make L negligible on S and,
hence, Qo(t) =0.

Likewise,

Qi(t) = -f yjV • L dy = -C V • (y L)dy + f L. dy
*• Jy * Jy \ / ^V

0)

The first of the last two integrals in equation (9) vanishes on application of the divergence
theorem. Further, by equation (4),

(v • v)v = v.-^ =-Uv.
\ / 1 9. 8 1
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since -— = 0. Thus,

f L dy = f ±-(v.v .W = 0
Jy 1 Jy 9y\ * V

since v.v. is negligible on the surface S. Therefore, the monopole and dipole moments
vanish, as is to be expected from Ligh thill's theory.

The quadrupole moments are given by

V> = \ iy yiyJ V ' E df 4 iy V ' (yiyJE)df - t iy yiLJ ^4^ ^ ^ (10)

Again, the first of these integrals vanishes through application of the divergence theorem.
Thus, in equation (7), the lowest term in the multipole expansion is quadrupole in nature
and is given by

where the asterisk indicates evaluation at the retarded time t - — .ao
It should be mentioned here that the argument employed to obtain finite values for

the first three orders of moments (namely, that L — 0 as x~^ as x — °° ) cannot be
employed for multipoles of all orders. Thus, the convergence of the multipole expansion,
equation (7), has not been proven. However, since the higher order multipoles are much
less efficient radiators than the quadrupole, it appears that the multipole series may be
interpreted as an asymptotic expansion for the sound field. From a physical standpoint,
it can also be seen that viscosity would attack the higher order multipoles much more
strongly. Thus, in a real, viscous atmosphere, convergence of the multipole series would
be assured.

The term appearing in equation (11) may in turn be expanded by setting

fiWuuay-Y\, »oj \ J v 1 1 y

12



and noting that

F xixj 1 32F _3_ 8T 3F ijl 8F _F_"
\a02 8t2 a0x at X2y x ^Qx at X2|

If o> is taken to be a typical frequency of the sound produced, the relative magnitudes of
the three types of terms in this expression are

•.

to^F . 0F_. _F_
2 * a Y ' o

i^j a-O* X^

or

OTS\ • ""^ •
x X2

where X = 27rao/o> is the typical wavelength of the sound. Thus, for x » X, the first

term dominates and the acoustic density fluctuations may be written

y . L d y (12)

•» 2
Finally, recall that L = £+^-. Thus,

c - _ r - r a v
2 -

Jy i J Jy i^j «Jy i 3y. 2

Now, integrating by parts and making use of the fact that v" — 0 as x~3, it can be shown
that

C 8 v2 C v2 -.
Jy i 9y. 2 ij Jy 2

J

Thus, with the total kinetic energy of the solenoidal field v" defined as

2 *

13



equation (12) may be written as

(14)

It may be noted that equation (14), for the acoustic density fluctuations, is substan-
tially equivalent to an expression for the acoustic particle -velocity fluctuations which was
obtained by Powell (ref. 11) some years ago, although the methods of derivation differ
considerably. Ffowcs Williams (ref. 12) objected to Powell's work on the grounds that it
contained unresolved questions of convergence. Similar questions concerning the con-
vergence of the multipole series expansion in this analysis are resolved by considering
the multipole series to be an asymptotic expansion for the sound field.

With regard to the second term in equation (14), Powell observes that the only mech-
anism present that could account for a change in the total kinetic energy in a free inviscid
flow is the production of acoustic energy itself. The contribution from this mechanism is
of the same order as the first term, but it is known to be factored by a coefficient of order
M . Further, as discussed in a later section, although kinetic energy associated with
solenoidal velocity components is produced at a jet exit, for a steady jet this production
occurs at a constant rate and therefore makes no contribution to noise generation. Thus,
the second term may be safely dropped to yield the final result:

From this expression, the acoustic component of the density at any point in the far field
can be calculated when the vorticity in the flow is known.

It might be mentioned that this analysis can evidently be extended to high, even
supersonic, Mach numbers on the basis of the results of Doak (ref. 13). The condition
A ~ 1 implies a compact source region which precludes the appearance of Mach wave
radiation. The only apparent difficulty is obtaining an equivalent multipole expansion for
the slightly more complex wave equation which appears in Doak's theory.

THEORY OF TOROIDAL VORTICES

In the previous section, it was shown that the sound generation by a turbulent field
could be calculated from knowledge of the vorticity within the flow. This section is con-
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cerned with the description of the solenoidal velocity field produced by the "orderly" or
"doughnut-like" structure which has been found in turbulent jets.

The solenoidal velocity fields of primary interest in this analysis are those in which
the vorticity is confined to circular rings, or "toroidal vortices." Since viscosity acts as
a diffusing agent, the statement that vorticity is confined tacitly involves the assumption
that viscosity may be neglected. This assumption is made throughout. Such vortices
have been studied for many years (refs. 14 to 16). Thus, only an outline of the derivation
of the results necessary in the remaining analysis will be given.

Consider a cylindrical coordinate system r,0,z and a toroidal vortex symmetri-
cally placed with respect to the z-axis, as shown in figure 1. When the field is assumed

( r ,z)

Figure 1. - Geometry of the toroidal vortex.

axisymmetric so that u^ = — = 0, the velocity vector becomes v" = [ur,0,wj and the

vorticity vector is n = J0,n0,0].

Conservation of mass in such a flow requires that

(16)

This equation is satisfied by the introduction of a stream function

(17)

•In terms of the stream function, the vorticity is then given by

8u i 2 1 2 1 a i
0 = ~8z~ " 8? = r 8z2

 + r 9r2 " ̂ 2 8r
(18)
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Some years ago, Lamb (ref. 14) showed that the solution to this equation could be
expressed in the form

where K and E are the complete elliptic integrals of the first and second kinds,
respectively, and

(19)

In order to evaluate this expression, it is necessary to determine the distribution of
vorticity within the core of the ring and the shape of the core cross section. From the
equations expressing conservation of momentum in such a field, it can be shown that

±-Z = 0
Dt r (20)

where D/Dt is the substantial derivative. Thus, the ratio ^n/r is conserved as the
particles move about in the flow. The simplest and most widely employed (see ref. 17)
solution to this equation is

— - = Constant = JLI

Further, in two recent papers, Fraenkel (refs. 17 and 18) has proved the existence of
toroidal vortices with such a vorticity distribution and has shown them to be stable in an
inviscid fluid if their cores are small and circular to first order. Thus, since first-order
results are sufficient for this analysis, the core will be assumed to be circular.

Figure 2.- Geometry of the core cross section.

Introducing polar coordinates s,0 within the core cross section, as shown in fig-
ure 2, leads to the relations r = 77 + s sin $ and z = £ + s cos $. In this coordinate
system

16



+ — sin (21)

Thus, to first order, the vorticity is constant and the more rigorous results of Fraenkel
(ref. 17) agree with those of Lamb (ref. 14). The circulation about the core is given by

(22)

By Kelvin's theorem, this must be an invariant of the motion.

It is now possible to evaluate the stream function, given by equation (19), approxi-
mately in two important cases. When the point of interest (r,z) is far from the core so
that r,' and r9' vary little over the core region,

(23)

where

ij = (r - 77) + (z - £) rg = (r + 77) + (z

and

a =

The symbols r^ and TO represent the shortest and longest distances, respectively,
from the point of interest to the center line of the vortex. (See fig. 1.) This is exactly
the stream function due to an infinitesimal vortex "filament" and agrees with the state-
ment of Basset (ref. 15), who pointed out that a ring with a small core would have approx-
imately the same effect upon the irrotationally moving fluid surrounding it as that of a
vortex filament of the same strength which coincided with the center line of its core.
From equation (23), the velocities at points not too near the core may be calculated with
the aid of equation (17). Reasonably good agreement between these relations and mea-
sured velocities in real vortices has been shown experimentally.

When the point of interest is within the core of the vortex so that r^' ~ 0 and
TO' ~ 27j, the argument of the elliptic integrals approaches unity. In this case, it is pos-
sible to employ expansions of the elliptic integrals (ref. 19) to show that

17



r 2^
^(r,z)«^i(ln52-|--L] (24)

6 2 26'

From this expression, it can be seen that the velocity within the core in the s,0 coordi-

nate space is (0,u ,V where

U^*^TS (25)

in agreement with that of a forced two-dimensional vortex.

Now, the energy per unit mass of a single vortex ring is (Lamb, ref. 14)

T = - f (ur
2 + w2)dV = -TT f tf/Ofl dA (26)

2 «Jy \ / JA

where A is the cross-sectional area. Thus, employing equations (21) and (24) gives

which must be constant because of the absence of viscosity. Further, from Saffman's
work (ref. 20), it can be seen that

T -2UcIz-|r,r2 (28)

where Uc is the "convection velocity" of a single vortex ring and

i , r27T 9 2I — tr \ He \ H/A i»"oO ~ T r i V » lOQi2 — " i \ Cl(p 1 Sue/Q 7J1 TI \£i&)
C C

= TT \ ds \
J0 J0

is the only nonzero component of the impulse per unit mass. Lamb (ref. 14) has shown
that the impulse must also be invariant in a quiescent field. Thus, combining equa-
tions (27), (28), and (29) yields

/ \
u c = — *T-(lnlT--;fJ (3°)

dt 47T77V 6 4/

18



which is the velocity induced at one point on the vortex ring by the remainder of the ring.
Note that for an infinitesimal vortex filament (i.e., 6 = 0), this velocity becomes infinite.

Finally, it is instructive to consider the expression for the acoustic density derived
in the previous section for the case of a single vortex ring in a quiescent fluid. In a
Cartesian coordinate frame,

-r 17 \ / N "1
P = |Ur - u, sin (b}Sla cos 6, U^ - u, sin d>]O,, sin 6, -u,Sln cos d>

| _ \ C 0 I e \ c 0 7 0 ' 0 0 J

and

y*= (77 + s sin 0)cos 9, (rj + s sin $)sin 6, % + s cos 0

Therefore,

Yi^jdy =0 ( i * j ) (31)

upon integration over Q. Also,

y i A
d y = y2£2

 dy ̂ ^c^2 - V = T + V <32>y ^ l l J y ^ / J C 8 2 4

and

n Tn2«
(33)

Now, recall that the kinetic energy T and circulation r are invariants in the flow.
Further, since the impulse must be constant, it can be seen from equation (29) that the
toroidal radius t] cannot vary. Thus, the time derivatives of equations (32) and (33) are
zero, and a single toroidal vortex propagating in a quiescent inviscid medium can produce
no sound.

These results will be employed in the next section to develop a model for the
orderly structure of turbulent jets. The noise produced by this structure can then be
calculated by employing the result obtained in the section entitled "Aerodynamic Noise
Theory Revisited."
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THE JET MODEL

Before proceeding to develop a model of the jet from which the noise can be cal-
culated, it is instructive to examine two simpler ideal flows which bear a resemblance to
the actual jet flow. These examples will be discussed in two dimensions in order not to
obscure the physics by mathematical complexity. Consider first the case of an infinite
region of fluid with constant velocity Uo surrounded by ambient fluid, as shown in fig-
ure 3(a). The velocity field in this example may be completely determined by assuming
the intersections between the flows to be infinitesimal vortex sheets, the upper one having
circulation y = Uo per unit length and the lower one having the negative of that value.
Each sheet travels in the positive x^-direction with the velocity Uo/2 induced upon it by
the other vortex sheet. Now consider the somewhat more realistic case of a semi-infinite
region of fluid traveling with constant velocity Uo, again surrounded by ambient fluid, as
shown in figure 3(b). For Xj > 0, the upper and lower intersections can again be thought
of as vortex sheets with circulations y and -y per unit length, respectively, and at
large positive values of Xj, the situation is very nearly that of the first example. How-
ever, at small values of Xj, a considerable difference is observed. In fact, in the mov-
ing stream at Xj = 0, the velocity in the Xj-direction induced by the vortex sheets is only
U0/2 rather than Uo. Further, the convection velocity of the sheets is only U0/4.

Xo

U=0

U-U,

u=o
(a) Two infinite vortex sheets.

u=o

u=u,

u=o -
(b) Two semi-infinite vortex sheets.

Figure ~$.- Simple ideal flows.
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Thus, the required velocity Uo at the origin of the flow can be attained by placing a
uniform source distribution of velocity Uo/2 in the moving stream at the plane Xj = 0.
The source also produces a component of velocity which forces the vortex sheets out-
ward, as observed for real jets. Since the conditions in the first few diameters of actual
jet flows are similar to these ideal flows, the ideas developed here will be employed in
constructing the jet model.

Consider a circular jet of radius R and uniform velocity Uo, as shown in fig-
ure 4. If the jet is assumed to be exhausting into the ambient atmosphere, at the edge of
the jet will be formed an infinitesimal discontinuity, or cylindrical "vortex tube," across
which the velocity falls from the jet velocity to zero. The circulation per unit length of
this tube must again be y = Uo. The self-induced convection velocity of such a tube
unfortunately cannot be computed without assigning a finite width to the discontinuity, as
can be seen in equation (30). Thus, it will be assumed to be Uo/2 by analogy with the
two-dimensional case. From these two values, it can be seen that the rate of production
of circulation by the jet orifice is given by

U 2
dr o /o A\— = -5— (34)
dt 2

The velocity in the axial direction induced by the vortex tube over the whole of the
jet exit is difficult to compute. However, at the center of the jet exit, it is a simple mat-
ter to show that this velocity is Uo/2. Thus, a distributed source must again be placed
in the jet exit in order to obtain the correct mass flow from the jet.

Up to this point, the jet has been analyzed as if it produced an infinite cylindrical
vortex tube. However, when the case of a starting jet is considered, it can be seen that
the vortex tube will be of finite length. As can be shown analytically and as has been
observed experimentally (ref. 4), such a finite tube is unstable and tends to roll up into
finite circular regions of vorticity. For the purpose of this analysis, it will be assumed
that these circular regions of vorticity can be represented as toroidal vortex rings. This

Figure k.- Jet geometry.
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leads to a model of the jet as a train of vortex rings under the influence of a distributed
source, as shown in figure 5. As Crow and Champagne (ref. 5) note, these rings are ran-
domly generated in time, and, thus, the circulations of the vortices will differ. However,

Figure 5.- Jet model.

in the absence of some mechanism through which circulation can be transferred from one
vortex to another, the circulation of each individual vortex must remain constant although
its size may change.

It is now possible to obtain an expression from which the sound produced by this
model may be calculated. Suppose that at time t, the vortices are numbered
n = 1, 2, . . .; in order to evaluate equation (15), note that vorticity is present in the
model only within the cores of the vortices themselves. Thus, it is necessary to deter-
mine the solenoidal velocity field only within the cores of the vortices. Since velocities
may be superimposed in hydrodynamics, the solenoidal field within the core of the kth
vortex is given by

(35)

where is the self -induced field consisting of the convection velocity Uc and the

—rotational component u , , and VQ
V ; is the field induced by all the other vortices. The

self-induced components were obtained in the section entitled "Theory of Toroidal Vorti-
ces." Thus, only the externally induced components remain to be derived.

Let the radial and axial components of velocity at the point (r,z) due to a toroidal
vortex of radius 77 and circulation T at the position z = £ be uo(r,z;?j,?,r) and
wo(r,z;T],£,r), respectively. These may be calculated from equation (23) provided that
the point is not too near the core of the vortex. Then, if the point (r,z) is within the core
of the kth vortex, the radial and axial components of the externally induced velocity are,
respectively,

ro (r,z) =
n=l

(36)
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and

w0M(r fz) = w0(r,Z;7]n,en,rn) (37)

The objective of this analysis has been to develop a model of the "orderly" structure
of the jet from which the noise generation could be computed. In order to calculate the
noise, consider equation (15) and note that since the vorticity is confined to the vortex
cores,

1C — A

where £.' ' is the portion of the jth component of the vector £ = n x v" contributed

by the kth vortex. As in the case of a single vortex,

f y .£ . ( k ) dy=0 ( i* j ) (39)
Jy ! J

Further, if the variation of the externally induced velocity over the vortex core is
neglected so that

and

then

and
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where Tk is the self-induced component of the kinetic energy of the kth vortex. Thus,
the integrals of interest become

(42)
1C— J.

and

k=l
(43)

The noise produced by the jet depends upon the second time derivative of these inte-
grals, as seen in equation (15). Thus, the question arises as to what parameters in these
expressions have important time variation. The circulation I\ is known to be constant.
However, in such a field of vorticity, neither the impulse nor the energy of a single vor-
tex need be invariant. Thus, both the radius 77, and position £, of the vortices may
vary with time. Let u .(r,z) and w.(r,z) be the radial and axial components, respec-
tively, of the velocity produced by the steady distributed source placed in the jet exit.
Then, it is possible to write the set of coupled first-order differential equations

d7?k
IT >c \ + 11̂ (7̂

(44)

and

dt
(45)

for these variables. Further, from equation (27) and the fact that the circulation must be
constant, it can be seen that

rp ^

1/2
3/2 (46)

is a strong function of the toroidal radius. Thus, a single vortex in a field of vorticity
may potentially generate noise through temporal variations in its position and radius and
in its kinetic energy. There may also be variation in the induced velocities u.
and w. (k)
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Some qualitative statements about the induced velocities may be made from ele-
mentary considerations. In an infinite train of coaxial vortices with equal radii, circula-

(lA (]A
tion, and spacing, uj.o' is zero and WQ

V ' is constant. However, the model presented
in this analysis differs from such a train in two respects. First, the vortices are ran-
domly generated with different circulations and spacing. Nevertheless, at the spacing
seen in experimental realizations of this phenomenon, the effect of this difference is prob-
ably second order. A more important effect is due to the fact that the train is semi-

(k)infinite. In this case, at points near the jet exit, u:. ' is negative because of the absence
of a.balancing positive contribution. However, as the vortex moves away from the exit
and more vortices are generated, this velocity falls approximately to zero. On the other
hand, the velocity w ' ' is always positive. It is small near the jet exit but increases
asymptotically to approximately its value in an infinite train as more vortices are gen-
erated. Thus, both these velocities have nonnegligible time derivatives-only close to the
jet exit. A computer model of the turbulent field of a starting jet which illustrates this
behavior has been constructed by P. O. A. L. Davies, of the Institute of Sound and Vibra-
tion Research, University of Southampton.

When the understanding of the induced velocities obtained above is employed in equa-
tions (44) and (45), a reexamination of the behavior of the toroidal radius and velocity is
possible. Note that the position of the vortex is always increasing since all three contri-
butions to the right-hand side of equation (45) are additive. When the vortex is initiated,
the toroidal radius will begin to increase provided that the positive radial velocity pro-
duced by the source distribution is large enough to overcome the negative contribution
from the other vortices. This seems to be the case in real jets. As the radius is
increased, the self-induced convection velocity of the vortex will decrease and the vortex
will decelerate if the decrease in the self-induced velocity is larger than the increase in
the externally induced velocity. Again, this seems to be the case in real jets. However,
because of the fact that the vortex is moving away from the source, the effect of the source
on the vortex dies away rapidly and this source-induced motion soon ceases. Then, since

(Id (Iduro goes to zero and w v ' becomes constant, as discussed previously, the rate of
change of the toroidal radius goes to zero and the velocity of the vortex becomes constant.
Thus, the radius and velocity of the vortex also have nonzero time derivatives only close
to the jet exit.

In the preceding discussion, the time variation of the parameters appearing in
equations (42) and (43) has been discussed in some detail. It has been shown that nearly
all of the time variation takes place in the first few diameters of the jet flow. Thus, most
of the jet noise must be generated in this region. In order to determine which of the
parameters is most important in noise generation, it is necessary to consider the magni-
tude of the various terms. From equation (34), it can be seen that the circulation of a
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vortex is given by T = Uo
2At/2, where At is the time interval in which the vortex

was generated. Since the average Strouhal number of vortex generation is constant,
At °c RU -1,Q . Thus, r cc U0R. Further, T] cc R and £ cc Uotc, where tc is the length
of time since the vortex was generated. Finally, it seems reasonable to take u^' and

w (k) cc Uj where u is a "turbulent" velocity much smaller than Uo. Thus,

Tk - UQ
2R3

2^3
(47)

cc UQtcNoting that the time variation in 77, and uv ' will be quite small by the time
is large leads to the conclusion that the important terms in noise generation are the mid-
dle two of equations (47). Further, since

and

dt' d\ dt2

it can be seen that the noise produced by the large-scale structure of turbulence is pri
marily due to changes in the toroidal radii.

CONCLUDING REMARKS

In this analysis, the noise produced by the "orderly" structure of turbulent jets has
been considered. The structure was modeled as an axisymmetric train of toroidal vor-
tices, and an expression for the noise production was derived. From the analysis, it
could be seen that the noise production occurs mainly close to the jet exit and is primarily
due to changes in the toroidal radii. The work supports the earlier conclusion that axi-



symmetric components in the turbulent field of the jet are significant contributors to the
sound field.

One further conclusion clamors to be drawn from the model. If the cylindrical vor-
tex tube initially produced by the jet is considered to be constructed of tightly spaced
toroidal vortices, the analysis presented in this work remains essentially valid. How-
ever, there is a rolling up of this sheet to produce the orderly structure which induces
large and rapid changes in the radii of these smaller vortices. Thus, the production of
the orderly structure should also be a significant contribution to the high-frequency jet
noise.

Although it is recognized that many jet nozzles are not circular and that the vortex
structure which they form will not be circular, the fact that on the basis of the model, the
orderly structure has been shown to contribute to the sound field suggests several pos-
sible new approaches to noise suppression. One such approach is to place a device in
the jet flow which destroys the orderly structure. This may be part of the effectiveness
of the multitube suppressor in addition to its well-known frequency shift. However, in
order to alter an axisymmetric structure, the multitube arrangement with its subsequent
drag loss may be unnecessary. One such device which consists of a series of concentric
cylinders has recently been tried successfully by T. P. Scharton and P. H. White
(J. Acoust. Soc. Amer., vol. 52, no. 1, pt. 2, 1972). A second method of suppression
might attack the stability of the vortices. Vortex rings are very unstable. In particular,
any variation in the axisymmetry or planarity of the ring leads to induced velocities which
tend to destroy it. For this purpose, nonsymmetric nozzles might prove useful. Finally,
the dependence of the noise on changes in the toroidal radii suggests that keeping the
radius constant should lead to noise reduction. Mathematically, the way to achieve this
feat is trivial — add a further velocity field to the flow which will introduce a term in the
radial velocity so that the time rate of change of the radius is always zero. The method
by which this may be accomplished on an actual engine must be a subject of
experimentation.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., March 29, 1973.
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