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!%t'mmY 

This note presents the tirne-dependent, turbulent mean-flow, Reynolds 

stress, and heat flux equations in atass-averaged dependent variables. These 

equations are given in conservative form for both generalized orthogonal and 

axisymmetric coordinates. For the case of small viscosity and thermal cot- 

ductivity fluctuations, these equations zre considerably simpler than the 

general Revolds system of dependent variables for - compressible fl-aid and 

pernit a more direct ext2n3ion of lob speed turbrilence modeling to computer 

codes describing high speed turbulenct fie:ds. 



INTRODUCTION 

In recent years, significant advancements in both computation techniques 

and computer hardware have led to sophisticated prediction techniques for 

describing c a ~ l e x  compressible fluid flows. The most general techniques avoid 

boundary-layer approximations and solve the complete time-dependent, conservation 

equations of mass, momentum and thermal energy, and possibly species. (See 

ref (1) and (2) .) The transport mechanisms that have been employed in these 

techniques are consistent with mclecular 01 laminar processes. Methods such 

as those presented by MacCormack or Carter have been shown to apply to a flow 

as complex as a shock-wave boundary-layer interaction, even when the adverse 

pressure gradient generated by the shock wave is strong enough to cause separa- 

tion of the boundary-layer flow. 

The scccessful methods for laminar flows have not, however, been carried 

over to the computation 9f turbulent flows -particularly strongly interacting 

flows. Turbulent-flow solutions, which are presumably contained j.n the instan- 

taneous viscous flow conservation equations, cannot be obtained at present 

because the small grid size required for accurately resolving the decay pro- 

cesses of turbulence cannot be accommodated in present computers. Therefore, 

these instantaneous equations must be time averaged to obtain a system of 

equations with spatial characteristics consistent with present computers. In 

the time averaging process there is a loss of phase and wave-length information 

of the turbulent motions. Although this information may be critical to the 

ultimate understanding of turbulence, time averaging has yielded most of the 

significant results related to the mean flow in boundary layers and may prove 

equally valuable for the more complex flow fields of current interest. 



The first step i establishing time-sveraged turbulent flow equations is 

the expansion of all the dependent vari~~bles into the sun1 of two terms, one 

slowly varying and the other randomly varying at the high frequencies charac- 

teristic of turbulence. With compressible flows there is some freedom in the 

choice of how this expansion is ar.complished . For example, instantaneous 

velocity components can be ex~a:tded either as the sum of two velocitie~. as in 

the classical Reynolds expancion, or as the SULI of two mass fluxes divided by 

the mean density, the mass averaged dependent variable expansion, first suggested 

by Favre (ref. 3) . As an example of Reynoldsb expansion, Donaldson (ref. 4) has 
written the complete system of equations for compressible flow in generalized 

tensar form so tha: they can be particularized to any desired coordinate system. 

Donaldson's equctions explicitly contain density fluctuations as well as velxity 

fluctuations, thus, adding considerable complexity as compared with the constant 

property case. This added complexity can be reduced, as shown in ref. 5 and 6, 

if the expansion of the dependent variables is carried out using mass averaged 

expansions. These equations essentially exhibit a term by term correspondence 

with the constant property case. This correspondence can he important if the 

basic turbulence mechanisms in compressible flows remain similar to those in 

constant property flows (the so-called Morkovin hypothesis), thereby permitting 

convenient extension of the large body of experience existing with incompres- 

sible fiows. 

The work of refs. 5 and 6 is limited, however, in that the Reynolds stress 

and turbulent heat flux equations were not presented and, further, the equations 

were confined to the steady state and expressed in cartesian coordinates. The 
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general objective of this note is to remove these limitations by 

1. adding the time-dependent terms to all the equations 

2 .  pre5enting the FeynoLds stress arid heat flu;\ equations 

3. employing a gexralized orthogonal coordinate system 

4. casting the equations in conservative form, cvnsistent with existing 

computer codes (refs. 1 and 2) 

and 

5. particularizing the equations to cylindrical coordinates for com- 

parison with axisymmetric fiow data (e.g. ref. 7). 



SYMBOLS 
u. u 
I j e total internal energy per unit of volume, ph - p + ? - 2 

h specific enthalpy 
u.u 

H total specific enthalpy, h + A 2 

p staticpressure 

P period of integration for turbc lence quantities 

Pr molecular Prandtl number 

aT heat flux in j th direction, - X - P ah 
qj ax 

or - -- 
j 

Pr axi 

s dummy variable of integration 

t time 

T temperature 

u velocity component in i th direction i 

A molecular thermal conductivity 

p molecular viscosity 

p density 

T i j ins+antaneous shear stress in i th direction on a surface normal to the 

j t h  direction, 



TURBULENCE EQUATIONS IN ORTHOGONAL TENSOR FOR! 

In the derivation of the mean flow and turbulence equations, orthogonal 

tensor notation will be employed. The USU:~ conventions of a repeated sub- 

script indicating summation over the entire range of the indices and a comma 

representing psrtial differentiation will be used to make the equations compact. 

Orthogonal tensors were adopted to permit working directly with the physical 

components, thereby avoiding the need for identifying specific tensors as 

being covariant or contravariant. The use of orthogonal coordinate systems 

does not cause significant loss of generality in most fluid mechanical 

applications. 

The time-dependent, conservation equations for s compressible fluid with 

zero external body forces are 

Continuity 

Momentum in the ith direction (i = 1, 2, or 3) 

Thermal Energy 

to convert tnese equations to time averaged equations, the following expansions 

of the dependent variables are employed: 

'I.. = T.. + f 
ij ij ij 



and the mass averaged dependent variables 

The superscripts - , - represent time averaging over a period P that is long 
compared to the fluctuation period of the turbulence but short compared to 

the time constant for changes within the flow field as a whole. The super- 

script ' or " represents the instantaneous fluctuation about the corresponding 
time averaged quantity. Thus, we set 

then, 

For example, from Eqs. (4) and (6) 

From Eq. (9), 



Thvs, in general 

a single fluctuating quantity raised -LO the first power averages to zero. 

The mass-averaged dependent variables are defined (see Appendix B) such 

that the mean velocity is 

and the fluctuating velocity averages to 

From Eqs. (4)) ( 5 )  and (13) 

so that is not zero in contrast to Eq. (11). 

Similarly, the mass averaged static enthalpy is 

and 

Again h" is not zero, but rather 



Mean Flow Equations 

When the instantaneous density and velocity, express . as Eqs. '4) and (5) , 

are inserted into the continuity equation (1) and the result4.ng equation is 

time averaged according to Eq. (6), there results 

This time-averaged continuity equation has identical form to Eq. (1) except 

that the instantaneous quantities and u are replaced by the time averaged 

quantities 5 ant ii. 

Similar operations of expanding the dependent variables according to 

Eqs. (4) and ( 5 )  and then Reynolds averaging converts the momentum equations, 

Eq. (2) , and the energy equation, Eq. (3) ,  to 

and 

Again, their form is generally identical with their laminar fiow counterparts 

excert for the addition of the Reynolds stress, heat flux, and the additional 

mean energy dissipation terms given below: 

t --- 
Reynolds stress = = - pu;uy 



-- 
Reynolds hea t  f lux  = q; = pu'!h1! 

J 

Mean energy d iss ipa t ion  = uIt 2 

Turbulence Growth Equations 

The growth of the  Reynolds s t r e s s e s  a r e  found by manipulation of Eqs. (1) 

and ( 2 )  i n t o  a moment of momentum equation 

This equation i s  ther, expanded according t o  Eqs. (4) and (5) and time averaged 

according t o  Eq.  (6) t o  y i e l d  the  - sum of t he  me% flow terms 

- -. - -\ibi - 0 ~ 6 , ~  + 4; (i.. 11 - p u ~ j ) , ~  + Q ~ ( ; ~ ~  - pup;) ,j (24) 

=J the  turbulence q u a n t i t i e s  (growth of Reynolds s t r e s s e s )  

- - - - 
(pu;u;),t + u J 1% I ) , .  J = - ( u )  b j  - ( u )  , - ( P U ~ U ~ U ~ )  , j  



Eq. (24) follows directly from Eqs. (17) and (18); so that the separation of 

Eq. (24) and E q .  (25) as indicated is not arbltrary. Eq. (25) corresponds term 

by term to the constant property equation in Ref. 8, except with P occurring 

inside of the operator signs of time-averaging and differentiation. 

The turbulence kinetic energy equation, with 

1 k = - pu!'u!' 2p 1 1 

and 

- - - ( P i )  , t + (i;Gji;), = -(put!ul!) 1 1  ii , I  . - (pujk) P J  . - (u?;~),~ + p u ~  i,i + (s), - T ~ ~ U Y ,  , 

The terms on the right are, sequentially, the turbulence production, the 

turbulent diffusion, the pressure diffusion, pressure work, molecular diffu- 

sion, and dissipation of the turbulence kinetic energy. Eq. (28) is consistent 

with Rottats and Townsend's (Ref. 9) constant property equations. 

The equation for the growth of Reynolds heat flux, Eq. (21),  foliows from 

the energy equation, Eq. (3), combined with E q .  (23) with i = k and the 

equation resulting from h times E q .  (1)  



Again, when this  quat ti on is expanded according to Eqs. (4) and (S), and the 

resulting equation is time averaged according to Eq. (6), there is obtained the 

sum of the mean quantities - 

and Reynoids heat flux terms 

The proper separation of Eqs. (30) and (31) follows frorr the use of moments of 

Eqs. (18) aid (lo) to yield Lq. (30). 

THE AX1SWEl"l'IC-FLOW EQUATIONS 

The equations given above in orthogonal tensor form are particularized in 

this section to an axisymmetric system (i.e. a cylindrical coordinate system 

with a = 0 and Y = 0). These equations are obtained using the particularized ae 
expansians and coordinate nomenclature given in the Appendix. 

Mean Flow Equations 

The mean flow eqrlations Eq. (17) through (19) particularize to 

Continuity : 



x-momentum 

r -momen tum 

Total thennal energy 

These equttions may be written in a condensed vector form convenient for numerical 

computations (ref. 1 or 2) as 

dher?, for example, 



These equations may also be written in an alternative form by dividing through 

by r to give 

We may combine the two inhomogeneous terms as 

In this form $ becomes the following vector: 

In the alternative form of the equations, the transformation from the axisym- 

metric case to the planar flow case is simple in that the vector B vanishes 

and the remainder of the equation is unchanged, i.e., we have for the planar 

case 



Turbulence Growth Equations 

To af fec t  a closure of t he  above equations ( i n  e i t h e r  of  t h e  two forms 
-- 

presented) we requi re  equations f o r  G, putlvtl, pv"2, , pu1lhtt, pvI1h1l a s  

well a s  t he  terms i n  t h e  thermal energy equation which have t h e  form: 

Relative t o  these  l a t t e r  tams, Laufer ( r e f .  5) po in ts  out t h a t ,  although a l l  

previous analyses have neglected them, they can be of the  same order  a s  t he  

turbulence production terms. 









. .. r... -...-I. ' .. i i 2  . 

COMMENTS ON THE USE OF MASS AVERAGED VARIABLES 

The use of the mass-averaged variables results in mean flow turbulence 

equations that contaln a minimum ;lumber of terms, since terms involving p 1  do 

not appear explicitly, and posses:, almost a term by term correspondence with 

their incompressible counterparts. On the other hand, the complete expressions 

for the molecular shear terms T ;:ontain extra terms. It will be shown that i j 

this latter condition does not ser;ously complicate Tatters. 

Instantaneously, 

when the Stokes criterion for the second visccsity coefficient is invoked. For 

compactness, we write the quantity i-I the brazes as S so that ij 

When Eq. (45) is expar,ded in the Favre variables, then results 

Here the viscosity is identified with the mass avwaged enthalpy of Eg. (15) or 

the equivalent mass averaged temperatwe. (See Appendix B for the interrela- 

tionship of the Favre vxriable with the usual Reynolds expanded quantities.) 

From Eq. (46) 



E q  . (47) , time averaged, yields 

and 

In customary Reynolds expansions, not the mass-averaged coordinates, time 

averages of first order turbulent quantities vanish, which would have elim- 

inated half the terms in Eqs. (48) and (49j. Thus the mass-averaged notation 

appears to complic;̂ ,: the expressinns involving the molecular viscosity. This 

additional complexity is mitigated through arguments of the relative magnitude 

of the individual terns of Eqs. (48) and (49) when equations as complex as 

Eqs. (41) through (43) are considered for solution. 



APPENDIX A 

Ortliogonal 'Tensor Relationships 

The following definit-ions appl)' for an orthogonal curvalinear coordinate 

sIcrem (Hef. 10). The metric, or length of a line element is 

where hl, h2,  and h: are the metric elements of the orthogonal coordinates 

X I ,  x z  and x 3 - *  

The dradient -- of a scz!~, a vector quantity, is given by 

The gradient of a vector, a tensor quantity, is 

6 . (Kronecker 6) = 1 i = j 
1 3  

= O  i f j  

E q .  (A-3 )  can be applied to define the directional derivative of a vector, 

B. aA B.A. ah B.A. ah 

T B e A .  I 1 , ~  h.  ax. =C:<+Ca>-C h.h. ax xi. h .h .  axi 
j j 

1 1  j 1 1  

*Note that the summation convention of a repeated index is not used in this 

(A- 2) 

appendix. 
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This disagrees with Ref. (10) in that the subscripts of A and b in the second 

term on the right are interchanged there. No significant consequence occurs, 

how eve^. , since in Ref. (10) both B and A ultimately represent the same qua~itity. 

tigain, Eq. (A-3) can be summed to yield the divergence of a vector A . .  
-.---.- 

The divergence of a tensor can be expressed from Eqs. (A-4) and (A-5) as 

' Also required in the orthogonal tensor form of the equations is a 

tensor directional derivative analogous to the directional derivative of 

a vector which can be written as 



In addition, the dive2-,pencr: of a third order tensor is required. ;nis form 

may ba written as 

a E 1 ijk+Eik ahk E ah. E. ah. E ah 
i j j  = C [? ax d K - $ ,r+* a h.h. ik ax - j j k i  h.h. axi 

j j 
j 1 1  I J 1 1  j 1 1  - 

ah ah E ' i l k 3  ' i 2 k i  E i 3 k i -  ijk i + -  + -  + -  
h.h ax, h.h ax, h 5  ax3 h.h. ax 

3 1 1 2  - 1 3  J J  ah j I 
Axisymmetric Case 

When particularizing to the axisymmetric coordinate system of interest 

here. the above general forms are simplified considerably. For the axisym- 

metric case we take a cylindrical coordinate system defined by 

We by then write the foms discussed previously as follows: 

Gradient of a Scalar: 

Gradient of a vector: 

Divergence of a v c c t o ~  

(A- 10) 

(A- 12) 



Directional derivative o f  a vector 

"Tensor directional derivative'' 

B. aAi 5 .  
-. B k P 3  

BkjAi, 'x 'ail' ' 6i3 ", 
- 

& i 2  r 
j 

J j 

Divergence of 2nd order tensor 

(A- 13) 

Divergence of 3rd order tensor - 

The above forms were used, i n  conjunction di th  the conditior*;, 4 r 0 

and = 0 deriving the u i symrs tr i c  equations presented i n  the body of  

t h i s  note. 



APPENDIX B 

The Relationship Between The Rsynolds And 

The Mass-Averaged Dependent Variables 

In the past, the Reynolds system of dependent variables has been used in 

both analytical investigations and interpretation of experimental data. Since 

the equations discussed in this report are cast in terms ~f the mass-averaged 

variables introduced by Favre, it is im~crtant ir relating past work to this 

report to knos how the varia3les, particularly the fl~ictuating variables, are 

related in the two systems. 

We begin by summarizing the definition of the dependent variables in tht 

two systems. 

The tilde indicates a mas-average defined in terms of the crsnlrentional 

time average rS 

Mass Averaged 
- a- 

Dependent Varikblz - Reynolds 
- 

u u + u' 
l 

a + ult 



We also note that the variables p and p are defined identically in terms of 

mean and fluctuating components i.n both  systems. 

To reveal the relationship between the systems we examine the character- 

istics of an arbitrary variable a, i.e. 

~rst, we note that in terms of the mass-averaged quantities 

- - - -  
p a  = 66 + pa" = p a  + pa" 

and, thus, 

- 
pa" = 0 

Further, we may evaluate o" f m a  the above, since 

a n d ,  thus, 

- - p 'a" 
a" = - - 

3 

Note that, although = 0 in the Reynolds system, a" f 0 for the mass- 

averaged sys tern. 

In addition, since 

(B- 2) 



we can time average this to show 

and then show that 

bltiply- this last equation by p and time averaging, i.e. 

we see thtr.t 

and, therefore, 

Nith equation (B-ii), we may immediately deduce the relationship between 

turbulent transport of momentum and enthalpy expressed in the two systems 

of dependent variables. For momentum transport in the mass-averaged system, 

we require terns of the form 

(B- 11) 



which can be expressed in thc Zeynolds system as follows: 

We may now examine some specific examples. Consider the turbulent shear 
- 

stress term @ul'v": 

similarly, the nomsl stress term puw2 is just 

The tuzbulent heat transfer terns are as follows 

and 

(B- 13) 

(B- 14) . 
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