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SUMMARY
This note presents the time-dependent, turbulent mean-flow, Reynolds
stress, and heat flux equations in mass-averaged dependent variables. These

equations are given in conservative form for both generalized orthogonal and

axisymmetric coordinates. For the case of small viscosity and thermal corn-

ductivity fluctuations, these equitions are considerably simpler than the
general Revnolds system of dependent variables for . compressibie fluid and

permit a more direct extens.ion of low speed turbulence modeling to computer

codes describing high speed turbulence fields.
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INTRODUCTION

In recent years, significant advancements in both computation techniques
and computer hardware have led to sophisticated prediction techniques for
describing complex compressible fiuid flows. The most general techniques avoid
boundary-layer approximations and solve the complete time-dependent, cocnservation
equations of mass, momentum and thermal energy, and possibly species. (See
ref (1) and (2).) The transport mechanisms that have been employed in these
techniques are consistent with mclecular o1 laminar processes. Methods such
as those presented by MacCormack or Carter Lave been shown to apply to a flow
as complex as a shock-wave boundary-layer interaction, even when the adverse
pressure gradient generated by the shock wave is strong enough to cause separa-
tion of the boundary-layer flow,

The successful methods for laminar flows have not, however, been carried
over to the computation o»f turbulent flows — particularly strongly interacting
flows. Turbulent-flow solutions, which are presumably contained in the instan-
taneous viscous flow conservation equations, cannot be obtained at present
because the small zgrid size required for accurately resolving the decay pro-
cesses of turbulence cannot be accommodated in present computers. Therefore,
these instantaneous equations must be time averaged to obtain a system of
equations with spatial characteristics consistent with present computers. In
the time averaging process there is a loss of phase and wave-length information
of the turbulent motions. Although this information may be critical to the
ultimate understanding of turbulence, time averaging has yielded most of the
significant results related to the mean flow in boundary layers and may prove

equally valuable for the more complex flow fields of current interest.
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The first step i establishing time-iaveraged turbulent flow equations is
the expansion of all the dependent variables into the sum of two terms, one
slowly varying and the other randomly varying at the high frequencies charac-
teristic of turbulence. With compressible flows there is some freedom in the
choice of how this expansion is accomplished. For example, instantaneous
velocity components can be expauded either as the sum of two velocities, as in
the classical Reynolds expansion, or as the sum of two mass fluxes divided by
the mean density, the mass averaged dependent variable expansion, first suggested
by Favre (ref. 3). As an example of Reynolds: expansion, Donaldson (ref. 4) has
written the complete system of equations for compressible flow in generali:zed
tensor form so that they can be particularized to any desired coordinate system.
Donaldson's equations explicitly contain density fluctuations as well as velocity
fluctuations, thus, adding considerable complexity as compared with the constant
property case. This added complexity can be reduced, as shown in ref. 5 and 6,
if the expansion of the dependent variables is carried out using mass averaged
expansions. These equations essentially exhibit a term by term correspondence
with the constant property case. This correspondence can be important if the
basic turbulence mechanisms in compressible flows remain similar to those in
constant property flows (the so-called Morkovin hypothesis), thereby permitting
convenient axtension of the large body of experience existing with incompres-
sible fiows.

The work of refs. 5 and 6 is limited, however, in that the Reynolds stress
and turbulent heat flux equations were not presented and, further, the equations

were confined to the steady state and expressed in cartesian coordinates. The

-2-

e



RIS < By B - ¥

fmaee

R I e s i B T

general objective of this note is to remove these limitations by

and

1.

2.

adding the time-dependent terms to all the equations
precenting the Reynolds stress and heat fluwx equations
employing a generalized orthogonal coordinate system

casting the equations in conservative form, cunsistent with existing

computer codes (refs. 1 and 2)

particularizing the equations to cylindrical coordinates for com-

parison with axisymmetric fiow data (e.g. ref. 7).
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SYMBOLS
u‘uj
total internal energy per unit of volume, ph - p + » 32
specific enthalpy
u.u,
total specific enthalpy, h + 2

static pressure

period of intcgration for turbulence quantities
molecular Prandtl number

heat flux in j th direction, - A T or - B Sh

X . Pr ox.
] i

dummy variable of integration

time

temperature

velocity component in i th direction
molecular thermal conductivity
molecular viscosity

density

instantaneous shear stress in i th direction on a surface normal to the

u. u. auk
j th direction, u [(—1- N -—l) - % § ——]

axj axi ij axk
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TURBULENCE EQUATIONS IN ORTHOGONAL TENSOR FORM

In the derivation of the mean flow and turbulence equations, orthogonal
tensor notation will be employed. The usuzi conventions of a repeated sub-
script indicating summation over the entire range of the indices and a comma
representing partial differentiation will be used to make the equations compact.
Orthogonal tensors were adopted to permit working directly with the physical
components, thereby avoiding the need for identifying specific tensors as
being covariant or contravariant. The use of orthogonal coordinate systems
does not cause significant loss of generality in most fluid mechanical

applications.

The time-dependent, conservation equations for a compressible fluid with

zero external body forces are
Continuity

ot (puy) 5 =0 (1)

Momentum in the ith direction (i = 1, 2, ov 3)

.p-T.:) . =0 (2)

(u) ¢ + (Pujuy + 8550 = T35) 5

Thermal Energy

(pH - P)’t + (DUjH + qj = uitij),j =0 (3)

to convert tnese equations to time averaged equations, the following expansions

of the dependent variables are employed:

p=p+op
P=p+p
_ , (4)
= T,, + T,.
ij = Tij " i
- [}
, = , ¥ R
9 * 9 * 9
-5-
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and the mass averaged dependent variables
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u., = d. + u,
1 1 1
H=H+H' (5)
¥ h=nh+h"

HRTRe e

The superscripts - , ~ represent time averaging over a period P that is long
compared to the fluctuation period of the turbulence but shert compared to

- the time constant for changes within the flow field as a whole. The super-
script ' or " represents the instantaneous fluctuation about the corresponding

time averaged quantity. Thus, we set

t +(P/2)

Ae,) = %f @ A(t)dt (6)
to'(P/Z)

then,

M) LTPD gy 3
= = .P_f 5t dt = s-t—A(to) (7
t-(p/2)
For example, from Eqs. (4) and (6)
RO '
p(t) = 5[ (p(t)) + o (t))dt (8)
o~ (P/2;
= Bt + 8 (L) ©)
From Eq. (9),
p' =0 (10)

I N4
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Thvs, in general

t +(P/2)
7\'=%f° A'(t)dt = 0
t

i . AT RRDG. AL A5 " >

(11)
o (P/2)
.2 a single fluctuating quantity raised to the first power averages to zero.
% The mass-averaged dependent variables are defined (see Appendix B) such
' that the mean velocity is
-— pui
o, =1, = - (12)
and the fluctuating velocity averages to
pu, = 0 (13)
i
\ From Eqs. (4), (5) and (13)
plu!.!
Jf = - — 2 (14)
50 that E? is not zero in contrast to Eq. (11).
Similarly, the mass averaged static enthalpy is
i =8h (15)
p
and
ph" = 0 (16)
Again h" is not zero, but rather
o= o ORT
p
-7-
4
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Mean Flow Equations
When the instantaneous density and velocity, express - as Eys. '4) and (5),
are inserted into the continuity equation (1) and the resulting equation is

time averaged according to Eq. (6), there results
o+ (pUy) =0 (17)
»

This time-averaged continuity equation has identical form to Eq. (1) except
that the instantaneous quantities p and u are replaced by the time averaged
quantities p an .

Similar operations of expanding the dependent variables arcording to

Eqs. (4) and (5) and then Reynolds averaging converts the momentum equations,

Eq. (2), and the energy equation, Eq. (3), to

) 0 p - (t.. - ouu" | =

(pﬁi)'t + [@ujai + 6ijp (Tij puiu.l]’j 0 (18)
and

i i’

pu'u"!
- - N FEr s -a (. - saar Y- ut (v, - i1 . =0
(oH - ) | [;ujﬂ +qy + eubh” - u, (Tij e & ) . (%13 )],J
(19)

Again, their form is generally identical with their laminar flow counterparts
excert for the addition of the Reynolds stress, heat flux, and the additional

mean energy dissipation terms given below:

———

Reynolds stress = sz = - EG?H? (20)

© e r———
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Reynolds heat flux = q; = puh" (21)
putu'!
Mean energy dissipation = u'i' (Tij - -—;-l) (22)
Turbulence Growth Equations
The growth of the Reynolds stresses are found by manipulation of Eqs. (1)
and (2) into a moment of momentum equation
(pujup ) o % (PUzUUL) 5+ WP 3 * WP - W Ti5.5 " YTy, 5 = O
(23)

This equation is then expanded according to Eqs. (4) and (5) and time averaged

according to Eq. (6) to yield the sum of the mear flow terms

Go;0) o+ (0,0,

-0 - 0b e o (T - w0y (g - eEg) ;@

and the turbulence quantities (growth of Reynolds stresses)

g

11 e R e 1

(7eg) .+ (o)

u'.lu'.! Hull

i J) uk,j G J) ﬂi’J (pu"uiu;
P),i - () P (%7
(7773,

-6 ),

un
1

- T, .t
1)

——'-"'"
G "kiYiLg

(25)
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Eq. (24) follows directly from Eqs. (17) and (18); so that the separation of

Eq. (24) and Eq. (25) as indicated is not arbitrary.

Eq. (25) corresponds term

by term to the constant property equation in Ref. 8, except with p occurring

inside of the operator signs of time-averaging and differentiation.

The turbulence kinetic energy equation, with

= _1_ it
k 35 pu’lu1 (26)
and
= ._1_ T
k=33 (°“{“i) (27
is
% PO = fAam Y u - N Ty 0 T - 0"
(pk)’t + (pujk),j (puiuj)ui,j (pujk)':j (uip)’i + pui,i + (uirij 3 i3, 3
(28)

The terms on the right are, sequentially, the turbulence production, the

turbulent diffusion, the pressure diffusion, pressure work, molecular diffu-

sion, and dissipation of the turbulence kinetic energy.

with Rotta's and Townsend's (Ref. 9) constant property equations,

Eq. (28) is consistent

The equation for the growth of Reynolds heat flux, Eq. (21), follows from

the energy equation, Eq. (3), combined with Eq. (23) with i = k and the

equation resulting from h times Eq. (2)
(pugh) o+ (Pugushy 5 - UP o - WP o * hp 4

* 9395 5 7 M5 T YTk YK, g

-10-
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Again, when this cquation is expanded according to Eqs. (4) and (5), and the

resulting eauation is time averaged according to Eq. (6), there is obtained the

sum of the mean quantities

'-: e IR = -~ P T N T -
(Ghag) o+ GuguRy 5 - @ o+ u [3 ¢ TR - BT ).

- - [0 T S 't I n Y - Mt =
N R L | R ); =0

i
(30)
and Reynoids heat flux terms
(F7), ¢+ (@p0gF) 5+ (o )ay, 5« (R )R ;5 + (W), - ¥R,
R I TS T e e G T T A o e Tt T b S B
(31)

The proper separation of Eqs. (30) and (31) follows froc the use of moments of
Eqs. (18) and (19) to yield cq. (30).
THE AXISYMMETRIC-FLON EQUATIONS

The equations given above in orthogonal tensor form are particularized in
this section to an axisymmetric system (i.e. a cylindrical coordinate system
with 3%;1 = 0 and w = 0). These equations are obtained using the particularized
expansions and coordinate nomenclature given in the Appendix.

Mean Flow Equations

The mean flow equations Eq. (17) through (19) particularize to

Continuity:
- 3 (s -
A, 2 20 e
-11-
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X-momentum
jL{rﬁn) + ji-r(Eﬂﬂ +p-T,._+ pu"u")] + jL-r('Vﬂ -1 _+pu"v)| =0 (33)
at ax XX ar LU 'P xr

r-momentum

Do) + Zfrpav - T+ pu"v")] e 2lrrw e p - T+ pv"v")]

ot ax X ar rr

+ Tge =P - PWW' =0 (34)

Total thermal energy

2 re)+ = rfa(@+p) + q + PUR - D(T__ - puU) - V(T - VU - u"(T _ pumu”
at ax X XX rx x 5

. p\dlu" pw"u" a - - - _._." -
e e R TR

- e - AauvM - p - 1Y g0t _p_u"_v: - n( _ pv''y!
ﬁ(rxr pu'v') V(trr evi'v") - u (Txr 3 V' Ty 2

- (rer - °";"")] =0 (35)

These equetions may be written in a condensed vector form convenient for numerical

computations (ref. 1 or 2) as

.’
arU arf . ar§ . K -

3 3% | or 0 (36)
wher2, for example,
o 0
ol 0
U= and K = _ _
pv Tee - p - pw"w"
8 0 (37)
-12-
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These equations may also be written in an alternative form by dividing through

by r to give

3§+2§+3§_+}-(E+K)—0 8
ot 3x or T - (38)

We may combine the two inhomogeneous terms as

3 _0+%

T

In this form B becomes the following vector:

-y = == "TTTﬂ
r[pW rn_+pvv +ree ow''w

1 = S L ToI (‘ - "1717) _ (- - "TTTT)
rE(é*p)‘Fql_ pv''h a7, - eu'v = vy

T

_ " _ pu"v' _ "( _ QV"V") _ "( - pw"v"

u (Txr 5 v Tor > L P (39)
In the alternative form of the equations, the transformation from the axisym-
metric case to the planar flow case is simple in that the vector B vanishes

and the remainder of the equation is unchanged, i.e., we have for the planar

case

-

U oF . a6 _

3t "ax T 0 (40)
-13-
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Turbulence Growth Equations

To affect a closure of the above equations (in either of the two forms

s VIV 5 0 il

presented) we require equations for pu"Z, pu'v", pv"¢, ow'Z, pu"h", pv'h'" as

well as the terms in the thermal energy equation which have the form:

1
ullt - — Dll"ll"

s s wepr

Relative to these latter terms, Laufer (ref. 5) points out that, although all

previous analyses have neglected them, they can be of the same order as the

turbulence production terms.

-14-
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COMMENTS ON THE USE OF MASS AVERAGED VARIABLES
The use of the mass-averaged variables results in mean flow turbulence
equations that contain a minimum aumber of terms, since terms involving p' do
not appear explicitly, and posses: almost a term by term correspondence with
their incompressible counterparts. On the other hand, the complete expressions
for the molecular shear terms Tij vontain extra terms. It will be shown that

this latter condition does not seriously complicate matters.

Instantaneously,

_ 2
Tij =y [(ui,j + uj,i)' 3 Gijuk,k] (44)
when the Stokes criterion for the second visccsity coefficient is invoked. For

compactness, we write the quantity ia the braces as Sij so that

When Eq. (45) is expanded in the Favre variables, therc results

=T ' = z "™ (S "
Ti"l Tij + Tij (u+vu )(sij + Sij) (46)

Here the viscosity is identified with the mass averaged enthalpy of Eq. {15) or
the equivalent mass averaged temperatire. (See Appendix B for the interrela-

tionship of the Favre viriable with the usual Reynolds expanded quantities.)

From Eq. (46)

(47)

-18-
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Eq. (47), time averaged, yields

ij = ¥Sij * M4 ij ij (48)
and

[ ~ " VY. ~ " I [TPR 1] o
Ti] = Si] (li - U ) + u(SiJ - SiJ) +u le -k Slj (49)
In customary Reynolds expansions, not the mass-averaged coordinates, time

averages of first order turbulent quantities vanish, which would have elim-

inated half the terms in Eqs. (48) and (49). Thus the mass-averaged notation

appears to complic.l. the expressinms involving the molecular viscosity. This
additional complexity is mitigated through arguments of the relative magnitude
of the individual terms of Eqs. (48) and (49) when equations as complex as

Eqs. (41) through (43) are considered for solution.

-19-
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APPENDIX A
Orthogonal Temsor Relationships

The following definitions apply for an orthogonal curvalinear coordinate

system (Ref. 10). The metric, or length of a line element is
22 = 1242 2452 2352
ds< = h1d<1 + hzdx2 + h3dx3 (A-1)

where hy, ho, and h: are the metric elements of the orthogonal coordinates

X1, Xo and x3.*

The giadient of a scalar, a vector quantity, is given by

-1 R
;= hy x (A-2)

The gradient of a vector, a tensor quantity, is

JA., ~ A 3h, A, oh,
=1 _1 i _J 3 }
ALy TRra, 51j§ ,hn 3x, ~ h,h. ox, (A-3)
B I | il k Tk ij i

where

1 i=]
=0 it

Eq. (A-3) can be applied to define the directional derivative of a vector,

Ei 3Ai BiA. 3hi B.A. iEi
2 :Bin,j = E : R ax " E : T E :—Llh.h. 5X. (A-4)
: T e Ty & i

Glj(Kronecker §)

namely

1)

*Note that the summation convention of a repeated index is not used in this
appendix.

-20-
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This disagrees with Ref. (10) in that the subscripts of A and B in the second

term on the right are interchanged there. No significant consequence occurs,

however, since in Ref. (10) both B and A ultimately represent the same quantity.

ngain, Eq. (A-3) can be summed to yield the divergence of a vector A..

N U 3 NN N
E : Aj,5 = fiheh; [axl(“2“3“1) * ax, (baR2) axa(“lths)J

J

The divergence of a tensor can be expressed from Eqs. (A-4) and (A-5) as

NS S B . 9 . kN )
:E::Tij,j ~ hihzh; [3x1(h2h3111) + 3x2(h1h3T12) + 3x3(h1h2113)]

J
...T'._.l._...a_h_]:-.'.-[.—-l-—-i}.l_iq. 1 i}ii—
1i hihl ax, 2i hihz 3x2 3i h1h3 8x3
oh dh 3h
1 1 1 2 1
"1 R.h, 3x. ~ Y22 h.h, ax, _ ‘33 h.h 8x3
11i i 271 31 i

" Also required in the orthogonal tensor form of the equations is a

tensor directional derivative analogous to the directional derivative of

a vector which can be written as

B, . 9A. B.. A, 9h, B.. A. dh,
B, .A, . = X 1+k1_l l-kJ_l J]
kji,j h. ax, h. h. 3x, h, h. 3x./
j 3 ] ) J ]

-21-
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In addition, the diveigence: of a third ordsr tensor is required.

.ais form
may bz written as
S . 2 : 1 T, B My 5%;_ oy, Bk My Byg by
_;J ijk,j j hj axj hkhj axj hk j Iy hihj ax h; 3 ax;

. Eilk aﬁj Eizk apj Eisk agj Eijk Bh.]

h.h ox. @ h.h 3x.  hw 3x. _ h.h,? 3
il X j 2 " 3 xa 3 xj

3 J

Axisymmetric Case

When particularizing to the axisymmetric coordinate system of interest

Lere, the above general forms are simplified considerably. For the axisym-

metric case we take a cylindrical coordinate system defined by

x)

n
"
-2

[
f
b

X2 *T hz‘l

x3 =6 hy =r

We may then write the forms discussed previously as follows:

Gradient of a Scalar:

(A-8)

(A-9)

(A-10)

(A-11)

(A-12)
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Directional derivative of a vector

B. 9A, B A B A
BA, . = L L, 32 s 33
ji,j h. ax. i3 1 iz r
- J J
]
"Tensor directional derivative"
B.. 3A, h. B, A
B, .A, -51-— +5, = 5. 33
ki'i,j Ly h ax iz . iz r
j
Divergence of 2nd ordsr tensor
\umn | 3B, .
B, . =N L AL llp Lp s g
3,3 ‘L_J h axj r| 12 13723 i2"33
j

Divergence of 3rd order tensor

BE
ijk , 1
]Jk,J h; ox T

B J

—
O

The above forms were used, in conjunction with the conditiors, @&

and éégl = 0 deriving the axisymmetric equations presented in the body of

this note.

-23-
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(A-13)

(A-14)

(A-15)

(A-16)
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APPENDIX B

g

The Relationship Between The Reynolds And

The Mass-Averaged Dependent Variables

Wi .. PO

. In the past, the Reymolds system of dependent variahles has been used in
g both analytical investigations and interpretation of experimental data. Since
3 .

4 the equations discussed in this report are cast in terms of the mass-averaged

variables introduced by Favre, it is impcrtant ir relating past work to this
report to know how the variahles, particularly the fluctuating variables, are
related in the two systems.

We begin by summarizing the definition of the dependent variables in the

two systems.

Dependent Variable Reynolds Mass Averaged

. u u+u i+ u"
v v+ v v+ v

w w4+ W W+ w"

, h L+ h h + h"
T T+t T+ T

u uo+ o' i+

o p+p p+p'

P P+p P+p

The tilde indicates a mass-average defined in terms of the conventional

time average .s

3z 95‘1 (B-1)
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We alsc note that the variables p and p are defined identically in terms of

mean and fluctuating components in both systems.

To reveal the relationship between the systems we examine the character-

istics of an arbitrary variable a, i.e.
a=a+a'=4d+ a" (B-2)

1Tst, we note that in terms of the mass-averaged quantities

ca = pa@ + pa" = pa + pa” (B-3)
and, thus,

pa' = 0 (B-4)

Further, we may evaluate a" from the above, since

0 =pa" = pa" + p'a” (B-5)
and, thus,
—_ rrUul
e = - 2 ;" (B-6)

Note that, although a' = 0 in the Reynolds system, a" # 0 for the mass-

averaged system.

In addition, since

a=a+a'=a+a (B-7)

-25-
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we can time average this to show

|

R
1
Qi
L]
Q—

(B-8)
and then show that
a" =z a ¢+ a' -4
= a' + a”
cor B e
Muitiplying this last equation by p and time averaging, i.e.
0 = Fa = v - L9 L T o
we see thet
pra” =, ¥ (B-10)
and, therefore,
a" = a’ -B_'—BE (B-11)

Aith equation (B-ii), we may immediately deduce the relaticnship between
turbulent transport of momentum and enthalpy expressed in the two systems

of dependent variables. For momentum transport in the mass-averaged system,

we require terms of the form

—
" "

pa B

-26-
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which can be expressed in thc Reynolds system as follows:

o'a'c's
s

= DG'B' -

We may now examine some specific examples. Consider the turbulent shear

stress term cu''v':

U
b

pu''v" = pu'v' -

similarly, the normal stress term pu"? is just

2
pu"2 = pu'2 _(p_':u_')
P

The turbulent heat transfer terms are as follows

Bﬁﬁﬁh = pu'h' - p'u‘p'h'
)

and

ovVh' = pv'h' - e'vio'h'

-27-
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