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Structural Expansions for the Ground State Energy

of a Simple Metal

J. Hammerberg and N. W. Ashcroft

Laboratory of Atomic and Solid State Physics
Cornell University

Ithaca, New York 14850

Abstract

A structural expansion for the static ground state energy

of a simple metal is derived. Two methods are presented, one

an approach based on single particle band structure which

treats the electron gas as a non-linear dielectric, the other

a more general many particle analysis using finite temperature

perturbation theory. The two methods are compared, and it is

shown in detail how band-structure effects, Fermi surface

distortions, and chemical potential shifts affect the total

energy. These are of especial interest in corrections to the

total energy beyond third order in the electron ion inter-

action and hence to systems where differences in energies for

various crystal structures are exceptionally small. Preliminary

calculations using these methods for the zero temperature

thermodynamic functions of atomic hydrogen are reported.



I. INTRODUCTION

Recent work in the theory of metallic phase stability

has met with moderate success in accounting for the most stable

crystalline structure, binding energy, and compressibility

1 2of a simple metal. ' The theory depends upon a perturbation

expansion of the ground state energy (T = 0°K), usually to

second order in the Fourier components of the pseudopotential

evaluated at reciprocal lattice vectors. In certain cases,

however, the energy difference between structures is so small

that it is essential to consider higher order terms in a

structural expansion for the energy. A case in point is

atomic metallic hydrogen for which a second order calculation

of the ground state energy per proton using a RPA dielectric

function gives (static lattice) energies of -1.01532, -1.01597, and

-1.01537 Ry respectively for the SC, FCC and BCC structures at a

density (r =1.6) near the zero pressure metastable equilibrium,
s

The procedures for constructing the perturbation expansion
3

have been known since 1958 when Hubbard developed a diagrammatic

technique based upon solutions of a one-electron Hartree-like

equation, a method which ultimately enabled him to express

the energy in terms of the solutions to an integral equation.

Later, self-consistent methods were proposed by Cohen who

treated the ground state properties of a solid along the lines

of the dielectric formulation of Nozieres and Pines for the

-2-
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electron gas. More recently Brovman et al. have used a

modification of Hubbard's technique to calculate both binding

energies and phonon spectra for simple metals. Lloyd and Sholl

have also presented explicit expressions for third order

corrections to the total energy using an analysis similar to

8 9
that of Hohenberg and Kohn , and Harrison has discussed the

interpretation of these contributions in terms of three body

interactions. What we present here is an explicit structural

expansion which is convenient for calculation of ground state

energy as a function of density and which is simply related

to the eigenvalues of the one-electron band Hamiltonian. We

shall discuss its relation to a more complete solution given

in terms of the T = 0°K limit of finite temperature perturbation

theory. Finally we shall discuss certain differences between

the present work and the previous theories mentioned above

and apply these techniques to a calculation of the ground

state properties of atomic hydrogen. A comprehensive Bravais

lattice survey of the binding energy to third order in electron

ion interaction for this solid has been carried out by Brovman
<

et al. . The purpose of our calculations is rather to study

the magnitudes of higher order corrections, in support of which

we shall present numerical values for SC, FCC, and BCC lattices.



II. FORMULATION OF THE PROBLEM
i

We consider in this section the problem of computing the

total energy of a system of N interacting electrons in a

static periodic one body potential. Later we shall relax

this restriction and consider the modifications arising from

dynamic effects. To begin with we shall restrict our con-

siderations to T = 0°K and subsequently extend the analysis

to non-zero temperatures.

The Hamiltonian for our system thus restricted may be

written as

H = H + H . + H.. (1)
ee ei 11

where H describes the kinetic and interaction energy of aee

system of coupled electrons, i.e.

_

H. . describes the interaction energy of the rigid lattice of

ions of valence Z, i.e.

H.. = I Y W(R ,R ) , (3)
11 f-i ~tt ~

and H . describes the interaction of electrons with the lattice,ei

i.e.

•

In (3) W(R19R0) is the bare ion-ion interaction, and in (4)

-4-
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V(r) is the periodic one body potential. We may express H«~" ee

in terms of second quantized operators, i.e.

2 h2 2
2m Ckck

i k
r*s

* I TT - * X w(s> ck+ 4'-. . '"-'I '*-'! « « t
13 J k,k',q

/x /— ' <~5

where
2 2

„ / x P -iq«r e ,3 4ne ,-^fiw(q) =Je 4 ~dr = — ̂ ~ , (7)

n q

is the Fourier transform of the bare Coulomb interaction (ft

12being the volume of the system ). There is the usual problem

of handling the q = 0 term. To resolve it we carry out the

following series of manipulations (the thermodynamic limit

being taken as the ultimate step). First, we subtract from H

the term

d3r> (8)

that is, the interaction term in H is replaced by

r - ir J £~J ft
and H accordingly becomes

ee e J

Hee - S I hV Vk + * I w<3>ck+<,V-9V
ck (10)

- /̂ /N̂  - - | r*s *** f̂ f r«5 f*s r*s

k k,k'

which is the familiar electron gas Hamiltonian, denoted in what
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follows by H . We now add (8) to H. . . Thus
eg 11

W(R ,R ) + fta p
ap ft * "
Ne

where P = -r- . The term which has been added is the self-
o fi

energy of a uniform background of negative (or positive)
i

charge. To (11) we add the interaction energy of the ions

with this negative background so that H.. becomes
9 11

' P
iV r o 3 3 v r 3

H.. - t ) W(R ,R ) + | j d r,d ro ~ ) 1 p W(r,R )d ]

a

which, if we neglect Born-Mayer terms, is just the Madelung

energy for the assembly of ions. Finally, we subtract the

same interaction energy from the last term in H, H ., obtaining

H . - Y V(r.) + y \ P W(r,R )d3r . (13)ei L ~i' L J o ~ ~ar, 3

J o ~ ~a
a fi

The original Hamiltonian has now been separated into three

well defined parts. Taking its average over the ground state

we have as the expression for the total energy per electron,

H > + < H . > + E.. (14)
N N l e g e i J ^ I ^

where EL. is the Madelung energy, i.e. the energy per electron of

a lattice of positive ions in a uniform background of negative

charge. Notice that the first term in (14) is not the energy

per electron of the interacting electron gas since the ground
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state wavefunction is that appropriate to an electron gas in

which a periodic array of ions is immersed.

Let us consider the second term in more detail. For

even a simple metal the interaction potential V(r) is not

known in general from first principles. From the point of

view of band theory, however, it may be well represented by

a weak pseudopotential, at least for the valence states.

(We set aside in this discussion questions of core level shifts

and their effect on the total energy.) If we make this pseudo-

potential approximation and furthermore consider a local

approximation in which the periodic potential is a simple

superposition of bare pseudopotentials at each lattice site,

then (13) becomes

Hei = X v<£i-v + 1 J iSr d'r ' (15)
,-, ~ ~aia a ft

or in terms of the Fourier transform of v,

».i-I '^^+IJ A , (16)
k,i ~ a ft

where

"i' 3ft v(k) = F v( r )e"~ '~ d3r , (17)
r*> Q) r*t

ft
and

a
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In particular, the k = 0 term is given by

3• o
.Ll™ fN.Nv(k) + N.ZeP f — 1 , (19)k-»0 L i v~ i o J r J

ft

where N. is the number of ions, N = ZN.. As an example, for

a potential which is Coulombic beyond a certain "core" radius

13r and vanishes otherwise we have
•* r

T ' t °° ̂  ^ *J

ft r;1™ v(k) = -Ze2 f — + f v(r) d r . (20)K-*U <~> J r o <•./
~ r o

c

Hence the long range parts in (19) cancel and we are left with

N rc rc 3„ V ~(i) /i \ ik-r- . „ i P / N ,3 . „„ P d r
Hei = L Pk V(^)e - ~X + N If J V(£)d r + NZepo J T ', /n ~ o o

"^ / " / o i \^ (21)

which we rewrite as
t

H — \. — /ei L
1 9 *^

%̂/

where the "core" contribution E is independent of structure,c

and the prime means that k = 0 is excluded from the summation.

Thus the ground state energy (T = 0°K) can be written in

the form
i

f = ^<H > + ^ < Y P,( l )v(k)p . > + E + E^ , (23)N N eg N L k ~ -k c n.
k ~

K~* ilc • T*
where P , = ) e i . For a lattice of bare protons, we note

that (23) is^exact with E = 0 and v(k) = w(k). However, for

the general case it is approximate since it is not clear that
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a single-particle equation describing the band structure with

a local v(r) can be derived from H as given in (23) with the

same v(r). Moreover, it is not strictly correct to write the

lattice potential as a simple superposition. With these

reservations, we may address ourselves to the task of computing

the average

V (i)If we treat H, = ) P, v(k)P , as a perturbation, then

k ~ ~
r*t

the unperturbed problem is the interacting electron gas.

Indeed, the problem is that of a dense distribution of identical

impurities in the electron gas except that for a crystal, the

impurities are arrayed in a definite order. Alternatively,

one may simultaneously treat both electron-electron and electron-

ion interactions as perturbations and carry out the usual

double perturbation expansion. In the following sections we

present two methods for computing the energy shift due to H-,

one closely related to a single particle picture, the other a

more general many particle method.



III. BAND APPROACH

In this section we consider the calculation of the ground

state energy from a single particle point of view. The physical

picture is the following. We have a system of electrons whose

interactions with the static lattice are described by a pseudo-

potential. The electron gas may be viewed as a non- linear

dielectric and the pseudo-ions as the source of external

potentials which induce charge density responses in it. The

energy associated with this induction process is given by the

well known expression

6W= |6V(r)P(r)d3r (25)

This is the work which an external contrivance must do in

changing the potentials from some value V to V + 6V. In

terms of Fourier transformed quantities this becomes

6W = fl 6V(-k)P(k) . (26)i . «~ ^,
k
f**r

The contribution of the electron- ion interaction to the total

energy is then given by

rv
W = J 6W (27)

o

In general, we may write the charge density P(k) as

p(k) = x1(k)v(k) +1 x2(k,s)v(k+5)v(-3)

-10-
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the first term of which is the usual linear response expression.

In appendix A we show that this leads to an expression for

the change in energy given by

g E,, • w - £ XifcW-yvqc) + ±1 x2(k,3)v(k+s)v(-3)v(-k)
k k,q

~ (29)

which we shall refer to as the band structure energy and

which is determined from the induced charge density through

(28). Note that V(0) is to be excluded from the summation
r*s

(a requirement of charge neutrality as discussed in section II).

Equation (29) thus presents us with a well defined method for

calculating E, in terms of the charge density.

From the point of view of single particle band theory we

calculate the charge density from the Bloch wave function

of an electron in a periodic potential V. In terms of plane

waves

< r|k-K> = ft'* e
i(k/"£)>r< (30)

r̂ f r+j f+j

the wave function is written as (we assume a Bravais lattice)

l ^ k > = I C k-K frS> 2 I c i l i : > •
K ~ ~ i
r+s

where the coefficients c. satisfy the equations
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)c + v m c n + y v .c.oo o 01 1 L 01 i

^.0. = 0

1*0,1

. c + V.-c- + ( c f . - E + tf..)c. + Y V. .c . = 010 o il 1 i 11 i L ij j

(32)

with £ . = \- (k-K.)2 and V. . = < k-K. IVIk-K. > . An iterative
i 2m ~ ~i ij ~ ~i ' '^ ~j

solution of equations (32) yields a Brillouin-Wigner expansion

for the c. namely:

V '
„ = „ io , V ii 1o , V ii i k k o
C C

x
i o\E- £ (E- <?.)(£- <£,) (E- c5.)(E- < f , ) (E -< f . ) + ' ' Vx j 1 J j k i j k

(33)

, r*ii ,Y
f Vu ,Y ' ViAi i

+ CllE- a. + L (E- cf.)(E- cf . ) + L (E- C . ) ( E - ( f . ) ( E - c f , ) + ' ' V '

where the prime excludes 0,1. Equations (33) lead to a

folded secular equation

(cf- E + Uoo)co + UolCl = 0

U10Co+ <^1 - E + U11)C1 = ° (34)

with the U's defined by
r*j * r+j r*J *+* f*+

V V V V V
.

(E- <f . ) (E- cf . ) "• '
i X ij 1 J

In (35) the prime excludes 4, m from the summations. Note
•jf

that although U = U „, U. rt^
u»- T̂ 16 folding transformation6 Am mA A-m, 0 Am &
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is valid for any A, m and accordingly,

(£ „ + U4. - E)c, + U. c =0v t jU A Am m
(36)

U ,c + (C + U - E)c =0
mA A m mm m

These equations define a two band (upper and lower )

situation for which the solution for K, ̂  0 is :

E, v(-) o oo ' om ' I ' m v VTm ' '

(37)v /

2 |T j ( ' I
I nm '

m
om

(-)c(-) (<f + U*-' - E, O ,mo o _ oo (~y (-

m mm ^—y om

(38)

om

A similar expression holds for the upper band with (-) - (+)

and {Y^ - (1 + (Ŷ 'V)1}- {vm
+) + (1 + (Ym

+))2)*} • We may

use these results to calculate a charge density, i.e.

tk] ij

where y denotes a summation restricted to occupied levels

[k]

The Fourier transform of (39) gives

tk] i
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which for a single occupied band reads

- V V I'isi L L r /ij. 2x2 \{v(l+v } i
Alternatively, this may be rewritten using (37) as

p _ 2t a

These last two expressions are easily generalized if two bands

are occupied. If more than two bands are occupied it is

necessary to begin with the folded secular equation appropriate

to that number. We note again that in (41) the k summation is

only over occupied levels. Thus we are summing up to the

true Fermi surface rather than within a Fermi sphere (the

more common situation in perturbation theory).

The above expressions although formally exact within the

one electron approximation are difficult to use in practice.

If we knew the analytic dependence of the U's on V we could

perform the integration in (27) (for example, by associating

r**

with V a coupling constant over which we ultimately integrate)

and finally carry out the sum on k. However, only in the

extreme approximation of retaining a single Y is this analytically
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tractable. We can, on the other hand, expand the expression

for P in powers of V. If we then assume that V(k) = V(k)/e(k)

where e(k) is the static limit of the electron gas dielectric

function, it is possible to calculate the energy shift from

(29). The results of such an expansion are given in appendix B.

In the following section we shall derive an expression for

the energy shift from a more complete theory and see that the

simple theory above must be only slightly modified.



IV. FINITE TEMPERATURE RESULTS

In this section we calculate the total energy of the system

of electrons and ions using the techniques of finite temperature

perturbation theory. If we choose as the unperturbed system

one having a spherical Fermi surface (e.g. non-interacting

or interacting electron gas), it is, in fact, necessary to

use this method, a consequence of the fact that for interacting

electrons in a periodic potential, the adiabatically generated

state of the zero temperature method is not the true ground

state, no matter how weak the lattice potential. The

state generated adiabatically from a spherical ground state

can--never depart from a state with a spherical Fermi surface

17 18
and cannot produce the crossing of levels ' resulting from

the imposition of a periodic potential. In the finite tempera-

ture theory, however, the mean occupation number of a given

quantum state is no longer restricted to be either 0 or 1.

Thus the Fermi surface of the unperturbed system is permitted

to distort in such a way that the thermodynamic potential is

minimized subject to the constraint of fixed overall density

and in consequence the true Fermi surface is attained at
-/

each stage of the calculation.

The temperature formalism is most simply stated in terms

of Green functions. We shall follow the exposition of Martin

19
and Schwinger and define the single particle Green function as

-16-
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G .(r^t-; r ,t?) = (-i) < B (r ,t )(r ,t ) > (43)
dp ~J- 1 ~^ ^ Ot ~-L ~1 p ~^ ~£

where the brackets denote the grand canonical ensemble average

-B (H

i|f,i]t are Heisenberg field operators, a, p are spin indices and

T is the time ordering operator for real t (and the 'it1 ordering

operator for imaginary times.) We Fourier transform G and

write the result itself as a Fourier series

fl
(45)

Gap(El*E2;t) = -R
v

(46)

where CD = , . > (2v + 1) + i_i , v = 0, +1,..., so that
v ^-

(-ip)
= I Ga(Er£2;

These results are consequences of the boundary condition

satisfied by G for imaginary times. The average value of a

one-body operator is given in terms of the Green function by

V > = £ Y V(-p)m; (k,k-p;o> Je0^0 , (48)p z_> ~ ace "•' ~ ~ v

(where for the sake of brevity G = ) G ) .3 act L aax
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In order to compute the ground state energy we use the

20statistical mechanical theorem which states that for any

parameter X in the Hamiltonian,

> , (49)

where S is the thermodynamic potential, the differentiation is

at fixed T, V, n, and the average is that defined in (44).

For the Hamiltonian we take that given in (24). If we associate

a coupling constant X with the bare interaction V, we then have

upon integration,
1

H(u) = S (M) + f 4^ < XV >. . (50)o JQ X X

To calculate the ground state energy we take the T = 0

limit of S(u) + uN, i.e.

- , = Lim ffe / N + JJN + P
1 dX

° o

which we write as

E' = E +o

E = - Li
0 N

»>x • <52>N o

The ground state energy is then

E = Eo + ̂  + *H + Ec (53)

We note that E is not the ground state energy of the electron
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gas at density N/H since the chemical potential p. is that appro-

priate to the complete system, namely electrons and ions. But

E, has the same form as that derived in section III, for we

may expand G(k,cj,co ) in a Laurent series.

flG<k,q;a>) = Y XnG (n )(k,q;co ) (54)
r*> rO V / . •+* rS \)

n=0

so that, using (48),

_TT 2 V V TT/ \^n+l^,(n)/1 1 v tO 0 / < - r \< XV > = - V( -p )A Gv '(k,k-p;<D )e v (55)

E,k,v n=0

21
and the expression for E, now reads

00

Lim 1 v1 1 2 V1 ( /C£\(56)

n=0 P»k,v
A-/ /*-/

which is of the same form as (29) and constitutes a more formal

derivation of it.

In order to calculate E, we need explicit expressions for

the quantities G . Considering the lowest order term we

note that G can be calculated in terms of known electron

gas quantities. We have

G(1)(k,k-p;a>v) = G
(0)(k,a>v)V(p) Ap(k,a>v)G

(0) (k-p,̂ ) (57)
rv/

which is shown graphically in Figure 1. Here G (k,co ) is
r+s V

the Green function of the interacting electron gas and A (k,co )
p "•* v

22 ~
is the zero frequency vertex function. The second order

term in the band structure energy is then from (56),
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• i w ? T |v(E)l\(S.»v)
W - '*-'

k,p,v
r»̂  /•*/

which upon transforming to a contour integral gives

E^2> o I £ |V(£)12 J A (k,co)G(0)(k,a))G(0)(k-p,co)dD , (59)
N , _ *-
p,k C
r-< fs*

where C is the contour of Figure 2. From the definition of the

22
zero frequency dielectric function of the electron gas we

therefore have

E<2> = |ly )v(p)|2 i r i -n (60)
% ia^ ~ w(p) Le(p,o;vi) J

IN rx -̂

E
with w(p) defined in (7) and u being the exact chemical potential.

The higher order terms in the expansion of G are, on the

other hand, not well known, and the analogues of A (k,co) must
?SS

be approximated.

We illustrate our approximation by re-calculating (58).

Using the spectral resolution of G (£,co), i.e.

x v i t . 0 0 A(p,co')
' ' - - (61)

— oo

we have

w(2) 1 Lim 1 V P ̂ ^2 ,„, ,.2 A ,. ,
 A(W A^-£^

^ J • r T-O J L J -27 "27 iv(S)! Ap*CDv) -TT̂  -- ̂
p,k,v

(62)

which, exploiting a further transformation of the v sum to a

contour integral gives two pole contributions,
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dox"™ >: i
N

O\ i T im v r 1 ? ?
h * ~ TO 7 f -7^-9^ V(£)pA(k,0) 1)A(k-P,009)D ^ i-»u i—i j ZTT ZTT A^ • <^< i ^^ /— /

p,k

A(k,a> ) A (k,a))
n((D ) (63)

OD^CO^ 002-CD,

where n(a>) = (e ^ + 1) . Our first approximation is to

make an undamped quasi-particle ansatz for the spectral function,

i.e.

A(£,o>) = 2TT6((D - <? (p) - S1(]P)) (64)

with s..(p) defined to be the real part of the self energy
l ~

satisfying Dyson's equation <f(g) =

Then (63) becomes,

p,k

(65)
A (k, <f (k-p) + S1(k-p))0(Vjt - C5n(k-p) - S-(k-p))
J^ /w O/**''^/ J./x^*^/ O'**'*^-' J _ r ^ i ^ - » 1

- £(k-P) - (k-p)] / '

Our second approximation is to replace A (k,co) in these expressions

-1 23
e (p 9 o , n ) . We then have

, „ 2 , 6(lJt - c? (k)-S (k))-e(u-«f (k-p)- 2 (k-p))
JL_ Y \\T f ~\\ _ — _ / ~
- L |vtp;| e(P ,o,u) t (£
D J - *^rf

p,k

(66)

Furthermore, we write the chemical potential as

+ ̂  y (67)
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where p. is the chemical potential of an electron gas of

density N/fi, i.e.

"eg = £f + Ŵ eg)' ' (68)

2
O O -*\ Vi 0

with kj; = 3n N/fl and Cf = -^ kf so that (66) becomes

k """
;o'~

f+6^-<S0(k-p) - (̂ (k-p, <f(k-p)) - ̂(fcf'Ugg

- s.(k-P)) 'J.?»yA^

The final approximation is to neglect differences in self

energies. For an electron gas at metallic densities this
24

approximation is fairly well satisfied. Thus the final

approximate expression is

N ,
B'JS

(69)

H
(70)

For higher order terms we proceed in the same manner. Denoting

the above approximation to V(p)A by a double broken line and

by a double wavy line the analogous approximation for the

electron-electron interaction, we include the class of diagrams

given in Figures 3 and 4. It can be shown that these corres-

pond to a random phase approximation in the sense described by

25Cohen and Ehrenreich provided one takes e(p,o,|_i) to be the
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Lindhard dielectric function.

We next examine certain complications which appear in

fourth and higher orders and which are illustrated by the

fourth order diagram of Figure 5. This gives a contribution

7 to the band structure energy

i

fi 7 V(-k)A (p+k,co )G(o)(p,oo )V(S )A (p,o) )p L-i ~ -K ~ •*• V "•' V "*! CU r*> V

In evaluating the v sum, we perform a contour integration and

the possibility of double poles is evident (see Figure 6).

The double pole contribution gives rise from differentiation

of the factor [e +1] , to a 6-function contribution in

the T = 0 limit, i.e.

' V(k) 2 V(3) 2 6(£f+6^-£o(jp))AE = • L IGW l 'r̂ y ^ (£0(p>- £0(p+k))(£0(p)-e0- r̂ / rO *̂ O '%/ O r*s f*s O f̂  O *"-'

S'E»3
(72)

From (B-5) and (B-8) the origin of this term is clear. It

arises from an expansion of 9(Ef - E(k)) where E(k) is the

eigenvalue of the single electron band structure Hamiltonian.

It is important to note that this expansion is invalid when k

is near a zone plane: In fact AE of (72) diverges quadratically
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2fi
there. Although the behavior of these anomalous contributions

is general, we can ignore them provided the 9 functions

occurring in the other expressions are modified from 9(n - £ (k))o
b „,, VN , b _ e . cbto 0(ia - E(k)) where p. = £f + b = Ef and is the chemical

27
potential one computes in a band structure calculation from

N = 2 9(Ef - E(k)) . (73)

k
r*»

The contributions from (71) not involving 6-functions may

be shown to give the first three terms of (B-8). The first

term of this expression is well-defined, however, the second

and third, due to the squared denominator, are divergent when

the Fermi sphere is near a zone plane. This divergence is

an artifact of the asymptotic nature of the expansion (B-l).

In Appendix C we show that a resummation of diagrams leads to

a finite result.

Finally we make a remark concerning the electron gas term

E (ia). This can be calculated from approximate expressions

for 3(u) (e.g. the Nozieres-Pines formula). However, to gain

some physical insight we expand S (|a)+ nN about n
•eg'

(74)

and noting

/^M \
(75)
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we see that the right hand side of (74) becomes

i K 2r +... (76)
so that the change in electron gas energy lowers the total

energy and is clearly related to the distortion of the

spherical Fermi surface of the electron gas into the lattice

symmetric Fermi surface of the periodic system. We may

also observe that if (50) is written as

B(u) = 3(n) + 61) (77)

and expanded to fourth order in the external potential, the

following expressions are obtained for internal energy,

chemical potential and pressure:

(78)

0(v5)'

(79)«j f- j t

where
r fK r, <^

(80)k<^
3 s

r d~

s
W)
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n , , 7 d-Ê  dEL^
7r-Km 6un Mr

2 —£— - 2r ^ft "T M2 9 \ s .2 s dr0 dr s
s

1 2/ rs ^TN
+ TT- K (6Uo) (l + -^ -rr1 ) (82)fio T 2V 3 drg J,

2P(2) Jw(2)
r . . r2^ r-^^ r^^ i i __ . 1/2p =

o

where

) f t
J

r dB-,

s

' 2 KT ^7 Q\n ^ y
o

) + 0(V5)

c 9S drs

.(m)

The quantity K = 1/B is the isothermal compressibility of

the interacting electron gas and as before n is the chemical

potential of the interacting electron gas, both evaluated at

density Q, . (The bracketed terms are to be expected from

zero temperature perturbation theory.) We note that the two

methods agree to third order but in fourth order differ for

the physical reason outlined above (i.e., fermi surface dis-

tortion). These differences although small are not negligible

as will be shown in the next section.

Recapitulating to this point, we have seen that the theory

presented in section III must be modified in several ways.

First, the electron gas term in the total energy must be

corrected to take into account the shift in chemical potential

due to the ions. Secondly, the expressions of section II for
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Y , except for the first, must be multiplied by an additional

factor of e (k,o,n). Thirdly, terms such as 4b of Figure 4

must be included in a self-consistent calculation. (These
3

are essentially Hubbard's H diagrams which from his point of

view are connected with double counting.) We now turn to a

discussion of the magnitude of these various corrections

for the particular case of a solid composed of protons

arrayed on a Bravais crystal lattice.



V. ATOMIC HYDROGEN

In this section we present the results of calculations for

zero temperature thermo dynamic properties of three atomic

hydrogen lattices, simple cubic (SC), face centered cubic (FCC),

and body centered cubic (BCC) . This choice was made partly

for convenience of computation, but more importantly because

of the relatively large difference in Madelung constant

between SC and the other two structures. We shall use the

expressions (78) - (83) and proceed order by order.

A. Electron Gas

x 29
We have taken the Nozieres-Pines interpolation formula

for the ground state energy of the interacting electron gas.

E (n ) = ^T r ' ~ r + (-O.H5+0.0310*0 5\ 4 / s 2iT\ 4 / s s

(85)

In comparison of structures, the magnitude of the structure

independent contribution plays no role so that a better approxi-

mation is not necessary. In any case, the Nozieres-Pines'

30expression compares very well with more recent forms

15. Madelung Energy

The Madelung energy may be written in the form

EM " -V*. <86>

where the Madelung constant A., for the three structures is

given by31: SC: 1.760122, FCC: 1.791749, and BCC: 1.791861.
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C* Second Order Band Structure Energy
\

We take the Lindhard expression for the dielectric function

in the calculation of the terms in the band structure energy:

1/3

(87)

with r\ = k/2kf .

Then the second order band structure energy may be written

as:'1'2'

/OQN(88)

D. Third Order Band Structure Energy
i

This contribution is given by (B-7) and corresponds

to the diagram 3 of Figure 4. It may be written in the

following form:

1/3 '
r« I wC-^wCTi-nOw^^H^Cn.Tu) (89)S i - < /« ^/ ̂ l ~l r~> ̂1

T!,TI
*"«̂  r*t J.

where W(TI) = —5 - , and
*" ^ / \

TI e(TJ»li0)

i „ n
0(q)

z= lr — O= kf 0

(90)

(3)The complete expression for H (T^JTI-) is given in appendix E.

We note here the following asymptotic properties:

-29-
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-.(3), x _ 1 _ _ / n i xHv ' ( T U T V ) -- - — — = tan / -- (91)
~ ~-- i z •16n

A /\
a s TVT , ri, « 1

2 2 2 l ^ + S \ 2 + 2 + nn a J f * O^)f \ / * _ *• £• £• \. J \ *. £. ' I ' l l ' ̂yon T\ t|- *n "H-i J-
TbT^ » 1

The third order contribution thus depends linearly on r apart
S

from a weak dependence contained in the dielectric functions.

(3)The function Hv (T̂ TI..) in this approximation is independent

of r and depends purely on the structure. It is everywhere
S

finite but has discontinuous derivatives for certain values

of T|, TU as discussed by Lloyd and Sholl . We have expanded

(3) 1/4 x1/3
E/ (a ) as a power series in the parameter cr = —̂ -( 7:— ) rD o v v s 2rv \9-rr / s

which occurs in the Lindhard function,

- ar (b + cr b, +
S O S l o f . t i j

16 4 1/3
where a = - 7r-\7r~ } • The values of these structural9rr\9TT /

constants are given in Table I.

E. Fourth Order Band Structure Energy

There are several distinct contributions in this order.

We consider first the most divergent parts of the last two

terms in (B-8) namely

V(K ) 4

ITT̂ T! r (94)
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and ,

_ly y
NZ, L
k tfO

which we write as

I

The explicit expressions for E, and E2 are given by

8(3TT)4

(97)

(i-n2)

3 1 / 4 ,OQx(98)

In Figure 8 we show Ê 4) (n)/Ê o) (TI) an! Ê 4) (ri)/Ê 0) (TI) as

functions of r\ (where E/ = E'E« (T))) along with the resummed

expression given appendix D. Note that E« On) is part of

the anomalous contribution as discussed in section IV and that

it must be included at finite order to give the appropriate

limiting agreement with the resummed diagrams. Furthermore

we note from the positions of the first reciprocal lattice

vectors that the contribution of this term will be small.

The behavior exhibited in this term is representative of the

nature of any spurious divergences introduced by zone planes

and illustrates the interconnection between band structure
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effects and the methods (finite T and T = 0) of perturbation

theory.

Secondly, we consider contributions from the diagram 4b

of Figure 4. This term may be written

(4b) = _64 / _4_ \ 3 *
E2 27n \9n ) rs

where

(100)
2

and can be calculated readily since the expressions for H (r\ ,r\~)•̂ 1

are known. Furthermore, apart from the weak r dependence of £
s

3
this term is proportional to r . Numerical values for two

S

representative values of r are given in Table II.
S

We next consider the correction which arises as a

consequence of the chemical potential shift, namely the last

term in (78).

El4b) = * IT KTo

This is known from the expressions for the compressibility

of the electron gas and the second order value of the chemical

potential. In fact, as a consequence of the compressibility

sum rule, it may be shown that this term is precisely given by

the diagram for Ei in the limit that the momentum transferred

by the internal Coulomb line approaches zero.
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Finally we consider contributions due to diagrams of the

form labelled 4a in Figure 4. There are two contributions

apart from those already discussed in the first part of this

section and are given in (B-8). One is an off diagonal part

r£A iv

(102)

and the other has diagonal parts:

V)L no

(103)
and

V(K ) V(K
i

N e(K ) (K )« (f -£,)(£ -£,)
A ^ ^ k o A o !

The second part of (103) is an anomalous contribution, which

disappears along with the singularities from the double poles

if the resummation of appendix D is used. These terms are

awkward to handle in numerical work, although in principle

there is no difficulty. [One problem is the time needed to

calculate a nine dimensional sum. Another is that the kernel

l nQ(k)

f t - - (104)

-• O Xf U

has, as yet, no analytic representation. We have been able to
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reduce it to a two dimensional integral. It has asymptotic

expansions which give

48n (2kf)

,

(105)

where f is a complicated function of angles. We calculated

these terms (102 and 103) by taking as an approximation for

j^oj^o) i-ts large TI expansion and by setting —7—7 = 1.r̂ £. r̂ >j e

The former is an underestimate but note that for the structures

we consider -n is always > 1. The latter is an overestimate.

The form is then:

E<4a) s . _ i _ (A. \2/3
 r2 v Jjy A. _ i _ .I2

 = r cE ,,_ ,2 V9n ; rs L nZ, 4 , ,2J ' rs°4
4(3rr) ^ ^ 2 n2 -̂32)

(106)
2

which is proportional to r and is probably an underestimates

overall. The values for the factor c, are given in Table I.].

In Tables III-V, we give the thermodynamic functions p,E,G,

at T = 0°K calculated to third order in the electron-ion

interaction. In Table II, we list the explicit contributions

to fourth order at r =1.6 and r =1.36 corresponding to
S S

low pressure and 1.9 Mbar respectively. The contribution E

is an estimate as noted above. Note the approximate cancellation
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in the fourth order, and further that at high pressures the

SC lattice is predicted to be unstable relative to FCC and

BCC.



VI. DISCUSSION AND CONCLUSIONS

We have given a procedure for calculating the ground

state energy of a simple metal and have shown that there are

basically four contributions involved, viz. electron gas,

static dielectric energy, Madelung, and core exclusion.

Furthermore, we have seen that the shift in chemical potential

from that of a uniform electron gas must be taken into account

in calculations going beyond 2nd order. In particular, we

have emphasized that T = 0 time dependent perturbation theory

does not give the true ground state when the unperturbed

system is taken to have a spherical Fermi surface (a fact

first noted by Kohn and Luttinger ) and have shown the relation-

ship of this to the deformation of the unperturbed Fermi

surface. We have observed that if one expands the free energy

uniformly in powers of electron-ion interaction, differences

between finite and zero temperature perturbation theory appear

only in fourth and higher orders, and furthermore that certain

divergences at zone planes can be resolved by resummations.

The preliminary calculations reported here for atomic

hydrogen seem to indicate that a happy cancellation may occur

in the fourth order, at least for theSC, FCC, and BCC structures,

although more detailed calculations are required to be certain

of this. The calculations reported have been done using the

Lindhard dielectric function. In third and higher orders this

-36-
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is a very good approximation since the dielectric function

occurs as 1/e. However, in the second order e - 1 appears.

This acts to change the magnitude of the second order contri-

bution slightly but does not affect the energy differences

between SC and the two close-packed structures. The use of

the Lindhard function, as noted in section III corresponds

to a self consistent Hartree (RPA) approximation. We remark

that the zero pressure density of the structures studied will

be extremely sensitive to the exact fourth order corrections

due to the weakness of the minimum in the free energy as seen

in Table IV. Also, a third order calculation predicts an

instability of the SC structure relative to the two close

packed lattices at a pressure of ~2 - 3 Mbar. The

exact transition pressure is again sensitive to the magnitude

of the fourth order corrections. It is clear, however, that

such a transition must appear at some pressure, for the band

structure corrections depend upon positive powers of r whereass

the Madelung term depends inversely upon r . Thus eventually,
S

the static lattice having the lowest Madelung energy should

be most stable.

Brovman et al. have computed ground state energies for

atomic hydrogen at zero pressure by using the T = 0 expansion

to third order in the electron-ion interaction and found an

interesting class of low energy anistropic structures. We
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regard the effect of fourth order corrections to these calcu-

lations as an open question, but one that can be settled using

the above expressions. Finally, we again emphasize that we have

treated the lattice as static and that it will be necessary

to consider lattice zero point energy in a complete determination

of structural stability since the zero point energy is of the

(3)magnitude of EL; . Calculations of such phonon effects are

33in progress.
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Appendix A.

We derive (29) by writing W in the form

^ = y K (k) V(-k) V(k) + Y K (k,q)V(k + q)V(-q)V(-k)
±1 L-i JL r^f '""' r** L-t £. t**> r*t r*t r*s r*s r*t

£ S»S
(Al)

K (k,S q )V(k+q +q )V(
J ~ **L r~>Z. ^ <~1 ~Z

.az
Defining symmetrical coefficients by

U(k,q) = [K (k,q) + K (-k-q,q) + K
£, <*** r*t £ r*~f r*s £_ r*-» f*~> r& f

(A2)

K (3l,k,q ) + K (q2,q
J f̂ i. r^> ̂ ->/. J r̂ i£. r~>\

we may write (Al) as

= L (k)V(k)V(-k) + L7(k,q)V(k+q)V(-q)V(-k)
\l £ L-i J_ r+* f̂ f r*s j I_J £. r*t r*> t**> r*> r*t f*s

k k,q
(A3)

Taking the variation of (A3) with respect to V(-k) we have

I vr k^> = I L (k)V(k) + y L (k,q)V(k+q)V(-q)
U i_i < J \ f \ K.} t_i J. "^ ^^ t_l Z. ~ ^^ i~~> ^i r*s

k ~ k k,q
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+Y Lq(k,q q ) V(k+q +q ) V(-q ) V(-q ) + ...
/ . J ~ -̂'i. r~-£. r~> >̂ i. f̂ Z. ~L ~£ .

£»3l>S2 (A4)

Equating (26) and (A4) we have, noting that the V's are

arbitrary external potentials,

Xi = L-, X2 = 2* ***

and hence (29) •



Appendix B.

To derive an expansion of (41) we write the band energy

as „ ~
V .V.

and the occupation number as

V .V.
n(k) = n (k) - 6(E,-£(k))- ) ^ "" + ... , (B2)
~ O ~ £ O ~ l—> C ~ <*4

i

where n (k) = 0(Ef-£Q(k)) and n(k) = 0(Ef-E(k)). Clearly when

k is near a zone plane these must be viewed as asymptotic. We

find the following expressions for the Fourier components of the

density

"o

V VolVi
L (f -F.

V o i , _ , ,

£V

YL

V V Vv * - v •»••
lA OJ Jl
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VolL V V" A • • All ll

- 2

o i+o
r>*

V
- 2

ol

V .V.01 10

V .V.01 10

o i

V .V.01 10

.1
IfO

O 1

(B5)

Using (29) and supplying the extra factor of e (k) in the

third and higher orders, we find for the energy,

(2) 1 Y ,„,„ ,,2 1
Eb = N L

2V v-= I y yN L L
k i=

e(K)

V(-Kj V(+K -K.) V(K.)
V 0 "I T

ov~' TTKT) e(+K -K.) T(KTT

(B6)

(B7)

• <«*•„-y <<?•„-£,>

;(̂ > = | Y n (k) V
D N (-> O ~ £-1

V(K ) V(-K ) V(K -K ) V(K -K )
~Jb _ ~1 ~1. ~] _ J X,_

e(Kj e(-K.) e(K.-K.) e(K.-Kjv v '
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V(K ) 2 V(K -K ) 2

Y i ~* i
L > e ( K ) >

V(K )2 V(K ) 2

^"^M1 *

T V(K ) - V(K ) -. IY v i z*i-.\ i—^-\ •
N L I > e ( K j \ U ( K 4 ) »

(B8)

k i



Appendix C.

The diagrams which correspond to the second and third

terms of (B8) are shown in Figure 6. The two diagrams of

6a are equal in magnitude when summed over k,q so we need

only calculate one and multiply the result by a factor of 2.

We now observe that the series of Figure 7a may be summed, i.e.

V '-• 2 m

I /-'

>,o> )P' v'L ,co )G (p,oo )
V ~ .-' V' 0

Xt° V'

r*t

Hence the series of Figure 7b can also be summed, and supplying

the factor of 2, the resummation gives for Figure 6a,

/i v ~ 9 ~ 9 f> "3 1
^ \ I TT I ^ I TV I "^ -v -J 1-v •*•— ^ lv

kl lv I I ^ dX —j- T 2 2
k*3 - S ° Go (£ja)v)Go (P+t'CDv)-X l\l
p,v

(C2)

which no longer has double poles and hence is always finite.

Similarly, the contribution of Figure 6b is the first term

in the series of Figure 7c which may be summed to give,

1

N L "k' Jo— 'XG-l(p>m )G-l(p+kj00 )-x
2|vJ2

p,k,v o ~J v o ~ ~' vy ' k1

- G (p,oi )G (p+k,co ). (C3)
O*^* V O '•*•' **** v

-45-



-46-

This again has only simple poles, and moreover is seen to be

a correction to E,; rather E.; . In fact, the integrals

appearing in (C3) can be done analytically.



Appendix D.

We give an explicit expression for (C3) by noting that

the roots of the equation

G"1<p,cD)G~1(p+k,tD)-X2 |fc I2 = 0 (Dl)
O f*> O *-» ~ K

r+J

are given by

£, - l{(£(p)+<f(p-k)) ± [£(P-k)-(f(p))2 + 4X2|\|2]*}, (D2)
•f- L ^ r * > i ~ ~ » - r** r*> r*J K J
""~ < /̂

where £(p) = £ (p) + S- (p) as in (64). Then (C3) becomes
«>•• O r" J- -̂

(p))
(D3)

. r^> Q - + - + l^O -^ O ~

!s E
with

f^(-k)-£
O f

*™~" /«*>

(D4)

and where we have assumed the self energy to be momentum

independent as discussed in section III. We rewrite (D3) as

(D5)
•_f r-—• k̂ > r-w

k

where E,(k) is given by the first two terms and E^ (k) by the

last. Then in terms of the dimensionless variables:

bk
- v = -

,2) \2

^n 2k V 9 ^ 9o f ••" - •n-

A = %[4£ + v \*

The integrals may be evaluated and we find for E, (*c)
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(1) £< 1 - v

[6+l-2A]8-A+l

[3£-4+A2-2(l+A)2] + f

i^ (e+l+2A)(e+l-3A) + 4(A2-6)]

[36-4+A2-2(l-A)2] +

4 ? n a 5/2

+ 4(A -&) - 6 , (D7)

(2) £ > 1 - V; £< 1 +

- - Kf

v

r
s [A -

4 - ij<r~}(D8)
(3) £> 1 + v

2/3 T!5

[£+l-2A]5+A-l

4(A2-<f)]
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2] - | C+1-2A)

-a)] - ̂£ } (D9)

and for Ê o) (k)

4 v2{(<f-i)M̂ I * 2/6 } - (DIG)
s

To see the relative magnitude of these contributions we

compare them with the second order contribution which we write

as

We distinguish between the cases in which E« is evaluated

using e(k,|a ) and e(k,p.) by E^ and £2? where the p. dependent

Lindhard function e(k,n) is given by

(D12)
r^ I / "1 'I 1 T I I X -f I ' "I 1^ I " 1

*-(T)
with

k k
2k, , b 'f

In Figure 8 we show [E. (-n)-E, (<n)]/Ê / (T)) with n = a .
q. H z. O



Appendix E.

The function (90) was originally evaluated by Lloyd and
Q

Sholl . We write it in a somewhat different form:

264rr rurusm 0 2

/ l \
+ On2-Ti1cos0)log(:T-Ti ) + 3

(El)

2 2

- p

where

„ / _ _ ^ i _ ^ o - _ n _ • _ ^/

When p = ip' , i.e. when ru j T U j T U - T i p form a triangle inscribed

in a circle of diameter 1 this function becomes

i i r, .V1

2 2
64n TiitioSin 0

2 2 2 21 arg [ ^ + ^ ^ 1 - 4 ^ 0 0 3 0+cos20]

2 2 2 %
with p1 = (sin 0 - TI,- + 2r)..TiCOs0)̂  and the argument function

is the principal branch with the branch cut along the positive

real axis.
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Most of this change can be traced to the Madelung energy.

33. A correct evaluation of the phonon spectrum is essential

in determining the zero pressure density for a given

structure, as well as in assessing dynamic stability.

Futhermore, only when the presence of phonons is taken into

proper account can the virial theorem (E = -K + 3pfi,
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where K is the kinetic energy of electrons and ions)

be satisfied.



Table Captions

Table I: Parameters in expansion (93) of third order band

structure energy.

Table II: Contributions to fourth order in electron- ion

interaction to free energy. E~ - Fig. 4b,

E4a - Fig. 4a, E4 - Fig. 7c, E - chemical

potential correction - see text of Section IV.

Table III: T = 0°K equation of state for atomic hydrogen

(to third order). Note that these results are

appropriate to a static lattice and do not, there-

fore, include phonon contributions to the equation

of state.

Table IV: Free energy at T = 0°K for atomic hydrogen vs. r
s

(to third order).

Table V: Gibbs free energy at T = 0°K vs. pressure for
t

atomic hydrogen (to third order).
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Table I

Lattice (real space)

SC

BCC

FCC

b
o

.08202

.06483

.06663

bl

.1195

.06591

.06945

b2

.1506

.05467

.05933

b3

.1748

.04050

.04555

C4

-.00310

-.00275

-.00260
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Table III

r
s

1.65

1.60

1.55

1.50

1.45

1.40

1.35

1.30

SC

-2.03 x 10"4 -5.16

7.89 4.31

2.13 x 10"3 1.72

3.92 | 3.45

6.32 5.78

9.54 | 8.91

1.38 x 10"2 | 1.31

1.96 1.88
t

1.25 j 2.74 1 2.64

1.20 | 3.79 3.67

1.15

1.10

1.05

5.22 ! 5.08

7.19 ; 7.02

9.92 9.71

1.00 1-37 x 10"1 ' 1.35

pressure

FCC 1

x 10"4 -5.23

BCC

x 10"4

4.24

x 10"3 | 1.71

| 3.44

x 10"3

1 5 '77

| 8.90

x 10"2 1.31 x 10"2

! 1.87
V

\ 2.64

j 3.67

! 5.08

7.02
t

9.71

x 10"1 1.35 x 10"1

NOTE: 1 unit of pressure = 147.15 Mbar
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Table IV

T*

s

1.65

1.64

1.63

1.62

1.61

1.60

1.55

jl.50

1.45

1.40

1.35

1.30

free energy

SC

-1.04803

-1.04807

-1.04805

-1.04796

-1.04781

-1.04759

-1.04538

-1.04104

-1.03414

-1.02414

FCC

-1.04338

-1.04353

-1.04361

-1.04363

-1.04360

-1.04345

-1.04188

-1.03818

-1.03197

-1.02272

BCC

-1.04209

-1.04224

-1.04233

-1.04236

-1.04233

-1.04222 j

-1.04062
|

-1.03693

-1.03073

-1.02149

-1.01042 j -1.00979 j -1.00858

-0.99217

1.25 S -0.96842

1.20 | -0.93796

1.15 \ -0.89928

-0.99242 -0.99122
t

-0.96961 j -0.96843

-0.94019 1 -0.939025

-0.90262 -0.90147

1.10 | -0.85045 j -0.85502 -0.85388

1.05 ! -0.78903 1 -0.79495 J -0.79383
* - ^

1.00 5 -0.71188 j -0.71929 ; -0.71819
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Table V

pressure

0.0

5.0 x 10"4

1.0 x 10"3

5.

1.0 x 10~2

2.

3.

5.

1.0 x 10'1

5.

1.0

5.0

Gibbs free energy

SC

-1.0481

-1.0390

-1.0305

-0.9707

-0.9092

-0.8081

-0.7233

-0.5809

-0.3019

FCC

-1.0436

-1.0349

-1.0266

-0.9683

-0.9080

-0.8085

-0.7248

-0.5841

-0.3085

-0.9707 : -0.9683

1.8572 - 1.8377
S

5.6614 i 5.6273

BCC

-1.0424

-1.0336

-1.0253

-0.9670

-0.9068

-0.8073

-0.7237

-0.5829

-0.3075

-0.9670

1.8387

5.6282
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Figure Captions

Figure 1: First order correction to the Green Function. The

solid line represents the electron gas Green function,

the dashed line the bare external potential, and

the triangle the vertex function of the electron gas.

Figure 2: Integration contour for (59).

Figure 3: Corrections to the Green function. The double

dashed line and double wavy line represent the

dielectric approximation to the vertex function

described in the text.

Figure 4: Contributions to the band structure energy.

Figure 5: Fourth order contribution to the band structure

energy given by (71).

Figure 6: Divergent fourth order diagrams.

Figure 7: (a) Partial summation for Green function.

(b) Partial summation for the diagrams of 6a.

(c) Partial summation for the diagrams of 6b.

Figure 8: _ [E4(r|)-Ê
o) (TI)]/Ê O) (TI) (cf. Appendix D)

......... [E{4)On)+E<4)(n)]/E<o)(TO (cf. (97)

and (98) and Appendix D).

Note that left hand axis is — j right hand is r\.

Figure 9: Gibbs free energy difference relative to the simple

cubic lattice for FCC and BCC metallic hydrogen.
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