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PREFACE

The work described in this report was performed by the Quality
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ABSTRACT

Under the constraint of limited testing time, many attempts
have been made to incorporate prior knowledge and exper-
ience into a quantitative assessment of reliability., This
type of technique is known as Bayesian statistics., Since
the length of time available for testing integrated circuits
is frequently very limited, -an analysis of Bayesian methods
when applied to the integrated circuit testing problem was
conducted.

The critical point of any Bayesian analysis concerns the
choice and quantification of the prior information. This
report is a study of the effects of prior data on a Bayesian
analysis, Comparisons of the Maximum Likelihood estimator,
the Bayesian estimator and the known failure rate are pre-
sented. The results of the many simulated trials are then
analyzed to show the region of criticality for prior information
being supplied to the Bayesian estimator. In particular,
effects of prior mean and variance are determined as a
function of the amount of test data available.
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1. Introduction

The lack of integrated circuit reliability data is a chronic problem
for those concerned with the problem of reliability estimation. The data
limitations are often manifested in terms not only of quantity but also
quality. For example, good quality data would not only include all the
conditions under which the data was obtained but would also include the
assumptions and restrictions to be used with such data. This needs to be
considered since quite often data from various sources are not compatible
with the application the analyst is trying to treat. Data restrictions
such as these can severely limit the amount of useful data to be applied
to reliability estimation.

Faced with situations in which data is not repre;entative or is
inadequate, it is not uncommon for the reliability an;lyst to devise a
rationale which may, in part, be based on "engineeriné judgment'". Unfor-
tunately, this rationaie often tends to be arbitrary and leads to inconsist-
ency with respect to device types and applications. &herefore, a defined
rationale was sought which would allow the incorporation of both judgment
and actual data in a consistent manner. Specifically, judgment must be
quantified and combined with data.

There are several rationales for estimating the probability of success .
for a given type of integrated device. The usual basis for derivation of
such models is the failure-rate-estimate. For these reasons a rationale
is sought which can estimate integrated circuit failure rates and still
be compatible with limited data.

The basic approach taken was to develop a technique which would

assess integrated circuit parameters, such as failure-rate and life time.
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This technique of assessing integrated circuit parameters was achieved

by combining limited statistical data and engineering judgment. A rationale
was sought which would combine both data and judgment so that an analytical
estimation of the failure rate for integrated circuit devices could be
achieved.

This report emphasizes the selection of appropriate statistical dist-
ributions for incorporation with Bayesian statistical theory. The resulting
Bayesian application with various data inputs was then compared with classical
estimators of failure rate. +

Since Bayesian Statistics provides a convenient way of incorporating
prior knowledge or judgment regarding probabilistic events, the treatment of
the previously stated reliability estimation problem was approached through
an application of Bayesian statistics. Bayes' Theorem, or Bayes' Rule, can

be expressed by the formulation given in Equation 1.

P(cilB) - L®1G) P 0
L PeIc) Pie))]
=1

The Cl’ 02, c s e e Cn in Equation 1 represent n mutually exclusive

3’
events. The respective probabilities of these events are denoted 5y P(C{)
i=1,2, . . ., n.

The event B is an event for which one knows the conditional probabilities
P.(B{Ci). This is read: the probability of event B given event C,. Once
these probabilifies have been defined, the probability of obtaining a
pérticular event Ci given event B is given by Equation 1. In the context

of this reliability estimatlion problem, Equation 1 must be redefined for the

continuous case with regard to a specific notation.

+defined in reference (9), pages 102-L4
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| Frry 1)
/{(/\lF) = l_ , (2)
jﬂrm LU d)

A
Where:
A = the values assumed by the propulation failure rate.
F = the event called failure.
C(A) = a probability density function for A

FEIN

a function giving the probability of failure given

a particular A.

FOLF)

a probability density function of A given the failure event F.

’

The controversy about Bayes' Theorem concerns the uncertainty in knowing
the probabilities P(Ci) i=1,2, .. ., nand E ( A .) in the rgspeétive
equations 1 and 2. This problem results from a lack of appropriate data.
Thus, engineering judgment must be applied in the initial phases of the
applied Bayesian analysis. The effects of this judgment on P(Ci) and ; (A)
are lessened by an allowance for incorporation of the appropriate data. In
this case Bayes' Theorem is applied in an iterative fashion which allows
the incorporation of data as it becomes available. A better probability
estimate is obtained as increasing amounts of data are incorporated.

The initial data will be referred to as prior information. It will
be defined by a prior formulation or function. Subsequent data will result
in a posterior formulation. In the case of Equation 2 an iterative tech-

nique describing this situation is shown below.
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Prior information is quantified by ;e(,\ t -\': s T_o> given the initial

information Fo and time to; Substitution of this notation into Equation

2 ylelds:
e (1) RO
J’.(r\}f-) = - (3)
! / '
| HE 1N R d)
A
Where ¢ ( A ) is the more convenient notation for g AT ‘t)
/ (e} ~ 3 o
‘;ZQ(A\F‘\) is the posterior function which replaces
:h/,\) and reflects the failure event new F, (tl understood)
With more data, ';:‘ (,\ ] E) may be used to derive another function which

incorporates this data. Again Equation 2 is used.

B FE B

Therefore: ﬁ?_(/\ | b ) = Uﬂ

&?(m’) Y

Ty LorE, e

Depending upon the quantity of data, this type of iteration can be carried
out to an arbitrary number of steps. The nth iteration will take the

following form.

\ 710 .
AR f*”, >,\ | 5
) FEID ELEd

Thus, an incorporation of new data is used to redefine the functional

description of values associated with a population of particular device

types.
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An essential constituent of this Bayesian application is the determination
of the functional relations which can be used to satisfy the iteration. This
determination must start with formulations of the prior information. Toward
this end there will be an effort below to identify the usefulness of given
distributions for best describing this information; to determine the criticality
of distribution shape parameters; and to find the influence of varying amounts
of data.

The final factor in the approach of this Bayesian application concerns the
analysis at iteration termination. For this paper, iteration termination will|
be defined as the point where data will cease to be incorporated into the -
Bayesian formulations. This termination point will be determined through a com-

parison of Bayesian failure-rate-estimates with classical failure-rate-estimates

for equivalent data.
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2.  DISTRIBUTION FUNCTION STUDY

Before the details of the Bayésian investigation can be pursued, the
functional relations presented in Equation 2 must be defined.

The probability of failu:fe given a particular failure-rate was denoted
by g (F l /\ ). It will be assumed that the exponential distribution for
times-to-failure holds. Because of the relation between the exponential and

Poisson distributions, 1[ (F | A ) can be expressed in the following Poisson

form:

-At
o Gt (6)

e

Fi

where F = the number of failures.

‘The interpretation of this formula is that, for failures occurring at a
given rate ,\, the probability of having exactly F failures in time 1t is given
by ;(F\)\ (i.e.)Equation 6).

The lambda ( ) given in equation (2) can be thought of as the
constant rate of failure for an exponential distribution of times-to—failure.
Furthermore, the density function /C/,J) represents the prior estimate
of the failure rate for a given integrated circuit device type. This density
function can be thought of‘ as describing the prior probability that A is
one of the values between zero and infinity. This probability is a theoretical
description of the distribution for the entire population (not sample) of

integrated circuits of a particular type.
t
The selection of the formulation for t ( A ) in Equation 2 will have to

be subject to some fundamental selection criteria. This is because all
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distributions selected for f(A ) may not be amenable to the iteration
process already discussed. Aé was stated before, the iteration process
lessens the initial uncertainty by building the true shape for the function
f(A ) as data becomes available.

Because of this uncértainty, the function selectgd must be viable—
this means that incorporation of data through iteration is not only per-
ceptible.but meaningful. This criterion can be thought of as a sensitivity
of shape variability due to the iteration progess."The second criterion |
sought regards the result of Equation.2 i.e., f(AlF). For convenience in
the iteration process, the result of  Equation 2 must be amenable to reuse
as f( A ) in the next successive stage of computation. A closed function
form is sought for ease of-computation;

The first fUnctibns considered were of sténdard form and can be found in
basié statistical texts (Ref. 5). The formulatiohs and conditions fbr these

funétions are stated in the following section.
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3. DISTRIBUTION SELECTION
If one considers the criteria previously discussed and the functional

conditions, a likely candidate for this Bayesian application can be selected.

Table I provides some remarks necessary for this determination.

NAME

Uniform

Exponential
Gamma,
Normal

Beta

Cauchy

F-Distribution
Chi-Square

Inverted Gamma

Converse Inverted
Gamma,

TABIE T

Function does not yield closed form when iterated
- computation difficult. Not defined on the entire

(0, «© ) domain

Iteration yields a gamma form

Iteration yields a gamma form - see Section L.
Computationally difficult when iterating

Only defined for the domain ~ (0,1)

Moments do not exist therefore no expected wvalue

can be calculated.
Only defined for the domain (0,1)
Special case of Gamma

Does not describe the correct random variable

describes the estimate given the true.

Parameter definitions difficult to make resulting

in computational difficulty.
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PROBABILITY DENSITY FUNCTIONS

Equation Name Formulations Conditions
(7) Uniform f(x) :{;{—;—— < x< &
@) Elsewhere
(8) Exponential f(x) = l/g e-(x/,é) x>0 ©>o0
v O Elsewhere
(9) Gamma f(x) ={KX°L_‘1 e—(x/’ﬁ) x>0 X >0, .4 >0
O x< o
= s
K such thaf/ f(x) dx=1
Z a0
=1
< &)
(10) N g fx o= )
{10) Normal f(x)—K& /2\/5_ -co<x< 40,4 >0
(11) Beta f(x) =[K X* 1 (l-X)’é -1 o<x<1
(o) Elsewhere
_ 1/ a
(12) Cauchy f(x) = /¢ > -~ < x < 4+ o0
a +x
e e (V72 -1 (Y /2)-1
(13) g\;t]?;ztrl- f(x) —JK X (1-x) 0<x<1
o Elsewhere
‘ (¥-2) /2 p -(x/2)
(14) Chi-Square f(x) = 1 X €

JPL Technical Memorandum 33-614
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There are two further functions which can be derived for this Bayesian
application. It was derived from basic statistical and reliability theory.

The results of this derivation are stated below.

Function Name Formulation Conditions
(15) Inverted . Astl —@'ﬂ/m) > / Jo
Gamma f(x) = S E)L) (l/x’s e X 0, L> o, > a
o)
@) Elsewhere
Ao TR _ _(4>+/1/X)/‘“'
Converse f(/ai x) _{L@.;. "—/xl /u_(/U%‘ 1) e
(16) Inverted - , >
Srverte RRACEYS A> o
/}L> (o]
4‘-‘ > o0
X > 0
o ' Elsewhere

Equation 15 is derived via the standard change of wvariable technique.
The basic function treated was a density function for the random variable
associated with times-to-failure for a given number of failures (.x ) given
their rate of occurrence ( A ). Equation 15 represents the distribution
of the random variable called a failure-rate-estimator.

Equation 16 is a description of the random variable called tfue-failure—
rate given the failure-rate-estimator information.

The derivations of formulations 15 and 16 are contained in Appendix A.
It wi;l also be noted that, after simplificétion, these derivations yield the
same result as the formulations presented in Section 4. The formulations of

Section L4 are, however, more easily derived and understood.

10 JPL Technical Memorandum 33-614



The gamma compliance to the defined selection criterion can be demonstrated

by the formulations below. These formulations are used in Section U4 to

illustrate the Bayesian iteration technique and parameter determination for

the general gamma formulation.
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Complete derivations are deferred to Appendix B.

11



12

L. TPROPOSED BAYESTIAN ITERATION TECHNIQUE

Substituting Equations 6 and 9 into Equation 2 yields the following

formulation:
DA = (E ) @At (puT A% g () -
\ = / A ’
/ r e - A A
((K/F!) e Mt % (e gy
A= o
where K = l_‘—
< ™ ()

F = the number of failures in time t

The derivation for K is given in Ref. (5).

" (e ) is the gamma function
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Using the notation outlined for iteration in Section 1, prior information

is factored into the following equation:

Po (AlF) = X, /\oc_l e Ao

(18)

where K =
o

2 )

K, is determined by the initial constants o and .

With the above prior information and iteration algorithm, the following
sequence may be derived. The successive sfeps are presented below, however
the derivations ai)pear in Appendix B. It is important to note that Fi
(i=1,2,3, ..., n) is being used as the number of failures occurring in
time t;. Since the times-to-failure (ﬁi) are being generated one at a time,

F1 is always unity (i.e., F, =1, 1i=1,2,...,n ).

b = K /\<°<+ Fp-to Al 4y

where K1=[(1/p+t1)o&+ﬁ ]/r(o(-l—Fl)

{19)

(€+Fp+Fp) -l At ety

pz (A\FZ) - KZ >\

- (20)
where K (1/ Ft, +t )K+F1+F2 r(cki*F +F,)
2 3 1Tt 1 2

m (21 |

where K{Y\'= (1{6-}- iti) i= r((X-F _E_Fi)

JPL Technical Memorandﬁm 33-614 13
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It should be noted that iteration of Equation 18 through 20 produces

successive gamma formulations.,

4,1 INFORMATION DERIVED FROM BAYESIAN TECHNIQUE

The information derived from the Bayesian techﬁique will come from
the probability density yielded by Equation 2. The standard methods of
treating the problem of finding an average value for a random variable
given its density function is via the theory of mathematical expectation

(Ref. 5). The expection of A 1is defined by the following formula:

f :
/ / ]

E () = }A.,ﬁu\)d,\ o< A < o (22)
A -

where /\ = the random variable representing failure

rate for a device population.
F(A) = the probability density function for /\ .

Equation 22 represents the mean for a particular density function
Q (A). A function which is related to {22} is the formulation for the
variance and deviation for the density function e (/\ ). These are

respectively defined with the following notation.

E[[A-E07 = var(y) = | (d-Em )2 fo ay (23)

A ]
The standard deviation for the density function [ (/\) is given by

the square root of Equation 23 .

As regards this particular application, the mean and variance for ?( A )

are derived in Appendix C. For convenience, the respective formulations are

stated on the following page.
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E(A) = &+ S F (o)

i=1
1/ n
Pty

i=1

. 2 n

En\:(/\-E(/\))] = o_(+£ F. (25)
i=1
2
s +ﬁ-_ 4
i=1

Where n = the number of Bayeéian iterations

F. =1 (i.é..,' ZF=m

1

The above equations are read as the mean and variance after n iterations

4.2 INCORPORATION OF PRIOR INFORMATION

As was stated previously prior information can be derived either from
experience or from "engineering judgment". A problem.with.both experience
and judgment is the quantification of these sources. It should be noted
from Equation 18 that the functional relation for &o </\ | FO) is use-
able only if the gamma constants o and /é are determined.

Consider the case(where prior data'can be ufilized in determining
the constants o < . Suppose that data is available which indicates
that the mean and variance of fdilure-rate-estimators for a particular
device are M and V respectively then the parameters <, /é? of the given
distribution may be computed via a system of simultaneous equations. The
following equations are for the mean and variance of the éamma distribution

of Equation 18.

JPL Technical Memorandum 33-614 , 15



B(A) = «Z (26)

2

VAR (&) = (& (27)

When Equations 26 and 27 are set equal to M and V respectively,

(28)

<=

S = (29)
M
If engineering judgment is the only method available for assessing
prior information, quantification ofd\,fj is similar to the above. For this
case, the values for M and V may be judiciously chosen. Insertion into
Equations 28 and 29 will yield the appropriate distribution constants.
The consequences of mean and variance choices will be deferred to Section 5.
Once the constants K and/ﬁ have been chosen, one may proceed with the
iteration algorithm already defined. Any type of data can be used for this
iteration providing failures and times can be specified. There is only one
caution with regard to the data used. Data entered ihto each successive

iteration must be derived from similar device lots and application.
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4.3  CONVERGENCE PROPERTIES

Evaluation of this Bayesian technique_will be conducted by comparing
it with the classical maximum-likelihood-estimator for failure rate in
Equation 9. It can be shown that the two estimators, Bayesian (Equation 24)
and Classical converge as the amount of applied data increases. This com-
parison may seem to be a rather trivial aspect; however, it is important.
The convergence shows that the prior bias supplied to the Bayesian is not only
removed but converges to the true rate with the incorporation of sufficienct

data.+

There 1is a further convergence property which is of interest. It can
be shown that, as the prior variance of the Bayesian becomes large, the
Bayesian and classical estimators converge. This convergence is independent
of the amount of data incorporated. To see this consider the following argument.
Prior Mean = Mp= A2 _
2 : (30)
Prior Variance =Vb = X&

From these equations,

This implies that ~>4g is inversely proportional to Vp for a given Mp.

Also from Equations 30,

This implies that o 1is inversely proportional to Vb for a given Mp'

+ This formula is true provided that the prior density is not zero at the
true value. While this is not a problem with the gamma distribution, it

warrants special attention if a discrete prior is used (see Appendix D).

JPL Technical Memorandum 33-614 - 17



18

Consider the Bayesian expected value (2h)
X o+ 2 b
|
AP

It has been shown that as Vp increases with fixed MP , o and l/,g

EQ) -

decrease (the limit for both being zero). Therefore E(A ) approaches ZF/Z ¥

in the limit. This ratio is the classical maximum-likelihood-estimator.

JPL Technical Memorandum 33-614



5. SIMULATION TECHNIQUE
Because of the difficulties and unreliability in actuval failure data
collection, failure simulation was used as. a workablé solution.
The method of this computer simulation was to use a random-number generator
to generate exponentially-distributed times-to-failure. This method eén be
thought of as a way of collecting 'perfect" data.
Failure-time simulation 1s accomplished when values of F(t) are supplied
for a given rate.
The simulation generates failures and failure-times based on a failure
rate '4*. The results, allow computation of a failure-rate-estimator ,4 s
which approximates the true fate, A ¥, and can be compared to it. Simulation
also provides an ideal way in which both Bayesian and classical estimations
of failure-rate can be compared while data are incorporated.
This comparison is done for the purpose of checking Bayesian and classical
changes with respect to data and cohvergence pfoperties. The simulated data
also allows for the performance (with respect to time and failures) of the
Bayesian and classical estimators to be studied given any amount to simulated
data. Performance will be defined as an estimator's nearness to the trué'rate
( A'*). As an illustration, suppose that a given data base is supplied and that
estimate éﬂ , and estimate <f2 are calculated. The estimate-which is nearest
to ’A* after the incorporation of the same data is said to perform better.
Given a specific prior mean (Mp) and prior variance (Vﬁ), it has been
shown above (Section 4.2) how simulated failures and their corresponding times
are incorporated into the Bayesian formulétioﬁb(See also Appendix B below).
The respective estimatorscan now be compared to each other and also to At

This can be done data point by data point. An example of this can be seen in

Figure 1 which represents the incorporation of 50 simulated data points.

JPL Technical Memorandum 33-614 19



Since this simulated data is generated in a pseudorandom fashion,
one simulation run may yield a different comparison chart than another.
Variation in the random-number-starts causes this situation even though
prior information (Mp, Vb) remain constant. An example of this différence
is shown in comparison of Figure 1 to Figure 2.
"To average Qut the effects of these random-number starts on the data
to be analyzed, comparison inforﬁation (as Figures 1 and 2) will be generated
a given number of times. In the examples which follow, 500 trials were
computed then compared for performance. The results were then normalized to
find the percent of time for which the respective estimators performed better.
Given Mp and Vb, suppose that the Bayesian and classical estimators are
to be compared with respect to A* . This comparison will be done after
the incorporation of the 50th data point for each of the 500 trials. Thus,

a measure of the averaged performance of the respective estimators can be

obtained.
| This measure may be defined in the following manner.
Bayesian: Measure i = lE_SC<)) - k‘ l i=1,2,3,...500 trials
Classical: Measure = lES;TgOCX}-A* l j=1,2,3,...500 trials

where: EST 5O( A ) is the classical failure rate estimator

after fifty data points are incorporated.
As each of these 500 measures is computed, they can be compared and
counted. A simple counting routine will keep track of the percentage of the
500 trials for which each of the measures is best. Since the number of trials

is large, this percentage statement is, essentially, a probability-of-occurrence.
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The previous discussion was conducted under the assumption that M
and Vb remain fixed. If Mp were allowed to vary in such a way as to bracket A*’
then the portion of time for which measure i is less then j can be plotted vs Mp.
A Bayesian performance distribution is thus achieved. This distribution would,
in effect; show how Bayesian performance is affected by errors in the selection
of the prior mean with respect to A*.

In order to have Vp and Mp follow the same relation while MP is changed,
a simple formulation was derived. A relation was chosen between Vb and M

b
such that Vb would have a fixed relation to MP while M_ is varied with respect

to A*.

M
Suppose K = 52— (32)
D
Where Dp = prior standard deviatidn_+

oy
It

arbitrary constant

+ The spread or dispersion of a given distribution (in this case, of gamma
gamma form) is specified by the variance of that distribution. The
positive square root  ( +\Vp ) is defined as the standard deviation.

JPL Technical Memorandum 33-614 21



The standard deviation was used in this ratio since it is usually
closer in magnitude to the mean than the variance and therefore is more

easlly visualized.

Solving for Dp yields:

By definition, the corresponding variance (Vb) is:

VP= _3\
\x/
Thus, for a given K, the fixed relation between the prior mean and prior

variance is established,

Figures 1l and 2 represented a large simulated data base of fifty points.
Since an objective of this report is to treat the situation where only limited
data is available, the previous procedure will have to be restricted. To
represent this situation, simulated data was generated and the measures i, J
were applied at the tenth data point. This was an arbitrary selection since
other points could have been chosen.

Simulation was used to determine how the Bayesianvperformance distribution
was affected by various K factors. The true rate ( A* ) was fixed so that the
effects on Bayesian performance with respective wide and narrow variances could
be observed.

Figures 3-11 demonstrate the effect of a wide variance incremented toward
a narrow variance. The constant K of Equation 32 increases with each figure.
These figures are computed with ;4* = .05X10-6 failures/hour. For the purpose

of this analysis A:* was kept at the rate specified. The same effects could be
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. *
observed for other - /\ values. However , the range of K factors

may change somewhat in order to produce the same demonstrated effects.
Each figure represents Bayesian performance .over a range of prior
mean (Mp) values. Only the K factor was changed in each figure. Each point

depicted in the figures was computed from 500 trials,

Analysis of Figures 3-11 will be deferred to Section 6.2.

JPL Technical Memorandum 33-614
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6. RESULTS

6.1 Analytical Results

The analytical results which were derived from this study may be

summarized as follows:

1. Computationally, incorporation of data is independent of unit size.

There is no difference between one computation containing n failures
and n computations considering n successive failure times. However,
trend indications and evaluations are facilitated by making com-

putations at the smallest unit available.

2. In the limit, as the amount of data becomes large, Bayesian

and classical estimators converge. (Seetion 4.3)

3. For a given amount of data, a great increase in the Bayesian
prior variance implies that the Bayesian and classical estimators

give the same results. (Section L.3)

4. The prior parameters ux'wgf of the assumed gamma density can be
‘computed form easily understood statistical mean (Mp) and variance

(Vb) statements (Seetion 4.2)

6.2 Analysis of Observations Generéted from Simulated data.

Until now it has been understood that the Bayesian technique is pre-
dicated upon the selection of a prior mean and variance (Mp,Vb) for the
gamma density. These values arevarrived at using some prior belief and/am
data. However,-the qualitative relation between Mp and Vb must be understood
before the Bayesian technique can be discussed further. What does this

relation between MP and Vp mean?
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In the simplest terms the value of Vp expresses the confidence one has

in the wvalue selected for Mp. This is because the variance, by definition,
is a measure of the spread or dispersion of the selected prior gamma density.
A narrow variance implies high confidence in MP (ie., you believe >T is at,
or near to, Mp). A wide variance implies that one is less sure about the

%
position of A with respect to MPT

Related to this variance/confidence relation is the impact of Vb upon
successive Bayesian estimators (ie, incorporation of data). It has been
shown in Section 4.3 that as Vb increases, E( A ) approaches the classical
maximum-likelihood-estimator. One would expect to see fluctuation in the
initial classical estimator, because of the random inputs. One would
likewise see a fluctuating E( ) ) for a sufficiently wide Vp. This relation
can be demonstrated by Figure 12. (Note that when only one plot character
appears, ordinate equality is indicated.)

Empirical evidence ‘shows that as V? becomes narrow, indicating confidence
in Mp, the Bayesian estimation sequen&e has much more inertia with respect to
data inputs. This means that the sequence is much more stable. As a consequence,
large quantities of data are required to achieve good estimation of A* should

L3
Mp be largely in error from /4 .

. X
However, if Mp >~ A > the stability aspect is an obvious asset to the

Bayesian estimation technique. These observations are demonstrated in

Figures 13 and 14 respectively.

%
+ It must be understood that ) 1s known only for simulation purposes and
analysis . Actual testing does not allow this to be the case.
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Since in reality one can not be sure where Mp is with respect to A* )
it is obvious that‘Mp, with respect to A* and selected Vb values must be
investigated. The Bayesian performance-distribution is a means of invest-
igating fhése features. Bayesian performance-distributions were defined
and discuésed in Section 5. The results of these empirical studies is
discussed below,

The major questions to be answered by this analysis will be concentratea in
two areas.

1. What is the effect on the Bayesian performance distribution when

( Vb changes?

2. What is the effect on the Bayesian performance distribution when

*
Mp is in error with respect to A ?

In addition to the relation be‘tween:Mp and Vp previously.discussed, Vﬁ
also has definite effects upon the Bayesian performance-distributions. In
order to examine this effect, three items were fixed. First, the simulated
true failure-rate remained fixed at .05 failures/lO6 hours. The range of
prior mean values was fixed at [.012, .09] failures/106 hours. The relation
defined between Mp and Vb also remained constant (Equation 32). TFor each of
the successive figures (3,11), the prior variance was allowed to become
narrower by increasing the constant K or Equation 32.

The following values will be used in the discussion below.

Lower distribution tail = < .0k failures/106 hours

Central distribution regidn =[.0k, .O6é]failures/lo6 hours

Upper distéibution tail = > .062 failurés/106 hours

It is apparent (Figure 3) that, for a sufficiently wide Vb (k= .0006),
the performanqgvof Bayesian estimation over classical is equivalent to a

/
coin toss. This holds for the range of Mp given 10 data‘points for each

simulation.
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The remainder of the distribution figures (4-11) are summarized in the

following table.
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TABLE IT

K FACTOR EFFECT ON BAYESIAN PERFORMANCE DISTRIBUTION
L0006 € K< ,003 . tail probabilities remain relatively constant

. central region probabilities increase

.003 € KX £-.3 . central region and tail probabilities remain

relatively constant

K > .3 . Tail probabilities decline first
. central region probabilities decline next

*
final phase leaves spike which coincides with Ao

There is a particularly significant feature of Table II. This feature
concerns the "K" factor interval [.003, .3] where the Bayesian performance
distribution remains relatively stable for the prior mean ( )f + .0k) leO_6
This‘stability is not affected by the value of Vb dictated by the K factor.

This implies that there is a range of priof values (Mp, Vb) which produce optimum
performance of the Bayesian technique. The lack of distribution uniqueness for
the above K interval is important since we are primarily concerned with limited
prior knowledge and/or data. This stability implies that one does not have

to be super-critical about the selection of Mp or V .

The following fact shouldbe noted, The true or simulated rate was
specified to be .05 failures/106 hours; Other studies indicate that the
results generated from other simulation rate values woﬁld be similar, but not

necessarily the same, quantitatively.
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Analysis regarding the criticality of choosing particular values
for the prior Bayesian formulation will be treated below.

The experiments used to generate Figures 3-11 were done for the purpose
of graphically representing the probability distribution of Bayesian failure-
rate-estimators. This was done on the domain of prior mean values, Mp =
)ff .0l failures/106 hours for fixed K.

Given a pre-selected prior mean (Mp), criticality of selecting a prior
value of K from Equation 32 will bevdetermined. If the Bayesian technique is
to be used to the best advantage, K (given Mp) should be selected such that
the highest probability of getting a better Bayesian estimate (ie., closer to
A* ) relative to the classical is obtained.

It can be observed, from Figures 3-11, that a uniquely optimum K value
relating to the above criterion does not exist. It appears that the highest
probabilities are obtained when K is in the interval [.003, .3](see Figures
6-8). This means that, for a given Mp, K in the above interval can be selected
without essentially lowering the probability of obtaining a better Bayesian
estimate (ie, closer to A*- ) relative to the classical. From Equation 32,

it can be shown that the corresponding values of prior deviation (Dp) resulting

from the end points of the K interval are given as follows:
33 M) < b g .33 (i
3.33 (M) o S 333.33 (1)

One can therefore expect good Bayesian performance with respect to

classical without severe restrictions placed upon either prior mean or variance.
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6.3 SUMMARY

l'

Appropriate functions and distributions were selected for the

application of the continuous Bayesian technique.

Treatment of a discrete form of the Bayesian technique was anaiyzed

and is presented in Appendix D.

An easily computed iteration technigue was presented. This allows

easy incorporation of new data as it becomes ayailable.

Simulation results and graphics were presented in hopes of
facilitating Bayesian understanding.

The criteria are defined under which the Bayesién technique is
superior to classical estimation‘teohniques.

It was shown that severe restrictions on prior Bayesian information

are not necessary.
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APPENDIX A

DERIVATION OF FAILURE-RATE DENSITY FUNCTION

Define a failure-rate-estimator ( A ) as a function of times-to-failure

(i.e. cumulative)

A=n(t)
where h (t') = r/t°

(A-1) therefore A = r/t’
.
where t' = Z Ty
i=1

and r = total number of failures occurring at rate/t s A is the .

unknown true failure-rate.

From Reference 7, a relation between sums of exponentially distributed random

variables and "r" failures occurring at rate "/a " is derived. The resulting

probability density function is:

/

N ‘>/x—l -t
A ) S ts
(a-2) fary {7 7
o t'<o

n

This is the density for times-to-failure ( Z. t; ) +to rth event
‘=

occurring at rate &« . '

Next, we find, the related density function for using Equation A-2 and a
> 2

change of variable,

The density function for ,\ is denoted by g( /\ )
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B A PLY
(A-3) g(A) =% W)y e (tAA)

oy
but -t' = 50

)

L
A
e AV
(A-4) gl A)= LX) ('—) <
RJL) ' /\

this is an inverted gamma density.

Proof that g( A ) is a density function

S e
Let I = [ (an) (‘)’“ e dA
[ A
/\:0
Substituti !
utin x = -
¢ A
° - ()%
- S+
T = —(un) X € dx
[ .o X
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ey L)X

o len) e dx
[

oo)».-! -l ) X r(:”l-)
but J)\ c dx =
A [car-n~1]

therefore

I= (((“’L)}L S 1
&y )™

A However, the converse situation is what we wish to examine,
That is to say, we wish to have an expectation of the value of the true
rate (&) given the estimator ( A ) and the corresponding failures ( r ).
The derivations which follow are directed at this converse situation.
A gamma density assumption will be us.ed for the description of the |
density function for A . It will be shown that this approach yields

the same result as the assumptions and derivations of section 3,
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DERIVATION OF CONVERSE INVERTED GAMMA FUNCTION

Ao
n Y - V%T")
glhla,n) = o) (L) e rom Egunrom Aot
Moy |
Assume that the true failure-rate (denoted by>ﬂu) has a prior
gamma density with parameters o< , Q§ . See Equation A-5
A
by - &
(a-5) k) = L. 4 2
[

Using Bayes rule, the converse function is given by Equation A-6

(a-6) h(ﬂ\%w} = -Ct«)-gfﬁr\l/«mﬁ

/1@ g L, e
S

o -1

L N '(&+3y._ \”%
When e C}a)'gkz\‘/a,h,) = ((a,L> (_O 4 © A)/&

YZm) ﬂ@) Anv\
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Then

/-)L ¢°‘- (oc + Y-t '(@ v {L/T—d—)/&
\ - /“ e
VTR e
Rlalh,ny = 2 _
A}L 15) J/a(ou—n)—l e’(@*’%)/* c}/u,
VT oy e
. e |
Let Y - (@ * %’5/‘& in the integral. Then

dy= (0 + %) dm

h ) Pt e-@ " E~
(el Ay =

{ Gt e ¢ |
@fﬂ" j : r \@+ ) =t <<D+%> A/k
v, e —
% | dy
- B '_(¢+ y>/~
h(ald, . A e’
1 o+ n)-t c—‘aA
Wy )+ ST
%=O
&+ )- -0+ 4
}‘\(/ul)\,/(,)z /a( )1 e(fp A)/“

feen) / @0+%)""

h(/ai(\’/\/): (¢+%> M (/ét+a,>—' é(@ +x>,&.

W/L‘kol)

(converse inverted Gamma density)
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PROOF THAT f—. (e { X, n) 1S DENSITY FUNCTION

=) | N o e = v ’QO:. }/ Ax
J;'\(AIA))\—’)J/‘A— = ((:+4> j/c( ) e A> C}/Lk
s s s) o |

Let g= (0 %)
dy= (& + ) du

el oy = (2 2) | JMQ"“*’ =
K (& R >(o<4-71,)
Juzo ﬁl/t--#aL) .o A
. (0 X) * [CYPS .1
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EXPECTED VALUE OF THE CONVERSE INVERTED GAMMA DENSITY

hpald i) = K &
(&%)
Mo e 2

where K =

L) =J/ hoa I, -0 dee -
/\z

Integrating by parts

X+ ~ oY1
Efec) = K e
% |

vet oy (0~ % e
4}’@9*7))4««

o

Efo =K
@+

E ) = (0+ %)
rzo(a—a_j

r(‘o( )

cay P K ) e
(¢ )t_@,

~ QI
k//‘”“@ SN

Auze

{0 + }VA>/°‘J J
S 4

an Goemdt -y
-)‘_"‘*h.,u j% i < J‘b -
e

expected value of copverse inverted
gamma density function
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APPENDIX B

GAMMA ITERATION DERIVATIONS

From the text, it is seen that the general formulation of the
Bayesian application is given by Equation 17. This equation is

reproduced here for convenience:

] wr
POIF) - K/F) e“(f\ﬂr A @ /)
/MK/F! <t ey X c

Azo

Suppose that initial or prior information is represented by failures

e 1)

Fo, and time t . The gamma form of this prior information

x -\ _(>‘//5)
I .

becomes:
FOIR XY - ko A

where Ko = !

&% Ty

Suppose that new data of the form Fl’ t1 becomes available.. A

substitution of this data into Equation 17 yields:

7 Am-le—(f\/ﬁ)

—(A/,dDJ/\ |
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Simplifying,

\o+ 77 ) =1 - (yg+ ED

PR - < e
)w/\(u+ﬁ)-' e‘/\% +t'> JA e
A

=0

The denominator of Equation‘B—l can be interpreted conveniently using

a change of variable.

Let y

ACYrt)
(Vg + ¥, )dA

then dy

Making this substitution, Equation B-1 becomes:

(o F )~ 'A(Z’ +-%D
ﬁQl‘rT ENE < _ | (B-2)

The integral left in the denominator is the gamma function. This

integral can be represented by the following notation:

)T "Ufy
Crmt o7

b% = ra?“"‘)

g -

ar
‘.
)
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With the appropriate substitutions and simplifications, Equation B-2

(i. e., Equation 19 of the text) becomes:

+F) - '/\U/ *
ﬁ(AlF")tb i k‘ (o +Fy) - © >

o+ Ty
where K, = (Zf Yt

rCo(-\- T—">

Successive applications of the preceding rationale yield Equations

20 and 21 of the text,

JPL Technical Memorandum 33-614




APPENDIX C

Derivations for mean, variance and deviation of the Gamma Function

given the definition (Equation 22 are presented below):

Mean Derivations

EO‘) = /’\ g‘Q\} C\‘A (c-1) o<\ < 0
P

Substitute Equation 18

then
- Y

EQ) - e T
A
1

where K =_2*__
S Tey

Integrating by parts yields:

EQ) - ke | Ae U

<
of 1

EO) = K %8 gd"e”‘ dy

56
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of o\

E (M) = Ko & e

L

e E ( A) becomes:
E5 T

Substituting K =

With the incorporation of new data ¥, andt, f{( A ) becomes

f(2 i Fy, tl) as noted in Appendix B.

Using the Equation 19 and the definition of expected value,

we get:
wu»r. J.(_yﬂ *J‘->
D) - X (\A @ JA
A=0
o+ Fu
(_yd r t,>
where K =

[lote 73
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Integrating,

o+ Ty ao.o(‘\— V) -t -z\%+t')

Changing variable i.e., y = A (% + t")

o % F\ 1

EOY- K,

Lok +FY

oo@l«}-r\)", '_é' A
o (por) A

But
( (OH—F'.\-I _‘%
) (a JL& = RO(‘*'T'—:)
'3:‘0
therefore
Py,
\//3 + i,

Successive applications and an induction argument using

the notation developed will yield Equation 24 found in the text.

o). LR
Y%t It

JPL Technical Memorandum 33-614



VARIANCE DERIVATIONS

The variance for a continuous density function f ( A ) is given by:

el -son] - / (V- re)) oy 4)
A

Let 2 (>§ = A4

then

SR )(\y»/ﬁmiaﬂk

N

From Equation 18, f( M) = Ko ,\ 62-

where K, = 1
ST
Therefore
-
cl0e] - kLT
Jeo
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%
In changing variable, let Y = /&

|:
dy - A

e

Integrating twice (by parts) yields the following equation,

o

El -y = ko 8™ Teyw | U7

)
. 3
wherejg*" e -4 A} is the Gamma function V (%)

=

le—% ()kg\ _/t‘

La:o

Combining terms and simplifying

2

Bl -] = o

Equivalently

o

ELU -]
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el el -/(A e LOIR) - A F

Where E‘: x + ¥

/% .
- Up + t.)dﬂ /@u\—i)

m

x + 2 ¥

- 2.0 =Ju-zmmf o)l 2 E
* e

| =

Where
m
d v 2_F;
e

V o+ o ot
eE

) =

~ m*ﬁ,"—-' .
Km __.[(%g > gt;) ; } )’C_C\’ +.Z=TT—_')

- This process may be continued in the above manner. The details
involve a change of variable for integration and substitution of the
appropriate constants, An induction argument yields Equation 25 of

the text,
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P (BIA)-L

P (A|B);

Pusinl, = |y Jl-2y™ o257 berel- (b2 -2,)

APPENDIX D

.

COMPARISON OF DISCRETE BAYESIAN TO THE CONTINUOUS

BAYESIAN FAILURE RATE ESTIMATION

Introduction

This comparison was prompted by the methods and formulations
contined in Reference 8. The Bayesian formulation presented
in this reference quantifies prior information discretely. The
complete Bayesian formulation is developed via an assumed Weibull
hazard-rate function. The discrete Bayesian formulation takes the

following form:

P(AIB); - P@BIA): PQ):

m
ZP(BIA>iP(A); {:s)g)g) e m
=
where i = a particular cell
n = number of cells
P(A)i = probability of event A (prior for celli)
= probability of event B given A for cell,
= probability of event A given B for c:elli

A three parameter Weibull assumption yields the following

form for P (B]A):

R "

R
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Where 9

Scale parameter (i.e.; failure rate = %é)

M = Shape parameter
E = Position parameter
R = Number of failures in the time interval

II. Experiment

Development of a discrete form of a Bayesian technique provided
a significant departure from the continuous technique treated in the
text. It was felt that a comparison experiment should be conducted.
This experiment was designed to simultaneously compare three quantitieé
~the classical failure-rate-estimator and the expected values (means)
for both the continuous and discrete Bayesian formulations.

The standard exponential assumption is a special case of the
Weilbull. Therefore, the appropfiate parameter substitutions for the
Weibull yielded the exponential function. The discrete computation
algorithm was developed for an arbitrary number of failure (m).and sum
of failure times (Zt1). The posteriori probability for a given cell

(1=1,2,2,.-+ o) is given by the following equation:

The method of mathematical expectation (section 4.1) was used to

derive the failure-rate values used for comparison. Discrete and

JPL Technical Memorandum 33-614 | 63



continuous prior distributions were made equivalent by equating
the first and second moments of the respective priors (section 5).
Computer-simulated times-to-failure were used as the comparative
data base. Several prior variations were then considered. The
expected value comparison was then conducted at each of thirty

simulated data points.

ITT. Results
The resuits of this comparative simulation show no substantial
difference between the expected values Qf the respective continuous
and discrete Bayesian forms. ‘This implies that the results reported
in section'6,also hold for the discrete Bayesian when compared with
the classical estimation technique. There are more subtle ways in
vwhich the continuous and discrete Bayesian forms differ. These
differences are summarized below.
A, Discrete Bayesian Advantages over Continuous Gamma
1, Prior and subsequent distributions can represent multi-
modal situations,.
2. Formulation of the prior distribution with respect
to limited information may be more compatible with
"engineering judgment."
3. The discrete Bayesian form appears to be the only way in
which the increasing failure rate can be treated.
4, Complexity due to seléé%ion of mean and variance values

and related distribution constants is eliminated.
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B. Discrete Bayesian Disadvantages

1.

The posteriori of the discrete Bayesian can never

achieve a wvalue not given by the prior distibution.
Therefore, if the prior is in error (i.e. the prior density
is not positive at the value, the discrete Bayesian will not
converge to the true value with the incorporation of data.
The refinement of the discrete posteriori estimation process

is dependent upon the cell size.
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