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PREFACE

The work described in this report was performed by the Quality

Assurance and Reliability Division of the Jet Propulsion Laboratory.
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ABSTRACT

Under the constraint of limited testing time, many attempts
have been made to incorporate prior knowledge and exper-
ience into a quantitative assessment of reliability. This
type of technique is known as Bayesian statistics. Since
the length of time available for testing integrated circuits
is frequently very limited, an analysis of Bayesian methods
when applied to the integrated circuit testing problem was
conducted.

The critical point of any Bayesian analysis concerns the
choice and quantification of the prior information. This
report is a study of the effects of prior data on a Bayesian
analysis. Comparisons of the Maximum Likelihood estimator,
the Bayesian estimator and the known failure rate are pre-
sented. The results of the many simulated trials are then
analyzed to show the region of criticality for prior information
being supplied to the Bayesian estimator. In particular,
effects of prior mean and variance are determined as a
function of the amount of test data available.
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1. Introduction

The lack of integrated circuit reliability data is a chronic problem

for those concerned with the problem of reliability estimation. The data

limitations are often manifested in terms not only of quantity but also

quality. For example, good quality data would not only include all the

conditions under which the data was obtained but would also include the

assumptions and restrictions to be used with such data. This needs to be

considered since quite often data from various sources are not compatible

with the application the analyst is trying to treat. Data restrictions

such as these can severely limit the amount of useful data to be applied

to reliability estimation.

Faced with situations in which data is not representative or is

inadequate, it is not uncommon for the reliability analyst to devise a

rationale which may, in part, be based on "engineering judgment". Unfor-

tunately, this rationale often tends to be arbitrary and leads to inconsist-
/

ency with respect to device types and applications. Therefore, a defined

rationale was sought which would allow the incorporation of both judgment

and actual data in a consistent manner. Specifically, judgment must be

quantified and combined with data.

There are several rationales for estimating the probability of success

for a given type of integrated device. The usual basis for derivation of

such models is the failure-rate-estimate. For these reasons a rationale

is sought which can estimate integrated circuit failure rates and still

be compatible with limited data.

The basic approach taken was to develop a technique which would

assess integrated circuit parameters, such as failure-rate and life time.
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This technique of assessing integrated circuit parameters was achieved

by combining limited statistical data and engineering judgment. A rationale

was sought which would combine both data and judgment so that an analytical

estimation of the failure rate for integrated circuit devices could be

achieved.

This report emphasizes the selection of appropriate statistical dist-

ributions for incorporation with Bayesian statistical theory. The resulting

Bayesian application with various data inputs was then compared with classical

estimators of failure rate. +

Since Bayesian Statistics provides a convenient way of incorporating

prior knowledge or judgment regarding probabilistic events, the treatment of

the previously stated reliability estimation problem was approached through

an application of Bayesian statistics. Bayes ' Theorem, or Bayes ' Rule, can

be expressed by the formulation given in Equation 1.

Cl)

j-l

The C, , C , CL, . . ., C in Equation 1 represent n mutually exclusive

events. The respective probabilities of these events are denoted by P(Ĉ )

i = 1, 2, . . ., n.

The event B is an event for which one knows the conditional probabilities

P (BJC.)- This is read: the probability of event B given event C.. Once

these probabilities have been defined, the probability of obtaining a

particular event C. given event B is given by Equation 1. In the context

of this reliability estimation problem, Equation 1 must be redefined for the

continuous case with regard to a specific notation.

+defined in reference (9), pages 102-U
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. fa)
F) = - — (2)

Where:

\ = the values assumed by the propulation failure rate.

F = the event called failure.

= a probability density function for A .

I 'O = a function giving the probability of failure given

a particular A.

f-(A 1 f") = a probability density function of /I given the failure event F.

/

The controversy about Bayes' Theorem concerns the uncertainty in knowing

the probabilities P(C.) i = 1,2, . . ., n and [' ( A ) in the respective

equations 1 and 2. This problem results from a lack of appropriate data.

Thus, engineering judgment must be applied in the initial phases of the
/i

applied Bayesian analysis. The effects of this judgment on P(C.) and f ( A )

are lessened by an allowance for incorporation of the appropriate data. In

this case Bayes1 Theorem is applied in an iterative fashion which allows

the incorporation of data as it becomes available. A better probability

estimate is obtained as increasing amounts of data are incorporated.

The initial data will be referred to as prior information. It will

be defined by a prior formulation or function. Subsequent data will result

in a posterior formulation. In the case of Equation 2 an iterative tech-

nique describing this situation is shown below.
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Prior information is quantified by fe\AI *"» > to) given the initial

information F and time t ; Substitution of this notation into Equation

2 yields:

(3)

Where j- (A ) is the more convenient notation for )-0 vA I V0 }

posterior' function which replaces

and- reflects the failure event new F, (t understood)

r M i - \With more data, L 1, A I V , ) may be used to derive another function which

incorporates this data. Again Equation 2 is used.

Therefore:

Depending upon the quantity of data, this type of iteration can be carried

out to an arbitrary number of steps. The n iteration will take the

following form.

fcufl L,«) (5)

Thus, an incorporation of new data is used to redefine the functional

description of values associated with a population of particular device

types.
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An essential constituent of this Bayesian application is the determination

of the functional relations which can be used to satisfy the iteration. This

determination must start with formulations of the prior information. Toward

this end there will be an effort below to identify the usefulness of given

distributions for best describing this information; to determine the criticality

of distribution shape parameters; and to find the influence of varying amounts

of data.

The final factor in the approach of this Bayesian application concerns the

analysis at iteration termination. For this paper, iteration termination will

be defined as the point where data will cease to be incorporated into the

Bayesian formulations. This termination point will be determined through a com-

parison of Bayesian failure-rate-estimates with classical failure-rate-estimates

for equivalent data.
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2. DISTRIBUTION FUNCTION STUDY

Before the details of the Bayesian investigation can be pursued, the

functional relations presented in Equation 2 must be defined.

The probability of failure given a particular failure-rate was denoted

by r ( T~ I <A ). It will be assumed that the exponential distribution for

times-to-failure holds. Because of the relation between the exponential and

Poisson distributions, f (F ) ̂  ) can be expressed in the following Poisson

form:

- A t
e ( J+. )F

Fj

where F = the number of failures.

The interpretation of this formula is that, for failures occurring at a

given rate \, the probability of having exactly F failures in time t is given

'by KF\ M (i-e-;Equation 6).

The lambda ( ^ ) given in equation (2) can be thought of as the

constant rate of failure for an exponential distribution of times-to-failure.

Furthermore, the density function _/' /^j represents the prior estimate

of the failure rate for a given integrated circuit device type. This density

function can be thought of as describing the prior probability that fi is

one of the values between zero and infinity. This probability is a theoretical

description of the distribution for the entire population (not sample) of

integrated circuits of a particular type.

The selection of the formulation for j- ( \ ) in Equation 2 will have to

be subject to some fundamental selection criteria. This is because all
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distributions selected for f(^ ) may not be amenable to the iteration

process already discussed. As was stated before, the iteration process

lessens the initial uncertainty by building the true shape for the function

f (A ) as data becomes available.

Because of this uncertainty, the function selected must be viable —

this means that incorporation of data through iteration is not only per-

ceptible but meaningful. This criterion can be thought of as a sensitivity

of shape variability due to the iteration process. The second criterion

sought regards the result of Equation-2;i.e., f(̂ IF). For convenience in

the iteration process, the result of• Equation 2 must be amenable to reuse

as f( A ) in the next successive stage of computation. A closed function

form is sought for ease of computation.

The first functions considered were of standard form and can be found in

basic statistical texts (Ref. 5). The formulations and conditions for these

functions are stated in the following section.
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3. DISTRIBUTION SELECTION

If one considers the criteria previously discussed and the functional

conditions, a likely candidate for this Bayesian application can be selected.

Table I provides some remarks necessary for this determination.

TABLE I

NAME

Uniform

Exponential

Gamma

Normal

Beta

Cauchy

F-Distribution

Chi-Square

Inverted Gamma

Converse Inverted
Gamma

Function does not yield closed form when iterated

- computation difficult. Not defined on the entire

(o, °o ) domain

Iteration yields a gamma form

Iteration yields a gamma form - see Section U.

Computationally difficult when iterating

Only defined for the domain (0,1)

Moments do not exist therefore no expected value

can be calculated.

Only defined for the domain (0,l)

Special case of Gamma

Does not describe the correct random variable

describes the estimate given the true.

Parameter definitions difficult to make resulting,

in computational difficulty.
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PROBABILITY DENSITY FUNCTIONS

Equation Name

(7) Uniform

Formulations

f(x) =

O

Conditions

od< x < ^

Elsewhere

(8) Exponential f(x) =

O

x > o 9 >

Elsewhere

(9) Gamma

O

X > O O f > o , s£ > O

x <_ o

K such that/ f(x) d x = 1

K =

-1 / - \ 2
(1 C\\ TNTi-i » -̂*-i nl f l-u-\ TiT / * ? ( - 1I I U ! IN Or HT3..L I'.XJ — I\ / ^. I vj 1

cL- -̂ *^^

(11) Beta f ( x ) = f K ^ X " 1 (1-X)^ -1

i °

M?^ f^3ni-Vnr fl-u-\ 1-t . a

a + x

(13) F-Distri- f(x) =JK X * ' /2^ ' ^ ^ ^ ^
bution \

1°

/*\ -v (
Hjd.1 fl-ii "^nnai-o f^i.-^ — f M , .. .

\ _ ' 2 f"1 / V /O\I 2 \ * ' £•)1

. ^ < K < + 0 0 l > r f > o

0 < X < 1

Elsewhere

_ eo < x < + oo

0 < X < 1

Elsewhere

-NT -2) /2 £ -(x/2)

X > O

,0
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There are two further functions which can be derived for this Bayesian

application. It was derived from basic statistical and reliability theory.

The results of this derivation are stated below.

Function

(15)

(16)

Name Formulation Conditions

Inverted , > ,A_+1 -(^<t/n'/10 - , „ ̂  r ^
f- ' a \ It \ /i \ x-, * x. > o, UA.> o, ^'~> a
Gamma fix) = (A^-i (*• / \ £

— Y- ' — V ' 3f )

1 r*o

1 O Elsewhere

Converse ,. , . . _[f 'P+ 'x) ^^ / £
Inverted / P/ , x ' A ̂_ 1 (ex +/L) y*- -> o
Gamma 1

( t>o

«V O Elsewhere

Equation 15 is derived via the standard change of variable technique.

The basic function treated was a density function for the random variable

associated with times-to-failure for a given number of failures (^ ) given

their rate of occurrence ( A )• Equation 15 represents the distribution

of the random variable called a failure-rate-estimator.

Equation 16 is a description of the random variable called true-failure-

rate given the failure-rate-estimator information.

The derivations of formulations 15 and 16 are contained in Appendix A.

It will also be noted that, after simplification, these derivations yield the

same result as the formulations presented in Section k. The formulations of

Section k are, however, more easily derived and understood.

10 JPL Technical Memorandum 33-614



The gamma compliance to the defined selection criterion can "be demonstrated

by the formulations below. These formulations are used in Section 4 to

illustrate the Bayesian iteration technique and parameter determination for

the general gamma formulation. Complete derivations are deferred to Appendix B.

JPL Technical Memorandum 33-614 11



k. PROPOSED BAYESIM ITERATION TECHNIQUE

Substituting Equations 6 and 9 into Equation 2 yields the following

formulation:

(17)

where K =

F = the number of failures in time t

The derivation for K is given in Ref. (5).

1 ( 06 ) is the gamma function

12 JPL Technical Memorandum 33-614



Using the notation outlined for iteration in Section 1, prior information

is factored into the following equation:

where K =

(18)

K is determined by the initial constants <*.
o

With the above prior information and iteration algorithm, the following

sequence may be derived. The successive steps are presented below, however

the derivations appear in Appendix B. It is important to note that F.

( i = 1, 2, 3, . . ., n) is being used as the number of failures occurring in

time t.. Since the times-to-failure (t.) are being generated one at a time,

F. is always unity (i.e., F. = 1, i = 1, 2, . . . , n ) .

0
I-JL

where

~ K
K+ F,) -1l

F>

+ t,)

= [ (V^ + \.f + F> ] ( « +

(19)

where

(20)

m

.
where K^= (V £ li

JPL Technical Memorandum 33-614 13



It should be noted that iteration of Equation 18 through 20 produces

successive gamma formulations.

b.l INFORMATION DERIVED FROM BAYESIAN TECHNIQUE

The information derived from the Bayesian technique will come from

the probability density yielded by Equation 2. The standard methods of

treating the problem of finding an average value for a random variable

given its density function is via the theory of mathematical expectation

(Ref. 5). The expection of ^ is defined by the following formula:

f

E (^) = W (A ' ) dA' o< A £ "0 (22)

v A
where /\ = the random variable representing failure

rate for a device population.

j" ( A ) = fche probability density function for / .

Equation 22 represents the mean for a particular density function

j- ( A ). A function which is related to (22] is the formulation for the

variance and deviation for the density function ~(- (,\ )„ These are

respectively defined with the following notation.

E [(A- E (A) )2] = VAR (A) = ( A- E (X) )2 f ( A ' ) dAx

^ ft
The standard deviation for the density function I ( /\ ) is given by

the square root of Equation 23 .

As regards this particular application, the mean and variance for K A )

are derived in Appendix C. For convenience, the respective formulations are

stated on the following page.

14 JPL Technical Memorandum 33-614



(A) = <* + y F.
Z-_ i (24)

En[(A-E(A))
2] = (X + JT F. (25)

Where n = the number of Bayesian iterations

Fi = 1 (i.e., 2TF; = &)

The above equations are read as the mean and variance after n iterations

k.2 INCORPORATION OF PRIOR INFORMATION

As was stated previously prior information can be derived either from

experience or from "engineering judgment". A problem with both experience

and judgment is the quantification of these sources. It should be noted

from Equation l8 that the functional relation for L (^ \ F ) is use-

able only if the gamma constants oL and /& are determined.

Consider the case where prior data can be utilized in determining

the constants oc , ̂  Suppose that data is available which indicates

that the mean and variance of failure-rate-estimators for a particular

device are M and V respectively, then the parameters o£ , £ of the given

distribution may be computed via a system of simultaneous equations. The

following equations are for the mean and variance of the gamma distribution

of Equation 18.

JPL Technical Memorandum 33-614 15



(26)

VAB (A) = o^2 (27)

When Equations 26 and 27 are set equal to M and V respectively,

= M2 (28)
V

/S = V (29)
M

If engineering judgment is the only method available for assessing

prior information, quantification of^,^ is similar to the above. For this

case, the values for M and V may be judiciously chosen. Insertion into

Equations 28 and 29 will yield the appropriate distribution constants.

The consequences of mean and variance choices will be deferred to Section 5-

Once the constants c< and^ have been chosen, one may proceed with the

iteration algorithm already defined. Any type of data can be used for this

iteration providing failures and times can be specified. There is only one

caution with regard to the data used. Data entered into each successive

iteration must be derived from similar device lots and application.
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h.3 CONVERGENCE PROPERTIES

Evaluation of this Bayesian technique will be conducted by comparing

it with the classical maximum-likelihood-estimator for failure rate in

Equation 9- It can be shown that the two estimators, Bayesian (Equation 24)

and Classical converge as the amount of applied data increases. This com-

parison may seem to be a rather trivial aspect; however, it is important.

The convergence shows that the prior bias supplied to the Bayesian is not only

removed but converges to the true rate with the incorporation of sufficienct

data.

There is a further convergence property which is of interest. It can

be shown that, as the prior variance of the Bayesian becomes large, the

Bayesian and classical estimators converge. This convergence is independent

of the amount of data incorporated. To see this consider the following argument.

Prior Mean = M = oi .s$
P
 z (30)

Prior Variance =V = ^/B
P ^

From these equations,

«3 = v
' _£

M
P

This implies that y^ is inversely proportional to V for a given M .

Also from Equations 30,

This implies that <X. is inversely proportional to V for a given M .

+ This formula is true provided that the prior density is not zero at the

true value. While this is not a problem with the gamma distribution, it

warrants special attention if a discrete prior is used (see Appendix D).

JPL Technical Memorandum 33-614 17



Consider the Bayesian expected value

* ., z.r
-It

It has been shown that as V increases with fixed |^^ , o< and ~L/A

decrease (the limit for both being zero). Therefore E(/̂  ) approaches

in the limit. This ratio is the classical maximum-likelihood-estimator

18 JPL Technical Memorandum 33-614



5. SIMULATION TECHNIQUE

Because of the difficulties and unreliability in actual failure data

collection, failure simulation was used as. a workable solution.

The method of this computer simulation was to use a random-number generator

to generate exponentially-distributed times-to-fallure. This method ean be

thought of as a way of collecting "perfect" data.

Failure-time simulation is accomplished when values of F(t) are supplied

for a given rate.

The simulation generates failures and failure-times based on a failure

rate I*. The results, allow computation of a failure-rate-estimator /\ ,

which approximates the true rate, ^ *, and can be compared to it. Simulation

also provides an ideal way in which both Bayesian and classical estimations

of failure-rate can be compared while data are incorporated.

This comparison is done for the purpose of checking Bayesian and classical

changes with respect to data and convergence properties. The simulated data

also allows for the performance (with respect to time and failures) of the

Bayesian and classical estimators to be studied given any amount to simulated

data. Performance will be defined as an estimator'-s nearness to the true rate

( 1*). As an illustration, suppose that a given data base is supplied and that

estimate <E, , and estimate <^ are calculated. The estimate which is nearest

^to J after the incorporation of the same data is said to perform better.

Given a specific prior mean (M ) and prior variance (V ), it has been

shown above (Section -̂.2) how simulated failures and their corresponding times

are incorporated into the Bayesian formulation (See also Appendix B below).

\*The respective estimators can now be compared to each other and also to / .

This can be done data point by data point. An example of this can be seen in

Figure 1 which represents the incorporation of 50 simulated data points.

JPL, Technical Memorandum 33-614 19



Since this simulated data is generated in a pseudorandom fashion,

one simulation run may yield a different comparison chart than another.

Variation in the random-number-starts causes this situation even though

prior information (M , V ) remain constant. An example of this difference

is shown in comparison of Figure 1 to Figure 2.

To average out the effects of these random-number starts on the data

to be analyzed, comparison information (as Figures 1 and 2) will be generated

a given number of times. In the examples which follow, 500 trials were

computed then compared for performance. The results were then normalized to

find the percent of time for which the respective estimators performed better.

Given M and V , suppose that the Bayesian and classical estimators are

\*to be compared with respect to A . This comparison will be done after

the incorporation of the 50th data point for each of the 500 trials. Thus,

a measure of the averaged performance of the respective estimators can be

obtained.

This measure may be defined in the following manner.

Bayesian: Measure

Classical: Measure

A 1=1,2,3,... 500 trials

/,- I*
E3TsQ(A)-A [ j=l,2,3, ...500 trials

where: EST ,_n( A ) is the classical failure rate estimator

after fifty data points are incorporated.

As each of these 500 measures is computed, they can be compared and

counted. A simple counting routine will keep track of the percentage of the

500 trials for which each of the measures is best. Since the number of trials

is large, this percentage statement is, essentially, a probability-of-occurrence.

20 JPL Technical Memorandum 33-614



The previous discussion was conducted under the assumption that M

and V remain fixed. If M were allowed to vary in such a way as to "bracket \*,

then the portion of time for which measure i is less then j can be plotted vs M .

A Bayesian performance distribution is thus achieved. This distribution would,

in effect, show how Bayesian performance is affected by errors in the selection

\*of the prior mean with respect to A .

In order to have V and M follow the same relation while M is changed,

a simple formulation was derived. A relation was chosen between V and M
P P

such that V would have a fixed relation to M while M is varied with respect

to ,\ .

M
Suppose K = ̂ E- (32)

P

Where D = prior standard deviation

K = arbitrary constant

+ The spread or dispersion of a given distribution (in this case, of gamma
gamma form) is specified by the variance of that distribution. The
positive square root ( +V ) is defined as the standard deviation.

JPL Technical Memorandum 33-614 21



The standard deviation was used in this ratio since it is usually

closer in magnitude to the mean than the variance and therefore is more

easily visualized.

Solving for D yields:

D = M
P _E

K

By definition, the corresponding variance (V ) is:

M^2 "
V =[

—u;
Thus, for a given K, the fixed relation between the prior mean and prior

variance is established.

Figures 1 and 2 represented a large simulated data base of fifty points.

Since an objective of this report is to treat the situation where only limited

data is available, the previous procedure will have to be restricted. To

represent this situation, simulated data was generated and the measures i, j

were applied at the tenth data point. This was an arbitrary selection since

other points could have been chosen.

Simulation was used to determine how the Bayesian performance distribution
.̂

was affected by various K factors. The true rate ( ^ ) was fixed so that the

effects on Bayesian performance with respective wide and narrow variances could

be observed.

Figures 3-H demonstrate the effect of a wide variance incremented toward

a narrow variance. The constant K of Equation 32 increases with each figure.

These figures are computed with \ * = .05X10 failures /hour. For the purpose

of this analysis 11 * was kept at the rate specified. The same effects could be

22 JPL Technical Memorandum 33-614



Iobserved for other A values. However , the range of K factors

may change somewhat in order to produce the same demonstrated effects.

Each figure represents Bayesian performance :over a range of prior

mean (M ) values. Only the K factor was changed in each figure. Each point

depicted in the figures was computed from 500 trials.

Analysis of Figures 3-H will be deferred to Section 6.2.
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6. RESULTS

6.1 Analytical Results

The analytical results which were derived from this study may be

summarized as follows:

1. Computationally, incorporation of data is independent of unit size.

There is no difference between one computation containing n failures

and n computations considering n successive failure times. However,

trend indications and evaluations are facilitated by making com-

putations at the smallest unit available.

2. In the limit, as the amount of data becomes large, Bayesian

and classical estimators converge. (Section h.3)

3. For a given amount of data, a great increase in the Bayesian

prior variance implies that the Bayesian and classical estimators

give the same results. (Section U.3)

k. The prior parameters -X Jf of the assumed gamma density can be

computed form easily understood statistical mean (M ) and variance

(V ) statements (Section H.2)

6.2 Analysis of Observations Generated from Simulated data.

Until now it has been understood that the Bayesian technique is pre-

dicated upon the selection of a prior mean and variance (M »V ) for the

gamma density. These values are arrived at using some prior belief and/or

data. However, the qualitative relation between M and V must be understood
P P

before the Bayesian technique can be discussed further. What does this

relation between M and V mean?
P P

24 JPL Technical Memorandum 33-614



In the simplest terms the value of V expresses the confidence one has

in the value selected for M . This is because the variance, by definition,

is a measure of the spread or dispersion of the selected prior gamma density.

\*A narrow variance implies high confidence in M (ie., you believe / is at,

or near to, M ). A wide variance implies that one is less sure about the

i* +
position of \ with respect to M .

Related to this variance/confidence relation is the impact of V upon

successive Bayesian estimators (ie, incorporation of data). It has been

shown in Section 4.3 that as V increases, E(^ ) approaches the classical

maximum-likelihood-estimator. One would expect to see fluctuation in the

initial classical estimator, because of the random inputs. One would

likewise see a fluctuating E( ̂  ) for a sufficiently wide V . This relation

can be demonstrated by Figure 12. (Note that when only one plot character

appears, ordinate equality is indicated.)

Empirical evidence shows that as V becomes narrow, indicating confidence

in M , the Bayesian estimation sequence has much more inertia with respect to

data inputs. This means that the sequence is much more stable. As a consequence,

l*large quantities of data are required to achieve good estimation of A should

\*M be largely in error from /i .

\*However, if M Zz \ , the stability aspect is an obvious asset to the

Bayesian estimation technique. These observations are demonstrated in

Figures 13 and ih respectively.

\*+ It must be understood that A is known only for simulation purposes and
analysis .• Actual testing does not allow this to be the case.
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ISince in reality one can not be sure where M is with respect to \ ,

I* P
it is obvious that M , with respect to \ and selected V values must be

investigated. The Bayesian performance-distribution is a means of invest-

igating these features. Bayesian performance-distributions were defined

and discussed in Section 5- The results of these empirical studies is

discussed below.

The major questions to be answered by this analysis will be concentrated in

two areas.

1. What is the effect on the Bayesian performance distribution when

V changes?

2. What is the effect on the Bayesian performance distribution when

I*M is in error with respect to A ?

In addition to the relation between M and V previously discussed, V

also has definite effects upon the Bayesian performance-distributions. In

order to examine this effect, three items were fixed. First, the simulated

true failure-rate remained fixed at .05 failures/10 hours. The range of

prior mean values was fixed at £.012, .Og] failures/10 hours. The relation

defined between M and V also remained constant (Equation 32). For each of

the successive figures (3,11), the prior variance was allowed to become

narrower by increasing the constant K or Equation 32.

The following values will be used in the discussion below.

Lower distribution tail = < .0^ failures/10 hours

Central distribution region = [.OU, .062]failures/10 hours

Upper distribution tail = > .062 failures/10 hours

It is apparent (Figure 3) that, for a sufficiently wide V (k= .0006),

the performance of Bayesian estimation over classical is equivalent to a
/

coin toss. This holds for the range of M given 10 data points for each
P »

simulation.
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The remainder of the distribution figures (^--11) are summarized in the

following table.
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TABLE II

K FACTOR EFFECT ON BAYESIAN PERFORMANCE DISTRIBUTION

.0006 ^ K < .003 . tail probabilities remain relatively constant

. central region probabilities increase

.003 £ K ^ .3 • central region and tail probabilities remain

relatively constant

K > .3 • tail probabilities decline first

. central region probabilities decline next

/
. final phase leaves spike which coincides with A

There is a particularly significant feature of Table II. This feature

concerns the "K" factor interval F.003, .3] where the Bayesian performance
it /-

distribution remains relatively stable for the prior mean ( ^\ + .0̂ ) X10

This.stability is not affected by the value of V dictated by the K factor.

This implies that there is a range of prior values (M , V ) which produce optimum

performance of the Bayesian technique. The lack of distribution uniqueness for

the above K interval is important since we are primarily concerned with limited

prior knowledge and/or data. This stability implies that one does not have

to be super-critical about the selection of M or V .

The following fact should.be noted. The true or simulated rate was

specified to be .05 failures/10 hours. Other studies indicate that the

results generated from other simulation rate values would be similar, but not

necessarily the same, quantitatively.

28 JPL Technical Memorandum 33-614



Analysis regarding the criticality of choosing particular values

for the prior Bayesian formulation will be treated below.

The experiments used to generate Figures 3-11 were done for the purpose

of graphically representing the probability distribution of Bayesian failure-

rate-estimators. This was done on the domain of prior mean values, M =

i* 6
\ + .OU failures/10 hours for fixed K.

Given a pre-selected prior mean (M ), criticality of selecting a prior

value of K from Equation 32 will be determined. If the Bayesian technique is

to be used to the best advantage, K (given M ) should be selected such that

the highest probability of getting a better Bayesian estimate (ie., closer to

* ) relative to the classical is obtained.

It can be observed, from Figures 3-H3 that a uniquely optimum K value

relating to the above criterion does not exist. It appears that the highest

probabilities are obtained when K is in the interval £.003, .3] (see Figures

6-8). This means that, for a given M , K in the above interval can be selected

without essentially lowering the probability of obtaining a better Bayesian

i *estimate (ie, closer to <\ ) relative to the classical. From Equation 32,

it can be shown that the corresponding values of prior deviation (D ) resulting

from the end points of the K interval are given as follows:

3.33 (Mp) 3 Dp ^ 333.33 (Mp)

One can .therefore expect good Bayesian performance with respect to

classical without severe restrictions placed upon either prior mean or variance.
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6.3 SUMMARY

1. Appropriate functions and distributions were selected for the

application of the continuous Bayesian technique.

2. Treatment of a discrete form of the Bayesian technique was analyzed

and is presented in Appendix D.

3. An easily computed iteration technique was presented. This allows

easy incorporation of new data as it becomes available.

h. • Simulation results and graphics were presented in hopes of

facilitating Bayesian understanding.

5. The criteria are defined under which the Bayesian technique is

superior to classical estimation-techniques.

6. It was shown that severe restrictions on prior Bayesian information

are not necessary.
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APPENDIX A

DERIVATION OF FAILURE -RATE DENSITY FUNCTION

Define a failure-rate-estimator ( /\ ) as a function of times-to-failure

(i.e. cumulative )

=h (f )

where h (t1) = r/t '

(A-l) therefore /\ = r/t'
><_

where t ' = 2— "^ i.
(•M

and r = total number of failures occurring at rate /t- , /&• is the

unknown true failure-rate.

From Reference 7, a relation between sums of exponentially distributed random

variables and "r" failures occurring at rate ",U " is derived. The resulting

probability density function is:

o r ̂  o
A.

This is the density for times-to-failure ( Z. ir; ) to rth event
1=1

occurring at rate >& .

Next, we find, the related density function for,A using Equation A-2 and a

change of variable.

The density function for fi is denoted by g(
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(A-3) g( A ) =

,.*_-« >"*' I At'/ \
U) <s I XiA J

but -£' = — so
A

A-V

(A-4)

this is an inverted gamma density.

Proof that g( A ) is a density function

Let I =

A*o

\
Substituting x = ""

A
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f A.-.

I =
r
"~

f

J.
O

oO

f A. -1

but A

therefore

However, the converse situation is what we wish to examine.

That is to say, we wish to have an expectation of the value of the true

rate (/*-) given the estimator ( A ) and the corresponding failures ( r ).

The derivations which follow are directed at this converse situation.

A gamma density assumption will be used for the description of the

density function for x<x . It will be shown that this approach yields

the same result as the assumptions and derivations of section 3.
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DERIVATION OF CONVERSE INVERTED GAMMA. FUNCTION

u

Assvune that the true failure-rate (denoted by /a- ) has a prior

gamma density with parameters <X , ( See Equation A-5

(A-5) -- *

Using Bayes rule, the converse function is given by Equation A-6

(A-6)

&>k
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Then

Let U - ( ̂ ) in the integral. Then

J

<*•*• A.

50

(converse inverted Gamma density)
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PROOF THAT fl (/*. | A , ;u) IS DENSITY FUNCTION

Let

/*•

Ccy
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EXPECTED VALUE OF THE CONVERSE INVERTED GAMMA DENSITY

where K =

.00

, k

Integrating by parts

<S

- (0 - M JA

expected value of copverse inverted
gamma density function
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APPENDIX B

GAMMA ITERATION DERIVATIONS

From the text, it is seen that the general formulation of the

Bayesian application is given by Equation 17. This equation is

reproduced here for convenience:

- A t , , N r* / n g a o
0*9

'A-o
Suppose that initial or prior information is represented by failures

F , and time t . The gamma form of this prior information

becomes:

- k. - A " " '

where ,V o

X
Suppose that new data of the form Fp t-^ becomes available. A

substitution of this data into Equation 17 yields:

,°° _X t . .. . ^r. i«-'

T;
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Simplifying,

(\ I rU l h ,
f 00

A
^,

«M

(B.D

The denominator of Equation B-l can be interpreted conveniently using

a change of variable.

Let y = A ( Yp + t, )

then dy = ( )£ *- fc, )<1\

Making this substitution, Equation B-l becomes:

. (B-2)
C°° u \

The integral left in the denominator is the gamma function. This

integral can be represented by the following notation:

I
cL
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With the appropriate substitutions and simplifications, Equation B-2

(i. e. , Equation 19 of the text) becomes:

.
- k. \

where Kj =

Successive applications of the preceding rationale yield Equations

20 and 21 of the text.
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APPENDIX C

Derivations for mean, variance and deviation of the Gamma Function

given the definition (Equation 22 are presented below):

Mean Derivations

Substitute Equation 18

then

where K =o

Integrating by parts yields

\J~ "*

Changing variable, let y = V,

then

oO
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A

Substituting K = £ ( A ) becomes:

° ^ Ro

With the incorporation of new data F, and t, f ( A ) becomes

f ( ^ 1 Fp t,) as noted in Appendix B.

Using the Equation 19 and the definition of .expected value,

we get:

t,a)- fc,

where Kj =
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Integrating,

E . O O -
a i ,Ji

Changing variable i. e. , y = ^\ ( V^ + b()

E , U ) . 'k. .C?

But

c

therefore

Ot 4- T7

Successive applications and an induction argument using

the notation developed will yield Equation 24 found in the text.
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VARIANCE DERIVATIONS

The variance for a continuous density function f ( ,A ) is given by:

Let

then

^ - I '*• f^<n - ^

From Equation 18, f( \ ) = K \ <g

where K =o —

Therefore
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In changing variable, let M ' ',

Integrating twice (by parts) yields the following equation.

where I i \ ^ ' <° "^ IM *s *-he Gamma function 1 (
<J \

Combining terms and simplifying

Equivalently
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r,

Where

k, -

Where

Zt:

<V1 \1

This process may be continued in the above manner. The details

involve a change of variable for integration and substitution of the

appropriate constants. An induction argument yields Equation 25 of

the text.
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APPENDIX D
r

COMPARISON OF DISCRETE BAYESIAN TO THE CONTINUOUS

BAYESIAN FAILURE RATE ESTIMATION

1. Introduction

This comparison was prompted by the methods and formulations

contined in Reference 8. The Bayesian formulation presented

in this reference quantifies prior information discretely. The

complete Bayesian formulation is developed via an assumed Weibull

hazard-rate function. The discrete Bayesian formulation takes the

following form:

PU B), - P(B'A)- TO>

P(B| / \ ) 1 P(A); i - i , 2 , 3 , ' •
i -i

where i = a particular cell

n = number of cells

P(A). = probability of event A (prior for celL)

P (B|A)^ = probability of event B given A for celL

P (A|B).- = probability of event A given B for cell.

A three parameter Weibull assumption yields the following

form for P (B|A):

'-(t,-2^]>«

R !
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Where 9 = Scale parameter (i.e.; failure rate = /e)

M = Shape parameter

E = Position parameter

R = Number of failures in the time interval

II. Experiment

Development of a discrete form of a Bayesian technique provided

a significant departure from the continuous technique treated in the

text. It was felt that a comparison experiment should be conducted.

This experiment was designed to simultaneously compare three quantities

the classical failure-rate-estimator and the expected values (means)

for both the continuous and discrete Bayesian formulations.

The standard exponential assumption is a special case of the

Weilbull. Therefore, the appropriate parameter substitutions for the

Weibull yielded the exponential function. The discrete computation

algorithm was developed for an arbitrary number of failure (m) and sum

of failure times (Zt). The posteriori probability for a given cell

(\ -.I, Zj'S, • • • M m ) is given by the following equation:

Fft): (./»;) <2*p(-L/e: m

The method of mathematical expectation (section U.l) was used to

derive the failure-rate values used for comparison. Discrete and
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continuous prior distributions were made equivalent by equating

the first and second moments of the respective priors (section 5).

Computer-simulated times-to-failure were used as the comparative

data base. Several prior variations were then considered. The

expected value comparison was then conducted at each of thirty

simulated data points..

III. Results

The results of this comparative simulation show no substantial

difference between the expected values of the respective continuous

and discrete Bayesian forms. This implies that the results reported

in section 6 also hold for the discrete Bayesian when compared with

the classical estimation technique. There are more subtle ways in

which the continuous and discrete Bayesian forms differ. These

differences are summarized below.

A. Discrete Bayesian Advantages over Continuous Gamma

1. Prior and subsequent distributions can represent multi-

modal situations.

2. Formulation of the prior distribution with respect

to limited information may be more compatible with

"engineering judgment."

3. The discrete Bayesian form appears to be the only way in

which the increasing failure rate can be treated.

U. Complexity due to selection of mean and variance values

and related distribution constants is eliminated.
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B. Discrete Bayesian Disadvantages

1. The posteriori of the discrete Bayesian can never

achieve a value not given by the prior distibution.

Therefore, if the prior is in error (i.e. the prior density

is not positive at the value, the discrete Bayesian will not

converge to the true value with the incorporation of data.

2. The refinement of the discrete posteriori estimation process

is dependent upon the cell size.
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