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Introduction

Recent interest in the geophysical exploration of the oceans and the unsur-
veyed parts of the land areas, and the recent advances in space techniques which

make it possible to collect geophysical data by using the artificial earth satellites

in multiple ways, have led to vast amounts of geophysical and geodetic data which
are global in character. Since various forms of geophysical information are all
indicators of the physical properties of the planet which we persue to study in
any geophysical investigation, it is frequently useful to study the interrelation-
ships of these various geophysical parameters in an attempt to determine whether

they are generated by the same mechanism and if not, to assess the association

of the various generating mechanisms. In this paper we summarize the formulas
for studying such correlations.

Theory

Let F(O, X) and f (¢, X) be the scalar potential functions representing the
appropriate planetary force fields. Then, their cross-correlation function,
normalized to the product of the root mean square values of the two functions
(see, for examples, Lee 1960 or Khan 1971a) is

IJ F(q, X) f(¢, A) dS

R(F, f) = (1)

F2(q, A) dS f 2 (q, I) dS

Let F(¢, X) and f(¢, A) be rewritten (see, for example, Hobson 1931) as

F(q, A) Anm  Bnm

:y cos mX + sinmX Pnm (sin fl) (2)

n m

X)nm nm

1



where

Pnm(S in ) = associate Legendre function

Anm, Bnm constant coefficients in the spherical harmonic

and bnm = F(O, b)
representation of functions

f(q, X)

Then, using the orthogonal properties of the spherical harmonic functions
Pnm(sin))cosmX and Pnm(sinO) sinmk, Equation (1) can be rewritten as

R(F, -m (Fe f)

R(F, f) = (3)

n m n m
where

o-nm(F, f) = Anmanm + Bnmbnm

m (F) = A2 + B 2

,, (f) = a2 + b2
nm nm nm

The correlation between F(O, X) and f (q, k) as a function of frequency is
generally studied by the degree correlation function Rn which is obtained from
Equation (3) by dropping the summation E . See Khan (1971a, 1971b)

n

Rotated Correlations

Sometimes a planetary force field is shifting its position in a planet-fixed
reference system and it is useful to bring it in phase with another stationary
force field of the same planet before the correlation of the two can be usefully

studied (Hide & Malin, 1970; Khan 1971c, Khan 1971d). This can be done by
substituting for the coefficients anm, bn the coefficients a , fnm in Equation (3)
such that

a= ar(mk)

where a = (anmnm) (4)

a = (anmbm)
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and r (m A ) is the usual rotation matrix in which A indicates an appropriate
rotation along the latitude circle. The resulting formula then becomes

R(F, f) =

ZZ°nm (F, f)
n m (5)

1/2

where

3rnm(F, f) = Anmanm + Bnnn8nm

and other symbols are the same as in Equation (3).

The statistical significance of the rotated correlations must be scrutinized
rather carefully with the help of the tests available in the theory of circular dis-
tributions (Khan 1971d) as sometimes rotation may cause high but spurious cor-
relations because of the structural properties of the rotated correlation function.

Correlations of Identical Frequencies

The degree correlation coefficient Rn compares the amplitudes of the two
functions contained in each degree n and thus, it does not correlate essentially
similar wave patterns, since, for each n, it contains . Khan (1971b) has
developed formulas for correlating the identical frequencies of functions F(O, X)
and f(O, A) by means of a correlation parameter called an 'identical frequency
correlation function' which must be split into longitudinal and latitudinal cor-
relations as below:

Longitudinal Cerrelation

The identical frequency correlation function Rkm, compares the frequencies
along the parallels of latitude. It is given by

RA

__nm( F f)
n-m (6)

nm (F) nm f  1/2

n=m
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The usual correlation coefficient R can be obtained from the above by

introducing the summation 2 to the left of each summation X in the above
m n=m

equation.

Latitudinal Correlation

The correlation coefficient RX (p = n - m) correlates frequencies along
the meridian circles. It is given by

ZC Cn(n-p) (F, f)

R :  n=p (7)
(FZp 1/2

Cn(n-p) E -n(n-p)(f
=p n=p

The correlation coefficient R can again be obtained from the above by introducing
the summation Z to the left of each summation E in the above equation.

P n=p

Rotated Identical Frequency Correlations

The rotated counterparts of Equations (6) and (7) can be obtained with the
help of the matrix conversions given in Equation (4). These are

-Z nm (F, f)

R n=m (8)
m

and (n m ft

p 'n n(n-p)(F, f)
R5 = n=p (9)

Cn(n-p ) h(F) cn(n-p) (f
where n=p

(F, f)c -a
(n)( f) n(n)(F, f) cos(n -p) - (Bn(n-p)an(np) - An(n-p)bn(n-p) )

sin(n - p) n

with corresponding formulas for nm (F, f).

4



As in the case of Equation (5), the statistical significance of the quantities
obtained from equations (8) and (9) must be carefully investigated for the same
reasons stated therein.

Results

The results given here are based on Equations (3) and (5) only. The identical
frequency correlations are not reported here as they are still under investigation.

Global Topography and Gravity

The degree correlation function R n between typical models of global topography
and free air and isostatic gravity fields is listed in Table 1. These correlations
are computed on the basis of Lee and Kaula's (1967) topographic model, Smith-
sonian standard earth II gravity model and Khan's (1972) isostatic reduction
potential model, but the correlations remain substantially the same irrespective
of which global gravity and topography models are used.

Table 1
Correlation of Gravity* and Topography**

Degree n Free air gravity Isostatic gravity

2 -0.53 -0.59
3 0.03 -0.08
4 0.49 0.31
5 -0.58 -0.72
6 0.58 0.39
7 0.31 0.13
8 0.27 -0.12
9 0.57 0.30

10 0.29 -0.02
11 0.02 -0.25
12 -0.17 -0.56
13 0.33 -0.02
14 0.48 0.01
15 0.26 -0.05
16 0.43 0.18

* Global topography -iLee and Kaula (1967)
** Free air gravity model -Smithsonian Standard Earth II. Isostatic gravity model Khan (1972)
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Geogravity and Geomagnetic Fields

Khan andWoollard (1970) investigated the correlations between the geogravity
field and the geomagnetic field and its secular variations, using a wide spectrum
of the mathematical models of geogravity potential and geomagnetic potential
and its secular variations which are documented in Khan (1970). Typical values
for these correlations which remain more or less the same for all the models
investigated are given in Table 2. Hide and Malin (1970) and Khan (1970; 1971c)
have also investigated correlations between these two fields after introducing a
phase lag between the two. They find that for phase lag angles lying between
160° and 170° , the geogravity and geomagnetic fields have a high correlation of
between 0.8 and 0.9, particularly in the lower range of frequencies. The correla-
tions remain substantially the same for a large number of geogravity and geo-
magnetic models investigated by them. A typical representation of this correla-
tion is shown in Figure 1. In this diagram, the correlation coefficient RN is
equivalent to R , the superscript N indicating the harmonic degree to which the
functions F(~, ) and f(&, k ) are considered in computing the correlations. A
much more detailed analysis and discussion of these correlations, including
those of the geogravity field with the drifting and non-drifting parts of the geo-
magnetic field and its secular variations, is given in Khan (1971c).

Table 2
Correlation of Geogravity and Geomagnetic Fields

Degree n Geomagnetic Field* Geomagnetic Secular Variations*

2 -0.86 -0.68
3 0.40 0.77
4 0.63 0.49
5 -0.15 -0.12
6 0.19 0.26
7 0.27 0.30
8 -0.12 0.33
9 -0.07

10 0.27
11 0.15
12 0.33

* 1. Zonal parts of gravity and magnetic potenials excluded
2. Geogravity model-Smithsonian Standard Earth II

Geomagnetic model- Hurwitz (1970)

The geophysical interpretation of these results is not regarded within the
purview of the National Geodetic Satellite Program Handbook.
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Figure I (a). Degree correlation Rn, and correlation coefficient RN , as functions of longitude, for the geegravity and
geomagnetic fields. (i) Degree correlation Rn, n --2, 4, 6; (ii) Degree correlation Rn, n -=3, 5; (iii) Correlation
coefficient R N , N =2, 4, 6; (iv) Correlation coefficient R N, N =3, 5.
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