General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Technical Memorandum 33-627

Sparse Matrix Methods Based on Orthogonality and Conjugacy

C. L. Lawson

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TEGHNOLOQY

pasadena, galifornia

Technical Memorandum 33-627

Sparse Matrix Methods Based on Orthogonality and Conjugacy
C. L. Lawson

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHMOLOEY pasadena, california

June 15, 1973

PREFACE

The work described in this report was performed by the Data Systems Division of the Jet Propulsion Laboratory.

CONTENTS

Part I, Introduction I
Chapter 1. Introduction 1
Chapter 2. Mathematical Background 6
Part II. The Conjugate Gradient Algorithm and Variations 8
Chapter 3. Solving a Consistent System, $A x=b$, where A is Symmetric and Non- negative Definite 8
Chapter 4. Solving a Least Squares Problem, $A x=b$ 19
Chapter 5. Solving a Consistent System Ax=b 22
Part III. Other Algorithms 26
Chapter 6. Solving a Least Squares Problem, Axㅋb 26
Chapter 7. The Theoretical Equivalence of Algorithms CGLS and ITLS 39
Chapter 8, Solving a Consistent System Ax=b 44
Chapter 9. The Theoretical Equivalence of Algorithms CGC and ITC. 53
Chapter 10. Solving a Consistent System Ax=b where A is Symmetric 55
References 66
FIGURE
3.1 Vectors and subspaces related to Algorithm CG 13

ABSTRACT

A matrix having a high percentage of zero elements is callec sparse. In the solution of systems of linear equations or linear least squares problems involving large sparse matrices significant saving of computer cost can be achieved by taking advantage of the sparsity. This Memorandum derives and describes the well known conjugate gradient algorithm and a set of related algorithms which are applicable to such problems.

Control of accuracy is a serious problem with this class of methods. We plan to devote a subsequent study to methods of controlling algorithms of this class.

PARTI

Introduction

Chapter 1 Introduction

A matrix A is called sparse if a large proportion of its elements are zero. Significant savings of execution time and computer storage can be realized in solving systems of linear equations, $A x=b$, or least squares problems, $A x \geqslant b$, if the matrix A is sparse and if special solution methods are used which take advantage of the sparseness.

Most direct solution methods such as Gaussian elimination or Householder orthogonal triangularization perform transformations on the given matrix A which significantly increase the number of nonzero elements. The two main ideas in developing sparse matrix methods have been

1. Reorganize direct elimination methods to reduce the growth of the number of nonzero elements.
and
2. Use iterative methods so that the original sparse matrix A is used throughout the computation.

In Reid (1971) it is pointed out that the conjugate gradient (CG) method for solving a system $A x=b$, with A symmetric and positive definite, is well suited for use when A is sparse. This method shares with iterative methods the feature of continually using the initial matrix A but it shares with direct methods the property of theoretically terminating after not more than n iterations.

More specifically the major computational cost in each iteration of the CG method arises from the multiplication of A times a vector. If A is an $n \times n$
matrix and the proportion of nonzero elements in A is ρ then the multiplication of A times an n-vector requires ρn^{2} multiplications and additions if multiplication by zero elements of A are skipped. This algorithm theoretically reaches the solution vector in at most n iterations so the number of multiplications and additions would theoretically be at most on ${ }^{3}$.

The storage required is just that needed for the sparse matrix A plus four n-vectors. Since A is symmetric it has cnly approximately $\rho n^{2} / 2$ potentially distinct nonzero elements. Such a matrix can be stored in ρn^{2} locations or even in less space if the nonzero elements are located in some known regular pattern.

In comparison direct solution of this problem using an efficient stable method such as Cholesky factorization would in general require about $n^{2} / 2$ storage locations and $n^{3} / 6$ multiplications and additions. Thus the CG method will require less storage than the Chole sky method if $\rho<1 / 2$ and will require fewer multiplications and additions if $\rho<1 / 6$.

These cut-off values for ρ should be taken only as very rough guidelines. Storage management for the sparse matrix mcthod may increase its execution time.

More serious is the lack of numerical stability in the CG method. If the matrix A has a large condition number the intermediate vectors computed by the algorithm which are theoretically orthogonal or A-conjugate (defined in Chapter 2) may not even come close to having these properties. I feel that this means that a reliable subroutine for the CG method must include some monitoring of the error generated in intermediate quantities.

The purpose of this report is to collect in one place, and with some consistency of n-tation, the statements and theoretical justifications of the conjugate gradient algorithm and a number of other algorithms having very
similar characteristics with regard to mathematical theory, operation counts, and storage requirements. We subsequently plan to produce Fortran subroutines for some of these algorithms and study particularly the effectiveness and reliability of various techniques for monitoring accuracy and testing for termination in these subroutines.

The CG algorithm was invented independently and simultaneously (\sim 1951) by M. R. Hestenes and E. Stiefel [see Hestenes and Stiefel (1952)]. The paper by Craig (1955) which discusses methods of this type also references related work by Fox, Huskey, Wilkinson, Lanczos, Forsythe, and Rosser in the 1948-1952 period.

After providing some mathematical background in Chapter 2 the CG algorithm is presented in Chapter 3. In Chapters 4 and 5 algorithms are given which result directly from replacing the matrix A in the $C G$ algorithm by $A^{T} A$ or A. ${ }^{T}$ respectively. The use of $A^{T} A$ covers the case of a least squares problem whereas the use of $A A^{T}$ allows solution of consistent systems, $A x=b$, in which A is not necessarily symmetric or positive definite (or even square).

This replacement of A by $A^{T} A$ and by $A A^{T}$ occurs in Craig (1955) and is also treated in Faddeev and Faddeeva (1963).

More recently Reid (1971) made a strong case for the usefulness of the CG method in large sparse problems. Interest in sparse problems also stimulated Paige (1972) to derive two algorithms of similar character. We will refer to these algorithms as PAIGE-I and PAIGE-II. Paige's derivation of these algorithms is based on a bidiagonalization method given by Golub and Kahan (1965) which has its mathematical roots in a method of Lanczos (1950) for tridiagonalizing a symmetric matrix. We present Paige's least squares algorithm, PAIGE-II, in Chapter 6, where we call it ITLS to distinguish our particular statement of the algorithm. In Chapter 7 we show that ITLS theoretically generates the same
sequence of approximate solution vectors as the algorithm of Chapter 4. The intermediate steps are sufficiently different however to make it of interest to investigate the numerical performance of each of these two algorithms.

In Chapter 8 we present an algorithm ITC which is a subset of Paige's algorithm PAIGE-I. The algorithm PAIGE-I includes provision for handing a least squares problem. It appears to me that for least squares proslems this algorithm is not competitive with PAIGE-II or the least squares algorithm of Chapter 4 and thus I have presented only the subset of PAIGE-I which handles a consistent system of linear equations. Paige noted that this subset of PAIGE-I is equivalent to the algorithms given by Faddeev and Faddeeva (1963) and by Craig (1955) which are described in Chapter 5 of this report. This equivalence is verified in Chapter 9.

Finally in Chapter 10 we give an algorithm due to C. C. Paige and M. A. Saunders (personal correspondence, 1972) for the symmetric consistent problem, $A x=b$ This algorithm is called SYMMLQ by Paige and Saunders. Note that whereas the CG algorithm requires only one matrix-vector multiplication per iteration the other algorithms discussed in Chapters 4-9 each require two matrix-vector multiplications per iteration or else the preliminary computation of $\mathrm{A}^{\mathrm{T}} \mathrm{A}$ or $A A^{T}$. The algorithm, SYMMLQ, requires only one matrix-vector multiplication per iteration and thus is nominally the most economical method described in this report for the indefinite symmetric consistent problem. This algorithm is however notably more complicated than the other algorithms in this report.

Saunders has also developed a modification to Paige's least squares algorithm, PAIGE-II, (our ' 4 zpter 6) however we have omitted this as it is more complicated than Paige's algorithm and in a few test cases which we ran its sequence of approximate solution vectors was approximately one step behind the sequence generated by Daige's algorithm.

We wish to thank John Reid and Gene Golub for kindling our awareness of the value of this class of methods for sparse problems. We thank Chris Paige and Michael Saunders for sharing their partially completed current research work with us and David Saunders for supplying Fortran implementations of Michael Saunders' two algorithms.

Chapter 2 Mathematical Background

Two real n-vectors x and y are mutually orthogonal if their inner product, denoted by $x^{T} y$ or $y^{T} x$, is zero. They are orthonormal if they are mutually orthogonal and are each of unit eluclidean length, i. e. $\|x\| \equiv\left(x^{T} x\right)^{1 / 2}=1$ and $\|y\| \equiv\left(y^{T} y\right)^{1 / 2}=1$.

A generalization of orthogonality is the notion of A-conjugacy where A is a symmetric matrix. Two vectors x and y are A-conjugate if $x^{T} A y$ (or equivalently $\mathrm{y}^{\mathrm{T}} \mathrm{Ax}$) is zero. This notion of A -conjugacy is most commonly defined only for a positive definite symmetric matrix A since then one has the convenient property that $\mathrm{x}^{\mathrm{T}} \mathrm{Ax}>0$ for all $\mathrm{x} \neq 0$.

We will use the notion of $A \cdot$ conjugacy under the weaker assumption that A is nonnegative definite symmetric matrix but limit the vectors being considered to those lying in the row space of A. For such vectors the property $\mathrm{x}^{\mathrm{T}} \mathrm{Ax}>0$ for $\mathrm{x} \neq 0$ still holds.

If the set of vectors $\gamma_{i}=\left\{v^{(1)}, \ldots, v^{(i)}\right\}$ are mutually orthogonal and a vector $y^{(i+1)}$ is linearly independent of the set Y_{i} then a vector $v^{(i+1)}$ orthogonal to the set γ_{i}^{\prime} can be defined by
(2.1)

$$
v^{(i+1)}=y^{(i+1)}-\frac{v^{(1) T} y^{(i+1)}}{v^{(1) T} v^{(l)}} v^{(1)}-\cdots \cdots-\frac{v^{(i) T} y^{(i+1)}}{v^{(i) T} v^{(i)}} v^{(i)}
$$

This is the formula of Gram-Schmidt orthogonalization.

A similar formula exists for extending a mutually A-conjugate set of vectors. Thus it the set of vectors $l_{i}=\left\{u^{(1)}, \ldots, u^{(i)}\right\}$ are mutually A-conjugate and a vector $z^{(i+1)}$ is linearly instrendent of the set U_{i} then a vector $u^{(i+1)}$, A-conjugate to U_{i}, is defined by
(2.2) $u^{(i+1)}=z^{(i+1)}-\frac{u^{(1) T} T_{A z^{(i+1)}}^{(1) T} u^{(1)}}{u^{(1)}} \ldots-\frac{u^{(i) T} A z^{(i+1)}}{u^{(i) T} A u^{(i)}} u^{(i)}$
if all of the denominators are nonzero. Nonzero denominators are assured if A is positive definite symmetric or if A is nonnegative definite symmetric and all of the vectors of the set X_{i} lie in the row space of A.

The algorithms to be described in this report have the common feature that in constructing sequences of mutually orthogonal (or mutually A-conjugate) vectors the new linearly independent vector $y^{(i+1)}$ (or $z^{(i+1)}$) will be constructed in such a way that it is already orthogonal (or A-conjugate) to all but one or two of the vectors in the set γ_{i} (or ℓ_{i}). This permits economy in storage and in computation time since only the most recent one or two of the vectors in the set V_{i} (or U_{i}) need to be retained in storage and only the terms involving these one or two retained vectors need to be computed in Equations (2.1) or (2.2).

The Conjugate Gradient Algorithm and Variations

Chapter 3 Solving a Consistent System, $A x=b$, where A is Symmetric and Nondequaive

Let A be an $n \times n$ symmetric nonnegative definite matrix and let be an n vector in the column space (range space) of A. We wish to find an n-vector x satisfying
$A x=b$

If Rant $(A)<n$ the solution of Problem (3,1) is nonunique. In this case there is a unique solution vector, \hat{x}, in the row space of A. This vector \hat{x} is the minimal length solution vector for the problem and is the solution vector which the algoritith io be described constructs.

The algorithm to be described is the conjugate gradient method due to Hestenes and Stiefel (1952). Presentations of this mothod appear in Faddeev and Fadeeva (1963, pp, 392-405), Beckman (1960), Reid (1971), Fox (1965, pp. 208-214), and Householder (1964, pp. 139-141). This method is usually described under the assumption that the matrix A is positive definite although, as will be seen from the discussion to follow, the theory of the method is also valid for a nonnegative definite matrix if it is assumed that b is in the column space of A.

Assume the existence of an integer $k(1 \leq k \leq n)$, matrices $V_{n \times k}$ and $D_{k \times k}$ and a k-vecter \hat{p} such that

$$
\begin{equation*}
v=\left[v^{(1)}, \ldots, v^{(k)}\right] \tag{3.2}
\end{equation*}
$$

$$
D=\operatorname{Diag}\left\{d_{1}, \ldots, d_{k}\right\} \quad d_{i}>0, i=1, \ldots, k
$$

$$
\begin{equation*}
V^{T} A V=D \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{x}=V \hat{p} \tag{3,5}
\end{equation*}
$$

Note that Equation (3.4) implies that the vectors $v^{(i)}$ are mutually A-conjugate.
If such matrices V and D are available Problem (3.1) can be attacked as follows: Left multiply Equatior (3.1) by V^{T} obtaining

$$
\begin{equation*}
\mathrm{V}^{\mathrm{T}} \mathrm{Ax}=\mathrm{g} \tag{3.6}
\end{equation*}
$$

where g is defined by

$$
\begin{equation*}
\mathrm{g}=\mathrm{v}^{\mathrm{T}_{\mathrm{b}}} \tag{3.7}
\end{equation*}
$$

Introduce the change of variables

$$
\begin{equation*}
\mathbf{x}=\mathbf{V} \mathbf{p} \tag{3.8}
\end{equation*}
$$

in Equation (3.6) obtaining

$$
\begin{equation*}
V^{T} A V_{P}=g \tag{3.9}
\end{equation*}
$$

which due to Equation (3.4) may also be written as

$$
\mathrm{D}_{\mathrm{p}}=\mathrm{g}
$$

Thus Problem (3.1) could be solved by computing $g=V^{T}$, solving the diagonal system of equations $D p=g$ for its solution vector \hat{p}, then computing the solution vector $\hat{\mathbf{x}}$ for Problem (3.1) as $\hat{\mathbf{x}}=\mathrm{V} \hat{\mathbf{p}}$.

The algorithm to be described constructs the A-conjugate vectors $\mathrm{v}^{(\mathrm{j})}$ one at a time and as each such vector is produced its contribution to g, p, x, and the residual vector r is determined. Thus only one of the vectors $v^{(j)}$ needs to be maintained in storage at any one time.

It will be convenient to define auxiliary vectors

$$
\begin{equation*}
w^{(i)}=A v^{(i)} \quad i=1, \ldots, k \tag{3.11}
\end{equation*}
$$

successive approximations to the solution vector

$$
\begin{equation*}
x^{(0)}=0 \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
x^{(i)}=\sum_{j=1}^{i} v^{(j)} p_{j}=x^{(i-1)}+v^{(i)} p_{i} \quad i=1, \ldots, k \tag{3.13}
\end{equation*}
$$

and corresponding residual vectors

$$
\begin{equation*}
\mathbf{r}^{(0)}=\mathbf{b} \tag{3.14}
\end{equation*}
$$

$$
\begin{align*}
\mathbf{r}^{(i)} & =b-A x^{(i)}=b-\sum_{j=1}^{i} A v^{(j)} p_{j} \tag{3.15}\\
& =b-\sum_{j=1}^{i} w^{(j)} p_{j}=r^{(i-1)}-w^{(i)} p_{i} \quad i=1, \ldots, k
\end{align*}
$$

It happens that the residual vectors $\mathbf{r}^{(0)}, \mathbf{r}^{(1)}, \ldots$ occurring in this algorithm are mutually orthogonal. The algorithm alternates between producing a vector in the orthogonal sequence $r^{(0)}, r^{(1)}, \ldots$ and a vector in the A-conjugate sequence $v^{(1)}, v^{(2)}, \ldots$. The various relations which exist between these two sequences permits the algorithm to be remarkably concise.
(3.16) Algorithm CG

The Conjugate Gradient Algorithm for Solving a Consistent System $A x=b$ where A is Symmetric and Nonnegative Definite [Due to Hestenes and Stiefel (1952)]

Step Description
$1 \quad x^{(0)}:=0, r^{(0)}:=b, v^{(1)}:=b$
2 If $\mathrm{b}=0$ set $\mathrm{i}:=0$ and go to Step 13
$3 \quad i:=1$
4
$w^{(i)}:=A v^{(i)}$
5
$p_{i}:=\left(r^{(i-1) T} r^{(i-1)} /\left(v^{(i) T} w^{(i)}\right)\right.$
$x^{(i)}:=x^{(i-1)}+v^{(i)} p_{i}$
7
$r^{(i)}:=r^{(i-1)}-w^{(i)} p_{i}$
Theoretical termination test: If $\mathbf{r}^{(\mathrm{i})}=0$ go to Step 13
Practical termination test: If $\left\|r^{(i)}\right\|$ is sufficiently small go to Step 13

9

$$
\beta_{i}:=\left(r^{(i) T} r_{r}^{(i)}\right) /\left(r^{\left.(i-1) T_{r}^{(i-1)}\right)}\right.
$$

Step Description

10

11
12
13
14
$v^{(i+1)}:=r^{(i)}+v^{(i)} B_{i}$
$i:=i+1$
Go to Step 4
$k:=i$
Stop

Figure (3.1) is provided as an aid to understanding Algorithm CG. All vectors in the first column of Figure (3.1) lie in the same one-dimensional subspace, ℓ_{1}. For general $\ell>1$ if the vectors $b, A b, \ldots, A b^{\ell-1}$ are linearly independent let \varnothing_{ℓ} denote the ℓ-dimensional subspace spanned by these vectors. Then the first k vectors in each row of Figure (3.1) are also linearly independent and span the same subspace ℓ_{ℓ}.

To verify that the algorithm CG is mathematically correct we must show that the denominator in Step 5 is positive for $i \leq k$, that Step 5 defines components p_{i} satisfying Equation (3.10), and that the vectors $v^{(i)}$ produced at Step 10 are mutually A-conjugate. It will also be seen that the residual vectors . $^{(i)}$ are mutually orthogonal.

Assume Algorithm CG has been executed for $i=1, \ldots, \ell-1$, that the set of vectors $\left\{r^{(0)}, \ldots, r^{(\ell-1)}\right\}$ are mutually orthogonal and the set of vectors $\left\{\mathrm{v}^{(1)}, \ldots, \mathrm{v}^{(\ell)}\right\}$ are mutually A-conjugate. With this assumption of A-conjugacy we include the assumption that $v^{(i)} \mathrm{T}_{A v^{(i)}}>0, i=1, \ldots, \ell$.

We also assume that

FIGURE (3.1)

Vectors and subspaces related to Algorithm CG. The four circles identify vectors which would be constructed during the second iteration of the algorithm.

$$
\begin{aligned}
\ell_{i} & =\operatorname{Span}\left\{b, w^{(1)}, \ldots, w^{(i-1)}\right\} \\
& =\operatorname{Span}\left\{r^{(0)}, \ldots, r^{(i-1)}\right\} \\
& =\operatorname{Span}\left\{v^{(1)}, \ldots, v^{(i)}\right\} \quad i=1, \ldots, \ell
\end{aligned}
$$

The reader may find it convenient to refer to Figure (3, 1) and consider $\ell=2$ for definiteness. The quantities to the left of the circles result from earlier iterations and the circled quantities will be computed during the second iteration.

Consider now the quantities computed during the $\ell^{\text {th }}$ iteration. The denominator in Step 5 is $\mathrm{v}^{(\ell)} \mathrm{T}_{\mathrm{Av}}{ }^{(\ell)}$ which by assumption is positive.

It must be verified that $p_{\ell^{\prime}}$ computed at Step 5 satisfies Equation (3.10), i.e. that

$$
\begin{equation*}
\mathrm{p}_{\ell}=\mathrm{g}_{\ell} / \mathrm{d}_{\ell}=\left(\mathrm{v}^{\left.\left.(\ell) \mathrm{T}_{\mathrm{b}}\right) /\left(\mathrm{v}^{(\ell) \mathrm{T}_{\mathrm{Av}}}{ }^{(\ell)}\right), ~\right)}\right. \tag{3,17}
\end{equation*}
$$

The denominator in Equation (3.17) is clearly identical with the denominator in Step 5. As to the numerators we have

$$
\begin{aligned}
v^{(\ell) T_{b}} & \left.=v^{(\ell) T_{(}}{ }^{(\ell-1)}+\sum_{j=1}^{\ell-1} w^{(j)} p_{j}\right) \\
& =v^{(\ell) T_{r}}(\ell-1) \\
& =\left(r^{(\ell-1)}+v^{(\ell-1)} \beta_{\ell-1}\right)^{T}(\ell-1) \\
& =r^{(\ell-1) T_{\mathbf{r}}(\ell-1)}
\end{aligned}
$$

Steps 6 and 7 are clearly consistent with Equations (3.13) and (3.15). If $\mathbf{r}^{(\ell)}=0$ the algorithm terminates, setting $k=\ell$. Otherwise with $r^{(\ell)} \neq 0$ we proceed to verify that $r^{(\ell)}$ is orthogonal to the subspace \int_{l}. Using the basis $\left[r^{(0)}, \ldots, r^{(\ell-1)}\right]$ of X_{ℓ} it suffices to verify that $r^{(i) T_{r}(\ell)}=0$ for $i=0, \ldots, \ell-1$.

$$
\begin{equation*}
\mathbf{r}^{(\mathrm{i}) \mathrm{T}_{\mathbf{r}}(\ell)}=\mathbf{r}^{(\mathrm{i}) \mathrm{T}_{\mathbf{r}}(\ell-1)_{-r^{(i)} \mathrm{T}_{\mathrm{w}}}(\ell)_{p_{\ell}}} \tag{3.18}
\end{equation*}
$$

Both right side terms are zero for $i=0, \ldots, \ell-2$. For $i=\ell-1$ substitute the definition of p_{ℓ} from Step 5 into Equation (3.18) obtaining

$$
\begin{aligned}
\mathbf{r}^{(\ell-1) T_{r}(\ell)} & =\mathbf{r}^{(\ell-1) \mathrm{T}_{\mathbf{r}}(\ell-1)}-\frac{\left[\mathbf{r}^{(\ell-1) \mathrm{T}_{\mathrm{w}}(\ell)} \eta_{\mathrm{v}} \mathrm{r}_{\mathrm{r}}^{(\ell-1) \mathrm{T}_{\mathbf{r}}(\ell-1)}\right]}{(\ell) \mathrm{T}_{\mathrm{w}}(\ell)} \\
& =0
\end{aligned}
$$

since

$$
v^{(\ell) T_{w}(\ell)}=\left[r^{(\ell-1)}+v^{(\ell-1)}{ }_{\beta-1}\right]^{T} w^{(\ell)}=r^{(\ell-1) T_{w}(\ell)}
$$

Next it must be shown that $\mathrm{v}^{(\ell+1)}$ defined at Step 10 is A-conjugate to the subspace l_{ℓ}. We use the basis $\left\{v^{(1)}, \ldots, v^{(\ell)}\right\}$ for ℓ_{l} and verify that $\mathrm{v}^{(\mathrm{i})} \mathrm{T}_{\mathrm{Av}}{ }^{(\ell+1)}=0$ for $\mathrm{i}=1, \ldots, \ell$.

$$
\begin{equation*}
v^{(i) T_{A v}(\ell+1)}=v^{(i) T_{A r}(\ell)}+v^{(i) T_{A v}(\ell)_{B}} \tag{3.19}
\end{equation*}
$$

For $i=1, \ldots, \ell-1$ both right side terms are zero; the first because $v^{(i)} \mathrm{T}_{\mathrm{A}}$ is in $X_{\ell}^{\prime \prime}$ and thus is orthogonal to $r^{(\ell)}$ and the second because $v^{(i)}$ is in $\delta_{\ell-1}$ and thus is A-conjugate to $v^{(\ell)}$. For $i=\ell$ substitute the definition of B_{ℓ} from Step 9 into Equation (3.19) obtaining

$$
\begin{align*}
& v^{(\ell)} \mathrm{T}_{\mathrm{Av}}{ }^{(\ell+1)}=\mathrm{v}^{(\ell)} \mathrm{T}_{\mathrm{Ar}}{ }^{(\ell)}+\frac{\left(\mathrm{v}^{(\ell) \mathrm{T}_{\mathrm{Av}}}{ }^{(\ell)}\right)\left(\mathrm{r}^{(\ell)} \mathrm{T}_{\mathrm{r}}^{(\ell)}\right.}{\mathrm{r}^{(\ell-1) \mathrm{T}_{\mathbf{r}}^{(\ell-1)}}} \tag{3.20}\\
& =\mathrm{w}^{(\ell) \mathrm{T}_{\mathbf{r}}(\ell)}+\mathrm{p}_{\ell}^{-1} \mathbf{r}^{(\ell) \mathrm{T}_{\mathbf{r}}(\ell)} \\
& =\left[w^{(\ell)}+p_{\ell}^{-1} r^{(\ell)}\right]^{T} \mathbf{r}^{(\ell)} \\
& =p_{\ell}^{-1} r^{(\ell-1) T_{r}(\ell)}=0
\end{align*}
$$

Finally we verify that $\mathrm{v}^{(\ell+1) \mathrm{T}_{\mathrm{Av}}(\ell+1)}>0$. Let h denote the rank of A. Since A is nonnegative definite there exists an $h \times n$ matrix R of rank h such that

$$
A=R^{T}
$$

and clearly the row space of R is idertical with the row (and column) space of A. Let a denote the row (and column) space of A. From Steps 1, 7, and 10 all of the vectors $r^{(i)}$ and $v^{(i)}$ produced by the algorithm lie in the subspace a. Since $v^{(\ell+1)}$ is constructed at Step 10 as the sum of the nonzero vector $r^{(\ell)}$ and a vector $v^{(\ell)} 8_{i}$ orthogonal to $r^{(\ell)}$ it follows that $v^{(\ell+1)} \neq 0$. Since $v^{(\ell+1)}$ is a nonzero vector
in the subspace ℓ the vector $\mathrm{Rv}^{(\ell+1)}$ must also be nonzero. It follows that $\left[R v^{(\ell+1)}\right]_{R v^{(\ell+1)}}^{\mathrm{T}_{\mathrm{R}}}>0$ or equivalently $\mathrm{v}^{(\ell+1) \mathrm{T}_{\mathrm{Av}}}{ }^{(\ell+1)}>0$, as was to be shown.

As is apparent from the different expressions derived for p_{i} and for β_{i} there are a numbe: of different ways in which the CG algorithm could be implemented. There are also different trade-offs possible between storage used and counts of arithmetic operations. Reid (1971) discusses over a dozen such variations. The form in which we have stated Algorithm CG is the one preferred by Reid.

Theoretical termination of the CG algorithm occurs when $r^{(k)}=0$ with $r^{(i)} \neq 0$ for $i=0, \ldots, k-1$. Referring to Figure (3.1) we see that this means that the subspaces $\delta_{1}, \ldots, \delta_{k}$ are all different but that $\delta_{k+1}=\mathscr{\delta}_{k}$. Equivalently this means that the vector $A^{k} b$ lies in the subspace \mathcal{X}_{k} spannad by $\left\{b, A b, \ldots, A^{k-1} b\right\}$.

This implies that b is representable as a linear combination of some set of k eigenvectors, say $\left\{f^{(1)}, \ldots, f^{(k)}\right\}$, of the nonnegative definite symmetric matrix A and is not representable as a linear combination of any smaller set of eigenvectors of A. Furthermore the eigenvalues $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ associated w ith these eigenvectors are all positive. Thus there exist nonzero numbers c_{i} such that

$$
b=\sum_{i=1}^{k} f^{(i)} c_{i}
$$

and the minimal length solution vector $\hat{\mathbf{x}}$ is representable as

$$
\hat{x}=\sum_{i=1}^{k} f^{(i)}\left(c_{i} / \lambda_{i}\right)
$$

Note also that $\operatorname{Span}\left\{f^{(1)}, \ldots, f^{(k)}\right\}=X_{k}^{\prime}$ and that \hat{x} lies in ψ_{k}^{\prime} but not in X_{k-1}^{\prime}. Most commonly the value of k will be n. However k will be less than n if and only if b is orthogonal to some eigenvectors of A. In particular b will necessarily be orthogonal to some eigenvectors of A if A has any multiple eigenvalues.

Chapter 4 Solving a Least Squares Problem $A x \cong b$

Let A be an $m \times n$ matrix and let b be an m-vector. We wish to find an n-vector x which minimizes $\left\|_{b}-A x\right\|$. We denote this least squares problem by the notation

$$
\begin{equation*}
A x \equiv b \tag{4.1}
\end{equation*}
$$

We permit either $m \geq n$ or $m<n$. If $\operatorname{Rank}(A)<n$ the algorithm to be described constructs the unique minimal length solution vector, \hat{x}. This solution vector is characterized sus being the only solution vector lying in the row space of A.

A vector x minimizes $\|b-A x\|$ if and only if it satisfies the "normal equations"

$$
\begin{equation*}
A^{T} A x=A_{b} \tag{4.2}
\end{equation*}
$$

Normal equations are always consistent since the right side vector, $A{ }^{T} b$, lies in the row space of A which is also the column space of the matrix $A^{T} A$. The ranks of $A^{T} A$ and A are equal and their row spaces are the same. Thus if $A^{T} A$ is singular the unique solution of Problem (4.2) lying in the row space of $A^{T} A$ is also the unique minimal length solution of Problem (4.1).

Since $A^{T} A$ is nonnegative definite and Problem (4.2) is consistent the conjugate gradient algorithm CG(3.16) is directly applicable to Problem (4.2). Denote the residual vector for Problem (4.2) by

$$
\bar{h}=A^{T} b-A^{T} A x=A^{T}(b-A x)
$$

and introduce bars on various other symbols in Algorithm CG to distinguish the application of the algorithm to Problem (4.2). Then Algorithm CG adapted to Problem (4.1) can be written briefly as
(4,3) Algorithm CGLS Conjugate Gradient Algorithm for the Least Squares Problem Ax $\equiv b$

$$
\begin{equation*}
\bar{x}^{(0)}:=0, \bar{h}^{(0)}:=A^{T}, \bar{v}^{(1)}:=A_{b} \tag{4,4}
\end{equation*}
$$

$$
\text { If } \bar{h}^{(0)}=0 \text { terminate }
$$

$$
\text { Do for } i:=1,2, \ldots, \text { until } \bar{h}^{(i)}=0
$$

$$
\begin{equation*}
\bar{w}^{(i)}:=A^{T} A \bar{v}^{(i)} \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
\bar{p}_{i}:=\left\|\bar{h}^{(i-1)}\right\|^{2} /\left(\bar{v}^{(i) T} \bar{w}^{(i)}\right) \tag{4.6}
\end{equation*}
$$

$$
\bar{x}^{(i)}:=\bar{x}^{(i-1)}+\bar{v}^{(i)} \bar{p}_{i}
$$

$$
\begin{equation*}
\bar{h}^{(i)}:=\bar{h}^{(i-1)}-\bar{w}^{(i)} \bar{p}_{i} \tag{4.8}
\end{equation*}
$$

$$
\begin{align*}
& \bar{\beta}_{i}:=\left\|h^{(i)}\right\|^{2} /\left\|h^{(i-1)}\right\|^{2} \\
& \bar{v}^{(i+1)}:=\bar{h}^{(i)}+\bar{v}^{(i)} \bar{\beta}_{i} \tag{4.10}
\end{align*}
$$

One may wish to have the residual vector of the least squares problem (4.1)

$$
\begin{equation*}
\overline{\mathbf{r}}^{(i)}=b-A \bar{x}^{(i)} \tag{4.11}
\end{equation*}
$$

available at each iteration, possibly for use in a supplementary termination test. This may be accomplished by the following revision of the algorithm [Faddeev and Faddeeva (1963, p. 4031.
(4.12) Algorithm [Alternate Form of CGLS]

$$
\overline{\mathrm{x}}^{(0)}:=0, \overline{\mathrm{r}}^{(0)}:=\mathrm{b}, \bar{h}^{(0)}:=A^{T} \mathrm{~b}, \overline{\mathrm{v}}^{(1)}:=A^{T}
$$

If $\bar{h}^{(0)}=0$ terminate.
Do for $\mathrm{i}:=1,2, \ldots$, until $\bar{h}^{(i)}=0$

$$
\begin{aligned}
& \bar{u}^{(i)}:=A v^{(i)} \\
& \bar{p}_{i}:=\left\|\bar{h}^{(i-1)}\right\|^{2} /\left\|\bar{u}^{(i)}\right\|^{2} \\
& \bar{x}^{(i)}:=\bar{x}^{(i-1)}+\bar{v}^{(i)} \stackrel{p}{p}_{i} \\
& \bar{r}^{(i)}:=\bar{r}^{(i-1)}-\bar{u}^{(i)} \bar{p}_{i} \\
& \bar{h}^{(i)}:=A^{T} \bar{r}^{(i)} \\
& \bar{B}_{i}:=\left\|\bar{h}^{(i)}\right\|^{2} /\left\|\bar{h}^{(i-1)}\right\|^{2} \\
& \bar{v}^{(i+1)}:=\bar{h}^{(i)}+\bar{v}^{(i)} \overline{\widetilde{F}}_{i}
\end{aligned}
$$

This latter form of the algorithm requires more storage since one must maintain the current values of the twom-vectors $\bar{u}^{(i)}$ and $\bar{r}^{(i)}$.

Chapter 5 Solving a Consistent System $A x=b$

Let A be an $m \times n$ matrix and let be an m-vector contained in the column space (range epace) of A. Consider the problem of firding an n-vector x satisfying

$$
\begin{equation*}
A x=b \tag{5.1}
\end{equation*}
$$

We will permit either $m \leq n$ or $m>n$. If $\operatorname{Rank}(A)<n$ the s olution to this problem is nonunique. In this case there is a unique solution vector $\hat{\mathbf{x}}$ lying in the row space of A. This vector \hat{x} is the unique minimal length solution vector for Problem (5.1). The algorithm to be described constructs this solution vector $\hat{\mathbf{x}}$.

Since we seek a solution vector \hat{x} in the row space of A the solution vector \hat{x} will be representable in the form

$$
\begin{equation*}
\hat{x}=A^{T} \hat{y} \tag{5.2}
\end{equation*}
$$

for some (not necessarily unique) m-vector \hat{y}. Making the change of variables $x=A^{T} y$ in Problem (5.1) we obtain the problem

$$
\begin{equation*}
A_{--} T_{y=b} \tag{5.3}
\end{equation*}
$$

This is a consistent problem with a symmetric nonnegative definite matrix $A A^{T}$. Thus the conjugate gradient algorithm CG (3.16) can be applied to solve Problem (5.3).

The resulting algorithm for solving a consistent system $A x=b$ may be written as follows where the notation of Algorithm CG $(3,16)$ is changed by writing \bar{p}, \bar{B}, $\bar{w}, \bar{r}, \bar{q}, \bar{y}$, and $A A^{T}$ in place of p, β, w, r, v, x, and A respectively, Furthermore,
motivated by Equation (5.2) we introduce the sequence of approximate solution vectors

$$
\begin{equation*}
\bar{x}^{(i)}=A^{T} \bar{y}^{(i)} \tag{5.4}
\end{equation*}
$$

(5.5) Algorithm

$$
\begin{aligned}
& \bar{y}^{(0)}:=0, \bar{x}^{(0)}:=0, \bar{r}^{(0)}:=b, \bar{q}^{(1)}:=b \\
& \text { If } \bar{r}^{(0)}=0 \text { terminate, } \\
& \text { Do for } i:=1,2, \ldots, \text { until } \bar{r}^{(i)}=0 \\
& \bar{w}^{(i)}:=A A^{T} \bar{q}^{(i)} \\
& \bar{p}_{i}:=\left\|\bar{r}^{(i-1)}\right\|^{2} /\left(\bar{q}^{(i)} T_{\bar{w}^{(i)}}^{(i)}\right. \\
& \bar{y}^{(i)}=\bar{y}^{(i-1)}+\bar{q}^{(i) \bar{p}_{i}} \\
& \bar{x}^{(i)}:=\bar{x}^{(i-1)}+A^{T} \bar{q}^{(i)} \bar{p}_{i} \\
& \overline{\bar{r}}^{(i)}:=\bar{r}^{(i-1)}-\bar{w}^{(i)} \bar{p}_{i} \\
& \bar{\beta}_{i}:=\left\|\bar{r}^{(i)}\right\|^{2} /\left\|\bar{r}^{(i-1)}\right\|^{2} \\
& \bar{q}^{(i+1)}:=\bar{r}^{(i)}+\bar{q}^{(i)} \bar{B}_{i}
\end{aligned}
$$

Eliminating the intermediate vectors $\bar{w}^{(i)}$ and $\bar{y}^{(i)}$ we obtain the algorith r_{\perp} in the form given by Craig (1955), p. 72, except that Craig used the opposite choice of the sign of the residual vector.
(5.6) Algorithm [Craig (1955)]
$\overline{\mathbf{x}}^{(0)}:=0, \overline{\mathbf{r}}^{(0)}:=\mathrm{b}, \overline{\mathrm{q}}^{(1)}:=\mathrm{b}$
If $\overline{\mathbf{r}}^{(0)}=0$ terminate.
Do for $\mathrm{i}:=1,2, \ldots$, until $\bar{r}^{(\mathrm{i})}=0$

$$
\begin{aligned}
& \overline{\mathrm{p}}_{\mathrm{i}}:=\left\|\mathrm{r}^{(\mathrm{i}-1)}\right\|^{2} /\left\|_{\mathrm{A}} \mathrm{~T}_{\mathrm{q}}{ }^{(\mathrm{i})}\right\|^{2} \\
& \bar{x}^{(i)}:=\bar{x}^{(i-1)}+A^{T} \bar{q}^{(i)} \bar{p}_{i} \\
& \overline{\mathbf{r}}^{(\mathrm{i})}:=\mathrm{b}-\mathrm{A} \overline{\mathrm{x}}^{(\mathrm{i})}\left[\equiv \overline{\mathrm{r}}^{(\mathrm{i}-1)}-\mathrm{AA} \mathrm{~T}^{(\mathrm{i})} \overline{\mathrm{P}}_{\mathrm{i}}\right] \\
& \bar{\delta}_{i}:=\left\|\bar{r}^{(i)}\right\|^{2} /\left\|\bar{r}^{(i-1)}\right\|^{2} \\
& \bar{q}^{(i+1)}:=\bar{r}^{(i)}+\bar{q}^{(\mathrm{i})_{\bar{\beta}}^{i}}
\end{aligned}
$$

As is noted in Faddeev and Faddeeva (1963, pp. 403-405) this algorithm can be further simplified by introducing the substitution

$$
\bar{v}^{(i)}=A^{T} \bar{q}^{(i)}
$$

Note that the vectors $\left\{\overline{\mathrm{v}}^{(1)}, \ldots, \overline{\mathrm{v}}^{(\mathrm{k})}\right.$ \} are mutually orthogonal since the vectors $\left\{\bar{q}^{(1)}, \ldots, \bar{q}^{(k)}\right\}$ are mutually (AA ${ }^{T}$)-conjugate.

We call the resulting algorithm CGC.
(5.7) Algorithm CGC Conjugate Gradient Algorithm for the Consistent System Ax=b
$\overline{\mathbf{x}}^{(0)}:=0, \bar{r}^{(0)}:=b, \bar{v}^{(1)}:=A^{T} b$
If $\overline{\mathbf{r}}^{(0)}=0$ terminate
Do fori:=1, $2, \ldots$, until $^{(i)}=0$

$$
\begin{aligned}
& \overline{\mathrm{p}}_{i}:=\left\|\overline{\mathrm{r}}^{(\mathrm{i}-1)}\right\|^{2} /\left\|\bar{v}^{(\mathrm{i})}\right\|^{2} \\
& \overline{\mathbf{x}}^{(\mathrm{i})}:=\overline{\mathrm{x}}^{(\mathrm{i}-1)}+\overline{\mathrm{v}}^{(\mathrm{i})} \overline{\mathrm{p}}_{i} \\
& \overline{\mathrm{r}}^{(\mathrm{i})}:=\overline{\mathrm{r}}^{(\mathrm{i}-1)}-\mathrm{A} \overline{\mathrm{v}}^{(\mathrm{i})} \overline{\mathrm{p}}_{i} \\
& \mathrm{~b}_{\mathrm{i}}:=\left\|\overline{\mathrm{r}}^{(\mathrm{i})}\right\|^{2} /\left\|\overline{\mathrm{r}}^{(\mathrm{i}-1)}\right\|^{2} \\
& \overline{\mathrm{v}}^{(\mathrm{i}-1)}:=\mathrm{A}^{\mathrm{T}} \overline{\mathrm{r}}^{(\mathrm{i})}+\overline{\mathrm{v}}^{(\mathrm{i})}{B_{i}}^{2}
\end{aligned}
$$

Chapter 6 Solving a Least Squares Problem, $A x \cong b$

Let A be an $m \times n$ matrix and let be an m-vector. We wish to find an n-vector x which minimizes $\|b-A x\|$. We denote this least squares problem by the notation

$$
\begin{equation*}
A x \cong b \tag{6.1}
\end{equation*}
$$

Generally one would have $\mathrm{m} \geq \mathrm{n}$ and $\operatorname{Rank}(A)=\mathrm{n}$ in such a problem. We will not make these assumptions however as they are not necessary to the mathematical development of the algorithm to be described.

If Rank $(A)<n$ the solution to Problem (6.1) is not unique. In this case however the problem has a unique solution vector of least euclidean length. It can easily be verified that this unique minimal length solution vector lies in the row space of A and in fact is the only solution vector for Problem (6.1) lying in the row space of A. The algorithm to be described constructs the solution vector in the row space of A and thus finds the minimal length solution vector if $\operatorname{Rank}(\mathrm{A})<\mathrm{n}$.

Let \hat{x} be the unique minimal length solution vector for Problem (6.1). Define the residual vector

$$
\begin{equation*}
\hat{r}=b-A \hat{x} \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{b}=A \hat{x}=b-\hat{r} \tag{6.3}
\end{equation*}
$$

Thus b can be written as

$$
\begin{equation*}
\mathrm{b}=\hat{\mathrm{b}}+\hat{\mathrm{r}} \tag{6.4}
\end{equation*}
$$

where \hat{b} lies in the column space of A and \hat{r} is orthogonal to the column space of A. The vector \hat{b} is the orthogonal projection of b into the column space of A and will be referred to as the projected right-side vector.

Suppose there exists an integer $k(1 \leq k \leq \min \{m, n\})$ and matrices

$$
\begin{equation*}
U_{m \times k}=\left[u^{(l)}, \ldots, u^{(k)}\right] \tag{6.5}
\end{equation*}
$$

$$
\begin{equation*}
V_{n x k}=\left[v^{(l)}, \ldots, v^{(k)}\right] \tag{6.6}
\end{equation*}
$$

$$
R_{k \times k}=\left[\begin{array}{cccc}
\alpha_{1} & \beta_{2} & & \tag{6.7}\\
& & \ddots & \\
& \alpha_{2} & \ddots & \beta_{k} \\
& & \ddots & \\
0 & & & \alpha_{k}
\end{array}\right]
$$

$$
\left(\text { all } \alpha_{i}>0 \text { and } B_{i}>0\right)
$$

and a k-vector, \hat{p}, such that

$$
\begin{equation*}
U^{T} U=I_{k} \tag{6.8}
\end{equation*}
$$

$$
\begin{equation*}
v^{T} v=I_{k} \tag{6.9}
\end{equation*}
$$

$$
\begin{equation*}
A V=U R \tag{6.10}
\end{equation*}
$$

$$
\begin{equation*}
A^{T}{ }_{U}=V R^{T} \tag{6.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\mathbf{x}}=\mathrm{V} \hat{\mathbf{p}} \tag{6.12}
\end{equation*}
$$

Since R is nonsingular Equations (6.9) and (6.11) imply that the column vectors of V form an orthonormal basis for a subspace, V, of the row space of A. Similarly Equations (6.8) and (6.10) imply that the column vectors of U form an orthonormal basis for a subspace \mathcal{U} of the column space (range space) of A. Equation (6,12) shows that the subspace γ contains the solution vector \hat{x}. From Equations (6.3), (6.10), and (6.12) it follows that the subspace U contains the projected right-side vector \hat{b}.

Assuming the availability of the matrices U, V, and R, Problem (6.1) can be approached as follows: Introduce the change of variables

$$
\begin{equation*}
x=V p \tag{6.13}
\end{equation*}
$$

in Problem (6.1) and use Equation (6.10) obtaining the equivalent least squares problem

$$
\begin{equation*}
U R p \cong b \tag{6.14}
\end{equation*}
$$

Let $\bar{U}_{1 m} \times(\mathrm{m}-\mathrm{k})$ be a matrix which when adjoined to U forms an $m \times m$ orthogonal matrix:

$$
\begin{equation*}
[\mathrm{U}: \widetilde{\mathrm{U}}]^{\mathrm{T}}[\mathrm{U}: \overline{\mathrm{U}}]=\mathrm{I}_{\mathrm{m}} \tag{6.15}
\end{equation*}
$$

Left multiply Equation (6.14) by [U: $\overline{\mathrm{U}}]^{T}$ obtaining the equivalent least squares problem.
(6.16)

$$
\left[\begin{array}{l}
\mathrm{R} \\
0
\end{array}\right] p \cong \mathrm{~g} \equiv\left[\begin{array}{c}
\tilde{g} \\
\bar{g}
\end{array}\right]\left\{\begin{array}{l}
k \\
m-k
\end{array}\right.
$$

where

$$
\mathrm{g} \equiv\left[\begin{array}{c}
\tilde{g} \tag{6.17}\\
\overline{\mathrm{~g}}
\end{array}\right]=[\mathrm{U}: \overline{\mathrm{U}}]^{\left.\mathrm{T}_{\mathrm{b}} \equiv\left[\begin{array}{c}
\mathrm{U}^{\mathrm{T}} \mathrm{~b} \\
\bar{U}^{\mathrm{T}}
\end{array}\right], ~\right]}
$$

The least squares solution vector \hat{p} for Problem (6.16) may be obtained as the solution of the upper bidiagonal nonsingular system of equations

$$
\begin{equation*}
R_{p}=\tilde{g} \tag{6.18}
\end{equation*}
$$

Obtaining \hat{p} from Equation (6.18) the solution vector \hat{x} can then be computed from Equation (6.13).

In analogy with the conjugate gradient algorithm we wish to cast this procedure into a sequential form so that a succession of approximate solution vectors $\mathrm{x}^{(\mathrm{i})}$ and associated residual vectors

$$
\begin{equation*}
\mathbf{r}^{(i)}=b-A x^{(i)} \tag{6.19}
\end{equation*}
$$

can be computed as the successive vectors $u^{(i)}$ and $v^{(i)}$ are computed. This obviates the need to store old $u^{(i)}$ and $v^{(i)}$ vectors.

Equation (6.18) is not directly suitable for such a (forward) sequential procedure since the last (lower right) element of R must be determined before any components of \hat{p} can be computed. However using Equations (6.13) and (6.18) we can write

$$
\begin{equation*}
x=V p=V R^{-1} R p=\left(V R^{-1}\right) \tilde{g} \equiv W \tilde{g} \tag{6.20}
\end{equation*}
$$

where the $\mathrm{n} \times \mathrm{k}$ matrix
(6.21)

$$
w=\left[w^{(1)}, \ldots, w^{(k)}\right]
$$

satisfies the linear matrix equation

$$
\begin{equation*}
R^{T}{ }^{T}=v^{T} \tag{6.22}
\end{equation*}
$$

or
(6.23) $\left[\begin{array}{ccccc}\alpha_{1} & & & & 0 \\ \beta_{2} & & \alpha_{2} & & \\ & \cdot & \cdot & & \\ 0 & & & \cdot & \\ \hline & \cdot & \\ & & & & \\ \alpha_{k}\end{array}\right] \cdot\left[\begin{array}{c}w^{(1) T} \\ \vdots \\ w^{(k) T}\end{array}\right]=\left[\begin{array}{c}v^{(1) T} \\ \vdots \\ v^{(k) T}\end{array}\right]$

From this matrix equation one obtains the following expressions for sequential computation of the vectors ${ }^{(i)}$.

$$
\begin{equation*}
w^{(1)}=v^{(1)} / \alpha_{1} \tag{6.24}
\end{equation*}
$$

$$
\begin{equation*}
w^{(i)}=\left(v^{(i)}-\beta_{i} w^{(i-1)}\right) / \alpha_{i} \quad i=2, \ldots, k \tag{6,25}
\end{equation*}
$$

Let g_{i} denote the $i^{\text {th }}$ component of ine m-vector g. Then g_{i} for $i \leq k$, is also the $i^{\text {th }}$ component of the k-vector \tilde{g} of Equation (6.18). Define the m-vectors

$$
g^{(i)}=[g_{1}, \ldots, g_{i}, \underbrace{0, \ldots, 0}_{m-i}]^{T} \quad i=0, \ldots, m
$$

and the k-vectors

$$
\tilde{g}^{(i)}=[g_{1}, \ldots, g_{i}, \underbrace{0, \ldots, 0}_{k-i}]^{T} \quad i=0, \ldots, k
$$

Motivated by Equation (6.20) define a sequence of approximate solution vectors $x^{(i)}$ by
(6.26)

$$
x^{(0)}=0
$$

$$
\begin{align*}
x^{(i)} & =w \tilde{g}^{(i)}=\sum_{j=1}^{i} w^{(j)} g_{j} \tag{6.27}\\
& =x^{(i-1)}+w^{(i)} g_{i} \quad i=1, \ldots, k
\end{align*}
$$

The associated residual vectors, $\mathbf{r}^{(i)}$, are defined as
(6.28a)

$$
r^{(0)}=b
$$

and
(6.28b)

$$
\begin{aligned}
i^{(i)} & =b-A x^{(i)} \\
& =b-A V R^{-1} \underset{g}{(i)} \\
& =b-U R R^{-1} \underset{g}{(i)} \\
& =b-U \tilde{g}^{(i)}
\end{aligned}
$$

$$
=\mathrm{b}-\mathrm{URR}{ }^{-1} \tilde{g}^{(\mathrm{i})} \quad[\text { Using Equation (6.10)] }
$$

$$
\begin{aligned}
& =b-\sum_{j=1}^{i} u^{(j)} g_{i} \\
& =r^{(i-1)}-u^{(i)} g_{i} \quad i=1, \ldots, k
\end{aligned}
$$

We next consider formulas for computing \tilde{g} and $\left\|A^{T} \mathbf{r}^{(i)}\right\|, i=1, \ldots, k$, which depend upon a particular choice of $v^{(1)}$. The choice of $v^{(1)}$ is somewhat arbitrary as long as it is chosen to lie in the row space of A. We follow Paige (1972) in defining β_{1} and $v^{(1)}$ by

$$
\begin{equation*}
v^{(1)_{B_{1}}}=A^{T} \tag{6.29}
\end{equation*}
$$

where $B_{1}=\left\|A^{T}\right\|_{\text {so that }}\left\|v^{(1)}\right\|=1$.
From Equation (6.17) we have

$$
\begin{equation*}
\tilde{g}=U^{T} b \tag{6,30}
\end{equation*}
$$

Left multiplying this equation by R^{T} and using Equation (6.10) and (6.29) gives

$$
\begin{align*}
R^{T} \tilde{g} & =R^{T} U^{T} T_{b}=V_{A} T_{b} \tag{6.31}\\
& =\varepsilon_{1} V^{T}(1)=\varepsilon_{1} e^{(1)}
\end{align*}
$$

where $e^{(1)}$ denotes the first column of the $k \times k$ identity matrix.
Writing the equation $R \underset{g}{T}=\beta_{1} e_{1}$ in terms of its components gives
(6.32) $\left[\begin{array}{llll}\alpha_{1} & & & 0 \\ \beta_{2} & \alpha_{2} & & \\ & \cdot & \ddots & \\ 0 & \ddots_{k} & \alpha_{k}\end{array}\right] \cdot\left[\begin{array}{c}g_{1} \\ \vdots \\ g_{k}\end{array}\right]=\left[\begin{array}{c}\beta_{1} \\ 0 \\ \vdots \\ 0\end{array}\right]$
from which the components g_{i} can be computed as

$$
\begin{equation*}
g_{1}=\beta_{1} / \alpha_{1} \tag{6.33}
\end{equation*}
$$

$$
\begin{equation*}
g_{i}=-\left(g_{i} / \alpha_{i}\right) g_{i-1} \quad i=2, \ldots, k \tag{6.34}
\end{equation*}
$$

Note that it would also be possible to compute the quantities g_{i} sequentially as $g_{i}=u^{(i)} T_{b}$ (see Equation (6.30)) but Paige (1972) reports that Equations (6.33)-(6.34) were found to give better numerical accuracy in test cases.

In a least squares problem one does not generally expect the final residual vector, $\hat{\mathrm{r}}=\mathrm{b}-\mathrm{A} \hat{\mathrm{x}}$, to be zero. The residual vector at the solution is characterized however by the property that it is orthogonal to all of the column vectors of A. Thus the vector $h=A^{T}(b-A x)$ is zero if and only if x is a solution vector for the least squares problem $A x \geqslant b$. It is also true that h is the negative gradient vector with respect to x of the function $\frac{1}{2}\|b-A x\|^{2}$. Define

$$
\begin{align*}
h^{(i)} & =A^{T}(i) \tag{6.35}\\
& =A^{T}\left(b-A x^{(i)}\right) \\
& =A^{T}\left(b-U \tilde{g}^{(i)}\right) \\
& =v^{(1)_{B_{1}}-V R^{T} g^{(i)}}
\end{align*}
$$

$$
\begin{aligned}
& =V\left(e^{\left.(1)_{B_{1}}-R^{T} \tilde{g}^{(i)}\right)}\right. \\
& =-V e^{(i+1)_{B_{i+1}} g_{i}} \\
& =-v^{(i+1)_{B_{i+1}} g_{i} \quad i=1, \ldots, k-1}
\end{aligned}
$$

while for $i=0$ and $i=k$ we have $h^{(0)}=A^{T} T_{b=v}^{(1)} B_{1}$ and $h^{(k)}=0$. It is of interest to note that the vectors $h^{(0)}, \ldots, h^{(k-1)}$ are mutually orthegonal.

The quantities $\gamma_{i}=\left\|h^{(i)}\right\|$ which may be useful in monitoring the progress of the algorithm are thus expressible as

$$
\begin{equation*}
\gamma_{0}=s_{1} \tag{6.36}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{i}=\left|\beta_{i+1} g_{i}\right| \quad i=1, \ldots, k-1 \tag{6.37}
\end{equation*}
$$

$$
\begin{equation*}
\gamma_{k}=0 \tag{6.38}
\end{equation*}
$$

In practice k is generally not known in advance and will in fact be defined as the first value of i for which $\beta_{i+1}=0$.

We turn now to the determination of the quantities $u^{(i)}$ and α_{i} for $i=1, \ldots, k$ and $v^{(i)}$ a and β_{i} for $i=2, \ldots, k$. From Equation (6.10) we obtain the equations

$$
\begin{equation*}
u^{(1)} \kappa_{1}=A v^{(1)} \tag{6.39}
\end{equation*}
$$

$$
\begin{equation*}
u^{(i)} \alpha_{i}=A v^{(i)}-u^{(i-1)_{B_{i}}} \quad i=2, \ldots, k \tag{6.40}
\end{equation*}
$$

and from Equation (6.11) the equations

$$
\begin{align*}
v^{(i)_{\beta_{i}}} & =A^{T} u^{(i-1)}-v^{(i-1)} \alpha_{i-1} \quad i=2, \ldots, k \tag{6.41}\\
0 & =A^{T} u^{(k)} \cdot v^{(k)} \alpha_{k}
\end{align*}
$$

If β_{1} and $v^{(1)}$ are defined by Equation (6.29) and the scalar quantities β_{i} and α_{i} are determined so that the vectors $v^{(i)}$ and $u^{(i)}$ respectively have unit euclidean length (as is required by Equations (6.8) and (6.9)) then Equations (6.39)-(6.41)
determine all of the remaining vectors $v^{(i)}, i=2, \ldots, k$, and $u^{(i)}, i=1, \ldots, k$.
Collecting these various formulas together leads to the following algorithm.
(6.43) Algorithm ITLS for iterative solution of the least squaresproblem $\mathrm{Ax} \cong \mathrm{b}$. [Due to C. C. Paige(1972) pp. 21-22.]

Step No.
1
2

3

4

5

6

7

8

9

10
11

12

13
14
15
16
17
18

Description

$$
x^{(0)}:=0
$$

$$
g_{0}:=-1
$$

$$
i:=1
$$

$$
\tilde{v}^{(i)}:=\left\{\begin{array}{l}
A^{T_{b} \text { if } i=1} \\
A^{T_{u}(i-1)_{-v}}(i-1)_{\alpha_{i-1}} \quad \text { if } i>1
\end{array}\right.
$$

$$
\beta_{i}:=\left\|\tilde{v}^{(i)}\right\|
$$

$\gamma_{i-1}:=\left|\beta_{i} g_{i-1}\right|$
Theoretical termination test: If $\beta_{i}=0$ go to Step 17 .
Practical termination test: If either β_{i} or γ_{i-1} is sufficiently small go to Step 17 .

$$
\begin{aligned}
& v^{(i)}:=\tilde{v}^{(i)} / B_{i} \\
& \tilde{u}^{(i)}:=\left\{\begin{array}{l}
A v^{(1)} \text { if } i=1 \\
A v^{(i)}-u^{(i-1)} \beta_{i} \text { if } i>1
\end{array}\right.
\end{aligned}
$$

$$
\alpha_{i}:=\left\|\tilde{u}^{(i)}\right\|
$$

$$
u^{(i)}:=\tilde{u}^{(i)} / \alpha_{i}
$$

$$
w^{(i)}:=\left\{\begin{array}{l}
v^{(1)} / \alpha_{1} \text { if } i=1 \\
\left(v^{(i)}-w^{\left.(i-1)_{B_{i}}\right) / \alpha_{i} \text { if } i>1}\right.
\end{array}\right.
$$

$$
g_{i}:=-\left(\beta_{i} / \alpha_{i}\right) g_{i-1}
$$

$$
x^{(i)}:=x^{(i-1)}+w^{(i)} g_{i}
$$

$$
i:=i+1
$$

Go to Step 4
$k:=i-1$
Stop

It must be verified that the vectors $v^{(i)}$ and $u^{(i)}$ produced by this algorithm have the orthogonality properties specified by Equations (6.8) and (6.9) and that all of the numbers α_{i} defined by this algorithm are positive.

Assume that $\ell-1$ iterations of Algorithm (6.43) have been executed producing positive numbers $\beta^{(i)}$ and $\alpha^{(i)}, i=1, \ldots, \ell-1$, a set of mutually orthogonal unit n-vectors $\left\{v^{(1)}, \ldots, v^{(\ell-1)}\right\}$, and a set of mutually orthogonal unit m-vectors $\left\{u^{(1)}, \ldots, u^{(\ell-1)}\right\}$. It is obvious from Steps 4 and 8 that all of the vectors $v^{(i)}$ lie in the row space of A and from Steps 9 and 11 that all of the vectors $u^{(i)}$ lie in the column space (range space) of A.

Consider the quantities computed during the $\ell^{\text {th }}$ iteration.
If ${ }^{\prime} \ell_{\ell}$, computed at Step 5 is zero then the (theoretical) algorithm triminates, setting $k=\ell-1$. In this case we have $\beta_{k+1}=0$ and $\gamma_{k}=0$ which means (see Equation (6.35)) that the most recently computed approximate solution $x^{(k)}$ was in fact the unique minimum length solution $\hat{\gamma}$ for the least squares problem, $A x \cong b$.

If B_{ℓ}, computed at Step 5 is not zero, i.e., $B_{\ell}>0$, then we must verify that the vector $\tilde{v}^{(\ell)}$ previously computed at Step 4 is orthogonal to $\mathrm{v}^{(i)}, \mathrm{i}=1, \ldots, \ell-1$. Using the formula of Step 4 with $i>1$ the inner products to be investigated are

$$
\begin{align*}
& v^{(i)} T_{\tilde{v}^{\prime}}(\ell)=v^{(i) T_{A}} T_{u}(\ell-1)-v^{(i)} T_{v}(\ell-1) \alpha_{\ell-1} \tag{6.44}\\
& =\left[A v^{(i)}\right]_{u^{(\ell-1)}-v^{(i) T} v^{(\ell-1)}}^{\alpha_{\ell-1}} \\
& =\left[u^{(i)} \alpha_{i}+u^{(i-1)} \beta_{i}\right]^{T} u^{(\ell-1)}{ }_{-}(i) T_{v}(\ell-1)_{\alpha_{\ell-1}} \\
& =u^{(i) T} \mathrm{~T}^{(\ell-1)} \alpha_{\alpha_{i}+u^{(i-1)} \mathrm{T}_{u^{(\ell-1)}} \beta_{i}-v^{(i)} \mathrm{T}_{\mathrm{v}}(\ell-1)}^{\alpha_{\ell-1}}
\end{align*}
$$

For $i<\ell-1$ each of the three right side terms in Equation (6.44) is zero because of the assumed mutual orthogonality of $\left\{u^{(1)}, \ldots, u^{(l-1)}\right\}$ and the assumed mutual orthogonality of $\left\{v^{(1)}, \ldots, v^{(\ell-1)}\right\}$.

For $i=\ell-1$ Equation (6.44) becomes

$$
v^{(\ell-1) T} \tilde{v}^{(\ell)}=\alpha_{\rho-1}+0-\alpha_{\ell-i}=0
$$

which completes the verification that ${\underset{\sim}{v}}^{(\ell)}$ is orthogonal to $v^{(i)}, i=2, \ldots, \ell-1$. The verification that $v^{(1)} \mathrm{T}_{\mathrm{v}}(\ell-1)=0$ is equally straightforward.

Similarly it can be shown that $\tilde{u}^{(\ell)}$ computed at Step 9 satisfies $u^{(i) T} \tilde{u}^{(\ell)}=0$ for $i=1, \ldots, \ell-1$. We further assert that $\tilde{u}^{(\ell)}$ is not zero and thus that $\alpha_{\ell}>0$. Assume the contrary. Then

$$
\begin{align*}
0 & =\tilde{u}^{(\ell)}=A v^{(\ell)}-u^{(\ell-1)} B_{\ell} \tag{6.45}\\
& =A v^{(\ell)}-\left[\mathrm{Av}^{(\ell-1)}-u^{(\ell-2)_{\beta-1}}\right]_{\ell} / \alpha_{\ell-1} \\
& =\cdots=\sum_{i=1}^{\ell} c_{i} A v^{(i)} \\
& =A \sum_{i=1}^{\ell} c_{i} v^{(i)}
\end{align*}
$$

where the coefficients c_{i}, $i=1, \ldots, \ell$ are nonzero. Since the vectors ${ }^{(i)}$, $i=1, \ldots, \ell$ constitute an orthonormal basis for a subspace of the row space of A the vector $z=\sum_{i=1}^{\ell} c_{i} v^{(i)}$ must be a nonzero vector lying in the row space of A. Such a vector must satisfy $A z \neq 0$ contradicting Equation (6.45). We conclude that $\tilde{u}^{(\ell)} \neq 0$ and $\alpha_{\ell}>0$.

This completes the verification of the theoretical algorithm (6.43). In practice there remains the problem of fully specifying a satisfactory termination test at Step 7.

Some estimate, say ϵ_{i}, of the norm of the round-off error vector associated with the computed vestor $\tilde{v}^{(i)}$ could be computed. Then the number β_{i} could be regarded as being sufficiently small for termination if $\beta_{i} \leq \varepsilon_{i}$.

Since γ_{i-1} represents an evaluation of $A^{T}\left(b-A x^{(i-1)}\right.$) one might define

$$
\begin{equation*}
\omega_{i}=\|A\|\left(\|b\|+\|A\| \cdot\left\|x^{(i)}\right\|\right) \tag{6.46}
\end{equation*}
$$

and terminate the algorithm when $\gamma_{i-1} \leq \eta \omega_{i-1}$ where η denotes the relative machine precision. (Define η to be the smallest number such that the computed value of $1+\eta$ is distinguishable from 1.)

More complex algorithmic logic might be needed. Thus if $\beta_{i} \leq \varepsilon_{i}$ but $\gamma_{i-1} \gg \eta \omega_{i-1}$ then rather than accepting $x^{(i-1)}$ as the solution it might be useful to restart the algorithm, attacking the modified problem

$$
\begin{equation*}
A d x \cong b-A x^{(i-1)} \tag{6.47}
\end{equation*}
$$

to obtain a correction vector $d x$ to be added to $\mathrm{x}^{(\mathrm{i}-1)}$.
We intend to study the problem of termination tests for this algorithm and treat the subject in a subsequent report.

Chapter 7. The Theoretical Equivalence of Algerithms CGLS and ITLS

We will show that the sequence of approximate solution vectors $\overline{\mathbf{x}}^{(\mathrm{i})}$ generated by Algorithm CGLS (4.3) is identical (theoretically) with the sequence of approximate solution vectors $\mathrm{x}^{(\mathrm{i})}$ generated by Algorithm $\operatorname{ITLS}(6,43)$.

It will be convenient to state the relationships represented by Algorithm CGLS in matrix form. In terms of the quantities defined in Algorithm CGLS define the matrices

$$
\begin{align*}
& \overline{\mathrm{V}}=\left[\overline{\mathrm{v}}^{(1)}, \ldots, \overline{\mathrm{v}}^{(\mathrm{k})}\right] \tag{7.1}\\
& \overline{\mathrm{H}}=\left[\overline{\mathrm{h}}^{(0)}, \ldots, \overline{\mathrm{h}}^{(\mathrm{k}-1)}\right] \tag{7.2}
\end{align*}
$$

$$
\begin{align*}
D & =\operatorname{Diag}\left\{\left\|A \bar{v}^{(1)}\right\|, \ldots,\left\|A \bar{v}^{(k)}\right\|\right\} \tag{7.3}\\
& \equiv \operatorname{Diag}\left\{d_{1}, \ldots, d_{k}\right\}
\end{align*}
$$

and

$$
\begin{align*}
F & =\operatorname{Diag}\left\{\left\|\bar{h}^{(0)}\right\|, \ldots,\left\|\bar{h}^{(k-1)}\right\|\right\} \tag{7.4}\\
& \equiv \operatorname{Diag}\left\{f_{0}, \ldots, f_{k-1}\right\}
\end{align*}
$$

Then from the orthogonality of the vectors $\bar{h}^{(i)}$ we have

$$
\begin{equation*}
\bar{H}^{T} \widetilde{H}=F^{2} \tag{7.5}
\end{equation*}
$$

and from the $\left(A^{T} A\right)$-conjugacy of the vectors $\bar{v}^{(i)}$ we have

$$
\begin{equation*}
\bar{V}^{T} A_{A} \bar{V}^{\prime}=D^{2} \tag{7.6}
\end{equation*}
$$

Following Householder ((1964) pp. 2 and 139-141) define
(7.7)

$$
J=\left[\begin{array}{llll}
0 & & & \\
1 & 0 & & \\
& \ddots & \\
0 & \ddots & 1 & \\
0 & & 1 & 0
\end{array}\right]
$$

Then Equations (4.8) and (4.10) can be written respectively as

$$
\begin{equation*}
\bar{H}(I-J)=A^{T} A \bar{V} F^{2} D^{-2} \tag{7.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\mathrm{V}} \mathrm{~F}^{-2}\left(\mathrm{I}-\mathrm{J} \mathrm{~J}^{\mathrm{T}} \mathrm{~F}^{2}=\overline{\mathrm{H}}\right. \tag{7.9}
\end{equation*}
$$

In terms of these quantities we now define quantities, distinguished by a caret, which will be shown to satisfy the relationships of Algorithm ITLS.

$$
\begin{equation*}
\hat{\mathrm{V}}=\overline{\mathrm{H}} \mathrm{~F}^{-1} \tag{7,10}
\end{equation*}
$$

$$
\begin{equation*}
\hat{U}=A \bar{V} D^{-1} \tag{7.11}
\end{equation*}
$$

$$
\begin{equation*}
\hat{R}=D F^{-2}\left(I-J^{T}\right) F \tag{7,12}
\end{equation*}
$$

$$
\begin{equation*}
\hat{w}=\bar{V} D^{-1} \tag{7.13}
\end{equation*}
$$

Note that \hat{R} is upper bidiagonal.

Using the definitions (7.10)-(7.12) and the Equations (7.5)-(7.9) it can be directly verified that the equations

$$
\begin{equation*}
\hat{\mathrm{V}}^{\mathrm{T}} \hat{\mathrm{~V}}=\mathrm{I} \tag{7.14}
\end{equation*}
$$

$$
\hat{U}^{T} \hat{U}=I
$$

$$
\begin{equation*}
A \hat{V}=\hat{U} \hat{R} \tag{7,16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{A}^{\mathrm{T}} \hat{\mathrm{U}}=\hat{\mathrm{V}} \hat{\mathrm{R}}^{\mathrm{T}} \tag{7.17}
\end{equation*}
$$

are satisfied.
From Enuation (7,10) the first column vector of the matrix \hat{V} is equal to $\bar{h}^{(0)} /\left\|\bar{h}^{(0)}\right\|$ or equivalently $A^{T} b /\left\|A^{T}\right\| \|$. This condition along with Equations (7.16) - (7.17) assure that the matrices \hat{U}, \hat{V}, and \hat{R} are identical with the matrices U, V, and R which would be generated by Algorithm ITLS in solving the least squares problem $A x \cong b$.

Furthermore by use of Equation (7.9) it can be directly verified that the matrix \hat{W} of Equation (7.13) satisfies

$$
\begin{equation*}
\hat{W} \hat{R}=\hat{\mathrm{V}} \tag{7.18}
\end{equation*}
$$

In accordance with Equation (6.30) define

$$
\begin{equation*}
\hat{g}=\hat{U}^{T} \mathrm{~b} \tag{7,19}
\end{equation*}
$$

Let $\widehat{w}^{(i)}$ denote the $i^{\text {th }}$ column vector of \hat{W} and let \hat{g}_{i} denote the $i{ }^{\text {th }}$ component of \hat{g}. We wish to show that the correction $\bar{v}^{(i)} \bar{p}_{i}$ which is added to the approxirnate solution vector at Equation (4.7) of Algorithm CGLS is identical with the correction vector $\hat{w}^{(i)} \hat{g}_{i}$ which is added to the approximate solution vector at Step 14 of Algorithm ITLS. Thus we wish to show that

$$
\begin{equation*}
\bar{v}^{(j)} \bar{p}_{i}=\hat{w}^{(i)} \hat{g}_{i} \quad i=1, \ldots, k \tag{7.20}
\end{equation*}
$$

From Equation (7.13) we have $\hat{w}^{(i)}=\bar{v}^{(i)} / d_{i}$ and from Equations (4.6). (7.3), and (7.4) we have $\bar{p}_{i}=f_{i-1}^{2} / d_{i}^{2}$. Thus Equation (7.20) may be established by proving that

$$
\begin{equation*}
f_{i-1}^{2}=d_{i} \hat{g}_{i} \quad i=1, \ldots, k \tag{7.30}
\end{equation*}
$$

Introduce the k-vector $e=[1, \ldots, 1]^{\mathrm{T}}$ so that Equation (7.30) can be written as

$$
\begin{array}{rlrl}
\mathrm{F}^{2} \mathrm{e} & =\mathrm{D} \hat{\mathrm{~g}} & \tag{7.31}\\
& =D \hat{U}^{\mathrm{T}_{\mathrm{b}}} & & \text { [Using Equation (7.19)] } \\
& =\overline{\mathrm{V}}^{\mathrm{T}} \mathrm{~A}^{\mathrm{T}_{\mathrm{b}}} & & {[\text { Using Equation (7.11)] }} \\
& =\overline{\mathrm{V}}^{\mathrm{T}} \overline{\mathrm{~h}}^{(0)} & & {[\text { Using Equation (4.4)] }}
\end{array}
$$

Left multiply Equation (7.8) by $\overline{\mathrm{V}}^{\mathrm{T}}$ and use Equation (7.6) obtaining

$$
\begin{equation*}
\overline{\mathrm{V}}^{\mathrm{T}} \overline{\mathrm{H}(\mathrm{I}-\mathrm{J})}=\mathrm{F}^{2} \tag{7.32}
\end{equation*}
$$

Substitute this expression for F^{2} into Equation (7.31) obtaining

$$
\begin{equation*}
\bar{V}^{T I} \bar{I}(I-J) e=\bar{V}^{T}(0) \tag{7.33}
\end{equation*}
$$

as the equation to be verified. This equation is clearly true since $(I-J) e=[1,0, \ldots, 0]^{T}$.

This completes the verification that the algorithms CGLS and ITLS produce the same sequence of approximate solutions. It follows that the vector $\bar{h}^{(i)}$ $=A^{T}\left[b-A \bar{x}^{(i)}\right]$ of Equation (4.8) is identical with the vector $h^{(i)}=A^{\left.T b-A x^{(i)}\right]}$ of Equation (6,35).

Chapter 8 Solving a Consistent System Ax=b

Let A be an $m \times n$ matrix and let b be an mector contained in the column space (range space) of A. Consider the problern of finding an n-vector x satisfying

$$
\begin{equation*}
\mathrm{Ax}=\mathrm{b} \tag{8.1}
\end{equation*}
$$

The most common case of a consistent system of linear equations would be the case in which the matrix A is square and nonsingular. Also of practical interest is the case of a full rank underdetermined problem, i.e., $m<n$ and Rank $(A)=m$. The algorithm to be described permits either $m \leq n$ or $m>n$ and does not require any restriction on the rank of A.

If $\operatorname{Rank}(A)<n$ the solution to Problem (8.1) is nonunique. In this case there is a unique solution vector $\hat{\mathbf{x}}$ of minirnum euclidean length. This minimum length solution vector is characterized by being the only solution vector for Problem (8.1) lying in the row space of A. The algorithm to be described constructs this solution vector, $\hat{\mathbf{x}}$.

Assume there exists an integer $k(1 \leq k \leq \min \{m, n\})$ and matrices

$$
\begin{equation*}
U_{m \times k}=\left[u^{(l)}, \ldots, u^{(k)}\right] \tag{8.2}
\end{equation*}
$$

$$
\begin{equation*}
V_{n \times k}=\left[v^{(l)}, \ldots, v^{(k)}\right] \tag{8.3}
\end{equation*}
$$

$$
L_{k \times k}=\left[\begin{array}{lllll}
\alpha_{1} & & & & 0 \tag{8.4}\\
\beta_{2} & \alpha_{2} & & & \\
& \cdot & \cdot & \cdot & \\
0 & \cdot & \cdot & \varepsilon_{k} & \cdot \\
& & & \alpha_{k}
\end{array}\right] \quad\left(\text { all } \alpha_{i}>0 \text { and } \beta_{i}>0\right)
$$

and a k-vector, \hat{p}, such that

$$
\begin{equation*}
U^{T} U=I_{k} \tag{8.5}
\end{equation*}
$$

$$
\begin{equation*}
v^{T} V=I_{k} \tag{8.6}
\end{equation*}
$$

$$
\begin{equation*}
A V=U L \tag{8,7}
\end{equation*}
$$

$$
\begin{equation*}
A^{T}{ }_{U}=V L^{T} \tag{8.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{x}=v \hat{p} \tag{8.9}
\end{equation*}
$$

Since L is nonsingular Equations (8.6) and (8.8) imply that the column vectors of V form an orthonormal basis for a subspace γ of the row-space of A. Similarly Equations (8.5) and (8.7) imply that the column vectors of U form an orthonormal basis for a subspace U of the column space (range space) of A 。 Equation (8.9) shows that the subspace γ contains the solution vector $\hat{\mathbf{x}}$. From Equations (8.1), (8.7), and (8.9) it follows that the subspace \mathbb{U} contains the right-side vector b.

Assuming the availability of the matrices U, V, a.sd L., Problem (8.1) can be approached as follows:

Introduce the change of variables

$$
\begin{equation*}
x=V_{p} \tag{8.10}
\end{equation*}
$$

in Problem (8.1) and use Equation (8.7) obtaining the equivalent problem

Left multiplying this equation by U^{T} and using Equation (8.5) gives the $k \times k$ nonsingular lower bidiagonal system

$$
\begin{equation*}
L_{p}=g \tag{8.12}
\end{equation*}
$$

where g is the k-vector defined by

$$
\begin{equation*}
\mathrm{g}=\mathrm{U}^{\mathrm{T}} \mathrm{~b} \tag{8.13}
\end{equation*}
$$

A computational algorithm can thus be based on the computation of $\mathrm{g} u \operatorname{sing}$ Equation (8.13), solving for \hat{p} in Equation (8.12), and finally computing \hat{x} using Equation (8.9). These steps are all directly amendable to being organized in a sequential form which uses the vectors $u^{(i)}$ and $v^{(i)}$ as they are produced.

Assuming the nontrivial case of $b \neq 0$ we follow Paige (1972) in defining $u^{(1)}$ by the equations

$$
\begin{equation*}
\beta_{1}=\|b\| \tag{8.14}
\end{equation*}
$$

$$
\begin{equation*}
u^{(1)}=b / \beta_{1} \tag{8.15}
\end{equation*}
$$

Thus $u^{(1)}$ is in the column space (range space) of A since it was assumed that this was true of b.

The other vectors $\dot{u}^{(i)}$ and $v^{(i)}$ and the elements α_{i} and β_{i} of the matrix L are sequentially determined by the unit length requirements of Equations (8.5) and (8.6) and the following equations which follow directly from Equations (8.7) and (8.8)

$$
\begin{equation*}
u^{(i)} \beta_{i}=A v^{(i-1)}-u^{(i-1)} \alpha_{i-1} \quad i=2, \ldots, k \tag{8,16}
\end{equation*}
$$

$$
\begin{equation*}
0=A v^{(k)}-u^{(k)} \alpha_{k} \tag{8.17}
\end{equation*}
$$

$$
\begin{equation*}
v^{(1)} \alpha_{1}=A^{T}{ }^{(1)} \tag{8.18}
\end{equation*}
$$

$$
\begin{equation*}
v^{(i)_{\alpha_{i}}=A^{T} u^{(i)_{-}} v^{(i-1)_{B}} \quad i=2, \ldots, k} \tag{8.19}
\end{equation*}
$$

Comparing Equations (8.16) and (8.17) we note that the integer k is generally not known a priori but is determined as the first value of i for which $A v^{(i)}-u^{(i)} \alpha_{i}=0$.

With $u^{(1)}$ chosen in the column space of A it follows from Equations (8.16), (8.18), and (3.19) that all $u^{(i)}$ will be in the column space of A and all $v^{(i)}$ will be in the row space of A. It will subsequently be verified that vectors $u^{(i)}$ and $v^{(i)}$ produced in this way necessarily satisfy the orthogonality conditions of Equations (8.5) and (8.6).

With $\mathrm{u}^{(1)}$ defined by Equation (8.15) the vector g defined by Equation (8.13) is representable as

$$
\begin{equation*}
g=\beta_{1} e^{(1)} \tag{8.20}
\end{equation*}
$$

where $e^{(1)}$ denotes the first column vector of the $k x k$ identity matrix. Using this expression for g Equation (8.12) becomes

$$
\begin{equation*}
L_{p}=\beta_{1} e^{(1)} \tag{8.21}
\end{equation*}
$$

which permits the components, p_{i}, of the solution vector \hat{p} to be expressed as

$$
p_{1}=\beta_{1} / \alpha_{1}
$$

$$
\begin{equation*}
p_{i}=-\left(\beta_{i} / \alpha_{i}\right) p_{i-1} \quad i=2, \ldots, k \tag{8.22}
\end{equation*}
$$

Define the sequence of k-vectors
(8.23)

$$
p^{(i)}=[p_{1}, \ldots, p_{i}, \underbrace{0, \ldots, 0}_{k-i}]^{T} \quad i=0, \ldots, k
$$

Define the sequence of approximate solution vectors
(8.24)

$$
x^{(0)}=0
$$

(8.25)

$$
x^{(i)}=V p^{(i)}=\sum_{j=1}^{i} v^{(i)} p_{i}=x^{(i-1)}+v^{(i)} p_{i} \quad i=1, \ldots, k
$$

Associated residual vectors are defined by
(8.26)

$$
r^{(i)}=b-A x^{(i)} \quad i=0, \ldots, k
$$

and may be expressed as
(8.27)

$$
\mathbf{r}^{(0)}=\mathrm{b}=\mathrm{u}^{(1)_{B_{1}}}
$$

(8.28)

$$
r^{(i)}=b-A V p^{(i)}=b-U L p^{(i)}
$$

$$
\begin{align*}
& =b-U\left[\begin{array}{l}
R_{1} \\
0 \\
\vdots \\
0 \\
g_{i+1} p_{i} \\
0 \\
\vdots \\
0
\end{array}\right]+\text { row } i+1 \\
& =b-u^{(1)_{B_{1}}-u^{(i+1)_{S}}{ }_{i+1} p_{i}} \\
& =-u^{(i+1)_{B_{i+1}} p_{i}} \\
& r^{(k)^{\prime}=0} \tag{8.29}
\end{align*}
$$

If we introduce the additional definitions, $p_{0}=-1$, and $\beta_{k+1}=0$ the norm of the residual vector can be expressed as

$$
\begin{equation*}
\rho_{i}=\left\|r^{(i)}\right\|=\left|\beta_{i+1} p_{i}\right| \quad i=0, \ldots, k \tag{8.30}
\end{equation*}
$$

These considerations may be organized into a computational algorithm as follows:

(8.31) Algorithm ITC	For Iterative Solution of Consistent Linear Equations [Given by Paige (1972) pp. 21-22]		
Step Number	Description		
1	$\mathrm{x}^{(0)}:=0$		
2	$\mathrm{p}_{0}:=-1$		
3	$\mathrm{i}:=1$		
4	$\tilde{u}^{(i)}:=\left\{\begin{array}{l} b \text { if } i=1 \\ A_{v^{(i-1}}^{(i-1)_{-}}(i-1)_{\alpha_{i-1}} \text { if } i>1 \end{array}\right.$		
5	$\beta_{i} ;=\left\\|\tilde{u}^{(i)}\right\\|$		
6	$\rho_{i-1}:=\left\|\beta_{i} p_{i-1}\right\|$		
7	Theoretical termination test: If $\theta_{i}=0$ go to Step 1 万. Practical termination test: If either β_{i} or ρ_{i-1} is sufficiently small go to Step 16 .		
8	$u^{(i)}:=\tilde{u}^{(i)} / B_{i}$		
9	$\tilde{v}^{(i)}:=\left\{\begin{array}{l} A^{T} u^{(1)} \text { if } i=1 \\ A^{T} u^{(i)}-v^{(i-1)} R_{i} i^{\prime} i>1 \end{array}\right.$		
10	$\alpha_{i}:=\left\\|\sim^{(i)}\right\\|$		
11	$\mathrm{v}^{(\mathrm{i})}:=\tilde{\mathrm{v}}^{(\mathrm{i})} / \alpha_{\mathrm{i}}$		
12	$p_{i}:=-\left(B_{i} / \alpha_{i}\right) p_{i m l}$		
13	$x^{(i)}:=x^{(i-1)}+v^{(i)} p_{i}$		
14	$i:=i+1$		
15	Go to Step 4		
16	k: =i-1		
17	Stop		

Assume these conditions are satisfied for $i=1, \ldots, \ell-1$. Consider the quantities computed during the $\ell^{\text {th }}$ iteration.

If B_{ℓ} computed at Step 5 is zero the algorithm terminates setting $k=\ell-1$. Thus $\theta_{k+1}=0$ and $\rho_{k}=0$ which (see Equation (8.30)) implies that the current approximate solution vector $\mathbf{x}^{(k)}$ is actually the unique minimal length solution vector $\hat{\mathbf{x}}$.

If $\beta_{\ell} \neq 0$ then $\varepsilon_{\ell}>0$ and the orthogonality of $\tilde{u}^{(\ell)}$ relative to $u^{(l)}, \ldots, u^{(\ell-1)}$ must be verified

$$
\begin{align*}
& u^{(i) T} \tilde{u}^{(\ell)}=u^{(i) T_{A v}}(\ell-1)-u^{(i)} T_{u}(\ell-1) \alpha_{\ell-1} \tag{8.32}\\
& =\left[v^{(i)} \alpha_{i}+v^{(i-1)} \varepsilon_{i}\right]^{T}(\ell-1) u_{u}(i) T_{u}(\ell-1)_{\alpha_{\ell-1}} \\
& =v^{(i) T_{v}(\ell-1)} \alpha_{i}-u^{(i)} T_{u}(\ell-1) \alpha_{\ell-1} \quad i=2, \ldots, \ell-1
\end{align*}
$$

Fori< $\ell-1$ each term of this final expression vanishes while for $i=\ell-1$ the final expression reduces to $\alpha_{\ell-1}^{-\alpha} \ell_{\ell-1}=0$. The verification that $u^{(1) T \tilde{u}^{(\ell)}=0 \text { is }, ~}$ similarly straightforward.

Similarly it can be verified that the vector $\tilde{v}^{(\ell)}$ defined at Step 9 satisfies $v^{(i) T} \tilde{v}^{(\ell)}=0$ for $i=1, \ldots, \ell-1$. It remains to be shown that α_{ℓ} defined at Step 10 is positive.

Suppose $\alpha_{\ell}=0$. Then

$$
\begin{align*}
0 & =\tilde{v}^{(\ell)}=A^{T} u^{(\ell)}-v^{(\ell-1!/ 3} \ell \tag{8.33}\\
& =A^{T} u^{(\ell)}-\left[A_{u}^{T}(\ell-1)_{-v}{ }^{(\ell-2)_{B}}{ }_{\ell-1}\right]_{\ell} / \alpha_{\ell-1} \\
& =\cdots=\sum_{i=1}^{\ell} c_{i} A^{T}(i)=A^{T} \sum_{i=1}^{\ell} c_{i} u^{(i)}
\end{align*}
$$

Here the coefficients c_{i} are all nonzero and the vectors $u^{(1)}, \ldots, u^{(\ell)}$ constitute an orthonormal basis for a subspace of the column space (range space) of A. Thus the vector $z=\sum_{i=1}^{\ell} c_{i} u^{(i)}$ is a nonzero vector in the column space of A. It follows that $\mathrm{A}^{\mathrm{T}} \mathrm{F} \neq 0$ which contradicts Equation (8.3?) We conclude that $\alpha_{\ell}>0$.

The practical termination test at Step 7 might be implemented as a comparison of β_{i} with some computed estimation of the norm of the round-off error vector associated with the computed vector $\tilde{u}^{(i)}$ or a comparison of ρ_{i-1} with $\eta\left(\|b\|+\left\|_{1} A\right\| \cdot \| x^{(i}\right.$ where η denotes the relative machine precision.

Chapter 9 The Theoretical Equivalence of Algorithms CGC and ITC

Using the notation of Algorithm CGC (5.7) define

$$
\begin{equation*}
v^{(i)}=(-1)^{i-1-(i)} /\left\|\bar{v}^{(i)}\right\| \quad i=1, \ldots, k \tag{9.1}
\end{equation*}
$$

$$
\begin{equation*}
u^{(i)}=(-1)^{i-1} \bar{r}^{(i-1)} /\left\|\left.\right|^{(i-1)}\right\| \quad i=1, \ldots, k \tag{9.2}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{i}=\left\|\bar{v}^{(\mathrm{i})}\right\| /\left\|\overline{\mathrm{r}}^{(\mathrm{i}-1)}\right\|=\left(\overline{\mathrm{p}}_{\mathrm{i}}\right)^{-1 / 2} \quad \mathrm{i}=1, \ldots, k \tag{9.3}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{1}=\|b\|=\left\|r^{(0)}\right\| \tag{9.4}
\end{equation*}
$$

$$
\begin{align*}
\beta_{i} & =\left\|\bar{v}^{(i-1)}\right\| \cdot\left\|\bar{r}^{(i-1)}\right\| /\left\|\bar{r}^{(i-2)}\right\|^{2} \tag{9}\\
& =\left(\bar{\beta}_{i-1} / \bar{p}_{i-1}\right)^{1 / 2} \quad i=2, \ldots, k
\end{align*}
$$

$$
\begin{equation*}
p_{0}=-1 \tag{9.6}
\end{equation*}
$$

$$
\begin{array}{rlr}
p_{i} & =(-1)^{i-1}\left\|\bar{r}^{(i-1)}\right\|^{2} /\left\|\bar{v}^{(i)}\right\| & \tag{9.7}\\
& =(-1)^{i-1} \bar{p}_{i}\left\|\bar{v}^{(i)}\right\| & i=1, \ldots, k \\
x^{(i)} & =\bar{x}^{(i)} & i=0, \ldots, k
\end{array}
$$

Since the sets of vectors $\left\{\bar{v}^{(1)}, \ldots, \bar{v}^{(k)}\right\}$ and $\left\{\bar{x}^{(0)}, \ldots, \bar{r}^{(k-1)}\right\}$ are each mutually orthogonal it follows that the $\operatorname{sets}\left\{v^{(l)}, \ldots, v^{(k)}\right\}$ and $\left\{u^{(1)}, \ldots, u^{(k)}\right\}$ defined by Equations (2.1) and (9.2) are each mutually orthonormal. Using
the equations of Algorithm $\operatorname{CGC}(5.7)$ it can be directly verified that the quantities defined by Equations (9.1) - (9.8) satisfy the relations of Algorithm ITC (8.31). Thus the algorithms CGC and ITC theoretically produce the same sequence of approximate solution vectors.

Since the difference between the two algorithms only involves different seale factors it is to be expected that, apart from questions of exponent overflow or underflow, the two aigorithms will exhibit essentially the same numerical behaviour also.

The theoretica! equivalence of these two algorithms was pointed out by Paige (1972), p. 13.

Chapter 10 Solving a Consistent System Ax=b where A is Symmetric

Let A be an $n \times n$ symmetric matrix and let b be an n-vector contained in the column space (range space) of A. We wish to find a vector x satisfying

$$
\begin{equation*}
A x=b \tag{10.1}
\end{equation*}
$$

In practical problems of this type the matrix A would usually be of rank n. The algorithm to be described does not require that $\operatorname{Rank}(A)=n$. If Rank (A) < n the solution of Problem (10.1) is nonunique. In this case the algorithm finds the (unique) solution vector \hat{x} lying in the row space of A. This is the minimal length solution vector for Problem (10.1).

Assume the existence of matrices $V_{n \times k}$ and $C_{k \times k}$ and a k-vector \hat{p} such that

$$
\begin{equation*}
V=\left[v^{(1)}, \ldots, v^{(k)}\right] \tag{10.2}
\end{equation*}
$$

$$
C=\left[\begin{array}{cccc}
\alpha_{1} & \beta_{2} & & 0 \\
\varepsilon_{2} & \alpha_{2} & & \beta_{k} \\
0 & \ddots & \beta_{k} & \\
{ }^{\prime} & \alpha_{k}
\end{array}\right]
$$

$$
\begin{equation*}
\mathrm{V}^{\mathrm{T}} \mathrm{~V}=\mathrm{I}_{\mathrm{k}} \tag{10.4}
\end{equation*}
$$

$$
\begin{equation*}
A V=V C \tag{10.5}
\end{equation*}
$$

and

If the matrices V and C are available Problem (10.1) can be attacked as follow's. Make the change of variables

$$
\begin{equation*}
x=V p \tag{10.7}
\end{equation*}
$$

in Equation (10.1), then use Equation (10.5) obtaining

$$
\begin{equation*}
\mathrm{VCp}=\mathrm{b} \tag{10.8}
\end{equation*}
$$

Left multiply Equation (10.8) by V^{T} using Equation (10.4).

$$
\begin{equation*}
\mathrm{Cp}=\mathrm{v}^{\mathrm{T}} \equiv \mathrm{~g} \tag{10.9}
\end{equation*}
$$

Thus Froblem (10.1) could be solved by first computing $g=V^{T}{ }^{\mathrm{b}}$, next solving $C p=g$ for \hat{p}, and finally computing $\hat{x}=V \hat{p}$.

Since C is a symmetric tridiagonal matrix the entire matrix C must be determined before any components of \hat{p} can be computed. Thus the equation $\mathrm{Cp}=\mathrm{g}$ is not directly suitable for use in an algorithm which discards old vectors $\mathrm{v}^{(\mathrm{i})}$ as new ones are computed.

Let Q be a $k x k$ orthogonal matrix which on post-multiplication times C produces a $\mathrm{k} \times \mathrm{k}$ lower tridiagonal matrix L .
(10.10) $\mathrm{C} \Omega=\mathrm{L}=\left[\begin{array}{ccccc}\ell_{11} & & & & \\ \ell_{21} & \ell_{22} & & & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} & & \\ & \cdot & \cdot & \cdot & \\ 0 & \iota_{k, k-2} & i_{k, k-1} & \ell_{k k}\end{array}\right]$

Define
(10.11)

$$
\mathrm{W}=\mathrm{VQ}
$$

and
(10.12)

$$
z=Q^{T} p
$$

Then
(10.13)

$$
\mathrm{Lz}=\mathrm{CQQ}^{\mathrm{T}} \mathrm{p}=\mathrm{Cp}=\mathrm{g}
$$

and
(10.14)

$$
x=V p=V Q Q^{T} p=W z
$$

Thus Problem (10.1) can be solved by the following sequence of operations assuming that b, V, and C are known a priori
(10.15)

$$
\mathrm{g}=\mathrm{V}^{\mathrm{T}_{\mathrm{b}}}
$$

(10.16)

$$
L=C Q
$$

Solve $\mathrm{Lz}=\mathrm{g}$ for $\hat{\mathbf{z}}$
(10.18)

$$
\mathrm{W}=\mathrm{VQ}
$$

(10.19)

$$
\hat{x}=W \hat{z}
$$

Each individual step of this sequence is amenable to being implemented in a sequential manner so that in fact V and C need not be known a priori but rather the column vectors of V and the elements α_{i} and s_{i} of C can be computed, used, and discarded sequentially.

This method of solving Problem (10.1) is due to C. C. Paige and M. A. Saunders (Personal correspondence, 1972).

We follow M. Saunders in defining β_{1} and $v^{(1)}$ by

$$
\begin{equation*}
\beta_{1}=\|b\| \tag{10.20}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{(1)}=b / \beta_{1} \quad\left[\text { assuming } \beta_{1} \neq 0\right] \tag{10.21}
\end{equation*}
$$

From Equation (10.5) we may write the equations

$$
\begin{equation*}
v^{(2)} E_{2}=A v^{(1)}-v^{(1)} \alpha_{1} \tag{10.22}
\end{equation*}
$$

$$
\begin{equation*}
v^{(i+1)} e_{i+1}=A v^{(i)}-v^{(i)} \alpha_{i}-v^{(i-1)} B_{i} \quad i=2, \ldots, k-1 \tag{10.23}
\end{equation*}
$$

and

$$
\begin{equation*}
0=A v^{(k)}-v^{(k)_{\alpha_{k}}-v^{(k-1)_{R_{k}}},} \tag{10.24}
\end{equation*}
$$

The numbers β_{i+1} may be computed as normalization factors to assure that the vectors $v^{(i+1)}$ have unit length as required by Equation (10.4). The numbers α_{i} can be computed as

$$
\begin{equation*}
\alpha_{i}=v^{(i) T} T_{A v}^{(i)} \tag{10.25}
\end{equation*}
$$

which is the condition (see Equation (2.1)) which assures that $v^{(i+1)}$ computed by Equation (10.22) or (10.23) will be orthogonal to $\mathrm{v}^{(i)}$.

The integer k will generally not be known in advance and may (theoretically) be determined as the first value of i for which the right side of Equation (10.23) is zero. With k so determined it can be verified that the vectors $v^{(l)}, \ldots, v^{(k)}$ produced by use of Equations (10.21) - (10.23) form an orthonormal basis for a subspace of the column space of A. This verification makes essential use of the symmetry of A.

It is pointed out by Paige and Saunders that the computation of the orthogonal set of vectors $v^{(i)}, i=1, \ldots, k$, using Equations (10.22)-(10.23) is a method due to Lanczos (1950 and 1952).

The orthogonal matrix Q will be (implicitly) constructed as the product
(10.26)

$$
Q=\tilde{\mathrm{G}}_{1} \tilde{\mathrm{G}}_{2} \cdots \tilde{\mathrm{G}}_{\mathrm{k}-1}
$$

where
(10.27)

$$
G_{i}=\left[\begin{array}{rr}
c_{i} & s_{i} \\
s_{i} & -c_{i}
\end{array}\right] \quad i=1, \ldots, k-1
$$

and
(10.29)

$$
c_{i}^{2}+s_{i}^{2}=1
$$

Each matrix G_{i} effects a nontrivial transformation on a particular 3×2 or 2×2 submatrix of the appropriate intermediate matrix which arises in the process of transforming the symmetric tridiagonal matrix C to the lower tridiagonal matrix L. This action may be expressed as follows:
(10.30)

$$
\bar{\ell}_{11}=\alpha_{1}
$$

(10.31)
$\bar{l}_{21}=\theta_{2}$
(10.32) $\left[\begin{array}{ll}\bar{l}_{i, i} & { }^{\beta_{i+1}} \\ \bar{l}_{i+1, i} & \alpha_{i+1} \\ 0 & { }^{g_{i+2}}\end{array}\right] \cdot \bar{G}_{i}=\left[\begin{array}{ll}\ell_{i, i} & 0 \\ \ell_{i+1, i} & \bar{l}_{i+1, i+1} \\ \ell_{i+2, i} & \bar{l}_{i+2, i+1}\end{array}\right] \quad i=1, \ldots, k-2$
(10.33) $\left[\begin{array}{ll}\bar{\ell}_{k-1, k-1} & \beta_{k} \\ \bar{\ell}_{k, k-1} & \alpha_{k}\end{array}\right] \cdot G_{k-1}=\left[\begin{array}{ll}\ell_{k-1, k-1} & 0 \\ \ell_{k, k-1} & \ell_{k, k}\end{array}\right]$

As each additional row of L is determined by these equations an additional component z_{i} of the vector \hat{z} satisfying Equation (10,17) can be determined. Note that
(10.34)

$$
g=\left[\begin{array}{c}
{ }^{3} 1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

due to Equations (10.4), (10.15), and (10.21). Thus the equations for the components z_{i} are

$$
\begin{equation*}
z_{1}=\varepsilon_{1} / \ell_{11} \tag{10.35}
\end{equation*}
$$

(10.36)

$$
z_{2}=-\ell_{21} z_{1} / \ell_{22}
$$

and
(10.37)

$$
z_{i}=-\left(l_{i, i-2} z_{i-2}+l_{i, i-1} z_{i-1}\right) / l_{i i} \quad i=3, \ldots, k
$$

Define the vectors
(10.38)

$$
z^{(i)}=[z_{1}, \ldots, z_{i}, \underbrace{0, \ldots, 0]}_{k-i} \quad i=0,1, \ldots, k
$$

and, motivated by Equation (10.19), define a sequence of approximate solution vectors

$$
x^{(i)}=W z^{(i)} \quad i=0,1, \ldots, k
$$

The associated residual vectors are expressible as
(10.39)

$$
\begin{aligned}
\mathbf{r}^{(i)} & =b-A x^{(i)}=b-A W z^{(i)} \\
& =b-A V Q z^{(i)}=b-V C Q z^{(i)} \\
& =b-V L z^{(i)}=v^{(1)} B_{1}-V L z^{(i)} \\
& =V\left[e^{(1)} B_{1}-L z^{(i)}\right] \quad i=0,1, \ldots, k
\end{aligned}
$$

from which we may write
(10.40)

$$
\mathbf{r}^{(0)}=b=v^{(1)_{B_{1}}}
$$

$$
r^{(i)}=-\left[v^{(i+1)} ; v^{(i+2)}\right] \cdot\left[\begin{array}{ll}
\ell_{i+1, i-1} & \ell_{i+1, i} \tag{10.41}\\
0 & \ell_{i+2, i}
\end{array}\right] \cdot\left[\begin{array}{c}
z_{i-1} \\
z_{i}
\end{array}\right] i=1, \ldots, k-1
$$

$$
\begin{equation*}
r^{(k)}=0 \tag{10.42}
\end{equation*}
$$

Interpretation of Equation (10.41) for $i=1$ requires the definitions $\ell_{2,0}=0$ and $z_{0}=0$ while for $i=k-1$ one must define $v^{(k+1)}=0$ and $\ell_{k+1, k-1}=0$.

The norms of the residual vectors are expressible as

$$
\begin{equation*}
\rho_{0} \equiv\left\|{ }^{(0)}\right\|=\beta_{1} \tag{10.43}
\end{equation*}
$$

$$
\begin{align*}
& \rho_{i} \equiv\left\|_{r}(i)\right\|=\left[\left(\ell_{i+1, i-1} z_{i-1}+\ell_{i+1, i} z_{i}\right)^{2}+\left(\ell_{i+2, i} z_{i}\right)^{2}\right]^{1 / 2} \tag{10.44}\\
& \quad \text { for } i=1, \ldots, k-1
\end{align*}
$$

$$
\begin{equation*}
\rho_{k} \equiv\left\|r^{(k)}\right\|=0 \tag{10.45}
\end{equation*}
$$

where again we define $\ell_{2,0}=0, z_{0}=0$, and $\ell_{k+1, k-1}=0$.
Combining these equations appropriately one can obtain the following algorithm
(10.46) Algorithm ICSE Iterative Solution of a Consistent Symmetric System of Linear Equations [Originated by C. C. Paige and M. A. Saunders, personal communication, $1972{ }^{7}$

Step Description
1
$x^{(0)}:=0$
2
$\beta_{1}:=\|b\|$
If $\beta_{1}=0$ set $k:=0$ and go to Step 24
4

6
$v^{(1)}:=b / \beta_{1}$
$u^{(1)}:=v^{(1)}$

QUIT: =FALSE

7
$\mathrm{i}:=1$
8
$y^{(i)}:=A v^{(i)}$
9
$\alpha_{i}:=v^{(i)} \mathrm{T}_{\mathrm{y}}(\mathrm{i})$
$\tilde{v}^{(i+1)}:=\left\{\begin{array}{l}y^{(1)}-\alpha_{1} v^{(1)} \text { if } i=1 \\ y^{(i)}-\alpha_{i} v^{(i)}-\beta_{i} v^{(i-1)} \text { if } i>1\end{array}\right.$

11
$B_{i+1}:=\left\|\tilde{\mathbf{v}}^{(i+1)}\right\|$
Theoretical texmination test: If $\beta_{i+1}=0$ set QUIT:=TRUE
Practical termination test: If β_{i+1} is sufficiently small set QUIT:=TRUE
$\left\{\begin{array}{l}{\left[\begin{array}{l}\bar{l}_{11} \\ \bar{l}_{21}\end{array}\right]:=\left[\begin{array}{l}\alpha_{1} \\ \beta_{2}\end{array}\right] \text { if } \mathrm{i=1}} \\ {\left[\begin{array}{ll}l_{i, i-1} & \bar{l}_{i, i} \\ \ell_{i+1, i-1} & \bar{l}_{i+1, i}\end{array}\right]:=\left[\begin{array}{ll}\bar{l}_{i, i-1} & \alpha_{i} \\ 0 & \beta_{i+1}\end{array}\right] \mathrm{G}_{i-1} \quad \text { if } i>1}\end{array}\right.$

Step

14

16

18
$\left\{\begin{array}{l}\text { If } i=1 \text { go to Step } 16 \\ \text { If } i=2 \text { set } \rho_{1}=r\left(\ell_{21} z_{1}\right)^{2}+\left(\ell_{31} z_{1}\right)^{2} 7^{1 / 2} \\ \text { If } i>2 \text { set } \rho_{i-1}:=\left[\left(\ell_{i, i-2}^{\left.z_{i-2}+\ell_{i, i-1} z_{i-1}\right)^{2}+\left(\ell_{i+1, i-1} z_{i-1}\right)^{2} 1_{1 / 2}^{1 / 2}}\right.\right.\end{array}\right.$
Practical termination test: If o_{i-1} is sufficiently small set $k=1-1$ and go to Step 24.

$$
\ell_{i i}:=\left(\bar{\ell}_{i i}^{2}+8_{i+1}^{2}\right)^{1 / 2}
$$

$u_{i}:=\left\{\begin{array}{l}\varepsilon_{1} / \ell_{11} \text { if } i=1 \\ -\ell_{21} z_{1} / \ell_{22} \text { if } i=2 \\ -\left(\ell_{i, i-2} z_{i-2}+\ell_{i, i-1} z_{i-1}\right) / \ell_{i i} \text { if } i>2\end{array}\right.$
If QUIT $=\underline{\text { FALSE }}$ set $v^{(i+1)}:=\tilde{v}^{(i+1)} / B_{i+1}, \quad c_{i}:=\bar{\ell}_{i i} / \ell_{i i}$, $s_{i}:=q_{: H} / \ell_{i i}$,
$G_{i}:=\left[\begin{array}{rr}c_{i} & s_{i} \\ s_{i} & -c_{i}\end{array}\right], \quad$ and $\Gamma_{w}^{(i)}, u^{(i+1)} \eta_{:=}=\left[u^{(i)}, v^{(i+1)}\right] G_{i}$
If QUIT $=$ TRUE $\operatorname{set} w^{(i)}:=u^{(i)}$
$x^{(i)}:=x^{(i-1)}+w^{(i)} z_{i}$
If QUIT $=$ TRUE set $k:=i$ and go to Step 24
$i:=i+1$

Go to Step 8

Here the algorithm is finished with the solution vector $\mathrm{x}^{(\mathrm{k})}$.

References

F. S. Beckman (1960), The Solution of Linear Equations by the Conjugate Gradient Method, pp. 62-72 of Mathematical Methods for Digital Computers, ed. by Ralston and Wilf, Wiley.
E. J. Craig (1955), The N-Step Iteration Procedures, Journal of Math. and Physics, 34, (1955), 64-73.
D. K. Faddeev and V. N. Faddeeva (1963), Computational Methods of Linear Algebra, Freeman.
L. Fox (1965), An Introduction to Numerical Linear Algebra, Oxford Univ. Press.
G. Golub and W. Kahan (1965), Calculating the Singular Values and Pseudoinverse of a Matrix, J. SIAM Numer. Anal., Ser B, 2, 205-224.
M. R. Hestenes and E. Stiefel (1952), Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Nat. Bur. Standards, 49, 409-436.
A. S. Householder (1964), The Theory of Matrices in N゙":merical Analysis, Blaisdell
C. Lanczos (1950), An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators, J. Res. Nat. Bur. Standards, 45, 255-282.
C. Lanczos (1952), Solution of Systems of Linear Equations by Minimized Iterations, J. Res. Nat. Bur. Standards, 49, 33-53.
C. C. Paige (1972), Bidiagonalization of Matrices and Solution of Linear Equations, Stanford Univ. Report No. CS-295, 28 pp.
J. K. Reid (1971), On the Method of Conjugate Gradients for the Solution of Large Sparse Systems of Linear Equations, pp. 231-254 in Lavge Sparse Sets of Linear Equations, ed. by J. K. Reid, Academic Press.

