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ABSTRACT

A matrix having a high percentage of zero elements is ca11eL^ sparse.

In the solution of systems of linear equations or linear least squares

problems involving large sparse matrices significant saving of computer

cost can be achieved by taking advantage of the sparsity. This

Memorandum derives and describes the well known conjugate gradient

algorithm and a set of related algorithms which are applicable to such

problems.

Control of accuracy is a serious problem with this class of methods.

We plan to devote a subsequent study to methods of controlling algorithms

of this class.
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PART I

Introduction

Chapter 1	 Introduction

A matrix A is called sparse if a large proportion of its elements are zero.

Significant savings of execution time and computer storage can be realized in

solving systems of linear equations, Ax=b, or least squares problems, Ax'! b, if

the matrix A is sparse and if special solution methods are used which take advantage

of the sparseness.

Most direct solution methods such as Gaussian elimination or Householder

orthogonal triangularization perform transformations on the given matrix A which

significantly increase the number of nonzero elements. The two main ideas in

developing sparse matrix methods have been

1. Reorganize direct elimination methods to reduce the growth of the

number of nonzero elements.
k,

and

2. Use iterative methods so that the original sparse matrix A is used

throughout the computation.

In Reid (1971) it is pointed out that the conjugate gradient (CG) method for

solving a system Ax=b, with A symmetric and positive definite, is well suited

for use when A is sparse. This method shares with iterative methods the feature

of continually using the initial matrix A but it shares with direct methods the

property of theoretically terminating after not more than n iterations.

More specifically the major computational cost in each iteration of the CG

method arises from the multiplication of A times a vector. If A is an n x n

JPL Technical Memorandum :33-627
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matrix and the proportion of nonzero elements in A is p then the multiplication of

A times an n-vector requires pn 2 multiplications and additions if multiplication

by zero elements of A are skipped.	 This algorithm theoretically reaches the

{ solution vector in at most n iterations so the number of multiplications and additions

would theoretically be at most pn3.
If

The storage required is just that needed for the sparse matrix A plus four
d

n-vectors.	 Since A is symmetric it has only approximately pn 2 /2 potentially

distinct nonzero elements. 	 Such a matrix can be stored in pn2 locations or even

in less space if the nonzero elements are located in some known regular pattern.

In comparison direct solution of this problem using an efficient stable method

such as Cholesky factorization would in general require abou* n 2 /2 storage
i

locations and n 3 	 multiplications and additions. 	 Thus the CG method will require
I

less storage than the Cholesky method if p < 1/7_ and will require fewer

multiplications and additions if p < 1/6.

I,I These cut-off values for p should be taken only as very rough guidelines. 

+{ 	 i^ Storage management for the sparse matrix mi-thod mayg	 g	 P	 y increase its execution

time.

More serious is the lack of numerical stability in the CG method. 	 If the

matrix A has a large condition number the intermediate vectors computed by

the algorithm which are theoretically orthogonal or A-conjugate (defined in

!I

Chapter 2) may not even come close to having these properties. 	 I feel that this

means that a reliable subroutine for the CG method must include some

monitoring of the error generated in intermediate quantities.

The purpose of this report is to collect in one place, and with some

consistency of n^cation, the statements and theoretical justifications of the

conjugate gradient algorithm and a number of other algorithms having very

a 	 2	 JPL Technical Memorandum 33-627



similar characteristics with regard to mathematical theory, operation counts,

and storage requirements. We subsequently plan to produce Fortran subroutines
i

for some of these algorithms and study particularly the effectiveness and

reliability of various techniques for monitoring accuracy and testing for

termination in these subroutines.

The CG algorithm was invented independently and simultaneously (-- 1951) by

M. R. Hestenes and E. Stiefel [see Hestenes and Stiefel (1952)]. The paper by

Craig (1955) which discusses methods of this type also references related work

by Fox, Huskey, Wilkinson, Lanczos, Forsythe, and Rosser in the 1948-1952

period.

After providing some mathematical background in Chapter 2 the CG algorithm

is presented in Chapter 3. In Chapters 4 and 5 algorithms are given which

result directly from replacing the matrix A in the CG algorithm by A TA or AAT

respectively. The use of A T A covers the case of a least squares problem

whereas the use of AA  allows solution of consistent systems, Ax=b, in which A

is not necessarily symmetric or positive definite (or even square).

This replacement of A by A T A and by AA  occurs in Craig (1955) and is

also treated in Faddeev and Faddeeva (1963).

More recently Reid (1971) made a strong case for the usefulness of the CG

method in large sparse problems. Interest in sparse problems also stimulated

Paige (1972) to derive two algorithms of similar character. We will refer to

these algorithms as PAIGE-I and PAIGE-II. Paige's derivation of these algorithms

is based on a bidiagonalization method given by Golub and Kahan (1965) which has

its mathematical roots in a method of Lanczos (1950) for tridiagonalizing a

symmetric matrix. We present Paige's least squares algorithm, PAIGE-II, in

Chapter 6, where we call it ITLS to distinguish our particular statement of the

algorithm. In Chapter 7 we show that ITLS theoretically generates the same

JPL Technical Memorandum 33-627
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sequence of approximate solution vectors as the algorithm of Chapter 4. The

intermediate steps are sufficiently different however to make it of interest to

investigate the numerical performance of each of these two algorithms.

In Chapter 8 we present an algorithm ITC which is a subset of Paige's algorithm

PAIGE-I. The algorithm PAIGE-I includes provision for handling a least squares

problem. It appears to me that for least squares pruolems this algorithm is

not competitive with PAIGE-II or the least squares algorithm of Chapter 4 and

thus I have presented only the subset of PAIGE-I which handles a consistent

system of linear equations. Paige noted that this subset of PAIGE-I is

equivalent to the algorithms given by Faddeev and Faddeeva (1963) and by Craig

(1955) which are described in Chapter 5 of this report. This equivalence is

verified in Chapter 9.

Finally in Chapter 10 we give an algorithm due to C. C. Paige and M. A. Saunders

(personal correspondence, 1972) for the symmetric consistent problem, Ax = b

This algorithm is called SYMMLQ by Paige and Saunders. Note that whereas

the CG algorithm requires only one matrix-vector multiplication per iteration

the other algorithms discussed in Chapters 4 -9 each require two matrix-vector

multiplications per iteration or else the preliminary computation of A T A or

AA T. The algorithm, S YMMLQ, requires only one matrix-vector multiplication

per iteration and thus is nominally the most economical method described in

this report for the indefinite symmetric consistent problem. This algorithm is

however notably more complicated than the other algorithms in this report.

Saunders has also developed a modification to Paige's least squares algorithm,

PAIGE-II, (our I rapter 6) however we have omitted this as it is more complicated

than Paige's algorithm and in a few test cases which we ran its sequence of

approximate solution vectors was approximately one step behind the sequence

generated by 'Paige's algorithm.

I
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Chapter 2 Mathematical Background

Two real n-vectors x and y are mutually orthogonal if their inner product,

denoted by x T y or yTx, is zero. They are orthonormal if they are mutually

orthogonal and are each of unit euclidean length, i. e. 114 
^(xTx) 1 /2 =1 and

j l yjj	 (YTY) 1/2 = 1.

A generalization of orthogonality is the notion of A-conjugacy where A is

a symmetric matrix. Two vectors x and y are A-conjugate if xTAy (or

equivalently yTAx) is zero. This notion of A-conjugacy is most commonly

defined only for a positive definite symmetric matrix A since then one has the

convenient property that xTAx > 0 for all x 1 0.

We will use the notion of A • conjugacy under the weaker assumption that A

is nonnegative definite symmetric matrix but limit the vectors being considered

to those lying in the row space of A. For such vectors the property x TAx > 0

for x ¢ 0 still holds.

If the set of vectors	 _ (v(1) , ... , v(1) } are mutually orthogonal and a vector

y(i+1) is linearly independent of the set Y then a vector v(i+1) orthogonal to the

set	 can be defined by

(2. 1) v(i+1) = y
(i+l) - v(1)Ty(i+l)	 v(I) -	 - v(i)Ty(i+l) v(i)

v(1)Tv(1)	 v(i)Tv(i)

This is the formula of Gram-Schmidt orthogonal ization.

6
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A similar formula exists for extending a mutually A-conjugate set of vectors.

j	 Thus ij, the set of vectors lli = (u(1) , ... , u(i) ) are mutually A-conjugate and a

j	 vector z(I*1) is linearly ins':: pendent of the set I t. then a vector u (i+1) A-conjugate

V	 to U i , is defined by
it

t	 (2. 2) u(i+l) = z(i+1) _ u(1)TAz(1 +!) 
u(1) - ... _ u(i)TAz(i+1) u(i)

u(i)TAu(1)	 u(i)TAu(i)

i)

if all of the denominators are nonzero. Nonzero denominators are assured if A

is positive definite symmetric or if A is nonnegative definite symmetric and all
j

of the vectors of the set 1(i lie in the row space of A.
'I

The algorithms to be described in this report have the common feature that
I

in constructing sequences of mutually orthogonal (or mutually A-conjugate) vectors

the new linearly independent vector y(i+1) (or z (1+l) ) will be constructed in such

a way that it is already orthogonal (or A-conjugate) to all but one or two of the
I

vectors in the set Y (or Vii). This permits economy in storage and in

computation time since only the most recent one or two of the vectors in the

1	 set y (or ^ i) need to be retained in storage and only the terms involving these

one or two retained vectors need to be computed in Equations (2. 1) or (2. 2).

I

ka	 JPL Technical Memorandum 33-627	 7
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PART II

The Conjugate Gradient Algorithm and Variations

Chapter 3	 t	 wile	 ve

Let A be an n x n symmetric nonnegative definite matrix and let b be all

vector in the column space (range space) of A. We wish to find an n-vector x

{	 satisfying

(3. 1)
	

Ax - b

If Rant- (A) < n the solution of Problem (3. 1) is nonunique. In this case there

is a unique solution vector, x, in the row spare of A. This vector x is the

minimal length solution vector for the problem and is the solution vector which

the algoritl:; pi to be described constructs.

I

	

	 the algorithm to be described is the conjugate gradient method due to I-Iestenes

and Stiefel (1952). Presentations of this method appear in Faddevv and Fadeeva

(1963, pp. 392-405), Beckman (1960), Reid (1971), Fox (1965, pp. 208-214),

and Householder (1964, pp. 139-141). This method is usually described under the
	 r

assumption that the matrix A is positive definite although, as will be seen from

the discussion to follow, the theory of the method is also valid for a nonnegative

definite matrix if it is assumed that b is in the column space of A.

Assume the existence of an integer k(1 5 k 5 n), matrices V  x k and D  x k

and a k-vector p such that

(3.2)	 V = [v(I),...,v(k)7

8
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(3. 3) D = Diag {d l ... , dIt )	di >0,	 i=1, ... , k

4{

r	; (3.4) VTAV = D1J

and

(3.5) z = Vp

5

j
Note that Equation (3.4) implies that the vectors v(r) are mutually A-conjugate.

If such matrices V and D are available Problem (3. 1) can be attacked as

follows: Left multiply Equation. (3. 1) by V T obtaining

(3.6)	 VTAx = g

where g is defined by

(3.7)	 g = VT 

Introduce the change of variables

(3.8)	 x = Vp	 v

in Equation (3. 6) obtaining

(3.9)	 VTAVp = g

which due to Equation (3.4) may also be written as

JPL Technical Memorandum 33-627	 9
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(3. 10)
	

Dp=g

Thus Problem (3. 1) could be solved by computing g = V Tb, solving the diagonal

system of equations Dp = g for its solution vector p, then computing the solution

vector x for Problem (3. 1) as x = Vp.

The algorithm to be described constructs the A-conjugate vectors v (j) one at

a time and as each such vector is produced its contribution to g, p, x, and the

residual vector r is determined. Thus only one of the vectors v (j) needs to be

maintained in storage at any one time.

It will be convenient to define auxiliary vectors

(3. 11)	 w(i) = Av(i)	 i=l, ... , k

4

}	 successive approximations to the solution vector
1
}
p^



i
r (1) = b-Ax( ' ) = b - E Av(j)p

j=1	 J

i
= b - E w(j )p = r(i-1) - w (i)h i	 i=1, ... , k

j=1

It happens that the residual vectors r(0) , r(l) , ... occurring in this algorithm

are mutually orthogonal. The algorithm alternates between producing a vector in

the orthogonal sequence r (0) , r(1) , ... and a vector in the A-conjugate sequence

v(1) , v(2) , ... . The various relations which exist between these two sequences

permits the algorithm to be remarkably concise.

(3. 16) Algorithm CG
	

e Conjugate Gradient
	 rithm for Solvin g a Cons

item Ax=b where A ii
ue to Hestenes and £

	

Step	 Description

	1 	 x(0):=0, r (0) :=b, v(1):=b

	

2	 If b=0 set i:=0 and go to Step 13

	

3	 i:=1

	

4	 w(1): =Av(i)

	

5	 pi: =(r(i-1)Tr(i-1)/(v(i)Tw(i))

	

6	 x(i) :=x(i-1)+v(i)pi

	

7	 r(i):=r(i-1)-w(i)p.
i

	

8	 Theoretical termination test: If r(1) =0 go to Step 13

Practical termination test: If JJr(1) II is sufficiently small

go to Step 13

	

9	 01:=(r(i)Tr(i)) /(r(i- 1)Tr(i-1))

TPL Technical Memorandum 33-627
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i

R	 I

	

Step	 Description

	10	 v(i+l):=r(i)+v(i)i3.i

	

11	 is=i+1

	

12	 Go to Step 4

	

13	 k:=i

	

14	 Stop

Figure (3. 1) is provided as an aid to understanding Algorithm CG. All

vectors in the first column of Figure (3. 1) lie in the same one-dimenbional

subspace, J  . For general Z > 1 if the vectors b, Ab, ... , Ab 1- 1 are linearly

independent let ylf denote the L- dimensional subspace spanned by these vectors.

Then the first k vectors in each row of Figure (3. 1) are also linearly independent

and span the same subspace x1e.

To verify that the algorithm CG is mathematically correct we must show

that the denominator in Step 5 is positive for i e k, that Step 5 defines components

Pi satisfying Equation (3. 10), and that the vectors v ( ' ) produced at Step 10 are

mutually A-conjugate. It will also be seen that the r%2iduAl vectors r(1) are

mutually orthogonal.

Assume Algorithm CG has been executed for i=1, ... , 2-1, that the set of

vectors {r (0) , . . . , r('- i} are mutually orthogonal and the set of vectors

{v(1) , ... , v( t) 3 are mutually A-conjugate. With this assumption of A-conjugacy

we include the assumption that v(i)TAv(i) > 0, i=1, ... , L.

We also assume that

12
	 JPL Technical Memorandum 33-627
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FIGURE (3. 1)

Vectors and subspaces related to Algorithm

CG. The four circles identify vectors which

would be constructed during the second

iteration of the algorithm.

JPL Technical Memorandum 33-627	 13



Kl i = Span(b, w(1) , ... ,w (i- 0)

= Span (r (0) , ... , r('- 1))

=Span (v(1) , ...,v(1) )	 i=l ...... t

The reader may find it convenient to refer to Figure (3. 1) and consider 2=2

for definiteness. The quantities to the left of the circles result from earlier

iterations and the circled quantities will be computed during the second iteration.

Consider now the quantities computed during the Ith iteration. The denominator

in Step 5 is v('t)TAv('t) which by assumption is positive.

It must be verified that p,, computed at Step 5 satisfies Equation (3. 10), i.e.

that

(3. 17)	 Pz = gf /dI = (v(L)Tb)/(v(1)TAv(Y))

The denominator in Equation (3. 17) is clearly identical with the denominator in

Step 5. As to the numerators we have

v( t)Tb = v(1)T(r( t-1) + E 1 w(j)P )
j=1	 1

= v(.¢)Tr"-1)

= (r(.t-1)+v(,t-1)y.t-1)Tr(.t-1)

= r(.t-1)Tr(k-1)

14	 JPL Technical Memorandum 33-627



Steps 6 and 7 are clearly consistent with Equations ( 3. 13) and ( 3. 15). If

l	 r") = 0 the algorithm terminates, setting k=R. Otherwise with r ( t) ¢ 0 we proceed

F	 to verify that r ( t) is orthogonal to the subspaces... Using the basis

{r(0) , ... , r( " -1) ) of	 it suffices to verify that r(i)Tr( t) = 0 for i=0, ..., E-1.

(3.18)	 r(i)Tr(.t) = r(i)Tr(.t-I)-r(i)TW(f)p
A

Both right side terms are zero for i=0, ... , 2-2. For i=k-1 substitute the

definition of p R from Step 5 into Equation (3. 18) obtaining

r(8-1)T r(.0 = r(I-1)T r(1-1) - Cr(k-I)Tw(k)^.Cr(.t-1)Tr(2-II 1
v(R)TWM

= 0

since

v(R)Tw( k) = Cr(I-1) +v(.t-I)5 .9-11Tw(.t) = r(.t-I)Tw(R)

Next it must be shown that v( '+ ' ) defined at Step 10is A-conjugate to the

subspace I/ . We use the basis (v(l) , ...,v") ) for 5/ and verify that
v(i)TAv(k+1) = 0 for i=1, ...,.e.

(3.19)	 vG)TAv(.t+l) = v(i)TAr ( 't) + v(i)TAv('t)9f

JPL Technical Memorandum 33-627 15



For i=1, ... , 1Z-1 both right side terms are zero; the first because v (i)TA is in

41 and thus is orthogonal to r (t) and the second because v (1) is in v Q̂ _ 1 and thus

is A-conjugate to v(R) . For i=2 substitute the definition of 8 k from Step 9 into

Equation (3.19) obtaining

(3.20)	 v(I)TAv(R+1) = v(,e)TArM + (y(L)TAv(.))(r(Z)Tr(l)
r(Z-1)Tr(A-1)

= w( A ) Tr") + p-lr(f)Tr(^)

= C WW +p- lr(R)ITr")
L	 ^

_ p-Ir(1-1)Tr(1) = 0

Finally we verify that v (A+1)TAv(Z+l) > 0. Let h denote the rank of A.

Since A is nonnegative definite there exists an h x n matrix R of rank h such that

A = R T R

and clearly the row space of R is identical with the row (and column) space of A.

Lett denote the row (and column) space of A. From Steps 1, 7, and 10 all of

the vectors r(1) and v(1) produced by the algorithm lie in the subspace a-. Since

v( 't+l) is constructed at Step 10 as the sum of the nonzero vector r" ) and a vector

v(f) 8 1 orthogonal to r ( t) it follows that v(L+l) 0̀ 0. Since v( t+l) is a nonzero vector

1	 16
	 JPL Technical Memorandum 33-627
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in the subspace the vector Rv(1+1) must also be nonzero. It follows that
[Rv(k+1) TRv (k+1)	 (.Z+1> 0 or egt:ivalently v(R+1)T Av	 ) > d, as was to be shown.

As is apparent from the different expressions derived for p i and for di

there are a number of different ways in which the CG algorithm could be

implemented. There are also different trade-offs possible between storage used

and counts of arithmetic operations. Reid (1971) discusses over a dozen such
d I^

variations. The form in which we. have stated Algorithm CG is the one

preferred by Reid.

Theoretical termination of the CG algorithm occurs when r (k) =d with r(1)¢0

for i=0,...,k-1. Referring to Figure (3. 1) we see that this means that the
p

subspaces *.1 1 , ... ,sdk are all different but that dk+l = 9/k' Equivalently this

means that the vector A kb lies in the subspace W/ spanned by {b,Ab, ...,Ak-lb},

This implies that b is representable as a linear combination of some set

of k eigenvectors, say {f(l),...,f(k)), of the nonnegative definite symmetric

matrix A and is not representable as a linear combination of any smaller set

of eigenvectors of A. Furthermore the eigenvalues (X 1 , , , . , %k) associated with

these eigenvectors are all positive. Thus there exist nonzero numbers c  such

that

k
b = E f(i)c.

i=1	 1

and the minimal length solution vector x is representable as

X = E f(1)(ci/xi)
i=1

JPL Technical Memorandum 33-627
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Note also that Span (P ) , , , , , f(k) ) =r and that z lies in %/ but not in c^k_1

Most commonly the value of k will be n. However k will be less than n if

and only if b is orthogonal to some eigenvectors of A. In particular b will

necessarily be orthogonal to some eigenvectors of A if A has any multiple

eigenvalues.



I

Chapter 4	 Solving a Least Squares Problem Ax °' b

Let A be an m x n matrix and let b be an m- vector.	 We wish to find an

n^vector x winch minimizes a lb-Ax le . We denote this least squares problem by

the notation

(4.1)	 Ax E^ b

We permit either m a n or m c n. If Rank (A) < n the algorithm to be described

constructs the unique minimal length solution vector, z. This solution vector is

characterized ws being the only solution vector lying in the row space of A.

A vector x minimizes Vb-Ax{I if and only if it satisfies the "normal equations"

(4.2)	 ATAx = A T b

Normal equations are always consistent since the right side vector, A Tb, lies

in the row space of A which is also the column space of the matrix A TA. The

ranks of A T A and A are equal and their row spaces are the same. Thus if

A T A is singular the unique solution of Problem (4. 2) lying in the row space of

A T A is also the unique minimal length solution of Problem (4. 1).

Since A T A is nonnegative definite and Problem (4. 2) is consistent the

conjugate gradient algorithm CG (3. 16) is directly applicable to Problem (4. 2).

Denote the residual vector for Problem (4. 2) by

h = A Tb-A TAx = AT(b-Ax)

JPL Technical Memorandum 3?-627	 19



and introduce bars on various other symbols in Algorithm CG to distinguish

the application of the algorithm to Problem (4. 2). Then Algorithm CG adapted
i
j	 to Problem (4. 1) can be written briefly as

(4.3) Algorithm CGLS	 nt Al gorithm for the Least Square

(4.4) x(0): = 0,	 h(o): = ATb, v(1) : = A T b

If h(0) =0 terminate.
Do for i: = 1, 2.... ,	 until h(')=0

(4.5) W('): = ATAv 1)

(4.6) pi: _ 11h(i- 1)112/(v(')Tw'))

(4.7) z('): - z(i-1) + 7(i) Fi 

(4.8) h(i); = h(i-1) - w ')g.i

(4.9) Si:	 _	 1r(i)112/1h(i-1)^12

(4.10) (i+1): = h( ' ) + 40—
Ii

One may wish to have the residual vector of the least squares problem (4. 1)

(4.11)
	

_(') = b-Az(')

available at each iteration, possibly for use in a supplementary termination test.

This may be accomplished by the following revision of the algorithm [Faddeev and

Faddeeva (1963, p. 4031.
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a

(4. 12) Algorithm [Alternate Form of CGLS^
t

3Z 0 ) :=0, r(0):=b, h (0) : = A Tb, v 1) : ° ATb
If h(0)=0 terminate.
Do for is=1 2	 (i).

	

l.^	 , , ... , until h	 -0

u i) : = Av(i)

	

j	 pi	 G-142a-G(i)112
f

3E(i-1) + v 
i), ii.

r(i): = r(i-1) - u(i)p.
1

h(t) : =AT F(i)
i

^i: = I^fl(i)^I2/^^h(i-1)112

V(i+1) , = h(i) + V(')-F.

This latter form of the algorithm requires more storage since one must

maintain the current values of the two m-vectorsu (i) and c(i).

1
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Chanter 5 Solving a Consistent System Ax=b

Let A be an m x n matrix and let b be an m-vector contained in the column

space (range epace) of A. Consider the problem of finding an n-vector x satisfying

(5.1)	 Ax=b

We will permit either m 5 n or m 7 n. If Rank(A) < n the solution to this

problem is nonunique. In this case there is a unique solution vector z lying in the

row space of A. This vector x is the unique minimal length solution vector for

Problem (5. 1). The algorithm to be described constructs this solution vector z.

Since we seek a solution vector x in the row space of A the solution vector x

will be representable in the form

(5. 
2),	 x = ATy

for some (not necessarily unique) m-vector y. Making the change of variables

x = A Ty in Problem (5. 1) we obtain the problem

(5.3)
	 A,- T y = b

This is a consistent problem with a symmetric nonnegative definite matrix

AA  . Thus the conjugate gradient algorithm CG (3. 16) can be applied to solve

Problem (5. 3).

The resulting algorithm for solving a consistent system Ax=b may be written

as follows where the notation of Algorithm CG (3. 16) is changed by writing p, R,

W, r, q, y, and AA  in place of p, H, w, r, v, x, and A respectively. Furthermore,

I
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motivated by Equation (5. 2) we introduce the sequence of approximate solution

vectors

(5.4)	 x') = ATy^(I.)

(5.5) Alaorithm

y( 0 ) : = 0, X( 0 ) : = 0, 7( 0 ). = b, q(i): = b

117(0) = 0 terminate,

Do for i:=1, 2, ... , until r( ' ) = 0

W( ' ) : =AA7$'(i)

	

P i =	 (1) 
Tw(i))

Y (1) = y(i-1) + q i)p.
i

X(i): c X( ' - 1) + AT-q(')--pi

i(i), = r(i-1)-W(')p.

	

•	 1

a;: = II=(^)hh2 /Ilr(i -1>)^z

Eliminating the intermediate vectors w( ') and y ( ' ) we obtain the algorithn•. in

the form given by Craig (1955), p. 72, except that Craig used the opposite choice

of the sign of the residual vector.
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(5.6) Algorithm [Craig (1955)1

3(0) : = 0 , r(0) : = b, 9 (1): = b

If 'F(0)  = 0 terminate.

Do for i:=1, 2, ... , until 'F(i)  = 0

Pi : =	 ^,J r(1-1) 11 2 / HAT^(i)p12

X(i): = X(i-1) + ATq(1)Pi

7(1)• 7( ' - 1) - AATq(1 pi,

=yy 

b-Az(i)

II

[_

$i : = Nlr(1)A^2 /f^r(1-1)112

^(i+l) : = r(i) + q(i)Ti

As is noted in Faddeev and Faddeeva (1963, pp. 403-405) this algorithm can

be further simplified by introducing the substitution

VG) =ATgi)

Note that the vectors (v(1) , ..., V(k) I are mutually orthogonal since the vectors

(4 1) .... q(k)  ) are mutually (AA T)-conjugate.

We call the resulting algorithm CGC.

(5. 7) Algorithm CGC Conjugate  Gradient Algorithm for the Consistent System Ax=b

X(0): = 0, r(0) : = b, v(1) : = A T b

If r 0) 0 terminate

Do for i: =1, 2, ... , until r(1) = 0

I
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i

Fi: = IMr(i- 1)112i11v(i)112

X(i): = X(i-1) + v(1)pi

Pi

-(i-1): = A
Tr(i) + v(i)6.i

9 %

Y
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PART III

OTHER ALGORITHMS

Chapter 6 Solving a Least Squares Problem, Ax a! b

Let A be an m x n matrix and let b be an m-vector. We wish to find an n-vector

x which minimizes J l b-Axll. We denote this least squares problem by the notation

(6.1)	 Ax 2!b

Generally one would have m 2 n and Rank(A) = n in such a problem. We will

not make these assumptions however as they are not necessary to the mathematical

development of the algorithm to be described.

If Rank (A) < n the solution to Problem ( 6. 1 ) is not unique. In this case

however the problem has a unique solution vector of least euclidean length. It

can easily be verified that this unique minimal length solution vector lies in

the row space of A and in fact is the only solution vector for Problem ( 6. 1 ) lying

in the row space of A. The algorithm to be described constructs the solution

vector in the row space of A and thus finds the minimal length solution vector if

Rank (A) < n.

Let z be the unique minimal length solution vector for Problem ( 6. 1 ).

Define the residual vector

(6.2)	 r = b-Az

and

(6.3)	 b=Ax=b-r

Thus b can be written as

(6.4)	 b = b+ r
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where b lies in the column space of A and r is orthogonal to the column space of A.

AThe vector b is the orthogonal projection of b into the column space of A and will be

referred to as the projected right-side vector.

Suppose there exists an integer k (1 s k s min (m, nI) and matrices

I

.. ^	 and a k-vector. n. such that

(6.8)

(6.9)

(6.10)

(6.11)

and

(6.12)

Um x k - C u(1) , ... , u(k) ]

Vn x k - v(1) , ... , v(k)

a1 02	
0

Rk x k	 C12 • 0 k	(all al > 0 and B 1 > 0)

0	 , ak

U T U = I 

VT
V= I 

AV=UR

AT  = VRT

x= VP
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Since R is nonsingular Equations ( 6. 9 ) and (6. 11 ) imply that the column vectors

of V form an orthonormal basis for a subspace, l/, of the row space of A. Similarly

Equations (6.8 ) and (6. 10) imply that the column vectors of U form an orthonormal

basis for a subspace a of the column space (range space) of A. Equation ( 6. 12)

shows that the subspace Y contains the solution vector x. From Equations (6. 3 )

(6. 10), and (6. 12) it follows that the subspace V contains the projected right-side
n

vector b.

Assuming the availability of the matrices U, V, and R, Problem ( 6. 1 ) can be

approached as follows: Introduce the change of variables

(6.13)	 x = Vp

in Problem ( 6. 1 ) and use Equation (6. 10) obtaining the equivalent least squares

problem

^i %

(6.14)
	

URp el b

Let U in x (m-k) be a matrix which when adjoined to U forms an m x m orthogonal

matrix:

(6.15)	 in

Left multiply Enuation (6.14) by [U:U] T obtaining the equivalent least squares

problem.

1	
g ` k

(6.16)	
L0J 

pig
g I m-k

CU:U)TCU:U] =

28
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ti

where

g

	 luTb
^l	 (6.17)	 g =	 = CU:U]Tb

UTb

r
f

nThe least squares solution vector p for Problem (6. 16) may be obtained as the

j	 solution of the upper bidiagonal nonsingular system of equations

N
(6.18)	 Rp = 9

Obtaining p from Equation (6. 18) the solution vector x can then be computed from

Equation (6. 13).

In analogy with the conjugate gradient algorithm we wish to cast this procedure

into a sequential form so that a succession of approximate solution vectors x(1)

and associated residual vectors

(6.19)	 r(1) = b-Ax(')

can be computed as the successive vectors u(1) and v(1) are computed. This

obviates the need to store old u(1) and v(' ) vectors.

Equation (6. 18) is not directly suitable for such a (forward) sequential

procedure since the last (lower right) element of R must be determined before

any components of p can be computed. However using Equations (6.13) and

(6. 18) we can write

-I	 -I N	 N(6.20)	 x = Vp = VR Rp = (VR. )g = Wg
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where the n x k matrix

(6.21)	 W=[w(1),...,w(k)]

'p	 satisfies the linear matrix equation

^Iu
(6.22)	

RTW T VT

Or

Oil	
0	

w(1)T	 v(1)T

(6.23)	 82	 012	 =

	

w(k)T	 v(k)T

0	 pk ak

From this matrix equation one obtains the following expressions for sequential

computatian of the vectors w(1).

(6.24)	 w(l) = v(1)/al

(6.25)	 w(1) 	 (
v(i)-0iW(i-1)) /ai	 i=2,...,k

Let g i denote the ith component of 'aie m-vector g. Then g i for i s k, is also	
bN

the ith component of the k-vector g of Equation (6. 18). Define the m-vectors
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and the k-vectors

9G) = [ g 1 , ... , g i , 0, ... , O 1 T 	i=O, ... , in
m-i

g(1)=[gl,...,gi, Ô  OjT i=O,...,k
k-i

Motivated by Equation (6.20) define a sequence of approximate solution

vectors x(1) by

(6,26)
	

x(0) = 0

(6.27)	 x(i) = W-9(i) = E w(j)g.

	

j=1	 J

=x(i-1)+w(1)gi	 i=l,...,k

The associated residual vectors, r( ' ) , are defined as

(6.28a)	 r(0) = b

and

(6.28b)	 k(1) = b-Ax(')

= b-AVR-lg(i)

	

= b-URR-lg(r)	[Using Equation (6.10)j

= b-Ug(1)
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i
= b- E u(j)gi

j=1

= r(i-1)-u(i)g.i i=1,	 , k

n

	

	 We next consider formulas for computing g and J^A Tr (1) Jj, i=1, .. , , k, which

depend upon a particular choice of v (1) . The choice of v(1) is somewhat arbitrary

as long as it is chosen to lie in the row space of A. We follow Paige (1972) in

defining S 1 and v(1) by

	

(6.29)
	

V(05 1 = A.Tb

where 8 1 = 11A TbII so that IIv(1) II = 1.

From Equation (6. 17) we have

	

(6.30)
	

g = UTb

Left multiplying this equation by R  and using Equation (6. 10) and (6.29) gives

N
	(6.31)	 RTg = RT U b = V A b

- B I V Tv(1) = B 1 e(1)-

where e(1) denotes the first column of the k x k identity matrix.
M

Writing the equation R g = 0 1 e 1 in terms of its components gives
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ai	
0	 ^1

	

g-]

2	

0

	

a2
(6, 32)0
	 ` 8 k ak k	 0

from which the components g i can be computed as

	

(6.33)	 gl = 01/'al

	

(6.34)	 gi = -( 8 i /ai ) g i-1	 i=2, ... ,k

Note that it would also be possible to compute the quantities g i sequentially as
gi = u(i)Tb (see Esuation (6. 30)) but Paige (1972) reports that Equations (6. 33)-(6. 34)

were found to gives better numerical accuracy in test cases.

In a least squares problem one does not generally expect the final residual

vector, r = b-Au, to be zero. The residual vector at the solution is characterized

however by the property that it is orthogonal to all of the column vectors of A.

Thus the vector h= A T(b-Ax) is zero if and only if x is a solution vector for the least ^

squares problem Ax atb. It is also true that h is the negative gradient vector with

respect to x of the function Zlhb-AxI S2 . Define

	

(6.35)	 h(1) = AT r(') = AT(b-Ax(i))

= AT(b-Ug 1))

= v(1)9 1 -VRT^i)
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I
E^
i

'I

V(e(I)6i-RTg(i)

= -V e (i+l )9. g.

	

= -v(i+l)%+19i
	 i=l, ... , k-1

while for i=0 and i=k we have h (0) =ATb=v(1) $ 1 and h(k) =0. It is of interest to note

that the vectors h(0) , ...,h(k-1) are mutually orthogonal.

The quantities y i=jjh(1) jj which may be useful in monitoring the progress of the

algorithm are thus expressible as

	

(6.36)	 YO = 81

	

(6.37)	 Yi = 13i+igil	 i=l,...,k-1

	

(6.38)	 yk - 0-'

In practice k is generally not known in advance and will in fact be defined as the

first value of i. for which S i+1 = 0.
We turn now to the determination of the quantities u (1) and ai for i=1, ... , k and

VG) and B 1 for i=2, ... , k. From Equation (6. 10) we obtain the equations

	

(6.39)	 u(1)rl = Av(1)

	(6.40)	 u(1)01i = Av(i) -u(i-1)0 i	 i=2, ... , k

and from Equation ( 6. 11) the equations

	

(6.41)	 v(i)0i = A Tu(i-I) -v(i-I)al-1	 i=2, ..., k

	

(6.42)	 0 = ATu(k) .. v(k)ak

	

If 9 1 and v(1) are defined by Equation (6, 29) and the scalar quantities ii i and ai	 k

are determined so that the vectors v ( ' ) and u(1) respectively have unit euclidean

length (as is required by Equations ( 6. 8 ) and ( 6. 9 )) then Equations (6. 39)-(6. 41)
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s ^'

jic,i

t^

determine all of the remaining vectors v (i) , i=2, ... , k, and u (i) , i=1, ... , It.

Collecting these various formulas together leads to the following algorithm.

(6.43 ) Algorithm ITLS for iterative solution of the least squares problem
Ax 5 b. [ Due to C. C. Paige (1972) pp. 21-22. 1

Step No. Description

1 x(0);=0

2 g0:=-1
3 i;=1

(A Tb if i=1
4 r(i),-

1A
Tu(i-1) -v(i-1) o

i-1	 if i > 1

5 di:=lli)II

6 Yi-1'=	 8igi-ll
7 Theoretical termination test;	 If H i=O go to Step 17.

Practical termination test:	 If either 8 i or y i-1 is

sufficiently small go to Step 17.

8 v(i): v(i)/8.
1

u(i):	

Av( 1 ) if i=1
9

Av(i)-u(1-1)$i if i > 1

to ai:=11u i)II

11 u(i): u(i)/a.
1

if i=1
w(i):-12

I(VV (i)-w(i-1)9.) /a• if i> 1
1	 1

13 gi:= -(Hi/ai)gi-1

14 x(i):=x(i-1)+w(i)gi

15 is =i+ 1

16 Go to Step 4

17	 k:=i-1

18	 Stop
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1

It must be verified that the vectors v (1) and u (1) produced by this algorithm

have the orthogonality properties specified by Equations ( 6. 8 ) and (6. 9 ) and

that all of the numbers a  defined by this algorithm are positive.

Assume that 1-1 iterations of Algorithm (6.43) have been executed producing

positive numbers 6 ( ' ) and u(1) , i= 1, ... ,.t-1, aset of mutually orthogonal unit

n-vectors {v(1) , ..., v( t-1) }, and a set of mutually orthogonal unit m-vectors

{u(1) , ...,u(Q-1)}, It is obvious from Steps 4 and 8 that all of the vectors v(1)

lie in the row space of A and from Steps 9 and 11 that all of the vectors u (1) lie in

the column space (range space) of A.

Consider the quantities computed during the fth iteration.

If 5 f , computed at Step 5 is zero then the (theoretical) algorithm terminates,

setting k=1-1. In this case we have 0k+C0 and yk=0 which means (see Equation

(6. 35)) that the most recently computed approximate solution x (k) was in fact the

unique minimum length solution 9 for the least squares problem, Ax b.

if B V computed at Step 5 is not zero, i. e. , B  > 0, then we must verify that

the vector v t) previously computed at Step 4 is orthogonal to v (1) , i= 1, ... ,.e-1.

Using the formula of Step 4 with i > I the inner products to be investigated are

(6.44)	 v(i)T-(.C) = v(i)TATu(k-1)-v(i)Tv(.t-1)o,k-1

j

= u(i)Tu(R-1)ai+u(i-1)Tu(.6-1)5i-v(i)Tv(1-1) Ot t- 1

For i < f-1 each of the three right side terms in Equation (6.44) is zero

because of the assumed mutual orthogonality of {u(i),...,u('")} and the assumed

mutual orthogonality of {v(1) , ... , v ( '6-1) } ,
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For i=2-1 Equation. (6.44) becomes

v(.e-1)Tv Lj = a	 + 0-a	 = 0
p -1	 L-1

which completes the verification that;" ) is orthogonal to v (1) , i= 2, ... , 2-1. The

verification that v(I)Tv()-I)=0 is equally straightforward.

Similarly it can be shown that u 1) computed at Step 9 satisfies u (1)Tu( ej = 0

for i=1, ... , 2-1. We further assert that u(e) is not zero and thus that a f > 0.

Assume the contrary. Then

(6.45)	 0 = u( 2 ) = AV(')-u('e-I)51

= Av('e)-[Av(2-l)-u"-2)0k-1182/°y2-1

I
_ ... = E c.Av(i)

i=1 1

2
=A E c.v(1)

i=1 1

where the coefficients c i , i=1, ... , 2 are nonzero. Since the vectors v(7),

i=1, ... , .e constitute an orthonormal basis for a subspace of the row space of
2

A the vector z = E civ(i) , must be a nonzero vector lying in the row space of A.
i=1

Such a vector must satisfy Az#O contradicting Equation (6.45). We conclude

that u( 'e) #0 and a k > 0.

This completes the verification of the theoretical algorithm (6. 43). In practice

there remains the problem of fully specifying a satisfactory termination test

at Step 7.
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Some estimate, say e i , of the norm of the round-off error vector associated

with the computed vet for v 1) could be computed. Then the number 9 i could be

regarded as being sufficiently small for termination if 8 i s ei.

Since Yi _ 1 represents an evaluation of A T(b-Ax(1-1) ) one might define

	

(6.46)	 mi = bJA JJ(JI b ^l + HA JN- Ilx(1)tlA)

and terminate the algorithm when 1'i-1 s JWi _ i where I denotes the relative

machine precision. (Define I to be the smallest number such that the c-mputed

value of 1 +I is distinguishable from 1. )

More complex algorithmic logic might be needed. Thus if 8 i s C  but

Yi-h>^wi-1 then rather than accepting x(1-1) as the solution it might be useful

to restart the algorithm, attacking the modified problem

	

(6.47)	 Adx s b-Ax(1-1)

to obtain a correction vector dx to be added to x(i-1)

We intend to study the problem of termination tests for this algorithm and

treat the subject in a subsequent report.
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1	 1

i	 Chapter 7_ T'ae Theoretical Equivalence of Algerithms CGLS and ITLS

s
We will show that the sequence of approximate solution vectors x (1) generated

by Algorithm CGLS (4. 3) is identical (theoretically) with the sequence of approximate

solution vectors x(1) generated by Algorithm ITLS (6. 43).

j^	 It will be convenient to state the relationships represented by Algorithm
f	

CGLS in matrix form. In terms of the quantities defined in Algorithm CGLS define

the matrices
H

i (7.1)	 V = [v 1),.•.,vk)I

1
(7.2)	 H=[h(0),...,h(k- 1)1

(7.3)	 D = Diag(11AV(1)
^A, ... 11Av(k)^^}

^j	 = Diag(dl,...,dk)

and

(7.4)	 F = Diag{11 K(	h(k-1)^^}

t	
= Diag(f0,...,fk-1)

Theis from the orthogonality of the vectors h (1) we have

(7.5)	 HTH = F2

and from the (ATA)-conjugacy of the vectors —v( ')  we have
}

f^	 (7.6)	 VTATAV = D2

1
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Following Householder ((1964) pp. 2 and 139-141) define

10.(7.7) 	J=	 0

 •^1 0

0

i

N

Then Equations ( 4. 8) and ( 4. 10) can be written respectively as
I

(7.8)	 H(I-J) = ATAVF2D-2
I

,I
and

j	 (7.9)	 VF - 2(I-JT)F2 = H

In terms of these quantities we now define quantities, distinguished by a

caret, which will be shown to satisfy the relationships of Algorithm ITLS.

— -1(7.10)	 V = HF

(7.11)	 U = AVD-1

(7.12)	 = DF-2(I-JT)F

(7.13)	 W =VD-
1

A
Note that .R is upper bidiagonal.
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Using the definitions (7. 10) - (7. 12) and the Equations (7. 5) - (7. 9) it can be

adirectly verified that the equations

(7.14) VTV = I

(7.15) UTU = I

(7.16)
A	 nn

AV = UR

and

(7.17) ATU = VRT

are satisfied.
n

From E quation (7. 10) the first column vector of the matrix V is equal to

h(0)/,^^h(^)^^ or equivalently A T b/!^ATb1l. This condition along with Equations
A A	 n

(7. 16) - (7. 17) assure that the matrices U, V, and R are identical with the

matrices U, V, and R which would be generated by Algorithm ITLS in solving the

least squares problem Ax al b.

Furthermore by use of Equation (7. 9) it can be directly verified that the

matrix W of Equation (7. 13) satisfies

(7. 18)	 WR = V

In accordance with Equation (6. 30) define

(7.19)	 g= AT

r
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(7.30) 2
fi-1 = digi	 i=l, ... , k

Let w 1 denote the i th column vector of W and let k  denote the i t' component

of g. We wish to show that the correction V (i)pi which is added to the approximate

solution vector at Equation (4. 7) of Algorithm CGLS is identical with the correction

vector w(1) gi which is added to the approximate solution vector at Step 14 of

Algorithm ITLS. Thus we wish to show that

(7.20)
	 Ai)— ^')pi = w(1)gi	 i=1, ... k

From Equation (7. 13) we have w( 1) = v l) /d i and from Equations (4. 6). (7. 3), and

(7. 4) we have pi = fi-I /di Thus Equation (7.20) may be established by proving

that

{1	 Introduce the It-vector e = [ 1, ... , 1 ^ T so that Equation (7. 30) can be written as

(7.31)	 F 2 e = Dg

= DUTb
	

[Using Equation (7.19)

= VTATb
	

[Using Equation (7.11)1,

= VTh(`")
	

[ Using Equation (4. 4) 1

Left multiply Equation (7. 8) by VT and use Equation (7. 6) obtaining

(7.32)	 VTH(I-J) = F2
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Substitute this expression for F Z into Equation ( 7. 31) obtaining
r
1 ^ _

(7.33)	 VT i(I-J)e = V T h(0)

as the equation to be verified. This equation is clearly true since

(I-J)e = [ 1, 0, ... , 01T

This completes the verification that the algorithms CGLS and ITLS produce

the same sequence of approximate solutions. It follows that the vector h(1)

= A T[b-Az(1) ] of Equation (4. 8) is identical with the vector h (1) = AT[b-Ax(')]

of Equation (6.35).
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Chapter 8 Solving a Consistent System Ax=b

Let A be an m x n matrix and let b be an m-vector contained in the column

space (range space) of A. Consider the problem of finding an n-vector x

satisfying

(8.1)	 Ax=b

The most common case of a consistent system of linear equations would be

the case in which the matrix A is square and nonsingular. Also of practical

interest is the case of a full rank underdetermined problem, i. e. , m < n and

Rank (A) = m. The algorithm to be described permits either m 5 n or m> n and

does not require any restriction on the rank of A.

If Rank(A) < n the solution to Problem (8. 1) is nonunique. In this case there

is a unique solution vector x of minimum euclidean length. This minimum length

solution vector is characterized by being the only solution vector for Problem (8, 1 )

lying in the row space of A. The algorithm to be described constructs this

solution vector, x.

Assume there exists an integer k (1 5 k 5 min{m,n)) and matrices

(8.2)	 Um x k - u(1) , ... , u(k) J

(8.3)	 V  x k ° 1v(1) , ...'v (k)  
3

of 	 0

(8.4)	 Lk v. k	
82 . 012	 (all a. > 0 and 0. > 0)
0	 8 k . a'k
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(8.10)	 x= Vp

and a k-vector, p, such that

(8.9)	 x = Vp

Since L is nonsingular Equations (8. 6 ) and ( 8. 8 ) imply that the column

vectors of V form an orthonormal basis for a subspace Yof the row-space of A.

Similarly Equations (8. 5 ) and (8. 7 ) imply that the column vectors of U form an

orthonormal basis for a subspace _Uof the column space (range space) of A.

Equation ( 8.9 ) shows that the subspace Ycontains the solution vector x. From

Equations (8-1 ), ( 8.7 ), and (8.9 ) it follows that the subspace -d contains the

right-side vector b.

Assuming the availability of the matrices U, V, a.,d L., Problem (8, 1 ) can be

approached as follows:

Introduce the change of variables

in Problem (8. 1 ) and use Equation (8. 7 ) obtaining the equivalent problem

JPL Technical Memorandum 33-627

(8.5)

(8.6)

(8.7)

(8.8)

and

U T 
U W 

I 

V T V = I 

AV=UL

A 
T 
U = VLT



1

(8. 11)	 ULp = b

Left multiplying this equation by U T and using Equation ( 8. 5 ) gives the k x k

nonsingular lower bidiagonal system

(8.12)	 Lp=g

where g is the k-vector defined by

(8.13)	 g = UT 

A computational algorithm can thus be based on the computation of g using

Equation (8. 13), solving for p in Equation (8. 12), an.i finally computing x using

Equation (8.9 ). These steps are all directly amendable to being organized in

a sequential form which uses the vectors u (1) and v(1) as they are produced.

^+

	

	
Assuming the nontrivial case of b # 0 we follow Paige ( 1972) indefining

U(l) by the equations

(8.14)	 Bl = IjbIl

(8.15)	 u( 1) = b/81

Thus u(1) is in the column space ( range space) of A since it was assumed that

this was true of b.

The other vectors u(1) and v(1) and the elements a i and B i of the matrix L are

sequentially determined by the unit length requirements of Equations ( 8. 5 )

and (8 . 6 ) and the following equations which follow directly from Equations 	 a

(8.7) and (8.8 )
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i

it
	(8,16)	 u(1)pi = Av ( i-1)-u(i-1)o.i-1

	

(8.17)	 0 = Av(k)-u(k)ak

I

i=2,...,k

(8.18)	 v(1)al = ATUP)

(8.19)	 v(i)o,3 = ATu(i)-v(i-1)Bi	 i=2, .... k

Comparing Equations (8.16) and (8. 17) we note that the integer k is generally

not known a priori but is determined as the first value of i for which Av(i)-u(i)ai=0.

With u(1) chosen in the column space of A it follows from Equations ( 8. 16),

(8. 18), and (8. 19) that all u ( ') will be in the column space of A and all v (1) will be

in the row space of A. It will subsequently be verified that vectors u (1) and v(1)

produced in this way necessarily satisfy the orthogonality conditions of Equations

(8.5 ) and (8.6 ).

With u(1) defined by Equation ( 8. 15) the vector g defined by Equation (8. 13)

is representable as

(8.20)	 g = B 1 e(l)

where e (1) denotes the first column vector of the k x k identity matrix. Using

this expression for g Equation (8. 12) becomes

(8.21)
	

Lp = 81e(1)

which permits the components, p i , of the solution vector ^ to be expressed as
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(8.21)	 pt = 61la1

(8.22)	 pi = -(Oi/ai)pi-1	 i=2, ..., k

Define the sequence of k-vectors

(8.23)	 p(1)= cpi, ... , Pi t 0Y 0]T 	i=O,...,k
k-i

Define the sequence of approximate solution vectors

(8.24)	 x(0) = 0

(8.25)	 x(1) = Vp(1) = E VG) pi= x(1-1) + v (1) pi	i= 1, ... , k
j=1

Associated residual vectors are defined by

	

(8.26)	 r(1) = b - Ax(1)

and may be expressed as

	

(8.27)	 r(0) = b = u(1)Sl

	

(8.28)	 r(1) = b-AVp(1) = b-ULp(i)

i=0, .. , k
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b-U	
0

L.j 0

^i+1 pi	 4- row i+l

0

0

= b-u (I)8 -u (i+1)9	
p.

1	 i+1 i

= _u(i+l)8i+lpi
	

i=1, ... , k-1

( 8.29)	 r(k) = 0

If we introduce the additional definitions, p0 = -1, and 9k+1=0 the norm

of the residual vector can be expressed as

(8.30)	 Pi = I fl r(i) jj = 18 i+1 pi I	 i=0, ... , k

These considerations may be organized into a computational algorithm as

follows:
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(8.31) Algorithm ITC For Iterative Solution of Consistent Linear Equations
[Given by Paige (1972) pp. 21-221

I

i

Step Number Description

1 x(0):=0

2 p0:=-1

3 i:=1
l b if i=1

u(1) ;	 =4
1(Av(i-1)_ u(i-1)ai if i> 1-1

5 9i:=hu(i) OM

6 pi-1:=IeiPi-II
7 Theoretical termination test: 	 If 6=0 go to Step M.i

Practical termination test: 	 If either 8i or Oi_I is

sufficiently small go to Step 16.

8 u(1): u(1)/Bi

9 -(i);	 ATu(1) if i=1_

^ATu(i) -v(i-1) B i 4i> 1

10 a : = III i) IIi
11 v(1): = —V(i) /a i 

12 Pi:=-(Bi/(Yi)Pi_i

13
x(i);=x(i-I)+v(i)pi

14 is=i+l

15 Go to Step 4

16 k:=i-1

17 Stop

It must be verified that all of the vectors u(1) and v(1) produced by this

algorithm have the orthogonality properties specified by Equations ( 8. 5 ) and

( 8. 6 ) and that all of the numbers a  defined by this algorithm are positive.
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Assume these conditions are satisfied for i=1, ... , 2-1. Consider the

quantities computed during the 2th iteration.
3

If 8 2 computed at Step 5 is zero the algorithm terminates setting k = 2-1.

Thus 8k+1=0 and p k=0 which (see Equation (8.30)) implies that the current

approximate solution vector x (k) is actually the unique minimal length solution

vector z.

If S 2¢0 then 8 2 > 0 and the orthogonality of u (2) relative to u(1) , ...,u(2-1)

must be verified

(8.32)	 u(i)Tu(2) = u(i)TAv(2-1)-u(i)Tu(.t-1)012-1

= [v(i)011+ v(i-1)8i]Tv(2-1)-u(i)Tu(2-I)a2-1

,

	

v(i)Tv(21) 01i -u(i)Tu(2-I)01
2-1	 i=2,...,2-1

For  < 2-1 each term of this final expression vanishes while for i = 2-1 the final

expression reduces to 01 2 _ 1 -01 2 _ 1 = 0. The verification that u(1)Tu(2)=0 is

similarly straightforward.

Similarly it can be verified that the vector v(2) defined at Step 9 satisfies

v(1)Tv(-Q)=0 for i=1, ..., 2-1. It remains to be shown that 01 2 defined at Step 10

is positive.

Suppose 01 2=0. Then
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I

(8.33)
	 p = _V(R) = ATu(R)-V(R-1)i3 R

= ATu( R)-LATu(.t-1)-v(R-2)BR-11BR/a1-1

_ ... < E c.A Tu (1) = A T E c.u(1)
i=1 1	 i= 1 1

Here the coefficients c  are all nonzero and the vectors u (1) , ... , u(R) constitute

an orthonormal basis for a subspace of the column space (range space) of A.
R

Thus the vector z = £ c iu (1) is a nonzero vector in the column space of A. It
i=1

follows that A z#0 which contradicts Equation (8. 33 1; We conclude that a R > 0.

The practical termination test at Step 7 might be implemented as a comparison

of S i with some computed estimation of the norm of the round-off error vector

associated with the computed vector u(1) or a comparison of p i-1 with j(1ebjj+jAAjj • 1jx(1)jj)

where I denotes the relative machine precision.

M
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Chapter 9 The Theoretical Equivalence of Algorithms CGC and ITC

Using the notation of Algorithm CGC (5.7) define

(9. 1)	 v(I) _ (-1)i-1^(i)/fuv(1)^d	 i=1,...,k

(9 .2 )	 u(1) _ (-1)i-1T(i-1)/Qir(i-1)^^ 	 i=1,...,k

(9 .3 )	 n'i = IIV ( ' ) II/IIr(1-1) = (P i ) -1/2	 i=i, ...,k

(9.4)	 51 = 'I b Il = 11r(0)II

(9.5)	 Oi = II (i-1) 11- Irr(i-1)11/11.FG-2)112

- (Bi-1/pi-1)1 /2
	 i=2, ... , k

(9.6)	 p0=-1

(9.7)	 pi = r-i)i- 1^{r(i
-1)M^,2/Iw(i)^I

_ ( ' 1 )	 PiAw	 ^i^

	
i=1,	 , k

(9.8)	 = X(1)
	

i=O,...,k

	

Since the sets of vectors (v(I),	 ,v(k)) and ( 0)
	 r(k-1)) are each

mutually orthogonal it follows that the sets (v(l ), ... , v(k) ) and (u(I ), 	 u(k) }

defined by Equations (9. 1) and (9. 2) are each mutually orthonormal. Using
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i

the equations of Algorithm CGC (5. 7) it can be directly verified that the

quantities defined by Equations (9. 1) - (9. 8) satisfy the relations of Algorithm

ITC (8.31). Thus the algorithms CGC and ITC theoretically produce the same

sequence of approximate solution vectors.

Since the difference between the two algorithms only involves different scale

factors it is to be expected that, apart from questions of exponent overflow or

underflow, the two algorithms will exhibit essentially the same numerical

behaviour also.

The theoretical equivalence of these two algorithms was pointed out by

Paige (1972), p. 13.

I



Chapter 10	 Solving a Consistent System Ax=b where A is Symmetric

Let A be an n x n symmetric matrix and let b be an n-vector contained in
li

the column space (range space) of A. 	 We wish to find a vector x satisfying

^. (10.1)	 Ax = b

In practical problems of this type the matrix A would usually be of rank

n.	 The algorithm to be described does not require that Rank (A) = n. 	 If

jRank (A) c n the solution of Problem (10. 1) is nonunique. 	 In this case the

I algorithm finds the (unique) solution vector x lying in the row space of A. 	 This

is the minimal length solution vector for Problem (10.1).

- Assume the existence of matrices Vn k and a k-vector p suchk and Ckx	 x(

that

(10.2)	 V = [v(1),...	 v(k)^

a1 	 6 2 	0
9 kC =	 8 2 	a2,

0	 ^Bk	
ak

(10.4)	 VTV = I 

(10.5)	 AV = VC

{	 and

tit

I
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(10.6)	 x = Vp

If the matrices V and C are available p roblem (10. 1) can be attacked

as follows. Make the change of variables

	

(10.7)	 x=Vp

in Equation (10. 1), then use Equation (10. 5) obtaining

	

(10.8)	 VCp=b

Left multiply Equation (10.8) by V T using Equation (10.4).

	

(10.9)	 Cp= V T	b =g

Thus Problem (10. 1) could be solved by first computing g = V Tb, next

solving Cp = g for p, and finally computing z = Vp.

Since C is a symmetric tridiagonal matrix the entire matrix C must be

determined before any components of p can be computed. Thus the equation

Cp = g is not directly suitable for use in an algorithm which discards old

vectors v(1) as new ones are computed.

Let Q be a k x k orthogonal matrix which on post- multiplication times

C produces a k x k lower tridiagonal matrix L.
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1

X11

X 21	 t22	 0

	

^	 (10.10)	 CQ = L =	 231	 A32	 133

ij

	

-f	 0	 z k-2	 tk, k•, 1	 ^kk

Define

	

(10.11)	 W = VQ

and

	(10.12)	 z = Q T p

Then

	(10. 13)	 Lz = CQQ TP = Cp = g

and

	(10.14)	 x = Vp = VQQTp = Wz

Thus Problem (10. 1) can be solved by the :following sequence of operations

assuming that b, V, and  are known a priori
Y
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(10.15)	 g = VT 

A	 (10.16)	 L = CR

(10,17)	 Solve LZ = g for z

(10.18)	 W = VQ

!i
i

(10. 19)	 x = Wz

Each individual step of this sequence is amenable to being implemented in a

sequential manner so that in fact V and C need not be known a priori but rather

the column vectors of V and the elements a  and 3 1 of C can be computed, used,

and discarded sequentially.

This method of solving Problem (10. 1) is due to C. C. Paige and M. A.

Saunders (Personal correspondence, 1972).

We follow M. Saunders in defining 91 and v(l) by

(10.20)	 R1 = IabIl

F

and

(10.21)	 v(1) = b /P l	[ assuming (11#0]

From Equation (10. 5) we may write the equations
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V(2) 6  = Av 1) - v(1)a2	 1

and

(10.24) 0 = Av(k) _ 
17 

(k) - v(k-1)R
k	 k

(10.23)	 v(i+l)pi+l = AvG) - v(1) ai - v(i-1)ei	 i=2, ... , k-1

The numbers 0i+l may be computed as normalization factors to assure

that the vectors v(i+l) have unit length as required by Equation (10.4). The

numbers a  can be computed as

(10.25)	 a.r = vG)TAvG)

which is the condition (see Equation (2. 1)) which assures that v (i+l) computed

by Equation (10.22) or (10.23) will be orthogonal to v(i)

The integer k will generally riot be known in advance and may (theoretically)

be determined as the first value of i for which the right side of Equation (10.23)

is zero. With k so determined it can be verified that the vectors v(l) , ... , v(k)

produced by use of Equations (10.21) - (10.23) form an orthonormal basis for

a subspace of the column space of A. This verification makes essential use of

the symmetry of A.

It is pointed out by Paige and Saunders that the computation of the

orthogonal set of vectors vG) , i=l, . . . , k, using Equations (10.22)-(10.23) is

a method due to Lanczos (1950 and 1952).
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The orthogonal matrix Q will be (implicitly) constructed as the product

(10.26)	 Q = G I G 2• Gk-1

where

	

I	 0	 0l	 i-1

( 10.27)	 Gi =	 0	 Gi	0	 '	 2	 i=1,	 k-1

	

0	 0	 I 	 k-i-1

	

i-1	 2 k-i-1

c.	 s.

(10.28)	 Gi =	 i=1, ... , k-1

ISI c. i

and

(10.29)	 c? + si = 1

Each matrix G  effects a nontrivial transformation on a particular 3 x 2

or 2 x 2 submatrix of the appropriate intermediate matrix which arises in the

process of transforming the symmetric tridiagonal matrix C to the lower

tridiagonal matrix L. This action may be expressed as follows:

(10.30)	 111 = al k
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101g =0(10.34)

I
	

(10.31)	 't21 = 82

't i, i	

Ai+1li+2,

i, i	 0

	

(10.32) 	 i	 °yi+1	 ^'i	 i+1, i	 'ti+1, i+1	 i=1, ... , k-2

0	 9i+2 	 i	 ti- +2, i+1

[;k,

k-1,k-1	 8k'ek-1,k-1	 0

	

(10.33)	 Gk-1

	

 k-1	 ak	 tk, k-1	 fk, k

As each additional row of L is determined by these equations an additional

component z  of the vector z satisfying Equation (10, 17) can be determined. Note

that

due to Equations (10. 4), (10. 15), and (10.21). Thus the equations for the

components z.i are

(10.35)	 z  = 8 1/ 111
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(10.36)	 z2 = -'e21z1/122

and

(10, 37)	 zi - -( '¢i, i-2z i-2 + "i, i-lzi-d"ii 	 i= 3, " . , k

Define the vectors

(10.38)	 z(1) 
= C z l , ... , z i , 0, ... , 01	 i=0, 1, ... , k

k-i

and, motivated by Equation (10. 19), define a sequence of approximate solution

vectors

X(') = Wz(1)	 i=0, 1, ... , k

The associated residual vectors are expressible as

(10.39)	 r(1) = b-Ax( ' ) = b-AWz(1)

= b-AVQz G) = b-VCQz(i)

= b-VLz (i) = v(1) S 1 -VLz(i)

= V[e(1) 8 1 -Lz(i) 1 	i=O,1,...,k

from which we may write
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(10.42) r(k) = 0

(10.40)	 r(0) = b = v(1)g
i

 Izi
(10.41)	 r 	 _ -[v(i+1)v(i+2)

0	 ti+2, i

tiF ^

;i

I

Interpretation of Equation ( 10.41) for i= 1 requires the definitions k 2 0 =0 and

z 0=0 while for i=k-1 one must define v (k+1) =0 and fk+ l, k-l=0.
The norms of the residual vectors are expressible as

(10.43)	 PO	 Al r(0) 11 = 91

1/2

(10.44)Pi	I^r(1)^^ _(ti+1,i-lzi-1+ "fi+l,izi ) 2+(Ai+2,izi)2^

for i=1, ... , k-1

(10.45)	 Pk = 1 jr(k)jj = 0

where again we define a2 , 0 =0,  z 0=0, and ;k+l, k-1-0.
Combining these equations appropriately one can obtain the following

algorithm
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(10. 46) Ahorithm ICSE Iterative Solution of a Consistent Symmetric System
of Linear Equations [Originated by C. C. Paige and

yM. A. Saunders, personal communication, 19721

Step	 Description

	

1	 x(0):=0

	

2	 0I:=jjb11

	3 	 If 8 1 = 0 set k:=0 and go to Step 24

	

5	 u(i).—v(1)

	

6	 QUIT:=FALSE

	

7	 i-.=1

	

8	 y(1): =Av(i)

	

9	 a1:=v(i)Ty(i)

—(i+l) . = y(I)-&Iv(1) if i=1

	

30	 v	
y(i)-a•v(1)-B.v(i-1) if i> 14t

!i	 e	 a

-v

11	 oi+1'=1w
(i+ 1) 11

"	 12	 Theoretical termination test: If Bi+1-0 set QUIT:=TRUE

Practical termination test. If Bi+1 is sufficiently small
{

set QUIT:=TRUE

;e

X11	 = aI
	

if i=I
k 121	 821

13
i

Ii, i-1	 Ti, i	 'ti, i-1	 of
G	 if i > 1

Ai+1,i-1 xi+l,i	 0	 ?i+1	
i-1
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Step	 Description

If i=1 go to Step 16

_14	 If i=2 set p l" ^(121z1)2+(I31z1)2113
z	 z 1/z

If i> 2 set p i-1' -C(Ii, i-2 z i-2 +Ii, i-I z i-1 ) +(I i+1, i-Izi-1) 1

15	 Practical termination test: If p i _ I is sufficiently small

set k:=i-1 and go to Step 24.
i

16	 Iii :=(IZ + 8 2 1)1..z

81/111 if i=1

17	
z ' _	 -I21z1/122 if i=2

-(Ii, i-2 zi-2+Ii, i-Izi-1)/Iii if i> 2

18	 If QUIT= FALSE set v(i+1),=^(i+1)/8x+1'	 Iii/Iii'

s i .-B :IJ /Iii'

	

ci	 s 	 (i)	 (i+1
Gi 	 Cs. -c.^

i	
' 

andfw ,u	 ) 1: =Cu(i) v(i+l)IGl
1

19	 If QUIT= TRUE set w(1):=u(1)

20	 x(i): =x(i-1)+w(i)z.
i

21	 If QUIT= T.RUE set k:=i and go to Step 24

22	 is= +1

23	 Go to Step 8

24	 Here the algorithm is finished with the solution vector x(k).
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