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I. Plasma Turbulence

A. Uniform Medium

A new approach to the problem of weak turbulence was pioneered and

developed by Davidson (2a, 2b, 2c, 2g). The basic idea is that perturbat-

ion expansions are applied to statistical correlation functions, rather

than to the field of individual realizations, as had previously been done.

Theorems were obtained by Kaufman and Davidson (lb), indicating an

approach to generalized Rayleigh-Jeans distribution.

The role of damped waves in plasma turbulence has been analyzed by

Montgomery (3d) and resolved by Kaufman (lf).

B. Nonuniform Medium

New techniques were developed by Kaufman (with Nakayama and J. King)

to treat magnetically confined plasma in a turbulent state, such as the

magnetosphere (la, lc, ld). The basic idea is to study diffusion in the

space of adiabatic invariants, and to account for resonance broadening

in wave-wave interactions.

II. Nonlinear Oscillations

A. General Theory

Exact solutions were obtained for large amplitude waves in a Vlasov

plasma (2d, 2e).

B. Alfven-Mode Instability

Guiding-center theory was used to study the nonlinear growth (5a)

and convective evolution (5b) of Alfvdn waves in the solar wind. For a

many-wave system, quasilinear relaxation was studied (2f).

C. Relativistically Strong Electromagnetic Waves

With application to pulsars in mind, the propagation (6a) and in-

stability (6b) of intense low-frequency radiation has been determined.
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III. Miscellaneous

A. Darwin Model

To study low-frequency non-radiative electromagnetic effects, the

local conservation laws of the Darwin model were determined (le).

B. Electrostatic Approximation

Validity conditions were determined for the neglect of electromag-

netic effects (3b).

C. Thermal relaxation

Simulation methods were used to test the relaxation theories for

plasma models (3c).

D. Textbook

A graduate text on recent developments in the theory of a Coulomb

plasma was written (3a).
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