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| Preface

. : ,
This report has been prepared in two volumes, each of which is a separate
document. Volume 1 is in the form of the usual final report. It contains,a
_sﬁmmary 6f the theoretical derivations, the réquired analytical boundary
value solutions, and a numerical analysis of the solutions, as well as con-
clusions and re cémméndations for further work., It includes all the equations
needed to evaluate any of the boundary value solutions except those é'quatidns
which apply strictly to two-body motion and can be found in most standard

astrodynamics or celestial mechanics textbooks.

The actual derivations of the secon;i order asymptotic solutions are long and
involved. These derivations have been compiled in a A.sep'arate document
which is presented as Volume 2. It contains all the assumptions and inter-
mediate steps which are an important part of the thec))retical development but
which are not included in Volume >l. The main purpose of Volume 2 is to
prdvide a study guide or reference for those interested in the theoretical
aspects of the method of matched asymptotic expansions and/or those who
may wish to modify or extend the results contained in Volume 1 to fit some

particular problem.

Inasmuch as each volume was written as a separate document, there is a
certain amount of overlap af.f,'id_ cross 'réfe_fencing}‘be;}tWeen the two. Thus the
‘reader desiring a more detailed discussion of a particular section in
Volume 1 need only refer to the corresponding section in Volume 2 and need

not read through the entire theoretical analysis.
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ABSTRACT

Previdusly published. asymptoti.c solutions for lunar and
interplanetary trajectories have been modified and combined to
formulate a general analytical solution to the problem on
N-bodies. The earlier first-order solutions, derived by the
method of matched asymptotic expansions, have been extended
to second order for the purpose of obtaining increased accuracy.
The derivation of the second-order solution is summarized by

showing the essential steps, some in functional form.

The general asymptotic solution has been used as a basis for
formulating a number of analytical two-point boundary value
solutions. These include Earth-to-moon, one- and two-impulse
moon-to-Earth, and interplanetary solutions. Each is presented
.as an explicit analytical solution which does not require interative
steps to satisfy the boundary conditions, All required formulas

are presented for each solution.

Comparisons between the asymptotic solutions and numerical
integration are shown for several applications. The results show
that the accuracies_of the asymptoti'c'géblut“i'ér;s range from an ‘
order of magnitude better than conic approximations to that of
numerical integration itself. Also, since no iterations are
required, the asymptotic boundary value solutions are obtained

in a fraction of the time requi“red for comparable numerically

integrated solutions,

The subject of minimizing the second-order error is discussed,
and recommendations made for further work directed toward

achieving a uniform accuracy in all applications,
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Section 1

INTRODUC TION

A number of 'apprqximation techniques have recently been proposed for
calculating N-body trajectories (where N is greater than two). These tech-
niques include the matched asymptotic expansion (References 1 and 2),
hybrid patched conic (Reference 3), overlapped conic (Reference 4), multi-
conic (Reference 5), virtual mass (Reference 6), slowly varying functions
(Reference 7), and Chebyeshev series (Reference 8). All these techniques
are claimed to be much faster than mi-merical_ integration and considerably
more accurate than the well known patched-conic approximation. Of al.l these
techniques, the matched asymptotic expansion is somewhat unique since it
represents an analytical solution to the problem of N bodies rather than just
a numerical scheme for rapid calculation. .The analytical nature is useful
in solving two-point or mixed béundary value problems since, in most
instances, the solution can be obtained explicity and does not require itera-

tive steps.

The N-body problem is one of determining the motion of a body of negligible
mass subject to the gravitational forces of one primary body apd N-2 second-
ary bodies. The motion of the secondary bodies relative to the primary body
is assumed to be known. In general, the dominant force on the negligible -
mass body is that of the brimary body. However, during a close approach

of any one of the secondary bodies there is a change in the ordering of the
dominant and perturbing forces and as a result the problem falls into a class
known as singular perturbation prob'lems (Reference 9). An approximate
analytical solution can then be obtained by the method of matched asymptotic .

expansions.

. Numerical schemes give solutions to this type of problem but they require a
prescribed state vector at some time t = to in order to uniquely define the

trajectory. In many boundary value problems the initial state vector is not



known a priori but is only partially prescribed along with some terminal
conditions. The Hiime¥ical schemes then require an iterative procedure to
obtain the unknown part of the initial state vector, i.e., to solve the two-

point boundary value problem.’

The asymptotic solution 'can be formulated to solve the two-point boundary
value problem directly, i.e., the unknown part of the initial state vector can
be obtained without iteratioﬁs. The solution is formulated as a set of analy-
tical expressions in the form of aéympfotic expansions. Evaluating the
expressions in a certain séquehce gives all the unknown parameters as func-
tions of the prescribed boundary conditions.  The goal of this study was to
formulate a general, second-order asymptotic solution to the problerﬁ of
N-bodies and to construct from this solution Seve’fal tWo-point’boundary value

solutions. This goal can be divided into three specific objectives.

The first objective was to extend the previously published first-order :soiﬁ-
tions to second order. The results of this effort are summarized in

Section 2, where the N-body differential equation of motion is used as a’
starting point. Section 2 covers the 'developmen’f of the outér and inner solu-
tions, ' the overlap domain, the -fnatching, and the fundamental solution. The
latter gives the relationships between the constants of motion of the outer
solution, where the primary body is dominant, and the inner solution, where

one of the secondary bodies is- dominant.

The fuhdémental solution was used to achieve the second goal of this study,
the formulation of several different asymptbtié two -point boundary value |
soluti'ons-. These sblﬁti_ons,‘ which can be applied to certain classes of Earth-
- to-moon, moon-—lto-Ea..fth, and iriterplahetary trajector:ieé, are présented in
Section 3. Two versions are presented for each solution, one linear, the"
other nonlinear. In every case at least one of the two solutions satisfies the
boundary.conditions exactly without iterations giving an explicit boundary

value solution,.

The third objective of the study was to compare' the asymptotic boundary

value solutions with numerical integration. Cornpérisons for Earth-to-moon,



two-impulse moon-to-Earth, interplanetary midcourse, and i_nterplé.netary
trajectories are presented in Section 4. These results show that (1) the
interplanetary solutions are more accura't.e than the lunar solutions, (2) mid-
course solutions are more accurate than those which originate close to one
body and terminate close to another, (3) the second-order solutions 'improve
the first order in some but not all applicatidns, ,Aand (4) the computatibr_l times
for the asymptotic solutions are-6 to 150 times faster thaﬁ for numerical

integration.

A discussion of the: conclusmns obtamed from this study and recommenda- ’

tions for.further stud1es are contamed in Section 5.

- This study has focused on the applicat.ioh of the method of matched asymptotic
expansions, and it has assumed that the reader has a cerfaiifl degi'ee of
familiarity with the theoretical background. An excellent discussion of the

basic theory can be found in Reference 9.

The notation used ih this report is a co,rr'l,bination of that of Lancaster
(Reference 1) and Carlson (Reference'Z). In general, each parameter is
defined as it is introduced, but some which have only mathemaf_ical meaning
and serve an intermediary role ‘ar_e defined only by an equ-ation.. Scalars
are written as x or X and vectors as x or X. A matrix G(.i)-and. a tensor
H(x) are also used. In addition, a bar over a parameter indicates that it
applies specifically to an inner solution, Finally, the order of a particular
term in an expansion is. given by the exponent of the parameter u which

" precedes the term, i,e., p.n is order n or O(n).

et Ty . 4 b ..
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Section 2 .
SUMMARY OF THE ASYMPTOTIC N-BODY SOLU’IfION.

The problem of N-bodies for which an asymptotic solution is desired consists
of finding the motion of a body of negligible mass (hereinafter referred to as
the particle) under the influence of one primary body and N-2 perturbing

bodies whose motions relative to the primary body are known, This problem

i'equires ‘the solution of the differential equation

- £ =1(r) + F(r, p;) ) - (2-1)
where r is the position of the particle with respect to the primary body and
P, is the position of the 1—1:1- perturbing body with respect to the pr1mary body.
The functions f and F are defmed by :

= (2-2)

£(x) = -x/r
N-2
F(r.p) = » p; [£(x-p) +£(p)] (2-3)
oi=l :

Equations (2-1) to (2-3) are dimensionless; the unit of length is the semi-
major axis of the orbit of the _1—}l body, * and the unit of time 1s the period of
the _]—11 body divided by 2. In: dimensionless units then the mass of the pri-
‘mary body is unity and of the i& body is My "which is assumed to be much
less than one, The origin of the coordinate sy.stem is the primary body

rather than the center of mass and this gives rise to the last term in (2;3').

*The jﬁ body will be termed the reference body..



For lunar trajectories the primary body is the Earth, and the two perturbing
bodies of interest are the moon and the sun, (Although the By for the sun is
not small compared to the unit mass of the Earth, its contmbutmn is small
due to the great distance of the sun fromthe Earth.) For interplanetary
tra_]ectones the primary body is the sun and the perturbmg bodies the

planets,

As long as the particle is not close to one of the perturbing bodies, the
func'cidn F in (2-1) is srﬁall compared to the other two terms. However, if
a close approach is made to one of the perturbing bodies, then F becomes
" the dominant force and the problem falls into a class known as singular
perturbation Iproblems (Reférence 9,).A An approximate analytical solution

can then be obtained by the method of matched asymptotic expansions.

The asymptotic solution is formulated by considering two limits of (2-1) and
then matching the corresponding solutions in an overlap domain. - The result
is termed the fundamental solution and is used to formulate the boundary

value solutions in Section 3.

2.1 OUTER LIMIT
The outer limit is defined as the limit where r-p; = O(1) for all i. Then F
is always small in (2-1), and the solution is assumed to be given by the

asymptotic expansion
- N 2 3
T(t) = r (t) +pur,(t) + p r,(t) + Ow”) (2. 1-1)

Where the reference mass j is equal to pJ, the dimensionless mass of the

reference body Substitution of (2, 1-1) into (2-1) and equating powers of "

leads to the differential equatlons for T 1, a»nd T, They are
¥ o= A(x) (z.<1-2)
¥, =Glx ) + E(x . p) | (2.1-3)
¥, =Glz )z, + 52(;0, z_l,gi) | (2. 1-4)
6




where

~ N-2 o
Eyzgp) = 2 M [_f(zo-gi).+_f(_pi)] | (2. 1-5)
i=1 ' '
N-2
S 2 <
i=1 '
,ar}d
M, = pi/p ‘ o - (2.1-7)
The function G (x) 'is a matrix defined by
3xix;j ﬁl . :

where § ij is the Kronecker delta. The function H(x) is a tensor defined by

15xix.xk 3 '
Eijk = — ———l—-x7 + " (xi 6jk + X, T xkéij) (2.1-9

G and H represent the first and second derivatives in the Taylor series

expansion of f(r) about the nominal value r = r_.

The solutions of (2. 1-2) through (2. 1-4) depend on the initial condition on r

and the corresponding velocity v. These initial conditions can be stated as

E(to) = -:o(to) + I-Lﬁl(to) + “ZEZ(tO) (2 1-10)

wit) = Yo(t) + vy (to) +uvy(t ) (2.1-11)



Then, the solutions are

r () =f (Or () + g (Bv (k) (2.1-12)

. t -
‘r,l(t), = A(t, t_o)zl(to)'J' B(t, ‘to)_\-:ll(to) +'f B‘(t,fr)__li_‘l(_j)df ) | (g, ‘1-1’3):
tO
_-;Z'(f) = Alt, ¢t )r (t, ) + B(t t )vz(t ) +/ B(t, 7) E,(1)dr (2. 1-14)
t,

The solution for Ty is the standard two-body ellipée .resulting from the two- .

body differential equation (2. 1-2). . The functions fo and g are infinite.’

series in time or can be written in closed form using eccentric anomaly as :.
the independent variable., They are defined in any standard astrodynamics :.
textbook and in References 2 and 10* The solutions for r,andr, are made
up of a homogeneous solution which is simply the propagation of initial devia-
tions along the two-body solution Iy and a particular intégral which intro-
duces the perturbatmns from two body motion, The functions A(t, to) and
B(t, to) are partial derivative matrices which arise by partitioning the state

transition matrix

Altt) Blt,t )

@(t,to)'s”' | o 1= (2.1-15)

Clt, ?co)' D(t, t_)

*Reference 10 has been included as a second volume of this report. It is
hereinafter referred to only as Volume 2. . R R




Many expressions have been derived for the partial derivative matrices in
various coordinate systems. Some are discussed in Reference 2 and in

Volume 2,

The solutions given by (2. 1-12) through(2. 1-14) can be substituted back into
(2.1-1) giving a second-order solution for the position r of the particle.  The
solution is a function only of the initial conditivor}s'_(Z. 1-10) and (2.1-11) and
fhé time histories of the pertufbing bodies p;. The initial conditions can be

- chosen so that at some time t = ty the trajectory passes close to the k& body.
This introduces another limit,

Thé outer solution and ifs:bé'ha\}iof as t ;alppr.oac‘hedv'tk are shown in
Figure 1,

2,2 INNER LIMIT o
The inner limit is defined-as the limit where r-p, ‘= O(u, ) for some k. This
limit arises when'the particle makes a close approach to the k@ body. This

limit requires the change of variables

CR17

_OUTERSOLUTIONK |  INNER SOLUTION By (Sy)-

S, : _

UNPERTURBED SOLUTION
PERTURBED SOLUTION

Figure 1. Outer Solution, Inner Sotution, and Overlap Domain
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: Ry = (x-py )y - . (2.2-1)

where Py is the position of the k-1£ body and t_, is the time of peficenter

. . Pk .
passage of the trajectory about the kPE body. The latter can be written

t:

o ® ty BTy (2.2-3)

-and tk chosen as the time at which the two-bod? outer solutionio passes .

through the center of the kt—l'l body, i.e., at t:tk

(6 = pilty) | (2.2-4)

Substitution of the inner variables (2, 2-1) and (2. 2-2) into (2_-1) give»s the

inner differential equation

2

dBk—f ) + P( ) | (2. 2-5)

o2 AR T ERepeR; (2. 2-
K

N

where _E is a function defined in Vo_lui'ne 2, If the expansion

Ry (§)) = B"ko(sk)} PRy 1 (Sy) + “kZsz(Sk) * O(“k3) (2.2-6)

. is substitutéd into (2. 2-5) and powers of P equated the differential equations

are

2 _

d | : |
kao = f(R 0) _ . (2.2-7)

dSkZA .
2
d : . o

szl -0 | ‘ (2.2-8)

ds,




2
dBkZ—G( )R, , + G(p, (t,) 2.2-9)
5 2 BrolBra T GlRk(f) By (2.2-9)
k

The solutions of (2. 2-7) through (2.2-9) depend on the initiél conditions on
B—’k and the corresponding velocity Xk' These initial conditions can be stated

as

Bk(sko) = R o05k0). | (2.2-10)
. Xk(sko) = VoSro) ' (2.2-11)
These initial conditions assume that the perturbations vanishat S, =S, and -

k ko
that the full solution (2. 2-6) can be represented by R_k at this point. As a

result the solutions are

R, (S,) =1 (5 )R (8, ) +E(S5)V, (S ) C (2. 2-12)
ok o) kR'ko —ko' ko
R(S)=0 (2. 2-13)
Sk
Ry ,(S)) = f B(S,, £)G(p, (t, )Ry (£)de (2. 2-14)
S
ko

The solution for B—ko is the standard two-body hyperbola resulting from the
twe-body differential equation (2.2-7). The functions fo and g, are defined
in many textbooks and in Volume 2. Like their counterparts.in the elliptical
solution of the previous section, they can be written in closed form using
hyperbolic eccentric anomaly as the 1ndependent variable. The function

B(S £) is the partial derivative matrix

aR'ko(sk)

R B(S,.£) = 5, () (2.2-15)

11
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The solutions given by (2, 2-12) through (2. 2-14) can be substituted back into
(2.2-6) giving a second-order solution for Ry. The solution is shown in

Figure 1.

2,3 OVERLAP DOMAIN
The outer and inner solutions are functions of the vector constants given by

S (2.1-11), (2.1-12), (2. 2-10),' an-d (2.2-11). For a trajectory which is con-
tinuous from the domain of the outer solution to the domain of the inner

" solution, these constants are not all independent. In a region designated as
‘the overlap domain, the outer and inner solutions must exhibit certain '
similarities, i.e,, both solutions must represent the trajectory in this
domain. This characteristic makes it possible to determine explicit rela-
tionships between the constants of the two solutions., A representation of the

overlap domain is shown in Figure 1.

The ove rlap domain is defined as the domain of the intermediate limit,

i.e., the domain where t—tp = 0(u¥) with O<a<l, This limit is formally

defined by introducing the intermediate variable
- a : - .
o) = (t-tpk)/pk 05a0<a:<cc151 (2. 3-1)

If =0 then (2. 3-1) simply shifts the timé scale of the outer solution to a

new origin.,  If a = 1, o, = S, giving the inner time. Within the range

k
ag<o<ay’ Tx is then intermediate to the outer and inner times. The values

of a, and a, must be determined from the matching.

- The outer solution is a function of t and replacing tpk in (2. 3-1) by (2.2-3)
and solving for t-t, gives

t-t (2.3-2)

-, @
e AL N
Since By is small (2,3-2) indicates that the outer solution must be expanded
to about t = in order to determine its behav1or in the overlap domain,

k
This expansion is derived in Section All of Volume 2.

i2




S

The outer expansion can be summarized in function form by the following

expression:
ro=x(t-ty, s n(t ), vt )i Y&, 6%, g%, ny¥) (2.3-3)

The position vector r, when 't-tk. is small, is a function of both the initial
conditions at to and four constants, Y%, 815 Ly éndn}:, which represent
the first- and second-order deviations from two-body motion over the
interval tosts'tk. These constants are discussed in detail in Subsection 3, 8.

The inner solution is a function of S, and comparing (2.3 -1) with (2. 2-2)

k
yields

(2.3-4)

Since a - 1 < 0, (2. 3-3) indicates that the inner solution must be expanded

for Sk large. This expansion is derived in Section Al2 of Volume 2,

The inner expansion can be summarized in functional form by the following

expression:

Ry = B (S b Yogper Ly A45) (2.3-5)

The position vector -B'k’ when Sk is large, is a function of l/'_cok, the hyper-
bolic excess velocity, Lk a vector function of the orbital elements, and ék;’

which represents the second-order deviation from two-body motion far out
on the asymptote of the zeroth-order hyperbola, These constants are dis-

cussed further in Subsection 3. 8.

It is also necessary to expand the motion of the k—t—}1 body when t-tk is small,

The expansion is obtained by a Taylér series in Section All of Volume 2.

It may be summarized simply as the func_tiorf
Py = Pilt-ty) ‘ _ (2.3-6)

13
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2.4 MATCHING

For the outer and inner solutions to fnatch; they must be in terms of a
common independent variable, The expaﬁsion of the outer solution near

t = tk’ summarized by (2, 3-3), can be written in terms of.ck and Py using

(2. 3-2) giving

s

- o3 e v . sk ' sk b -
r= E(P-k 0'k+ Hka:HIII (to)1- Y_(to),lk ’ _é ’ 2K H‘k ) = il (2- 4 1)

The position r in terms of the inner solution B‘k is _found from (2. 2-1), i, e.,
x=p. Ry | (2. 4-2)

The expansion for the position of the'k& body near t = t,, given by (2. 3-6),

can also be written in terms of LN and My giving

= . a -
Pp = Pr(ti Ok tRRTR)= 22 (2. 4-3)

Finally the expansion for B‘k when Sk is large, obtained from (2. 3-5), can be.

written in terms of ¢, and Ky using (2.3-3) giving

k
| -1 b3
By = Byl Oiotic Yo L A43)= ¢ (2.4-4)
Substituting (2. 4-3) and (2. 4-4) into (2.4-2) gives
=45 tpé, ' | (2. 4-5)
Simply stated, the matching requires that the difference between the outer
solution, as given by (2,4-1), and the inner solution, as given by (2. 4-5),

must be vanishingly small in some appropriate limit. Cole (Reference 9)

states this limit as

14




lim
o D17 P M| 0
"k €y i

Tk

(2.4-6)

constant

wherek(pk) is a gauge function. For a second-order theory e(pk) is most

easily chosen to be By -

In Section Al4 of Volume 2, it is shown that this limit exists only if

a =2/5 (2.4-7)

o 1/2 (2.4-8)

1 .
Thus the overlap domain is a region of order Ha where 2/5 < a <1/2 and

a = 1/2 is not included. This is a result of the second-order solution inas-
much as Carlson (Reference 2) showed that the first-order solution can be
matched with a = 1/2, v

This was an assumption in his derivation and not a result of applying a
rigorous matching requirement such as (2.4-6). The present results show
that his approach to matching will not work for second order, i.e., certain
terms which are singular in the limit (2. 4-6) can only be eliminated if

a <1l/2.

2.5 FUNDAMENTAL SOLUTION
The complete matching process is discussed in Sections Al4 to Al7, and
Section Bl of Volume 2. The result, summarized in one six-component

state vector equation which will be called the fundamental solution, is

2 (69)  eryley) £ e |
' . =<I:(to,tk) ' )t ' (2.5-1)
1 Xl(to) +PLY—Z(to) H_I(ka‘_\f_k) Syt
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where

. k k
Y. = lk* (2. 5':3)
B S - (2.5-4)
Lembe | (2.5-5)
Nk = 11:: tAS L, (2. 5-6)

and, except in the log term, M has been eliminated in favor of the reference
mass p (which may be equal to F if the kQ body is also the reference body

used to non-dimensionalize the differential equations).

Equation (2, 5-1) is a relation between the constants of the outer and inner
solutions. >fI"he only consténts which do not appear explicitly are the initial .
position and velocity of the zerofh-order outer solution, zo.(to) and zo(to).
They must be chosen to make the zeroth-order ellipse intersect the position
of the k& body at t = t,, i.e., to satisfy (2,2-4). They then enter implicitly
through the relative velocity Xk which is the difference between the zeroth-
order velocity and the velocity of the km body at t = tk (and should not be

- confused with the inner; time-dependent velocity y_k(Sk)).

Equation (2.5-1) can be used to solve either initial or boundary value prob-
lems, The initial value solution is discussed in Section A of Volume 2.
It is the boundary value solution which is of interest in this study, and the

applications of (2.5-1) are discussed in the following subsections.
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2.6 COMMENTS

The asymptotic solution presented here is similar, when second-order terms
are ignored, to the first-order solution derived by Carlson (Reference 2).
The obvious differences between the two first-order solutions are (1) the use
of dimensionless variables, (2) isolating the small parameter p so that it
appears explicitly, and (3) hsing the vector L. as one of the constants of the

k
inner solution rather than the standard impact parameter vector,

The two solutions are numerically equivalent when.applied to an initial value
problem. However, using the vector L,. does result in a mathematically
different solution when the fundamental solution is applied to boundary value
problems, This is because the use of the impact plarameter vector results
in boundary value solutions which satisfy the boundary conditions in a ''best'" -
sense while the L, vector results in solutions satisfying the boundary con-

, k
ditions exactly. The two vectors are related by (cf. Volume 2)

'Ek‘ = _I:k + (Qk/ﬁk) y-mk : R S 7 6-1)

where Q, and A, are defined in Subsection 3, 8.
Next, it should be noted. that the secon‘d-'o‘rdef'terms add considerable com-
plexity to the solution although such complexity is not apparent in’'this
section, Some of the complexity can be seen from the formulas in Sub-
section 3.8, but it is hecessaty to follow the derivation in Volume 2 to really
appreciaté just how much cpm‘plexity is actually added, The amount of
algebra necessary to extend the ‘solution to a higher ordér would probably be
prohibitive and the result somewhat uhmanageable, The first-order solution
‘contains the 3x3 gravity gradient matrix G, while the second-order “solution
contains the 3x3x3 tensor H. Each succeeding order adds a tensor of higher
order, If the dimensions of the tensor are used as a measure of the com--

plexity of the solution, then an n:C—h— order solution has a complexity of order °

3n+1: [ . : Lo o Soar Tl
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Finally, it should be pointed out that the form of the fundamental solution is
not unique. The matching results contained in the fundamenAtval solution are
similar, but not identical, to those of Carlson (Reference 2). Differences
which are not immediately obvious are due to the fact that an asymptotic .
expansion of a given function is not unique. .Other exp;ansim:;s can be formu-
lated to represent the same fuﬁction but actually éppear as different expan-
sions. When the individual expressions which result from the matchmg are
combined to form the fundamental solution, there are several ways in wh1ch"
such a combination can occur. Thus for a second order solution the error
in each case may be order p3, but the actual value of the error may dlffer,
i.e., for one case it may be 3|J.3 while for another case it may be O, 5|J.3

This aspect is discussed further in Subsection 4. 6
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Section 3

ASYMPTOTIC BOUNDARY VALUE SOLUTIONS

The boundarf value solutions pfe sented in this section are of 'three-éeneral -
types: (1) trajectoi‘ies which originate at some known position relative to

the primary body and terminate at a fixed pericenter radius, inclination, and
time at one of the perturbing bodies (cf., ‘Subsections 3. 2, 3.3, and 3.6),

(2) trajectoriés which originate at some knowri'position,c'lose to one of the '
perturbing bodies and terminate'cllos'e to the primaryvb&dy with fixed entry
conditions (cf., Subsections 3.4 and 3.:"5)., and (3)-_trajector_ies which originate
close to one pertui'bing body and terminate close to another. with fixed

pericenter radius, inclination, and time at each end (cf., Subsection 3. 7).

Each of the boundary value solutiéns evolves from (2.5-1)* and each requires
at least one solution of a Lambert problem to‘ establish the zeroth-order -
outer solution. The two types of Lambert solutions which are required are
discussed in Subsection 3. 1. Subsections 3.2 through 3,7 present the

various boundary value solutions, and finally Subsection 3. 8 gives formulas

for evaluating all the constants which appear in the boundary value solutions.

The sections which follow contain only the end results of the boundary value
solutions. More detailed discussions and the steps necessary to go from

(2. 5-1) to each solution are contained in Volume 2.

3.1 THE LAMBERT PROBLEM

The standard Lambert problem is one of finding the two-body solution which

connects two known position vectors in a fixed time of flight. If the two

*Except for the two-impulse moon-to-Earth solution for which two different
types of solutions have been derived, one of which does not evolve from
(2.5-1). It is this latter solution which is presented in Subsection 3. 5.
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position vectors are x, and x then Lambert's

1 2

and the time of flight te

theorem states that

tf = tf(a’ xl + XZ’ c) = tz - tl (3. 1-1)

where a is the semimajor axis which is unknown and c is the chord length

between %, and X5e The chord length is found from the law of cosines, i.e.,

2 2 2
¢’ = x +,x2 + 2x1 X, cos 912 (3.1-2)

where 0 2 is the central angle between x. and x

1 1

2" ' , T
An iterative solution is required to determine the semimajor axis. Once it

is known, the velocities %X, and x,, and the solution x(t) can be obtained. Many

1 2
techniques have been proposed for solving the Lambert problem. One such 3
‘method is discussed by Battin (Reference 11). ' r

The standard Lambert problem requires that the two vectors x, and x, be

given. The zeroth-order solutions used in the Earth-to-moon altnd intezr- '
planetary solutions are of this type. The zeroth-order moon-to-Earth
solutions however do not rely on a given position vector at the Earth.
Instead, entry conditions of radius and flight path angle are prescribed at a
given time. In addition, the trajectory is to satisfy a prescribed inclination.
The solution for the semimajor axis is now more difficult, since 912 in
(3.1-2) is not known a priori. This angle is the difference between the true

anomalies at the endpoints, i. e.,

612 = f2 - fl (3.1-3)
where
1l 2 (1 - eZ) - X
f1 = cos e (3.1-4)
1

20



a».(l—ez)-x2

fz = cos ex, . (3.1-5)

- The eccentricity e is a function of a, X, and the flight path angle YZ’
measured from the local horizontal. The relationship is

2 2 1/2
e = [a +x2 (x2 - 2a) cos YZ] [a (3.1-6)

The modified Lambert problem requires the simultaneous solution of
(3.1-1) through (3. 1-6) for a, «c, 012, 'fl, f2 and e. Once these parameters
are determined they, along with the prescribed inclination, are sufficient to

solve for the velocities X, and %X, and the time-dependent solution x(t). The

1 2
solution is discussed in detail in Section B4, 1 of Volume 2, and a similar

problem is discussed in Reference 11,

3.2 EARTH-TO-MOON SOLUTION
The Earth-to-moon problem is one in which the target body is the moon.

The moon should also be the reference body, therefore

k = M (3.2-1)

Ho= My ) (3.2-2)

The simplest Earth-to-moon boundary value problem is shown in Figure 2.
The initial time, to’ the initial position relative to the earth, E(to)’ and the
pericynthion radius, P M inclination, i,, and time, tp) . are all pre-
scribed. The initial velocity relative to the earth, v(to), is unknown and
must be determined from the fundamental solution: In order to evaluate the
solution, an ephemeris is required giving the position and velocity of the
jnoon and the position of the sun in Cartesian coordinates with origin at the

‘Earth.
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Figure 2. Earth-to-Moon Solution

From Figure 2 it can be seen that the zeroth-order ellipse, £o(t)’ coincides *

with the higher order solution, r(t), att = to. Therefore, in (2.1-10) let

t) = 0 (3. 2-3)

Then

r(t) = x(t) . (3.2-4)

defining the initial position of the zeroth-order ellif)se\.‘
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From (2.2-3)

t =

M W

M (3.2-5)

toMm -

where ™ is arbitrary and can be put equal to zero without loss of generality.
Non-zero values .9f ™ simply cause a chan.ge }n tM when tPM is held con-
stant. The final-position of the zeroth-order ellipse comes from (2. 2-4)

r ) = Paltyy)

(3.2-6)

where Pm is the position of the‘ moon obtained from the ephemeris. The two
position vectors,. zo(to) and EO(tM), define a standard Lambert problem of
the type discussed in Subsection 3.1, Solution of the problem gives E_O(t),
shown as the dashed line in Figure 2, and the initial and final zeroth-order

velocities, -Yo(to) and Xo(t The latter is used to define the relative

- M).
velocity '

VM T Xo(tM) B BM(tM) ' o Be2e?
where BM is the velocity of the moon.
Now let the initial velocity perturbation be
6y_(to) = x_/l(to) + 1 Xz(to) (3.2-8)

Then the initial velocity at to is

, vt ), :“Xo(to) + p'_ﬁx(to) ) (3.2-9)

Vo = Yy tesVg ©(3.2-10)
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The perturbation terms in (3. 2-9) and (3. 2-10) are obtained from the
fundamental solution. They are o '
_ -1 |
dv(t)) = Blty, t) (&g + Ypq T 1 QM) (3.2-11)
(3.2-12)

6Vy = Dityy to) 8x(t)) - &y -1 Ny

Equations (3. 2-9) through (3. 2-12) constitute a linear solution to the

boundary value problem. .

Since X,ooM enters (3.2-11) through a_fM and since 6X(to) appears in (3. 2-12)
they are not explicit relations but must be solved in a sequence using the
zero'th-, first-, and second-order terms successively. ~The zeroth-order
approximation is obtained by putting p = 0 in (3. 2-9) and (3. 2-10). The
first-order approximation is obtained by puttingu = 0 in (3. 2-11) and

(3. 2-12) and using the zeroth-'orde'rrvalue of V = to evaluate (3.2-11). "The

M
o0
second-order approximation is obtained by evaluating (3.2-11) and (3. 2-12)
with u # 0 and using the first-order V M in (3. 2-11),
E —"c0

Combining (3 2-9) with the prescr1bed value of r(t ) gives a complete set
of 1n1t1a1 cond1t1ons for a traJectory satlsfymg all the cond1t1ons of the ”
boundary value problem Comblnlng (3.2- lO) with the prescrxbed values of
per1cynth1on rad1us and inclination g1ves a complete set of term1na1 cond1-

t1ons as shown 1n Subsectlon 3. 8.
An al'.cer.nate solution, called the nonlinear solution (Reference 2), can be
~ obtained from the solutions of a sequence of Lambert problems defined by

the position vectors .

rl(t) = x_(t) S B2y

r! oltm) = I () +nrdzity) (3.2-14)
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where

= £ +_Y_

Brlty) = £y Mt rE (3.2-15)

Solution of the Lambert problems gives the initial and final velocities,

,—V:?(to) énd _\_/_c')(tM). Then the initigl velocit.yAreplacing (3. 2;9) is
S , | )
) = i) (3.2-16)

and the excess velocity replacing (3. 2-'10)‘ is

Vom = I+ L8V, R (3.2-17)

where ‘e
-\_;1(/[ = viity,) - Bygltyy) I (3..248)
V' = - S Y S (3.2-19)

Again:thé solution i'equ'.ires'é. éeqﬁénce' of. sté'ps: The zefofh_—,prdér
approximation is obtained by putti}ng |.L' = 0is (3. 2—14) anjd (3.2 —17) and is ‘
idépticai to the zeroth;drder linear solution. TheAfivrst-'order approximation
is obtained by puttihg Bo= 0'in (3.2-15) and (3. 2-19) and using the zeroth-
order \_/_mM in (3.2-15). And the second-order apf)r_oximatibn is obtained By
using the fir;t—order ’\_/_wM in (3. 2'15)7 The nonlinear s_olution'is shown in

Figure 3.

The first- and second-order nonlinear solutions will be slightly different
from their linear counterparts. since they include nonlinear effects in the
‘zeroth-order solution which are not contained in the B and D partial deriv-.

ative matrices used in the linear solutions.
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R "#5L(t|v|)

Figure 3. Nonlinear Version of Earth-to-Moon Solution

“The constants \LM, QM’ £’-M and - are fixed through each step of both the

IMm
linear and nonlinear solutions. The function {M’ however, depends on
'\_/wM, and must be evaluated for each of the zeroth- ,first- ,and second-order
approximations. Formulas for calculating all of the constants are in

Subsection 3. 8.

3.3 EARTH-TO-MOON MIDCOURSE SOLUTION

In the previous section, the initial position, L(to), was implicitly assumed to
be close to the Earth. The same analysis may also be used for a midcourse
maneuver where the position, _1_‘(t0), represe'nts a point between the Earth and
‘the moon, as shown in Figure 4. The velocity just prior to the midcourse
maneuver is g_(t;) and after the maneuver it is X(tZ). Therefore, the

midcourse velocity correction is

Av(t) = v(t}) - v(t])
= v (Eh) - wit] ) +pdut)) (3.3-1)
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EARTH

Toltpm) = Ppmitp)
rlt)

MIDCOURSE VELOCITY CORRECTION

Figure 4. Earth-to-Moon Midcourse Solution

The solution of Subsection 3.2 can be used to calculate Xo(ti) and 6x(t:)
and since _x;(to) and X(t;) are known, (3.3-1) gives an analytical expression

for the midcourse velocity correction.

3.4 ONE-IMPULSE MOON-TO-EARTH SOLUTION
In the moon-to-Earth problem, the moon becomes the launch body and is .

also the reference body. Therefore, as in Subsection 3. 2,
k = M (3.4-1)
T T (3.4-2)

Thé boundary value problem is shown in Figure 5. The initial time, tl,

the initial position relative to the moon, —RMl’ and the entry time, te’
radius, r , flight path angle, Yo and inclination, ie’ are all prescribed.
e

The initial velocity relative to the moon, XMI’ is unknown and must be
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IMPULSE

Figure 5. One-lmpuise Moon-to-Earth Solution

determined using the fundamental solution. An ephemeris like that used for

the Earth-to-moon solution is required,

Since entry conditions rather than a fixed position vector are prescribed at
Earth, this solution requires the solution of the modified Lambert problem
discussed in Section 3. 1. The initial position of the zeroth-order ellipse
comes from (2, 2-4)

ERC (3. 4-3)

M)

where PMm is the position of the moon obtained from the ephemeris and,

for convenience,

t =t " (3.4-4)
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The final position Lo(te) must be determined from the solution of the
modified Lambert problem along with Eo(t)’ shown as t!fxe dashed line in
Figure 5, and the initial and final zeroth-order velocities, y_o(tM) and
Xo(te). The initial zeroth-order velocity is used to define the relative

velocity

ALVERER ALVY

- (t (3.4-5)

M)

>

where pM is the-velocity of the moon.

The zeroth-order solution satisfies the entry conditons exactly, therefore
any perturbations att = te will cause the trajectory to deviate slightly from
the prescribed conditions. As shown in Figure 5, the position perturba-

tion can be made to vanish, i.e.,
£l(to) = EZ(to) =0 _ -' (3.4-6