
',

5 - -90-73-190

"'A SEMI-ANALYTICAL METHOD--OF
COMPUTATION -OF OCEANIC TIDAL
PERTURBATIONS IN THE MOTION OF

ARTIFICIAL SATELLITES
I, .

(NASA-TM-X-66298) A SEMI-ANALYTICAL
METHOD OF COMPUTATION OF OCEANIC TIDAL
PERTURBATIONS IN THE MOTION OF ARTIFICIAL
SATELLITES (NASA) -2-3 p HC $1A.2'5

, -?} CSCL 22C G3/31

N73-277 6.

Unclas
09912

PETER M U SEN

I',

. -JULY 1973 t- -.5~

;7_ ,\s'~a.
. . .

-GODDARD SPACE FLIGHT CENTER .

. I GREENBELT, MARYLAND

I

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

,*/

i

J

.,I

https://ntrs.nasa.gov/search.jsp?R=19730019031 2020-03-22T23:16:12+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/80639715?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A SEMI-ANALYTICAL METHOD OF COMPUTATION
OF OCEANIC TIDAL PERTURBATIONS IN THE MOTION

OF ARTIFICIAL SATELLITES

Peter Musen

July 1973

Goddard Space Flight Center
Greenbelt, Maryland



BASIC NOTATIONS

i, j, k - the basic unit vectors in the equatorial system, the x-axis is
directed toward the vernal equinox and z-axis coincides with
the axis of rotation of the Earth

G - the gravitational constant

M - the mass of the Earth

a - the sidereal time at Greenwich

r' - the mean geocentric position vector of a water particle

r - the geocentric position vector of the satellite

r - r'j - - the distance between the satellite and the mean position of the
particle of water

r° - the unit vector in the direction of r

A, l, v - the equatorial components of r ° in the equatorial
system

~X, .' - the east longitude and the latitude of the water particle in the
state of equilibrium

a - the right ascension of the satellite

8 - the declination of the satellite

K - the density of oceanic water

K 0 - the mean density of the Earth

R - the radius of the mean level surface of the sea water

,', t) - the height of water tide

k- Love numbers associated with the effects of loading of the
mass of water
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a - the semi-major axis of the orbit of the satellite

- the mean motion of the satellite, n2 a3 = GM

a, e, g,, 7n, i - the mean elliptic elements of the satellite

p = R/a - the parallactic factor of the satellite

1 - the mean anomaly of the satellite

f - the true anomaly of the satellite.
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A SEMI-ANALYTICAL METHOD OF COMPUTATION

OF OCEANIC TIDAL PERTURBATIONS IN THE MOTION

OF ARTIFICIAL SATELLITES

INTRODUCTION

The problem of tidal influence on the motion of artificial satellites has

captured the imagination of theoreticians and observers.

This interest was stimulated by the fact that from the observed magnitude

of the tidal effects on the motion of satellites one can determine the elastic

response of the earth as it is "seen" by the satellite from outer space.

The pioneering theoretical and computational work in this domain was done

by Kozai (1965), Newton (1968) and Kaula (1969). The problem is comparatively

simple, theoretically and numerically, if only the influence of the "solid Earth"

tides on the motion of the satellite is to be taken into consideration. A number

of authors (Smith et al., 1971), (Anderle, 1971), (Douglas et al., 1972) have

treated this problem with success.

The electronic computer was applied recently to develop a semi-analytical

theory of the Solid Earth tidal effects (Musen and Estes, 1972), (Musen and

Felsentreger, 1973), in the form of Fourier series with purely numerical

coefficients. However, recent observations indicate a disagreement with the

theory and show an apparent dependence of elastic parameters of the Earth
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(Love numbers) upon the orbital inclination of the satellite (Smith, 1973),

(Douglas et al., 1972). The influence of the tides of the hydrosphere can be

the primary cause of this disagreement and of the apparent dependence of Love

numbers upon the inclination (Lambeck and Cazenave, 1973). It seems that the

perturbations caused in the motion of satellites by the ocean tides can reach as

much as 20% of the perturbations caused by the tides of the Solid Earth, and

both kinds of perturbations have the same frequency spectrum. The most sig-

nificant perturbations, which will affect the values of Love numbers, are caused

by the ocean diurnal tides K1, 01, Pi and by semi-diurnal tides M2, S2 and P2.

The Kl-tide contributes to the largest periodic term in the expansion of per-

turbations in the orbital inclination and thus influences the value of Love number

k2 . In addition, the influence of normal modes of particular oceans also deserves

consideration. The central computational problem consists of the determination

of amplitudes and lags of the satellite's perturbations from the amplitudes and

lags of the tidal constituents as exist over the surface of the world ocean.

In the present article we discuss the method of expansion of the satellite's

perturbations, as caused by the oceanic tides, into Fourier series with the

arguments Si and -r of the satellite andt , /', F, D and F of the Moon. The coef-

ficients in this expansion are purely numerical and peculiar to each particular

satellite. Such a method is termed as semi-analytical in Celestial Mechanics.

Gaussian form of the differential equations for variation of elements, with the

right hand sides averaged over the orbit of the satellite, is convenient to use

with the semi-analytical expansion.
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EXPANSION OF THE DISTURBING FUNCTION

The disturbing function associated with the direct attraction of the satellite

by the tidal shell of water has the form:

U = GKR 3 J ( t) d' (1)

where

do-' = cos O'do'd,',

-- 0(10-7).

The effects of loading on the bottom of the sea (Hendershott, 1972) are tempo-

rarily omitted and will be introduced at the next stage. The double integration

in (1) is performed over the mean surface of the global ocean (or over the mean

surface of a particular sea whose tidal influence on the satellite we want to

determine).

Introducing the mean density of the Earth

3M
K0

47TR 3

we re-write (1) in the form:

GM K 1 R
R K0 4rT J AU= 3 *-(x'. ', t) de('

S

Substituting the expansion

R =  p n+l (a Pnm(sin 8) Pnm(sin =') cos m(a -
nO m=O
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N = + 1, N 2 ' (n- m ) ! for m / O
no (n + m) !

into (2) and introducing Love numbers k' to account for the effects of loading

(Lamb, 1945), we obtain for the oceanic tidal disturbing function:

+co

V = 3 K GM pn+l(l + k)

n= 0

n

EN.P(Sin S) *P Jn_ (_/ , i', t) Pnm(Sin A') cos m(a - 0 - y') da'
m=O S

We assume that the tidal oscillations of the sea at a given point y', 4') of the

mean sea surface can be represented as a sum of periodic constituents, of the

form:

z(x', 4', t) = Z(y', ¢') cos[(wt + v) - s(X', 4')]

= Z, (4)

the phase angle s()', k') is the retardation of the maximum ('"high water") of

z(y', 4', t)at (y', 4') relative to its high water at Greenwich. The basic data

plotted on the geographic maps of a constituent are the isochrones of its retarda-

tion (the co-tidal lines) and the lines of equal amplitudes (the co-range lines).

From these data one can compute the lag and the amplitude of the corre-

sponding tidal term in the perturbations of the satellite. To simplify the

formulas we represent a constituent not in the standard form (4) but rather in an

"old fashioned" manner as:

z(x', 4', t) = Z(X, 4') cos [m(O + y') + q(x', 4') + ~] (5)
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where

c, = a t + 8

and o is small. The local sidereal time 0 + Y' disappears from the disturbing

function in the process of elimination of the short period terms; the slowly

changing part ' + q remains.

The most significant long period effects are produced in the motion of

satellites by diurnal (m = 1) and semi-diurnal oceanic tides (m = 2). Among

the diurnal constituents mK1 and SK1 (combined together into K1), O1 and P1 are

the most significant ones. K1 produces in the perturbations of the satellite

terms with the argument a. Such a term has the largest amplitude in the tidal

perturbations of i as caused by the solid Earth and it is proportional to Love

number k 2. The contribution by K 1 is of special significance in the case of

satellites with very high inclination(Isistype). It is clear, therefore, that the

oceanic tides with the period of one sidereal day affect considerably the deter-

mination of k 2. Two other constituents, 01 and P1 , also have their share in

modifying the value of k 2. However, their contributions will have small ampli-

tudes and shorter periods than the one previously mentioned. The arguments q

associated with 01 and P1 are 2 t' + 2D + 2F and 2 ' + 2F, respectively. The

computation of the influence of the oceanic K 1-constituent is facilitated by the

presence of large amphidromies in the North Atlantic and the Pacific. The

K -tides are highest in the Pacific and the Indian Ocean (Defant, 1961).
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In order to fully understand the structure of the Si -term in the tidal per-

turbations of the satellite the numerical integration of the Laplace tidal differ-

ential equations shall be repeated for K1 over the World Ocean to check or to

improve Dietrich's results (1944). This integration shall be performed in a

manner similar to one used recently for M2 and S2, taking coastal boundary

conditions and friction into consideration. Besides the real tides, the oceans

are also subjected to free oscillations. For example, the North Atlantic has

free oscillations with the periods of 21.2, 14.0 and 11.5, with one, two and three

amphidromic systems, respectively (Platzman, 1972). Oscillations of the sea

such as these, with the periods of approximately a day or half-a-day, can also

produce long period perturbations in the motion of the satellite.

We substitute (5) into (3) and omit from the result all of the terms which

contain local sidereal time in the argument. The resulting disturbing function

is free from the short period perturbations caused by the Earth rotation

(Lambeck and Cazenave, 1973). We have for a given constituent:

+ o

VG = 3 Vnm (6)

n=m

where

Vnm n+(1 + kn) AnNnm () Pnm(sin 3) cos(ma + bn), (7)

q1n = act + (/ + En)'
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and

Cn 47T JJ
S

A sin E 4 Z(, ) P (sin 0') sin q(, ') do-' (9)

n = m, m+ 1.

As pointed out already we suggest only the computation of the influence of

diurnal (m = 1) and of semi-diurnal tides (m = 2). The amplitudes An and the

lags en are different for each constituent. In order to simplify the notations

and to avoid the use of multiple indices we use in (8)-(9) the same notations for

a given n, independently of m and of the constituent. The formulas (8)-(9) per-

mit one to evaluate the amplitudes and lags of an oceanic tidal component in the

perturbations of the satellite from the amplitudes and lags distributed over the

surface of the ocean. The existence of amphidromic systems facilitates greatly

this evaluation. The necessary basic information can be taken from the charts

of the co-tidal and co-range lines. Such charts, obtained recently by integrating

numerically Laplace tidal differential equations over the global ocean, are given

for M2 and S2 components (without the effect of friction) by Bogdanov and Magarik

(1967), for M2, including friction (mainly along the costs) by Pekeris and Accad

(1969) and, most recently by Hendershott (1972). For Ki the chart was given by

Dietrich (1944).
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We can express the spherical harmonics

Ynm Pnm(sin 8) cos(m a + Q )

in (7) in terms of the components X, /u, v of the geocentric unit vector of the

satellite by using the general formula

[(n-m)/2]

eimap (sin 3) - (n + m) ! (X + mi /)m a(2 + Z2)2i 7n-m-2j
2mm!(n - m) ! j O

j=0
where

_ (n - m - 2j) (n - m - 2j - 1)aj+ +- - a.
4 (j + l)(m + j + 1) J

(10)

(11)

= (_ 1)i+1 (n - m)(n - m - 1)... (n - m - 2j - 1)

2 2 +2.. ( j + 1)! (m + l)(m + 2)... (m + j + 1)

= O 1.. relation

or by means of the recursive relation

(2n + 1) vYnm = (n - m + 1) Yn+l,m + (n + m)(X2 + z2 + v 2 ) Yn-,m
(12)

Such expansions in terms of A, ,/ and v are convenient for the computation of the

tidal perturbations in rectangular coordinates by means of numerical step by step

integration.
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However, the physical characteristics of the tidal perturbations, the relative

importance of amplitudes and periods, as well as the presence of resonances, can

be read and traced easier from a periodic expansion than from a numerical inte-

gration. For this reason we develop in the present work the theory of the oceanic

tidal perturbations based on the expansion into trigonometric series with the

arguments iT and a of the satellite and{t, 4', F, D and F of the Moon. The coef-

ficients of the expansion are purely numerical. We make use of the Gaussian

form of the differential equations for variation of elements so that the numerical

values of the orbital inclination and eccentricity can be substituted from the outset.

Such an approach to tidal perturbations, termed as "semi-analytical" in Celestial

Mechanics, leads to a compact form of trigonometrical series with arguments

linear intimeo Operations with them can be handled efficiently on an electronic

machine using the program developed at Goddard Space Flight Center by R. Estes.

Substituting the value of i into

= + cos2 -cos(f + 7) + sin2 -i cos(f + 7T - 2A),
2 2

= + Cos 2 i sin(f + 7r) - sin2 - sin(f + 7T - 2), (13)
2 2

v = sin i sin(f + 7r -a).

We compute the semi-analytical expansions of

Y11 
= A cos ¢ - / sin b

Y21 
= 3kv cos b- 3/v sin q
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and of

Y22 = 3(X2 -_ 2 ) cos b - 6Xj sin Ib

Y32 = 15U(X2 - L2) cos b - 30Xkv sin i (15)

into finite Fourier series with the arguments f, 7, a and p. Making use of (12)

we can then compute step by step the semi-analytical Fourier expansions of

31' Y41'"

and

Y42' Y52...

with the same arguments as before and numerical coefficients peculiar to each

particular satellite.

We can set

X2 2 +2 + 2 = 1

in (12) when we compute nm , but we must keep this factor in the process of

developing the recursive formula for the derivatives and for the force compo-

nent normal to the orbital plane. To compute the general tidal perturbations

normal to the orbital plane of the satellite we need the Fourier expansion of

Znm =R ' VO Ynm

where Vo is the gradient operator with respect to r 0 ,

Vz -a 'a
Vo=i a' a +kav

and

R VO = + sin i sin S x- sin i cos + cos i . (16)- + Cos iZ
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By applying the V0 -operator to (12) and setting X2 + /2 + V2 = 1 after the dif-

ferentiation, we obtain:

(2n + 1) vVOYnm + (2n + 1) kYnm

= (n - m) VoYn+ilm + 2(n + m) r Ynl,m

+ (n + m) 70Yn-1,m

Multiplying both sides of the last equation by R and taking

k. R = cos i, r °O R= 0

into account we deduce the recursive relation

(2n + 1) vZnm + (2n + 1) Ynm cos i

= (n - m) Zn+l,m + (n + m) Zn-l,m (17)

Making use of (14)-(16) we obtain

Zll = sin i sin(g + )

Z21 = 3vZll + 3Y11 cos i (18)

and

Z22 6X sin i sin(g[ + ¢) + 6,/ sin i cos(Q + ¢)

Z32 = 5vZ22 + 5Y22 cos i (19)

Substituting the value of i for a given satellite and making use of (13) we expand

(18)-(19) on the computer into Fourier series and making use of (17) obtain step

by step the semi-analytical expansions of

Z3 1, Z4 1,...

and

Z42, Z52'.'
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After all necessary expansions are completed 4i must be replacedby the proper value

of bn . The formal accuracy of k, Il and v, with which we start the computations,

is 10 - 7 - 10 -s . Because of the smallness of An the final accuracy we need in the

expansion of Ynm and Znm , is only about 10- 3 - 10 - 4 . This indicates that the re-

cursive relations for Ynm and Znm serve our needs quite well, without a drastic

loss of accuracy for a considerable number of steps.

Unfortunately, we cannot say yet with complete security how many terms

we require in the expansion of the disturbing function (7). The computations for

particular satellites and their comparison with observations will show this more

clearly. In connection with this point we wish to emphasize again the advantage

of a semi-analytical way of treating the oceanic tidal perturbations of the satel-

lite. The addition of any new term to the disturbing function can be done auto--

matically and the decision about the necessary accuracy is left totally to the

machine.

DIFFERENTIAL EQUATIONS FOR VARIATION OF ELEMENTS

At the present time we are able to observe only the long period oceanic

tidal perturbations in the elements of the satellite. In the present exposition

we make use of the Gaussian form of the differential equations for perturbations

in elements and eliminate the short period perturbations by averaging the right

hand sides of the equation over the orbit of the satellite:

d e 1 -e 2  1 2  dl (20)
dt na 2 e 27T J - f
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d87T _e2 1 c2 r 27 /a 'a Q*
- -a cos f + -+ '- esin f dl

na 2 e 27 r 1e2/

+ 2 sin2 i d"
2 dt'

.d 8 1 2
sin i -= + 1 - I

dt na2 +  I

d8i 1 1 2

dt -- na2 27T
n aV

d8L 2 . 1 2

dt n a2 27T

r(R -VQ) sin(f + 7r -I) dl,

r(R-V9Q) cos(f + 7r - S%) dl

r -dl + (1 - -e ) dt 2 l-esin 2 dt'
-a r dt '2 I

As a result of eliminating the short period terms the semi-major axis a is not

affected by tides. It is sufficient to consider the typical form of the disturbing

function:

_3 GM K

2 R K 'm

or

Q = n2(a2B Y
\ r / nm

(25)

where

B =: pn (1 + k') A N

13
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From (25) we have

rVQ - n 2 a 2Bnm ()n+

Vr0 = (I - r°r0 )
r

(n + 1) r° Ynm + rVr ' VoYnm]-

and r° VoYn = nYnm0 nm nm

into account we obtain:

rVQ = n2 a2 Bnm ( a)n+
nmr [Vonm - (2n + 1) rOYnm] (26)

and, as a consequence,

rR Vf - n 2 a 2 B () Znm.
nm r nm

(26')

Substituting (25) and (26) into the differential equations (20)-(24) we reduce them

to a form convenient for programming:

dbe n1n -e 2

dt e nm

dt 6

dt _ nm

e 1 - e

2T ()1 dl,277 B af

27 r n lJoa +lW dlnm

(28)+ 2 sin2  dt
2 dt'

where

Wnm = (n + 1) MYnm
+Y

+ N nm

14
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1
e + cos f +- e cos 2f,

2

N= 2 sin f +

n B
/1 - e sin i

dbi n 1
= + B · 2

dt v/- e m 27_ r

1
- e sin 2f,
2

1 27 (a-) Z sin(f + 7T - A) dl
0n

() nm cos(f + 7r - A) dl

8L 1d= 2nBnm(n + 1) '-
dt Y7T

1 d7r7
+ e

1 +/ - 2 dt

f ( -) Y dl
ro r nm

+ 2/1V-Te2 sin2 i d S
2 dt

(29)

(30)

(31)

(32)

The factors multiplying (a/r)n" +  in the integrands are finite Fourier series

with the arguments f + 7r, Si and /'. Thus, the typical integrals to be evaluated

have the form:

n n+1

\ r/2-rr
os [k(f + 7r)

sin
+ ja + P] dl

= - -nl,k (e)COS (k + jg + )
0 (e) sin

15
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where X- -l,k are Hansen coefficients (Tisserand, Vol. I). To compute these

coefficients we can use the relation

Xnl'k(e) - nk )(2) (1- e2) - n + l/2 (33)

X F(k - n + 1 k - n + 2 k + 1, e2) (33)
2 2

For satellites presently used for the evaluation of tidal effects, we have e < 0.07

and, consequently, we need only few terms in the hypergeometric series (33).

If the eccentricity is very small then the presence of e as a "small divisor" in

the right hand side of the differential equations might cause difficulty in expand-

ing the semi-analytical theory of perturbations in elliptical elements. It is

evident from (33) that such a difficulty can arise only if k = O, ine., if there are

terms of the form

n+1
a+ cos
( sin( S + )

under the integral sign. The terms of this type disappear in (27) because of

differentiation with respect to f. As a result a semi-analytical expansion of the

tidal d3e/dt can always be arranged and in this case e is only a spurious

"small divisor." It does not cause any real difficulty. The real difficulty

associated with small e can arise only on developing the tidal d 3r/dt. We can

see from the form of M, N and W that e will appear as a real "small divisor"

only if there is a term of the form

16



COS
K sin(f + + j,+ %b)

in the expansion of Ynm . This will happen only if n is an odd integer. For n

even the semi-analytical expansion of the tidal d$7T/dt always can be arranged.

The arguments in the resulting series for derivatives of the elements are all

linear in time and, consequently, the integration is straightforward (except in a

case of a sharp resonance).

CONCLUSION

In the present work we give a set of formulas necessary to expand the satel-

lite's oceanic tidal perturbations in a semi-analytic form, as Fourier series

with purely numerical coefficients, using a computer. All arguments are linear

with respect to time (providing we do not have sharp resonances). This form

permits one to compute the tidal perturbations and at the same time to make a

judgement about the relative importance of amplitudes and periods of different

terms. We select a semi-analytical, and not an analytical method, because of

its compactness and because the basic information about the oceanic tides is

given either in the semi-analytical form or in the form of charts of co-tidal

and co-range lines.

On the basis of already existing information we can obtain a general estimate

of the oceanic effects on the motion of an artificial satellite.

However, in order to fully understand these effects and to have a more accurate

information about them we have to obtain more complete information about the

global oceanic tides themselves. 17



We suggest a new numerical integration of Laplace tidal differential equa-

tions for those tidal constituents for which the work was done either on a limited

basis or long ago.

In particular, it will be of great interest to obtain new information for Kl .

This constituent contributes to the biggest amplitude in the expansion of the

tidal perturbations of the orbital inclination. The corresponding term has the

right ascension of the node as the argument.

The knowledge of oceanic perturbations in the motion of satellites will per-

mit us to improve the values of the elastic parameters of the earth.
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