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ABSTRACT

The calculated stresses and displacements induced in anisotropic
pla;es by short duration impact forces are presented in this report.
The theoretical model attempts to model the response of fiber composite
turbiné fan blades to impact by foreign objects such as stones and hail-
stones. In this model the determination of the impact force uses the
Hertz impact theory. The plate response treats the laminated blade as
an equivalent anisotropic materiél using a form of Mindlin's theory
for cryétal plates. The analysis makes use of a computational tool
called the "fast Fourier transform'. Results are presented in the
form of stress contour plofs in the plane of the plate for various
times aftér impact. Examina;ion of the maximum stresses due to im-
'béct versus ply layup angle reveals that the +15° layup angle gives
lpwer.flexural stresses than 0°, +30° and.t45° cases, for 55% graphite

.fiber-epoxy matrix composite plates.
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SUMMARY

This report summarizes the recent progress in the attempt to model
foreign object impact of fiber composite fan blades by small objects
such as stones and hardstones. The high speed impact of these objects
with composite materials should result in short duration impact times
(< 100 psec). In the present model the composite blade is
represented by an anisotropic plate of infinite extent. Thus only the
mechanics in the area of'the impact point aré studied. The effect of
edges and stress wave reflection are not treated in this report, though
work is proceeding on this aspect of the problem.

The combined impact contact dynamics and plate response are separated
into two sub-problems. The. impact force time history is determined from
the Hertz contact theory for a half space, while the plate response is
determined from an assumed impact pressure distribution over the impact
contact ‘area. Linear elastodynamics is used, neglecting viscoélastic-
plastic, nonlinear and fracture effects. Thus it is hoped that the model
will predict, prefracture or predamage stresses.

Using an approximate theqry of anisotropic plates due to Mindlin,
five waves are shown to make up the main part of the motion. Two of the
" waves involve inplane displacements while the other three waves involve
flexural plate motion. The analysis makes use of a computational tool
called the fast Fourier transform. Several computer programs were
developed to calculate the stress levels behind the wave fronts due to

a specified impact force distribution. The output of these programs are



in the form of stress contour plots. It was generally found that the
stress levels were highest in directions along the fibers. Also the
maximum stresses appear to propagate in the lowest flexural mode.
These waves are found to be‘highly dispersive and change their shape
as the wave propagates. Examination of the maximum stresses due to
impact versus ply layup angle, reveals that the +15°layup angle gives
lower flexural stresseé than 0°, 30°, and 45° cases. The flexural
stresses for the 15° case are 34% lower than those for the 45° layup
angle case. For the interlaminar shear stresses, the values seem to
be insensitive to layup angle. For the average membrane stresses ‘due
to inplane motion, the values immediately after impact appear to be
lower for the lower fiber layup angles. The flexural stresses are
found to depend on the ratio of impact object radius fé plate thickness.
Continued work is in progress on the edge impact problem and the

effect of leading edge protection.



INTRODUCTION

\

This researéh has been motivated by recent attempts to study the
impact resistance of fiber composite materials. These materials are
being considered for application to jet engine fan or compressor
blades and must withstand the forceé of impact due to the ingestion
of objeéts'sueh as birds, stones, or hailstones at speeds up to
500 meters per second. Recognizing, of course, that inelastic
deformation will occur at the impact point, we none the less pursue
an elastic -analysis as a prelude to the mofe difficult task of
predicting permanent damage. In this report we are interested
principally in how the eneréy propagates away from the impacted
area. It has been observed that damage in these fiber composite plates
occurs away from the impact area near edggs and boundaries as well as
at the impéct point. |

In a previous papei (ref. 1), the author presented a mathematical
model for stress wave propagation in anisotropic plates based on the
work of Mindlin and cp—workers/ Five partial differential equations
of motion were obtained for orthotropic symmetry in which the inplane
and flexural motion Qere:described. The two-dimensional velocity and
wave surfaces were presented and the principal vibratory direction
of particle motion for each wave normal was presented.

Section II will present an analysis of the two-dimensional
impact p;oblem. This analysis is based on the use of a Laplace

transform on time and a two-dimensional Fourier transform on the



space variables. The solution permits the analytical inversion of
-the Laplace transform while a computational tool called the ﬁFast
Fourier Transform" (ref. 2) is used to numerically invert the Fourier
transform solution. Estimates of the impact time and force are made
using the Hertz impact theory.

As a preliminary to the two-dimensional problem, the author tried
this analytical-éomputational technique on a few simpler, one—diﬁensional
wave problems. This section will present the results of that study.
Displacement and stresses are calculated for a short duration line
force normal to an anisotropic plate. The responses for various

fiber layup angles are compared.



SECTION I: ONE-DIMENSIONAL TRANSIENT WAVES IN ANISOTROPIC PLATES

The mathematical model used in this paper is called an effective
modulus theory of composites. The model is valid so long as the scale
of the changes in stress levels (e.g. wavelength) is much larger than
the sizes of the composite constituents (e.g. fiber diameter, ply
spacing, etc.). This assumption has been used by many reseérchers
to derive equivalent elastic constants from long wavelength or long
pulsé leﬁgth wave propagation tests (e.g. Tauchert and Moon, (ref. 3)).
Equivalent moduli determined in this way have checked very cloﬁely with
elastic constants obtained from static and vibratory tests. Tauchert
énd Guzelsu (ref. 4), have used ultrasonic tests to measure dispersion
in composites and found no significant aeparture from the effective
modulus theory for longitudinél waves in boron fiber/epoxy matrix
composites until the frequency exceeded 5 megahertz. Shear waves,
however, began to show dispersion at about 0.5 megaherfz. This
corresponds to a wavelength to fiber diameter ratio of about 40.

Sun et al. (ref. 5), in calculation on laminated composites, reports
similar results. Thus the effective modulus theory used in this paper |
is subject to the restriction that the impact pulse spectrum have its
most significant wavelengths greater than about 100 times the fiber
diameter. Further discussion of dispersion in composites may be found
in a review of the subject by the author, (ref. 6).

Equations of Motion

In the approximate theory of elastic plates in this study (ref. 7),

the displacement is expanded in the thickness variable by using Legendre



polynomials Pn(n),

B = oLy Pamp ™ x x 0 (1-1)

where n = xz/b,b is the half thickness, (see Fig. I-1). A variational
method is used to obtain the equations of motion. For the purpose of

this work, the series was truncated at n = 2, with only seven terms

2 . .
used; namely, ul, u?, u%, u!, u!, ul, ul® This leaves all the strains,
17 27 37 17 2

except e , e , as linear functions of the thickness variable n
12 32 .
To further simplify the equations, the inertias and high frequency
1, (2)
2

terms (derivatives) of .u‘, u were dropped, resulting in explicit
2

expressions for these terms;

1 0 0
u au au

2 .1 3, _
B e T G ) 7O

1 3
(I-2)

3ué2) aui aué

4, - 2(C22 b C12 3x1 * C23 axa) =0

where (-qz) is the transverse loading on the top plate surface. Elimination

(2)
2

of the terms ul! and u from the remaining five differential equations
‘ 2

results in the equations

2,,0 2440 2,0 2
32u! . 2%l 22ul . 32ul C,, 04,

P =C +C v rC) 3x ax_ | 2C X (1-3a)
3t2 11' 3x2 55 gx2 55 13 1773 29 1

1 B 3



= C + C -+ (C + 6 ) + (I-3b)
3t 3 33 g5x2 55  gx2 55 137 9x 9x - 2C 9, _
3 1 .
2..0 2..0 2.0 1 1
d u, - 9%u, 9 u, 1 aul 1 8u3 qa, )
=C * b 3 b ) (I-4a)
atz 66 3x2 axz 1 3 -
1 3
32yl 32ul 52ul " aZué
] L-¢ + C . (C +C ) TR
3t2 11 3% 55 axz 55 13 ) 3 '
! 3 (I-4b)
0 1
3 6 au2 . ul] X Cip 99,
b ax b 2C X
56 1 J 22 1
32ul 32ul . 92yl 32ul
3 . 3 ~ 1
P B + C + (C +C ) 89X 90X
at2 33 3X2A 55 3)(2 55. 13 1 3
3 ! (I-4¢)
0
ERNIN I S B I B
B ge| X b 2C 3x
3 22 3
where
cC =C -¢C%2/cC
11 11 12 22
C =C -¢C2/cC
33 33 32 22
C = C -C C /cC
13 13 12 32 22
C =kC

66 66



In his approximate theory of crystal plates (ref. 7), Mindlin uses

correction constants to adjust the thickness vibration mode to match the

exact theory. Thus he replaces C and C by” k C and k C  respectively.
Ly 66 1 Ly 3 66 ‘

In our case C = C and k =k = 72/12
Ly 66 1 3

The stresses in the plate for orthotropic symmetry take the following

form:
~ o au) L 3w X, | -~ dul . dul ., X,
s 1 et 1St [ ()
1 13 3 11 1 13 3 29 2
q x
_ L2 |
te ™ 7 Ut _ /
0 0 1 i 1
. - 6 8u3 . é du) . Xo N 8u3 N Bul Csyy . (1+x2)
33 3x 3x b 33X, x | T 2C b -
33 3 13 1 33 3 13 29 2
0 0 1 1
au aud X, J au1 au3
e Cs ) T [ b Sl owx
3 55 3 1 55 l 3 1
The interlaminar shear stresses t - and t are quadratic functions
: 12 32 :
of x and cannot be accurately found from u . However in analogy
2 N
to classical plate theories, we can integrate the original stress
equations of motion to obtain
| | 2 » 0 1
A P 3 , a1 % S ul)
21 b 2> 47 ¢ . T b %x b
- 22 1 1
(I-6)
( 2 0 1
N PR I O A + B N S S N
03 , b % 437 2 X b '3x b
\ 22 3 3



The in-plane stresses t , t , t
11 33 13

One part is uniform through the thickness and is governed by dispersion

are comprised of two parts.

free equations (I-3a) and (I-3b).. The flexural part of the stress is
linear in the thickness variable and is governed by equations (I-4a)
through (I-4c) which exhibit strong dispersion of wave phenomena.

One-Dimensional Wave Solutions

We imagine an infinite plate on which a distributed load is placed
along the line p « r = constant (see Fig. 1). The vector R is
normal to the line, and we assumed the load on the plate is independent

of the position along the line. Thus the surface load has the form
qa(x_,x ,t) = qp-r,t)
Y 1 3 Y

Because of this relation, the motion is also assumed to have this form,

i.e.

ug(xl,x3,t) = ug(n-g,t), etc.

For derivatives of functions of this form, the following expressions

are useful;

’of(n-x) af(n-x) °
__Q._L = f'cos a, ——a—?(——L = f'sin o
1 3

aX



where primes indicate differentiation with respect to the variable
t=p-r, and
‘T = X COS o + X sin a
R°E 1 3
The angle o , denotes the departure of p from the symmetry
axis x =0 . To find solutions to the equations (I-3) and (I-4),

3
one writes the unknowns in the forms

/

0 - . 0 = ‘:
u Ul(n Est)s u) U3(Q x.t)
W= W), ul = b Y (egt), wl= b Y (ReEsT)

Note that q 1is a prescribed function in time, along a line parallel
to the normal pn . This reduces the differential equations of motion

to equations in two variables r, t where = n + x . The formal

solution to this initial value problem is found by taking a Laplace
transform on the time variable and a Fourier transform on the space

variable. These operations are defined as follows:

[

LIf) = E(s) = [ e °Te(tyat
(o]

T[£]

£k = [ ()

10

(I-7)

(I-8)



Thus when the displacements have the forms given by (I-7) and

the operations (I-8) are performed on the equations of motion, the

following algebraic set of equations result, where initial values

of u are assumed to be zero and where q =0 for t <0

(A + ps2/k2) A cosesina 0
11 12 1
A cosasina (A +ps2/k?) U
12 22 3
(C kZ+ps2) -ikC cosa ikC sina
66 66 66

0Q2ik coso (A1 k2+pQ§+pSZ)-k2A cosasina
0 1 12

-pR2ik sina -k2A cosasina (A k2+p02+ps2)
0 22 0

12

-

——

-

-q ika cosa
2 1

-q ika sina
2 2

g /2b
2

q ka cosa
-2 3

-§ ika sina
2 L

11

(1-9)

(I-10)




where -

-~

A =C cos?q + C sin2a
11 11 55

A = C sin?q + C cos2q
22 33 55

A = + C
12 55 13

Q2 =3 C /b2
0 : 66 .

QO is the frequency of the first thickness shear mode from the exact

theory. Also,

a =C /2C , a =0C /2C , a =C /2bC , a =C /2bC
1 12 2 23 3 12 22 4 23 22

22 22

Inversion of Laplace Transform

When q(z,t) 1is given, these equations may be solved in the
v

transformed variables. For example consider the following case.

CASE I.) Midplane Motion; Normal Load (q1 = q3'= 0)

U =iq {(A +s2/k2)a - A a sin2g}cosa/kA
1 ‘2 22 1 12 2
. (1-11)
U =1iq {(A +s2/k2)a - A a cos?a}sina/kA
3 2 11 2 12 1
where
A =

(A + s2/k2)(A  + s2/k2) - A2 cos2asin2a
11 22 12
These solutions in the transformed plane are thus of the form

0 = i3 P(s2)/ka(s2)
2

12



where P(s2), A(s2) are polynomials in s2 . A(s2) has four zeros in the
complex s plane for each k. The two roots Isl/kl and |52/k|
correspond to the two real wave speeds associated with the propagation

of plane waves in the plate (ref. 1). In fact, Aij , 1is simply |

the two-dimensional acoustic tensor for the plate as discussed in a
previous paper. We are thus guaranteed four pure imaginary roots

for s

s = xivk , zivk
1 2

The inversion can then be done by use of the convolution theorem;

ie., if
G(t) = L7 P(s?) ]
A(s2)
then
Uk,e) = LT[0 = £ [ az(k,t-ﬂc(r)dr (1-12)
(o]

For our case it can easily be shown that

kP(-kzv%) sinkv t kP(-kzvg) sinkv,t

G(t) = - - + Y (I-13)

(V2-V2) 1 (VZ_VZ) 2
1 2 1 2

CASE II.) Flexural Motion; Normal Load.

In a similar fashion when q is given, W, ¥ or ¥ can be

solved and have the form

13



- q _RGD ’ (1-14)
A (s2,k2)
1

However, in this case the roots of A1 = 0 are not proportional to k
This means that the velocity of wave propagation debends on the wavelength.
As k » = it is known that the wave speeds become independent of k and,
in fact, two of them equal the non—disfersive wave speeds vl, v2 found
in the previous example (ref. 1). It is also known from the dispersion

relations for plates (ref. 7), that for k real, there will be six

pure imaginary roots of Al(sz) = 0 at

s = +iw (k), zie (K), xiw (k)
1 2 3

The relations wi(k) are known as the branches of the dispersion relation

for these plates. One branch goes through the origin, i.e.

wl(k) ~0 a k=0

The other two branches are sometimes called optical since as the
wavelength becomes infinite, i.e. k - 0, w and w denote the vibra-
2 3

tory frequency of the thickness shear mode for the plate

w2(0) = w3(0) = Qo

A typical dispersion curve is shown in Figure 2.
The inversion again makes use of the convolution theorem and the

residue calculus to invert 1/A (s2). Thus we obtain
l R

14



Wek,t) = [T qCk,t-0)H(1)dr
(o]

R(wl) sinwlt - R(wz) sinwzt
H(t) = : + - (I-15)
W2-0?) (2-0?) % (w2-w?) @2-w?) %
2 1 3 1 1 2 3 2
. R(wg) sinw,t
(w2-02) W2-0?) %3
1 3 2 3

Numerical Inversion of the Fourier Transform

It is at this juncture that the solutions to most problems in
transient wave propagation are limited by analytic skill in extracting
information from the inversion. In a few cases the completg solutibn
can Be given, while in most, far field, near field, short and lbng
time approximations must be invoked. The numerical inversion of the
transform has until recent years been limited by the calculation of an
integral for each point in the space 7 . However, recently a teéhnique
has been developed which obviates the need for a separate inversion
for each point in the real space ¢ . Known as the "Fast Fourier
Transform" (ref. 8), it takes a sampling matrix of the transform of U,
say (ﬁ(kl), ﬁ(kz), e ﬁ(kN)) and returns a sampling matrix of the

original function

(Ulz ), Uz ), U(z ), ... U(gy))
1 2 3

For a large enough . N, one will obtain a picture of the original function

AN

u(z). Application of this algorithm to our problem is described below.

~

15



The specific operation that these computational algorithms perform
is called a finite, discrete Fourier transform. Thus if D(I) is a _

one x N matrix of data, the output of the algorithm T(J) 1is given by

T(J) = D(I)e (I-16)

n o~ =

~2mi (I-1) (J-1)
. N

The properties of this operator are similar to the conventional Fourier
operators in the space of continuous variables (ref. 8). The sum is
not performed in a direct manner on the computer but in a manner which
reduces the number of arithmetic steps and makes the operation attractive
as a computational tool.

In the solution of partial differential equations by Fourier

transforms we are led to evaluate integrals of the type

. 0 ~ _'k
U(z) = 5%_. [7 e ™ Pk

If significant changes in U(z) occur over distances greater than

X, then the largest wave number of interest will be

Kk = 2m/A
Thus we may be satisfied with an approximation to U(Z) of the form

Yoy = = ¢ Uk)e Hoax

27
-K

16



or shifting the coordinates

ikg N .
2x -ikzg
5 ({ Uk-k)e " ~dk

~ [S]

This latter integral may further be approximated by the limit of a sum

_ K ikz ” -ik.z
¥ = —— et T Ukk)e T (1-17)
where
_ o2 1 _ 4r
kI 5 (2 + (I-l)} Sl [5' + (I—l)}
or
j= =X eiKC(i_%J g ﬂ(k -k) e-igﬂillll 2
mN 1 - N A
I=1
So far ﬁ(c) has remained a continuous function of ¢ . However at

the points

the summation becomes identical to the finite descrete Fourier transform

17



a _ im(J-1)(N-1) K
Uep) =B = e ) =

T(J)

- where T(J) is defined in (I-16) and

D(I) = ﬁ(kI-K)

(I-18)

Note that this scheme gives details of U(z) of distance no smaller than

A/2 . This was implicit in choosing maximum wave number. Further when

) . \ . .
N 1is even, the output matrix U(J) describes the function only up to

AN
2°2

‘identities

-1 . When ﬁ(kI—K) is real, and N even, we have the

U (g +1) =0 , Imag(U()) =0

U(g +1+x) = - ﬁ(§-+ 1 - «)

Thus the one-dimensional output matrix B(J) which approximates éur
original function is antisymmetric about J = §-+ 1 and symmetric
about J =1 . Since U() =0 for J =1 + N/2 we must choose
N large enough, or the time small enough to ensure that our wave has

not reached ¢ = A(N + 2)/4 . In this approximation, we have

effectively replaced a single impact source by

18



an infinite periodic array of sources and negative sources. Our
approximation will be valid as long as the waves from each of these
sources do not interact with each other.

Notes on the Numerical Fourier Inversion

There were several checks made of the fast Fourier computer
routine (ref. 8) used in this paper. First, known functions were
transformed analytically and inverted numerically. The results of
these tests revealed thét the inversion program works best on continuous
functions if one is té avoid spurious oscillations near points of
- discontinuity.

Secoﬁd, the initial value problem for a nondispersive medium
such as a string was programmed. The results of this test‘are shown
in Figure 3a. The shape of the string at the initial time and subsequent
times as predicted by the computer preserve the original triangular
shape and exhibit the wave shift at the proper speed.

Lastly the impact of a string was programmed using the same force
applied to the plate problem. The theoretical result predicts a constant
displacement behind the wave front as shown in Figure 3b.

For the line impact of an anisotropic Mindlin plate, a specific
load distribution Qas chosen for ease of analytical calculation of the

Fourier transform and Laplace convolution integral;

for ‘ lz] <a and t < T,
-p L 7Ly sin™t : I-19
q, = P, 5(1 + cos=2) sin- ( )
)
for Icl >a or t> T
=0 ’
qz

19



By using the fast Fourier transform (with a proper sign change)
one could find the transform for an arbitrary load distribution.
However, this has not been done. Nor has the author used the load
distribution for a Hertz contact prob;em, as migﬁt be supposed in an
ihpact problem (reasons for this will be given belowi. However the
chosen distribution, it is hoped, will exhibit most of the salient
effects of the impact of a plate.

While ad hoc, the particular choice of the load distribution is
not entirely arbitrary. Continuity of the first and second derivatives
(as the function (I-19) exhibits) is dictated by a desire to have all
stresses continuous (i.e. to avoid shocks) and thus spurious oscillations
in the numerical inversion. This stems from the fact that in the
Mindlin theory the midplane stresses, having as wave sources the

term qu , hafe the following form for their transforms

~

t ’ A
t oo [ kq (k1) sinkv(t-t)dr , (0,8 = 1,3)
aB o 2

where v denotes either the first or second wave speed. Thus when

q, has the form
a, = Q(k)é (1)

the stresses are proportional to

t ok é(k) sinkvt v T 229 T [F(vt-z)]
oB BCZ

where,

1, Jz| < vt

F(vt-z)

=0 Jz] <vt

20



Thus for continﬁous stresses at early timeé éfter the wave arrival, the
spacial part of q, must have continuous second derivatives, which 1led
ﬁo the choice of (I-19). This conclusion was found also in the numerical
results when non-smooth load distributions were used.

Results for the Line Impact Problem

Using the transient load distribution described above, calculations
were made, on an IBM 360-91 computer, of the stresses and dis-
placements in both a classical and Mindlin plate due to impact type
loading; The results are shown in Figures 4-8.

One of the important parameters in this problem is the ratio of
load extent to plate half thickness, a/b. When a/b 1is of order
unity or less, one would expect that shear effects would become important
and the Mindlin and classical plate solutions would differ. This is
so as shown in Figure 4 for the case of a/b = 1 . However in Figure 5
when a/b = 10 the displacements calculated by both Mindlin and classical

theories do not differ by very much.

The remaining figures are for the Mindlin plate and were calculated
for the composite, 55% graphite fiber-epoxy matrix, using equivaient |
elastic conétants for va?ious layup angles of the fibers. The constants
were taken from Chamis (ref. 9).

In Figure 6 we have plotted the center plate displacement versus
time for both the classical apd Mindlin theories. For the classical
plate this function can be found explicitly. 'The displacement increases

as the square root of time when the impact force is a delta function

21



in time and space. This result is confirmed by the numerical'resuits
in Figure 6 and is also the case for the Mindlin plate for large time.
(Note that for a string, the displacement at the center is time
independent after impact.)

The effect of 1layup angle on the plate response is shown in
Figure 7, for various times after impact. Asvcan'be seen, the
displacement is somewhat insensitive to layup angles of up to
about £15° fér either line loads along the x3 axis or along the
X axis.

1

Finally in Figure 8 the induced membrane or average in-plane
stress 1/2(t11 + t33) is shown for various layup angles at a
time immediately after the impact time. One can see that the
initial compression pulses aré preceeded by wave fronts which
vary in magnitude and velocity with layup angle. Also for a
wave propagating along the x1 axis (load on the x3 axis),
the +45° layup results in higher stresses than for other layup
angles. While the flexural stresses are higher than the membrane
stresses, the membrane stresses will propagate ahead of the bending
waves and will have a tension pulse in the signal which might
cause splitting through the plate or plys as have been observed
- in experiments.

In the case of one-dimensional wave propagation in a direction

n = [cosa, sina],, the direction of the displacement is not parallel

‘to n but is known for the particular wave in question. The direction

22



of displacement for the first two in-plane waves was given in Figure 6

of Ref.1

[ug, ug] = U(Q'{-Vt)[cos B, sin B8]

From (I-5), the stress may be determined. In particular, the average

: o o o ‘ .
in-plane stresses t t t13 can be found as functions of the

b 3
11”7 33
: _ ) )
mean stress o = 1/2(t + t );

11 33

~

t0 = 20(C cos o cos B8 + C sin a sin B)/D
11 11 ) 13
t% = 20(C sina sin B8 + C cos ¢ cos B)/D
33 33 13
t0 =20 C (cos B sin a + cos o sin B)/D
13 55
.where
D=(C +C ) cosacos B+ (C +#C ) sin o sin B
11 13 33 13
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SECTION IT: STRESS WAVES DUE TO CENTRAL IMPACT OF ANISOTROPIC PLATES

In Section I of this report, an analytical-computational
method was described for the calculation of the impact induced stresses
behind the wave front. The method was checked for known, one-dimensional
problems such as the impact of a string, and the line impact of a classical
anistotropic plate.  The induced stresses were given in terms
of the impact pressure. However, no prediction was made of the maximum
impact pressure in terms of the velocity and mass of the impacting body.

In this part of the report, the problem of normal or central impact
is discussed. Two-dimensional stress patterns are presented in terms of
the impact pressure and an estimate is made of its magnitude for a

spherical impacting body of known velocity and mass.

Description of the Mathematical Model

Before discussing the results, a discussion of the assumptions made

in the model will be given. In practice, fiber composite plates are made



up of a number of unidirectional plys oriented at various angles to
obtain certain desired properties. When the properties and lay up

angles of each ply are known, 6ne can obtain the plate constants by
averaging across the thickness. These average elastic constants
represent an equivalent anisotropic-homogeneous material. 1In the present
work the laminated plate is replaqed by an equivalent anisotropic plate.
The equivalent elgsfic constants were obtained from a computer che

developed by Chamis (ref. 9). The following additional.assumptions are

implicit in this model.

Linear Elastic Properties

This model is based on linear elasticity. Thus, plastic, viscoelastic,
and fracture effects are not taken into account. The results'of these
effects is to decrease the amount éf wave energy that can propagate into
the plate. Thus, the elastic analysis represents an upper bound

on the actual stresses during impact. The effect of initial stress in

the plate has also not been considered in this report.

Boundaries and Tapering

Another limitation of this work is the neglect of the effect of
boundaries or edges of the composite fan blade. The reflections from
boundaries can of course be handled with the linear elastic theory.
However, if one is interested in the maximum stresses, these should occur
near or at the impact point except for the case of edge or near edge
impact. Also, for small impact times, the waves behave as if the finite
plate were infinite. The case of edge impact is under study at this
writing.

In this report the plate thickness is assumed to.be constant, while
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in a fan blade taper and twist will be present. The neglect of
these effects seem to be of lesser importance than those due to

inelasticity and boundaries.

Thickness Reflections and the Mindlin Theory

The use of an equivalent anisotropic plate neglects the reflections
of waves at. the ply boundaries. However, this approrzimation will be wvalid
for wavelengths* greater than the ply thickness, and valid also for
wavelengths greater than the plate thickness. There are analyses which
consider wave-ply interactions, (Ref. 10), but in general the change
in stress must occur over distances comparable to ply or fiber thickness
for these effects to become important.

In the Mindlin theory of plates, the wave reflections are averaged
through the thickness. (ref. 7). In dynamic loading of a plate, the stresses
will propagate through the plate thickness as well as away from the
impact point. These waves will suffer many reflections as they propa-
gate back and forth between the plate surfaces. The calculations of these
many reflections for a three-dimensional plate thus become impos-
Sibléfor anything but very early times after impact. The Mindlin ﬁlate
theory thus restricts the mathematical equations to a description of
the average plate midplane motion and rotations.

In the Mindlin theory used in this report the plate displacements

u = (ul, Uy, u3,) (See Fig. 9) have the form (See Ref. 1)

*An effective wavelength can be defined as the contact time of impact
multiplied by the smallest wave velocity in the material.
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u=u °(x ,x3,t) Bg'g(l)(x

Lt + 23EH21 3D oy xy,0 (11-1)

The equations governing the motion are listed below. The first two

equations are for the inplane displacements u ,us and the next three

3
govern the transverse displacement u; and flexural rotations ui/b ,
ué/b . The transverse impact loading is represented by —qz(xl,x3,t)
which we will prescribe in the following section.
0 2.,0 2..0
Bzul 9 u) a9 uy . 32u3 C12 qu
= Cy T, T Css T, (Cs5 * Crg) *
at Bxl 3x3 Bxl 8x3 2C22 ox
(11-~2)
0 2,,0 0
P = L33 * Css * (Cyq + Cp3) *
a2 ax2 ax2 9x) 3x;  2C,, 9%,
0 0 2..0 1 1
7 c 32u+c au'-’-+c 1aul+c 1-———au‘°’+l—q
P = b . b 2b 2
52 66 8x§ 44 5 %2 66 b axl 44 b axa
Pul Pl Pul . %l
0 =C +C + (C.. + C )
at2 1 Bx? 33 axg >3 13 9x 3x3
(I1-3)
ou? ul C dq
B Ceel —L+ L)+ 22
] ) b 2C22 9x
E)zu; R Bzu; 32u; R Pu!l
0 = +C + (C.. +C..)
at? 33 ax? E 3 x2 35 13 9x_ 9oX
3 1 3
0 1
3 duy uy o Gy 09
-=C,( +—=) t —
b 44 20 3
3X3 b 22 X3
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where

o
]
a
1

11 11

>
w
N

C
33 33

>
—
N
N
w
>

C13 13 C C66 66
22 N
The factor «k 1is a correction factor introduced by Mindlin and
equal to k = m2/12

If the plate is struck at a point, the energy will propagate into

- the composite in the form of elastic waves (see Ref. 1). Two of these

waves will have anisotropic wave fronts and will depend on the fiber
layup angle of the composite as shown in Figure 10. The average in-plane
stresses across the thickness will propagate in this manner. The

flexural energy will propagate behind a slower isotronic wave front.

The stresses in the plate are given in terms of the displacement
(Section I of this report). The mathematical problem to be solved
consists of the following: find a solution to the coupled partial
differential equations (II-2), (II-3) when the loading function qz' is a
prescribed function of the plate coordinates x,,x, and time, and the
plate is initially at rest. '

The solution of this problem was accomplished using a combination



analytical and computational technique involving Laplace and Fourier
transforms. Details of finding the solution are discussed in Appendix A
of this report. Results of these calculations are discussed below.
Befofe considering the results, we must discuss the choice of the
impact loading function 9y -
To determine the maximum contact pressure one must know the
impact pressure distribution on the plate surface. In the static Hertz

théory, this pressure is given by (see Ref. 11 and 12)
- _ - (Ey2y1/2 11-4
q, = P - @Y (11-4)

This distribution is not suitable for our theory since the infinite
slope of P(r), at r = a , would appear in our approximate equations

(1I-2) and (II-3) as a source term. In fact, it is shown in Section I of this
report that the second derivative of P(r) must be finite at r = a

for the stresses to be continuous. To resclve this problem, an ad hoc

pressure distribution is assumed which produces finite stresses;

= — — ry2 Iyy .
q, = P, - 22 + QMEW; T < a

%,

f(t) =sinat/t , t<t, f(t) =0 t>1

(II-5)

0, r> a

It should be noted that in an actual impact, the impact area
changes with time. This effect is difficult to model in the analvtical
part of the problem. Instead we have chosen to prescribe a time varying

pressure over the maximum contact area.



The total force produced by such a pressure distribution is

~

F = Zﬂ\ q(r) r dr
0

0
(I1-6)
naZP0
FO= 3
Using (9 ) we may calculate the total impulse to be
(T ‘t 2
1= \ F sin®t dr = £ a2p ¢ (11-7)
0 T 3 0
O .
If the rebound velocity is Vl, and the inital velocity VO,
the impulse given by
I = M(‘v1+vo) (II-8)

Herztian Impact Stress

In order to determine the impact stress equations (II-2, 3), the
impact pressure distribution must be found in terms of the object mass,
velocity, geometry and elastic properties. No exact solutions to this
dynamic problem are known in the theory of elasticity. However the
static theory of contact of elastic isotropic bodies is known and was
developed by Hertz (ref. 11). It is known, however, that even under
small contact forces the contact pressure exceeds the elastic limit
of conventional materials (see e.g. Goldsmith, (ref. 12)). One would

expect then that for high speed impact (>100 m/sec.) the local contact
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stresses would exceed the elastic limit of most materials. In spite of
this violation of the elastic assumption of the Hertz theory of

impact, experiments have shown that the impact times predicted

by the elastic theory agree reasonably well with data from impact

tests. The stresses predicted by this theory however are upper

bounds on the actual stresses. Also if the surface of impact belongs

to a structure which can move, then the contact times predicted by

this theory are lower bounds on the actual time of contact of object
and structural surface. With these restrictions in mind the Hert:z
theory of impact will'bé.reviewed as it can be adapted to composite
materials.

Consider the contact of a sphere of radius R and elastic half
space. The contact force between the two bodies F, is related to

the relative approach of the bodies «, and has the dependence

F=k a¥? (11-9)
2
where. k2 is a constant dependent on the properties of the bodies.
When both bodies are isotropic this constant is given by
' 1-v2 1-vZ | 71
_ 4 .1/2 1 2
k2 = g-R E * (I1-10)
1 2

where v, E are Poisson's ratio and Young's modulus respectively for
each body.

Composite materials however are anisotropic in general. The
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corresponaing problem for the contact of anisotropic bodies has
recently been given by Willis (ref. 13). For this case the contact
area is an ellipse, the dimensions of which must be determined from
algebraic equations. Tﬁe shape of this ellipse for typical composite
anisotropy has not been determined, though from experiments of the
author on graphite/epoxy and boron/aluminum composites seem to show
that the contact area is close to a circle. It is assumed then that
for fhe impact of an isotropic sphere with a composite surface the

contact area is a circle. Also the constant k2 is replaced by
[1-v2 3 -1
+ (II-11)

where E ,v are the elastic constants of the sphere, and C is the

1 1 22
elastic modulus of the composite plate. This assumption of course is
just an educated guess.

In the Hertz impact theory the force (II-9), which was determined

from a static solution, is used in Newtons law for the sphere
ME - _ ko (I1-12)

where M is the mass of the sphere and V the instantaneous velocity of

the sphere.
This assumption is only valid when the contact time is much greater

than the time for elastic waves in the sphere to traverse the object.



Further when the motion of the plate becomes large during the contact
interval, (11-12) must be replaced by

P n¥? (11-13)

dt?
where U 1is the displacement of the sphere and W 1is the displacement
of the plate at the point of contact. This problem requires simultaneous
determination of the motion of the Sphére and plate. This hés not been
done in this report but work on this problem is in progress.
When W X 0 during the contact period, the time of contact can be

shown to be {(see e.g., Goldsmith (ref. 12))

a d 2.943 a,
T =2 1 a = (II-14)
ks 5/241/2 v
o} [V2 - -—M- o ]
where .« is the maximum approach of the impacting object. This value
1
is given by
2/5
5 Mv2
= SRk I1-1
% [4 K (11-15)
2

a = YorR (11-16)

The impact force in this theory as determined from the solution of

(II-12) is given by
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(11-17)

F = F sin nt/t , t <1
0 =
=0 , t > T ,
where FO = 3.36 M¥-. The pressure distribution in this theory is given -

by the expression

T, 1/2
P=P (-G

where PO = g-Fo/naz'. It is interesting to note that the impact

pressure PO,‘ is independent of the radius of the impacting object.
This distribution, however, is determined from a static elasticity
solution and should not be expected to hold under dynamic. impact. Of
course the contact radius varies with time reaching a maximum value
(I1-4) at half the period.

Another limitation of the theory is the fact that it predicts
a rebound velocity equal to the initial velocity Vé. In an actual
impact , momentum would be transmitted to the structure, thus changing
rebound velocity to something less than VO. Solution of the coupled
problem (II-13) should enable a better determinatinn of the rebound
velocity.

A further improvement bf the theory might be achieved if a more

general contact law is used, say (called the Meyer Law, see (ref. 12))



where n, k, would be determined from static experiments on composite
materials. This approach is presently under investigation.

Well aware of the long list of limitations on the above model for
impact, we have nonetheless used the above procedure to obtain estimates
of the impact time, contact force, and maximum contact pressure for
different impacting bodies and speeds. The results of these calculations
are shown-in Figures 11 and 12 whefe data is presented for spherical
ice particles and for granite-like stones.

For impact speeds from 100 to 500 meters/sec. and 1/2 to 2 cm.
diameter granite spheres, the contact times range from 15 to 85 usec.

In summary, these impact formuli reveal the following dependence

on impact velocity:

5
ooV, P~ v2/®
These results should only be used as guidelines, since many assumptions

are made which break down at high velocities.

Goldsmith and Lyman (ref. 14) have shown the Hertz

theory to be remafkably valid insofar as contact time and peak pressure
are concerned for the impact of hard steel spheres (1/2'" diameter) into

a hard steel surface for velocities up to 300 ft./sec. (91.5 meters/sec.).
~The calculations in this report based on the Hertz law of impact extend
well beyond this 1limit (100-500 meters/sec.). Thus the contact times

and maximum impact pressures preéented in Figures 11, 12 for graphite/epoxy
can only be used as rough guides for which the values for contact times
are lower bounds on the actual times and the values for pressure are

upper bounds.
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One further reason why the Hertz law is not valid is that for velocities
in the range of 100 to 500 meters/sec., the contact area diameter
approaches the diameter of the striking object ,which certainly
violates one of the assumptions in the Hertz theory.
At the writing of this report, work is in progress on using a
proper Hertz contact theory for anisotropic matefials. However,
for large deformations, plates, and fracture effects in the impact
zone, a more detailed analysis of the impact zone is needed than
is given in this report.

Results for Impact Stresses

Solutions to equations (II-2, II-3) which govern the central
impact of anisotropic plates, were found for impact-like pressures
using an analytical/computational method as described in Appendix A
of this report. In this modei there are eight different stresses (see
Section I) associated with the membrane, flexural and interlaminar
stresses. The presentation of all of these stresses for different
times after impact and various layup angles becomes an enormous task. Instead
certain key stresses or stress measures are presented in this report
to give an overall view of the stress picture.
The ﬁhree stress measures chosen for this report were the average

membrane stress (t0

11 + tg3)/2 , the average flexural stress (t1 + t§3)/2

11
at the surface of the plate, and the maximum interlaminar shear stress

given by (t%1 + t%3)1/2 . These stresses are not necessarily the

maximum stresses at a point, but they are independent of the orientation



about an axis normal to the plate. The program also allows individual

stresses to be obtained if desired.

The stresses were calculated in a quarter plane of the plate for a
specific time after the initiation of impact and were normalized with
respect fo the maximum impac; pressure as calculated in the above section.
The data is presented for various times and layup angles in the form of
stress contour plots (Fig. 14-25) which were made on a '"Calcomp' plotter

at the NASA Lewis Research Center, (ref. 16). Superimposed on these curves are the

theoretical wave front for the particular wave in question and the
radius of the circle which bounds the impact pressure. The wave

front calculations were based on the work and represent a

locus of wave surfaces originating from the edge of the impact circle
for a given time after_start of impact.

These results show the effect of the change of fiber layup
angles on the stress distributions. In general, the maximum stresses
tend to lie along the fiber directions. For most of the cases treated,
the significant stressed region revealed by the calculations is bounded
by the theoretical wave fronts as calculated in (ref. 1) . This provides
a check on the accuracy of the approximations made in.the numerical

computation scheme.
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. 1
For this elastic model, the maximum mean stresses E{tll + t33)

occur at about the end of the impact time. The question about an

optimum fiber layup angle is partially answered by the data in

Fig. 33. For the flexural stresses, the optimum layup angle is

about +15° showing a 34% lower mean stress level than the +45°

case. However, regarding the interlaminar stresses, for the same
impact conditions, there seems to be little difference in the maximum
stress level with layup angle despite significant changes in stress
distribution in space with layup angle.

For the average membrane mean stress t?l + tg3 , immediately
after impact, the lower layup angle plates yield lower maximum
stresses. However, at later times, the +45° layup case appears to
give a lower maximum stress in the plate.

Another result of these calculations is that the induced stresses
depend on the impact circle radius-to*plafe‘thickness ratio (a/2b).
On the other hand, the impact circle dépends on the incoming particle
velocity as determined by equation (8). Thus, for each impact velocity,

a different impact radius/thickness ratio must be chosen as well as a

different contact time. The integration of these two programs has not
been performed at this time but will be attempted in the near future.

Of course, to evaluate the possibility of fracture or failure of
the composite under impact, the complete stress matrix at a point must
be known, as well as the failure criteria, which will itself be
anisotropic (ref. 8). The integration of programs described in this
section into a computer code suitable for use for pre-design

engineering calculations is to be the next phase of this report.



CONCLUSIONS

The successful application of composite materials to jet engine
fan blades depends, in part, on the ability of these materials to
retain structural integrity under transient loadings due to bird
strikes or hailstone impact or other foreign object encounter.

While there are a number of experimental investigations connected with
this problem, theoretical understanding of impact response and damage
is lacking. Such understanding might enable a reduction in costly
empirical studies and testing. This reﬁort presents the first of a
series of analytical models to attempt to understand impact mechanics
of compoéite plates.

Using the method of stress wave analysis, the stresses induced
during and after impact with a line load and central impact have been
determined. The model has been put into a computer program where the
transverse loading force on the composite platg is arbitrary. For
central impact the results indicate that the energy propagates into
the plate in the form of extensional and flexural waves. At several
impact circle diameters from the center, the highest stresses propagate
along the fiber directions. The speed of propagation varies with the
direction in the plane of the plate:

It has been determined that for composites similar to graphite/

epoxy, there is an optimum layup angle near +15° for which the flexural

stresses are minimized. The maximum stress in a plate without edges,

due to central transverse impact, occurs at the end of the contact time.
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Using a modified Hertz contact theory, an estimate of the contact
times, pressures and forces for various impact velocities and siées
of ice and granite spheres has been calculated. However, the effect
of the plate motion has been neglected, which might increase the
calculated contact time.

The next parameters to study in this program are the effect of
edges on impact, and the effect of plate motion on the contact time
and pressures. Also the validity of the Hertz theory is in question
for the impact velocity range of interest. A modified Hertz theory
or a fluid-solid interaction model should be developed. Some of these
effects will be investigated in a continuing study of impact and

i

stress waves in composite fan blades.
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APPENDIX A: THEORETICAL ANALYSIS OF IMPACT IN COMPOSITE PLATES

Introduction

In a previous paper, (ref. 1) and in section I of this report
the Author examined the propagation of wave surfaces in composite
plates, and the response to a line impact load respectively. In
section II of this report results for the two-dimensional plate
response to a distributed impact load were presented. This analysis
makes use of a computational tool called the "Fast Fourier Transform,"
which permits the calculation of the inverse of Fourier transforms on
the digitél computer. The application of this technique to the calculation
of impact induced stresses is renewed in this section.

The mathematical model treats the laminated plate as an equivalent
anisotropic material using a program developed by Chamis (ref. 9). A modi-
fication of Mindlin's theory of cfystal plates is used, which results
in five two-dimensional stress waves. Two of these waves describe the
average or membrane stresses, while three other waves are associated
with the flexural motion. The two former waves are non-dispersive,
while the flexural waves exhibit strong dispersion at the low frequencies.
In the Mindlin plate theory, (ref. 7), thé impact transverse surface force
enters the problem directly through the differential equations. To solve
this initial value problem, a Laplace transform is taken on the time
wariable, and .a double Fourier transform is taken on the two space

variables. A solution of this triple transformed problem“is obtained



in the transform space.

Finally, the solution is completed by an

analytical inversion of the double Fourier transform using the fast

Fourier transform algorithm.

The displacement variables used in the theory are described as

follows: ug and u
3

of the plate, (see Fig. 9);

1
1

normal to the midplane.

displacement u! and wu!
3

are listed below, where q,

surface and the constants Cij

for the composite plate.

aZu? R aZu?
0 = C
11
at2 ax2
a2ug R a2u§
p =C
3
3 3x2

represent the midplane displacements in the plane

u® represents the transverse midplane
2

are a measure of the rotation of a line

The equations, which were derived in Reference 1,

is a transverse tension force on the plate

are the equivalent elastic stiffnesses

52uf - a2ug
tofss o st G
X3 Xl X3
, G121
2C,, x
(A-1)
32u 32uf
volgs — v (Gt C13)3 ~
3x] X19Xg
L3, 39
2C
22
X,
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2,,0 2,,0 2 : 1 1
pa U‘Z = { ° u2 + ° u2 + _}_ aul + l a_u_a- + ?_2_.
2 66 2 2 b b 2b
ot Bxl 8x3 le 8x3
2..1 2.1 2.1 2.1
pa uy _ 6 3 u, . 3 u1 .+ é ) d u3
2 11 2 58 2 55 13
ot axl Bxa 8x13x3
0 1
3 ou, Lo . Cip 239,
b 6 | b 2C__ 93x,
axl 29 1
(A-2)
2.1 2,1 2,1 2,1
pa uj _ & d u, . c 3 u3 . (Cos ~ ) a_u1
T v33 55 55 13
2 2 2
ot 3x3 axl 3x18x3
0 1
_3 ¢ [auz . us] Cqp 94
b 66 Bx3 b 2C32 3x3
where
A )
C11 - C11 qu/czz
~ = -2
33 c33 C32/C22
Cr3 = Cpg= C1,C5,/Cy,
AN\
C66.= a Ces
k = m2/12
Anélytical Part of Solution: Midplane Motion
Solutions for the transforms of u and - u’ are
1 3
easily found. The Laplace variable is denoted by s and the

Fourier variables are k1 = k cos

o, k

3

= k sin o .

The vector formed



from (kl’ k3) =k represents a Fourier wave number vector corresponding

to the harmonic frequency w = -is . The resulting expressions become,
T[L[ug]] = ﬁl= iq '{(A22 + sz/kz)al—- A),a, sinZa} cos a/kA
0 “U=3ia 2 12 . 2 : .
T[L[u3]] = U3— iq {(A11 + s?/k%)a, - A ,a; cos a} sin a/ka (A-3)
A= (A, + s2/k2) (A,, + s2/k2) - A?z cos2a sinZa
where,

= C 2 Y S - C ‘2 2
A11 = C11 cos“o + C5551n a , A22 C33 sin‘a + Csscos o,
App = Cyg *+ Css
\

(A bar indicates a Laplace transform, and q indicates a double Fourier
transform.) These solutions have the form.

~

0 = i é P(s?)/kA(s?)

where P(sz), A(52), are polynomials in s? . A(52) has four zeroes

in the complex s plane for each k. These roots have the form,

s = *+iv, k, % iv, k
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where v1 and v2 are the plane wave velocities corresponding to the
wave normal k . Values of v and v versus o were reported in

- 1 2
Reference 1. The Lapiace inversion of (A-3) can then be done by use of

the convolution theorem;

~ . t
Uk,a,t) = %- J 4(k,a,t-1) G(t)dr
o) (A-4)
k P(-k2v3) sin k vt k P(-k?v2) sin k v,t
G(t) = - : +
’ 2_,,2 Vi 24,2 v
(vl vz) 1 (vl_vz) 2

Analytical Part: Flexural Motion
By a similar procedure, one can solve for ug , ul u; , which

‘have the form

_ 2 R(s?)
Al(sz,kz)

=n

(A-5)

However in this case the roots of Al = 0 are not proportional to
k . This means that the velocity of the waves depends on the wavelength.
It is known from the dispersion relations for these plates (ref. 7), that for

k real, there will be Si* pure imaginary roots of Al(sz) = 0;

s = io (0, tin, (), (k)

The Laplace inversion of (A-5) again makes use of the convolution

theorem and the residue calculus to invert 1/A(s2). Thus we obtain



N t
W0,t) = f qC,t-) H(r)dr o (A-6)
0

where

R(ml) sin w,t . R(wz) sin w,t

H(t) =

371 3

2_,.2 2_,.2
(m2 wl) (wé-w )wl

2_,.2 2_,.2
(w1 m2) (w wz)w2

R(ws) sin wst

+
(w%-m%) (wg—w%)ws

Numerical Inversion:

The inversion of the Fourier transforms involves integrals of
the form
ux,x) = 2 [ U k) e K Rak dk, (A-7)
1°73 411_2 1?73 1 3

g+ -]

If significant changes in U(x) occur over distances greater than X ,-

then the largest wave number of interest will be
K = 2n/Xx .
Thus we may be satisfied with an approximation to U(x) of the form

. K )
e
-K
Shifting coordinates, this becomes
2K :
: : -ik.x
fJ Bk, K,k -K) e 3 Rdk dk,

0

' i(Kx,+Kx,)
ﬁ(%) _ _& 1 3

472
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-

This latter integral may further be approximated by'the following sum,

2 N . .
Y = K e1(Kx1+Kx3) LT pk (D-K,k (3)-K) e 1[k1(J)x1+k3(J)x3]
72N2 1,J=1 1 3 .
where

2K [1 2K |1
k(D = = (7+ cr-l)] k@) = [5* (J-l)]

or

2 iKe1- L
b= K IR P x)) o N

z l](I J) e-.j:_z_TT [(I.—l)x1+(J_1)x3]
T‘TZNZ ,

N :
I.J=1 (A-8)

When x1 and x3 are continuous variables, a summation of the type
above must be performed for each point (x;,x;), which makes the cal-
culation of the sums impractical for a large number of grid points

(xl,x3). However, if x1 and x3 take on certain descrete values, there

is an algorithm (ref. 8), which makes the calculation of these sums feasible for

a large number of grid points. This algorithm, known as the 'fast Fourier

transform,'" takes a sampling matrix of the transform, say A(kI,kJ), and

returns the following sampling matrix of the original transformed function,

C(I-1) (L-1)4  (J-1) (M-1)
LM = I Ns Ak k ) e 2Tl Nt N ]
J=1 J=1 -

(A-9)

This operation is known as a descrete finite Fourier transform. To

put the above expression into this form we choose for the discrete

values of X, and x3 the numbers



X\ (L) = 3 (L-1) , x,00 = 3 M-1) (A-10)

Numerical Results

Several checks were made of the fast Fourier computer routine
(ref. 8) used in this paper. First, known functions were-transformed
analytically and inverted numerically. These tests revealed that
one must work with continuous functions if spurious oscillations
near points of discontinuity are to be avoided.

Second, known one-dimensional solutions were checked using the
nﬁmerical transform method, such as the impact of a string and the
impact of a classical beam (see Section I). A1l these checks
rpvealed very close agreement between the numerical transform output
and the known analytical result.

t

The impact pressure distribution used was the following (see

Figure 13)

_ T, 2 T4 . mt '
q, = -P, (1 -2 (3) + (3) ) sin T ' (A-11)

N

2

for r<a, (rl= X3 + x%) and t<r

q, = 0, for r2a or t>t

The Hertz contact pressure based on static isotropic elasticity has the

form
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@ = P, 1- =) O (A-12)

The principal difference between (A-11) and (A-12) lies in the infinite
slope in (A-12) at r=a . The form of the impact pressure (A-11) was

chosen to avoid such igfinite slope. A distribution with continuous

first and second derivatives (as the function (A-11) exhibits) was dictated
by a de;ire to have all stresses continuous (i.e. to avoid shocks) and |
thus avoid spurious oscillations in the numerical inversion. This require-
ment results from the fact that in the Mindlin theory the average mid-
plane stresses, having as wave sources terms proportional to Vq,, have

the form

t
~ ~ . -
LI [oqu(kr)51n k v(t-t)dr, (a,8 = 1,3)

~ where v denotes either the first or second wave speed. Thus when

Qz has the form of a short duration impact i.e.

4, = QI8(1)

the Fourier transforms of the stresses are proportional to

~ 2’\ .
taB vk Q(k) 51nkk vt



or for small times,

~ 2
: 3°Q(r)

")
oB 312

Thus for the stresses to be continuous at early times after the wave
arrival, the spacial part of a, ,ﬁust have continuous second derivatives,
which led to the choice of (A-11).This conclusion was also reached in numeri-
cal tests of the fast Fourier program when non-smooth load distributions
were used. (See Section II of this report).
Using a '"fast Fourier'" computer routine written in Fortran 1V,
the induced impact stresses were calculated on’both an IBM 360-91, and
IBM 7094 computers. The grid used was 32 x 32 or 1024 points in the
X, - X3 plane. Execution time on the 360-91 was of the order of 12
seconds, and 22 seconds on the 7094. A denser grid of 64 x 64 was
also tried with a running time of less than a minﬁte on the IBM 360-91.
The output data consisted of a matrix (32 x 32) of stress values
-for the quarter plane of the plate. Interpolation, contour plotting,
and three-dimensional plot routines, developed at the NASA Lewis Research
Laboratory for use with a "Ca)] Comp'" plotter, were used to obtain stress
contours and three-dimensional plots as shown in Figure 2 of Section II.
The significant stress levels all lie within the surface bounded
by the theoretical wave surface. In Figures 14, 17 the
average or membrane mean stress contours %{t?l + tgg) for graphite

fiber/epoxy matrix laminate plates are shown for layup angles of

55



56

the mean flexural stress l—[tl + t

The stresses shown correspond to the faster wave speed (quasi com-
pjessional wave) which is anisotropic, as is seen from the wave surfacés
in Figure 10 . The stresses associated with the second wave speed
(or quasi shear wave) were much smaller than those in the faster wave
and are not presented.

The flexural or bending motion has three waves associated with it.

The largest stresses however were found in the lowest flexural wave

which travels at an isotropic wave speed given by

A Y

V3 = [Cse K/D]l/z

(k = 72/12 , 1is Mindlin's correction factor (ref. 3). Stress contours for

1

11 33] in this wave are shown in Figures 20-

2
25 for graphite fiber/epoxy matrix laminate plates under the
transverse impact pressure (A-11). Note that the wave
front is circular since v, 1is isotropic for laminate plates. Stresses
in the second and third flexural wavés were found to be small. Three-

dimensional computer plots are shown in Figures 26-32.

The maximum stress levels were found to occur immediately after
the end of impact and appeared to propagate along the fiber directions,

given by the layup angies.

’
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APPENDIX B: LIST OF SYMBOLS

half width of impact contact line (one dimensional) or radius

of impact contact circle (two dimensional)
ratios of elastic constants

acoustic tensor components

“half thickness of plate

anisotropic elastic constants

column matrix of discrete Fourier Transform

~elastic strain tensor

Young's Modulus

impact force

wave number

Hertz contact law constant
Laplace transform.

mass of impacting object
wave normal

Legendre polynomials
impact loading function
position vector ‘
Laplace transform variable -
time

stress tensor

displacement vector

inplane displacements
transverse plate displacement

flexural rotation displacements
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higher order plate displacements
wave velocity
velocity of impacting object

cartesian coordinates

angle of one-dimensional wave normal
relative approach of impacting object and plafe
characteristic acoustic determinant

fiber layup angle

Mindlin correction factor, or wave number (see the text)

wave length

Poisson's ratio

density

frequency

impact time or time parameter

one-dimensional wave normal direction



APPENDIX C: MATERIAL PROPERTIES

All the calculations in this report are for the composite material
consisting of graphite fibers in an epoxy matrix.

The values of the elastic constants for gréphite/epoxy, for various
ply layup angles, were.obtained from an analysis by Chamis (ref. 9).
The assumed properties of the graphite fibers and epoxy used by Chamis

are as follows;

fl

Epoxy Young's Modulus E 0.57_106psi
Poisson's Ratio v = 0.36

Graphite Fiber (Thornel 50)
"i" Axis along the.fiber

E = 50 105psi
11
E =E =1.0 10%psi
22 33 i
v =v =0.20
12 13
v = 0.25
23
G =1.310°
12
G =0.7 10%

23
The values of the elastic constants for the composite are given in '

the following table.
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TABLE I. - STRESS-STRAIN COEFFICIENTS FOR 55 PERCENT GRAPHITE |

FIBER-EPOXY MATRIX COMPOSITE

[All constants to be multiplied by 106 psi; data obtained from ref. 7.]
0° Layup ‘ ' - +15° Layup
27.95 ° 0.3957 0.3957 0 0 -0 24.56 0.4000 1.986 0 0 0
1.170  0.4601 0 0 0 1.170  0.4558 0 0 0
1.170 0 0 0 1.374 0 0 0
0.3552 0 0 0.3552 0 0
0.7197 0 | o 2.310. 0
0.3552 o 0.3552
+30° Layup : +45° Layup
16.48 0.4118 5.167 0 0 0 8.197 0.4279 6.758 0 0 0
1.170  0.4400 0 0 0 1.170 0.4279. - 0 0 0
3.03 0 0 0 8.179 0 0 0
0.3552 0 0 | 0.3552 0 0
. 5.491 0 B 7.082 0
0.3552 | o | 0.3552
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FIGURE 2-DISPERSION RELATION FOR FLEXURAL MOTION wb vs kb
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FIGURE 3 - a) WAVE IN AN INFINITE STRING FOR AN INITIAL TRIANGULAR DISPLACEMENT
(ONLY RIGHT HALF SHOWN)

~ b) COMPUTER CALCULATION OF DISPLACEMENT WAVES IN AN INFINITE STRING
DUE TO IMPULSE LOADING EQU. (19)
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FIGURE 10. a) WAVE SURFACES FOR GRAPHITE/EPOXY 0° and +15° FIBER
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t = 10-° sec.
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INTERLAMINAR SHEAR STRESS o/ (t+1s,)
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