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CHAPTER 6 

NATURAL MODE VIBRATION ANALYSIS OF STRUCTURAL SYSTEMS 

BY DIRECT AND COMPONENT MODE SYNTHESIS TECHNIQUES 

Introduction 

Natural vibration modes const i tute  the basic  ingredient i n  

nany f l u t t e r  and dynamic response analyses procedures currently 

employed f o r  aerospace s t ructures .  F lu t t e r  analyses based on the 

use of n a t u r a l  modes enjoy the convenience of having the s t ruc tu ra l  

dynamic charac te r i s t ics  completely describable i n  terms of the  

n a t u r a l  frequencies and generalized masses, t h e  mode shapes being 

employed i n  the formulation of the generalized aerodynamic forces.  

I n  t rans ien t  aeroelast ic  problems re la ted  t o  response i n  gust 

encounters o r  i n  maneuvers or dynamic response problems such as 

landing impact the  use of a normal mode methodology provides an 

e f fec t ive  and systematic approach t o  the formulation of the 

governing equations of motion. 

components such as propellers o r  ro tors  a complete knowledge of 

the vibratory charac te r i s t ics  of the  airframe is necessary i n  

order t o  avoid resonances with the airframe frequencies and t o  be 

able t o  assess the e f f ec t s  of the  external  exc i ta t ion  forces 

generated by the  osc i l la tory  aerodynamic loading. It i s  also 

common pract ice  t o  make resonance tests of f l i g h t  vehicle 

s t ructures  and/or t h e i r  components (o r  su i tab le  models thereof)  

on the  ground and compare the experimental modes and frequencies 

w i t h  calculated values. This serves t o  val idate  the  mathematical 

For a i r c r a f t  having ro ta t ing  
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model as regards the  i n e r t i a l  and e l a s t i c  properties t o  be used i n  

subsequent f l u t t e r  and dynamic response analyses. 

I n  recognition of t he  fundamental ro le  assumed by natural  modes 

i n  aeroe las t ic  and dynamic analyses and i n  s t ruc tu ra l  design ve r i f i -  

cation t h i s  chapter is  concerned w i t h  t h e  development of u t i l i t a r i a n  

computational procedures f o r  the  natural  mode vibrat ion analysis  of 

l i nea r  s t ruc tu ra l  systems. 

i n  dealing w i t h  complicated s t ruc tures ,  recourse i s  had t o  the ap- 

proximation of replacing the continuous s t ruc tu ra l  system having an 

i n f i n i t e  number of degrees of freedom by an "equivalent" d i scre te  

system having a f i n i t e  number of degrees of freedom. Herein t h i s  

d i scre t iza t ion  is  made by replacing t h e  s t ruc ture  with a f i n i t e  ele- 

ment mathematical model based on the s t i f fnes s  method of s t ruc tu ra l  

analysis.  Attention i s  directed t o  two methods f o r  natural  mode vi- 

brat ion analysis.  

a f i n i t e  element representation of t h e  complete s t ruc ture  as an ent i -  

t y ,  t h e  mass and s t i f f n e s s  matrices f o r  t he  complete s t ruc ture  being 

assembled by properly combining the  mass and s t i f f n e s s  matrices of 

the individual "elements" i n t o  which the s t ruc ture  has been 

divided. 

example. For large, complex s t ruc tu ra l  systems, the determination 

of these modes by a d i rec t  method of ten leads t o  a problem s i z e  

which is unwieldy or which exceeds the storage capacity of avai lable  

computing machinery. 

vibrat ion analysis i n  such circumstances i s  tha t  of component mode 

synthesis. 

Following customary engineering pract ice  

The first consis ts  of a d i r ec t  approach based on 

Such procedures are described i n  Refs. 6-1 and 6-2 fo r  

An a l te rna t ive  approach t o  natural  mode 

This method is  based on the  honcept of synthesizing the  
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natural  modes of t he  complete s t ruc ture  from modes* of conveniently 

defined substructwres, or components, i n to  which the  s t ruc ture  has 

been par t i t ioned.  I n  t h i s  way the expedient of reducing the  system 

degrees of freedom, and thus the  s i z e  of t he  eigenvalue problem, can 

be introduced by p a r t i a l  modal synthesis wherein only a r e l a t ive ly  

few of the modes from each component are chosen as degrees of free- 

dom and employed i n  the  synthesizing procedure. The t o t a l  

number of selected component modes, and hence modal coordinates, i s  

then s igni f icant ly  l e s s  than the  number of d i sc re t e  degrees of free- 

dom established by the  finite-element modeling process. I n  addition 

t o  the  obvious advantage of reducing the  s ize  of t he  overal l  system 

eigenvalue problem, the  component mode approach can be so formulated 

as t o  provide the  added f l e x i b i l i t y  of including several  types of 

component deflection shapes such as calculated or measured natural  

modes, assumed def lect ion shapes, or s t a t i c  def lect ion shapes. The 

chosen shapes may be based on in te r face  r e s t r a i n t  conditions which 

d i f f e r  from those tha t  ex i s t  i n  the assembled configuration. To judge 

from the  number of recent additions t o  the  l i t e r a t u r e  the  modal syn- 

thes i s  method of natural  mode vibrat ion analysis appears presently t o  

be experiencing a "renaissance." This renewed i n t e r e s t  is  undoubtedly 

a consequence of t he  many attendant advantages which the  modal 

synthesis scheme o f fe r s  over t h a t  of t he  d i r ec t  method, pa r t i cu la r ly  

i n  dynamic analyses of large complex s t ruc tu ra l  systems. For t h i s  

it 
More generally,  any su i tab le  set of l i nea r ly  independent 

shape functions and not necessarily the  calculated natural  
modes, as w i l l  be pointed out later. 
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reason a br ie f  h i s t o r i c a l  synopsis of t h i s  method seems appropriate 

here. 

The method which i s  now referred t o  i n  various terms as 

corcponent mode synthesis,  modal synthesis,  or modal coupling was  

implici t  i n  t h e  ear ly  work of Scanlan (Ref. 6-3),among others.  

used normal coupled vibrat ion modes of airplane components as 

generalized coordinates i n  a Rayleigh-type analysis of the  t rans ien t  

response resu l t ing  from landing impact. Later Hunn (Ref. 6-4) 

presented a similar procedure for calculat ing the f r ee  vibrat ion modes 

of an a i r c r a f t .  

reducing the  system eigenvalue problem t o  an order su i tab le  for 

hand calculation. The mechanics of component mode synthesis were 

quite extensively developed i n  an ear ly  work of MacNeal (Ref. 6-5). 

However, because h i s  work was s t a t ed  primarily i n  terms of e l e c t r i c a l  

analogies, being addressed t o  e l e c t r i c a l  engineers, it generally 

remained "inaccessible" t o  s t ruc tu ra l  dynamicists In  1960 

Hurty (Ref. 6-6) described the  rudiments of component mode synthesis 

i n  terms more famil iar  t o  s t ruc tu ra l  dynamicists and i l l u s t r a t e d  i t s  

use by applying it t o  a simple frame s t ruc ture ,  thereby making it 

avai1able"to structural. dynamicists. A comprehensive account of 

many of t he  mathematical aspects of component mode synthesis as 

applied t o  dynamic analyses w a s  given by Hurty several  years l a t e r  

(Ref. 6-7) .* 
calculated component modes i n t o  fixed constraint  normal modes, 

He 

Both these authors were motivated by the  need €or 

11 

Central t o  Hurty's scheme was the  separation of the  

z 
A condensed version of t h i s  JPL report  is  a l so  available as 

"Dynamic Analysis of S t ruc tura l  Systems Using Component Modes ,I1 AIAA 
Journal, Vol. 3,  April 1965, pp. 678-685. 

d 
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constreifit modes, and rigid-body modes. 

scheme was given by Gladwell (Ref. 6-8) a t  about the same time. 

method featured the  imposition of a sequence of sets of constraints  

on the system, each s e t  being chosen so t h a t  f o r  each constrained 

configuration only one component or "branch" could vibrate  e l a s t i -  

cal ly .  These branch modes and appropriate rigid-body modes were 

then employed i n  a Rayleigh type analysis of the  complete system. 

Goldman ( R e f .  6-9)" used rigid-body modes and free-free e l a s t i c  

modes of components f o r  synthesis. 

so-called "attachment modes" i n  the selected mode s e t s  t o  account 

f o r  concentrated loads at unconstrained points of the complete 

s t ructure .  

Aleese (Ref. 6-11). 

i t e r a t i v e  procedure, which they termed modal subs t i tu t ion ,  for 

improving the  system modes and frequencies calculated by p a r t i a l  

modal synthesis. These works, for  t h e  most p a r t ,  represent t he  

developments pertaining t o  modal synthesis available i n  the open 

l i t e r a t u r e  at the time the  comparable work t o  be described herein 

w a s  i n i t i a t e d .  More recent additions t o  t h i s  l i t e r a t u r e ,  appearing 

whi le  t h i s  work w a s  i n  progress, are given i n  Refs. 6-13 t o  6-19. 

Chronologically, the d i rec t  method of natural  mode vibrat ion 

A "Branch Mode" analysis 

This 

Bamford (Ref. 6-10) included 

An application t o  a launch vehicle was  given by Mc- 

Bajan and Feng (Ref. 6-12) suggested an 

analysis w a s  f i r s t  developed t o  serve as a stand-alone procedure 

for problems having up t o  about 200 degrees of freedom. 

view primarily toward allowing s igni f icant ly  more degrees of freedom 

With a 

b 
A condensed version, under the  same t i t l e ,  i s  given i n  AIAA Journal, 

Vol. 7, June 1969, pp. 1152-1154. 
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i n  the finite-element d iscre t iza t ion  without a corresponding in- 

crease i n  computer storage requirements a component mode synthesis 

method w a s  next developed. 

as developedhereinare believed t o  be ra ther  d i f fe ren t  i n  approach 

and t o  contain several  new and novel features:  

inter-substructure deflection compatibility according t o  a new 

algorithm conceived by Walton and Steeves ( R e f .  6-20) i n  which 

independent system coordinates are  established by solving an eigen- 

value problem associated with a symmetric matrix formed from the  

coeff ic ients  of the  constraint  equations. The concept of a gyro- 

scopic f i n i t e  element i s  fur ther  introduced. Based on t h i s  a r t i f i c e  

both analyses are extended t o  include the e f f ec t s  of gyroscopic 

coupling forces induced by la rge  ro ta t ing  components such as 

propel lers ,  proprotors, or fans.  Several addi t ional  features  are 

ircluded i n  the modal synthesis formulation. 

representation can be employed f o r  t h e  substructures whereby some 

substructures may be described i n  terms of modal coordinates 

established on the bas i s  of selected component modes while t he  

remaining substructures are described i n  terms of d i scre te  

coordinates. Substructure modal information, e i t h e r  f o r  free-free 

o r  constrained boundary conditions, can be specif ied i n  the  form 

of calculated or measured natural  modes, s t a t i c  def lect ion shapes , 
assumed def lect ion shapes, or any combination of these.  

def lect ion shapes need not be orthogonal or normalized i n  any 

consistent manner. 

The analyt ical  bases of both these methods 

Both analyses enforce 

A "hybrid" 

These 
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Both the  d i r ec t  and component mode synthesis analyses pre- 

sented herein a re ,  i n  pr inciple ,  applicable t o  a s t ruc tu ra l  

ideal izat ion based on any type of f i n i t e  element (segments of beams, 

p la tes ,  she l l s ,  e t c . ) .  

are, however, l imited t o  s t ruc tures  which admit a f  a "stick" model 

representation. The l a t t e r  r e fe r s  t o  a s t ruc tu ra l  ideal izat ion i n  

which the  s t ruc ture  i s  taken t o  be composed of an assemblage of 

beams, springs,  and r i g i d  bodies. 

i n t e re s t  can be represented i n  t h i s  manner f o r  dynamic analyses the  

corresponding computer programs have a r e l a t ive ly  wide range of 

engineering appl icabi l i ty .  

The computer programs based on these analyses* 

Since many s t ructures  of p rac t i ca l  

The Mathematical Model 

(a )  Nature of the Finite-Element S t i f fness  Matrix Method of 

Structural  Analysis 

The idea of replacing a continuous s t ruc ture  by pieces, 

generating the s t i f f n e s s  matrix f o r  each piece, and from these 

assembling the s t i f fnes s  matrix fo r  the  complete s t ruc ture  was  

o r ig ina l ly  suggested by Levy (Ref. 6-21). 

Clough, Martin, and Topp (Ref. 6-22) are generally credited w i t h  

developing the concept t o  the  point a t  which it was amenable t o  

However , Turner , 

automation on d i g i t a l  computers, thereby firmly establ ishing the  

procedure which i s  now refer red  t o  as the  f i n i t e  element s t i f f n e s s  

if 
These a re  given i n  Appendix H. Only the  case of zero gyroscopic 

coupling has as yet  been programmed, however. 

* 

d 
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or displacement method of s t ruc tura l  analysis. Briefly,  the f i n i t e  

element method as applied t o  the  analysis of complex s t ruc tu ra l  

systems i s  based on replacing the  s t ructure  by an ideal izat ion 

consisting of a large number of s m a l l  d iscrete  "standard" s t ruc tura l  

elements (such as beam, plate,or s h e l l  segments) which are  in te r -  

connected at discrete  node points ,  the loading on each element being 

represented by a set of discrete  forces and/or moments acting at the  

node points on the boundary of the element. Element force-deflection 

relationships , established on the  bas i s  of some simple assumed 

deformation which relates in te rna l  displacements of the  element t o  

i t s  nodal displacements, lead t o  a set of s t i f fnes s  influence 

coeff ic ients ,  o r  s t i f fnes s  matrix, which embodies the e l a s t i c  

character is t ics  of the element. The individual unassembled elements 

are combined t o  form a mathematical model of the complete s t ructure  

by conceptually joining all elements at t h e i r  node points i n  a 

manner which insures t h a t  the elements are i n  equilibrium subject 

t o  the  external loads and the forces they exert  on each other and 

tha t  no discontinuities of deformation occur at element juncture 

points. 

In the s t i f fnes s  method continuity of deformation i s  s a t i s f i e d  

apr ior i  while the  equilibrium requirements are implici t  i n  the 

mechanics of the method. 

then defines the e l a s t i c  character is t ics  of the s t ructure  i n  terms 

of force-deflection relationships fo r  a f i n i t e  number of 

coordinates (nodes). These force-deflection relat ions const i tute  

These conditions are generally only approximately sa t i s f i ed .  

The resu l tan t  system s t i f fnes s  matrix 
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a set of algebraic equilibrium equations, having deflections as 

unknowns, which approximate the differential equations of equilibrium 

for the elastic continuum. The interested reader will find detailed 

considerations relating to the finite-element method of structural 

analysis in several excellent books (see, for example, Refs. 6-23 to 

6-25). 

(b) The "Stick" Model Structural Representation Employed in the 

Computer Programs 

The analyses and associated computer programs for natural mode 

vibration analysis by direct and component mode synthesis techniques 

are based on a substructures approach in which the structure is 

first partitioned or divided into several separate smaller components 

o r  substructures, such as schematically depicted in Fig. 6-1. Based 

on the known inertial and elastic properties a finite-element math- 

ematical model of each substructure is then established. If the 

direct method of vibration analysis is to be employed the inertial 

and elastic characteristics of the substructures remain in the dis- 

crete coordinates established by the finite-element modeling process. 

If the intent is to employ model synthesis the modes of each sub- 

structure are first determined on the basis of the discrete-co- 

ordinate mathematical model. A selected few cf the modes from 

each substructure modal set are then trsed in an assumed-modes type 

procedure to effect a coordinate transformation to distributed (mod- 

al) coordinates. In either case the mathematical model of the 

complete structure is arrived at by reassembling the 

A 

d 
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components i n  a manner consistent with the equations of constraint  

which insure deflection compatibility at  the interfaces  of the 

components. 

The "stick" model approach t o  dynamic analysis as embodied i n  the 

computer programs assumes that t he  s t ruc ture  i s  composed of an 

assembly of beams, springs,  and r ig id  bodies. U s e  of these 

s t ruc tu ra l  building blocks t o  represent an a i r c r a f t  s t ructure  f o r  a 

symmetric vibration analysis i s  schematically i l lus tEated  i n  Fig. 

6-2. * The fuselage/engine combination, the wings a and horizontal  

t a i l s  are replaced by equivalent nonuniform beams ly ing  along the 

calculated e l a s t i c  axes of the respective components; t he  wing and 

horizontal  t a i l  carry-through s t ructures  a re  treated as massless 

uniform beams ( i .e .a  beam-springs),theirmass being included w i t h  

the mass of the fuselage/engine beam; the v e r t i c a l  ta i ls  are  *&en 

t o  be r i g i d  bodies r ig id ly  attached t o  the fuselage/engine beam. 

Since the substructures are t r ea t ed  as d i s t i n c t  and separate 

components i n  a substructuring methodology the i r  structural .  

properties a re  most conveniently defined r e l a t ive  t o  axes local. 

t o  each component. The specif icat ion of the mass and s t i f f n e s s  

matrices corresponding t o  each of the  three types of s t ruc tu ra l  

members employed i n  the  s t i c k  model representation of a s t ruc ture  

herein i s  the subject of the  following subsections. 

* 
The s i lhouet te  corresponds t o  tha t  of an ac tua l  a i r c r a f t  for  

which the s t i c k  model shown w a s  used t o  represent the s t ruc ture  
f o r  symmetric natural  mode analysis.  

d 
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Beam Substructures: The beam e l a s t i c  properties are defined i n  

terms of the  dis t r ibut ion of flexural, to rs iona l ,  and axial s t i f fnes s  

( E I ,  G J ,  and AE, respectively) along the  loca l  e l a s t i c  axis .  

continuous d is tor t ion  o f t h e  beam i s  approximated by specifying both 

the deflection and rotat ion at a number of discrete  points o r  

s ta t ions along the beam. A beam segment o r  element is defined t o  be 

t h e  length between two such s ta t ions .  The s t i f fnes s  of each element 

is assumed t o  be constant and given by the average value of the  

s t i f fnesses  at the two adjacent s ta t ions.  The dis t r ibuted mass 

of the  beam i s  discret ized by simply replacing the dis t r ibuted m a s s  

by s t a t i c a l l y  equivalent concentrated masses at the discrete  s ta t ions 

along the  beam, each mass having both t rans la t iona l  and ro ta t iona l  

i ne r t i a .  This lumped mass approach is  consistent with the f ac t  

t h a t  weights data  i s  generally available i n  a lumped form wherein 

the i n e r t i a l  properties given are the  t o t a l  weight, center of 

gravity location, and moments and products of i n e r t i a  of discrete  

s m a l l  regions of a s t ructure .  In  contrast ,  use of the celebrated 

"consistent mass matrix" of Archer ( R e f .  6-26) would require a 

knowledge of the mass dis t r ibut ion.  

The 

The mass and s t i f fnes s  matrices of an unrestrained a r b i t r a r i l y  

oriented beam element are each of order 12 x 12. If the  local 

coordinate axes are chosen t o  coincide with the  pr incipal  axes of 

the cross section the 12 x 12 s t i f fnes s  matrix can be expressed i n  

t e r m s  of 4 x 4 and 2 x 2 submatrices located on the  pr incipal  

diagonal. Should the center of gravity of t he  lumped masses l i e  

d 
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on the e l a s t i c  axis of the beam segment a s i m i l a r  par t i t ioning i s  

possible for  the mass matrix. We will assume t h i s  t o  be the case 

for  the present and indicate later how t o  account for any mass 

coupling terms. The manner i n  which the computer programs generate 

these submatrices for  a beam substructure is i l l u s t r a t e d  below w i t h  

reference t o  the two-element beam shown i n  Fig. 6-3. 

(1) Beam Bending - The s t i f fnes s  matrix fo r  ve r t i ca l  bending 

i s  put i n to  the parti t ioned form: 

where 

[ A I  = 

2 w3 I W I "1 

- 
0 

12E11 12E11 12E12 12m2 -- -+- -- 
L: L; L; L: 

0 

- 

1 W 

2 W 

w3 

- 

d 
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IC3 = 

lo 
I 

6 ~ 1 ~  6 ~ 1 ~  
- - + -  

4' L'2 

- =I1 
L1 

4E11 4E12 
+ -  - 

L1 

- =I2 
L2 

- 
0 

2E12 - 
L2 

4E12 - 
L2 - 

(6-3) 

The bending displacements and slopes have each been grouped together 

and placed i n  the order shown i n  Eq. 6-1 f o r  computational 

convenience. 

d i s t i nc t ive  forms of [A],  [B],  and [C].  The corresponding i n e r t i a  

matrix i s  given by 

Extension t o  addi t ional  elements i s  apparent i n  the  

d 
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P I B  = 

2 w3 f 02 03 W W 1 - 
Y 

M2 0 

I RI1 
I 

I 
1 

I R12 0 

W 1 j 
- 

(6 -5 )  

Similar matrix expressions describe lateral bending. 

(2) Beam Torsion - The torsional stiffness matrix is given by 

[KIT = 

GJ1 

L1 
- -  0 

GJ2 

L1 L2 12 
- + -  GJ1 GJ2 - -  

- -  GJ2 - GJ2 
Le 

( 6-6 1 

and the inertia matrix by 

d 
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Extension t o  more elements i s  obvious. 

(3)  Beam Axial - The s t i f fnes s  matrix describing axial defor- 

mation has the  form 

[KIA = 

I 3 
U 2 U 1 U 

0 

AE2 &l &2 

L1 =2 
- -  - + -  

while the i n e r t i a  matrix i s  

d 
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Again, the extension t o  additional elements i s  obvious. 

Spring Substructures: In  many instances actual  springs may 

comprise some of the s t ruc tura l  components of a s t ructure  (or various 

members may be t rea ted  as one-degree-of-freedom springs) .  

springs are defined by 1 x 1 s t i f fnes s  matrices having spring 

constants as matrix elements and associated ixl. nu l l  i n e r t i a  

matrices. 

t a t i v e  manner la ter .  

These 

The use of these springs w i l l  be i l l u s t r a t e d  i n  a quali- 

It i s  often convenient t o  account fo r  t he  e l a s t i c i t y  of short  

beam members while  including the i r  i n e r t i a  with other members 

(such as suggested fo r  the wing and t a i l  carry-through s t ructures  i n  

Fig. 6-2). 

purpose. 

considered it has the character of a spring and i tseemsappropriate 

t o  include i ts  description here. For descriptive purposes t h i s  

massless beam segment w i l l  be referred t o  as allbeam-spring”. 

the  par t icular  coordinate ordering shown i n  Fig. 6-4 the associated 

12  x 12 s t i f fnes s  matrix has the form given i n  Fig. 6-5. 

corresponding i n e r t i a  matrix i s  taken t o  be nul l .  

beam-spring i s  i l l u s t r a t e d  qual i ta t ively la ter  i n  t h i s  chapter and 

i n  the detai led example i n  Appendix E. 

A massless, uniform beam segment is  employed fo r  t h i s  

Since only the e l a s t i c  properties of t h i s  beam segment are 

For 

The 

The use of the  

Rigid-Body Substructures: Various components can often be 

t rea ted  as r i g i d  i n  dynamic analyses. For example: ordnance, 

external f u e l  tanks, enginehacel le  combinations, e tc .  With respect 
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t o  a loca l  axis system located at the  center of gravi ty  the i n e r t i a  

matrix of a r i g i d  body has the  general form 

X Y z a a Y 

- [MIRB - 

- 
X 

Y 

z 

01 

a 
Y 
- 

(6-10 ) 

The corresponding s t i f fnes s  matrix i s  of course nu l l  since a r i g i d  

body has no s t r a i n  energy associated with i t s  motion. 

It may often be necessary t o  account f o r  e i t h e r  the transla- 

t i o n a l  o r  ro ta t iona l  rigid-body motion of a beam substructure while 

neglecting the corresponding e l a s t i c  motion. This s i tua t ion  i s  

eas i ly  accommodated by the ava i l ab i l i t y  of t h i s  rigid-body element, 

as w i l l  be demonstrated somewhat later. This expedient w i l l  a l s o  

be exercised i n  the  numerical examples given i n  Appendices E and F. 

( c )  Formation of the Mass and St i f fness  Matrices f o r  the  Part i t ioned 

Structure 

The "building blocks" fo r  constructing the  mass and s t i f f n e s s  

matrices corresponding t o  each substructure based on a "stick" 

model s t ruc tu ra l  representation have been given above. Once the  

substructure mass and s t i f fnes s  matrices have been determined the  

m a s s  and s t i f f n e s s  matrices for the  par t i t ioned s t ruc ture  are given 

d 
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by the composite matrices containing as submatrices the  mass and 

s t i f fnes s  matrices of the individual substructures on the pr incipal  

diagonal. 

respectively. 

These composite matrices are denoted by [i] and [E], 
For the "stick" model shown i n  Fig. 6-6, fo r  

example, both the  mass and s t i f fness  matrices fo r  the  par t i t ioned 

s t ructure  ( i e . ,  [R] and [E] ) would have the  general form shown i n  

Fig. 6-7." Each block i n  Fig. 6-7 corresponds t o  a matrix. The 

ordering of blocks within a substructure and the  ordering of 

substructure matrices within [E] and [E] i s ,  i n  pr inciple ,  arbi t rary.  

Since the mass and s t i f fnes s  matrices fo r  each substructure have 

been generated independently, no inter-substructure coupling w i l l  

ex i s t  i n  [E] and [E]. However, intra-substructure coupling ( ie .  , 

coupling between the blocks within a substructure ) w i l l  generally 

ex i s t .  For example, i f  the sectional centers of gravity of the wing 

or t a i l  surfaces are displaced horizontally from t h e i r  l oca l  e l a s t i c  

axes mass s t a t i c  unbalance terms are introduced which w i l l  couple 

ve r t i ca l  bending displacement w i t h  tors ion.  This will couple the  

bending and tors ion blocks of the wing or t a i l  substructures i n  [GI.  

Components idealized as r ig id  bodies can be t rea ted  as discrete  

substructures or, a l te rna te ly ,  have their  i n e r t i a  properties combined 

with the i n e r t i a  matrix associated with the elastic member t o  which 

they are attached. I f ,  fo r  example, the main landing gear 

assembly of the a i r c r a f t  shown i n  s i lhouet te  i n  Fig. 6-6 were t rea ted  

* 
The "stick" model of Fig. 6-6 and the par t icu lar  freedoms indicated 

i n  Fig. 6-7 would be appropriate t o  a symmetric vibration analysis. 
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as a r i g i d  mass and i t s  i n e r t i a l  properties combined with the for- 

ward fuselage beam, the ve r t i ca l  bending and ax ia l  rigid-body blocks 

of the  forward fuselage substructure i n  [k] would be coupled.* 

Coupling terms would a l so  arise within the v e r t i c a l  bending block, 

leading t o  a non-diagonal mass matrix fo r  beam bending. Inter-  

and intra-substructure coupling terms a r i se  i n  the s t i f fnes s  matrix 

of the  par t i t ioned s t ructure  [E] , when the  s t i f f n e s s  charac te r i s t ics  

of physical springs a re  combined with the s t i f f n e s s  matrices of 

members t o  which they are attached rather  than t r ea t ed  as separate 

substructures. The preceding remarks are elucidated below i n  

several  simple i l l u s t r a t i v e  examples. 

Wing S t a t i c  Unbalance: Consider the  sectionalized wing plan- 

form shown i n  Fig. 6-8. The sect ional  ( l u p e a )  masses, bending 

i n e r t i a s ,  and tors iona l  i n e r t i a s  (about t he  cg) are  denoted by 

m. R I i y  and Ii’ respectively.  The perpendicular distance between 

the sect ional  cg locations (assumed t o  be i n  the  wing chord plane) 

and the wing e l a s t i c  axis  are denoted by e . The k ine t ic  energy 

of each sect ion,  Ti, expressed i n  terms of displacements and 

rotat ions of the e l a s t i c  axis  s t a t ion ,  has the  form indicated i n  

1’ 

i 

Fig. 6-8. Subst i tut ing each of these expressions in to  Lagrange’s 

equation and performing the  appropriate d i f fe ren t ia t ions  leads t o  

* 
Figs .  6-6 and 6-7 are appropriate t o  a symmetric vibration analysis.  - 

For an anti-symmetric analysis the l a t e r a l  bending and tors ion 
blocks of t he  substructure would be coupled. 
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the  coupled bending-torsion mass matrix shown i n  Fig. 6-9. By 

way of i l l u s t r a t i o n  assume tha t  Fig. 6-8 i s  appropriate t o  the wing 

of the a i r c ra f t  depicted i n  Fig. 6-6. Then [E] would have the form 

shown i n  Fig. 6-7, t he  first two blocks of substructure #3 being 

given by twice the mass matrix of Fig. 6-9. If the  sectional cg 

were also displaced ve r t i ca l ly  from the wing e l a s t i c  a x i s  ( i e . ,  not 

i n  the wing chord plane) additional coupling terms would arise and 

the vertical. bending, tors ion,  and fore-and-aft bending blocks of 

substructure #3 would be coupled. 

Alternate Treatment of Rigid Bodies: As an al ternat ive t o  

t r ea t ing  each r i g i d  body as an individual substructure the  i n e r t i a l  

properties of the r ig id  body ( t o t a l  mass lumped at t he  cg and 

moments and products of i n e r t i a  re la t ive  t o  axes fixed i n  the body 

at the cg) can be combined w i t h  the  i n e r t i a  matrix of the e l a s t i c  

member t o  which it i s  attached. T h i s  a l ternat ive scheme has the 

attendant advantage of not exp l i c i t l y  introducing the degrees of 

freedom associated with the  r i g i d  body in to  the  resul t ing eigenvalue 

problem. 

(1) Rigid Attachment - If the r i g i d  body i s ,  o r  can be taken 

as , r igidly attached t o  an e l a s t i c  substructure other than a beam- 

spring the  procedure consists i n  sui tably modifying the k ine t ic  

energy expression fo r  the  substructure t o  include the  e f f ec t s  of the 

concentrated mass, i n e r t i a ,  and s t a t i c  unbalance about i t s  point of 

attachment. 

the general case of an a rb i t r a r i l y  oriented six-degree-of-freedom 

A formal procedure for effect ing such a modification i n  
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r i g i d  body i s  given i n  Appendix A. 

additions t o  the mass matrix of the component t o  which the r i g i d  

body i s  attached can be obtained d i r ec t ly  without recourse t o  the  

general r e su l t s  of Appendix A. For example, consider the s i t ua t ion  

depicted i n  Fig. 6-10. 

properties of the center-line fue l  tank, taken as a r i g i d  body, 

with the i n e r t i a  matrix of the  fuselage beam. Assume t h a t  each 

fuselage mass has both ve r t i ca l  bending and longitudinal degrees of 

freedom. If the pr incipal  i n e r t i a  axes of the  fue l  tank are  

p a r a l l e l  t o  the pr inc ipa l  geometric axes of the fuselage beam the 

k ine t ic  energy of the  tank expressed i n  terms of the motion at the 

nth mass s t a t ion  has the  form given at the  bottom of Fig. 6-10. 

Substi tuting t h i s  expression in to  Lagrange's equation gives the  

matrix of additional terms which must be added t o  the (diagonal) 

mass matrix f o r  the fuselage beam. The f i n a l  mass matrix i s  given 

i n  Fig. 6-11. 

I n  many instances the  necessary 

Suppose one wishes t o  combine the  i n e r t i a l  

( 2 )  Flexible Attachment - I f  the f u e l  tank of Fig. 6-10 were 

attached t o  the  fuselage beam through a f l ex ib l e  member which 

could be t rea ted  as a spring substructure ( e i the r  an actual  spring 

or a beam-spring) the  i n e r t i a  properties of the tank could be 

combined with the  nu l l  i n e r t i a  matrix of the  spring substructure 

using a procedure s i m i l a r  t o  t h a t  described i n  (1) d i rec t ly  above. 

Alternate Treatment of Actual Springs: For convenience 

actual  springs can be divided i n t o  those which have one end t i e d  t o  

ground and those which have both ends "free" i n  the  sense t h a t  
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while both ends attach t o  some component nei ther  end i s  t i e d  t o  

ground. 

(1) Springs Having One End Tied t o  Ground - If the spring 

attachment point on the  s t ructure  i s  at a mass s t a t ion  the spring 

constant(s) can be simply added t o  the  appropriate diagonal term(s) 

of t he  s t i f fnes s  matrix of the  component. If the  point of attach- 

ment is  not at a mass s t a t ion  coupling among the blocks within the 

substructures comprising [E] w i l l  occur. In  the l a t t e r  case it i s  

sometimes convenient t o  introduce an auxi l iary massless s t a t ion  at 

the spring attachment point. 

(2 )  Free-Free Springs - The spring constants of springs which 

have neither end t i e d  t o  ground can be combined with the s t i f fnes s  

matrices of the substructures t o  which they are attached by writ ing 

the potent ia l  energy of the springs i n  terms of the coordinates at 

the  points of attachment. A simple i l l u s t r a t i o n  o f  the use of t h i s  

expedient i n  the  realm of launch vehicle dynamics may be given with 

the a i d  of Fig. 6-12. 

dynamic e f fec ts  of sloshing propellants areeusually included by 

introducing a dynamically equivalent mechanical analogy,composed of 

fixed and osc i l la t ing  masses connected t o  the tank by springs or 

pendulums, t o  account fo r  each important vibration mode of t he  

l iqu id  as a degree of freedom 

parameter mathematical model can then be combined with appropriate 

discrete  element representations f o r  other components of the vehicle. 

A spring-mass analogy is shown i n  Fig. 6-12. 

In dynamic analyses of  launch vehicles t h e  

( R e f .  6-27). This equivalent lumped 

One such spring-mass 

d 



406 

assembly is  provided t o  represent the  dynamic e f f ec t s  of sloshing 

i n  ve r t i ca l  bending ( t rans la t ion  and rotat ion)  and longitudinal 

o sc i l l a t ion .  For i l l u s t r a t i v e  simplicity,  all three  sloshing masses 

are taken t o  be attached t o  the  same beam station*. 

energy of the springs, expressed i n  terms of the  deflections of the 

The potent ia l  

nth beam s t a t ion  (wn, On,  un) and the  deflections of t he  slosh 

masses (w,  8,  u ) ,  i s  given by Vs i n  the figure.  Subst i tut ing 

t h i s  expression i n t o  Lagrange's equation leads t o  the matrix shown 

i n  Fig. 6-13. [AK] i s  the  matrix of spring s t i f fnes s  terms which 

must be added t o  the s t i f fnes s  matrix for the  beam. 

Establishing the  System Equations of Motion 

Denoting the composite matrices containing the mass and s t i f f -  

ness matrices of the  individual substructures as submatrices on 

the pr incipal  diagonal by [fi] and {E], respectively,  the  Lagrangian 

of the par t i t ioned s t ructure  can be wri t ten as 

( 6-11 ) 

where {z)  i s  a column matrix containing the coordinates of a l l  the 

substructures.  A consequence of  any substructuring procedure i s  

the  introduction of coordinates which are  not generalized coordinates 

i n  the Lagrangian sense but are re la ted  by equations of constraint  

which must be imposed t o  res tore  geometric compatibility at  the  

* 
The non-sloshing portion of the f l u i d  (not shown) i s  t r ea t ed  as 

r i g i d  and would simply be combined with the mass matrix of the 
beam. 
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interfaces.  

established on the  bas i s  of such a substructuring procedure the  

coordinates forming t h e  vector {z) are  not independent with respect 

t o  the  t o t a l  system. Thus, before Eq. 6-11 can be subst i tuted in to  

Lagrange's equation a set of system-independent coordinates consis- 

t e n t  with the  equations of constraint  must be established. 

ordinates can be arr ived a t  i n  various ways. Herein, recourse i s  

had t o  a method recently devised by Walton and Steeves (Ref. 6-20) 

i n  which solution of t he  constraint  equations ( i e . ,  the  establish- 

ment of independent coordinates) i s ,  i n  essence, reduced t o  computing 

the  eigenvalues and eigenvectors of a symmetric matrix formed from 

the  matrix of coeff ic ients  appearing bn the  constraint  equations. 

For completeness, t h e i r  work i s  b r i e f l y  reviewed below. 

( a )  The Method of Walton and Steeves fo r  Establishing Independent 

Since the  matrices [E] and [r] i n  Eq. 6-11 have been 

Such co- 

Coordinates* 

The l i nea r  algebraic equations of constraint  which a re  a 

consequence of enforcing def lect ion compatibility at the  junctions 

of t he  substructures can be wri t ten as 

where [ C ]  is  a constant matrix depending so le ly  on the  geometric 

configuration of the  interfaces .  In pract ice  [C]  is rectangular 

* 
Their or ig ina l  work (Ref. 6-20) i s  also avai lable  as a NASA 

Technical Report (Ref. 6-28). 
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w i t h  the  number of rows generally much less than the number of 

columns. Since there  are many coordinates (degrees of freedom) 

which do not appear i n  the constraint  equations the  matrix [C] 

i s  a l so  characterized by the  presence of many nu l l  (zero) columns. 

The vector {z) is  ident ica l  t o  Usual 

pract ice  when exp l i c i t l y  dealing with equations of constraint  i s  t o  

pa r t i t i on  and solve Eq. 6-12 t o  define L of the  zi i n  terms of 

those remaining, where L is  equal t o  the number of independent 

constraint  equations. The method of R e f .  6-20 enjoys several 

advantages over the usual method. For complex s t ructures ,  re- 

dundancies of ten appear i n  the  equations of constraint  ( i n  the form 

of l i nea r  dependencies among rows of  [ C ] )  which can cause problems 

( R e f .  6-29). The method of R e f .  6-20 eliminates the need t o  t r e a t  

the case of redundant equations of constraint  i n  any special  manner. 

The basis  of t h e i r  method i s  a new mathematical theorem designated 

the  "zero eigenvalues theorem" which expresses t h e  solution of a 

se t  of l i nea r  homogeneous algebraic equations i n  terms of eigenvec- 

t o r s  of a symmetricmatrix constructedfrom the  coeff ic ients  of the 

equations of constraint .  The method proceeds as follows. Using 

[ C ]  from Eq. 6-12 construct the symmetric matrix [E] defined by 

tha t  appearing i n  Eq. 6-11. 

Solve the eigenvalue problem 



( 6-14 ) 

Let the resu l t ing  s e t  of eigenvalues be arranged i n  the diagonal 

matrix ['A,] and the  corresponding eigenvectors i n  the modal matrix 

[XI. If [E] has no eigenvalues equal t o  zero the s e t  of equations 

given by Eq. 6-12 has o n l y t h e  t r i v i a l  solution. 

eigenvalue of [E] of mul t ip l ic i ty  

Eq. 6-12 i s  given by 

If zero is  an 

P the  most general solut ion of 

where i s  a matrix formed f romthe  columns of [X-  which correspond 

t o  eigenvalues 

containing all the substructure coordinates ( see  Eq. 6-11), and 

(9) i s  a column matrix of a rb i t r a ry  elements. 

s t ruc tu ra l  coupling problem of concern herein Eq. 6-15 may be 

interpreted as defining a su i tab le  transformation matrix [6] t o  

e f f ec t  a transformation from dependent substructure coordinates t o  

independent system coordinates. 

Xi having the  value zero,* {z)  i s  a column matrix 

With respect t o  the 

I n  summary, the problem of determining a su i tab le  transformation 

matrix [e ]  i s  seen t o  reduce t o  tha t  of determining a s e t  of l i nea r ly  

independent eigenvectors of [E] corresponding t o  eigenvalues of [E] 

which are zero. The matrix [B] i s  usual ly  no% amenable t o  d i r ec t  

* 
Since (E] i s  a symmetric matrix the eigenvectors corresponding t o  

a multiple eigenvalue a re  l i nea r ly  independent, though not necessar- 
i l y  orthogonal 
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physical interpretat ion and the independent coordinates {q) are 

generalized coordinates i n  the s t r i c t  sense of the  word. I n  

contrast ,  the  independent coordinates obtained by proceeding i n  the 

usual manner indicated above are a subset of the  or ig ina l  ( p h y s i c d )  

dependent coordinates. 

The manner of introducing the  transformation and arr iving at  

the  system equations of motion will be outlined below f o r  both the  

d i r ec t  and component mode synthesis methods. 

(b) Direct Method 

The Lagrangian f o r  the par t i t ioned s t ruc ture  is  

( 6-16 ) 

The constraint  equations enforcing inter-substructure def lect ion 

compatibility have the  matrix form 

Proceeding i n  the manner indicated above a transformation t o  

independent coordinates 9s effected by subs t i tu t ing  

in to  Eq. 6-16. This leads t o  

L = $ CQ}T[81T[il [B]C4) - 3 Cq~TIBITIEl [BICq) 

(6-18) 

(6-19 1 



Defining 

(6-20) 

the Lagrangian for the assembled structure is 

Substituting Eq. 6-21 into Lagrange's equation for a conservative 

system 

( 6-22 ) 

there results 

as the free vibration equations of motion for the complete structure. 

[MI and [K] w i l l  be symmetric and, in general, positive semidefinite, 

that is, the eigenvalues of [MI and [K] are greater than or equal to 

zero. 

(c) Component Mode Synthesis 

As pointed out earlier component mode synthesis, employed as 



412 

a technique for  natural  mode vibration analysis of complex 

s t ruc tura l  systems, i s  based on the concept of synthesizing the  

modes of the complete s t ructure  from the modes of conveniently 

defined substructures or components i n to  which the  s t ructure  i s  

divided. The substructure modes are used as degrees of freedom, 

the discrete  coordinates of each component being expressed i n  

terms of i t s  modes and normal (modal) coordinates which represent 

the contribution of each mode t o  a par t icu lar  deformation. The 

expedient of reducing the degrees of freedom and thus the  s ize  of 

the f ina l  system eigenvalue problem i s  introduced by p a r t i a l  modal 

synthesis wherein only a re la t ive ly  few of the  modes from each 

component are  employed. 

frequency cut-off c r i te r ion  wherein all substructure modes below 

a given frequency of i n t e re s t  f o r  the  system are  used i n  the 

synthesizing procedure and the others discarded.* 

selection of modes on t h i s  basie follows from the fac t  t ha t  the  

higher calculated component modes (based on the discrete  mathematical 

model) generally bear l i t t l e  resemblance t o  the corresponding modes 

of the continuous s t ructure .  

modes t o  obtain the generalized coordinates for  the  s t ructure  i s  then 

effected by applying the  equations of constraint  re f lec t ing  t h e  

compatibility re la t ions at the  junctions of the substructures. 

Let the  selected modes from each substructure be arranged 

Selection of modes i s  generally based on a 

The rationale f o r  

Synthesis of the selected component 

* 
A frequency cut-off c r i t e r ion  is ,  i n  e f f ec t ,  employed i n  

the  computer program. 
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by columns i n  the matrices the superscript  denoting the 

assembly of modes from the ith such substructure. The selected 

suhs-tructure modes [U](i) herein can consist of calculated natural  

modes, measured modes, s t a t i c  deflection shapes, assumed deflection 

shapes, or any combination of these. 

employed fo r  the substructure analyses need not correspond t o  the 

conditions which ex is t  when a l l  the substructures are assembled, 

i n  which case appropriate rigid-body modes (and possibly constraint  

modes) must be included i n  the selected set of modes. As indicated 

e a r l i e r  these "modes" need not be orthogonal o r  normalized i n  any 

consistent manner. S t a t i c  deflection shapes, assumed modes and 

rigid-body modes need no special  consideration but are simply 

t reated as e l a s t i c  modes having zero frequencies. I n  terms of 

these selected mode s e t s  the transformation from discrete  sub- 

structure coordinates z t o  substructure m0da.l coordinates Si 

The re s t r a in t  conditions 

i 

can be writ ten as 

* 
N S  = t o t a l  number of substructures in to  which s t ructure  has been 

parti t ioned. 
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o r ,  i n  condensed notation, 

€21 = iu] €53 
N x l  NxNSM MSMxl 

The number of rows i n  the  system modal expansion matrix [U] i s  equal 

t o  the t o t a l  number of discrete  degrees of freedom fo r  all the 

substructures; the  number of columns i n  [U] is equal t o  the t o t a l  

number of selected modes (NSM). Substi tuting Eq. 6-25 i n t o  the  

Lagrangian of the par t i t ioned s t ructure  as given by Eq. 6-11 gives 

( 6-26 ) 

where [i] and [E] are numerically ident ica l  t o  the  corresponding 

matrices i n  the d i rec t  method. Note t h a t  i f  a l l  the mode sets 

are made up of free-free orthonormal modes we have 

and 

where [I] i s  the uni t  matrix and the matrix ['n e] has the  squares 

of the  substructure natural  frequencies (corresponding t o  the 

selected modes) on t h e  main diagonal. The Lagrangian given by Eq. 

6-26 w i l l  then reduce t o  a quadratic form having only squared terms. 

Herein, the modes need not be orthogonal o r  normalized i n  any 



par t icu lar  manner so the  (generally r e s t r i c t i v e )  simplifications 

given i n  Eqs. 6-27 are not employed. 

Since equations of constraint  have not ye t  been applied, the 

coordinates 

the  Lagrangian sense. 

substructure deflection compatibility 

coordinates 

method, t h a t  i s ,  

i n  Eq. 6-26 are not generalized system coordinates i n  

The equations of constraint  re f lec t ing  inter-  

i n  physical (d i sc re t e )  

a re  ident ica l  t o  those appearing i n  the  d i r ec t  

[Cliz) = io1 ( 6-28) 

Substi tuting the  transformation of Eq. 6-25 i n t o  Eq. 6-28 the  con- 

s t r a i n t  equations i n  terms of the  selected modal coordinates 

have the form 

5, 

o r  

where the def in i t ion  of [D] follows from Eq. 6-29. Proceeding i n  

the s p i r i t  of R e f .  6-20 we form the symmetric matrix [E'l defined 

by 

[E ' ]  E [DIT[D] (6-31 1 * 

Y 

P r i m e s  are used t o  dis t inguish from similar symbols used i n  
describing the  d i rec t  method t o  represent matrix quant i t ies  which 
w i l l  be d i f fe ren t  numerically. 
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and solve the eigenvalue problem 

From the  resu l t ing  matrix of eigenvectors [X'] se l ec t  those columns 

corresponding t o  eigenvalues having the  value zero and form a matrix 

[B']. A sui table  transformation from substructure modd coordinates 

t o  system generalized coordinates (which res tores  geometric com- 

p a t i b i l i t y  at the  interfaces  of the substructures) i s  then given by 

Substi tuting Eq. 6-33 i n t o  Eq. 6-26 gives 

Defining 

d 
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where {q' i s  a column vector of independent coordinates. Sub- 

s t i t u t i n g  Eq. 6-36 in to  Lagrange's equation (Eq. 6-22) y ie lds  

as the  f r ee  vibration equations of motion for t he  assembled 

s t ructure .  Eq. 6-37 i s  seen t o  be of the  same form as Eq. 6-23. 

[M'] and [ K ' ]  will be symmetric and, i n  general, posi t ive semi- 

def in i te .  

Some Comments on the  Form of the  Modal Expansion Matrix: Sub- 

s t ructures  t rea ted  e i t h e r  as r i g i d  bodies o r  springs have no modal 

expansion associated with them since t h e i r  degrees of freedom can 

not be reduced any fur ther .  To maintain the  def in i t ion  of such 

substructures i n  d iscre te  coordinates the  corresponding modal 

expansion matrices are  taken t o  be uni t  matrices: 

Rigid body Rigid body 
o r  spring or spring 

CZI = [I]{S) 

[I] i s  a uni t  matrix of order equal t o  the  number of degrees of 

freedom of the  r i g i d  body or spring substructure (up t o  6 f o r  a 

r i g i d  body and 12 fo r  a spr ing) .  It i s  i n  f a c t  possible t o  use an 

i den t i ty  expansion" of the form given i n  Eq. 6-38 f o r  11 
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substructure. This provides the  basis for  what might be termed 

a hybrid method of analysis i n  which the s t ruc ture  is described i n  

terms of both d iscre te  and modal coordinates. The necessity f o r  

such a combined approach would, f o r  example, a r i s e  i n  a case i n  

which s t ruc tu ra l  information pertaining t o  some component were 

available only i n  the form of natural  vibrat ion modes." 

The matrices contain the selected modes from each 

substructure mode s e t .  If no intra-substructure coupling ex i s t s  

each of the expansion matrices [ U ] ( i )  will i t s e l f  be composed of 

submatrices s i tua ted  along the pr incipal  diagonal i n  a manner 

s i m i l a r  t o  t ha t  of Eq. 6-24. I n  general, some of these submatrices 

w i l l  be coupled. 

matrix [U] fo r  the  airplane of Fig. 6-6, assuming the  only i n t r a -  

By way of i l l u s t r a t i o n  the system modal expansion 

substructure coupling t o  be between v e r t i c a l  bending and tors ion  

f o r  the wing and horizontal  t a i l ,  would have the form shown i n  

Fig. 6-14. 

" ident i ty  expansion" is employed f o r  rigid-body and spring sub- 

s t ructures  and fo r  rigid-body motions of beams which have no 

This figure a l so  indicates  the manner i n  which the  

corresponding e l a s t i c  motion. 

As a concluding comment it is  t o  be noted t h a t  i f  f u l l  modal 

coupling is  employedthe resu l tan t  mathematical model based on 

modal coordinates i s  completely equivalent t o  a mathematical model 

* 
In  such an instance recourse would have t o  be made t o  the  ortho- 

gonality conditions given i n  Eqs.  6-27 i n  order t o  remain 
independent of the  (unknown) mass and s t i f fnes s  properties.  

d 



based on discrete  coordinates i n  tha t  the resul tant  calculated 

modes and frequencies w i l l  be ident ical .  

Solution of Equations of Motion 

(a) Reduction t o  Standard Eigenvalue Form 

The equations of motion f o r  natural  mode vibration analysis 

by e i ther  t he  direct  or component mode synthesis methods can, with- 

out any loss of generali ty,  be writ ten i n  the  matrix form 

Eq. 6-39 assumes the qOe Assuming a solution of the form q = 

form 

( 6-40 ) 

by removal of the t i m e  factor eiwt. Before the eigenvalue 

problem defined by Eq. 6-40 can be solved it must be reduced t o  

the standard eigenvalue form 

(6-41) 

I f  [M](or [K]) i s  posit ive def in i te ,  Eq. 6-40 can be reduced t o  

t h i s  form by simply multiplying through by the inverse of [MI 

(or  [K]), i n  which case X would be ident i f ied  with w (or  l/w ). 
2 2 

The matrix [A] arrived at i n  t h i s  manner would, i n  general, be 
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nonsymmetric. Since there are several attendant advantages which 

may be realized if the problem i s  formulated i n  symmetric eigenvalue 

form (cf  Refs. 6-30 and 6-31) an al ternat ive approach would be t o  

reduce Eq. 6-40 t o  the  form of Eq. 6-41 i n  a manner which leads t o  

a symmetric matrix [A]. It w i l l  be seen th&t i f  both [MI and [K] 

are posit ive semidefinite the process of reducing Eq. 6-40 t o  

standard eigenvalue form leads naturally t o  a symmetric formulation. 

Algorithms fo r  solving e i the r  the symmetric or nonsymmetric eigen- 

value problem are w e l l  documented i n  the l i t e r a t u r e  ( see ,  f o r  

instance, Refs. 6-30 t o  6-32). 

herein is  based on the algorithm embodied i n  a NASA-Langley computer 

program designated BJD5* which reduces Eq. 6-40 t o  a symmetric 

eigenvalue form and employs the Jacobi method' fo r  finding 

eigenvalues and eigenvectors. 

The reduction of Eq. 6-40 t o  a symmetric eigenvalue form 

The par t icu lar  procedure employed 

consists,  i n  essence, i n  converting e i the r  the mass or s t i f fnes s  

matrices t o  diagonal form by a transformation of variables using 

the eigenvectors of the  mass o r  stiffness matrices as the 

transformation matrix. Since [K] w i l l  be s ingu la r  i n  any free- 

f ree  vibration analysis due t o  the presence of unrestrained 

rigid-body degrees of freedom it has generally been assumed tha t  

[MI i s  posit ive def in i te .  In  t h i s  instance the procedure f o r  

* 
Barbara J. Durling #5. 

'The Jacobi method i s  a stand-alone procedure f o r  symmetric 
matrices which leads t o  all  eigenvalues and eigenvectors 
simultaneously. 

d 
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reducing Eq. 6-40 t o  symmetric eigenvalue form is  w e l l  known." 

general, however, [MI w i l l  a l so  be singular and the  usual procedure 

i s  not d i r ec t ly  applicable. The transformation of Eq. 6-40 t o  

symmetric eigenvalue form i n  the  more general case i n  which the  

mass matrix [ M I  i s  posi t ive semidefinite has been given by Walton 

and Durling (1966) i n  what represents a s igni f icant  extension of 

t he  usual procedure. Their method combines the  usual procedure f o r  

diagonalizing [MI w i t h  a reduction scheme t o  reduce [MI t o  a 

smaller, posi t ive de f in i t e  diagonal matrix. 

of t h e i r  procedure i s  reviewed below f o r  completeness. 

In 

.I. 

The ana ly t ica l  basis 

The real symmetric matrix [MI can be reduced t o  a diagonal 

matrix ['p.] through the orthogonality transformation 

(6-42) 

where [Q] is  a square matrix the columns of which are  the eigen- 

vectors of [ M I  and the diagonal elements of [-p.] a r e  the eigen- 

values of [ M I .  Thus, subs t i tu t ing  the coordinate transformation 

* 
Crandal l ,  S. H.: Engineering Analysis, McGraw-Hill Book Co . ,  

New York, 1956, pp. 121-122. 
of Cholesky ( R e f .  6-30) leads t o  an a l te rna te  procedure fo r  effect-  
ing a transformation t o  symmetric eigenvalue form. 

'Unpublished work of W i l l i a m  C. Walton, Jr. and Barbara J. Durling 
of the  S t ruc tura l  Mechanics Branch of NASA-Langley. 
procedure is  embodied i n  computer program BJD5 wri t ten by Barbara 
Durling. 

Appendix H. 

The t r iangular  decomposition scheme 

Their 

This program forms par t  of  the  computer program 
packages" for  na tura l  mode vibrat ion analysis as l isted i n  1 )  
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{qo} = [QI l r l )  

T i n t o  Eq. 6-40 and premultiplying by [Q] leads t o  

( 6-44 ) 

where the def ini t ion of [SI follows from Eq. 6-44. If [MI i s  

posi t ive semidefinite some of the eigenvalues vi will be zero. 

Assume that  a l l  of the  eigenvalues which are zero are arranged 

so that  they cons t i tu te  the lower diagonal elements of the matrix 

[-p.].* Eq. 6-45 can then be wri t ten i n  the  par t i t ioned form 

Since [S] i s  symmetric (an orthogonality transformation preserves sym- 

metry), both [Sll] and [S22] are symmetric and [S21] is  the  transpose 

* 
Either through an appropriate re-arrangement of rows and columns 
or "automatically" by employing an eigenvalue routine which 
arranges the eigenvalues i n  descending order according t o  magnitude 
(such as the Jacobi method). 

a 
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of [S12]. 

removed from the eigenvalue problem i n  the manner suggested by 

Turner, e t .  al. ( R e f .  6-22) for f ree  nodes ( ie . ,  nodes which have 

neither applied loads nor specified deflections) i n  s t a t i c  

analyses.* Expanding Eq. 6-46, 

The"inertialess"coordinates {q2) can now be mathematically 

Solving Eq. 6 - 4 ~  fo r  In2) implies the  coordinate transformation 

-1 - @,,I IS2,] 

(6-48) 

Substi tuting Eq. 6-48 in to  Eq. 6-46 gives 

or, more simply, 

* 
The removal of iner t ia less  coordinates from Eq. 6-46 may also be 

interpreted as a special  case of the Guyan reduction (Ref. 6-33). 

d 
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where [SI is the "reduced" stiffness matrix. 

symmetric. 

Note that [SI is 

Since all submatrices of the original generalized 
-, 

stiffness matrix appear in [S] there is no loss of structural 

information in the condensation procedure. Final reduction to 

symmetric eigenvalue form is accomplished by applying an ortho- 

gonality transformation to [-v ] using the coordinate transforma- 1- 

tion 

Substituting Eq. 6-51 into Eq. 6-50 and premultiplying by 

o r ,  finally 

(b) Interpretation of Eigensolutions 

Solution of the eigenvalue problem given in Eq. 6-53 leads to 
A 

a set of eigenvalues w2 and associated eigenvectors {qlJi. Since 

an orthogonal transformation preserves eigenvaluesthe wi are squares 

of the desired system natural frequencies. 

i 
2 

A 

The eigenvectors {n1Ii 

d 



are generalized mode shapes and must be transformed back t o  the  

or ig ina l  coordinates {z) f o r  physical interpretat ion.  For the i 

di rec t  method th i s  back-transformation i s  given by 

while f o r  component mode synthesis it is 

-1 - Q1l 

Since no transformation t o  a global system of coordinates has been 

employed the  mode shapes {zIi are  defined i n  l o c a l  substructure 

coordinates. If desired,  a transformation t o  a global set of 

coordinates could be subsequently carr ied out. 

The substructuring concept, as employed i n  e i t h e r  the d i rec t  

or  component mode synthesis methods, i s  applied t o  a t i l t - r o t o r  

a i r c r a f t  configuration i n  Appendix E t o  serve as an i l l u s t r a t i v e  

example of the manner of forming the substructure mass and st iff-  

ness  matrices and se t t i ng  down equations of constraint .  

* 
The primes have been reintroduced fo r  the purpose of distinguish- 

ing between common symbols which represent matrix quant i t ies  which are 
d i f fe ren t  numerically. 



426 

Reducing the Order of the Constraint EiRenvalue Problem i n  the 

D i  r e  c t Method 

Three eigenvalue problems require solution under vibration 

analysis by the d i rec t  method as outlined above. 

largest  of these i s  tha t  associated with the  matrix product 

[C] [C), [C] being the matrix of coefficients of the constraint 

equations. Oftentimes there are many coordinates (degrees of 

freedom) which do not appear i n  the constraint  equations, leading 

t o  a matrix [C] having many columns which are ident ical ly  zero. 

Each such nu l l  column i n  [C] W i l l  lead t o  a similarly positioned 

nul l  column i n  the  product [C] [C] and a corresponding nu l l  row. 

Through an appropriate re-arrangement of rows and columns a 

s ignif icant  reduction i n  the s i z e  of the eigenvalue problem which 

must actually be solved i n  such instances can be achieved.* 

analyt ical  basis on which such a reduction can proceed i s  given 

below. 

By far the 

T 

T 

The 

A s  before, from the constraint equations 

form the  matrix [E] defined by 

- 
This poss ib i l i ty  was pointed out t o  the author by W i l l i a m  C .  

Walton, Jr. of the  Structural  Mechanics Branch at NASA-Langley. 
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and t h e  associated eigenvalue problem 

Let [SI be a matrix which when premultiplied by [C] will re-arrange 

the columns of [C]  so t h a t  all n u l l  columns are at the  r ight .*  

Introducing the transformation 

{XI = [SICY) 

in to  Eq. 6-58 and premultiplying by [SI-’ gives 

[S]’’[E] [S]{y) = x[S]’l[S]{y) 

Defining 

Eq. 6-60 can be wri t ten as 

[B]{y) = x{y) 

(6-60) 

( 6-62 ) 

* 
The construction of a matrix [SI having these properties and which 

i s  additionally orthogonal i s  given by Wilkinson ( R e f .  6-30). 
Sciarra  (Ref. 6-2) a lso describes formation of t h i s  matrix. 

‘Eq. 6-61 defines a s imi la r i ty  transformation. 

d 
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By vir tue of the re-arranging properties of [SI, the  transformation 

given by Eq. 6-61 permits Eq. 6-62 t o  be writ ten i n  the parti t ioned 

form 

where [B ] is a square matrix of order equal t o  the number of 

f i n i t e  (non-zero) columns i n  [C]. Expanding, Eq. 6-63 reduces t o  

the two uncoupled eigenvalue problems 

11 

[Bl1IEY13 = XIY13 ( 6-64a) 

[O] = XIY23 ( 6-6411 ) 

Since the  eigenvalues and eigenvectors of a n u l l  matrix (Eq, 6-64b) 

are known aprior i  only the eigenvalue problem given by Eq. 6-64s. 

has t o  actually be solved. 

[O] be assembled by columns in to  the lpatrices [Y ] and [Y,] 

respectively. 

can then be writ ten i n  the parti t ioned form 

L e t  all the  eigenvectors of [Bl,] and 

1 

The matrix of eigenvectors associated with Eq. 6-63 

d 
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The matrix of eigenvectors corresponding t o  the  or ig ina l  problem as 

specified by Eq. 6-58 then follows from 

[XI = [SI[YI ( 6-66 ) 

The transformation matrix [SI i s  then formed from columns of [XI 

corresponding t o  zero eigenvalues* and used i n  the manner described 

e a r l i e r  t o  enforce inter-substructure displacement compatibility. 

A Note on the  Inclusion of Gyroscopic Coupling Effects i n  Natural 

Mode Vibration Analyses 

The gyroscopic coupling forces associated w i t h  large ro ta t ing  

components such as propellers or proprotors on propeller- or 

proprotor-driven a i r c r a f t  or  high-speed fans  of turbofan j e t  powered 

a i r c r a f t  may have a non-negligible e f f ec t  on the  vibratory 

charac te r i s t ics  of an airframe re l a t ive  t o  the case i n  which the 

spin i s  zero. One of the e a r l i e s t  attempts t o  analyze such 

e f f ec t s  was given by Scanlan and Truman (Ref. 6-34) who considered 

a 3 degree-of-freedom mathematical model of an e l a s t i c a l l y  supported 

propeller/engine combination. 

t i on  under the direct ion of Scanlan, Brower and Lassen ( R e f .  6-35) 

In  a related experimental investiga- 

demonstrated tha t  gyroscopic e f f ec t s  due t o  ro ta t ing  propel lers  

may manifest themselves by a change i n  the  natural  frequency, a 

change i n  the  mode shape, o r  t he  appearance of new modes. The most 

* 
The columns of [XI corresponding t o  zero eigenvalues will all be 

grouped at the r igh t  i n  [XI i f  the Jacobi method i s  used t o  solve 
Eq. 6-64a. 
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recent treatment of t h i s  problem appears t o  be the work of  Gr i f f in  

(Ref. 6-36). 

For dynamic analyses the primary gyroscopic e f f ec t s  of ro ta t ing  

components can be accounted fo r  by t r ea t ing  each such component as a 

r ig id  ro ta t ing  disc.  Based on t h i s  ideal izat ion the  concept of a 

gyroscopic f i n i t e  element" is  introduced herein and the analyses It 

f o r  natural  mode vibrat ion analysis by d i rec t  and component mode 

synthesis techniques analyt ical ly  extended* t o  include the e f f ec t s  

of gyroscopic coupling forces. The approach taken i s  t h a t  of 

modifying the Lagrangian poten t ia l  f o r  the  par t i t ioned s t ruc ture  t o  

account for  the  gyroscopic e f f ec t s  of any ro t a t ing  components. The 

concept of a gyroscopic f i n i t e  element and the proposed approach are  

believed t o  be new and have the convenience of being readi ly  incor- 

porated in to  e i the r  d i rec t  or  modal formulations f o r  dynamic 

analyses within the  Lagrangian scheme fo r  es tabl ishing equations of 

motion. For notational convenience i n  the ana ly t ica l  development, 

general matrix expressions are used t o  i l l u s t r a t e  the analyt ical  

approach without specifying t h e  exact details. 

(a)  Inclusion of Gyroscopic Effects i n  the Direct Method 
- 

Let [%ING, [KING, and (6) be the mass, s t i f fnes s ,  and deflec- 

t i o n  matrices, respectively,  of the  par t i t ioned s t ruc ture  minus any 

gyroscopic components. The analogous matrices f o r  the gyroscopic 

components, from Appendix G, are  denoted by [E],, [Null], and {VI. 

Defining 

* 
These extensions have not yet been programmed, however. 

d 
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the k ine t ic  energy of t h e  t o t a l  system, including gyroscopic 

components, can be wri t ten as 

I 
I 
I 
I 

[OI 1 Col 
I 

NG I 1 I 

fi 

or, i n  abridged notation 

... 
where the def in i t ion  of [fi]and[E] follow d i rec t ly  from Eq. 6-68. 

Expanding Eq. 6-69 w e  obtain 

d 



Since energy is  a scalar  each term i n  Eq. 6-70 is  a scalar.  Hence 

and Eq. 6-70 C&A also 

1 
2 

T = -  

The s t r a i n  energy for the  parti t ioned structure 

(6-72 ) 

can be writ ten as 

o r ,  more simply, 

The Lagrangian f o r  the par t i t ioned system i s  then 
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L = T - V  

Constraint equations enforcing inter-substructure displacement 

compatibility have the  form 

ICI{-c) = (0) ( 6-76 1 * 

from which the required transformation t o  independent coordinates is  

Let the  rows i n  [ B ]  which correspond t o  {$I) i n  {TI be designated 

[R] .  Then 

{$I} = [Rl{q) 

Substi tuting Eqs. 6-77 and 6-78 in to  Eq. 6-75 y ie lds  

* 
Both the r e a l  and imaginary pa r t s  of the  complex defIection vector 
IT) w i l l  s a t i s f y  Eq. 6-76; t h a t  is ,  we have [C]{r, + i T ~ )  = (0). 

d 
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or, i n  more abbreviated form 

where the def ini t ion of [ M I ,  [ G I ,  and [K] follow from Eq. 6-79. 

Eq. 6-80 [ M I  and [K] are symmetric while [GI i s  non-symmetric. 

Substi tuting Eq. 6-80 i n t o  Lagrange's equation (Eq.  6-22) leads t o  

In 

Defining 

[I?] [GIT - [GI 

The equations of motion assume the  f i n a l  form 

[MI{;) + [rl{6) + [ K l { q )  = (0) 

(6-81) 

(6-82) 

(6-83 1 
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where [r] is skew-symmetric. Although gyroscopic coupling intro- 

duces 

damping since there  i s  no energy loss  associated with them. 

w i l l  be shown later. 

( b )  Inclusion of Gyroscopic Effects i n  Component Mode Synthesis 

4 terms i n  the equations of motion they do not a c t  l i k e  

"his 

In  the  s p i r i t  of the component mode synthesis scheme as 

developed e a r l i e r  i n  t h i s  chapter, the  transformation from discre te  

coordinates t o  modal coordinates i s  given by 

where [U] i s  composed of selected modes from each substructure 

arranged i n  the block diagonal form previously indicated i n  

Eq. 6-24. 

s t ructures  since they a re  taken as r i g i d  and the  blocks i n  [U] 

corresponding t o  these components are simply uni t  matrices of 

order 6.  

designated [R' I .  Then 

No modal expansion i s  employed f o r  gyroscopic sub- 

L e t  the  rows i n  [U] corresponding t o  19) i n  {TI  be 

(6-84) 

(6-85 )* 

Subst i tut ing Eqs. 6-84 and 6-85 in to  the  Lagrangian as given i n  

Eq- 6-75 

n 
Primes are again employed t o  dis t inguish between common symbols 

which represent matrix quant i t ies  which are d i f fe ren t  numericaUy. 

d 
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I n  terms of the substructure modal coordinates the  constraint  

equations (Eq. 6-28) are 

from which 

Substi tuting Eq. 6-88 i n to  Eq. 6-86 there  results 

L = IT[@' lT[UlT[~1 [VI [B'  ]{it I + {q' ITIB' lTIR' 1 T - T  [El [VI [B '  1 {El' I 2 

(6-89 1 1 - - 2 (9' ITIB,  lT[UlTCE1 [VI [B '  1 Iq' I 

or, i n  abridged notation 

L = 2 {4'IT[Mt]{&'I + {q'}T[G']{6'} - $ fq'IT[K']{q'} (6-90) 

Substi tuting Eq. 6-90 i n to  Lagrange's equation and using Eq. 6-82 

t h e  equations of motion are 

d 
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( c >  Inclusion of Gyroscopic Effects V i a  a Normal. Mode Approach 

Gyroscopic e f f ec t s  can also be included by proceeding along 

the l i nes  of t he  famil iar  normal mode approach t o  solution of 

dynamic response problems. F i r s t  solve the  eigenvalue problem 

given by Eq. 6-83 assuming t h a t  [ r ]  = 0. 

modes and frequencies fo r  the complete s t ructure .  Assume t h a t  the 

coupled modes of the system with gyroscopic e f f ec t s  included can be 

given as a l i nea r  combination of some of the  modes of the complete 

system f o r  the  case of no gyroscopic e f f ec t s ,  t h a t  i s ,  take 

This leads t o  a s e t  of 

The procedure from t h i s  point on i s  ident ica l  t o  t h a t  i n  Section (b) 

d i rec t ly  above, w i t h  [@I replacing [ V I ,  and leads t o  

Again, the  primes have been employed t o  dis t inguish between common sym- 

bols which represent matrix quant i t ies  which are d i f fe ren t  numerically. 

(d)  Solution of Equations of Motion 

The equations of motion f o r  a gyroscopically coupled e l a s t i c  

system as given i n  Eqs. 6-83, 6-91, or 6-93 may be wri t ten,  

without loss of  general i ty ,  as 

d 
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where the primes have been dropped f o r  convenience. The generalized 

mass and s t i f f n e s s  matrices [MI and [K] are both symmetric; the  

matrix of gyroscopic terms, [ T I ,  i s  skew-symmetric. The equations 

governing the s t a b i l i t y  of  a proprotor/pylon Bystem, as developed 

i n  Chapter 3, had a matrix form similar t o  that of Eq. 6-94. It w i l l  

be recal led tha t  the reduction of those equations t o  standard eigen- 

value form w a s  complicated by the f ac t  t h a t  the  damping matrix was  

not proportional t o  e i t h e r  the mass o r  s t i f f n e s s  matrix (or a l i n e a r  

combination of them). Now the skew-symmetry of [r]  leads t o  a 

similar s i tua t ion ;  tha t  is ,  [TI  i s  not proportional t o  e i t h e r  [MI 

or  [K] (o r  a l i nea r  combination of them). Non-proportionality of 

the matrix of coeff ic ients  of the r a t e  terms i s  su f f i c i en t  t o  

ensure tha t  the eigenvectors w i l l  be complex, indicat ing tha t  both 

amplitude and phase dis t inguish the components i n  each vector. 

Thus i f  Eq. 6-94 represents N equations, 2N equations are required 

t o  determine a l l  components of a mode. It is  not unexpected, 

then, tha t  considerations similar t o  those employed i n  Chapter 3 

fo r  reducing the  proprotor equations of motion t o  standard 

eigenvalue form must be resorted t o  f o r  Eq. 6-94. 

aspects of methods which have been aeveloped f o r  uncoupling the  

Again, cer ta in  

forced equations of motion f o r  systems containing non-proportional 

damping" are relevant t o  the  problem at hand. The par t icu lar  
* 
These methods are  reviewed i n  Chapter 3 and more f u l l y  described 

i n  the references c i ted  therein.  
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aspect of those procedures which i s  of d i rec t  in te res t  here i s  the 

means for  effect ing a transformation t o  eN-space, t h a t  i s ,  replacing 

the I? equations of second order (6-94) by 2 N  first order equations. 

If [MI i s  posit ive def in i te  ( tha t  is, i f  [M]'l ex i s t s )  the 

appropriate procedure fo r  reducing Eq. 6-94 t o  standard eigenvalue 

form i s  ident ica l  t o  that described i n  Chap&er 3 f o r  reducing 

Eq. 3-142 t o  standard eigenvalue form. Since t h i s  case i s  adequately 

discussed i n  Chapter 3 it w i l l  not be repeated here. 

may, however, f ind a review of t h i s  case helpful at t h i s  time. If 

[MI i n  Eq. 6-94 i s  posit ive semidefinite i t s  inverse w i l l  not 

ex i s t  and the method outlined i n  Chapter 3 will not work. 

procedure which appears sui table  i n  t h i s  case is proposed below. 

The reader 

A 

Fi r s t  reduce the  matrix [MI t o  a diagonal matrix by an 

orthogonality transforma6ion 

where [Q] i s  a modal matrix of [MI and [W,] i s  a diagonal matrix 

of eigenvalues of [MI. Thus, subst i tut ing 

T in to  Eq. 6-94 and premultiplying by [Q] gives 
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o r ,  more simply, 

which are zero are I-li As before assume tha t  all of the  eigenvalues 

arranged so tha t  they const i tute  the lower diagonal elements of 

['p.]. Eq. 6-98 can then be writ ten i n  the par t i t ioned form 

(6-99 1 
Expanding Eq. 6-99 assuming [F] = 0 

-" -. 

(6-100a) 

(6-1oob) 

and solving Eq. 6-100b fo r  h2), the  matrix of coordinates at which 

no i n e r t i a  forces ac t ,  implies t he  coordinate transformation 

G u y a n  ( R e f .  6-33) has suggested use of the  transformation given i n  

d 
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E q .  6-101 t o  simultaneously reduce mass and St i f fness  matrices i n  

natural  mode analyses. Here, however, the mass matrix i s  already 

i n  a reduced form (c f .  Eq. 6-99) and we may, i n  the s p i r i t  of R e f .  

6-33, employ Eq. 6-101to al ternat ively e f fec t  a simultaneous 

reduction of the generalized gyroscopic and s t i f fnes s  matrices. 

Thus, subst i tut ing Eq. 6-101 in to  Eq. 6-99 and premultiplying by 

[TI there  resu l t s  T 

where the reduced gyroscopic and s t i f fnes s  matrices are given by 

L 

and 

(6-103a) 

.., 
Since all submatrices of the or ig ina l  s t i f fness  matrix [K] 

A A 

contribute t o  [K] the accuracy of [K] i s  equivalent t o  the 

accuracy of the s t i f fnes s  matrix before reduction. Although the 

reduced gyroscopic matrix contains all submatrices of the  or iginal  

matrix, these appear i n  combination with submatrices from the 

or iginal  s t i f fnes s  matrix so t h a t ,  as i n  the case for simultaneous 
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reduction of mass and s t i f fnes s  matrices ( R e f .  6-33), the 

eigenvalue problem i s  not exactly preserved. 

form from which the  transformation t o  2N-space can be effected i n  

the usual manner ( c f .  Chapter 3 ) .  

the  inverse of [W 3 1' 

Eq. 6-102 is  now i n  a 

Multiplying Eq. 6-102 through by 

and introducing the iden t i ty  

{ill - ill,) = ( 0 )  

Eqs. 6-104 and 6-105 can be wri t ten i n  the combined form 

(6-104) 

Defining 

Eq. 6-106 can be wri t ten i n  the  compact form 

= [H]{W} 

d 

(6-108) 
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where the def in i t ion  of [HI follows d i r ec t ly  from Eq. 6-106. [HI 

i s  non-symmetric and will, i n  general, be s ingular .  Assuming a 

solution of the form 

A t  {w) = {W 1 e 
0 

Eq. 6-108 reduces t o  the  standard eigenvalue form 

Eq. 6-110 defines the  complex eigenvalue problem fo r  determining the 

natural  modes and frequencies of a gyroscopically coupled e l a s t i c  

system. 

A procedure f o r  handling the  case of a singular mass matrix 

based on transforming t o  3N-space and so on t o  nN-space (n  an 

integer)  u n t i l  the  leading matrix i s  posi t ive de f in i t e  i s  given i n  

Ref. 6-37. 

i n  Ref. 6-38. 

sui ted t o  routine machine computation, thereby lacking t h e  computa- 

t i o n a l  convenience of the  Guyan-type reduction proposed above. 

( e )  Interpretat ion of Eigensolutions 

What seems t o  be bas ica l ly  a s i m i l a r  procedure i s  given 

Neither of these methods, however, appears t o  be 

Solution of Eq. 6-110 leads t o  2 N  complex eigenvalues A 
P 

Since [HI i s  real these occur i n  N and eigenvectors {W } (’). 

complex con jugate pa i r s .  Discarding the  negative frequency roots 

and t h e i r  associated eigenvectors the pth eigenvalue has the form 

0 
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A = a  + i w  
P P  P 

Now the  set of equations adjoint t o  Eq. 6-94 are given by 

[MIT{?) - IrlT{$) + [KIT{y) = (0) 

( 6-111 ) 

( 6-112 1 

T [MI and [K] are symmetric; since [r] i s  skew-symmetric, [r] = -[I']. 

Thus Eq. 6-112 i s  ident ica l  t o  Eq. 6-94. For a conservative system 

the adjoint set i s  ident ical  i n  form t o  the or ig ina l  set (Ref. 6-39). 

Hence the a i n  Eq. 6-111, which are associated with diss ipat ive 

forces,  are zero and the eigenvalues A are pure imaginary.* 
P 

P 
The complex vector associated with the eigenvalue A can be 

P 
w r i t t e n  i n  the form 

The upper N elements {w 

the generalized mode shape. Since these elements are complex, 

i n  each vector of 2 N  elements define 

t. 

phase differences w i l l  ex i s t  b e t h e n  the harmonic motions a t  

different  points of the  system i n  a given mode of motion. The 

* 
Griff in  ( R e f .  6-36) shows tha t  the  skew-symmetry of [r]  i s  a 

necessary and suf f ic ien t  condition f o r  the  net work done by the  
uroscopic  torques t o  be zero, thus precluding any energy dissipation. 
i- 
The lower N elements define the  generalized velocity.  
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r e l a t ive  amplitude and phasing ex is t ing  i n  a given mode could be 

ascertained by converting the complex elements of the mode t o  polar  

form and then normalizing on one of them. 

The generalized displacement vectors { w " ) } ~  must be transformed 

back t o  the  original. coordinates f o r  physical. in terpretat ion.  The 

back-transformation i s  given by 

for  the d i r ec t  method, 

r 

for  component mode synthesis,  and 

[I1 

-1 
i {W') 

( 6-114 ) 

(6-116 ) 

i n  t he  normal mode method. The primes have been reintroduced fo r  

the  purpose of distinguishing between common symbols which represent 

matrix quant i t ies  which are different  numerically. The f i n a l  mode 

shapes {TI. are defined i n  loca l  substructure coordinates. If 
1 
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desired a transformation to a global set of coordinates could be 

subsequently carried out. 

A Remark on Solution of the Free Equations of Motion 

In the final equations of free vibration given above for  the 

case of zero and non-zero gyroscopic coupling (Eqs. 6-39 and 6-94, 

respectively) both [MI and [K] were symmetric. 

been a consequence of working in orthogonal coordinates. 

of non-orthogonal (ie., oblique) coordinates would lead to [MI and 

[ K ]  which are not symmetric. 

reducing the equations of motion to standard eigenvalue form are, 

however, still valid since [MI can be reduced to diagonal form in 

this instance by a similarity transformation: 

This symmetry has 

The use 

The procedures described above for 

The necessary changes in the steps indicated above are arrived at 

by merely replacing [Q] T by fQ1-l. 
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Figure 6-1. Partitioning an aircraft structure into several 
smaller substructures. 
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u3 

$3 - $1 - $2 

e- 
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Beam element 1 Beam element 2 

Figure 6-3. A two-element beam substructure. 

a. 
3 

Figure 6-4. Sign convention for end deflections of massless uni- 
form beam segment (beam-spring) . 



4 54 

0 

0 

0 

0 

0 

%!Id 
I 

0 

0 

0 

0 

0 

314 

D 

0 

314 
I 

0 

0 

0 

0 

0 

2l-l 

<I 
0 

0 

0 

5"I". 
I 

0 

f 21 cl 

0 

0 

0 

0 

0 

3b 

0 

W 

0 

Fjlma 

a, 

d 



455 

Beam 
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Rigid 

------ 

11 Figure 6-6. Stick" model of transport  a i r c r a f t  for  symmetric 
vibration analysis. 
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M , R I  
4 

u = un + L2en 4 = 4 + LIBn n 

T = - M ( u  1 '2 + W ) + T R I B  '2 1 '2 
2 

Figure 6-10. Manner of assimilating the  r i g i d  body i n e r t i a l  pro- 
per t ies  of a center-line fue l  tank in to  the i n e r t i a l  
matrix of the fuselage beam. 
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Substructure #1 - Forward Fuselage Beam 

1 
Substructure #2 - Aft Fuselage Beam 1 

Vertical 
Bending 
Modes 

Substructure #3 - Wing Beam 

Substructure #5 - 
Horizontal Tail 

Substructure #6 

Substructure Inboard Nacelle #7 - (1 I[ i I il. 
Substructure #8 - 
Outboard Pylon 

Substructure #9 - 
Outboard Nacelle 

Figure 6-14. Composition of the system modal expansion matrix 
[U] corresponding to the stick model of Fig. 6-6. 



CONCLUDING REMARKS 

This  d i sser ta t ion  has presented the results of some generalized 

aeroelast  i c  and dynamic s tudies  which complement and extend various 

aspects of technology applicable t o  t i l t - r o t o r  VTOL a i r c r a f t .  

Selected ana ly t ica l  and experimental s tudies  and re la ted  dis- 

cussions have provided insight  i n to  several  aeroe las t ic  and dynamic 

aspects associated w i t h  t i l t - r o t o r  a i r c r a f t  operating i n  the  high- 

speed airplane mode of f l i g h t  w i t h  t he  proprotors f u l l y  converted 

forward. 

whirl  i n s t a b i l i t y ,  a precession-type i n s t a b i l i t y  akin t o  propeller/  

nacelle whir l  f u l t t e r ,  which first came in to  prominence i n  1962 

during t e s t s  of the Bell  XV-3 convertiplane i n  the  NASA-Ames full- 

scale  wind tunnel. Several s a l i en t  features  of propeller- and 

proprotor-related dynamics were examined and the  or ig in  of t he  forces 

and moments generated during precessional motion indicated. These 

considerations have provided addi t ional  insight  i n t o  the mechanism 

of wh i r l  f l u t t e r  fo r  both propellers and proprotors. 

flapping and pitch-change freedoms of a proprotor were shown t o  in- 

troduce new ingredients i n to  the dynamic behavior of a proprotor 

r e l a t ive  t o  tha t  of a propel ler ,  thereby leading t o  a fundamentally 

d i f fe ren t  s i t ua t ion  as regards t h e  manner i n  which the  precession- 

generated aerodynamic forces and moments a c t  on the pylon and induce 

w h i r l  f l u t t e r .  Whereas aerodynamic cross-s t i f fness  moments are the  

driving terms f o r  propeller/nacelle whirl  f l u t t e r ,  t he  primary 

Par t icu lar  a t ten t ion  has been given t o  proprotor/pylon 

The blade 
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destabi l iz ing fac tors  on proprotor/pylon motion are the  inplane shear 

forces associated w i t h  the  a i r foad moments required t o  precess the  

rotor i n  space i n  response t o  shaft motions. 

w h i r l  i n s t a b i l i t y  involving both pitching and yawing motions, a pro- 

protor/pylon system can, i n  contrast  t o  a propel ler jnacel le  system, 

exhibi t  a dynamic i n s t a b i l i t y  i n  either the p i tch  o r  yaw direct ion 

depending on the  pylon sypport conditions. 

change freedoms of a proprotor lead t o  aerodynamic forces and moments 

the  magnitude and phase of which are dependent on the frequency of 

the precessional motion. 

and moments which are induced during whirling motions were also ex- 

amined w i t h  regard t o  t h e i r  capacity fo r  ins t iga t ing  a w h i r l  ins ta-  

b i l i t y .  These considerations have shown, it is believed f o r  t he  first 

time, precisely why a proprotor can physically exhibit  whir l  f l u t t e r  

i n  e i the r  the backward E forward direct ions i n  contrast  t o  a pro- 

pe l le r  which i s  found t o  always whirl i n  the backward direction. 

work herein has shown t h a t  t he  ambidextrous behavior of a proprotor 

as regards the  direct ion i n  which it can whirl  f l u t t e r  is  a d i rec t  

consequence of t h e  frequency dependency of the aerodynamic forces 

and moments. 

I n  addition t o  a t r u e  

The flapping and pitch- 

The implication of the  propsotor forces 

The 

Equations describing the  perturbation motions of an idealized 

proprotor/pylon/wing system encastre '  at the  wing root with the  

proprotor f u l l y  converted forward were derived. The par t icu lar  

mathematical model employed assumed a three-or-more-bladed ro tor  

i n  an ax ia l  flow condition having r i g i d  blades whose flapping motion 

could be represented by longitudinal and l a t e r a l  flapping of the  
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tip-path-plane. 

pylon having three  translational.  and three ro t a t iona l  degrees of 

freedom and constrained by l i n e a r  springs and dampers t o  represent 

the  pylon support conditions. A quasi-steady aerodynamic theory ap- 

p l ied  stripwise t o  the  blade and integrated along i t s  span was  used 

fo r  t he  blade loading. The option of employing Theodorsen unsteady 

aerodynamics t o  approximate t h e  e f f ec t s  of t he  shed wake  was  a lso 

provided. Wing and pylon aerodynamics were not included. In  addition 

t o  providing the  analyt ical  bas i s  from which t o  assess the aeroelas- 

t i c  s t a b i l i t y  of t he  system the  equations of motion were shown t o  fur- 

nish the bas is  f o r  deriving t h e  equations f o r  calculat ing the fre- 

quency response charac te r i s t ics  of the proprotor force and moment 

derivatives and the  tip-path-plane flapping derivatives.  

The proprotor w a s  taken t o  be gimbal-mounted t o  a 

Using parameters relevant t o  the  B e l l  Model 266 t i l t - r o t o r  de- 

s ign  evolved during t h e  U.S. Army Composite Aircraf t  Program, t he  

proprotor analyses developed herein were employed i n  some ana ly t ica l  

t rend s tudies  t o  del ineate  t h e  e f f ec t s  of various system design 

parameters on proprotor/pylon s t a b i l i t y ,  flapping response, and 

proprotor force and moment derivatives 

being examined i n  l i g h t  of the i r  e f f ec t s  on proprotor/pylon aero- 

e l a s t i c  s t a b i l i t y  and a i r c r a f t  rigid-body s t a b i l i t y  and response. 

t h e  response charac te r i s t ics  

Results of experimental s tudies  pertaining mainly t o  Joint  

NASA/Bell Helicopter Company investigations of a 0.1333-scal.e, 

semi-span, dynamic, aeroe las t ic  model of t he  Model 

ro tor  i n  the Langley transonic dynamics tunnel were presented. 

During these investigations an apparently new type of flapping 

266 tilt- 
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i n s t a b i l i t y  associated w i t h  the stopped o r  slowly turning ro tor  w a s  

ident i f ied.  

rigid-body flapping motion of t h e  blades such t h a t  t he  tip-path-plane 

of thebladesexhibi ted a wobbling precessional motion i n  the  forward 

whi r l  d i rect ion ( f o r  negative d3 ). Because of t he  novel character 

of t h i s  i n s t a b i l i t y  t he  e f f ec t  of various system parameters on the  

i n s t a b i l i t y  w a s  established both experimentally and analyt ical ly .  

Based on these s tudies  it w a s  concluded that ro tor  precone w a s  the 

primary fac tor  contributing t o  t h e  flapping i n s t a b i l i t y  at low rpm. 

To provide additional data  f o r  correlakion selected r e su l t s  pertain- 

ing t o  a 1/5 scale  model of t h e  B e l l  Model 300 t i l t - r o t o r  design as 

well as some re su l t s  f r o m t e s t s  of a 25-foot flightworthy Model 300 

proprotor i n  the  Ames ful l -scale  wind tunnel have a l so  been included. 

The i n s t a b i l i t y  w a s  characterized by an e s sen t i a l ly  

The ana ly t ica l  predictions were found t o  be i n  good agreement 

w i t h  measured dynamic charac te r i s t ics  thereby providing val idat ion 

of  the  proprotor/pylon s t a b i l i t y  and response analyses developed i n  

t h i s  disser ta t ion.  

Although the  proprotor analyses have been developed f o r  a 

proprotor of the semi-rigid ( i e . ,  gimbaled) type charac te r i s t ic  of 

B e l l  designs and are thus s t r i c t l y  applicable only t o  ro tors  of 

t ha t  type the  analyses were found t o  have a somewhat broader range of 

appl icabi l i ty .  Specif ical ly ,  t he  s t a b i l i t y  analysis  herein has a l so  

been applied t o  w h i r l  f l u t t e r  data obtained during a j o i n t  NASA/ 

Grumman test  program i n  the  transonic dynamics tunnel employing a 

research configuration of a semispan model of the  Grumman "Helicat" 

t i l t - r o t o r .  Th i s  t i l t - r o t o r  design i s  characterized by a proprotor 
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having blades w i t h  o f fse t  flapping hinges. 

res tor ing centr i fugal  moment from the  o f f se t  flapping hinge was s i m -  

ulated by introducing an equivalent hub spring. 

t h i s  equivalent gimbaled ro to r  were i n  good agreement with the  mea6 

sured s t a b i l i t y  charac te r i s t ics  over a w i d e  range of variable system 

parameters. 

NASA Technical Note. 

For analysis purposes the  

Analyses based on 

These results are being prepared fo r  publication as a 

In  recognition of t he  fundamental ro l e  assumed by natural  vi- 

brat ion modes i n  aeroelast ic  and dynamic response analyses and i n  

s t ruc tu ra l  design ver i f ica t ion ,  t h i s  d i sser ta t ion  has a l s o  directed 

a t ten t ion  t o  the  development and computer implementation of' u t i l i -  

tar ian computational procedures f o r  natural  mode vibrat ion analysis 

of s t ruc tu ra l  systems, par t icua l r ly  a i r c r a f t  s t ructures .  Two meth- 

odologies f o r  natural  mode analysis have been described; both em- 

ploy the substructuring technique and are based on the s t i f fnes s  

matrix method of s t ruc tu ra l  analysis. The first consis ts  of a 

d i rec t  approach based on solving the  matrix eigenvalue problem resul- 

t i n g  from a f i n i t e  element representation of the  complete s t ructure  

as an en t i ty .  

which i s  based on t h e  concept of synthesizing the  vibrat ion modes 

of the complete s t ruc ture  from modes of conveniently defined 

substructures,  or components, i n t o  which the s t ruc ture  has been 

divided. The l a t t e r  method provides fo r  a s igni f icant  reduction 

i n  the s i ze  of t he  resu l t ing  eigenvalue problem through the  ex- 

pedient of p a r t i a l  modal synthesis wherein only a r e l a t ive ly  few 

of the  modes from each component are chosen as degrees of freedom 

The second method i s  tha t  of component mode synthesis 



and employed in the synthesizing procedure. Although both of the 

analyses as developed in this dissertation are applicable to a 

structural idealization based on any type of finite element, the 

computer implementation of these analyses was limited to structures 

which admit of a stick model representation for dynamic analysis. 

Since many structures can be represented in this manner, particular- 

ly in the preliminary stages of design, the computer programs so es- 

tablished have a relatively wide range of engineering applicability. 

A stick model of the Model 266 tilt-rotor was employed in a detailed 

numerical example to illustrate the substructuring approach and the 

mechanics of setting down the equations of constraint which enforce 

deflection compatibility at the junctions of the substructures. 

Both methods of analysis were applied to two simple structural 

systems in some comparative studies. 

as embodied in the computer programs was demonstrated by showing 

correlation with experimentally measured modes and frequencies 

obtained from a model of one of the configurations. To provide for 

additional validation, mention was also made of related work by the 

author and others in which the computer programs embodying both me- 

thods of analysis have been applied to more complex structural 

systems. 

Validation of both analyses 

On the assumption that the primary gyroscopic effects of large 

rotating components such as propellers or  proprotors can be accounted 

for by idealizing each such component as a rigid rotating disc, the 

dissertation has introduced the concept of a gyroscopic finite ele- 

ment which has the convenience of being readily incorporated into 



either a direct or modal formulation for dynamic analysis. By means 

of this artifice both analyses for determining natural modes and 

frequencies of vibration were extended to include the case of a gy- 

roscopically coupled elastic system. The final equations of motion 

lead to a generalized eigenvalue problem in which both the mass and 

stiffness matrices can be singular, thereby precluding the usual 

procedure for reducing the equations to the standard eigenvalue 

form required for solution. A method which appears suited to routine 

machine computation has been proposed for effecting such a reduction 

in the general case in which both the mass and stiffness matrices 

are singular. These extensions have, however, not yet been pro- 

grammed and thus lack numerical verification. 

The analytical portion of the research reported in this 

dissertation is continuing. 

tending the present flutter analysis for an isolated proprotor/pylon 

system encastre' at the wing root to include aircraft rigid-body 

dynamics and aerodynamics, blade inplane flexibility, and wing 

aerodynamics. Work is also continuing on refining and extending 

the computer programs for natural mode analysis, particularly as 

regards the inclusion of gyroscopic coupling effects. 

Attention is being directed toward ex- 

d 
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APPENDIX A 

R I G I D  BODY MASS MATEIX REFERRED TO AM ARBITRARY SYSTEM OF AXES 

Various a i r c r a f t  appendages, such as engine/nacelle combina- 

t ions ,  ordnance, external  f u e l  tanks, e tc .  , c m  often be t r ea t ed  as 

r i g i d  lumped masses during dynamic analyses of t h e  complete vehicle. 

Since the  i n e r t i a l  properties of such appendages are generally 

available i n  the  form of lumped values for t h e  mass and moments and 

products of i n e r t i a  r e l a t ive  t o  some axes f ixed t o  the  center of 

mass of the  i t e m ,  it i s  desirable t o  r e t a in  i n e r t i a l  information i n  

t h i s  form. However, qui te  of ten i n  applications,  it is necessary 

t o  be able t o  express these i n e r t i a l  properties r e l a t ive  t o  another 

axis system which is  displaced from and a r b i t r a r i l y  oriented t o  the  

axes i n  which the  i n e r t i a l  properties are defined. This requires a 

transformation of coordinates which can be effected in  the  manner 

out l ined  below. 

The s i tua t ion  being addressed i s  depicted i n  the  sketch shown 

below. 

the axis system X0’ yo, zo which is f ixed i n  space. The i n e r t i a l  

properties of the  r i g i d  body are defined with respect t o  the axes 

xc, y,, zc Relative t o  

A r ig id  body is  t rans la t ing  and rotat ing with respect t o  

fixed i n  the  body at i t s  center of mass. 

476 
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0 
X 

X 

these body axes t h e  k ine t i c  energy of the  ma88 can be writ ten as 

1 Tc = 

I 

I 
I 
I 
I 
I 
I 

M I 

0 M 

M I  ----------------$---------------- 
I I 

I 
I 

I 
I 

I IXX xy IXZ 

f IZX zy zz 

0 I 1  I I 

I I 
YX YY YZ 

o r ,  i n  condensed form, 
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Since the  k ine t ic  energy is  independent of t he  coordinate system 

used i n  i t s  calculation, we can also w r i t e  

(A-3)  

The coordinate transformation from body axes t o  fixed axes can be 

formally wri t ten i n  the  form 

Substi tuting Eq. A-4 i n t o  Eq. A-2 and equating the  resul tant  expres- 

sion t o  t h a t  i n  Eq. A-3 

the  mass matrix i n  fixed axes i s  seen t o  be given by 

It now remains t o  es tab l i sh  the specif ic  form of the  transformation 

matrix [O]. 

Since t h e  magnitude of t he  r i g i d  body angular velocity vector 

i s  an invariant we can write 

. -  
a 0 0  i + boJo + + o ~ o  = & c c  T + bcjc + QC (A-7) 

e . 
where aos B o a  yo and a c a  6,s Y, are the  angular veloci ty  con- 

ponents w i t h  respect t o  fixed and body axes, respectively, and 3 
0, 

and Tc, jc, kc are corresponding uni t  vector triads. The 
- 
30’ 0 
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angular velocity componentsinbody axes can be expressed i n  terms 

of the fixed system components by forming the  dot products of - 
ic, - 

and respectively with Eq. A-7. This gives J c  * C 

- . -  . -  - 
b C = c t i  o c  * i  0 + f 3 1  o c  do + Y o i c  * Eo 

The dot products involving the uni t  vectors i n  Eqs. A-8 can be 

physically interpreted as the projection of the body axes uni t  

vectors onto the fixed axes uni t  vectors. 

'ij' 
t ion  cosines" by 

Defining these "direc- 

E q s .  A-8 can be writ ten as 

= R & + R12bo + R13+o ac 11 0 

= R (i + k2*b0 + R i. 4 21 0 23 o (A-9) 

= R ;r + R rs + R 3 3 Y ,  
'C 31 o 32 o 

Equating expressions fo r  the  t ranslat ional  velocity vector i n  

fixed and body axes 

jrl + ? j  + i E  = & c ' i c + ; c 5 c + ~ E  
0 0  0 0  0 0  c c  (A-10) 

and proceeding as above leads t o  
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; = R  i + R  i + R  i 
c 11 o 12 o 1 3  o 

= R  j ,  + R  i + R  i 'c 21 o 22 o 23 o ( A-11 ) 

k = R  i + R  .j, + R  i 
c 31 o 32 o 33 o 

Eqs.  A-11 define the t rans la t iona l  velocity components i n  the body 

axes due t o  t ranslat ional  veloci t ies  i n  the fixed system. Now 

fixed system angular veloci t ies  w i l l  a lso contribute t o  the  trans- 

l a t iona l  velocity i n  the body axes. 

obtained by making the  substi tutions 

The combined ef fec ts  are 

i -i + ;yo - .io 
0 0 

(A-12) 

i n  E q s .  A-11. These results i n  conjunction w i t h  those previously 

given i n  Eqs. A-9 can then be put i n  the combined matrix form 

1 
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which defines the transformation relating velocities i n  the fixed 

axis system to  velocities in the body axis system. 

matrix i n  Eq. A-13 is  the required transformation mtrix  [O] to be 

used in Eq. A-6. 

The square 



APPENDIX B 

BLADE FUPPIBJG NXFURKL FREQUENCY 

Gimbaled Proprotor 

A n  expression f o r  the  blade fzapping natural. frequency can be 

derived from the  equations of motion developed i n  Chapter 3 by con- 

s ider ing the degenerate case obtained through retaining only the 

two tip-path-plsne degrees of freedom. 

damping are neglected the  resu l t ing  equations f o r  the  case of a 

symmetric hub r e s t r a in t  reduce t o  

If precone and gimbal 

(B-lb 

where the longitudinal and lateral tip-path-plane flapping moments 

(from Eqs. 3-129 and 3-130) are given by 

A 
t m  d3 - il - A p l ]  (B-2a) 

A 
N = - 1yS221 [. b tan d3  + $il - 2 R 3 1  

Multiplying Eq. B-la  by s i n  JI and Eq. B-lb by cos JI,  subtract- 

ing  the  second equation from t h e  first, and making use of t h e  

re la t ions  



$ = "1 s in  J, - bl cos JI 

b = il s i n  9 - il cos JI + alQ cos JI + blQ s i n  9 

6 = a1 s i n  9 - tl cos ~t + 2; 62 cos JI + Z L ~ Q  s i n  JI 
03-31 

.b 
.. 

I 

- a 62 2 s i n  J, + b162 2 cos 9 
1 

defining the transformation between blade flapping motion and t i p -  

path-plane flapping motion, the resu l t ing  equation can be put i n to  

the  form 

Comparing Eq. B-4 t o  the equation pf'motion for  a viscously damped 

one degree of freedom system 

(B-5) 2 2 + 25 on& + wn x = 0 

the undamped flapping natural  frequency is  seen t o  be given by 

(€3-6 1 3 3' 
and the aerodynamic flap damping by 

The damped natural  frequency is  of course given by 
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If a representative section aerodynemic theory is  used t o  

specify the  blade loading Eqs.  B-6 and B-7 are replaced by 

1 
2 
- 

- 
% IRa2 8 cos ';6 

y cos 3 
" = 16 

where t h e  bar over 41 

evaluated at  the  representative blade spanwise s ta t ion .  

denotes t h a t  the  inflow angle is t o  be 

The e f f ec t  of d3 on t h e  blade flapping frequency i s  seen t o  

be tha t  of an aerodynamic spring which increases or decreases t h e  

frequency depending on whether €i3 is posi t ive o r  negative. 

Offset Flapping Hinge Proprotor 

It is  of i n t e re s t  t o  present t he  analogous expressions f o r  the 

case of a proprotor having blades with o f f se t  flapping hinges. 

Proceeding as  above using t h e  equations of motion developed by 

Richardson and Naylor* fo r  a propeller having hinged Blades the 

analogous expressions can be shown t o  be 

* 
Richardson, J. R., and H. F. W. Naylor: "Whirl F l u t t e r  of 

Propellers w i t h  Hinged Blades," Engineering Research Associates, 
Report No. 24, March 1962. 



- 2~ A4 + E* A ) 
E 3E 

SB = - 
GB 

where 

and the  subscript E (E e / R ,  e the  hinge o f f se t )  is used t o  

denote quant i t ies  defined with respect t o  the  flapping hinge loca- 

t ion.  Also, i n  t he  aerodynamic in tegra ls  t he  lmer l i m i t  of inte-  

gration fo r  no root cutout i s  ql = E ra ther  than ql = 0. Com- 

paring Eqs.  B-6 and B-7 t q  Eqs, B-11 and B-12 it is  seen tha t  sev- 

eral additional terms appear fo r  t h e  proprotor having non-centrally 

hinged blades 

An Equivalent Hub Spring Approximation for  a Stiff-Inplane Prop- 
ro tor  w i t h  Offset FlappinR Hinges 

A gimbaled proprotor i s  essent ia l ly  a zero of fse t  flapping 

hinge rotor .  On the  supposition t h a t  the pr incipal  s t a b i l i t y  and 

response charac te r i s t ics  can be approximated by using an equivalent 

hub spring t o  represent the  restor ing centr i fugal  moment from an 

of fse t  flapping hinge, analyses developed f o r  t h e  gimbaled prop- 

ro tor  are applicable t o  a s t i f f - inplane of fse t  flapping hinge 

ro tor ,  a t  l e a s t  f o r  preliminary design calculations.  

l e n t  hub spring % is  established by requiring t h a t  

The equiva- 

E 
“‘R % 

-=  -+-  E % 
IRQ2 ‘R I Q2 

E RE 

(B-14) 
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so that the in-vacuum blade flapping natura3 frequency is pre- 

served.# 

and a selected ro ta t iona l  speed the  r igh t  hand s ide of Eq. B-14 

and the  denominator of t he  left  hand s ide  are known, permitting 

solution fo r  the  equivalent %. 

For a given of fse t  flapping hinge proprotor configuration 

A more complete equivalence could be established by retaining 
- 

all terms i n  the  expressions f o r  

equating Eq. B-6 t o  Eq. B-11, and solving f o r  

new equivalent 5 
bination rather than fo r  just each 

both dynamic and aerodynamic, 

%. I n  thZs case a 

would have t o  be determined for  each (b2,V) com- 

b2 as i n  Eq. B-14 above. 

Fixed System FlappinR Frequencies 

Blade flapping is  related t o  tip-path-plane flapping by Eq. 

B-3. 

tip-path-plane flapping frequencies' i s  given by 

The re la t ion  between the  blade flapping frequency and the  two 

The proprotor s t a b i l i t y  program PRSTAB6 (Appendix G) pr in t s  

out values f o r  wB and c6 for  each airspeed at which the  s ta-  

b i l i t y  determinant i s  solved. A t  low airspeeds uB is suff ic ient-  

- 

l y  close t o  w that Eq. B-15 can be used t o  ident i fy  the  tip-path- 
'd 

* 
This is  s imilar  i n  many respects t o  an equivalence suggested 

by M. I. Young f o r  hingeless rotors:  
Hingeless Rotors with Application t o  Tandem Helicopters ,I' Proceed- 
ings of the 18th Annual National Forum of t h e  American Helicopter 
Society, May 1962, pp. 38-45. 

"A Simplified Theory of 

'These are derived and discussed i n  Chapter 4. 



plane flapping modes at  loyr veloci ty  and hence with increasing air- 

speed. 

purpose of identifying these modes. 

This obviates the need t o  inspect th8  mode shapes f o r  the 
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PROPROTOR OSCILLATORY FORCE ANI) MOMENT DERIVATIVES 

As a consequence of t h e  flapping degree of freedom,proprotor 

generated forces and moments, such as those shown i n  Fig. 2-12, are 

highly frequency dependent; t h a t  is, they are functions of t he  l i n -  

ear and angular motions of t he  control ax is*  i n  space. The knowl- 

edge of these forces and moments as a function of t he  frequency of 

motion const i tutes  a necessary ingredient i n  an a i r c r a f t  dynamic 

s t a b i l i t y  analysis (airframe plus proprotors). 

The equations of motion developed i n  Chapter 3, i n  addition t o  

providing the  basis fo r  an aeroelast ic  s t a b i l i t y  analysis,  may be 

used t o  obtain the  expressions required f o r  calculating these 

osc i l la tory  forces and moments. 

specifying a sinusoidal motion of t h e  form e iot 

Briefly,  t h e  procedure consis ts  i n  

of given frequen- 

cy and amplitude i n  one of t he  degrees of freedom, assuming t h a t  

the response i n  the  remaining degrees of freedom is at  the  same 

frequency but of unknown amplitude, solving the  equations of motion 

fo r  these unknown amplitudes, and then subs t i tu t ing  the  known 

results in to  the  appropriate force and moment expressions (as 

l i s ted  i n  Chapter 3).  Herein, only t h e  longitudinal and lateral 

proprotor forces and moments a r i s ing  from pylon osc i l la tory  motions 

i n  p i tch  w i l l  be treated i n  d e t a i l  f o r  i l l u s t r a t i v e  purposes. 

# 
The shaft  axis f o r  t h e  case i n  which the  swashplate is 

r ig id ly  attached normal t o  t h e  shaf t .  

488 
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Neglecting gimbal. damping consider the  tip-path-plane e q w  

t ions  f o r  the case of the  pylon having only the  pi tch degree of 

freedom. From Chapter 3 these assume the  form 

.. Isl + (IR + S B h ) 4 + 2611Ri1 + K a = M ( C - l a )  
a1 R o l  y 

- 2521R$ - 2521 (i, + I$, bl = N 
'R'1 R y  1 

(C-lb) 

where M and N are given by 

A .  M = - 1 yQ21R[-B3(al tan 63 + K 4 s i n  E) - -# (@y + 4) 
2 1 Y  

+ L ' yQ21RAB,  tan 63 - K 4 cos E) 
1 Y  - A5bl 1 2 

A2x QR l Y  1 2 A4 + A2X I$ + 62 i1 - A4al - - h i 
Y 

Taking the  osci l la tory pylon motion t o  be 

iot ( b y = $  e 
YO 

(C-2a) 

( C-2b ) 

the  steady-state response of the  tip-path-plane t o  t h i s  forced 

osc i l la t ion  of t he  pylon can be writ ten as 



- iwt a = a  e 1 1  ( C-4a) 

iwt bl = 6, e ( C-4b ) 

-. 
where 

mined. 

al and gl are t h e  unknown complex amplitudes t o  be deter- 

Subst i tut ing Eqs. 6-3 and 6-4 i n t o  Eqs. C-1 t h e  resu l t ing  

equations can be put i n t o  t h e  form 
#- 

[-IRo2 + K + F B  -band3 
&1 l 3  

+ [{.I# - 

= [{'R + 

1 m 

- F2B2 t an  6 

F1 - i o - A  - F B K  s i n €  
sRBohl}02 62 5 1 3 1  

+ F 2 X A 2 - F B K  2 C O S E - ~ W F ~ ~  x A h ] $  2 1  ( ~ - 5 a )  
0 

2 2 1  

[-FlA5 + F2B2 tan  6 

r 
= Li@IRQ - Flh 2 A3 + F1 E A A3hlio + F1$B3 cos E 

A, -l - iU2 52 4 - F ~ ~ K ~  s i n  c]4yo 

where F1 and F2 are constants defined by 

I 

F2 E ABo F1 



Eqs. C-5 const i tute  two non-homogeneous complex algebraic equations 

i n  the two unknowns a and g1. Writing these equations i n  the  

f o m  

- 
1 

t h e  solutions fo r  zl and 6,, by Cramer's rule, are given by 

c a  - c a  
(C-8a) - 1 22 2 12 ($ a =  

Efila22 - a21a12 yo 

a c  - a c  
9 11 2 21 1 

61 - alla22 - &21&12 yo 

where the  def ini t ions of all¶ a12,..., c folluw d i r ec t ly  from 

Eqs. C-5. 

2 

The forces and moments act ing on the  harmonically osci l -  
- 

l a t i n g  proprotor then follow by subs t i tu t ing  the  solutions f o r  

and 6, i n t o  

a1 

t an  63 - K,.Bl($y cos E 
0 

H = - IR E 

(c-9) 1 + i w - 6  A3 - A ;  - i w - h $  M1 
51 1 3 1  mi 1 Yo 

A ~ ~ i i ~  tan  63 + K B $2 IR E s i n  E II 1 1 Yo 
Y = - 

(c-10) 

d 



A 
M = - - y ~ i  B ii tan 63 + B K 4 s i n  c + i w  3 (4 + iil) 

3 1 Yo YO 
2 [ 3 1  

t an  63 - B3K14yo cos E + A A24 
yo 

A 
+ i w  -$ B i  - A 'I - i w  

5 1  

(c-12 ) 

The forces and moments defined by Eqs.  C-9 t o  C-12 are algebrai- 

ca l ly  complex quantit ies.  A s  discussed i n  Chapter 4 t h i s  indicates 

t h a t  the t o t a l  force or moment has components which are inphase 

(or 180° out of phase) with both p i tch  angle and t h e  pitching 

angular rate. The maximum value of t he  component inphase (or 180° 

out of phase) with the  pi tch angle is given by the real par t  of t he  

complex quantity; the  maximum value of t he  component inphase (or  

180° out of phase) with the  angular p i tch  rate i s  given by the  

imaginary part .  If  the  real par t  i s  divided by 4 and the  

imaginary par t  by w$I 

force and moment derivatives due t o  pi tch and pi tch  rate 

YO 
the  resu l t ing  quant i t ies  can be viewed as 

yo 
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respectively. 

r e a l  portions correspond t o  a s i tua t ion  i n  which the  pi tch angle is 

constant and the imaginary par t s  t o  a constant p i tch  rate. 

I n  t h e  l imit ing case of zero p i tch  frequency the  

Computer program HFORCEl (Appendix G) i s  based on the  equa- 

t ions  developed above and evaluates both the  complex forces and 

moments and the component derivatives a r i s ing  from sinusoidal 

pitching osc i l la t ions  of the  pylon. 

shown i n  Table C-1. 

included with the  program l i s t i n g  i n  Appendix G. 

A sample output l i s t i n g  is  

The input corresponding t o  the  case shown i s  

The ef fec ts  of blade flaplPiee f l e x i b i l i t y ,  included as a 

v i r tua l  hinge dynamic representation i n  the  manner suggested by 

Young, on the  static o r  ze,ro frequency normal force and pitching 

moment (H and M i n  the  present notation) were recently treated 

by Magee and Pruyn.* 

* 
Magee, J. P,, and R. R. Pruyn: "Prediction of the  S t a b i l i t y  

Derivatives of Large Flexible Prop/Rotors by a Simplified Analysis ;' 
Presented at  the 26th Annual National Forum of the  American Heli- 
copter Society, June 1970. 



TABLE C-1 

WOPROTOR OSCILLATORY FOQCE AN0 MOVENT OELIVATIVES - SAMPLE OUTPUT LISTING 

ROTOR RPM VELDCITI AOVANCE RATIO PYLON PITCH AMPLITUOE 

FTlSEC KNOTS KEAS J C EGfi E ES RADIANS 

2.3800000OE+OZ 5.51216216E*02 3.50000000E*02 3.500COOOOE+O2 3.871327bOE+OO 6.0OCOO000E~30 1.047157f5E-01 

SDlOR INPLANE H-FORCE H-FORCE OELIVATIVES PYLON PITCH FREPUENCV 

CYCLES/REV 

0. 
2.0000000’1E-02 
4~OC000000E-0i 
6~00000003E-02 
8.00000000E-02 
1.03000003E-01 
1.20000000E-01 
1.40000003E-01 
1~60000000E-01 
1.80000’)00E-01 
2.00000000E-01 
2~40000000F-O1 
2.80000000€-01 
3~00000000€-Oi 
4~00000000E-01 
b~OCOOOOOYE-01 
0.00000000E-01 
l.OOOOOOOOEt00 
1.23000000EtOC 
1.4000000~E+00 
1~50000000E+3C 
1.50900001E+OC 
1~64000000Et00 
1~7OOOOOOOE*0O 
1. 74000000E+00 
l.80000000E+OC 
1~84@00000EtJO 
1.90000000Et01 
Z.000000oOEtOC 
2 ~ ~ 0 0 0 0 0 0 0 E t O C  
3.00000000EtOC 
1.00000000E.01 

CPS 

0. 
7 . 1 3 3 3 3 3 3 4 E - 0 2  
1.58666667E-61 
2.30000000E-G1 
3.17333333E-01 
3.966666676-01 
6.76000060f -01 
5.55333334F .01 
6.34666667f -Cl  
7.14COOOOOF -01 

1.586666671*00 
2.36001000F *OO 
3.17333333FrOO 
3.56666667€*00 
4~76000000E+(10 
5.55?13334t+G0 
5. S5COOOOOE *@O 
6.3bbb6667E100 
6.50533334E+OO 
6.74333334El00 
6~90210000EtOO 
7~1bCCOOOOEt00 
1.29165667f rC’1 
7.53666b67trCO 
7.13?33334E+OO 
9 .  IZOCOOOOF e 0 0  

QAOISEC PEAL IWAGINALV P-ALPHA H-PLPnA ocr 

0. 
4.98466C35E-01 
9.95932069E-01 
1.49539810E+00 
1.99386414E+00 
2+49233017E+OO 
2.99079621El00 
3.48926224E100 
3.98772828E+CC 
4.48619431EtOO 
4.984bb035E100 

6.97052448E*00 
7.S7699052E100 
9.16932069El00 
1.49539810ElOl 
1.99386414E*01 
2.49233017Et01 
2.9907Y621f + O t  
3.48426224E+01 
3.73849526E401 
3.987728ZBE+Ol 
4.00742148E101 
4.23646129ElOl 
4.33665450E+Ol 
4.bBt19431EIOl 
4.58588752El01 
41735b2733E*Ol 
4.98466035ElOl 
5.90154242E101 
7.47699052E+01 
2.49233317E+02 

5.9nt59242~+00 

-2.61314011E*03 
-2.tZ654537Ec03 
-2.67105846EWJ3 
-2.76001549E+03 
.2.91707562EtO3 

.3.59327762E+03 
4.22743613Ct03 
.5.1571334L+03 
.6&5937657Et03 
.8.18879112E+O3 
.1.28339RR*E104 
.1.0019682bE104 
.Z.O24bRRO3E+O* 
2.4 hRh97b4Ft04 

-7 .2367959lEtM 
-2.07466924f r04 
-Z.OC725562E+Ob 
-1.9Rl*38OOE+O4 
1.93tC790RF104 

-1.82356+47€+04 
-1.43697307E104 
-1 -1  12503+1F*04 
- b e l  914430b€r03 
2.17912260E*02 
2.527006C3€+03 
1.270751 65F133 

.1.9639300bE+03 

.6.52677542E+03 
-1.27830233€*04 
~1.45#40203E+04 
.1.57674319E+Ob 

.3.i7a134’10~103 

11111 
-2.07671627E104 
-2r10176296ElOb 
-2.15305980EIOb 
-2.199b5995ElOb 
-2.26564203E+04 
-2.341b3151E*04 
-2. b3287330EW4 
-Z15101P824f*04 
.2.56724536F+D4 
.2.59603206E+0b 
.2.43714469F+Ok 
~2.O04264511r04 
.1.110537bbE+04 
~5.03b22681€+0’3 
1.4514b’Ih7f+03 
2.357062* ZE.03 
2.64611451E103 
2.9803ROI3EtO3 
3.6527257ZF+03 
4.255526tlE+03 
5.0818626OE*03 
5.32283269E103 
5.07554010E+03 
4.2581266b€*03 
2.54263718E*03 
1.63403229E103 
0. 84OS4666E102 
5.553025808+02 
8.60646805E*02 
1.13372989E+03 
1.3950531OFt03 

4.3839C335E.03 
2.89905492E103 
5.39101370€+0? 
8. e7b97559E.03 

FVLCh PlfC‘i FREQUENCY RUTOX INPLANE Y-FORCE V-FCRCE OERIVATIVF5 

CVCCESIREV 

3. 
Z.O’)OCO3OOE-G2 
4.00000009E-3i 
5~00000003E-0 i  
8.0000030JE-02 
lr~OOOOOOOE-O1 
1~23000300F-01 
1.4G00030OE-01 
1. 6000000?E-01 

2.00000000E-0 1 
2.400000c0€ .01 
2.80000000E-@! 
3.00000000E-01 
4.00000000E-01 
5.OC000000E-91 
8.00000903E-01 
1.00000003E+OE 
l.ZCC00000E10C 
1.4@0OOOOOE+OC 
1.50000000€+OC 
1.6000000OE*’lC 
1~bb000OOOEtOC 
1 7OOOOOOOEIOG 
1.74000000EtOC 
1.8OOOOOOOE*CC 

1.900000CJE+JC 

2.4COOOO O?8E+OC 
3~0000000JE+OC 
1 ~ 0 0 0 0 0 3 0 J E t C l  

1 eooomooE-ii 

~ . ~ ~ O O O O O O E + O C  

2.000OOOOOErCC 

CPS 

C.  
7,53333334t-CZ 
1 ,58666tt7F-Gl 
2.38CC)OOOE-01 

1.11366667Et03 
1.190@0~00E rOO 
1.5E t6666 7F +00 
2~3800’I000Ei00 
3.17331333€+00 
3.96Cb6667FtCO 
4.76000000E +00 
5.55333334El00 

6.3466bbb7EICO 
6.50533334El00 
6.7*?33334E+CO 
6 .9OZ03COOE *@O 
7.14009000E to0 
7.29e66667E1C’l 

7.93333334E+00 
9.LZ0030@0E+CO 
1~19EO0OOOE+O1 
3.9666.6(17E+C1 

5.5500000JE+00 

r .5366bb67~ +eo 

P A O I S E C  PEAL IHAGlNlUlY Y-bLCHP. Y-bLPHA DO1 

0. 
bs98466035E-01 
9.96432019E-01 
1.49539810E+00 
1.99386414ElOO 
2.49233017E+00 
2.99079C21El00 
3.44926224E100 
3.98772028E*00 
b.40619431EtCO 
4.98466035Et00 
5.9%159242El00 
b.97852448E100 
7.47699052Et00 
9.96932069E+00 
1.49539010Et01 
1.99386414ElOl 
Z.b9233017E+01 
2.99079621Et01 
3.4852622bE+01 
3~73849526Et01 
3.98772828Et01 
4.08742140Et01 
4.23696129ElOl 
4.33665550Et01 
4.48619531E+01 
4.58588752El01 
4.735b2733E+01 
4.98466035El01 
5.98159242Et01 
?e4 7699052E+01 
2.49233017E102 

2.34616370E+03 0. 2.24CS213OE*Ob I I I I I  
2.43005343E103 4.51966929E102 2.’42053610E+04 8.65049617E+03 
Z.C8322820E+03 8.0176555lEtCZ 2.56229519E104 0.4461913SE+03 
3.10978169E103 1.2642WOOEt03 2.96962277FlOb 8.07319526Ft03 
3.7149?796€+03 1.56R10157E1P3 3.54755264E104 7.51017+19E+03 
4.50238705Et93 1.75271215EW3 4.299b6293El04 6.715469A6€+01 
5.46@*3774E*03 1.76523451E103 5.72235536E+04 5.63620746E103 
6.59634524E+53 1.53932889EtC3 6.24404%71F*O4 4.21278398E103 
7.84068339E*03 9.97963386E+02 7.bR73011lE*04 2.38979381E+03 
9.138216461+03 6.421910C9E101 8.7C725533Et04 1.36696710€+02 
1.02967495Et04 .1.3160%43E+03 9.83267146E105 ~2.52121755E+03 
l . lCb73366Et04 -5.31ROt032E+03 l.l1223072E+O5 -8.49001540E+03 
1.07211203E104 -9.92804451E103 1.02379157E+05 -1.35053706E+Ok 
9.50951028E103 -1.10903276EIO4 0.98542044EIO4 -1.51858244EIOC 
8&6010777E+02 -1.51990086€+04 8.07880782E103 -1.4559b153E+Ok 

-6.714749COE+03 -1.13142376E104 -6.41211297E+Ob -7.22503324E103 
-R.P520b922E+03 -8.68214132E+63 .8.54857730E+04 -4.15817411E*03 
-1.03870167E+04 -7.31460223E103 -9.91887032EM4 -2.80257034E103 
.1.21518120E+04 -6+55971735E+03 .1.16041257E+05 -2.09444851E+03 
.1.5b201586E+Ob -5*73083178E+03 .1.47251668E+05 -1.56839494E103 
-1.04058251ElOl -4.44706265E103 -1.757626838105 -1.13612447E103 
.2.25985264E+OS -4.55821609E+02 .2.15799076E+05 -1.06759600E+O2 
-2.401104338*04 2.84900268E+P3 .2.2S296213E+05 6.65602304E102 
.2.35Zbbl78E+Ob 9*85363307E+03 -2.246bltb3E+05 2.22081955E103 

-2.01924496E104 1.43078471Ec04 .1.92823t90E*05 3.150582b5E+03 
-1.25747758€+04 1.66805037E+04 1.20080264EM5 3.5506058bE+03 
-8.32624O37€+03 1.54724661E+04 -7.95097387E:,04 3.221E66366+03 
-4.6366163 7E.03 1.2207C526E +04 -4.5 277Oq34E104 2. +11763qlE+03 
-2.77330774f*03 7.81224963E103 -2.64839021E+04 L49662130E*03 
-31743’561288+03 1.835712CBE+03 -3.574137696+04 2.93061745E+02 
-4.94054265Et03 311301b386E*02 -4.737870701+0b 3.99768757El01 
-6.21560097E+03 -1.55695470E+02 -5.91546171€+05 -5.96543041E+00 



495 

TABLE C-1 (Continued) 

I'VLON PllCH FYLUUENCV 

CYCLESIIEU CPS LA01 S E C 

ROTOR PllCHING I IOMENI  

PEAL IUAGINbYY C-bl Pub N-ALPHI act 

0. 

4. OOOOOOOOE-02 
6.00000000E-0 2 

1.00000000E-0 1 

2.00000003~-02 

a.oaooooooE-ai 
i . ~ a o a a o o o ~ - o i  
i . ~ o o a o o o o ~ - o ~  

2.oooaoaooF-oi 

3. O O O O O ~ O ~ E - O ~  
~ . o o o o o a o o ~ - o ~  

n.oGooanooE-01 

I.ZOOO~~OOE+OC 
~ . ~ a a o o o o a ~ t o r  

1.60000000E-01 
1.80000000E-01 

2~40000000E-01 
2~80000000E-01 

6.0000000OE-01 

1 .00000000~ +or 

1.50000000Et00 
1. ~OOOOOOOE+OC 
1.64000000E+00 

1.74000000Et0C 
1.7aaoooaoEtoc 

1.8oooaoooEtoo 
i .84oaaooo~too 
L . ~ ~ O O O O ~ O E + O O  
z.ooooooaoEtnc 
z .400aooao~+oc 
3.00000000EtO0 
1.00000a00E+01 

0. 
7.93333334E-02 

0. 

9.96932089E-01 
1.49539810ElOO 
1.99386414€*00 

2.99079621E+OO 
3.kR926224E+OO 
3.98772828Et00 
4.48619431El00 
4.98466035Et00 
5.98159242€+00 
6.9785244 8E+OO 
7.47699052Ei00 
9.96932069E100 
1.49539810€*01 
1.99286414EtOL 
2.49233017Et01 
2.99019621E101 
3.4R926224€*01 
3.13R49526Et01 
3.9877282RFtOl 
4.08742148EIOl 
4.23696129€+01 
4.33665450ElOl 
4.48619431€*01 
+.58588752E+01 
4.73542733El01 
4.98466035E+01 
5.98159242El01 
7.47699052Et01 

+.98466a35~-01 

2 . 4 9 ~ 3 3 0 1 ~ ~ + 0 a  

2 .+9233ai7~+02 

0. 
7.93333334E-02 
1.58tbbbblE -El 

3.17333333E-01 
3.9666hbblE-01 
4.76OOOOOJE-01 
5.55333334E-01 
6.346666676-01 
7~14000300E-C1 

9. f2OOOOOOE-01 
1.11056667E+00 
1~19OOOOGOE+00 
I.S8666667F+00 

3.17333333f +GO 
3.9666bbblf +Ob 
4.16000000F+GO 
5.55333334F +GI) 
5.95G000UOE+CO 
6.34666667t t O O  
6150533334f +00 
6.14333334E t O O  
6.9OZOOOOOC W Q  
7~140Cl00OE+GJ 
7.29866667€*00 
7.53666667€+GO 
7.93333334ElGO 
9~52000000E+00 
1.19000000E to1 
2 * 9 be6666 TE +C 1 

~ . ~ ~ ~ O O O ~ O E - C L  

~ . ~ ~ C O O O O O F + O ~  

1.58tbbbblE -El 

3.17333333E-01 
3.9666hbblE-01 

~ . ~ ~ ~ O O O ~ O E - C L  

4.76OOOOOJE-01 
5.55333334E-01 

. . . -. . . . 
1~19OOOOGOE+00 
I.S8666667F+00 

3.17333333f +GO 
3.9666bbblf +Ob 
4.16000000F+GO 
5.55333334F +GI) 
5.95G000UOE+CO 
6.34666667t t O O  
6150533334f +00 
6.14333334E t O O  
6.9OZOOOOOC W Q  
7 ~ 1 4 0 ~ 1 0 0 0 E + G J  
7.29866667€*00 
7 . 5 3 0 h 6 h h 7 f r 0 0  

~ . ~ ~ C O O O O O F + O ~  

. . . . . . . . . . . 
7.93333334ElGO 
9~52000000E+00 
1.19000000E to1 
2 * 9 be6666 TE +C 1 

PYLQN PITCH FREPUENCV ROTOR YAWING POIIENT VAYIhG HORENl OERIVATIUES 

CYCLESIREV 

O L  

2.00000000E 3 2  
4.00000000E-02 
6.00000000E-02 
8.00000000E-02 

1.20000000E-01 
1.4000000OE -01 
1~6000000OE-01 
1.80000000E-01 

1. ooooaoooE-~1 

Z . ~ O O O O O C O E - O ~  
2.4oaooooo~-oi 

4. I ~ O O O O O O E - O ~  
6.aoaoaoooE-o i 

2.80OOOOOOE-01 
3~00000000E-0 1 

8.00000000E-01 
1.00000000E*OC 
1.20000000EtOC 
i .4aaoaooo~+ac 
~ . ~ C O O O ~ O O E + O O  
i.6oaooaooE*oo 
1.64000000E*OC 

~.74oooooo~~ac 
1.8aoaooaw+oc 

i .9ooaoo0o~too 
t.oaaaooooE+oc 
~ . 4 a o o o o a o ~ + a a  
3.aoooaoao~+oo 
1.ooaoooooEtoi 

1~7OOOOOOOE+OO 

1.84000000Et00 

CPS 

0. 
7.93333334E-02 
1.56666667F-Cl 
2.380~0000E-01 
3.11?33333E-01 
3.16666667E-01 
4r7630000E .01 
5.15333334E-01 
6.34666667E-01 
7.14013000E-01 
7.93333334E-Cl 
9.52000000E-C1 
1 ~11065t67t+GO 
I .  19001000~too 

RAOlSEC REAL IHWIkARY h-blPHA N-bLPHA OC7 

0. 
-6.19664153f103 
-1.2570?223€+04 
-1.92972851E*04 
-2.654601 b5€+04 
-3.64657285E+04 
-4.31646948€+04 
-5.26550968Et04 
-6.279361 71ElO4 
-7.31R92355E t 0 4  
-8.313063131+04 
-9.74093912E104 
-9.78204924ElOl 
-9.24054554Et04 
-4.60675303E+04 
2.32252806EIC3 

3.31018269E*04 
4.81042969E104 
7.18151113E+C4 
9~09866817EtC4 
1.15014235E*OS 
1.21537198E105 
1.13765438E105 
9.06ZOe4eZE+04 
4.38688392E104 

1.97051331€+03 
-3.21983kbOE*03 

1.61955866€+04 
3.6818'288€+04 
1.75357651€+05 

2.0a987818~+04 

~ . a i 5 3 1 0 3 ~ ~ + a 4  

2.461291 ClE104 
2.45513931iE+O4 
Z141?179t3F+04 
2.  2 6199167E e04 
1.8 b966994F t05 
1.03234310E104 

11111 
1.18711334E*OS 

-1.20409052F+05 
1.23225389E*05 
1.77137943Et05 

-1.3205R3SlEtOS 
1.37R20314E+05 
1.44104714€+05 

. l a  55790344EIO5 
1.59256398ElO5 

1.5a370043~tos 

1 . 5 ~ 0 8 9 5 z e + a s  
1.338S5931E+05 

-1. I8Clt346E+O5 
-4.41266284€+04 
L48311739E103 
5.62599330EWX 
1.268287671+04 
1.53591942€+04 
1.96541383EtOC 
2.324Ceb96€+04 
2.754212331+04 
z.83943009~+04 
2.56405437E+O4 
1.99546760E+04 
9.33790485E103 
4.19652604€+03 
3.97366800€+02 

-6.16835521E102 
2.58553992El03 
4. 70230703~+03 
b. 71878164E103 

2.57745792€+03 
2.57101481€+03 
2.52707580Ft03 
2.36875842E+03 
l19S79137fJE+03 

. . . -. . . 
.5.'.12693bOE*03 

4.85283468EtOS 

.9.30575733~105 

.7.91468266E+05 

1.49539810€+01 
1.99386414Et01 

4.76CC0000E+00 
5.55333334ElCO 
5.55CCOOOOE*CO 
6.34 666bblE +0 3 
6.50533334E+00 
6.7433333*€+00 
6.90200000E+00 
7.140CQOOOE*C0 
7.29866667El00 
7r53666667E100 

9~52QCO000E+G0 

3.96666667E+Cl 

7 . ~ 3 m 3 3 5 ~ + 0 0  

i . i 9 o o o o ~ o ~ + a i  

3.48926224E+Ol 
3.738495261+03 
3.98772828E101 

-1.03CZ7174Et05 
-9.3689435 1E*a4 
-6. h7567561E+04 

4.Z3656129E+01 
4.33665450EWl 
4.48619431El01 

4 . 5  836534 1E t03  
1.907RRRhSFIOL 

7.47699052€+01 
2.49233017Et02 

-8.39298849E104 
-9.00777150EIO4 
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AppEmDIX D 

PROPROTOR OSCILLATORY FLAPPIMG DERIVATIVES 

Tip-Path-Plane Flapping Derivatives 

The longitudinal and lateral tip-path-plane flapping associ- 

ated with a sinusoidal pitching osc i l l a t ion  of t h e  pylon follow 

d i rec t ly  from Eqs. C-8a and C-8b of Appendix C. These flapping 

components, l i k e  the  proprotor forces and moments, are algebrai- 

ca l ly  complex quant i t ies  indicating tha t  t h e  t o t a l  longitudinal and 

l a t e r a l  flapping have components which are inphase ( o r  180* out of 

phase) w i t h  both p i tch  angle and p i tch  rate. The maximum value of 

a or bl flapping inphase (or  180' out of phase) with the  p i tch  

angle i s  given by the  real par t s  of the  complex quant i t ies ;  the 

maximum value of 

phase) with the  pi tch rate i s  given by the  imaginary par t s  of the 

- - 
1 

o r  6, flapping inphase (or 180' out of 1 

complex quantit ies.  

4 and the  imaginary par t s  by w@ the resu l t ing  quant i t ies  

const i tute  t h e  tip-path-plane flapping derivatives due t o  p i tch  

Dividing t h e  real par t s  of zl and 6, by 

YO 

angle and p i tch  rate, respectively. 

Blade Flapping Derivatives 

The re la t ion  between blade flapping and tip-path-plane flap- 

ping can be wri t ten i n  terms of complex flapping amplitudes as 
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Writing 

Eq. D-1 becomes 

"he azimuthal posit ion fo r  which the  t o t a l  blade flapping 2 
maximum is defined by establ ishing the  $ f o r  which is  an 

is  a 

extremum; tha t  i s ,  the  JI which satisfy 

- -  - fl cos $ + g, s i n  JI + i ( f 2  cos $ + g2 s i n  J I )  = 0 (D-4) a* 

Since Eq. D-4 i s  complex there  are r ea l ly  two extremum si tuat ions:  

8, i s  an extremum f o r  t he  $ which sa t i s fy  

and 8, is  an extremum fo r  t he  $ which s a t i s f y  

Whether t he  extremum are a maximum o r  a m i n i m  is  detexwbed by 

subst i tut ing the  J, which are zeros of Eqs. D-5 and D-6 i n to  

d 
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Then 

minimum -- = > 0  
dJi2 ’ dq2 

d2B1 d2B2 

dq2 ’ dJi2 
maximum -- 

In  t h i s  way the azimuthal posit ion where blade flapping is  alge- 

bra ica l ly  a maximum and a minimum due t o  p i tch  angle and p i tch  rate 

and the associated values are determined. 

the maximum blade flapping due t o  angle of a t tack does not occur 

at  the same azimuth as the maximum flapping due t o  pi tch rate. 

It is  t o  be noted that 

Dividing the  real par t s  of Eqs. D-2 by Q, and the imaginary 
YO 

par t s  by My and defining 
0 

the maximum values f o r  Bla and B,, are given by 

(D-loa) 
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$2, = ( D-lob ) 

If 8,, and B,, are calculated by means of the  operation 

81, )I" (e-u) 

the  8, of Eq. D-loa agrees with tha t  from Eq. D-11. However, t he  

value of 8 fromEq. 1)-11 corresponds t o  the I) posit ion at 

which 
2q 

e,, i s  a maximum and is  therefore not the  maximum value of 

Computer program ROTDER4 (Appendix G) calculates  both the  t i p -  

path-plane derivatives given by Eqs. D-9 and the blade flapping 

derivatives of Eqs. D-10 as a function of both pylon pitching and 

yawing frequency. 

The corresponding input is included with the  program l i s t i n g  i n  

A sample output l i s t i n g  i s  given i n  Table D-1. 

Appendix G. 

Blade Steady-State Flappinq 

The steady-state tip-path-plane and blade flapping derivatives 

are obtained by se t t ing thepylon  p i tch  frequency t o  zero. 

the  blade flapping derivative due t o  constant shaf t  angle of attack. 

Consider 

Th i s  is  given by 

Assuming a symmetric hub r e s t r a in t  and taking the  swashplate/ 

pylon coupling and proprotor precone t o  be zero, 
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Hence, 

Now, 

1 - 

r n 1 

f r o m  Eq. B-6 of Appendix B ,  

-2 5 1  
WB - 1 = 7 + z ' Y  B, tan 63 

IRbl 

f r o m  which 

2 

2 2  2 = 6 + 2F1B3K tan 6 + F,B3 t a n  63 3 
(0-16) 

where F1 has the same definition as i n  Appendix C .  Using Eq. 

D-16 
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or,  f i na l ly ,  a$/aa as a function of blade flapping natural  fre- 

quency is  given by 

The expression analogous t o  t h a t  i n  Eq. D-18 f o r  t h e  case i n  

which a representative section aerodynamic theory is employed f o r  

the  blade loading i s  given by 

Hub re s t r a in t  and/or pitch-flap coupling are seen t o  decrease 

flapping by detuning the  blade flapping natural  frequency from one- 

per-rev so that it is not i n  resonance with the  one-per-rev air load 

moments a r i s ing  from shaft  angle of attack. For zero hub r e s t r a in t  

it is t o  be noted that since (G2 - 1) enters as a square i n  the  

expressions f o r  aB/aa, e i the r  posi t ive o r  negative pitch-flap 

coupling (negative or  posi t ive 

reducing flapping. 

B 

6 ) are equally effect ive i n  3 

d 



TABLE D-1 

PHOPIIOTOR O I C l l  LArOHV (LbPPING OFR1VAllVES SIYPLE OUlPl lr  L l S T l H G  

ROTOR RPH VELOCITY 4OVANCE RATIO LCCK NUMBED INFLCU ANGLE 

FTISEC mors  LEbS J Pni 

2.3BOOOOOOEtJZ 5.91216216E102 3.5OC00000E+02 3.50COOOOOE~02 3.87132740ElOO 4.545414e5E100 5.86741761E+01 

It** BLADE FLbPPlNG FREPUENCVICVCLESIREVI * -756 I*** BLAOL OLCPING4PEPCELT C O l T l C b L I  1 20.191 

******* PROPROTOR OVNPMIC FClPPlNG OERlVkTlVES OUE TO PVLON PITCH ******* 

PVLON P I T C H  FREOUENCV CCMPONENT FLPPPING OERlVlTlVES TCl1L FLAPPING OEPIVPTIVE 

CVtLESfREV 

1.0000E-04 
5.0000E-02 
1.0000E-01 
2-OOOOE-01 
4.0000E-01 
6.OOCOE-01 
R.0000E-01 
1 O O O O F t O O  
1 ~000Ft00 
1 4000E100 

1. ROOOE to0 
2.>000Et00 
2. ZOOOEtCO 
2.4000F100 

5.’IOOOE+OO 
1 3000E+01 

CPS 

3.9667F-04 
1.9833E-01 
3.9667E-01 
7.9333E-C 1 
1.586lEt00 
2.38OOE*OO 
3.1733El00 
3+9667E 100 
4,lhOOE+OO 
5.5533E+00 
6.3467F e 0 0  
7.1500f.00 
7.9333Ft06 
8.72hlF4CO 
9.5200E100 
1.0313E+Ol 
1.1107E+01 
1.1900E+01 
1 -99  33 E+C 1 
! .96 67E +C 1 

P I L H  V1Y FREOUEIICY 

2.4923E-03 
1.2462E100 
2 - 4  92 3E ‘00 

2.4923F.01 
2.9908€ to1  

5.4816F101 
6.4ROIE*Ol 
h.Y7b5F+Ol 
7.4770EiOl 
1.2462E to2 
2.4923EICZ 

e.7645~-01 Z . ~ B O Z E - O ~  ~ . Z ~ O ~ E + O O  -3.5830e-01 
9.4564E-01 7.02C6E-02 1.1964Et00 .3.6398E-O1 
1.1519E+00 .R.5715E-03 1.0669E100 .3.T908E-01 
1.7547E100 ,1.5509E-01 1.4492E-01 -3.06686-01 

-1.9369E-01 7.4329F-01 .1.769¶Et00 -3.b3bbE-02 
-1.1366Et00 I l l ? E - 0 1  .l.l?37E+OO 2.6R40E-02 
-1.3686EIOO -6.4023E-02 .8.9094E-01 2.695I)E-OZ 
-1.9227Ft90 -4.4601E-02 .0.12Sbt-01 2.54771-02 
.1.7372E+00 3.17691-02 .ll.Z360€-01 2.71?3C-02 
-2.1823E+00 3.1012F-02 .I.7091E-U1 3.5fOBf-02 
.3.3¶37E*00 -1.5960E-02 -4.62WE-01 5.Plll5E-02 
.2.6265E+00 4.721CE-02 2.fb71E100 3.06RZE-02 

-7.bb43E-01 1.2302E-02 7.0804E-01 -4.ZOkbE-03 
.7.1839€-01 b.8790E-03 Ss1187E-01 -3.5739E-03 
%2251E-Ol 4.2d4bF-03 3.6573E-01 -2.R338E-03 
-8.5155E-01 7.832ZF-03 2.7777E-01 -2.2994f-03 
.8.74S5E-01 1.9759E-03 2.1998E-01 -1.8330F-01 
-9.6114E-01 1.8833F-Ok 5.5513E-02 -4.6418E-Ob 
-YS9089E-01 I.C5blE-05 I.22OlE-02 .9.05C3E-O$ 

.9.ianof-o1 I . S ~ ~ S E - W  L.~ORIEIOO -~.WLIF-O~ 

1.510BF+OO 
1.5250E100 
I .’1701E+00 
1.76ClEt00 
I * 7 w 1  €IO0 
l ah139E100  
1.6175Fl00 
1 .7259L l00  
I .122bE+00 
7.3519E100 
?. 3OS5E.00 
3.4694F.00 
1.6771F 1.0993L*00 *00 

C. W W E - 0 1  
5.0016E-01 

‘4.0179E-01 
0.6276E-01 
9.90961-01 

e . 9 s i i ~ - o i  

CVCLEIIREV 

l.?OOOE-O4 
5 ,  3000E-02 
1.00POE-01 
Z.?000E-01 
5.0000E-01 

B.OOOOE-01 
1.IOOOE+00 
1.ZOCOE~OO 
L.4000E*00 
l.hOCOE*OO 
l.BOOOE+OO 
2.0000E100 
2. ?000E+00 
2.rOCG€tOO 
2.6000E*00 
2. BOOOEtOO 
3.9000E+00 
5.IOOOE*00 
1 .OOOOEtOl 

C P I  

3.9667E-04 
1.98338-01 
3.5667E-01 
7.9333E-01 
1.5867E100 
2.3800€t00 
3.17336tOO 
3.9667EtCO 
4.7600E+00 
5.5533Et00 
6.3467E*00 
7.1400E100 
7.9333El00 
0.1267EtOC 
9.5200E+00 
1.0313E101 
1 .1107E~Cl  
1.1900E+01 
1.98331+01 
3.9667EtOi 

****I** PROPROTOR CVNPMIC FLPPPlNG OFRlVATlVES DUE 70 PVLCN VAY **I**** 

RAOISEC 

2.4923F-C3 
1 -24 t2E  +09 
2.4S23E100 
4.9847E+00 
9.9653El00 
1.4954EtOl 
1.94396+01 
L.4923E*01 
2.99CBE+01 
3.4893E*01 
3 . 9 e l l E t 0 1  
4.4862E+Ol 
4.9047Ei01 
5 .483 lE t01  
5.98168+01 
t.4801E101 
6.9785E+Ol 
7.4770E*CL 
l.Z1bZE*OZ 
2.4923EICZ 

3.5945F-01 
3. t454E-01 
3.7917E-01 
4.166ZE-01 2.4599E-01 

l . lS34E-01  
b.S467E-02 
S. 141  5 E-02 
4.4R99F-07 
4.6979F-02 
0.1999E-02 
Y.97RIF-02 
7.5704E-02 l130O1E-02 

7.1527E-03 
5.1203E-03 
3.t230E-03 
2.0952E-01 
5.CO93E-04 
9.90671-05 

COMPONENT FLPPPlNC OERIVATIVES TOTAL FLAPPING OERlVATlVE 

A l I P C l Z  b l f P H l 2  001 BLIPHI2  B l I P H l Z  001 RETbfPHlZ BETPIPHI2 001 

-1*2306E*OO 3.LB30E-01 8.7645E-01 2.BBOZE-02 
1.1964E100 ?.&)WE-01 9.4564E-01 2.02CbE-02 

-1.0665E*OO 3.7908E-01 1.15196+00 -0.5175E-03 
-1 -4492E-01 3.06681-01 1.754TE*00 -1.5508E-01 
1.7695E+00 3.6366E-02 -1.9369E-01 -2.43291-03 
1.1737EIOO .Z.t890E-02 -1.1366ElOO -1.1113E-01 
8.9894t-01 -2.6958E-02 -1.3686EtOO -6.4023E-CZ 
8.1256E-01 .2.5427E-02 .1.5227E+00 -4.4687E-02 
8.2360E-01 -2.7t23E-02 . lS7372E*00 -3.5765E-02 
8.76911-01 .3.52eEE-02 .2.1823E+OO .3.1012E-O2 
1.b299E-01 -5.c815E-02 -3.3531El00 -1.59tEE-02 

-2.267IE+OO -3.6682E-02 -2.6265E+OO 4.7210E-02 
.1.4083E+00 1.5911E-03 -9.1080E-01 2.5654E-02 
-7.88046-01 4-20468-03 .7.6643E-01 1.23021-02 

.3.6573E-01 2.8330E-03 .8.2251E-01 4.26668-03 
-2.7777E-01 2.2554E-03 .8.51551-01 2.03221-03 
-2.1998E-01 1.83301-03 -8.7455E-01 1.9159E-03 
-5.5513E-02 4.C418E-04 -9.61141-01 1.8833E-04 
-1.22OlE-02 9.85C3E-05 -9.9089E-01 1.0561E-OS 

-5.1187~-01 ?.5139~-03 -7.8839~-01 6.8791)~-03 

1.5108E100 3.5945E-01 
1 * 5 i S O E + O O  3.6454E-01 
1.5101Et00 3.1911E-01 
1.7607ElOO 411662E-01 
la7801E+00  2.4599E-01 
1.6336ElOO 1.1434E-01 
).6375E+00 6.9A671-02 
1.7259E+00 5.1415E-02 
1.9226E+00 4.4889E-02 
2.3519E*00 4.t979E-02 
3.3855 EIOO 6.1909E-0 2 
3.4696E100 5.S705E-02 
1.6771E*00 2.5704E-02 
l r0993E+00  1.3001E-02 
9.3999E-01 1.7S27E-03 
9.0016E-01 5*12031-03 
8.95111-01 3.6230E-03 
f.0179E-01 2+6952E-03 
o.bZT4E-01 5.0093E-04 
4.90961-01 9.90671-05 
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APPENDIX E 

APPLICATION OF THE SUBSTRUCTURING CONCEPT TO 

AN AIRCRAFT NATURAL MODE ANALYSIS 

Direct and component mode synthesis procedures fo r  natural  mode 

vibration analysis have been described i n  Chapter 6.  Both methods are  

based on the substructuring concept wherein the continuous s t ructure  

i s  divided into smaller components, or substructures , a mathematical 

model ( e i the r  discrete  or modal) of each substructure established, 

and the mathematical model of the complete s t ructure  arrived at by 

reassembling the components i n  a manner consistent with the equations 

of constraint which enforce deflection compatibility a t  the inter-  

faces of the components. Formation of the substructure mass and 

s t i f fnes s  matrices and the establishment of the  equations of con- 

s t r a i n t  are  aspects of the overall  problem which are common t o  

both methods of analysis. To i l l u s t r a t e  the  manner of establishing 

the  substructure mass and s t i f fnes s  matrices and the mechanics of 

s e t t i ng  down the  equations of constraint the  substructuring 

procedure is  applied herein t o  an a i r c r a f t  structure which admits 

of a s t ick  model representation for  natural  mode analysis. 

a i r c ra f t  configuration selected t o  form the  basis  of t h i s  exercise 

i s  the Bell  Model 266 t i l t - r o t o r  VTOL design evolved during the  

Army Composite Aircraft  Program. 

The 

Stick Model Representation of the Model 266 Tilt-Rotor 

An art ist 's  conception of the  Bell Model 266 t i l t - r o t o r  design 

d 



has been given i n  Fig. 1-6 of Chapter 1. 

i n  si lhouette form i n  Fig. E-1 along with the  s t i ck  model established 

using the beam, spring, and rigid-body components described i n  

Chapter 6. 

by nonuniform beams lying along the e l a s t i c  axes of the  respective 

This a i r c ra f t  is depicted 

The fuselage, wing, and empennage s t ructures  are  replaced 

components. Since the  fuselage e l a s t i c  axis has two changes i n  

slope, three beams are used t o  represent t he  fuselage s t ructure .  The 

wing carry-through structure is idealized as a beam-spring, i t s  

(rigid-body) i n e r t i a l  properties being combined with the i n e r t i a  

matrix of the second fuselage beam. 

of the transmission/engine assembly, is  t reated as a r ig id  body 

The pylon s t ructure ,  consisting 

ine r t i a l ly .  Elast ical ly ,  the pylon s t ructure  from the conversion 

axis t o  the  front of the transmission case i s  assumed t o  be r ig id  

while the portion between the  front of the transmission case and 

the proprotor hub is t reated as a beam-spring. "he proprotor blades 

are assumed t o  be r ig id .  Since the blades are  r ig id ly  attached t o  

the  hub i n  a gimbaled proprotor design (such as the  Model 266) the 

proprotors can then be t rea ted  as r i g i d  discs i n  the analysis. 

The hub i s  taken t o  be r ig id ly  attached t o  the m a s t . *  "he 

geometric of fse t s  between the fuselage e l a s t i c  axis and the  wing 

carry-through and ve r t i ca l  t a i l  e l a s t i c  axes, between the outboard 

end of the wing e l a s t i c  axis and the  conversion ax is ,  and the 

conversion axis i t s e l f  are  a l so  assumedto be r i g i d  i n  the analysis. 

*For i l l u s t r a t i v e  purposes, the  manner i n  which one could t r e a t  
a proprotor/hub-assembly which is  spring-connected t o  the mast w i l l  
also be described. 
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These par t icular  r i g i d i t i e s  are enforced mathematically v i a  equations 

of constraint ,  as w i l l  subsequently be shown. 

Since the substructures are treated as d i s t inc t  and separate 

components their  s t ruc tura l  properties and deflection 

t i c s  are defined relative t o  axes loca l  t o  each component. 

l oca l  right-handed axis systems are a l s o  employed t o  es tabl ish the 

characteris- 

These 

deflection compatibility equations at the junctions of t he  sub- 

structures.  With reference t o  Fig. E-2 the set of local  junction 

coordinate axes used i n  se t t i ng  down t he  equations of constraint  i s  

ident i f iab le  by subscripts. Each of the direct ions so indicated i s  

taken t o  be posit ive.  

ci 

t he  same direct ion as vectors representing posi t ive 

A short-hand notation fo r  a column vector of these junction or 

connection coordinates i s  given by (XI 

Vectors representing posi t ive rotat ions 

8,, yr (not shown) about x , y , z , respectively,  are taken i n  r’ r r r  

xr,  y,, z . r 

herein,  where r 

r = 192, ... $15 



Several auxiliary right-handed coordinate systems (which are  not 

associated w i t h  degrees of freedom) are employed t o  f a c i l i t a t e  

se t t ing  down the equations of constraint. These are also shown i n  

Fig. E-2 and are distinguished by Roman numeral superscripts. 

short-hand notation for  a column vector of these auxiliary connec- 

t i on  coordinates is  given by {XIs herein, where 

A 

( E-2 

s = i,ii, ..., v i  

Employing the  available s t ruc tu ra l  data" lumped-mass/stiffness 

discret izat ions were established f o r  the fuselage, wing, and 

empennage beams. These are  summarized i n  Tables E-1 t o  E-3. 

I n e r t i a l  properties of components t rea ted  as r i g i d  bodies ine r t i a l ly  

are  given i n  Table E-4 while the  e l a s t i c  properties of beam-spring 

components are l i s t e d  i n  Table E-5. 

geometric quantit ies is contained i n  Table E-6. 

symmetry about a v e r t i c a l  plane through the  center of t he  fuselage 

A summary of the  pertinent 

Uti l iz ing a i r c ra f t  

"Exploratory Definition Final Report, Model 266 Composite 
Aircraft Program, Volume 7 - Dynamics, Report 266-099-207, Bell 
Helicopter Company, July 1967. 
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attention is directed t o  separate symmetric and anti-nymmetric 

formulations. 

symmetric and anti-symmetric problems is  the  ident i f icat ion of 

A consequence of t h i s  analyt ical  separation in to  

several  displacements and rotat ions which can be set t o  zero 

apr ior i  i n  both formulations. Also, e i ther  on the  basis of physi- 

c a l  considerations or simply fo r  expediency, the  displacements and/ 

or rotat ions i n  some coordinate directions can be discarded. For 

t h i s  reason it i s  convenient t o  distinguish the  coordinates con- 

s t i t u t i n g  the vectors {XIr 

freedom. The nodal degrees of freedom are denoted by q herein. 

The column vector containing all these freedoms, {q}¶ may be 

from the actual (nodal) degrees of 

j 

di rec t ly  ident i f ied w i t h  the vector {z) i n  Chapter 6. 

Symmetric Formulation 

The degrees of freedom employed i n  the symmetric analysis are 

iden t i f i ed in  Table E-7. The airframe i s  parti t ioned in to  10 sub- 

s t ructures  having a t o t a l  of 144 degrees of freedom. 

(a )  Constraint Equations 

The substructures a re  physically connected t o  form the  t o t a l  

s t ructure  by requiring deflection compatibility at the  interfaces 

of the substructures. For compatibility the deflection vectors of 

adjacent substructures a t  t h e i r  point of mutual attachment must be 

equal when expressed i n  a common coordinate system. The common 

coordinates considered here are one o r  the other of the local  

coordinate systems of the  contiguous substructures. Assuming the  

displacements and rotations t o  be small, t he  deflection vectors of 

d 



adjacent substructures at  t h e i r  point of mutual attachment are re- 

lated by a diagonally parti t ioned rotat ional  transformation matrix 

[R]. 

the  rotations are s m a l l  t h e  rotat ional  deflections of adjacent 

substructures at t h e i r  mutual point of attachment are related by 

the  same coordinate rotat ion matrix as the  displacements. 

two submatrices comprising [R] are thus ident ica l  and are denoted 

herein by [TI. For the general three-dimensional problem with six 

coordinates associated with each s ta t ion ,  [R] i s  of order 6 x 6 and 

[TI i s  of order 3 x 3. 

Fince rotat ional  deflections can be t rea ted  as a vector i f  

The 

To a id  i n  se t t i ng  down the  equations of constraint  a se r i e s  of 

auxiliary sketches showing t h e  substructure junctions and associated 

coordinate systems w i l l  be employed i n  conjunction with Fig. E-2. 

For i l l u s t r a t i v e  purposes somewhat more d e t a i l  i s  indicated i n  the  

example herein than would normally be required i n  practice.  

Fuselage : 

2 X 

A t  t he  junction of fuselage beam #1 and #2 the  re la t ion  expressing 

the equality of t he  deflections at the  l e f t  end of beam #2 and the 
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deflections at the r igh t  end of beam #1 r e l a t ive  t o  coordinates 

l o c a l  t o  beam #2 has the form 

'2 

Y 

Z 

a 

B 

L I 2 

where the  connection coordinate vectors {XI, and {XI, are 
ident i f ied  with degrees of freedom according t o  

- 
X 

Y 

2 

a 

B 

Y , '  

. .  
qll 

q5 

-% 

0 

0 

0 . .  

( E-3) 

( E-4 

and the appropriate coordinate ro ta t ion  matrix IT,] is given by 

.I 

1 cos 0 - s in  0 

0 1 0 

s i n  0 0 cos 1 - 

I 

(33-5) 



Since there are no displacements or rotations out of the vertical 

plane of symmetry in a symmetric formulation 

and y2 are zero. The minus signs associated with q 

in Eqs.  E-4 have been introduced in order to have the usual defini- 

yl, al, yl, y2, a2, 

18 and ‘10 

t i o n  of positive slope. 

convenience. 

This has been done here merely for 

Several sign changes of this type will be introduced 

during the course of this development for similar reasons. 

Expanding Eq. E-3 using Eqs. E-4 and E-5, the resultant constraint 

equations at this junction are given by 

1 cos - q sin 8 - 
‘24 - ‘11 5 

o = o  

- 
‘%8 - “10 

o = o  

A t  the junction of fuselage beams #2 and #3 

3 
X 
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we write, i n  a similar manner, 

where 

and 

4 

p21 = 

- 
cos e2 0 -sin €I2 

0 

s i n  e2 0 cos e2 
- 

L .  

‘41 
0 

925 

-q3 

0 

b o  

(E-7 

(E-8) 

(E-9 
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thereby arr iving at the  constraint  equations 

(E-10) 

- 
"'23 - -q33 

o = o  

Rigid Offset Between Fuselage and Wing Carry-Through Elastic Axes: 

The equations re la t ing  the  deflections at  the  r igh t  end of fuse- 

lage beam #2 t o  the  deflections of the inboard end of t h e  wing 

carry-through beam-spring are given by 

d 
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where { X I 3  has 

O l  

- 
0 -1 0 '-L 0 I 1  

0 0 1 1 0  0 

0 0 0 ' 0  -1 
I 

0 0 0 1 1  0 0 
I - 0 0 0 1 0  0 1 

- - - ---- -- -~ 

already been given i n  Eq. E-8 and 

Eq. E-11 leads t o  the  constraint  equations 

- 
'24 - "42 - L1 '44 

O r - L  q 1 45 

917 = 943 

0 = '945 

. -  
X 

Y 

Z 

(x 

6 

(E-11) 

2 .Y* 

( E-12 ) 

(E-13) * 

"Note tha t  t h i s  set of constraint  equations contains one redun- 
dant equation. This redundant equation need not be discarded, 
however, since use of the method of Walton and Steeves ( c f .  Chapter 
6)  for establ ishing independent system coordinates requires no 
special  consideration i n  t h i s  case. 

d 



'923 - q44 

= 946 

Wing Carry-Through Structure: 

On the basis of considerations related t o  i t s  s t ruc tura l  configura- 

t i on ,  twisting of the wing carry-through s t ructure  i s  negligible 

i n  a symmetric mode of osc i l la t ion .  

representation of the wing carry-through s t ructures  is  taken t o  be 

r ig id  i n  torsion. 

Hence, the beam-spring 

This "constraint" is specified by writ ing 

950 - 944 = 0 (E-15 

A x i a l  extensions of this member are a l so  assumed t o  be negligible. 

Since x = 0 ( c f .  Eq. E-12) t h i s  implies the  additional constraint  5 

447 = 0 ( E-16 ) 
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Wing: 

Wing elastic axis 4 
x6 

Wing root B.L. 

5 X 

At 

y5 

the wing elastic axis/wing carry-through 

where 
.. 
X 

Y 

z 

a 

B 

Y, 

I 

P 3 3  

I 

elastic axis junction : 

X 

Y 

a I; .Y B 

. -  
‘88 

‘53 

‘67 

‘81 

“60 

‘ 9 4 -  

( E-17 

(E-18) 



and 

3 -sin 8 

[T3] ~~ z: cos 8 3 
0 

The above lead t o  

3 = 988 cos e3 - 967 s i n  0 ‘47 

3 = 988 s i n  O 3  + 967 cos 8 ‘48 

- 
‘49 - q53 

- 
3 q50 - q81 cos 8 

s i n  8 

+ q0 s i n  0 

- 960 cos 8 

3 

3 
- 

‘51 - ‘81 3 

- 
‘52 - ‘74 

( E-19 

(E-20) 

Wing Elas t ic  Axis/Conversion Axis: 

@ 3  

L4 (Conversion axis) 

An expression r e l a t ing  the coordinates a t  the last wing e l a s t i c  

axis  s t a t ion ,  (x38, t o  the  intermediate (auxiU.ary) coordinates 

{XIi  is given by 



(E-21) 

i 
As pointed out e a r l i e r ,  the auxiliary coordinates {X) 

degrees of freedom but have been introduced here merely f o r  

convenience i n  arr iving at the equations of constraint .  

appropriate values of and [TL] t o  be used i n  Eq. E-21 are  

are  not 

The 

and 

3 cos 8 

0 

F: 
8 ‘80 

3 

3 

s i n  8 

cos 8 

0 

(E-22) 

(E-23 

i 
From the  sketch above thk intermediate coordinate vectors {XI 

{XIii are seen t o  be related as 

and 

d 
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X 

~ 

Y. 

- * 
1 0 0 1  0 0 -Lg 

0 0 11, 0 0  

I 
0 1 0 1 0  0 0 

- - - - - - L - 3  ----. 
0 0 0 1 1  0 0 

I 
0 0 0 1 0  1 0 

I - 0 0 0 1 0  0 1 

ii 

If the conversion axis (length L4 i n  the sketch) is  taken 

t o  be f lex ib le  and t rea ted  as a beam-spring we would have 

is a column vector containing 
cAL 

where {Q) 

(E-25 ) 

t h e  degrees of freedom 

associated w i t h  the  inboard end of t he  conversion axis beam- 

spring. 

matrix form 

The appropriate constraint  equations would then have the  

(E-26) 

Similarly, at the  outboard end of the  conversion axis beam-spring 

we would have 

{xIiii = {Q},, ( E-27 

i s  a column vector containing the  degrees of freedom 
c% 

where {&I 
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fo r  the outboard end. 

r i g id  {XIii 

so  that 

If the conversion axis i s  taken as completely 

are  not ident i f ied with degrees of freedom and {XIiii 

0 1  0 
I 

0 1  0 
I 

11 O 

0 ;  0 
1 

0 

0 

L4 -- 
0 

1 

0 

0 

0 jl 1 

Herein, t he  conversion axis is  assumed t o  be completely r i g i d  so 

tha t  Eq. E-28 is  applicable. The portion of the pylon s t ructure  

between the  conversion axis and the front  of the  transmission case 

is  also assumed t o  be r i g i d  f o r  the analysis. 

t h e  pylon m a s t  is  accounted fo r  by representing it as a beam-spring. 

However, the only e l a s t i c  deformations of the  m a s t  which w i l l  be 

admitted analyt ical ly  are ve r t i ca l  and lateral bending, motion i n  

the remaining two directions being solely of the rigid-body type. 

4 

The f l e x i b i l i t y  of 

Proprotor Shaft Axis: 

9 z 

Yiii 

Although a portion of the pylon s t ructure  forward of the conver- 

sion axis i s  t rea ted  as though it were r i g i d  e l a s t i ca l ly  the  

d 



coordinate axes fixed t o  the  shaft (axes with subscript 9 i n  the  

sketch) w i l l  be ident i f ied with actual degrees of freedom. 

necessitated by the  (a rb i t ra ry)  decision t o  define the r ig id  body 

i n e r t i a l  properties of t he  complete pylon r e l a t ive  t o  coordinate 

axes at  the posit ion of t he  conversion axis/proprotor shaf t  axis 

intersect ion rather  than re la t ive  t o  body axes at the center of 

gravity of the  pylon. 

This is 

where 

and 

{xFii = { X t g  5 [@]{x}9 ( E-29 

sin e4 cos 

On the basis  of considerations i n  the preceding subsection and 

di rec t ly  above : 
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Making the appropriate subst i tut ions i n t o  Eq. E-32 and expanding 

the resu l t ing  individual constraint  equations become 

- s i n  8 cos e4 - qg1 s i n  8 s i n  e4 
q88 - ‘89 ‘Os ‘3 + 990 3 3 

+ %3 s i n  e4[L4 s i n  8 + L COS 8 1 

cos e4[L4 s i n  e3 + L COS e,] 

3 3  3 

- 994 

- 
973 - -q89 sin 4 cos 8 s i n  8 

3 
+ Q S ~  COS e3 COS e4 - 

s i n  e [L cos e - L s i n  e31 
+ 993 4 4  3 3  

COS e 4 [ ~ 4  COS e3 - L s i n  e I 3 3 
(e-33) 

- 994 

s i n  8 s i n  €I4 - s i n  8 cos €I4 - 994 
3 3 - 993 3 987 - 992 cos e 

q5g = pso s i n  e4 + qgl COS e4 + L3 qg2 - ps3 L4 COS e4 - %4L4 s i n  eq 

4 COS 8 s i n  8 3 - 993 3 q94 3 
COS e COS e4 - -966 = -%2 s i n  8 

980 = -993 s i n  €I4 + 994 COS O 4  
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Pylon M a s t  : 

Proprotor 

Conversion actuator 

Conversion axis 

9 X 

The pylon mast, the  portion of the drive shaft between the front  of 

the  transmission case ( to  which the  conversion actuator attaches) 

and the proprotor hub is  t reated as a beam-spring. 

length L 

t reated as r i g i d  {XI, and (XI, are related as 

Since the 

corresponds t o  the  segment of the pylon which is 5 

X- I. - o o 0 1 0  o iJ 

- 
X 

Y 

z 

a 

B 

Y. 

(E-34) 

10 

d 
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where (x)lo, containing the degrees of freedom associated with the 

aft  end of the mast beam-spring, i s  given by 

Expanding Ep. E-34 and using Eqs,  E-30 and E-35 leads t o  the 

constraint equations 

p8g = "996 ' L5 qioo 

990 = 995 

991= 997 5 99 

-993 = -990 

994 - q100 

- L  9 

- 
'92 - '99 

- 

A t  t he  forward end of the  mast: 

(E-36) 

(E-37 
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To ana ly t ica l ly  suppress the ax ia l  and tors iona l  deformations of 

t he  m a s t  ye t  allowing for rigid-body motions i n  these direct ions 

we w r i t e  

These equations s t i pu la t e  that  the relative ax ia l  and tors ional  

deformations between the  ends of the m a s t  a re  zero. 

Froprotor: 

are  t&en i n  the  same sense as C X ~ ~ , .  

The coordinates describing the proprotor d i sc ,  {XIR, 

Hence 

(E-39 

Since the  proprotor/hub combination is r ig id ly  fastened t o  the  

m a s t * ,  {X}ll = {XI, and the  constraint  equations become 

*The case of a spring-connected hub w i l l  be described l a t e r .  
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9102 

'103 

"104 

"10 5 

'106 
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"110 

-9ll1 9 '112 

(E-40) 

hpannage : 

* 

2 

X 

A t  the  a f t  end of fuselage beam #3 we have 

L O 1  

d 
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where 

and 

(E-42) 

(E-43) 

Sznce the  of fse t  distance L 

coirdini te  vectors {XIiv and (XIv are re la ted  according t o  

i s  taken t o  be r i g i d  the  intermediate 
$ 7 

a? 

.. 
X 

Y 

Z 

c1 

B 

x. 

(E-44) 

A t  the  base of t h e  ve r t i ca l  t a i l  e l a s t i c  axis, {XIvand {XIlg a r e  

related as 

’X 

Y 

Z 
03-45 1 

d 
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where 

c 

(E-46) 

Assembling the ser ies  of transformation matrices indicated above: 

from which we obtain 

- [- cos 0 cos e + s i n  0 s i n  0 ] ‘41 - ‘113 2 5 2 5 

+ ‘123 5 2 5 [cos e2 s i n  9 + s i n  0 cos 0 ] 

+ ‘118 L4 ‘Os 02 

o = o  

- [sin 8 cos 9 + s i n  8 cos e2] 
‘32 - ‘113 2 5 5 

[- s i n  0 s i n  0 + cos O2 cos 0 ] 
-I. Ql23 2 5 5 

‘118 % s i n  €12 ( E 4 9  1 



o = o  

- 
"40 - 'qU8 

f! 

f 

A t  the  junction of the  ve r t i ca l  and horizontal  t a i l  e l a s t i c  axes,  

{XIlh and {XIvi are re la ted  as 

where 
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and 

~~3 = 

- - 

14 

0 

[~ 
1 

0 cos0 

0 -sin0 
5 

5 

' 0  

'9120 
0 

0 

5 

5 

s in0  

cos0 

while {XIvi and {XIl5 are re la ted  according t o  

with EX) and [T ] being given by 
15 9 

"128 

and 

(E-51) 

(E-52) 

(E-53) 

(E-54 1 

(E-55) 
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Eqs. E-50 and E-53 imply the matrix re la t ion  

from which, upon subs t i tu t ion  of appropriate quant i t ies ,  there  results 

5 cos 8 cos 86 + q124 s i n  8 
‘115 - “‘144 5 6 + ‘132 5 

cos 8 s i n  8 - 

- - q144 s i n  8 s i n  86 - q132 s i n  8 cos 86 + qIz4 COS 8 
5 5(E-57) ‘12 3 5 

5 
COS 8 COS e6 + q136 s i n  8 5 

5 s i n  8 COS 86 + q136 cos 8 5 0 = q140 s i n  s i n  86 + qlZ8 

This completes the  derivation of the  equations of constraint  

f o r  the symmetric formulation. 

are summarized i n  Table E-8. 

and 144 degrees of freedom, the  matrix of coeff ic ients  of the  

constraint  equations, [C] , w i l l  be of order 49 x 144. 

(b)  Rigid-Mass Components 

Wing Carry-Through: The r i g i d  body i n e r t i a l  properties of t he  wing 

carry-through s t ruc ture  are conibined with the  i n e r t i a  matrix of 

fuselage beam #2 by t r ea t ing  t h e  center of gravi ty  of the  carry- 

through s t ruc ture  as r ig id ly  attached t o  the  las t  ( r i g h t  hand) 

s t a t ion  of t h a t  beam, f o r  which (from Eq. E-8) 

For easy reference these equations 

Since there  are 49 constraint  equations 
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M -‘23 

(E-58) 

The re su l t s  of Appendix A w i l l  be employed t o  establish an equiva- 

l e n t  i n e r t i a  matrix r e l a t ive  t o  the axes {X) 

properties defined r e l a t ive  t o  body axes at  the  center of gravity.  

using the i n e r t i a  3 

Assuming tha t  the  pr incipal  body axes at the  center of gravity of 

the  carry-through s t ructure  are pa ra l l e l  t o  axes 

the  direct ion cosines R (c f .  Eq. A-13) are given by 

x3¶ y3¶ and z3 

i d  

From Table E-6 we have 

(E-59) 

( E-60 ) 

Substi tuting Eqs. E-59 and E-60 i n t o  Eq. A-13, the matrix which 

e f fec ts  the desired transformation assumes the form 
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(01 = 

o o 1 o 46.6 
I 

1 o 1-46.6 o o 

l------ 
0 0 1 1  0 0 

O ‘ 0  0 0 ----- 

I 
0 0 1 0  0 1 - 

( E-61) 

For comparative purposes EX) herein is  equivalent t o  {XIo  i n  

Appendix A. 

matrix of the carry-through structure re la t ive  t o  body axes at the 

3 
Using the data  supplied i n  Table E-4 the i n e r t i a  

center of gravity i s  given by the  diagonal matrix 

Substi tuting Eqs. E-61 and E-62 in to  Eq. A-6 gives 

( E-62 ) * 

*[Mc,] herein is equivalent t o  [MIc of Eq. A-6. 
CT 
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i n t o  the  i n e r t i a  er3 Absorbing the  minus sign associated with 

matrix" and reordering the  degrees of freedom f i n a l l y  yields  

1 '17 e r 3  424 I 
.88 0 -  0 

0 2595 -40.6 

0 -40 6 .88 
.I 

- 
'17 

er3 

424 - 

(E-64) 

as the  matrix of additional terms t o  be added t o  the  diagonal 

i n e r t i a  matrix of fuselage beam #2. 

matrix is nu l l  since there  is  no s t r a i n  energy associated with any 

The corresponding s t i f f n e s s  
5 

r i g i d  body motion. 

Pylon: :As 

the  pylon w i l l  be defined r e l a t i v e  t o  a coordinate axis system at 

% 

indicated earlier the  r i g i d  body i n e r t i a l  properties of 
* 

t he  Junction of the  conversion axis and the  shaf t  axis ra ther  than 

maintaining a center-of-gravity def ini t ion.  Again, the r e su l t s  of 

Appendix A w i l l  be employed t o  e f f ec t  t h i s  transformation. From 

Table E-6 the quant i t ies  a, b ,  and c f o r  use i n  Eq. A-13 are given 

{!} ={ -19.0 "'7 
*By multiplying the  t h i r d  row and column of Eq. E-63 by 

minus one. 
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"he principal axes at the pylon center of gravity are taken t o  be 

pa ra l l e l  t o  t he  axes 

also.  

i n t o  Eq. A-13 t o  obtain the transformation matrix [ e ] .  Substi- 

tu t ing  t h i s  result in to  Eq. A-6,using the  values i n  Table E-4 t o  

define the i n e r t i a  matrix at the center of gravity,  and taking in to  

account the difference i n  orientation of the coordinate directions 

{XI9 re la t ive  t o  those assumed i n  the derivation contained i n  

Appendix A the desired pylon i n e r t i a  matrix can be put in to  the form 

so t h a t  Eq. E-59 i s  v a i d  here 3' y9' =9 
"he values given by Eqs. E-59 and E-65 are substi tuted 

- 
7.25 0 0 0 137q8 -226 

0 7.25 0 137.8 0 0 

0 0 7"25 226 0 0 

o 137.8 226 16627 0 0 

137,8 0 0 0 6417 -4297,8 

0 0 0 -4297 8 lU80 -226 - 

- 
Ps9 

990 

991 

992 

993 

994 - 

(E-66 ) 

where the minus sign associated with %3 (cf .  Eq. E-30) has been 

absorbed in to  the  i n e r t i a  matrix. 

matrix i s  nul l .  

The corresponding s t i f fnes s  

Proprotor: 

Since the coordinate axes at the  center of gravity of the  proprotor 

d i sc  are oriented such tha t  they are principal axes the i n e r t i a  

matrix i s  diagonal and can be constructed d i rec t ly  from the data 

supplied i n  Table E-4: 

The proprotor is t rea ted  as a r i g i d  c i rcu lar  disc.  

d 
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3.64 

Null 

3.64 

28476 

Null 

14238 

16238 ~ 

~ 

‘112 

The companion s t i f fnes s  matrix i s  nu l l  since the  propeotor hub is  

taken t o  be r ig id ly  attached t o  the mast. This matrix would not 

be nul l  i f  the  hub were spring-connected t o  the mast, as w i l l  be 

,@emonstrated below. 

( c )  Springs 

The wing carry-through s t ructure  and the  pylon mast a re  both 

t reated e l a s t i ca l ly  as beam-springs , t h e i r  i ne r t i a s  being incorporat- 

ed with other components. 

Wing Carry-Through: Since x has been set t o  zero aprior i  (c f .  5 
Eq. E-12) the appropriate beam-spring s t i f fnes s  matrix i s  of 

order 11 x 11 and i s  given by tha t  i n  Fig. 6-5 of Chapter 6 w i t h  

the first row and column struck out. The resul tant  matrix is  

shown i n  Fig. E-3 d o n g  with the ordering of t he  degrees of freedom. 

Tables E-5 and E-6 contaip the  necessary data t o  evaluate the  terms 

of the  matrix. Constraint Eqs. E-15 and E-16 i n  conjunction with 

*The minus signs associated with qll0 and qlll (c f .  Eq. E-39) 
have been absorbed in to  the i n e r t i a  matrlx. 

1 
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the  11 x 11 s t i f fnes s  matrix given i n  Fig. E-3 imply tha t  twisting 

and both the  e l a s t i c  and rigid-body ax ia l  motions of the beam- 

spring representing the wing carry-through s t ruc ture  are removed 

as degrees of freedom, i n  accordance with earlier discussions. 

An a l te rna te  approach i n  th i s  s i tua t ion  would be t o  addition- 

a l l y  s t r i k e  out the  rows and columns corresponding t o  

reducing the  matrix of Fig. E-3 t o  one of order 10  x 10, and then 

delet ing constraint  equation E-16. 

q thereby 4 7  ’ 

Pylon Mast: 

given i n  Fig. E-4. 

required t o  evaluate the  individual terms of the matrix. 

The s t i f fnes s  matrix of the pylon mast beam-spring i s  

Again, Tables E-5 and E-6 contain the data 

Some coments are  included here t o  indicate  the  manner of 

t rea t ing  a proprotor/hub assembly which i s  connected t o  the mast 

by springs. 

hub combination i s  allowed t o  f l ap  longitudinally and l a t e r a l l y  

w i t h  respect t o  the mast, the flapping motion being restrained by 

l i nea r  springs Ka and \ , respectively ( c f .  Chapter 3).  Since 

longitudinal and lateral angular motions of the proprotor d i sc  

r e l a t ive  t o  the  mast are  permitted the  last two constraint  equa- 

t i ons  given i n  Eq. E-40 must be deleted. 

of springs i n  the spring-mass analogy employed i n  Chapter 6 t o  

i l l u s t r a t e  the manner of including fuel slosh i n  a launch vehicle 

vibration analysis we require an expression for  the  s t r a i n  energy 

s tored i n  the  springs. 

For i l l u s t r a t i v e  purposes assume tha t  the proprotor/ 

1 1 

Recalling the treatment 

The appropriate expression here is given by 

d 
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(E-68) 

Substituting Eq. E-68 into Lagrange’s equation then leads to 

I q105 q106 qlll 41121 

- - 
-K 0 

1 a 

0 

0 
1 

0 

Ka 

-51 1 5 
0 

1 Ka 0 
1 -Ka 

1 5 0 
1 0 -53 

.1 - 

- 
‘105 

‘106 

9111 

9112 

- 

( E-69 1 

* 

as the matrix of spring terms to be added to the partitioned 

system stiffness matrix, [I?]. 
Eq. E-69 couple the stiffness matrices for the pylon mast and 

proprotor substructures. 

Note that the negative terms in 

Anti-Symmetric Formulation 

The considerations related to the symmetric formulation have 

illustrated the manner of establishing substructure mass and 

stiffness matrices and the mechanics of setting down equations of 

constraint. 

case would, for the most part, be repetitious. 

A corresponding derivation f o r  the anti-symmetric 

For this reason a 



summary-type treatment, f o r  the  most par t  l i s t i n g  only f i n a l  

r e s u l t s  which are d i f fe ren t  f romthe  symmetric case,  is given here. 

The anti-symmetric formulation is based on the  same s t i c k  

model and the  same s ta t ions  employed i n  the symmetric formulation, 

leading t o  a problem having 165 degrees of freedom. 

are ident i f ied  i n  Table E-9. 

(a )  Constraint Equations 

These freedoms 

For anti-symmetric motions of t he  airframe the t w i s t  of the 

wing carry-through s t ruc ture  i s  not negligible and the  beam-spring 

which is  taken t o  represent it must now be permitted freedom i n  

t w i s t .  

s t i l l  negligible the a b i l i t y  t o  t r ans l a t e  ax ia l ly  as a r ig id  body 

must be provided for .  

Sfumber, are summarized i n  Table E-10. 

(b )  Rigid-Mass Components 

Although axial extensions of the wing carry-through are * 

The f i n a l  constraint  equations, 48 i n  

Wing Carry-Through: Here the  vector EX) i s  given by 3 

(E-70 

so t h a t  

d 
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Pylon : 

Proprotor : 

I 921 ‘27 q33 I 
.I - 

.88 0 -40.6 

0 0 0 
0 

-40.6 0 1870.0 - 

0 

7 25 

0 

137 8 

0 

0 

0 

0 

7.25 

226 

0 

0 

0 

137.8 

226 

16627 

0 

0 

137.8 

0 

0 

0 

6417 

-4297 8 

‘124 ‘125 ‘126 ‘127 ‘128 ‘129 

3.64 

3.64 

3.64 

28476 

N u l l  

- 

Mull 

- 
‘124 

‘125 

‘126 

9127 

‘128 

- 9129 

( E-71) 

(E-72 

(E-73) 



540 

( e )  Springs 

Wing Carry-Through: 

through i s  included i n  the  anti-symmetric formulation the  beam- 

spring representing it has a s t i f fnes s  matrix of order 12 x 12 

having the  form given i n  Fig. E-4. 

there  ,( q95 - qlO6), are replaced by q 

Tables E-5 and E-6 contain t h e  data needed t o  evaluate the  individ- 

ual terms of the  matrix. 

Since axial r ig id  body motion of the carry- 

The degrees of freedom shown 

through % respectively. 58 9 

Pylon Mast: The pylon mast beam-spring s t i f fnes s  matrix i s  also 

Si06 by 9118 995 given by Fig. E-4 i f  w e  replace 

respectively. Again Tables E-5 and E-6 provide the 
12 3 through q 

data required t o  evaluate the  individual terms of the  matrix. 
4 

Numerical Results Using the  Direct Method 

The direct  method of analysis was used t o  calculate the  

symmetric and anti-symmetric free-free modes and frequencies for 

several pylon tilt angles. 

f i r s t  f i ve  e l a s t i c  modes is  given i n  Table E-11. 

vectors for  the first three symmetric modes fo r  BC = 90' are  

l i s t e d  i n  Table E-12. The first five symmetric modes fo r  

0 = 90 are given i n  F i g .  E-5. Corresponding resu l t s  have been 

calculated by Be l l . "  

A summary of these frequencies for  the 

The modal 

0 
C 

HOwever,since t h e i r  mathematical model w a s  

s ignif icant ly  d i f fe ren t  from tha t  employed herein a d i rec t  

*Ibid . 

d 



numerical comparison with their  results C a n  not be made. 

A sample input fo r  the  symmetric case with Bc = 90° i s  

included as par t  of t h e  l i s t i n g  of the  computer program package 

for the  d i r ec t  method of analysis i n  Appendix H. 

Additional Applications of the Direct Method 

Two simple applications of t he  d i r ec t  method are  included i n  

some comparative s tudies  with the method of component mode 

synthesis i n  Appendix F. A comparison of t he  results from the 

d i r ec t  analysis with experimentally measured modes and frequencies 

of a model of one of the configurations i s  also presented there .  

The d i r ec t  method of analysis as embodied i n  the  computer pro- 

gram package l i s t e d  i n  Appendix H has also been employed i n  two 

other  s tudies .  The first consisted of t h e  determination of the  

symmetric modes of the  a i r c r a f t  shown i n  s i lhouet te  i n  Fig. 6-2, 

using the s t i c k  model indicated there ,  f o r  use i n  a free-free 

f l u t t e r  analysis of t he  wing and horizontal  t a i l . "  The second 

consisted i n  generating the  modes of a pivoting wing f o r  use i n  a 

subsequent f l u t t e r  analysis.  i 

"Results of t h i s  work given limited d is t r ibu t ion .  

'Unpublished work. 

d 
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TABLE E-4 

COMPONENT I N E R T I A L  'PROPERTIES TREATED AS R I G I D  

PROPROTOR 

Mass 
Flapping I n e r t i a  

Longitudinal 

Lateral 

Polar Ine r t i a  

PYLON 

Mass 

C. G. I n e r t i a  

Pi tch 

Roll 

Yaw 

WING CARRY-THROUGH 

Mass 

C. G. I ne r t i a  

Pitch 

Roll 

Yaw 

2 3.64 lb-sec / i n  

2 

2 
14238 lb-sec -in 

14238 lb-sec -in 

28476 lb-set'-in 

7.25 lb-sec2/in 

2 6950 lb-sec -in 

3800 lb-sec2-in 

6120 lb-sec2-in 

2 .88 lb-see / i n  

2 725.2 lb-sec -in 

Not Available 

Not Available 
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TABLE E-5 

STIFFNESS PROPERTIES OF COMPONENTS TR3ATED AS SPRINGS 

Wing Carry-Through* 

E1vertical 

E1lat e r a l  
G J  = 12.8 X 10 lb-in 

9 2 = 15.7 X 10 lb-in 

9 = 36.9 X 10 lb-in2 
9 2 

t Py3on Mast 

E1vertied 

E1la.terd 

i 

9 2 

9 2 
= 2.5 X 10 lb-in 

= 2.5 X 10 lb-in 

* AE is taken t o  be zero as no a x i a l  e l a s t i c  motion is  "a11owed" 

Both AE and G J  are  taken t o  be zero as only rigid-body axial 
and to rs iona l  motions a re  admitted. 



547 

ANGLES - 
02 

03 
e4 
O5 
'6 

LENGTHS - 
L1 
L2 
L.3 
L4 
L5 
6 
'7 

L 
L 

TABLE E-6 

GEOMETRIC QUAWTITIES EMFWYED IN VIBRATION AWALYSIS 

9.5' (.1658 Radians) 
5.6' ( .09774 Radians) 

4.5' ( e07854 IiadianS) 

Vasiaale (gO'-conversion angle 
25' ( ,4363 Radians ) 
15' (,2618 Radians) 

46.1 inches 
42.0 inches 
17.0 inches 
17.0 inches 
55.0 inches 
28.0 inches 
15.0 inches 

Wing Carry-Through 
a 

b 

C 

Pylon 

a 

b 
C 

0 

0 
46.1 inches 

31.2 inches 
0 

-19.0 irjahes 
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TABLE E-7 

FUSELAGE 

Beam #1 

41 - 45 
% - 410 

‘11 

Beam #2 

‘12 - ‘17 
‘18 - 923 

924 
Beam #3 

%5 - ‘32 
‘33 - ‘40 

‘41 

IDENTIFICATION OF DEGREES 
SYMMETRIC ‘IIIBRATION 

Displs . 
Slopes 

OF FREEDOM FOR 
ANALYSIS 

Vertical Bending 

Wing Carry-Through Structure 

Axial Rigid Body Translation 

Displs . 
Vertical Bending 

Slopes 1 
Axial Rigid Body Translation 

Displ8 
Vertical Bending 

Slopes I 
Axial Rigid Body Translation 

442 - 452 
WING - 

q53 - 459 

%7 - 9 3  

%o - 966 

9 4  - 480 
‘81 - ‘87 

488 

Displs . 
Vertical Bending 

Chordwise Bending 

Slopes 1 
1 DiSplS 

Slopes 

Torsi on 

Axial Rigid Body Translation 



549 

TABLE E-7 (Concluded) 

- PYLON 

Transmission/Engine Assembly 

Rigid Body Translations & Rotations ‘89 - Q94 
Mast 

995 - ‘106 
PROPROTOR 

‘107 - ‘112 
EMPENNAGE 

Vertical Tail 

‘113 - ‘117 
‘118 - ‘122 

‘123 

Horizontal Tail 

qP 

‘124 - ‘127 
‘128 - ‘131 
‘132 - ‘135 
‘136 - ‘139 
‘140 - ‘143 

‘144 

Rigid Body Translations & Rotations 

Chordwise Bending 
Displs, 

Slopes 

Axial Rigid Body Translation 

Displs .I 
Vertical Bending Slopes 

Chordwise Bending 
Displs. 

Slopes 

Torsion 

Axid. Rigid Body Translation 

d 
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TABLE E 8  

CONSTRAlXJ2 33QUATIONS FOR SYMMETRIC VIBRATION ANALYSIS 

d 



TABLE E-8 (Continued) 

sin 8 sin e4 
3 

sin e COS 8 - 
‘89 ‘Os ‘ 3  990 3 4 991 

+ 993 sin e4 [L4 sin 8 + L COS e 3 
- 994 COS e4 [ L ~  sin e + L COS e 1 - 988 = o 

3 3  I3 

3 3  3 
COS 8 sin e4 3 

-989 sin €I3 + %o. COS 8 COS 8 - 
3 4 gsl 

sin e4 [ L ~  cos e - L sin e,] 

COS e4 [ L ~  cos e - L sin e ] - 
+ 993 3 3  

- ‘94 3 3  3 473 = O 

3 3 ‘94 3 

4 + ‘gl  cos 84 + L3 992 - 993 L4 cos e4 

sin 8 sin O4 - 487 = 992 COS 8 - qg3 sin 8 COS O4 - 
990 sin 8 

- 994 L4 sin e4 - 959 = 0 

COS 8 sin €I4 + 466 = 0 3 
992 sin 8 + Q S ~  COS 8 COS 8 + 

-qg3 sin O4 + gs4 COS O4 - 480 = 0 
3 3 4 994 

‘996.. + L  5 9 100 - q8g = 

995 - ‘90 = O 

‘97 - =5 q99 - 991 = o  

999 - ‘92 = 

‘998 + 993 E 

‘100 - 994 = O 

‘101 - 995 = O 

‘107 - ‘101 = o  

‘109 - ‘103 = o  

‘104 - ‘98 = 

‘108 - ‘102 = 

“110 + ‘104 = 

d 
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TABLE E-8 (Concluded) 

“111 + ‘105 = 

‘112 - ‘106 = 

5 ql13 [-cos e2 cos 8 + sin e2 sin e ] + q 5 5 123 

2 5 

2 5 5 2 

[COS e2 sin e 
+ sin e COS e I + 4118 L~ COS e2 - 941 = 0 

5 ql13 [sin e cos e + sin 8 cos e ] + q123 [-sin e2 sin e 
+ COS e2 COS e 5 3 - ‘118 L 7 sin e2 - 432 = 0 

= o  -‘118 + ‘40 

‘144 COB 86 + 9132 sin 66 = 0 

-q144 COS 8 sin 86 + q cos 8 cos 86 + qlZ4 sin 8 5 132 5 
q144 sin 8 sin 86 - q132 sin 8 cos 8 + q124 cos e5 - q123 = 0 5 5 6 
q140 COS 86 - q128 sin 8 + q = 0 6 120 

cos 8 sin 86 - 4128 cos 8 COS e6 + q136 s i n  8 = 0 

5 sin 8 sin 8 + q sin 6 cos 86 

5 - ‘115 = 

“140 5 5 5 

‘140 5 6 128 5 + q136 cos 8 = 0 

d 
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IDEmTIFICATION OF DEOREES OF FREEDOM FOR 
ANTI-SYMNETRIC VIBRATIOH ANALYSIS 

FUSELAGE 

Beam #1 

‘1 - 951 
q6 - ‘10 
‘11 - ‘15 

Beam #2 

‘16 - 921 
922 - Q27 

%8 - ‘33 
Beam #3 

‘34 - ‘41 
‘42 - ‘49 

‘50 - ‘57 

Side Bending 
DiSpl8 0 

Slopes 

Torsion 

Wing Carry-Through Structure 

‘58 - %9 
WING - 

Side Bending 
Displ8 

Slopes 

Torsion 

Displs 
Side Bending 

Slopes 1 
Torsion 

9 0  - 96 
977 - ‘83 
‘84 %O 

991 - q97 
998 - ‘104 

‘105 

DiSplS 
Vertical Bending 

Chordwise Bending 

1 
Slopes 1 
Slopes 

DiSplS e 

Torsion 

Axial Rigid Body Translation 
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TABU E-9 (Concluded) 

i:‘ 

PYLON 

Transmission/Engine Assembly 

- 

Rigid Body Translations & Rotations 
‘106 - ‘111 

Mast 

‘112 - ‘123 
PROPROTOR 

P ‘124 - ‘129 
EMPENNAGE 

Vertical. Tail 

‘130 - ‘134 
‘135 - ‘139 
‘140 - ‘144 

Horizontal Tail 

f 

Rigid Body Translations & Rotations 

Side Bending 
Displs. 

Slopes 

Torsion 

Vertical Bending 

Chordwise Bending 

Displs . 
Slopes 

Displs. 

Slopes 

Torsion 

Axial Rigid Body Translation 

d 
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TABLE E-10 

CONSTRAINT EQUATIONS FOR ANTI-SYMMETRIC VIBRATION ANALYSIS 

d 
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TABLE E-10 (Continued) 

+ qlo7 cos 8 COS e4 - ‘108 COS 8 sin O4 3 3 
‘‘106 sin 8 

sin e4 [ L ~  cos 8 - L sin e,] 

COS e4 [ L ~  COS 8 - .L sin e,] - 
sin 8 COS 8 

+ ‘110 3 3  

- ‘111 3 3  Q90 = O 

‘104 = sin 8 sin - ‘109 cos 83 - ‘110 3 4 - ‘111 3 
sin 8 + ‘ cos 84 + L3 qlO9 - qll0 L 4 cos e4 ‘107 4 108 

-qlll L4 sin e4 - 976 = 0 

-qlo9 sin 8 - gllo COS 8 COS €I4 - qlll COS 8 sin e4 + ps3 = o 
‘‘110 sin 84 + qlll COS e4 - %7 = o 

3 3 3 

*: 
“113 i- L5 ‘117 - ‘106 = 

‘112 - ‘107 
‘114 - L5 516 - ‘108 = 

‘116 - ‘109 
“‘115 + ‘110 

‘117 - ‘111 = 

‘118 - ‘112 = 

‘121 ... ‘115 = 

‘124 - ‘118 = 

‘125 - ‘114 = 

‘126 A ‘120 = 

“127 + ‘121 = 

“128 + ‘122 E 

‘129 - ‘123 = 

= o  

r’ = o  

= o  

‘130 - ‘135 L7 COS 85 + ‘140 L7 sin 85 - ‘41 = O  

d 
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TABLE E-10 [Concluded) 

5 [-COS e cos e + sin e sin e 3 + q140 [COS e2 sin e '135 2 5 2 5 

'135 2 5 2 5 

+ sin e2 cos e 3 - 5 

5 
[sin e cos e + cos e sin e ] + q140 [-sin e2 sin e 

+ cos e2 cos e 1 - 5 949 = O 
= o  4165 cos e6 + 9153 sin e6 - '132 

'q1G5 COS 8 sin 86 + q COS 8 COS 86 + q145 sin e5 = 0 5 153 5 
6 - qlS3 sin 8 COS 86 + q COS 8 = 0 '165 5 5 145 5 sin 8 sin 9 

q161 cos 66 - q149 sin 86 = 0 

5 'qlG1 COS 8 sin 86 - q149 cos 8 cos 86 + q157 sin 8 5 5 
-4137 = 0 

qlG1 sin 8 sin e6 + q sine cos6 + q cose5 - q142 = 0 5 149 5 6 157 
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* 

4 

5.03C8315E-03 
-t.j315795E-O2 
-2-5  I 1 8  18UE-04 

-2.54YOb586-04 
3-4254823E-06 ' - 8-33 15755E-02 

-7.2052205E-02 
~ .4.Y351751E-02 

TABLE E-12 

SYMMETRIC MODES OF MQDEL 266 TILT-ROTOR (ec = 90') 

Vertical 
bending 4 

Fore and aft 
bending ' 

Fuselag( 

Displs- { -7.6824638E-03 
4- 7876933E-02 
5-5056072E-02 

> L1917052E-01 
2-33896931-01 
4.2758145E-04 

slopes( 6.6977067E-04 
5.83L8683E-04 
1.3099311E-03 
1- 5 1  74160E-03 

r 1.5i50089E-03 
5.01 $3231 E-03 
5.1728598E-03 

Displs, 5 -464CI  5 1  E-03 

6.5186934E-03 
6.9757517E-03 

c 7.13979281-03 
3.4254823E-06 
5.7604190E-06 

Slopes 8.31 16032E-06 

1.2512905E-OS 
1.2703199E-05 

c 1.2513658E-il5 
-2.7699315E-04 
-2.7C 10181E-04 

5.9502158~-03 

1.0903i37~-05 

Beam #1 

Beam 82 

Beam t3  

First elaetic mode 

I 

-1.3559451E-01 - 1 .L59042Ct -01  
2-79: 12IIE-Ok 

2.75820536-04 

-6.8836919E-02 
2.7582053E-04 
2.729451 kE-04 

-1-1107264E-02 
2.5718788E-04 
2.53605036-04 

2.4929164E-04 
2-4$43236E-04 
2- 50 301 70E-04 

-8-8836Y IYE-02 - 2.57 78188E-04 

Second elastic mode - 
8.43L.C 325E-C 5 
5 -6642 165E-C3 
3.65C5669E-03 
1.7167OZZE-03 

- 1 . 0 3 8 € 4 t l E - C 3  
-1.904t717E-C5 
-7.8Y 7 t  38bE-C 5 - 1.8Y CC 5 5  LE-C5 
-7*8834898€-C5 
-7-8124676E-C5 

8.3722416E-02 
L . L I 5 3 C 1 b E - C Z  
Y.6506954E-C3 
b.WZ3407E-03 
4-99.2i614E-C3 
3-4632477E-C3 
1.95C8381E-C 3 

-7-8  724676E-C5 
-7-B264355E-C5 
-7-7548967E-C5 
-1.68 I 3  109E-05 
-1.606C747E-05 
-7-5152421E-05 

8.2745812E-CZ 
-6-1331777E-53 
-8-l)bIC519E-C3 
-I-lIL7ZtZE-C.2 
-1.4801 IOIE-02 
-1-8S25702E-Ci 
-2.2blE143E-02 
-2.77ES 75%E-C2 
-3.42 178SBE- C i 
-7.514242lE-05 
-8.053L342E-C 5 
-8.40755 17E-C5 
-8.8692002E-C5 
-9.4554596E-55 
-1 .024S818E-~4 
- l L l 4 5 t Z 4 8 E - C 4  
-I .3185848E-O4 

8.2541259E-C2 
-a.621033YE-Gi 

l.Y5C€381E-C3 
7.5152427E-CS 
U. 
0. 
L.42223bPE- 15 

-8.07C'a320E-02 
I.UCY%%4llE-C3 
7-515L427E-05 
6.8051 l5bE-Cb 
2.5665044E-04 

1.71$5558t-C3 
1.4221768E-C3 
6.6454889E-04 

-7.U676209E-C4 
-2-3571245i-C3 
-3.12cz 7ZZE-C3 
-8.91779€5E-C7 
-4.4550ilOE-C t 
-1.01256C7E-05 
-2.0374753E-C5 
-3.7035759E-C5 
-5.49C$ZS5E-C5 
-6.2560268E-05 
-8.O4bC519E-02 
-6.8345131E-02 

-3.1904111E-C3 
4.9846837E-62 
9.6861 543E-CI 
1.15J2654E-01 
2.5665844E-04 
4.515i861E-04 
b.858667lE-C4 
9.6756C39E-C4 
I . 2 2 4 e 8 2 1 ~ - 0 ~  
1.376CC3iE-C3 
I.4163CS5E-CS 
7.5454999E-C5 
l . l?Gl7lE-C4 
1.772i299E-04 
2.656.(€71E-C4 
3. PG 6C99 1E-O 4 
5.08622706-64 
5.548511696-04 

-6.3323b5OE-C3 

1 . 8 ~ 5 % 9 4 n t - c 3  

-4 .4n82521~-02 

Third el&ic mode 

I 
8 ,  lt101437E-02 
7.11 1356%-02 
t. 1635Y5JE- LZ 
5-61 520Y3t-02 
4.51923176-02 

-3 .042¶>8b€-U4 
-j.UZJ6824E~.L4 
-3.UO3t 1 3 2 t - 0 4  
.2-9LI05137E-O4 

8.  1+?2417t-U3 
4.bbChO08t-OC 
3.50 13655t-lJ2 
2-51t3448€-02  
1-8350238E-CZ 
1.30>040YE-ilZ 
7-FI31464E-03 

-2.925911nt-04 
-i.E538C55E-O4 

. ~ . S Z ~ P ~ I % L - O ~  

.2 .  i t53576t-C.4 
-2.  tEC66CSE-04 

2 -  5063402t -04  
-2-496Cb44E-04 

l .C6Ct584E-~3 
7-  8327009E-03 

. I .  bY67363t -03 

.9,7245164E-03 
-2.3166916t-02 
-3.5Ot4C64k-LZ 
-5.4023832E-02 
-7.5255171E-C2 

I -0225993E-01 
-2.496Cb44E-04 
.Z.E240959t..L4 

-3.0456161t-04 
-3.3391678k-04 
-3.  1073026k-04 

4.1722547E-04 
-4.00051141t-04 
-5.51 154C6E-04 

1.842604l lE-U3 
-1.251 h 5  IbE-02 

7 . 5 1 5 1 4 6 4 E - C 3  
2.6960644E-04 
C. 
0 .  
1). j 3 9 1 1  I Z L - 1  b 
I -  12403LMt-LZ 
8 . U Z 1 1 6 6 Y t - 0 5  
L.49bC644E-ll4 

-3.45tlZLUE-C5 
6-2OC4912t-05 
9.8212669t-03 
1.09W76Lt-UZ 
L388C372t -02  
1.7815040E-02 
2. 2OCb 150t -~ .2  
2.5hL7318E-UZ 
2-71807236-02 
5.50232C5E-C5 
6.6885349€-05 
7.45C25156-05 
0.2277238E-05 
9.3132850E-03 
I .  l l49881E-C4 
1.231+092€-04 

-1.1ZC5678€-CZ 
-8.20ISF34E-03 
-2-2315373E-C3 

2.3531209E-02 
3.35303476-52 
4.30 37242E-02 
6.2904912E-05 
1- 1309230E-04 
1.7685136€-04 
2.6059 139E-64 
3.5106870t-04 
4.19 3t826E-C4 
4.43 12986E-C4 
2.4573304E-04 - 1.0944181E-C4 

-6-154108bE-04 
-1.39C3080E-03 
-2.4166022E-05 

-3.79 1278Ot-03 - 8. 819Q805E-04 

~ .71+5a505-c3  

.3 .4013435~-~13 

d 
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TABLE E-12 (CONCLUDED) 

Pylon 

Rotor 

Vertical 
tail 

Horizontal 
tail 

First elastic mode 

4.6C4783lE-05 
7.36 14844E-03 

1.2513658E-05 
1.36 14  844E-0 3 
6.4220339E-04 
1.4301977E-01 
1.58 63379E-03 - 8.2065592E-05 
1.2513658E-05 
7.3614844E-03 
1,0003864E-03 
1.456666 1E-0 1 
1.5863379E-03 - 1.0155637E-04 
1.30335026-05 
7.36 14844E-03 
1.0003864E-03 
1.4566661E-01 
1.5863379E-03 - I .ClC5637E-04 
1.3033502E-05 - 3.7179922E-03 
f .3449225E-03 

Displs. 1.4161658E-02 
2.33462 79E-02 
3.2608229E-02 
2.503C770E-04 

2.5180924E-04 

-3.28CC790E-03 
t. 5364122E-05 

6.276 4 4 10E-Of 
1.9424593E-02 

bending 

Vertical 
bending 

1.95 l l 8 0 4 E - 0 2  

7.62 17444E-07 
1.1747801E-06 
1.1747801E-06 

-2.42 e 2 2 0 2 ~ - 0 4  
-2 .42912986-04 

Torsion { w i d s t  -2.430203dE-04 
-2.4302638E-04 

Axid RB{ -5.2048168E-03 

Second elastic mode - 
8.7394562E-E3 
1.3825277E-C 1 

-1.4241383E-C2 
5.48 2 7 869E- 0 4 

-1.0590429E-04 
1.416 3095E-C 3 
1.3825277E-C1 
6.91515656-02 
1.59 1394%-C2 

-1.0590429E-04 
5.4827869E-C4 
1.4163095E-03 
1.3825 277E-C 1 
1.105b805E-0 I 

-2.5267681E-E5 
-1.059C429E-C4 

5 -9023436E-04 
1.5550369E-C 3 
1.382f277E-CI 
1.1085 8C5E-C I 

-2 .526768 1E-C 5 
-1.05FC429E-C4 

5.902 3 436E-C4 
1.555C369E-03 

-Y .02%036E-C2 
-9.52 17829E-Ci 
-1.0026723E-01 
-1.05654 I O € - C I  
-1.1128767E-0 I 
-1.3185848E-C4 
-1 -3Y87968E-04 
-1.4660358E-C4 
-1.5013029E-04 
- I  .5170147E-C4 

1.3391 245E-Ci 
-3.02256 I7L-02 
-3 . IYf2963E-02 
-3.393S886E-CZ 
-3.64CO908E-C 2 
-3.7943865E-C5 
-5.8062343E-05 - 7.03149 ?7E-C5 
-7.0314937E-C5 
-9 .324t456E-  C2 
-9.34 lOZ69E-CZ 
-9.375C557E-02 
-9.420C253E-Ci 

- 8 . 3 3 5 € 4 4 5 € - ( 6  
-1.Ltl4b 452E-C f 

1.416C&lbE-C4 
I .4172878E-C4 
1.4167916E-C4 
1.418791bE-C4 
2.44 6 9 3 79 E -  C 2 

0. 

- I . Z ~ ~ W I Z E - ~ J ~  

Third elastic mode 
/----h---? 

3.2713473t -03  
5.036e 586E-02 
9. h422665k-02 

-3 .7658821t -03  
4.2082041E-04 
4.431298CE-04 
5.036E586E-02 
2. IO94795E-C2 

-1.C892085E-01 
4.2082041E-04 

4.4312586E-04 
5.036€ 586E-C2 
3.5625 460E-02 
1.CO32911E-02 
4.2082041E-04 

-4.1244149E-63 
5. 5625214E-04 

3.5625460E-02 
1.0032911E-02 
4.2082041E-04 

-4.7244 149k-C3 
5 .86252 1 4 t - 0 4  

-6.113C881E-CZ 
-8.1780206E-02 
-1.02 l 6 1 1 2 t - 0 1  - 1.2532098E-01 - L 4 8 5 3 2 1 4 E - 0 1  - 5.5 115 406E-04 
-5.8100100E-04 
- 6 . 1 0 5 5 6 5 l t - 0 4  
-6.2338419E-C4 
-6.293C054E-04 
-8.3589329E-02 
-1.1918452E-01 - I .L940CC5t-01 
- 1 . 4 4 3 8 6 l l t - 0 1  - 1. t351556E-C1 - 1.5802401E-04 
-3.5949467E-04 - 5,4655575E-C4 - 5.46 55 5 75 E- 0 4  
-5.584C8Zlt-CZ 
-5.6 12C310E-CZ - 5.67C1033t-02 - 5.746eJ79E-02 

- 1.4223552E-C5 
-2.1Y24 182E-05 
-2.1924182E-65 

5. E9 3 LZZOE-C4 
5.51 17443E-0* 
5.S29415Yk-C4 
5.4244759E-04 
1.4962535E-02 

- 3 . 7 6 9 e 8 2 1 ~ - 0 3  

5 . 0 3 6 e 5 ~ ~ - 0 2  

0. 
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Figure E-5.- Symmetric e l a s t i c  modes of Model 266 t i l t - ro to r .  



APPENDIX F 

SOME RESULTS BASED ON THE USE OF 
COMPONENT MODE SYNTHESIS 

Presented herein are some comparative studies based on the  

application of the direct  and component mode synthesis vibration 

analysis procedures developed i n  Chapter 6 t o  two simple s t ruc tura l  

systems. 

mentally measured modes and frequencies of a model of one configura- 

t i on  is  also presented. These studies are not intended t o  be an 

exhaustive o r  sys t emt i c  comparative investigation f o r  the  purpose 

of delineating all the ramifications associated with the use of 

component mode synthesis. 

provide an indication of the accuracy associated with p a r t i a l  modal 

coupling and t o  es tabl ish the  va l id i ty  of the t h e o r e t i c d  analyses. 

Reference is  also made t o  some analyt ical  studies by others 

employing the component mode synthesis computer program developed 

i n  t h i s  disser ta t ion.  

Free-Free Beam 

A comparison of the theoret ical  solutions w i t h  experi- 

Rather, they are intended solely t o  

Consider a uniform beam of constant cross-section having the 

following properties*: 

* These par t icular  properties were employed i n  a different  and 
unrelated study and simply adopted here for  convenience. 

566 
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L = t o t a l  length = 54 inches 

W = t o t a l  weight = 29.25 l b  

E1  = sect ional  s t i f f n e s s  = 50,000 lb-in 2 

I 
A area of cross sect ion 

sect ion moment of i n e r t i a  - - 29.16 in 2 - =  

The d is t r ibu ted  mass is taken t o  be lumped at t e n  equally spaced 

s ta t ions  d o n g  the lengthwise axis  of the beam i n  the  manner shown 

i n  Fig. F-la. Each s t a t ion  so established has two degrees of 

freedom: v e r t i c a l  t rans la t ion  and rotat ion.  The d i rec t  solution 

is  based on the 20 degree-of-freedom beam 0;f Fig. F-la. 

corresponding analysis by modal synthesis the  complete beam w a s  

par t i t ioned i n t o  the three unequal length beam segments sQown i n  

Fig. F-lb. In  t h i s  par t i t ioned form the unassembled beam segments 

have a t o t a l  of 24 degrees of freedom. 

physical properties of these lumped-mass systems. 

For the 

Table F-1 summarizes the  

Results showing a comparison of frequencies obtained by d i rec t  

analysis of the  complete beam with those obtained by both full 

modal synthesis and four combinations of p a r t i a l  modal synthesis 

employing only a few of the lower modes from each beam segment 

are given i n  Table F-2. A comparison of t he  displacements and 

slopes i n  the first four e l a s t i c  modes, as obtained from a d i r ec t  

analysis,  f u l l  modal coupling, and two combinations of p a r t i a l  

modal coupling, i s  made i n  Table F-3. 

analysis const i tute  the  basis from which to assess the accuracy of 

r e s u l t s  obtained by p a r t i a l  modal coupling. The use of full modal 

The results of t he  d i r ec t  



coupling i s  seen t o  y ie ld  results which are ident ical  t o  those ob- 

tained by direct  analysis. 

shown f o r  the  case i n  which only half  o f t h e  modes from each beam 

segment are employed. 

only one e l a s t i c  mode from each beam segment i s  used the  three 

predicted e l a s t i c  frequencies s t i l l  compare favorably with those 

given by the  d i rec t  solution. 

Airplane Beam Assembly 

Good agreement is indicated i n  the modes 

It is in te res t ing  t o  note tha t  even when 

The ava i lab i l i ty  of the lower modes and frequencies of a 

model consisting of an assenibly of "beams" configured i n  the shape 

of an airplane provided the additional opportunity t o  compare the 

results of analysis with experimental measurements. 

i s  shown i n  Fig. F-2 as it appeared during the shake tes t .*  

F-3 summarizes the geometric properties of the model. 

This model 

Fig. 

The par t i t ioning scheme employed i n  the  vibration analysis of 

t h i s  model is schematically depicted i n  Fig. F-4. 

symmetric modes of the model were available the analysis was 

r e s t r i c t ed  t o  the symmetric case. This permitted the analysis t o  

be based on the expl ic i t  consideration of the fuselage and only 

one wing and ta i l .  

beams, the dis t r ibuted mass of which was  lumped at  discrete  

points along the  e l a s t i c  axes of the  respective members. Each 

Since only the 

The fuselage, wing, and t a i l  were treated as 

* Thanks are extended t o  M r .  Robert V. Doggett of the Aeroelasticity 
Branch of NASA-Langley f o r  making the modal and geometric infor- 
mation pertaining t o  t h i s  model available t o  the author fo r  t he  
studies herein. 
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fuselage s t a t ion  had two degrees of  freedom: 

and rotat ion.  

wing and t a i l  s t a t i o n  also had associated with it a tors iona l  

degree of freedom. 

degree of freedom directed along i t s  axis.  

associated w i t h  each lumped mass was taken t o  be zero. 

propert ies ,  as discret ized f o r  t h e  analysis,  axe given i n  Table F-4. 

68 degrees of freedom are  associated with the  uncoupled system, 26 

of which correspond t o  "massless" coordinate8. 

v e r t i c a l  t rans la t ion  

In addition t o  these two degrees of freedom, each 

Each member w a s  also allocated a r i g i d  body 

The rotary i n e r t i a  

The model 

The r e s u l t s  of some comparative s tudies  pertaining t o  the 

model are summarized i n  Tables F-5 and F-6 and Fig. F-5. 

r e su l t s  shown i n  the  first two columns of Tables F-5 and F-6 

indicate  t h a t  the  results of the d i rec t  analysis do not agree 

exactly with those obtained by modal synthesis using all of the  

calculated component modes. This discrepancy is  a consequence 

of the f a c t  that a modal expansion using all t h e  calculated com- 

ponent modes i s  r ea l ly  incomplete since a s e t  of  modes equal i n  

number t o  the number of massless degrees of freedom has been 

The 

lo s t "  i n  solving fo r  the subsystem modes and hence a r e  

unavitilable" for  use i n  the  synthesizing procedure. 

I 1  

This incom- I 1  

p le t e  expansion is  equivalent t o  placing constraints  on the  beam 

segments, which w i l l  tend t o  give frequencies which are sl$ghtly 

higher than those obtained from a d i r ec t  analysis.  This is  sub- 

s t an t i a t ed  i n  Table F-5. A complete set of l i nea r ly  independent 

shapes w a s  established by calculat ing the  component "modes'1 

using an a rb i t r a ry  value of 1.0 f o r  all the  rotary ine r t i a s .  

d 
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Ehploying these shapes i n  a full modal synthesis then gave results 

which agreed exactly with those of the  d i r ec t  analysis.  

Modal synthesis results employing only a f e w  of the  lowest 

modes from each subsystem are compared with solutions by the  d i rec t  

method and with experiment i n  Tables F-5 and F-6 and Fig. F-5. The 

results shown i n  Tables 5 and 6 f o r  p a r t i a l  modal synthesis are fo r  

a s i n g l e  combination of the  lowest component modes. 

t o  the  r i g i d  body modes, these include: 

5 wing modes ( 3  bending and 2 to r s ion ) ,  and 2 t a i l  modes (1 bending 

and 1 tors ion) .  

free*, pinned-free, and free-free beam end conditions, respectively,  

were used i n  conjunction with free-free fuselage modes t o  provide 

an indication of the type of component modes which lead t o  results 

most nearly i n  agreement with those obtained from a d i rec t  analysis.  

A s  might have been ant ic ipated use of clamped-free modes f o r  the 

wing and ta i l  gave the  best results. A comparison of the calcu- 

lated mode shapes of t he  first four e l a s t i c  modes i s  made i n  

Table F-6."" 

a basis fo r  the assessment of the accuracy of the  r e su l t s  of p a r t i a l  

modal synthesis. 

analysis procedure can be made by comparing the results obtained by 

In  addition 

6 fuselage bending modes, 

The wing and t a i l  modes corresponding t o  clamped- 

Again, the  d i r ec t  solut ion results should be taken as 

An assessment of the  accuracy of the d i rec t  

~ 

* A sample input f o r  this  case is included as par t  of t he  l i s t i n g  
of the modal synthesis computer program i n  Appendix H. 

along the  axis  of each beam. 
** The zero rows correspond t o  the  r i g i d  body degree of freedom 
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t h i s  method with those obtained experimentally. 

comparison, given in  Table F-5, i s  considered t o  be qui te  good i n  

view of t he  rather coarse spacing between s t a t ions ,  par t icu lar ly  on 

the  fuselage and wing. 

a r e  compared w i t h  those obtained experimentally i n  Fig. F-5. 

Excellent agreement is  shown through the  highest mode f o r  which 

data w a s  available ( the  7th e l a s t i c  mode). 

Additional Applications 

The frequency 

The modes calculated by the d i r ec t  method 

The computer program f o r  natural  mode vibrat ion analysis by 

component mode synthesis which has been developed i n  t h i s  disser ta-  

t i on  has additionally been employed i n  two ana ly t ica l  s tudies  by 

others." 

of t he  r a t e  of convergence on the type of component def lect ion 

shapes employed i n  the  synthesizing procedure, concerned i t s e l f  

w i t h  comparing the free-free inplane frequencies and modes of 

a rectangular frame calculated on the  basis of using selected 

free-free o r  clamped-free component modes by themselves and i n  

conjunction with component s t a t i c  def lect ion shapes. The second 

application w a s  t o  a dynamic model of an ear ly  space shu t t l e  concept. 

This model consisted of a p a i r  of tube-like beams arranged i n  a 

pa ra l l e l  "piggy-bank" fashion and joined together by two spring 

assemblies. 

calculated using 8 booster modes and 7 o r b i t e r  modes, each group 

The first study, directed at assessing the dependency 

The frequencies of the complete s t ruc ture  were 

* Fralich,  R .  W., C. E. Green, and M. H. Rheinfurth: "Dynamic 
Analysis for  Shut t le  Design Verification", Paper no. 9, NASA 
Space Shut t le  Technology Conference, April 12-14, 1972 (NASA 
TMX-2570, July 1972). 

d 



consisting of a mixture of free-free e l a s t i c  modes, rigid-body modes, 

and s t a t i c  deflection shapes. The calculated frequencies are com- 

pared with those obtained experimentally i n  the  reference c i t ed  i n  

the footnote, t o  which the  reader i s  referred f o r  additional 

de t a i l s .  
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TABLE F-1 

DISCRETIZATION EMPLOYED FOR FREE-F'FEE UNIFORM BEAM 

Direct Approach 

Station 
Local 
Coordinate 
Posit ion 

MaaS RI E1 

2 (inches ) lb-sec 2 / i n  lb-see2-in (lb-in ) 

1 0.0 .004215 .136 50000. 
6.0 

12.0 
18.0 
24.0 
30.0 
36.0 
42.0 

.008430 b 271 

9 48.0 .008430 ,271 5c 10. 
10 54.0 .004215 .136 ------ 

Modal Synthesis 

Beam #1 

1 
2 
3 
4 

Beam #2 

1 
2 
3 

Beam #3 

1 
2 
3 
4 
5 

0.0 
6.0 
12.0 
18.0 

0.0 
6.0 
12.0 

0.0 
6.0 
12 .o 
18.0 
24.0 

.004215 

.008430 

.0084 30 

.004215 

.004215 

.008430 
,004215 

~ 

.004215 
~ .008430 

.008430 

.008430 
~ .004215 

.1360 

.2710 
,2710 
91355 

91355 
.2710 
01355 

-1355 
.2710 
.2710 
.2710 
~ 3 6 0  

50000. 
50000. 
50000. ------ 

50000. 
50000. ------ 

50000. 
50000. 
50000. 
50000. ------ 
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TABLE F-4 

DISCRETIZATION EMPLOYED FOR AIRPLANE BEAM ASSlEMBLY 

Station 

b e l a g e  

1 
2 
3 
4 
5 
6" 
7 
8 
9 

10 
11 
12 
13 

Jing 

1 
2 
3 
4 
5 
6 
7 

T a i l  

1 
2 
3 
4 
5 
6 

8orizont al 

Local 
Coordinate 
Position 

(inches ) 

0.0 
4 .O 
8.0 

12 .o 
16.0 
19.2 
24.0 
28.0 
32 .O 

40.0 
43.2 
48.0 

36.0 

0.0 
4 .O 
8.0 

12 .o 
16.0 
20 .o 
24 .O 

0.0 
2.0 
4 .O 
6 .o 
8.0 
10 .o 

Mass 

2 .b-sec / i r  

0002083 
0004166 
0004166 
0004166 

0030066 

,0004166 
t0004166 
,0004166 

,0004166 

,0003750 

,0004583 

,0003750 

,0002500 

,0003704 
,0007409 

J. 
.0007409 
.0003704 

.0001852 

.0003704 

$. 
.0003704 
.0001852 

!orsional 
Inertia 

2 .b-sec - in  

N/A 

,0001235 
.0002470 

.1 
.0002470 
.0001235 

.00006177 

.00012354 

$. 
.00012354 
.00006177 

*Mass of shaker s t e m  and c o i l  included 

GJ 

(lb-in 2 ?  , 

N/A 

15720. 

1 
15720. ------ 

15720 e 

1 
15720. ------ 

Total Masses: Fuselage = .005, Wing = .00444, T a i l  = . O O 1 8 5  
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TABLE F-6 

COMPARISON OF CALCULATFD SYMMETRIC MODE SHAF'B FOR AIRPLANE BEAM MODEL 

Fuselage ( 

F i r s t  e l a s t i c  mode 

\ 

m m t  solation Full modal synthesls Partla1 modal synthesls .. 
-1 

.. 
W > 

free-free free-free clamped-free pinned-free free-free 

R I O  m = o  'I)ummy" RI m = o  Rl.0 RI.0 

Tail 

Dlsple 

Slopes 

Slopes 

Twists 

Dlspls 

SlapeS 

G. 

d 



TABLE F-6 (Continued) 

COMPARISON OF CALCULATFB S M T R I C  MODE SHAPES FOR AIRPLANE BEAM MODEL 

Second elastic mode 

Direct solution Pull modal eynthesi8 Partial modal synlhesls 

-r - 
\ 

Fuselage 

wing 

Tail 

free-free 

RI=O 
free-free 

'I)ummy"RI 

0. 
5.U9C5327E-Cl 
1.a317Ct3EtCO 
3.313143UF+OC 
5.llllf578E*CC 
6.92*78C7E*00 
&.115661CEIOC 
5.2644128E-C 1 
1.05tS564E-CL 
U.2btU5I3E-CL 
8.94520901-01 
9.2326669E-CL 
9.2954644E-Ol 

-Y. 11  83CElE-C I 
.9.L3CC5tZE-C1 
-9.1392b19E-C1 
.9,145E209E-Cl 
%I491 S3SE-01 
.VI 15IOtI5f-CI 
0. 

clamped-free 

RI-0 

pIMed-free 

R I . 0  

free-free 

m = o  
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Tail ( 

TABLE F-6 (Continued) 

\ 

COMPARISON 

Fuselage 

wm 

OF CALCULATED SYMMETRIC MODE SHAPES FOR AIRPLANE BEAM MODEL 

Third e l a s t i c  mode 
Direct solution Full modal synthenis Partial modal synthesis 

\ r  A 

% 

free-free 

m = o  
free-free 

"Dummy" Rl 
clamped-free 

m = o  
free-free 

m = o  

d 



TABLE F-6 (Concluded) 

COMPAIUSOI? OF CALCULATED SYMMETRIC MODE SHAPES FOR AIRP- BEAM MODEL 

Fourth elastic mode 
Mreet solution Full modal synthesis Partial modal syntheels 
r< #. 

I -I 

free-fres he- ire0  clamped-free plnned-frfm free-free 

Rf-0 iu.0 m - o  'mummy" Rf R I = O  RI.0 

n. 
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(a) Complete beam 

b e .  4 D  e 4 )  e e e 4 - 
Beam Beam Beam 

88 ment segment 

6 D. 0. F. 
f 2 #3 

segment 
#1 

8 D. 0. F, 10 D. 0. F. 

(b)  Parti t ioned beam 

Figure F-1.- Lumped mass representation for  vibration 
analysis of uniformbeam. 

d 
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Figure F-2.- Airplane beam model during shake t e s t .  
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All Material Steel -I 
thick 

All Material Steel 

I J 

. _.. 19.2'' 

Figure F-3.- Geometric properties of model. 



U 

1 1 

3 
Subsystem #1 

Subsystem #2 -k Subsystem #3 

Figure F-4.- Partitioning scheme applied in  vibration analysis 
of model. 
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Measured ------------ Calculated (Direct Splution) 

i- 

Figure F-5.- Comparison of measured and calculated nodal patterns 
for  symmetric modes of model. 

d 



APPENDIX G 

A GYROSCOPIC FINITE ELEMENT FOR USE I N  DYNAMIC ANALYSES 

OF GYROSCOPICALLY COUPLED ELASTIC SYSTEMS 

In  dynamic analyses* of e l a s t i c  systems having la rge  ro t a t ing  

components, such as propellers o r  proprotors on propeller- o r  

proprotor-driven a i r c r a f t  o r  t he  fans of high bypass r a t i o  ducted 

fan je t  engines on turbo-fan j e t  powered a i r c r a f t ,  the  gyroscopic 

effects  a r i s ing  from ro ta t ion  may have a non-negligible influence 

on e i the r  the  overal l  o r  l o c a l  system dynamic charac te r i s t ics .  

For dynamic analysis purposes the primary gyroscopic e f fec ts  of 

such ro ta t ing  components can be accounted f o r  by ideal iz ing each 

component as a r i g i d  ro ta t ing  disc.  A f i n i t e  element s t i f fnes s  

model based on t h i s  ideal izat ion which has the convenience of being 

readi ly  incorporated in to  e i t h e r  a d i rec t  o r  modal formulation for  

dynamic analyses within the  Lagrangian scheme f o r  es tabl ishing 

equations of motion is derived below. The approach taken here 

is  tha t  of modifying the Lagrangian poten t ia l  fo r  the uncoupled 

system t o  account f o r  the gyroscopic e f f ec t s  of any ro ta t ing  

components. 

* Within the  context of t h i s  discussion "dynamic analysfs" includes 
both natural  mode vibrat ion analysis and s t ruc tu ra l  response t o  
time-dependent external  exci ta t ion.  

d 590 



Within the f i n i t e  element methodology the  complete s t ructure  

is  par t i t ioned in to  a number of simpler substructures. The spin- 

ning component is  taken t o  be one such d iscre te  substructure which 

is  idealized as a r i g i d  disc  ro ta t ing  with constant angular velo- 

c i t y  52 about i t s  polar axis.  The k ine t i c  energy of a spinning 

disc  performing t rans la t iona l  and angular motions i n  space can be 

derived on the basis of the three sets of orthogonal axes shown 

i n  Fig. Gl. Coordinate axes x y z the  primary reference axes, 

and x y z  are both xrYrzr are  fixed i n  space. The axis systems 

moving coordinate systems located at the disc  center of mass, 

0 0 0’ 

denoted by 0. The x y z system moves only i n  t rans la t ion ,  i t s  

coordinate axes remaining p a r a l l e l  t o  the corresponding axes of 
r r r  

t h e  space-fixed axes. To maintain the  ident i ty  of t he  spin speed 

of t he  disc  about t he  x axis as a d i s t inc t  quantity the body axis 

triad x y z  i s  fixed i n  the  disc only t o  the  extent tha t  it 

part ic ipates  i n  the variable (perturbation) angular motions of the 

disc i n  space. These axes a re  oriented such tha t  the x axis  

remains normal t o  the plane of the  disc;  the  plane formed by the  

yz axes l i e s  i n  the  plane of the  disc.  The disc  spins about the 

x axis  with angular velocity 52 with respect t o  the x y z  system. 

Ner ian- type*  angles 0 ,  JI, and 4 are taken t o  define the  

*Here the  angles r e fe r  t o  rotat ions about mutually perpendicular 
axes i n  contrast  t o  t h e  unsymaetric def in i t ion  of the N e r  angles. 
A discussion of these a l te rna t ive  angles fo r  describing the  
angular motion of a r i g i d  body i n  space is  given by L. A. Pars: 
A Treatise on Analytical Dynamics, John Wiley and Sons, Inc. ,  
New York, 1965, pp. 103-104. 

d 
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orientat ion of t h e  disc  with respect t o  the  t rans la t ing  axes 

x y z . The Cartesian coordinates of t he  center of mass i n  space- 

fixed axes together w i t h  the  "Eulerian" angles completely describe 

r r r  

the posit ion of the  disc  i n  space and thus const i tute  a su i tab le  

s e t  of generalized coordinates for  t he  substructure. 

The order of rotat ion i n  transforming from the  t rans la t ing  

t o  the body axes xyz is  a posi t ive pi tch 8 about " r Y r Z r  axes 

the  yr axis,  followed by a posi t ive yaw J, about the  displaced 

z axis, followed by a posi t ive ro ta t ion  about the displaced xr 

axis, as indicated i n  Fig. Gl. 

disc  are at the center of mass, t he  motion of t h e  center of mass 

r 
Since the axes moving w i t h  the 

i n  the  space-fixed system can be t rea ted  independently of the 

angular motion of the  disc  about i t s  center of mass. 

has velocity components xo, yo, z e, $, $, and Q. If wx, w 

and wz 

axes 

The disc  . . . .  
0' Y' 

are the  angular velocity components r e l a t ive  t o  the body 

xyz, the t o t a l  k ine t ic  energy of t he  disc  can be wri t ten i n  

vector notation as 

where . . - - 
r = x i + yojo + zoEo 0 0  

- 
o = w  T + w  j + w z i ;  

X Y 

- - - 
H = I w ? + I w j  + Izwzk  

x x  Y Y  
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Because of polar symmetry t h e  mass moments of i n e r t i a  i n  t h e  ex- 

pression f o r  H are constant even though t h e  body axes xyz are 
- 

not fixed i n  the  disc. From Fig. E l  the angular veloci ty  compon- 

ents  r e l a t ive  t o  the  xyz coordinate system can be wri t ten as  

w = 0 cos J, cos Cp + J, s i n  Cp 
Y (G-3)  

. 
wZ = JI cos 9 - 0 cos J, s i n  Cp 

For small angles, such as assumed i n  small vibration theory, Eqs.  

G 3  reduce t o  

w 3 6 + + C p  
Y 

We can also write  

x 3 x  
0 

Yo =: Y 

z =:z 
0 
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Substi tuting Eqs. G 2 ,  G-4, and G5 i n to  Eq. Gl and noting tha t  

I = Iz 

order i n  the perturbation quant i t ies ,  is  given by 

from symmetry, the  kinet ic  energy of t he  disc,  t o  second 
Y 

= - M  1 ( X  '2 + y '2 + '2 ) + F I ~  1 (n 2 + 2MW TG 2 

The gyroscopic coupling term occurring as a consequence of spin i s  

underlined. Eq. E 6  can be wr i t t t en  i n  the  matrix form 

or ,  i n  abbreviated notation 

*The term 1/2 I,(Q2 + 2Q4) has been deleted because it w i l l  
not contribute t o  the f i n a l  equations of motion. 
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To accommodate a spin direction opposite t o  that shown i n  Fig. G-1 

simply replace 52 i n  Eq. G 7  by -52. Gravity has been removed 

from expl ic i t  consideration by assuming t h a t  all perturbations of 

the  coupled system are t o  be measured from the s t a t i c  equilibrium 

position assumed by the s t ructure  w i t h  all the  components spinning 

and gravity acting. 

The corresponding potent ia l  energy expression is given by 

where 

[i] ,  = [Null] (G-10) 

since a r ig id  body has no s t r a i n  energy associated with i t s  

displacement. 

Eqs. G-8 and G-9 const i tute  the desired kinet ic  and potent ia l  

energy expressions fo r  a r i g i d  rotat ing disc approximation t o  a 

spinning s t ruc tura l  component such as a propeller,  proprotor, o r  

fan. 

ponent of a parti t ioned structure.  

the  kinet ic  and potent ia l  energy expressions f o r  the nonrotating 

substructures, a transformation t o  system generalized coordinates 

effected by enforcing inter-substructure displacement compatibility, 

and the  resul t ing expressions substi tuted in to  Lagrange's equation 

t o  obtain the system equations of motion. 

There is  one such pa i r  of expressions f o r  each rotat ing com- 

These are simply grouped w i t h  

d 
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APPENDIX H 

COMPUTER PROGRAMS 

This appendix contains a l i s t i n g  of the  computer programs 

employed i n  the numerical s tudies  of t h i s  disser ta t ion.  These 

include three proprotor programs: 

PRSTAB6 - Proprotor/Pylon S t a b i l i t y  

PTORCEX - Proprotor Force and Moment Derivatives 

ROTDEX4 - Proprotor Flapping Derivatives 

and two computer "packages" fo r  natural  mode vibration analysis,  

each "package" consisting of an assembly of programs executed 

sequentially with disc  communication between them: 

DSTIFF/BJD5 - Vibration Analysis by a Direct Method 

COSMOS/MODALC/BJD5M - Vibration Analysis by Component Mode Synthesis 

A sample input is included with each of the programs. 

The programs are  wri t ten i n  FORTRAN I V  f o r  t h e  CDC 6000 se r i e s  

computers with the  Langley Research Center version of t h e  SCOPE 3.0 

operating system and t h e  RUN compiler. 

The author takes t h i s  opportunity t o  again acknowledge the  

programming assistance provided by Barbara J. I)urling* and 

* Struc tura l  Mechanics Branch, NASA-Langley 

597 



Robert N. Desmarais." In  addition t o  providing consultative services 

several  subroutines from their  personal computer program libraries 

were made available t o  the  author f o r  use herein. 

computer program BJD5 and subroutines W X C ,  FREQ, and ZEROM used 

i n  the  computer package f o r  natural  mode vibrat ion analysis by the 

d i r ec t  method were wri t ten by Barbara Durling. 

subroutine ALLEIG represent modifications of  BJD5 by the author fo r  

use i n  the computer package f o r  natural  mode vibrat ion analysis 

by component mode synthesis. The subroutines WMTXC, F'REQ, and 

ZEROM were also employed i n  th i s  l a t t e r  assembly of programs. 

function subprogram CIRC fo r  evaluating Theodorsen's Circulation 

Function i n  program PRSTABG w a s  wri t ten by Robert Desmarais, 

Specif ical ly ,  

Program BJD5M and 

The 

* Aeroelasticity Branch, NASA-Langley 
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PROPROTOR/PYLON S T A B I L I T Y  

PROGRAM PRST A 8 6  ( INPUT, OUT PUT s TAPE 1. TAPE 29 TAPE 3* TA P E 4 9  TAPES=[  NPUT t 

***** **  **** ********** ******** ** ** ** ****** *****************************le * * * 
* THSS PROGRAM FORMULATES T H E  L I N E A R  E I G E N V A L U E  PROBLEM * * FOP THE D F T F R Y I N A T I O N  OF THE F L U T T E R  MODES AND * 
* FRtB lJENC IES OF A N  I S O L A T E D  PROPRDTD?/PYL;)N SYSTEM, THE * * M A T H F Y A T I C A L  MODEL ASSUMES A R I G I D  PYLOhl H A V I N G  THREE * 
* T R A N S L A T I O N 4 L  AND THREE R O T A T I O N A L  DEGREES OF FR€EDOM * * AND A R I G I D - B L A D E  G I Y R A L E D  ROTOR H A V I N G  T IP-PATH-PC ANE * 
* FREEDOMS I N  P I T C H  AND YAW. THE PRC)Pr\OTOR IS T A K E N  TO * 
* B E  F U L L Y  CONVERTED FORWAROIREPRESENTING A H I G H - S P E E D  * * A I R P L A N E  C R U I S E  MODE OF OPERATION.  E I T H E R  THEODQRSEN * 
* UNSTE 4DY AERCDYNAMICS OR W A S  I -STEADY 4ERODYNAM I C s  * 
4: MAY H E  FMPLOYED FOR THE D I S T R I R U T E O  BLADE LOADING.  * 
* BECAUSE THE R E S U L T I N G  EQUATIOF iS  C O N T A I N  NONPRDPORTIOYAL * 
* D A M P I N G I T H E  Fc E Q U A T I O N S  O F  SECOND ORDER ARE TRANSFOHMEO * * T O  AN E Q U I V A L E N T  SET OF 2N F I R S T  ORDER E Q U A T I O N S  I Y  * * ORDER T O  REDUCE THF M A T R I X  E Q U A T I O N S  TO STANDARD * * E I G E N V A L U E  FORM, * * * ***** . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  **** ******************* +**** * 

C 
C 
c 

c 
C 
c 
c 
C 
c1 
C 
C 

c 

K ASE= 1 
K A S E - 2  
K AS€= 3 
K A S E = 4  
K ASE= 5 

K A S E = b  
K ASE= 7 

KASF=R 

K AS€= 9 

- T P P  P I T C H  A N D  YAW AND P Y L O N  P I T C H  AND YAW 
-PYLC.N P I T C H  AND YAW 
-TPP P I T C H  AND YAW 
-PY L G N  P ITCH. YAW* AND VERT IC AL T R A N S L A T I O N  
-TPP P I T C H  A N D  YAW 4ND PYLON PITCHIYAWIAND 

-TPP P I T C H  A N D  YAW AND PYLON P I T C H  
-TPP P I T C H  A N D  YAW AND OYLOY P ITCYvYAW.  

-TPP P I T C H  A N D  Y 4 U  AND P Y L O N  P ITCHsYAW.  

VF R T  IC AL TRANS L A  T I O N  

AND A X I A L  T R A N S L A T I O N  

V E R T I C A L  T R A N S L A T I O N  AND A X 1 4 L  T R A N S L A T I O N  
- T P P  P I T C H  AND YAW AND P Y L O N  V E R T I C A L  T R A N S L A T I O N  

c I AERO-1 -THEODORSEN UNSTEADY AEROCYNAMICS 
C I AERO-2 -0UASI -STEADY AERODYNAMICS 
C I AERO=3 -NO AERODYVAM IC S ( S O L U T I O N  G I V E S  NATURAL MODES 1 

C I M A C H = l  -PRANDTL-GLAUERT MACH NUMBER CORRECTION 
c lMACH=Z -MACH AND C O M P R E S S I B L E  FLOW ASPECT R A T I O  CORRECTIONS 
C I M A C H = 3  -NO CORRECTIONS 

C I D A M P = l  - V I S C O U S  STRUCTURAL D A M P I N G  ECPLOYED FOR PYLDN/bdING 
C I D A M P = 2  -COMPLEX STRUCTURAL D A M P I N G  EMPLOYED FOR P Y L O N I W  I N G  

CCMPLEX B M ( ~ ~ ~ J . B C ~ B . ~ ) . B K ( ~ . ~ J I H ( ~ ~ *  L b I * U (  1 6 v L 6 j  .LAMBDA( 1 6 )  .OET+ 

POR t 16) s A S T (  161 17  I 
I P I V O T ( 8 ) .  I N D E X  (812)r I N T P f 1 6 r 2 )  v V K N O T S ( 6 0 I  * F R E Q f 2 O ) s  
T ( 16. 31 tu( 8r8) 

1 A ~ 8 r R t r B i 8 . 8 1 . P ( 1 6 l r 0 ( 1 6 ) ~ A S (  l 6 r l 6 ) ~ C r A T ( 1 6 ~ 1 6 l r  
2 

I 
D I M E N S I O N  

TT  f 818 b I R (  8 1 .RQ( 8J . F R E O l (  20  I 
REAL MACH 



600 

1 

899 7  
8 9 9 9  
1000 

1010 

1009 
1070 

5 

r O Y Y O N  H C A D l (  1 2 1  
O I C E h l S [ O N  2 4  16) 
CrMYON/UNSTDY/SUC(  16) r S  *HSOIHPCH,RI ECH. V t  L. F R E O I .  I I * I AERO. [MACH 
CCYPL EX A 1. A2.A3.A4.A5. I31 r E 2 r  E3 
FXTFRNAL AERO 
NAMFL I S T / R O T O P / N E r R  I rRY.BU* P R E C O N E t  H l  ~ H Z I R I  BCH. DEN. DENSLI 

L A O v O E L T b 3 .  ) . (SLONG~HSLAT~YDLONG.YOLATr REF. SWPLONG. 
2 F ~ P C A T I E P S  I L O N I  TDIVS 

NAMEL I S T 1  P Y L O N /  PHI P I ROLL * P I  P I  TCHI P I YAUr  HE l r  HRZ. PSROLL e P S P l  TCH. 
1 
2 

PSYAW,PSX, P S Y s  P S I  * POXI PDY 9 POL * PDROLL 
PDY A W . CR 9 W EHZ 

POP I T C 4 r  

READ 
I F (  FOF.  5 1 8 9 9 8 1  8999 
F f l R M A T t l H l / / *  PROGRAM P R S T A E 6  STOPPED O N  LEOF . 5 ) * l  

F C R M A T ( 8 A l O l  
R E A D  1 0 1 0 . K A S E + N f R E O * N V E L  r l A E R O *  I Y A C H e  I D A M P  
FQRY A T ( 20 I 4  ) 
R EA0 
R E A 0  
QEAD 1 0 0 9 ~ F T A l r E T A Z v l N C  
I F ( I A E * O . € Q ~ l  1 R E A D  1020r (FRFPLII l r I = l * W R E O I  
F C R H A T l Z F  10.4. 110) 
f C P M A T ( 8 f  10.4) 

1000.( H E A D l t  11 111 v 1 2 1  

c CNT I NUE 

1020. ( F R E Q 4  I 1 v I = l r  N F R E O )  
1020 ( VKNQTS( I 1 s I = 1  v NVEC 

R E A D  ROTOR 
R E A D  PYLON 
Q l = t N E % * B I  t 1 2  
t+OLONG=HflLONG*2 *SORT R I *H SLON G 1 
$DLAT=HDL AT*2*S CRT l R I *HSL AT I 

PGX=2*PDX S PGY=Z*PDY S P G Z = 2 * P D Z  
P G P I  T CH=2 *PDP I T C C  d PGY AW=2 *PDY AW S PGROLL= Z*PDROLL 

GO T O  6 

PCX= PDX*2 *SORT(  ( PM+P M )  *PS X I  
PCY=PDY*2*SORTI  ( F M + R M ) * P S Y l  
P C I = P D I * 2 * S Q R T (  ( F M + R M + Y E M Z I * P S L 1  
ODPI  TCH=PDP I T C H * 2 * S O R T (  ( R M * ( H l * * 2  + P I P I  TCH+PM*( HR 1**2 1 

I F ( I 0 A M P a E O . l )  GP, 19 5 

PCX=PDY=PDI= PDP I TCH=?DYAW=PDP OLL=Oe 0 

P GX= P GY P GZ= PGP I TCH= PGY AU =P GR 01 L = 0 - 0 

1 +PM* (CB**2 B I * P Z P I  TCH) 
PDYAW=PDYAW*Z*SORT( (RM*(W2**2  I + P I Y A U + P Y * ( H R L * * 2 1  l * P S Y A W )  
P D P D L L = P D R O L L * 2 * S Q R T (  ( N R * B 1 + P I R O L L + P M * ( C R * * Z l  l * P S R ' l L L )  

R I J = (  N R*RU 1 /2 
D t L T  A 3=DE L T  A 3  / 5  7 .295  7 7 9 5 1  30 82 3 
F P S I  L O N = € %  I LON 1 5 7 . 2 9 5 7  79 51 30823 

6 CC'NTINUE 

PREC ONE=P REC CNE / 5  7.2 957 7 9  5 1  30 82 3 
IF( 1AERO.EO.3) DEN=O.O 
CANMA=(DEN*AO*ECC*(P**Q) 1/81 
R R=RE f *R 

A F  =f P EO1 I I I 
C @  500 I I = l v N F R E O  

F QFO( I 1  )=(6*283 1 8 5 3 1 * F R E Q ( I  11 1/60 
I F I I A ERO- EO 
00 500 J J X l r N V E L  
CC! 10 I = 1 . 8  
On 10 JzL.8 
B Y I  I *  J)=O.O 
B C (  1, JI= 0.0 

10 R K l l r J ) =  0-0 

1 I f REO 1 f I I )=b- 2 8 3 L85 3 1 *F RE P 1 ( I I 1 
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R, 
R M I 3 * 3 I = B Y (  3 . 3 I + k E M Z  
8H (6 
B v ( 7 . 7 I = R  I + R M * f  H1**2 ) + 2 . * P U * P R ~ C O N E * H l + P I  P ITCH+PM*(  HBl**2J 
R M ( 7 r 7 ) = R M (  7 * 7 ) + Q M * ( C B * * 2 1  
9 M f 8 .  8 ) = R  I+RM*(  H2**2)+2.*RU*PRECONE*H2+PIYAb+PM*( HB2**2) 
8 M  ( 2 5 I =R U* P R  ECONE S B M i  2.8 =RM*H2 +RU* PP ECONE+PM*Y 82 
R M I  3 4 l=-RU*PRECGNE 
R Pi(( 4 9 7 1 =R I +  RU*P RECONE*HL 
RM15.2I=RM(2.5)  S R M ( 7 . 3 ) = R M ( 3 ~ 7 1  S 9 M ( 7 r 4 1 = B M f  4 - 7 1  
A ~ ( B r 2 I = R M ( Z * 8 1  S R M ( 8 * 5 I t f l M ( 5 9 8 I  
SPt  1 7 1 ~ B M 1  7+ 1 =-PM*CB 

( 1 9 1 I =R M( 2 + 2 1 =BM( 3 3 I =R M+ PM S 

6 I =N  8*R I +P I R O L L  +PM *( C 8  **2 J 

BM ( 4r 4) =BM( 3 v 5) =R 1 

S BM (3 r 7 )=-RH*H1-RU*PRECCNE-PM*HBl 
S RM( 5.8 1 =R I +RU*PRECONE*H2 

V€L=VKNOT S1 J J t / .  592 
t+ACH=VEL/VS 
S=VEL / (  FP FO(  I I ) *R I 
HSQ=S**2 
P H I = A T A N (  V E t  / ( F R E O (  I I ) *RE 1 J 
iF ( IAERO.EQ.3 )  GO T O  11 
CALL P G A U S S ( E T A l ~ E T A 2 r I N C r S U M ~ A E R O ~ Z ~ l 6 I  
A l=CMPLX f SLJ H 1 91 SUM ( 10 I I 
45=CMPLXf  SUM t 5 J r SUM( 6 )  1 
R3=CMPLX(SUM1LI .SUM(l ) l  S 6 2 = C M P t X ( S U Y ( l l ) r S U M ( L 2 1 I  
A 2 = C M P L X ( S U M ( 1 3 l r S l J M ( 1 4 ) J  S A4=CMPLX(SUC( 1 5 I * S U M (  1 6 ) )  

I A 3 t C M P  L X  (SUM ( 3 I 9 SUM( 4 J I 
S 6 l = C H P L X f  SUM( 71 *SUM( 8 J I 

11 CFM=.5*GAMMA*(FREO( I I I * * 2  I * R I  
CFH=CFM*S/R 
CFWR=CF M* S*PR ECChE 
I F ( I A F R O . N F o 3 J  GC T O  12 
P 1=A2  =A3=A4=A5= R l = R 2 = R 3 = 0  -0 

12 C C N T I  NI lF  
R C ( l . l l = T D * (  (GAMMA*RI*FREQ( 11 J * A 3 1 / ( R * * 2 )  I + P D X  

R t ( Z 9 2 ) = C F H * A 1 * 5 / ( F R E Q {  I 1  ) *R)+PDY 
R C ( 2 * 4 I = R C (  2 * 7 I = C F H * A 3 / F R E O (  I I 1  

R C I  2 9 8 I = C F H * A l *  S*H2 /  (FREO ( I I I *R I 
9 C ( 3 1 3 ) = C F H * A L * S / ( F R E O (  I 1  I *RJ+POZ 
R C ( 3 . 5 1 = R C ( 3 r 8 ) = C F H * A 3 / F R E O 1 I  I 1  S A C ( 4 * 4 J = C F M * A 5 / F R E Q (  I f  I + H D C 3 Y 6  
R C 1 3 9  7 I = - C F H * A L * S * H l / ( F R E Q t  11 J*R) 
RC( 4.7 1 =C FM*AS/FREQ I I I ) +CFMR* AZ*H L* S/ (F REO( I I I * R  1 
R C t 4  
R C ( 4 .  RJ=Z.*RI*FRFO( I f  l + C F M * A 3 * S * H 2 / ( F R E Q (  I 1  I * R I - C F M S * A 4 / F R E Q ( I  I I  
RC(4r5)=2.*RI*FREO~II)-CFMR*A4/FREQ(II~ 
R C l 4 . 3 I = - C F M R * A 2 * S / ( F R E O (  [I I * R )  S BC(S~SI=CFM*A5/FREQ(II)+HDLAT 

2 1=CFM*A3*S/ ( FRFQt I I )*R 

@C(5 ,  B)=CFM*AS/FREO( I X I  +CFMA*AZ*S*H 2/ (FREQI  I I I * R  I 

RC( 5.7 t=- 2.*R I * F R E Q (  I I l -CFW*A 3*HL*S/(  FREQ ( I I 1  Wi ! +CFYR*A4 /FREO(  I I )  
RC(5.+J=-?.*WI*FREO( I I ) + C F M B * A 4 / F R E Q (  I 1  J $ H C I 7 r 4 I = C F M * A 5 / F R E Q ( I  I I 

R C ( 5 * 3 I = C F M * A 3 * S / ( F R E Q (  11 J * R I  S B C ~ 5 v Z I ~ C F M R * A 2 * S / f F R E O o * R I  

R C I 6 . 1 I = - I G A M M A * R I * F R E Q (  I I ) * S * A 3 ) / R  S R C ( 6 r 6 1 = P D R O L L  
RC( 7 9 7 l =CFM*AS/FREO 4 I 1  1 +C F M R * A Z * H l * S /  (F REO( I I I * R  I +CFH*A l * S * H  l * H  L /  

1 ( F R F O ( I  I ) * R l + P D P l T C Y  J B C 1 7 * 2 ) = C F M * A 3 * S / ( F R E O ( f f  ) * R I  
R C  (7.8 )=2 ,*R I *FREO(  I I I +CFM*A3*S*H2 /  (FREQ(  I I 1 * R  ) -CFMR*A4/FREQ( I I I -  

RC(7.5J=ZI*RI*FREQ( I I l - C F M B * A 4 / F R E O (  I I ) - C F H * A 3 * H l / F R E Q (  I 1  I 

B C ( 8 * 5 J = C F M * A S / F R E O (  111 S R C ( ~ V ~ ) = C F M * A ~ * S / ( F R E O ~ I  I ) * R I  

1 C F H * A 3 * h l / F R E O (  11 J 

R C ( 7 .  3 I= -CFMR*A2*S / (FREQ(  11 I *R ) -CFH*A l * S * H l / t  FREO(  I I l * R  I 

R C ( 8 .  B J = C F Y * A 5 / F R E O t  1 1 ) + C F M 6 * A 2 * S * H 2 / 1 F R E O I  I I  l * R I + C F H * A l * S * H Z * H Z /  
1 

1 +CFH+A3*hZ /FRED(  I I I 

( F R E Q l  I I )*R I +PDYAW 
R C ( 8 r  71=-2.*RI*FREQ( 11 ) - C F M * A 3 * H l * S / ( F R E O t I  I l * R  ) + C F Y R * A 4 / F R E O (  11 I 

R C ( 8  4) -  2. *R I * F R E O  ( I 1  1 +CFMB*A4 /FREO(  I 1  J +CFH*A3*HZ/FREQ( I I I 
R C ( 8 . 2 ) = C F M R * A Z * S / ( F R E Q (  I I ) * R  ) + C F H * A l * S * H Z / ( F R E O (  I I  J * R I  
R K t  1 1 )=CYPL X (  PSXrPSX*PGX 1 S 8 K (  2 * 2 I = C M P L X I  PSY e PSY *PGY J 
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7 7  kOF=5 
l R l l J = A  I l R 1 2 ) = 4  S I R ( 3 1 = 5  6 f R ( 4 ) = 7  S I R L S J = R  
GO T O  70 

I R ( 1 1 = 1  L I P ( 2 ) = 3  S I R ( 3 ) = 4  S 1 R ( 4 ) = 5  I l R ( 5 ) = I  L I R ( 6 1 = 8  
GO TO 70 

I R ( l 1 - 3  6 IR(2)=4 S I P 1 3 1 = 5  
GG T f l  3 0  

3 0  C.CNT I NO€ 

I = I R  I U K  1 

2 8  I \ C F = 6  

29 NOf-=3 

CI! 5 0  U K = l * N D f  

00 5 0  J = l r 8  
T T ( K Y  r J ) = U (  I I J) 

CC 3 3 0  I = l * N O F  

5 0  
R E W I N D  2 

3 3 0  W R I T E ( 2 ) ( T T (  I r J ) r J = l s B )  
REWIND 1 
60 3 3 3  U L = C * 3  
READ ( 1 ) ( ( RM ( I * J I t J = l  r 8  1 I = 1 *  8 J 
RFWIND 2 
CO 3 7 1  J = l . N D F  
READ(  Z ) ( R O (  I I r I  = l r 8 J  
CI: 3 3 1  I = 1 1 0  
R C ( 1  J t = O  e 0  
OC 3 3 1  I J = l * B  
6 C I I  * J I = R C (  I . J ) * B M f  I ?  I J ) * R O (  I J J  
R E h l N D  2 
CO 7 3 2  I = l . N D F  
R F A D f 2 ) ( k Q (  J ) r J = I . 8 )  

3 7 1  

OC 3 3 2  . l = l * N D F  
PY( I J ) = O  e 0  
DC 3 3 2  I J = 1 * 8  

k R I T E  ( 3 )  t (RM( I .  J J * J = l * N D F  I r  I = l * N D F )  
3 3 7  F ! P ( I * J J = R M (  I . J ) + R O ( I J I * B C ( I J I J )  

3 3 3  CCNT I NIJE 
Q E W I N O  3 
READ(  3)4 ( R M (  1.J ). J = l r N D F  J I I = L  INDF J 
READ( 3 1  ( ( BC I I r J 1 ,  J-1 9NDF) * I s 1  (NDf  I 
R F AD ( 3 )  ( ( RK ( I I J 1 I J = L  t NDF 1 9 I=l NDF 1 
hDFT2=2*NDF 
t P L L  
OC 13 I = l . N D F T Z  
T ~ I 1 l ~ ~ A f ~ A G ~ L A H ~ D A ~ I ~ ~ / 6 , 2 8 3 L 8 5 3 0 7 1 7 9 5 9  
T ( I 1 2  I = f T f  1 ,  1 )*6O. ) / A F  
I f ( A I M A G I L A M B D A 1 f ) ~ . E Q , O I O )  GO TO 1 3  
T [ I *  3 ) = ( R E A L  I L A M R D A (  I I 1 / A B S ( A I M A G ( L A M B O A (  I )  

E I G2N I RM. BCI BK NDF NDF T 2  9 W *L AM BOA J 

1 )*LOO.  
13 C C N T I N U E  

P R I N T  l O l 4 r H E A D l  
1 0 1 4  FORMAT I 1 H  1/ / 1 2 A  l o / /  / / b 

VKEA S=VKNOT S ( J J 4 *SOR T f  DEN /DENSL J 
PR=3.14159265358979*VEL/(FREQ(II)*R I 
P h I = P H I*5 7.2 9 5 7  7 5 5  1 3 0 8 2  3 
I F ( D E N - N E o O . 0 )  GO TO 1015 
V E L = V K h O T S I  J J ) = A R = P H I = O  -0 

1 0 1 5  P R I N T  1 0 1 3  
1013 FCRMAT( 1H01 3X**ROTOR R P M * ~ Z B X I * V E L O C I T Y  * e  2 7 X s  *ADVANCE R A T I O *  * 

ANGLE* /  /26X 9 *FT  /SEC*  e 11 XI *KNOTS * r 1 8  X r*L OCK 
2 1 3 X * * K E A S * r  1 7 X 1 * J * r 3 9 X 1  + P H I * / / )  

NUMBER *I 9 X  I *INFLOW 

P R I N T  101 2 s  AF .VEL* VKNOTS t JJ I * VKE AS*  AR GAPHA I P H I  



C O h  

101 7 t C G H A T f  I X  *F 1 5 . q t 6 X t  F 1 5 - M t 2 X  r F  15. d t 2  X I  El 5.9r  5 X  .F 15odt  5 x 1  F15 .  R 1 

1 5 X * F 1 5 o A / / / /  1 
I F I K A S f . F Q . 2 )  G O  TO 123 
l F ( H S L I I Y C * N E . H S L A T I  GO TO 1 2 3  
SAVE l=l.O+HSLONG/(RI*FRFO(I I 1**21 + a  5O*GAMYA*RJ*TAN( D F L T A 3 )  
I F ( S A V E l . C T o O . 0 1  GO TO 127 
R F F = S Q R T (  S A V E 1  I 
R O P = 2  5 * 5 A M M A * A 5 / B F f  
P R I N T  1 0 1 6 r R F F t R f i R  

10 16 f CRMAT( 1 X *43JH**** B L A D E  F L A  P P  I N G  F R  €QUE NCY I CYCL E S / R  E V  1 = t F 10 -3 t 
1 2 0 X t 3 8 H * * * *  B L A D E  O A M P I N G ( P E R C E N T  C R I T I C A L  1 = t F 1 0 . 3 / / / / )  

1 2 3  C C h T I N U E  
P p I N T  l o l l  

10 1 1 F P R M A  T ( 1 I X *SYSTEM E I G E  NV AL U E  S* 2 8X 
RX . * R E A L * r l Z X * * I M A C I  MARY*, 17x9 *CPS*r  13x9 *CYCL F S / R E V * t  

*FR EQUENC Y* t 2 4 X  t *DAMP I VG*/  / /  
1 
7 10x1 *PERCENT C R I T I C A L * )  

P R I N T  
FORMAT I / /  f 2 X  r EL 5-69 4X.E 1 5 . 8 ~  8 X r E 1 5 . 8 1 4 X  r E  15. 8 r 8 X r E l 5 . 8 )  I 
C A L L  h C Y ( W t N D F T 2 r N O F T 2 1  

1040t ( L4MRCA t I 1 1 I T ( I v J 1 J- l .3  1 r I=  1 9  NDFT 2 I 
L O 4 0  

500 r C h r T I N U E  
G e  TCI 1 

8998 P R I N T  8 9 9 7  
E h O  

SUBROUT I N €  
CCMPLEX 

E I GZ N( B M r  RCt RK r N  r N T 2  r W r LAMBDA I 
BM( 8 r 8 1  tRC(  8t8I  r R K ( 8 r R )  r H ( l 6 r 1 6  J r W I  1 6 r 1 6 I t L A M R D A (  1 6 )  t O t T v  
A I R 1 8 ) r E 1 8 t A I r P ( 1 6 ) r Q (  16) r A S ( 1 6 r l 6 1  rC.AT( 16.16) t 

P O R (  16) s A S T (  16.17 I 
1 
2 

1 
C I M E N  5 I O N  I P I VOT ( A ). I N D E X  4 8 e 2 I 1 I N T H  ( 1 6 9  Z 1 r VKNOT S I  20 1 t FR EQ I 2 0 ) t 

T I  169 3 I t t t (  8.8  1 t  TT ( 8  9 8  1 r I R  ( 8  ) r P Q (  8 )  
I h T H (  1 * 1 1 = N T Z  S I N T H l 2 t 1 1 = N T Z  
r b t t  CXINV(BM.N~C~O.UET. I P I V O T ~ I N O E X , ~ ~  ISCALE) 
C P L l  CMtILT(  BMrRC.A.NJ 
CALL CMUL T l  R M t R K r R t  N1 
Cr 2 0  I = l r N  
Cr 20 J = l t Y  
A ( I t  .I )=-A I I t  J j 
R ( I r J =- R l I 9 J 1 
CC 50  I = l r N  
DO 5 0  J = l t N T Z  

Z 0 

50 k ( I t J ) = O . O  
Cr 5 5  Iz1.N 
J =h+ I 

55 t - l I r J I = l . O  
Flh: = F;+1 
C C  60 I = M Y t N T Z  
K = I - N  
QC 60 J = l r N  

OC 65  I = M N t N T 2  
K = I - N  
00 6 5  J = M N v N T 2  
L=J-rU 
I.(( I t  J ) = A (  KI L 1 
C A L L  

60 C ( I ~ J J = R I K I J ~  

6 5  
C F I G  (HI L A M E C A t  N T 2 . 1 6  r P  0 r PQR r A S 1  r W  r N T 2  1 

RFTI IRN S E N D  
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SUBRCIUTINE WCM( AeNRsNCJ 
CCMPLEX A ( l 6 r 1 6 J  
COMMON H E A D 1  ( 12 1 
KE=O 
K S F T = N C / 4  
I( LEF T =POI3 (NC e 4  ) 
I F I K L E F T . N E . 0 )  K S E T = K S E T + l  
DO 10 K T = l * K S F T  
KR=KE t1 
K E = K E + 4  
I F  I KT. EO. K S E T  1 KE=NC 
P R I N T  ~ O O L * H E A D ~ ~ ( J ~ J = K R I K E ~  

5001 FCRMAT~LH1//12AlO///lXv* SYSTEM EIGEa4VECTORS * / / / l O H  ROW C O L . ~ X I  
1 1 4 v 3 f  26x1 41 / / l O X * * R € A L * r 9 X * *  I M A G I Y A P Y * *  3(  8X.*REAI * e  9 X * *  [ M A G I  Y P H Y *  1 
2 / / 1  
CC 1 0  T = l * N R  

10 P R I N T  5 0 0 2 r I r ( A ( I . J ) r J = K R . K € )  
5002 F C R M A T ( I 4 * 8 E l 5 . 7 1  

RETURN 
F h O  

SLBROUTINE AERO(X.2 )  
C I W N S I O N  Z( 16) * F R E Q l ( Z O J  
COMMON/UMSTOY/SUY( ~ ~ ) ~ ~ . H S Q I M A C H ~ R ~ ~ C H ~ V E L ~  F R E Q l v  I I * I A t R O .  I M A C i  
CCMPCEX C I R C v f r C C N S T  
REAL YACH 
1 F ( I A E R n . E 9 * 2 1  GO T O  91 
RFREO-FRFQ1 t I 1  I *PCH*S/( 2*VEL*SORT(dSQ+X**2 )  ! 
C = C  IRC~RFREOIF IG)  
GC 92 

9 1  C= l1 .0 *0 .0 )  
92  IF(IMACH.EQ.11 C C M C O R = 1 . 0 / S O 9 T I l . ~ ~ ~ M A C ~ * * 2 / H S O I * ( H S Q + X * * 2 ~  1 )  

I F ( 1‘4 A t  W. EO 2 ) CC.MCOR=R / ( 2. *RCH+R *SQW T ( 1 - - I  YACH**2 / HSQ 1 * 
1 ( H S Q + X * * Z ) J  1 

I F (  IMACH-EO. 31 CCMCOR-1.0 
CCFJS T=C*C DMCOR 
PC=S QR T ( H SO t X** 2 1 
7 (1) =REAL I C f l N S T * ( X * * t ) * P R  J S 2 (2 J=AIMAG(C ’3NST* (  X * * Z ) * P Q )  
Z ( ~ ) = R E A L I C O N S T * ( X * * Z 1 / P Q ~  $ 7 1  I ) = A I M A G I C O N S T * (  X**2 ) / P O )  
7 ( 5 )  =RFAL (CONST* (  X * * 4  1 /PQ 2 ( 6 1 =A I M A G  (CON ST *( X* *4 1 /PQ)  
7 ( 7 1 = R € A L ( C C N S T * P O )  I L ( 8 ) = A I M A G ( C O N S T * P Q )  
7 l 9 1  =REAL I C C N S T / P Q )  S 2 t 10) = A I  YAG I C O V S T / P Q )  
7 I 11 1 = R f  AL ( C O h S l * X * P Q  1 S 2 ( 12 ) = A I  MAG( CONST*X*PQ ) 
I (  1 3 ) = R F A L I G O H S T * X / P Q l  S 2 1  1 4 1 = A I  C A G ( C C A S T * X / P Q I  
Z ( 15 1 =REAL f CONST*(  X* *3  1 /P  Q t  
QFTIIRN S EYD 

S 

5 Z ( 16 J =A I M A C  ( C  ON ST*(  X**3  1 /PO 1 
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LOMPL€X F U N C T I I I N  C I K C I X s f  r G J  S REAL J O q J l  5 COMPLEX D r P r k r C S Q R C  

OATA P1~CAMMA/3~14159265358979r.577215664901533/ 
If(X.LT.1.E-4) GO TO 2 S t F l X 1 G T e 2 0 )  GO TO 4 S Z = 2 / X  
A=GAHMA-ALObIL j  S N=1*3+.75*SURT X * l X + 2 8  J ) S 4=Y+1  S S=-(-l1 **N 
J l = Y l S O  S J O = l o b l O O  S YO=-S*JO/K L DO 1 I=lr4'4 S K-K-1  
J l = ( 2 * K + 2 J * Z * J O - J 1  S Yl~Y1+S*~2*K+lJ*J1/1K*~K+l. J 

C O M P I L A T I O N  F I E L D  L t N G T H  IS 36300. SUBPROGRAM L E N G T H  IS 504. 

J O = ( E * K + l J * L * J l - J O  S YO=YO+S*JO/K 
1 S=-S S J l = L * Z * J O - J l  S J O = L * J l - J O  S YO=A*JO+Z*YO 

Y A = - J O / X + ( A - l J * J l + Y l  S J L = a S * P I * J l  S JO=.S*PI*JO 
O = C H P L X ( Y O ~ J O ) / C M P L X ( Y l r J L )  J C I R C = l / L  1+(3  .tl. J*OJ S F = R E A L ( C I K C )  
G = A I M A G ( C I R G I  S RETURN 

2 I f ( X . L E - O J  GO TU 3 S D+GAMMA+ALOG1.5*XI+(O.r .5)+PI  
D=-X*D/L 1-(0-1 J*. 5*X*XJ S C I R C z 1 /  L l+(O.qlo 1 *OJ C FSREAL [ C I f f C  J 
G = A I # A G ( L I R C J  S RETURN 

3 f=l S G=O S C I R C = L M P L X ( F t G J  S KETURN 
4 W = ( O o r 4 e J * X  S N = l 2 O / S J A T l X I  J P = o S * ( - l + C S ~ R T 1 1 + 4 * N / W ) J  J N = 2 * N + 1  
5 Y=N-2 5 P = N / ( W + N / ( l + P l J  J IFLN.GT.1J GO TO 5 S C I K C = l - o 5 / 1 1 + P )  

f = K E A L ( C I A C I  S G = A I M A G I C I K C J  S RETURN 
IiXD COMPLEX FU1UCTICN CIRC 

PROPROTUA S T A d I L I T Y  C O H R E L A r I G N  - LANGLEY TOT T t S T  139 - RUN N3.3 
PYLON YAW UNLOCKED (298 RPMJ 

8 1 2 1  2 3 2 
2 Y b -  
100. l L O I  140. 160. 180. 250. 220. 240 
260- 283, 3001 320. 3409 360. 330. 400. 
420. 440. 460. 480. 500. 
0 12 1.0 10 

SROTOK N B ~ ~ r B I = 9 0 0 . ~ H M ~ 4 5 ~ r B ~ ~ l ~ 8 ~ ~ P R t C ~ N E ~ 3 e t ~ l ~ 6 o 9 Z r H 2 ~ 6 ~ 9 2 t R ~ l 9 ~ 2 5 ~  
BLH=l~9Z ,D€N=oOPZ2LtDtNSL=~OO222 ,AO=5.85~0ELTAj= -22o5  rHSLONG=O.Ot 
H S L  AT=O 0 O 
EPS ILU&=Oo 39 10=1- 0 r V S = l 1 1 6 - O J  
(PYLON P M = 8 4 - L * P I R U L L =  0.0 P I P 1  T C H t 8 4 5 .  r P I Y A W = 8 4 5 .  r r ( B 1 ~ 2 . 3 9  cHB2=2. 39 r 
PSHOLL=Oo OIPSP I TCH=230000O.r  PS YAW= 
P S Z ~ 2 5 L 0 0 ~ r P D X ~ ~ 0 1 3 ~ P U Y I O , O I P O L I . 0 1 3 r P D R 0 L L ~ 0 e 0 ~ P ~ P C T C H ~ ~ 0 1 3 ~  

H D L O N W O  90 q HDLAT=O 0 * R EF=o 75 p S WPLUNG-0.0 t Sd PLATZO 0 9 

5OOOOOOa ePSX=4230D qPSY=O. Or 

P W  An=. 01 3 ,C8= 1 . A 0 p vr E M f  =5 37 S 

d 
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PROPROTOR FORCE AND FViOMENT D E R I V A T I V E S  

FROGRAM H F O R C E l t  INPUTIOUTPUT rTAPES=INPUT 1 

4**+*****8*4**8****9*4**********9*********k****~*****************~*** 
* * 
9 T H I S  PROGRAM CPLCULATES THE DYNAMIC FRCPROTOR FORCE 4 

4 ANn YCMENT D E R I V A T I V E S  A R I S I N G  FROM SINUSOIDAL * * P I T C H I N G  I X C I L L A T I C N S  flF THE PYLON- THE RIGID-CLADE * * M4THEMATICAL PODEL EMPLOYED H4S TIP-PATF-PLANE P I T C H  4: 

4 PNr) Y4W AND PYLON P I T C H  DEGZEES OF FREEDGY. A OUASI-STEADY * * AEQCDYNAMIC THEORY IS EMPLOYED FOR THE D I 5 J R I @ U T F D  * 
* RLADE LOADING-  * 
* * 
4*8*t*******************~******~k***********4**4************~*4****4:4:**4: 

CCYPLEX A ~ 2 ~ 2 ) ~ ~ ( 2 ) r D E T ~ H Z ( 8 O ) ~ ~ Y ( ~ O ) ~ ~ Y ( 8 O ) ~ M Z ( 8 @ )  
OIMENS I ON 

hjAMELI %T/ROT04/NBI  BI e HU*PRECC!NE*HL *Re BCHeDEN9 AO9DELTA3rHSC3NC 9 

HEAD1 ( 12 1 r R P M ( 2 0  I r V K N O T S ( 2 0 )  9 FREQI  80 1, I P  I V O T ( 2  1 ,T( 8013 J 9 
I N D E X  ( 2 9 2  1 t TT (e094 1 t TU( 8094) 1 

1 k’SLAT9 SWFLONGIEPS I LON 
hAMELIST /PYLON/PHIYO 

1 PEAf l  L 0 0 0 1 ( H E A D l ( I ) r I ~ l r 1 2 ~  
I F I E O F , 5 ) 8 9 9 8 r 5 9 9 9  

8 9 0 7  F C R M A T I l H l / / *  PROGRAM HFCRCEl  S iOPPED Oh ( E C F r S ) * )  
G999 CCNTIYUE 
1000 FORYAT(BA1OI  

1010 FOPMAT (20  I *  1 
R EAC 

GFAf! 1 0 2 0 r ( P P V ( I ) r I = l i ~ R P M 1  
READ 
RFAO 1 9 2 0 r ( F R F Q ( I I , I = l r h F R E Q )  

GFAfl L O 2 O r  ETA1 9 ETA2 

10  10 r NPPMr NVEL rNFREQ 

1 0 2 0  * I VKNPT S ( I )  9 I = l  *NV€L  ) 

1320 F I * P M A T  I R E  1 0 - 4 )  

READ ROTrl” 
P F A C  PYLV’I 
R I = ( N9* R I  1 / 2  
FU= I NR *RU I / 2  
O E L  T A 3 = n E L T 4 3 / 5 7 . 2 3 5 ? 7 S 5 1 3 O R Z j  
E P S I L O N = F P S l L n N / 5 7 . 2 9 5 7 7 5 5 1 3 0 P 2 3  
PR €COY E =PR ECCN E /  5 7 - 2 9 5  7 795 130823 
GAMMA= t OEh*AO*PCH*(R**4 1 )  /RI 
PA= P H I  Y 0 
Pt- I Y o= P 1-11 Y 0157.2s 57795 1 3 0 8 2 3  
DC 500 I I = l r N H P M  
AF=RPYI  ¶ I  1 
F P M ( I I 1 = ( ~ ~ 2 8 3 1 ~ 5 3 1 * R P M l I I ) ~ / ~ O  
00 500 J J Z l r Y V E L  
GC 490 KK=l,NFRFQ 
RF=FPEQ ( K K )  
F R E Q ( Y K J = f R F Q ( K K ) * ~ F M ( I  I 1  
T (  K f t  7 1  1 =RF 
T I  KK r7 ) =FREQ (KK 1 /C: - 283 1 8 5 3 0 7 1 7 9 5 9  
T ( K K I ~ ~ = F F E Q ( Y K )  
V t  1 = VKNCT 5 ( I J J /e 592 
S = V F L / f R P V I I I ) * R I  
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kSQ=S**2  
W W  I =  S Q R T l  FSQ+ET41**2  1 
WW2=SOPT( t+SQ+ETA2**2 J 
FQ=ETAZ*WW2-tTAL*WWl 
A l = A L r ) G  I ETAZ+WWZ 1 /( ETA l+ kW 1 
A 2= WWZ-WW 1 
A3=.5*( PQ-HSQ*Al) 
A 4 = (  5 . / 3 ,  )*(WW2**3-WWl**3 I-H 

I 



1 3 3 1  FDf’qAT( l H O * 3 X , * R O T C R  R P M * I ~ A X I * V E L O C I T Y * , ~ ~ X , * A ~ V ~ ~ C E  R A T I D *  9 1 0 x 9  
1 
2 

* P Y L  JN P I T C k  
*KEAS*, 1 7 X 1 * J * 9  15x9 *PEGREE S* 91OX r + R A C I A h S * / /  I 

AMPL t T U P E * / / 2  5x9 *FT  / S E C *  9 11x1 *KNCT S* 9 13x1 

PR I h(T 1037 v A F  9 V G L  9 VKhrOT S ( J J 1 * V K E A  S 9 AR 9 P A  * P H  I Y  0 
1 33 2 F P R Y  fiT ( 1  X E l  5 .  9 5 X 9 E l  5 09 2 X  9 E 150 8 9 2 X  r E 15 8 9 4 X 1 E l  5 P 9 3 X  9 E 15.8 9 2 X I 

1 E 1 5 . P / / / /  I 
P P I V T  1033 

I O 3 3  FTRMAT 4 1 6 X 9 f P Y L O N  P I T C H  FFEGUENCY * 9 2 8 X * * R O f G R  I N P L A N E  &FORCE* 9 

1 1 4 X * * H - F Q R C E  D E ~ I V A T I V E S * / / / / ~ X I * C Y C L E S I R E V * , ~ ~  XI*CPS*, 
2 1 2 X ~ ~ R A D / S E C * r l 6 X ~ * R E A ~ * ~ l l X ~ * I H A G I N A R V * ~ l ~ X ~ * H ~ A L P H A * ~  
3 TX,*H-ALPhA DOT+ J 

P R I N T  
FORMAT(  I / (  2x1 F l 5  - 8 r 2 X  t E  15.99 Z X 9 E l  5.8 r 8 X  9 E 1 5 0 9 9 2 X r E 1 5  of3 r 2 X v E  15 8 r  

103‘9 ( ( ( T (  11 J 1 9  J-19 3 1 9  HZ ( I  1 9 ( T T (  I ,  K )  c K =  1 9 2 1  I 9 11.1 r N F H E Q  I 
1034 

1 2 X 9 E l S * R t I  
P R I N T  1 0 3 5  

1035 f O R M A T ( l H l / 1 6 X , * P Y L O N  P I T C H  F K E a U E ~ C Y * 9 2 8 X , * R O T O R  I N P L A h E  Y-F r lRCE*  
1 , 1 4 X v * Y - F O P C €  D E R I V A T I V E S * / / / / ~ X I * C Y C L E S / R E V * ~ ~ L X ~ * C P S ~ ~  
2 
3 I X * * Y - A L P V A  C O T * )  

1 2 X * * R A D / S E C * 9  1 6 X , * R E A L * r  1 l X * * I M A G I N A R Y *  9 lCX,*Y-ALPHA*,  

PR I N T  10361 ( ( l T ( 1 1  J 1 1  J =  1 ~ 3 )  9 HY (I 1 1 1 T U (  1 IK ) 1 H = l 1 2 1  1 9 1 - 1  9NF H F Q  1 
1035 F ~ R M A ~ I / / ( 2 X 1 E 1 5 . 8 r 2 X t E 1 5 . 8 1 2 X ~ ~ l 5 ~ 8 9 8 X ~ E l 5 ~ 8 ~ 2 X ~ E l 5 ~ ~ ~ 2 X ~ E l ~ ~ 9 ~  

1 2 X * F 1 5 - 8 1 )  
PRINT 1c37 

1037 F O R H A T I  1 H I / l & X + * P Y L O N  P1TCi.I F R E 3 U E N C Y * t Z B X t * R O T O R  P I T C H I N G  MOMENT* 
1 
2 * C P S * ~ ~ ? X ~ * R A ~ / S E C * ~ ~ ~ X ~ ~ R E ~ L * ~ ~ ~ X ~ * I M A ~ ~ ~ A R Y * I ~ O X ~  
3 *W-AL PHA* 9 7 X  9 *fie A L  P 4 A  COT* 

9 1 OX r *P I T C H  I NG ‘4CVE;JT DER I VAT I V E S * / /  / / 5 XI *CY C L  E S / R  FV* 9 1 1 XI 

P R I N T  10349 ( 1  ( T (  1 ,  J ) P  J = l p 3 ) r t ’ Y ( I  1 r ( T T (  I c K 1  rK.=394) I  r I = l  9NFREQ)  
P P I R T  1039 

1038 F O R M A T (  L H l / 1 6 X v * P Y L O N  P I T C H  F K E ~ U E N C Y * , 2 9 X , * R O T O R  Y A W I N G  MOCErJT*v 
1 1 2 X v * Y A W  I NG MCMEhT DER I V A T  I V E S *  9 / / / / 5 X 9  + C Y C L E  S/REV*’r 11 X p 

2 * C P S * ~ ~ ~ X I * R A D / S E C * ~ ~ ~ X ~ * R E A L * ~ ~ ~ X ~ * I M A G I N ~ R Y ~ I ~ X ~  
3 *N-ALPHA* 17x1 *N-ACP-IA DOT* I 

P P I N T  1 0 3 4 ~ I ~ ! T ~ I ~ J 1 ~ J ~ l ~ 3 ~ ~ ~ Z ~ I l ~ ~ T U ~ I ~ K ~ ~ K ~ 3 ~ 4 ~ ~ ~ I ~ l ~ N F F E ~ I  
rO 22 I = L t N F R E P  

22 F R E Q ( I ) = T ( I I ~ I  
500 C C h T I N U E  

8994 P R I N T  dC97  
GO TO 1 

Ehn 

PROPROTOR O T C I L L A T C R Y  FORCE A k O  MCME4\IT D E R I V A T I V E S  - S A Y P L E  I N P U T  L I S T I N G  

2 1 32 
239. 2 Q R .  
3=O . 
0.0 00.2 . 04 06 -08 .1 012 .14 
e16 018 02 024 028 03 04 06 
.R 1.0 1.2 1.4 1.5 1.6 1-64 1.7 
1.74 l . R  1 - 8 4  1.9 2.0 2 -4  3.0 10.0 
0.0 1.0 

NB=3 9 R1=791.0~ Bl1=138.  ~ P R E C O N E = O * O t H 1 = 6 - 9 2  r R = 1 9 - 2 5  I BCH=1.92 I bR’3TOR 
D E N ~ ~ ~ ~ ~ ~ ~ ~ A O ~ ~ ~ ~ ~ ~ D E L T A ~ ~ ~ ~ ~ ~ ~ ~ H § L O ~ G ~ ~ O O O O ~ O ~ H S L A T ~ ~ C ~ O O ~ O I  
SHPLONG=O.OiEPSICON=OoOS 
S P Y C O h  P H I Y  0=6 -06  
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PR OPR OTOR F L A  PP I N G  DER I VAT I VES 

FPDGR4v RnTOER4 ( IAPUT *OUTPUT TAPE SzINPUT 1 

* * * 4 * * * * * ~ * * 9 * O C + * * * * * * $ * * * * * * * * * * * ~ * * * * * * * * * * * f * f ~ * * ~ * * ~ * * * * ~ ~ * * * * * * * * *  

* * * T H I S  PPOGRAM CALCULATES THE DYNAPIC PROPROTOR FLAPPING * 
f nCR I V 4 T I V E S  A P I S I N G  FkOM SINUSOIDAL P I T C t i I A G  CR YAWING * * 05C I L L A T I O N S  OF TVE PYLON, THE R I G I D - B L I 3 E  MATHEMATICAL * * MnDFL EMPLQYED h A S  TIP-PATH-PLANE P I T C H  AND YbW 4ND * 
* PYCtN D I T C H  ANC YAW DEGREES OF FRtEOOMo A CUASf-STEADY * 
* AFQCDYNAMIC TPEORY IS EWPLOYE3 FOR THF DISTRIPUTED t 
* RLADF LOAnING. * 
* * 
* * * * 4 * * ~ * * * * * ~ * * * * 4 * * * ~ ~ ~ * * f ~ $ * * ~ * * * * $ * * * * * * * $ ~ * f * * * * * * * 4 * * * * * * * * * * 4 * * * *  
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I 



102'3 F C P ~ A ~ ~ 1 X ~ ~ l 5 ~ 9 r 6 X ~ E 1 5 , q , 2 X , E 1 5 , 8 ~ 2 X ~ E l ~ ~ 8 ~ 2 X ~ E l S ~ ~ ~ ~ X ~ E l 5 ~ ~ ~ 5 X ~ E l ~ ~ ~ ~  
15X*E1 : .8 / / / /  1 

I F ( h S L O N G - N E o H S L A T I  G;I TO 113 
O F f ~ S Q R T ( 1 ~ + H S L T N G / ~ R I * R P M ~ I I ) * * 2 1 + , 5 0 * G ~ ~ M A * 5 3 * T ~ ~ ~ O E L T A 3 ~ ~  

P R I N T  101Ar BFF 9 RCR 
R C P = 2 5 * G A P M A * A 5 / B F f  

1016 F O R M A T ( l X * 4 3 H * * * *  BLADE F L A P P I N G  F R E Q U E N C Y ( C Y C L E S / P E V I  =rFL0.3r  
1 20X*36H****  BLbDE D h H P l N G t  P E R C E N T  CR I T I C A L  I = *F 100 3 / / /  / t 

123  C C N T X N U E  
P R I N T  1031 

1031 F O R V A T (  31X9?3H******* PROPROTOR D Y N A M I C  F L A P P I A G  C E R I V A T I V E S  OUF T 
i c  PYLON P t T c H  *******///I 

P P I N T  1032 
1037 FnPr AT ( Q X  9 + P Y L O N  P I T C H  F R E  Q I l E K Y *  9 2 4 X  9 *CCMPCNENT F L A P P I N G  D E R  I V A T  I 

l V E S *  r l b X t * T n T A L  F C A P P  IrYG OER I V A T  I V E * / / 2 X * * C Y C L E S / P E V * r  I X , * C P S *  9 

2 S X I * R A D / S E C * ~ B X I * A ~ / P H I V * ~ ~ X ~ ~ A ~ / P H I Y  C O T * t 4 X v * R l / P H I Y * *  
3 4 X  r * R l / P H  I Y  DOT*  9 8x1 * B E T A / P H I Y * *  ~ X I * B E T A / P H I  Y DOT*  t 

P P I N T  1 0 3 3 r l  ( f T (  I 9  J ) r J = l r 3 )  I ( T T (  I r K J  rK=lr6) 1 1  I = l r F . ' F R E Q I  
FOP MAT ( / / I 1X * F 1 1 - 4  r 2X v E 11 4 t 2 X  9 E 1 1 4 9 5 X v E 1 1 - 4 9 Z X  9 E 11 -4 * 2 X 9 E 1 1 1033 4 9 

1 Z X ~ F 1 1 . 4 , 7 X 1 E l l o 4 r 2 X , E L 1 . 4 1 )  
P P I Y T  1 0 3 4  

1 0 3 4  F C R Y A T  ( / / / / ? 2 X r 7 1 H * * * * * * *  PEOPRJT?R D Y N A P I C  F L A P P I N G  D E R I V A T I V E S  D 
I U E  TO P Y L r N  YAW * * + * * * * / / / I  

P R I N T  1035  
133' F f l R Y A T ( l O X * * P Y L C ' N  YAW F R E Q I J E N C Y t , 2 5 X * * C O ~ P ~ N E ~ T  F L A P P I N G  I ' E P I V A T I V  

l F S * * 1 6 X v * T Q T 4 1  F L P P P I N G  D F R I V A T I V E *  / / 2 X , * C Y C L E S / F F V * t 7 X , + C P S 9 1  
2 
3 4 X * * R l / P H I Z  DOT*, 8 X * * H € T A / P H t L * r 3 X i * R E T A / P H I Z  DCTS)  

8 X 9 * R An / Z EC* v 8 X 9 *A 1 / P t i  I Z * 9 4X t * A  1 / PH I Z COT* 9 4 XI * P 1 /P H I Z * 9 

P R T Y T  
FCll2'4AT ( / / (  1x9' 1 1 - 4 9 Z X  ,E 1 1 . 4 9 Z X 9 E l l o 4 ~ 5 X  * E l  1.4 9 2 X v E  11 - 4  1 2 X 9 E  11.49 

1 0 3 4 9  I (  ( T (  I v J I  9 J = l 9 3 ) 9  ( T U (  I cK) cK=196) 1 9 I = l r b ' F R € Q )  
1036 

1 2 X v F 1 1 . 4  9 7 X  ,EL 1 - 4 9  2x9  E11 .4  1 I 
cc' 22  I = i , r w w o  

22 F R E Q (  I ) = T I  I * 1 1  
500 C L N T I N U E  

8 9 0 8  P k I N T  R O Q 7  
GO TO 1 

FhD 

PROPRPTOR q S C I C l h T C R Y  F C A P P l N G  O F R I V A T I V E S  - S A M P L E  I h r F U T  L I S T I N G  

2 1 20 
2 3 9 .  278 
3qo. 
.00Ol .rJ5 -10 02 .4 -6 .a 1 .o 
1.2 1.4 1.6 1.9 2.0 2.2 2.4 z .  4 
7.P 3.0 5.0 10.0 
0.0 1.0 

$ROTOR 
Q C  i= 1-$2 ,DEN=. 002389 AO=5.?39CELTA3=-22  ~ ~ H S L O ~ G = ~ O ~ O ~ ~ O I H S L A T = Z ~ ~ O O  -01 
SdPL l K G = O  -0 9 SWf'LAf=O. 0 9 EPS I L O h = 3 * 0  ,REF= e755  

NR=3 p RI=791.01 B U = 1 3 8  * P F E C O N E = O o O i  H l = 6 - 9 2  rH2=6-029 R= 19-25 t 
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V I BFiATI ON ANALYSIS BY A D I R E C T  STIFFNESS kETHOD 

FFOGRAM D S T I F F ( I N P U T ~ ~ U T P U T I T A P E ~ ~ I N P U T ~ T A P E ~ ~ T A P € ~ I  
1 T A P E 3  9 T A P E  4 9  T A P E  30 v T A P E  31 ) 

l*l l l*******t*******~****************~************~~*******~*~********** 
* * * PR3GRAHS C S T I F F  AND BJ05  COMPRISE A COMPUTER P A C K A G E  4 * FOR T H E  V I  B R A T I O N  A N A L Y S I S  OF GOPPLEX S T F U C T l J R A L  -x 
I) SYSTEMS B Y  A O I P C C T  S T I F F N E S S  TECHWIQUE. * 
* THE STRUCTURE I S  I O E A L I Z E O  AS A b  A S S E M B L Y  OF @ E A M *  * * S P R I N G *  AND R I G I D  M A S S  SUBSYSTEMS.  A F I N I T E - E L E M E N T  * * APPROACH IS E M P L 3 Y E D  TO C E W E R A T E  THE P A S S  AYO ST IFFNESS * * M A T R I C E S  FOR THE U Y C O U P L E D  SUBSYSTEMS. U S E R  URITTElV qr 

* C C N S T R A I N T  E O U A T I O N S  EhiFORC I N G  I N T E R - S U B S Y S T E W  D I S P L A C E M E N T  * * C O M P A T t B I L I T Y  ARE A P P L I E D  A C C O R O t N G  T O  THE VETHCD C f  9 * N A S A  TR R-326. A C O Y D E N S A T I O N  'YF T H E  S Y S T E P  G E N E R 9 L I L E D  * 
1 S T I F F N E S S  M A T R I X  IS P E R F O R H E D v I F  N E C E S S A R Y v A N C  T H E  * 
rp R E S U L T A N T  E O U A T I O Y S  C A S T  I N T O  A FORM TO H H l C H  THE qr * THRESHOLD V A R I A T  I C N  CF THE J A C O B 1  ALGCIRITHC F C R  FINDIbiG * * E I G E N V A L U E S  A N D  E I G E N V E C T O R S  IS A P P L I E C .  * 
rb * 
l * *************4******* t+***********~*****************~~4***********  

* i 

C 

C 
C 
C 
C 

C 
c 
C 

C 
C 

Y A S E t l r  D I A G O N A L  Y A S S  O N L Y  ( N O  NULL V A L U E S )  
K A S E - 2 9  D l A G r Y A L  M A S S  AND ROTARY I N E R T I A  I N C  A U L L  V A L U E S )  
K A S E 3 3 r  N O N - D I A G 3 V A L  MASS AND ROTARY I N E R T I A  (NUL1 V A L U E S  

C A N  B E  O N  D I A G C N A L )  

V A L U E S  3W D I A G O N A L 1  

V A L U E S  C A N  R E  ON D I A G O N A L )  

K A S E = ~ ~  DIAGONAL TORSIONAL INERTIA OR AXIAL M a s s  ( w  NULL 

K A S E x 5 .  O I A G @ N A L  T f j R S I O N A L  I N E R T I A  OR A X I A L  C P S S  L Y U L L  

KK=ORCER O F  BLOCK 

L O C - 1 9  REAM B E h r D I N G  
L C C = Z v  BEAM T U F S I O N  
L O C = ~ .  BEAM AXIAL 
L @ C = 4 *  S P R I N G  OR R I G I D  BODY E L E M E N T  

FOR S P R I N G  OR R I G I D  BODY E L E M E N T S  -- 
M K = l r  R E A D  S T I F F N E S S  M A T R I X  FROM C P R C S  
YK=O. &IO R E A D  

MFA=l, R E A 0  Y A S S  M A T R I X  F R O Y  CAROS 
Yv=O,  ND R E A D  
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c 
r 
r 
L 

C 

c 
r 

c 

C 

C 
c 

C 
C 
C 
C 

c 

r 

c 

,- c 

F f l Q  2 S Y M H F T R l r  Q P  ANTI -SYMMETRIC F n R M U l A T I O N  OF T Y E  
PRT)RLCY* f Y f  Y A t q  ANT: ? ‘ I F F N € $ S  M A T P I C F S  rORRCSPONDING 
T O  STQUCTURAL BLOCKS OUT OF THE V F R T I C 4 L  DLANE OF SYMMETRY 
MU5T R F  M U L T I P L I F D  RY 2.0 

I ? Y Y = l *  M U L T I P L Y  RLOCK PASS AND S T I F F N E S S  M A T R I X  BY 2.0 
I f Y M = O *  hO M U L T I P L I C A T I O N  

M A S <  \ N D / n Q  S T I F F N E S S  TEPMS A R I I I N G  FROM WING A N 0  T A I L  S T A T I C  
UNQALANCE AND F9OM 4 S S I M I L 4 T I N G  THE MASS Y A T Q I X  OF A R I G I D  
9ODY 09 TCE S T I F F N E S S  M 4 T Q I X  OF A YASSLESZ SPQING ELEMENT 
I N T O  T M F  COPRFSPON9ING M A T R I C E S  OF THE H E Y B E P I S )  TO WHICH 
THFY 4QF CONNCTTED H I L L  COUPLE BLOCUS I N  UNCOUPLED 

I N T o 0 7 U C  ED SED44 4 T E L Y  , 
SYSTFY MASS AND S T I F F N E S S  MATPICES.  TYESE TEP‘4S 4RE 

YISADD = NUMBER OF MASS TFRMS TO R E  4DDED ON A N 0  ABOVE 
01 4GON4L O F  T H E  UNCOUPLED S Y S T E M  Y4SS MATRIX.  
PPOGQAM WILL P R O V I O E  SYMMETRY AS RFOUIRED. 

N S D A 9 D  = NUMRER OF S P R I N G  TERYS 13 BE ADDED ON AND 4BOVE 
3 I A G O N A L  OF TYE UNCOUPLED SYSTEM STXFFNESS 
M A T R I X .  PSOGUAM WILL PROVTDE SYMYETCY, 

DIMENSTON b ( 1 2 1 1 2 )  r B ~ 1 2 ~ 1 2 ) r C ~ 1 2 r 1 2 ~ r 0 M ~ 1 2 ~ 1 ~ 1  ( 1 2 ) r X ( 8 )  r S ( 8 )  r 
E (161 r E C ( R 1  r E C ( R  B I R  (1692) r 4 4 (  169 1611 R B (  1 6 9  16) r 
RK ( 1449 144)  r Q M (  1441144) rD(  499 144) r D T D f  1441 144) 1 

E I G V (  144 )  r 9 C  ( 1441 144) 9 R E T A ( 1 4 4 r  144) r R  f 144) 

1 
2 
3 

COMMON Y M t X ( 1 2 )  
FQU I V A L F N r E  ( 9M( 11 1 1 1  Or O (  1 1 1 11 S E T A (  l r l  1 I r (  BK ( 1 r 1 ) rSC( l r  1) 1 1 

1 ( D (  l r l  r F T G V ( 1  I )  
M9X= 1 2  
M A X T 2 = 1 6  
U A X 2 = 2  
FCUN=l .  0 

1 QFAO 1010, ( Y M T X (  JJ 1 J z 5 r 1 2 )  
101 0 FOP MAT( 8 A 1  3 ) 

I F ( E O F 1 5 )  859898999 
J C ? 3  W R I  T E ( 6 9  999- 1 

PRINT 5997 
GO 2300 

3997 F O R H A T ( l P l / / *  P R O ’ X 4 M  B B F T I F F  STOPPEC ON ( E O F v 5 1 * 1  
3999 CONT I NUF 

C R E I D  NUMREQ OF BLOCK5 I V  UNCCIUPLEO SYSTEM MASS 4ND S T I F F N E S S  
r Y A T R l C F S p  I R D E P  OF S Y $ T E M t  AND NUYRER OF C O N S T R A I N T  EQUATIONS 

PFAO 1 0 2 0 ~ N R L K S r N 3 R ’ I F Q  NCFOS 
WE I T E ( 6  101 1 1 NRLK S I N ~ ~ D E Q ~ N C E Q S  
PR I N T  10 11 9 N B l  K S *NOPOFR 9 NC EO2 

1011 F O f J M A T ( l H l / / *  NUMBER BLOCKS I N  UNCOUPLE9 SYSTEM MISS AND S T I F F N E S S  
1 M A T R I C E S  = * r I 3 / / *  OP’IFP OF SYqTEM * * I 3 / / *  NUM3ER OF CONSTRAINT 
7- € Q U A T I O N $  = * * I 3 1  

C o E 4 0  NUMRFR OF MASSES TO BF ADDED O N  OR ABOVE D I A G O N 4 L  O F  
C Y 4 S S  M A T R I X  AND/OR NUYREF O F  S P R I N G  CONSTANTS TO 9 E  40DED ON 
C OR PBOVF D I A G O h A L  OF f T I f F N E 5 S  M A T R I X  

RFAO 1 0 2 0 r Y P S A D D r N S P 4 D D  
W Q I T E ( b r l ’ I l 2 )  M A S ~ D D I N S P ~ D D  
PFT N T  1 0 1 2 ~ M A S A D O ~ N S P A D 0  

1412 F O R M A T ( l H  / / *  NUMAEQ OF MA5SES TO R E  AOOED = * r I 3 / / / *  NUMBER OF S P  
1 9 I N G  r U N S r A N T F  TO ‘3€ b D D E 0  = * v  I31 



C A L L  Z F R O Y (  8K * N C p D E Q r  NCRDFQ rNOROER*NORDER)  
C I L L  Z F R C Y (  P M V N O R ~ F R ~ N O R C F Q  r N O Q 0 E S r N O R O E 9 )  
N C 8 = 1  d N Q q = l  
NCF=O S N R F = O  
I D = O  S M I = O  b K l = O  
00 200 N R L O C K = l 9 N S L K S  

- WRI T E ( 6  9 1019 1 NSLOCK 
P R I N T  1 0 1 9 r N B L O C K  

1019 FORMAT(  1H / / 1 X *  19~*******o**4**4*4***/ 1 X 9  19y* 
1 l X , l 4 H *  BLOCK NUMBEP rI3r2H * / l X * 1 9 H *  
2 1 XI 19H*a*****************) 

R E A D  10209 K K  9 LOC 9 MU 9 MM9 I S Y M  
1020 FORMAT(  2014) 

I D = I D + l  

M I = K  I 

NRF = NRF +KK 
NCF=NCF+UK 

IF( ID.EQ.1) GO TO 1 0 2 1  

1 0 2 1  C O N T I N U F  

GO TO ( 1 1 0 ~ 1 2 0 r 1 2 0 ~ 1 3 0 ~ ~ L 0 C  

************e* ** 
* R E A M  R E N D I N G  * ********* * **** ** 

* /  */ 

C FOQ SEAM A E N Q I N G r  F P E F - F R E E  S T I F F N E S S  Y A T q I X  IS 
C GENERATED I N  T H E  P A R T I T I O N E D  FORM ( A  8) 
C I B T  C) 
C WHEQE A = ( K * K )  9 R = ( K * N )  9 R T = t N * K ) r  C = f N * N )  
C FOR W E  FPEE-FREE CASE, K = N  

110 R E A D  1 0 2 0 r K * N , K A S E  
W R I T E ( 6 r  1030) K r N q U A S E  
P R I N T  1 0 3 0 r K r N v K A S E  

1030 FORMAT(  / / 9X , *K* ,9X t  * N * r B X * * K A S E * / / 3 1 1 0  1 
1040 F O P M 4 T ( 5 E l 4 . 8 1  

K M l r K - 1  
C A L L  Z € R O M ( ~ * K I K I M A X I M ~ X )  
C A L L  Z F R O M I B ~ K I N * M A X I M A X )  
C A L L  ZESOM( CININIMAXIMAX ) 
C A L L  l r  MAX 9 11 
C A L L  ZEROM(R1 ~ N I  l r M A X r 1 )  
P E A 0  10409 t X ( I I r I = l * K )  
R E A D  10401( S( I ) r i = l r K M l I  
R E A D  10409 ( C M ( I ) r l = l r K )  
I F ( K A S E . N E . 1 )  REbO 1 0 4 0 9 l R I ( I )  * I = l r N )  
P P I N T  1 0 5 0 r t J q X ( J ) r S (  J t r D H ( J ) r R I (  J ) r J = l r K M l )  
W R I T E ( b 9 1 0 5 0 ) t  J * X (  J )  * S i  J b t D M t  J )  r R I (  J ) r  J = l r K M l l  
P R I N T  
H R I T E ( 6 ~ 1 0 5 1 1 K r X ( K ) r D M ( K ~ ~ R I ( ~ )  
FORMAT(  / //3 X **J* 9 7 X e * X (  J ) * r  11x1 *E1 ( J)* r  10x1 * M 4 S S (  J )*e 1 O X 1 * 4 1  I J l * r  

ZE ROY ( DM 9 K 

1 0 5 1 1  K v  X t K  j v D M ( K  1 * P I  ( K )  

1050 
1 / / (  I 4 r 4 E 1 6 . 8  b ) 

1051 FORMAT(  1 4 r E 1 6 . 8 r 1 6 X 1 2 E 1 6 . 8 ~  
DO 40 L r l r K M l  

40 € ( L  l = 1  . O / I X  ( L * l  ) - X l L )  1 
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C M U L T I P L Y  F P F f - F P F F  I4455 M A T Q l X  RY 2.0 I F  1SYM = 1 
I F ( I S Y M . F O . 0 1  G O  35 
DO 96 I x L r K P N  
00 96 J = l r K F N  

96 RR( I r J ) = Z . O * R R I  I r J )  
9 5  C O N T I N U E  

DO 11 I = N R S v N R F  
DO 11 J r N C B r N C F  
BK(  I s  J ) = A A (  [ -PI 9 J-MI 1 
B M I  1 1  J ) = R R t  I-Mlr J - M I  1 11 
K I = K I + K K  
N R 8  =NRR t KK 
NCB = NCB +KK 
GO T O  200 

*****************a******* 
* BEAM T O P S T O N  OR A X I I L  * 
******************8****~* 

C FREE-FREE S T I F F N E S S  M A T R I X  IS Of ORDER K 

1 2 0  R E A D  1 0 2 0 r K v K A S E  
W R I T E (  6,1090 )Kr K A S E  
P R I N T  1 0 9 0 r K 1 K A s E  

1090 FORMAT(  / / / 9 X  r * K *  r 9 X  r * K A S E * / / 2 I  LO 1 
K M l  =K-1 
C A L L  ZE QCMt 4 * K  r K t M A X ?  MAX I 
C A L L  ZEROMl  H * K r K * M A X r H 4 X  1 
R E A D  L O 4 O r t  X (  I )  9 1 x 1  rK) 
R E A D  1040r ( S (  I ) *  I = l v K M l )  
R E A D  10409 ( R I ( I l v I = l r K ~  
IF ICOC.EQ.2 )  GO TO 1098 
WP I + E  ( 6  q 1102 1 ( JI X( J I 9 S ( 9 1 rR 1 1 J)  9 J=1 r K M l  ) 
W P I T E ( 6 * 1 1 0 1 )  K * X ( K I , P I  (Io 
P R I N T  1 1 0 2 r ( J r X ( J ) r F ( J ) r R I (  J ) r J = l r K M l )  
P R I N T  

W R I T E ( 6 p  1100) ( JIX( J I  * S I  J ) v R I (  J) r J = l r K M l )  
W R I T E ( 6 r l l O L )  K r X ( K ) r P I ( K )  
P R I N T  ~ ~ O O ~ ( J ~ X ( J ) T S ( J ) ~ P I ( J ) ~ J ~ ~ ~ K H L )  
P R I N T  1 1 O L ~ K ~ X ~ K ~ r R I ( l o  
F O R M A T ( / / / 3 X r * J * r 7 X r * X (  J l * r l l X r * G J (  J ) * r l O X r * P I  ( J ) + r / / [ I 4 * 3 E 1 6 . 8 )  1 
FORMAT(  1 4 9  E 1 6  - 8 9  1 6 X  9 E16.8 ) 
FORMAT(  / / / 3 X * * J * r 7 X o * X (  J ) * + l l X * * A E I  J ) * r l O X , * D M I  J ) * 1 / / ( 1 4 r 3 E 1 6 . 8 1  I 

L L O l r  K T X (  K ) r R I  ( K  1 
GO T O  1093 

1098 

1100 
1101 
1102  

1099 DO 121 L s l r K P c l  

DO 122 J = l r K M l  

A l l  t 1 l = S  ( 1  I 
A (  l r 2 ) = - S f  1) 
A (  KI K - 1 1  =-S (KM 1.1 
A( K r  K ) = S ( K M l )  

D O  123 J I 2 r K M I  

A ( K D * K O - l ) = - S (  J-11 
A I K D I K D ) = S (  J - l ) + S ( J )  

C FORM FQEE-FREE S T I F F N E S S  M A T R I X  

1 2 1  € 4 1  ) = l . O / ( X ( L + l I - X ( L )  I 

122 S( J ) = S (  J )*E( J )  

K T B = O  

KD=KTR+ J 

123 A ( K D r K D + l ) = - S t  J )  
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M U L T I P L Y  F R E e - F R E E  S T I F F N F S S  MATRTX B Y  2.0 I F  I S Y H  1 
IF( ISYY.Er3.01 GO TO 1 2 9  
DO 129 I = l r K  
00 123 J = l , K  
A (  I v 5 1 - 2  .O*A( I *  J)  

00 13  J = l q K  

129 
1 2 8  C O N T I N U E  

1 3  R( Jr  J ) = R I (  JI 
C M U L T I P l Y  F R E E - F Q F E  Y I S S  M A T P I X  RY 2.0 I F  I S Y M  f 1 

IF( ISYM.EO,O)  GO T O  1 2 6 1  
DO 1 2 6 7  I = l p K  
D O  1 2 6 2  J = l * K  

1262 R ( I *  JI=Z*O*P(I+JI 
1261 C O N T I N U E  

DO 1263 I = N Q O * N R F  
DO 1263 J=NCRvNCF 
R K I  I q  J ) = A ( I - M I * J - M I )  

1263 BM( I * J ) = R ( I - M I I J - M I I  
K I = K I + K K  
NR B = NR R+KK 
NCR = N t  B + KK 
GO T O  200 * ** *** *** ** ** * * * * * ** ** ** ** * *** ** 

* S P P I N G  OR R I G I D  B n C Y  F L E M E N T  * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
130 C b L L  Z E R O Y ( ~ , Y K I K K * M A X I M A X I  

C A L L  ZERCM4 R KK r K K 9  M4Xq M A X I  
IFIMK.EO.OI  GO TO 1-1 
P R I N T  1301 
W R I T E ( 6 r 1 3 0 1 )  

1301 F O P M A T f l H  / / 1 X , *  S O R I N G  ELEMENT - S T ' I F F N E F S  Y A T P I X  WILL RE R E A D  
l F R O M  CADOF.  M 4 S S  ' 4 4 T D T X  IS NULL.*) 

R E A D  1040, ~ ~ 4 ~ T r J ~ v ~ ~ l r K K ~ t I ~ l r K K ~  
1 3 1  IFIMN.EQ.0)  GO T O  1 3 2  

P R I N T  1302 
WRI fEIbr1302 1 

1102 F O Q M A T ( 1 H  / / l X * *  R I G I D  BODY E L E M E N T  - M A S S  Y 4 T R I X  WILL B E  R E A 0  F 
I R U H  CAQOS. S T I F F N E S S  M A T R I X  IS NULL**) 

READ 1040v( l R ( I ,  J l r  J = l r K K l r I = l ~ K K )  
1 3 2  C O N T I N U E  

C M U L T I P L Y  F R E E - F R E E  P A S S  AND f T I F F r J E S S  M A T R I C E S  B Y  2.3 I F  I S Y M  1 
I F (  ISYY.EP.0)  GO TO 135 
DO 134  I = l r K < K  
DO 134 J = l * S K  
A I  I ,  J 1=2 .O*A I I *  J 1 

134 B ( I  v J I = 2 . 0 * R t I  r J )  
135 C O N T I N U E  

DO 138 I 'NRRpNPF 
D t l  138  J t N C R v N C F  
B K (  I t  J ) = 4 (  I - P I r J - H I  I 

1 3 8  BY(  I ~ . ~ I = B ( I - M I I J - H I )  
IF(MK.NE.O.OR.MY.VE.0) GO TO 1 3 3  
P R I N T  1303 
W R I T E I 6 r  1303) 

1303 F O P M A T ( 1 H  / / 1 X v *  Y 4 S S  AND S T I F F N E S S  M A T R I C E S  ARE B O T H  NULL * )  
133 C O N T I N U E  

d 
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K I = Y  I + K C  
NP H=NRf$+ KK 
NCB=NCR+KK 

200 C O N T I N U E  
C N O T F  -- FOR SYMMETRIC OQ ANTI -SYMMETRIC F O R M U L A T I O N  THF MASSES 
C 4NOtOR S P P I N S S  TO B E  ADOEO MUST 9 E  Y U L T I P L I F 3  RY 2.0 

IF (MASIDO.EO.0)  G 3  TO 20 
READ 10609 ( I R  ( J r  1) r IQ ( J r  2) r E (  J )  r J = l r M 4  SADDl 

W R I T E ( 6 r 1 0 6 1 ) I J r I 9 ( J t l ~ ~ ~ ~ (  512)  * E (  J ) v J = l r M 4 S A D D I  
P P I  N T  
FORMAT1 t / 4 X 1 *  J * r 2 X  9 *ROW*,ZXr*COL*t 8 X t e M A S S I  J )  * / /  ( 3 1 5 r E 2 2 . 1 4 )  
DO 2 0  J = l r M A S A D O  
NROW=IGI  J t l )  
NCOL=IR ( J, 2 1 
BM(NROWrNC0L ) = B M ( N R O W r Y C O L I + E ( J  1 
I F (  NROU .NE eNCOL I 

1060 F O R M A T ( 4 1 1 1  3 r E 1 4 . 8 1 )  

1061 r ( J t 1R 4 J r 1 1  9 I R t  J, 2 1 t E (  J 1 J = l  t MASADO) 
1061 

9 M I  NCOL 9 NQOW ) = @ M (  NROW r NCOL 
2 0  C O N T I N U E  

IFINSPADD.EO.0)  Gr) TO 90 
READ 
WQ I T E  ( 6  r 1062 1 ( Jr I P  ( J t 11 9 I R  t Jr 2 1 9  E (  J ) 9 J = 1  r NSPADD I 
D R I N T  
FORMAT 4 / / 4 X  r *  J*t 2x1 *ROW*r2Xr  *C'3L*r 7x1" S P R I N G (  J ) * I /  (3159 E22 e 14) 1 
DO 90 J = l r N S P A D O  
NPOW=IR( Jr 1 I 
N C O L = I R I  5 1 2 )  
RK ( NROUt NCOL I = R K  (NROWr NCOL ) + E (  J 1 
I F  (NROW. NE. N C O L l  

1060r 4 I R  ( Jq  11 I F  ( JI 2 1 9  E (  1) r J=1 r NSPADD) 

1 O 6 Z t  ( J v  I R  I J 9 1) t IR ( J r  2) r E  I J )  r J=1* N S P I D O )  
1062 

RK (NCOL t NROW ) = B K I  NROW v NCOL 1 
90 C O N T I N U E  

C W R I T E  SYSTEM FREE-FRFF S T I F F N E S S  AND MASS M A T R I C E S  OY TAPE 6 
t-iMTX( l l - 1 0 H  FREE-FREE 5 H M T X ( Z ) = l O H  SYSTEM ST 
HMTX 1% 1 = 10H I FFNFSS M a  6 HMTX( 4 ) =  LOHTR I X 
C A L L  
H M T X ( l ) = l O H  FREE-FREE 6 Y M T X ( 2 ) = 1 0 H  SYSTFM M4 
H Y T X ( 3 ) = l O H S S  M A T Q I X  S q M T X l 4 ) + 1 0 H  
C A L L  WMTXt(  @ M * N O R ~ E R ~ N O R D E R I N O ~ O E R ~ N O ~ ~ E R )  

WMTXCt @ K t  NOROERt NOROEPI NORDEP r NORDER 1 

C W R I T E  MASS M A T Q I X  ON T A P E  30 B Y  ROWS* ONE RECOFO 
REWIND 30 
WR I T E ( 3 0  I (  ( R M (  I *  J 1 t J = l r N O P O E P  1 * I = l r N O R D E R )  

C WRITE S T I F F N E S S  MATRIX ON T A P E  31 BY ROWS, ON€ RECOR3 
REWIND 3 1  
W R I T E ( 3 1  I (  t @K 1 1 1  J )  J = l r N O R O E Q  I = l r N O R D E R  1 
C A L L  r O N E Q S (  DtNCEQS r NORDER) 

DO 300 J = l r N O R D € R  
DO 300 I = l r N O R D E R  
O T O ( I r J ) = O e O  
DO 300 I J X l r N C E Q S  
O T D I  I t  J )=DTO(  I t J ) + O (  I J t  I ) *D(  I Jr J I 

C A L L  

C EVALUATE 0 TR4NSPCSE * 0 9 Y  C A L L I N G  ROWS OF D AS COLUMN5 O F  D T  

300 
t SOLVE FOR E I G E N V h L U E 5  AND FIGENVECTORS OF D T D  

J 4CTV ( N O  RDER NOR DER 9 1 t OT 01 E I G V  RC I DUM1 D U M 1  t 3UM3 t DUM4 t NERR 
IF(NEPR.EQ.1)  GO '0 2200 

C T E S T  FOR NUMRER OF F I N I T E ( P O S 1 T I V E )  E I G E N V A L U E S  OF OTOe MODAL 
C COLUMNS OF OTO CORRESPONDING T O  T H E  ZERO E I G E N V A L U E S  AQE T H E N  TAKEN 
C TO B E  THE COLUMFtS OF T H E  BETA M A T R I X  



NF E V = N09OEP 

I J= J - 1  
01'1 75 J=2rNOROEP 

I F ( F I G V (  J).LE.O.O) GO TO 7 6  
I F ( I € I G V ( I J ) / E I G V (  J ~ ) ~ S F ~ 1 0 0 0 0 0 0 ~ 0 1  G3 TO 76 

7 5  CONTINUE 
7 6  IF(Nf€V.NE. IJ)  N F E V - I J  

PRXNT 1 4 r N F E V  
14 FOPMAT(/ / *  NUYPFR O F  F I N I T E  ErGENVALUES Of DTD = * * 1 3 / / )  

C WRITE F I G E N V I L U E 5  OF 0 lRANSPOSE * 0 ON T4PE 6 
WR I T E ( 6 y  11 11 1 4 E I G V  I I ) r Is1 r NOROER ) 

WRITE(6 r  14) NFFV 
NCBFT4=NCJROER-NFEV 

1111 FORMAT(/ /*  EIGENVlLUES OF OTD * / / ( 2 X * E 1 5 . 8 ) 1  

DO e0 T=lrNOPOEQ 
DO 80 J=l,NCRET4 

90 BETA ( I J ) = A C  ( I rNFEV+ I )  
NRQET4=NORDER 

C BET4 WRITTEN ON TAPE 3 FOR USE I N  BJD5 
C WRITE ORDER RETA CN T4PE 3rONF RECORD 
C WRITE BET4 ON TAPE 3 RY P'IWSr NRBETA RECOROS 

REWIND 3 
WRITE131 NR'3ETArNtSETA 
DO 66 I z l t N R R E T 4  

66 WRITE(31  ( S E T A ( I e J I r J 9 l r ~ C R E T A )  
C WRITE BET4 CN TQPF 9 BY COLUMNST NCBETA RECORDS 

REWIND 9 
00 3 5 1  J = l r N C R E T b  
WP I T E  (9) 4 7ET4(  I v J) 7 I = l r N R S E T A  1 3 5 1  

C FORM COUPLED M 4 S S  M A T R I X  BY THE M4TRIX PRODUCT 
C RETA TRANSPOSF * BM * BETA 

C RFAD MASS Y I T Q ? X  FROM T4PE 30 
PEWIND 3 0  

PEWIND 8 
R E A D ( 3 0 1 I ( R Y (  I r J ) r  J = ~ V N O R D F R ) , I = ~ T N O R D E R )  

c POST-MULTIPLY M A S S  H a n i x  ey SETA 
DO 114 J = l r N C B E T A  

P E A P ( R ) ( R ( I  ) r I = l , V R R E T A )  
DO 1 1 4  I = l r N R R E T Q  
BC( I *  J1=0.0 

C READ CCLUMN OF @ETA 

n0 114 I J = l r N R B € T A  

FEWTNO 8 
114 RC(  I JI=RC ( I J1 +BM(  I ,  I J ) * P  I I J 1 

C PRE-MULTIDLY MATRIX JU5T COMoUTED R Y  BETA TRANSPDSE 
DO 115 I= leNCRETA 

READ( 8 )  ( 4 I J 1 9  J = l y  YRRET4) 
DO 115 J= l rNCRETA 
BM( I T J)=O.O 
DO 115 I J= l rNRRET4 

c READ CGLUYN OF BETA 4s ROW OF TRANSPOSE 

115 U Y I I I J ) = B M ( I I J ) + R ( I J ) * B C ( I J ~ J ~  
C WRITE COUPLED M4SS M4TRIX ON T4PE 4 BY COLUMNS* CNE RECCJRO 

REWIND 4 
WRITE (4) ( ( EM( I v J )  9 I = l r N C B E T A )  9 J = l r  NCSETA 1 
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t FORM CCIUPLFII C,TIFFNFSF MATRIX P,Y THF MATRIX PRODUCT 
r RFTA TPANSPOEF * RK * RFTA 

C READ CjTIFFYESS MATRIX FROM TAPE 3 1  
REWINO 3 1  

REWIND 8 
PEA0 [ 3 1  J ( ( BK ( I r J t 9 J= l r  NORDEP 1 r I = l e  NORDER 1 

C POST-MULTIPLY STIFFNESS M4TRIX BY @ETA 

C READ CCLUMN OF @ETA 
DO 352 J= l rNCEETA 

READ( 8 t ( R f  I 1 9 1 x 1  rNRRET4 1 
DO 3 5 2  I a l r N R B E T A  
BETA( I r J )=O.O 
DO 3 5 2  I J=l rNRBETA 
BETA( 11 J b=RETb( I *  J)+EK(  1 9  I J) *R(  IJ) 3 5 2  
REWIND 8 

C PRE-IWLTIPLY MATRIX JUST COMPUTED eY RET& TRANSPOSE 

C READ COLUMN OF BETA 45 ROW OF TRANSPOSE 
DO 113 I = l r N C E E T A  

READ (8) ( R (  J I *  J= l rNRRETA)  
DO 113 J t l r N C B E T A  
R K I  I 9 J )  = O m 0  
DO 113 I J = l r N 4 4 F T A  
R K t  1 9  J ) = 9 K (  I 9  J ) + R (  I J )*BETA( I J* J ) 

WRITE14 1 

113 
C WRITE COUPLED STIFFNESS M4TRIX ON TAPE 4 BY COLUMNSr ONE RECORD 

I ( RK I I r J 1  r I = l r N C R E T A ) r  J = l r N C B E T A )  
REHIND 3 
PFWIND 4 

2 2 0 0  WR I T E ( 6 r  2 2 1 0  1 

2 2 1 0  FORMAT(/ /*  EPROR RETURN FPOM JACTV - DTD C4LL * )  
2300 CONTINUE 

END 

IF(NERQ.EQoO1 GO T O  2 3 0 0  

PRINT 2 2 1 0  



622 
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FULL-SCALE T I L t  FOTOQ S Y M M E T P I C  FPEF-FLI GH" MODFS--90 9FC, CONVERSION ANGLE 
2 0  144 4 9  
1 0  0 
1 0 1 0 0 0  

5 5 1  
0.3 35.0 60 .0 95.0 120.0 
3 4 0 0 0 0 0 0 0 0 ~  0 83OCOCOOOO. 0 1 6 0 0 0 0 0 0 0 0 0 ~  0 32000033090~0 

1040 .1200 .7000 1 4400 2.1600 
1 4 0 1 0  

4.124 
1 2 1 0 9 0 3  

6 6 1  
0.0 40.0 75 .o 
140.0 
40000000000~ 136C00GOOOOO. 160000000000~  
2.160 5.280 

940 
1 4 0 1 0  

1 6 1 0 0 0  
11.520 

8 8 1  
0 .O 35.0 
188.0 235.0 
16 8 0 0 0 0 0 0 0 0 0 ~  166 00000000 
3 0 0 0 0 0 0 0 0 0 0 ~  lYOO0OGOO00 e 

,340 1.378 
,720 -350 

1 4 0 1 0  

1 1 4 1 0 1  
20.404 

599 0000. 0 0.0 
0.0 -5 980000. 0 

2.040 

63.0  
287.0 
14600C 

z . 900 
.600 

3.0 
0.0 

00 

125400000.0 0.3 '550900.0 
0.0 0.0 0.0 
-53400000.0 0.0 9.0 
0 .o 0.0 0.0 
0.0 0.0 3 .0  
0.0 150CCCOOOO.O 0.0 
53403000- 0 
0.0 
- 125400000.0 
0.3 
0.0 
0.0 
-125400000.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
-5980C00.3 
0.0 
-125400003.0 

~50000000 .0  
0.0 
9.0 
0.0 
0.0 
3.0 
5Q80000.0 
0.0 

100.0 120.0 

166000000G00 1680000OOOO~ 
a 9 6 0  e240 

105.0 

900000003 

10.560 

0.0 
0.0 
0.0 

150.0 

4 5 0 0 0 0 0 0 0 0 0 ~  

2.556 

-7 550000.0 
0.0 
0.0 
0.0 
0.0 
0.0 
352OOOOOOO 0 
0.0 
0.0 
0.0 
0.0 
0.0 
-2 550000.0 

125400003.0 
0 .o 
-53400000- 0 
0.0 
0.0 
0.0 
-53400000.0 
0.0 
125400000.0 
0.0 
1760000000 -0 
0.0 
0.0 
0.0 

0.0 
0 -0 

J 
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534000CO. 0 
0 . 3  
0.0 
0 .o 
-53400000.0 
0 .o 
125430000.0 
0.0 
3520000000.0 

1 4  1 0 
7 7 1  

0.0 
209 -0 
15  000000000 
41 5000 000 0. 
.381 
1.48 

1 4  1 0 
7 7 1  

0.0 
209.0 
3 5 0 0 0 0 0 0 0 0 0 ~  
142 00000000. 
. 3 9 1  
1 e49 

7 2 0  
7 4  

0.0 
209.0 
123000000 0 0  
4 2 0 0 0 0 0 0 0 0 ~  

0.0 
514GCCCO. 0 
0.0 
0.0 
0.0 
534cccco.o 
0.0 
-1254C0003.0 

0 1  

34.0 
222.0 
12 40000O030. 

- 7 0 5  
0.0 
0 1  

34.0 
2 2 7 . 0  
3 O d O C  c coo00 

,705 
0.0 
0 1  

34.0 
221.0 
104 0 0 000000. 

389.0 
526.0 

4.59 

7.25 
-226.0 
0.0 
226.0 
226.0 
0.0 
-226.0 
13180.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.9 
0 .0 
0.0 
0.0 

1 4  

6 4  

1 2  4 

414.0 
0.0 

0 1 1  

0 1 1  
0.0 
0.0 
0.0 
0.0 
166 27 0 
0.0 
0.0 

1 0 1  
0.0 
0.0 
0.0 
0.0 
0.0 
19 666 18.076 
0.0 
0.0 
c.0 
0.0 

-19132653.06 0.0 
0.0 191 32653.36 
0.0 
357142857.1 0.0 

19 1 ? 26 K 3 06  

Q.O 
0.0 
0.0 
0.0 
7 5 0 0 0 0 0 0 0 ~ 0  
0.0 
0.0 
0.0 

75.0 

9200000000.0 

e518 

75.8 

240C0000000~ 

.51Q 

7 5  .O 

82 00000000. 

246.0 

0.0 
7.25 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
9.0 
0.0 
19132653.06 
0.0 
0.0 
-1  36661 8.076 
0.0 
0.0 
0.0 
357142857.1 
0.0 
0.0 
-19132653.06 

0.0 
0.0 
0.0 
0.3 
0.0 
1500000000. 0 
0.0 
0.0 

125.0 

6000000000o 

-648 

1 2 5 r 0  

18 000000001). 

.64R 

1 2  5.0 

6 0 0 0 0 0 0 0 0 0 ~  

231 -0 

0.0 
0.0 
0.0 
0.0 
0.0 
6417.0 
0.0 

0.0 
0.0 
13 666 1 R 
0.0 
19 132653.06 
-19132653.06 
0.0 
0.0 
0.0 
0.0 
0.0 
178571428.55 
0.0 
0.0 

07 6 

2550000.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1760000000.0 
0.0 

173.0 

4600000000 . 
.357 

173.0 

1 5 0 0 0 0 0 0 0 0 0 ~  

.357 

173 -0  

4600000000 

251.0 

137.8 
137.8 
7 - 2 5  
137.8 
137.8 
-4297.8 
-4297 0 8  

0.0 
0.0 
0.0 
-1366618,076 
0.0 
0.0 
-19132653006 
0.0 
0 .o 
0.0 
0.0 
0.0 
0 00 
0.0 

0.0 176571428.55 0.0 0.0 0.0 

J 
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0 .0  0 00 
C . 0  0.0 
-1366618*076 0.0 
0.0 1366618.076 - 191 32653. 06 0 0 
1$132653-06 0.0 
C O G  19132653.36 
coo 0.0 
6.0 0.0 
c 00 0.0 
c.0 0 00 
35 714285 7- 1 0 - 0  
c.0 0 00 
O e O  0.0 

3.64 0 .o 
c. 0 0.0 
0.0 0.0 
0.0 0 00 
c.0 28476.0 
C O G  0.0 
C O O  0.0 
14238.C 

6 4 0 1 1  

1 0 1 0 0 0  
5 5 1  

COG 36 .4  
152OCOCOOOC~O 8C00000000~0 
.ce03 m 1306 

1 4 0 1 0  

8 1 0 0 1  
4 4 1  

,542 

c.0 35.0 
45cccocoo.o 2cooooooo.o 
c.0 0.0 

8 1 0 0 1  
4 4 1  

c.0 35.0 
3CCCOCCCOO.O 1500000000~0 
c.0 0 00 

4 2 0 0 1  
4 4  

C.0 3 5.0 
4 C C C C C O O O a O  27500COOO.O 
0.0 0 -0 

-36 
1 4 0 1 1  

1 7  17 0 8 8  23 23 
5 3  El -1C.36 54 82 
57 € 5  -12.96 58 86 

9 00 
u .3 
0 .O 
9 .3 
0.0 
0 .B 
0.0 
0 00 
0 00 - 19 132653-06 
9 .o 
0.0 
178571428.55 
0 00 

3 -0  
3 - 6 4  
0 -0 
0 -0 
0.0 
3 .O 
0.0 

71.5 
3400000000~ 0 
-1244 

65.0 
120c00000m0 
0 36 

65.0 
7 50 0000 00 0 
-36 

6 5 - 0  
100000000.0 
21.8 

259500 
-12.96 - 18 a64 

0 .o 
0.0 
0.0 
O e O  
-1 3666 18.0 76 
om0 
0.0 
0.0 
0 00 
0.0 
19132653006 
19 13265 3 006 
0.0 
357142857.1 

0.0 
0.0 
0 00 
0-0  
0.0 
14238.0 
0.0 

0.0 
0.0 
.- 19 13 26 5 3.06 
0 -3 
0.0 
1366tL8.076 
0.0 
0.0 
0 00 
178571428.55 
0.0 
0.0 
-19 132453.06 

0 00 
0.0 
3.c4 
0.0 
0.0 
0 .b 
0.0 

108.0 14500 
18ooooocoo.o 
0 1166 -0833 

100.0 

0 00 

100.0 

0.0 

100,o 

0.0 

23 24 -40.6 
55 83 -9.84 

24 24 088 
56 84 -11.14 

FROGPAM BJ05t INPUTtOUTPUTtTAPE3tTAPE4tTAPE6tTAPE8tTAPE9t 

D I M E N S I O N  C M ! ¶ 9 r 9 9 ) r V ( 9 9 r 9 9 ) , E M ( 9 9 ) t C S ( 9 9 t 9 9 ) r E ( 9 9 ~ t B E T A [ l 4 4 r 9 9 ) ~  
1 TAPE509 TAPES= INPUT 1 

1 R (99 1 tP(99 t C (99.99 rC INVBT (99t99) rBCBT( 99 t991 t 
2 IPIVOT(991 t INOEX(99t2 1 

COMMON HMTX(12)tFCON 
EQlJIVALENCE(BETA( L t l l  * C M l I r l )  t C S (  1 9 1 )  tCINVBT(lt1) t INDEX(1t 1)) t 

1 ( V (  It 1) rC( 1 1  1) tBCBT( It 1) i 

d 
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M A X  = 99 
MRETA=144 

c (3N FNTRY TO 1'415 PROGPAM - - - - 
r TAPE3 HAS O P D F R  AND RFTA MATRIX 
C TARE4 HAS COUPLED MASS AND STIFFNESS HATQICES 

1 P E A D ( 5 9 5 0 0 1 )  ( H M T X ( J I * J = 5 * 1 2 )  
5001 F O R M A T (  8 A 1 0 )  

8 9 9 8  W R f T E ( h r 8 9 9 7 )  
I F (  EOF9 5 1 8 5 9 8 1 8 9 9 9  

PRINT E 9 9 7  
STOP 5 0 0  

8 9 9 9  CONTINUE 
9997 FOPMAT(/ / *  PROGQAM RJD5 STOPPED ON I E O F 1 5 ) * )  

READ(5,5001 1 (HMTX( I )  v J = l 9 4 )  
NERR=O 

REWIND 3 
FCON=1.0 

C RF4D OPDFQ CIF SETA F Q O M  TAPE 3 
R F A D ( 3 )  NSRINCR 
QEWIND 4 

C REA0 COUPLED MASS M A T P I X  FROM TAPE4 

C SOLVE FOR FIGENVALUES AND EIGENVECTORS CF COUPLED MASS MATRIX 
R E A D ( 4 ) (  (CMf I * J ) * T = l r N C B ) r  J = l r N C B )  

C AL L 
I F ( I E R Q ~ E Q ~ 1 1  GO TO 1 5 0 0  

J 4C TV ( NC 9 M AX 9 1 9 CM t EM 9 V 9 DUM 1, DUM2 9 DUN 3 9 DUM4 9 I EF 4 ) 

C TEST FOR NIJlrSFP OF F I N I T €  EIGENVALUES OF COUPLED HAS5 MATRIX 
DO 10 J=ZrNCB 
I J= J - 1  
IF(EM(J) .LE*O.O) GO TO 11 
I F ~ ~ E M ~ I J ~ / E M ~ J ~ ~ ~ G E ~ l ~ O D O O O ~ O ~  GO TO 11 
I F  ( J  .EQ.NCR J I J=NCR 

10 CONTINUE 
11 NFMEV=IJ 

t WRITE EIGENVALUES OF COUPLED MASS MATRIX ON T4PE 6 
W F I T F ( 6 9 1 2 )  (EM( I ) t  I = l r N C B l  

W R I T E ( 6 r l 3 )  NFMEV 
1 2  FORMAT(/ / *  EIGENVALUES OF COUPLED MASS HATQIX * / / ( 2 X * E 1 5 . 8 ) )  

13 FOPMAT(/ / *  hUMRER OF F I N I T E  MASS EIGENVALUES * r I 3 / / )  

9 1 x 1  9 NCR ) 9 J = l r N C B  1 
C P F 4 D  COUPLED qTIFFNESS MATRIX FROM TAPE4 

C REWIND T4PE4 AND WRITE COLUMNS OF VECTOR MATRIX r lN  T4PE4 
C REWIND T A o F 9  A k O  WRITE QOWS OF VECTOR MATRIX ON T4PE9 

READ(4 )  I ( T S  ( I *  J 

aEWIND 4 
REWIND 9 
DO 20 JS19NCP 
W R I T E ( 9 ) ( V (  J q I )  , I = l r N C A l  

20 WRITE(4 )  { V  ( I 9  J 1 I=L vNC6) 
C MULTIPLY STIFFNESS @Y VECTOR AND STORE I N  V 

RFWINO 4 
DO 30  J = l r N C B  

P EA0 ( 4) { R (  I I 9 I =1 rNCR) 
DO 3 0  I = l v N C B  
V ( I 9  J J = O * O  
DO 30 I J = l v N C R  
V( I 9 J 1 =V ( I 9 J ) +C S ( I 9 I J 1 *R ( I J 1 

C READ COLUMN OF VECTOR MATRIX 

30 
C COMPUTF VT* (CS*V l  

REWIND 4 
DO 40 I x l r N C B  

C READ COLUMN O f  VECTOR MATRIX AS ROW OF VECTOR TRANSPOSE 

d 



627 

OF An (4  1 t R ( J ) T J= I 9 NC R 1 
DO 40 J t l r N C R  
C S (  I S  J)=O.O 
DO 40 I J = l t N C R  

40 CS(IIJ)=CSII,J)+P(IJ)*V( I J I J J  
K-NFHEV 
N-NC 6-NF MEV 

- C  I F  THE NUMBER OF F I N I T E  M I S S  EIGENVALI 
C ORDER OF TYE COUPLED MASS MATQIX  CMe I 
C COUPLED STIFFNFSS MATRIX CS. 

XFfN-EQ.0) GO TO 79 
K P l = K + I  

C 
C 
C 

C 

C 

C 

C 

C 

C 

C 

C 
C 
C 

ES 
YPA 

NFHEVJ IS EPU4L TO THE 
S PARTIT IONING OF T H E  

C S  WILL RF PAQTIT IONED AS FOLLOWS----- ra 9 1  
( R T  ',) 

WHERE A=(K*K) *  R = f K * N ) r  S T = ( N * K l *  C= tY*NJ  
REWIND 4 

STORE MATRIX i ON TAPE4 BY COLUMNST 1 RECORD 
W R I T E ~ ~ ) ( ( C S ( I I  J J * I = ~ * K ~ T J = ~ ~ K )  
REWIND 8 

STORE MATRIX C ON TAPE 8 BY COLUMNST I RECOPD 

STOQE MdTRIX 3 ON TAPE8 BY ROWS9 K RECORDS 
WRITF18)  i I C T (  1 9  J 1 9  I - K P l r  NCBJ 9 J=KP l?NCR 1 

DO 50 I-1.K 
50 WRITEtO) t C S (  I * J ) r  J=KPI *NCR)  
R E 4 0  MATRIX C FRRM TbPE8 4ND COWUTE THE INVERSF OF C 

REWIND 8 
READ(8 1 (  (C( 1 9  J )  *Ill r N ) *  J= l r  N )  
CALL M4T I N V  ( C r N  9 BI P O  vDETI I P IVOT 9 INDE XI MAX9 I SC4L E 1 

COMPUTF C INVERSE T I M E S  B TRANSPOSE 

PEA0 ROW OF ? AS COLUMN OF R TRANSPOSE 
DO 60 Jt1.K 

READ(8 1 ( PI I 1 t I = l  9 h l 1  
DO 60 Ix1.N 
C I N V B T f I  9 J )=O.O 
DO 60 I J = l r N  
C I N V B T I  1 9  J l=CINVBf  ( I ?  J J +C( 1 9  I J )  *P( I J J 60 
REWIND 8 

READ(8 1 SKIPREC 
THE NEXT RE40 STATEMENT i t  A DUMMY RFAO TO POSIT ION TAPE8 

COMPUTE P * ( C  INVERSF * B TRANSPOSE) 

READ ROW OF B 
00 7 0  I = l r K  

P E A D ( 8 J t  P( J ) r J = l r N )  
DO 70 J t l t K  
RCBT(IvJJ=O.O 
DO 70 I J = l r M  
BCBT ( I 9 J 7 0  C BT I I J 1 +P ( I J 1 *C INVBT ( I J 9 J 1 
REWIND 8 

W Q I T E ( 8 1  ( ( C I N V B T l I  t J I r I = l r N ) r  J = l * K J  
REWIND 4 

STORE C INVERSE TIMES R TRbNSPOSE ON T4PE* R Y  COLUMNS9 1 RECORD 

READ MATPIX f l  FROM 4 
R F A D ( ~ ) ( ~ C S ( I I J ) ~ I = ~ * K J ~ J = ~ ~ K )  

COMPUTE A - (R*CINV*BT) 
REPLACE THE F19ST K ( F I N I T E )  EIGENVALUES OF THE MASS MATRIX BY 

l.O/ISQUARE FOOT OF EIGENVALUE) 
79 DO 8 1  I = l r K  

E M ( I I = l . O / S Q R T ( E N ( I ) I  
IF(N.EQ.0) GO T O  81  
DO 80 J = l r K  

d 



80 t S (  l r J I = C S ( I *  J I - B C R T ( I r J I  
81 C O N T I N U E  

C P R F -  A N D  P O S T - M U L T I P L Y  THE CS M A T R I X  B Y  l * / S Q R T t M A S S  E I G E N V A L U E S )  
00 90 I = l * K  
00 40 J = l r K  

90 C S ( I I J ) = E M ( I ) * ~ S ( I I J I  
DO 100 J = l r K  
DO 100 I = l t l (  

100 C S (  I r  J ) = C S I  I r J I * E M (  J f  
C A L L  
I F ( N E R R . N E - 0 )  GO T O  1500 
C A L L  FREO(EICSIKIMAX) 

DO 110 1 = 1 1 K  
DO 110 J = l t K  

J A C T V t  K t  M A X r K  9 C S  * E  r V t O U M l r  D U M 2 r D U M 3 r D U M 4 r N E R S I  

C P R F - M U L T I P L Y  VECTOR Y A T R I X  BY l . / S Q R T ( M A S S  E I G E N V A L U E S  1 

110 V f I r  J f = E M ( I  I * V ( I * J I  
R E W I N O  4 

C STORE X SUB 1 VECTOPC ON T A P E 4 1  9 Y  COLUMNS*  K RECORDS 
DO 115 J = l t K  

I F ( N . E Q - 0 )  Gn TO 144 
115 U R I T E ( 4 )  ( V ( I * J ) r I = l r K )  

R E W I N D  8 
C R E A D  C I N V E R S E  * E TRANSPOSE M A T P I X  FROM T A P F B  

P E A D ( 8  1 [ (CS I I t J r I = l r  N I t J = l r K  1 
R E W I N D  4 

C M U L T I P L Y  (C I Y V F P S F  * 9 TRANSPOSE)  B Y  X SUB 1 VECTOR H 4 T R I X  

C D E A D  COLUMN OF X SUR 1 M 4 T R I X  F R O Y  T A P E 4  
DO 120 J = l t K  

R € A 9 ( 4 ) I P t I  ) r I = l * K )  
DO 120 I = l r N  
V( I , J )=O.O 
DO 120 I J x l r K  

120 V ( I r J ~ = V ( I v J ~ + C S l I t I J ) * p l l J )  
C X SUR 2 VECTfYR M A T R I X  = - VECTOR M A T R I X  J U S T  COMPUTED 

DO 125 I - L I N  
DO 125 J = l r K  

12 5 V ( I t J ) = - V (  I 

W R I T E  ( 4  1 

J I 
t STOQE X SUB 2 VFCTOR M A T R I X  ON T A P E 4  9Y ROWS9 1 RECORO 

I V ( 1 9  J )  J= 1 t K  1 9  I = l  r N) 
C R E W I V D  4 *  THEN RF4D X SUR 1 VECTORS I N T O  F I Q S T  K ROWS OF CS AND 
t @ € A D  X SUR 2 VECTORS I N T O  ( K + 1 )  TO N C B  ROWS OF CS 
C THE' r S  M A T R I X  IS NOW ( N C B  * K f  

144 R E W I N D  4 

145 R E A D ( ~ ) ( C ~ ( I I J ) ~ I = L ~ ~ ~  
DO 145 J = l * K  

IFIN.NF.0) R E A D ( 4 )  ( ( C S (  I r J )  9 J = l ~ K ) ~ I = Y P l r N C R )  
C MULTIPLY M a s s  VECTOR MATPIX ey cs  MATRIX 

P E W I N D  9 
DO 146 I = l r N C R  

R F A D ( 9 ) l R ( J I r J = l r N C B I  
DO 146 J = l t K  
V ( I  t J)=O.O 
00 146 I J X l t N C B  

C R E A 0  ROW O F  MASS VECTOR M A T R I X  

146 V (  I J ) = V (  1 9  J 1 +R(  I J )  *CS ( I Js J ) 
C COMPUTE B E T A  * T H E  F I N A L  VECTOR M A T R I X  

R E W I N D  8 
DO 1 5 1  I t l r N R B  

R E A D ( 3 )  ( R (  J I t J = l p N C B I  
C R E A 0  ROW OF B E T A  M A T R I X  

d 
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FULL-SCAl E T I L T  EGTCQ S Y M Y F T P T f  FREF-FLIGHT MODF5--90 '3FG CONVERSION AN".E 
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d 
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V IBRATION ANALYSIS  BY COMPONENT MODE SYNTHESIS 

PI. C G 9  AM C PSvC S ( I U P  U T  I)U T P  U T  1 T A P E 5  = I N P U T  t T A P E 3 t T A P  E4 t T A P E6 t T A D  E 8 T 

1 T A P E 9  * T A P  E l Q p  T A P F l l  , T A P E 1  Z t  T A P E Z C  1 

* 
* 
* 
* 
* 
* * 
* * * 
* 
* 
* 
4 
4 

* 
* * * 
* 
* * 
* * 
9; 

P Q q G Q  AYS C r S W S ,  Y l 1 ) A l  C,ANIi  H J D S M  CCMPR I SE A COtAPbTER 
P A C K A G E  FTc T H t  N A F U F A L  MODE V I B R A T I g N  A N A L Y S I S  ?F 
C n Y P L t X  STrUCTIJ;AL S Y S T E M S  B Y  THE M E T H G 3  OF C O M P n N t N T  
'mil F 

THE S T F U C T t f P E  I S  1 I ) E A L I Z E D  AS A N  A S S E M B L Y  CF 8 E A " ~ S P R I N G t  

S YFI THF S I S . 
AND R I G I @  '1ASS S U R S Y S T t Y S .  A F I N I T E - E L E * E M T  AFPR'IACH 
I S  E M P L O Y E D  TO C I E N L R A T F  T H E  M A S S  AND S T I F F N E S S  M A T R I C E S  
FnQ T t I F  ! l N C n l J P L C D  5 Y S T t M  A N D  THOSE P E O t J I R E D  F C Q  
S U B S Y S T F M  ' 4 3 0 A L  A'JALY SFS. SUBSYSTFrY B E A f r  P O C T  C C ) V D I T I l l F ! S  
C A Y  BE F R E c - F q E t t  P I Y N E D - F R E E  t OR C L A M P E C - F R E E .  P R O G k A "  
P E P M I T S  C P T I I U  I F  E X F P t S S I N C  M i i D A L  E X P A h S I O N  M A T D I X  
AS A C n M R I r l A T I r 8 N  <IF C A L C U L A T F D  S U B S Y S T E W  V A T U R A L  WODES 
AhD A O D I T I r 7 N A L  J S E F - I N P U T  D E F L E C T I O N  SF:bPES ( S U C H  AS 

A S S U Y F D  n L F L F C T I O N  S H A P E S  1 (. U S E R - W R I T T E N  C C M T R A I N T  
F D l l A T  InNS C t l F 1 R C  I N G  I N T E F  - S U R S Y S T E C  0 I S P L A C E M E N T  
C n " P A T I H 1 L I T Y  A h  A P P L I E D  A C C n 9 D I N G  T O  T H E  V E T H O D  O F  

Pk A S U i € D  W ' l D t  S H A P E S ,  S T A T  I C  D E F C E C T I r l ? (  S l ' A P E S t n R  

& A S A  Tk c - 3 2 6 .  A C L N O E M S A T I O N  O F  THE SYSTEt '  G E Y E P A L I Z t D  
S T I F F * l F S S  ' ' A T R I X  I S  PEDFI 'FYEDt  I F  N E C E S S A R Y v A N C  T H E  
P t S U t T A N T  C Q U A T I 3 ' U S  C A S T  I N T n  A F O R M  T t  W H I C H  THE 
T H P E S H O L D  V A Q I A T  I O U  ,)F T H E  J A C O B 1  A L G n n I T H E '  FOP FIYDING 
EIGE."1VALU'S 4 ' 4 0  t I G f Y V i C T O P S  I S  A P P L I E D .  

* 
* 
* 
* 
* 
* * 
* 
* 
4 

* 
* 
* 
4 * 
* 
* 
* 
* 
* 
4 
* 
0 

* 
* 

K A S E = l ,  O I A G C Y A L  Y 4 S S  L W L Y  (Nr1 NULL V A L U E S )  
K A S E = Z r  D I A G f l N A L  Y A S S  AND Q O T A K Y  I N E R T I A  ( W  N U L L  V A L U E S )  
K A S E = 7 ,  WO'I-01 AGO'JAL M A S S  AND F O T A P Y  I Y E P T I A  ( Y U L L  V A L U E S  

K A S E = 4 r  O I A G C N A L  T O S S I f N A L  I Y E F T I A  QF A X I A L  M A S S  ( N 3  NULL 
c m  RE ntd DIAGCNALJ 

V A L i J E S  C!U D I A G f h l A L  J 

V A L U E S  C A Y  BE b N  D I A G O N A L )  
K A S E = 5 ,  D I A G C Y A L  T O R S I C N A C  I h E R T I A  f l c  A X I A L  WASS (hULL 
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C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 

C 
C 
C 
C 
C 
C 

C 
C 

c 

C 
C 

---BFAM EPID CONDI T lnNS---  
I F F P C z l t  FREE-FREE 
I F F P C = Z *  PINNED-FREE 
IFF P C = 3 r  CL AMPED-FR EE 

S T A T I C  UNBALANCE TERMS A R I S I N G  FROM MASSES OFF THE 
E L A S T I C  A X I S  COUPLE B E N D I N G  AND TORSION 

I C B T = l t  COUPLED B E N D I N G T O R S I O N  
ICBT=Ov BENDING AND TORSION UNCOUPLED (OR N 3 T  A P P L I C A B L E )  

FOP S P R I N G  OR R I G I D  BOOY SUBSYSTEMS NO NOUAL EXPANSIONS 
WILL BE PERFORMED. USER HAS OPTION 1'3 BYPASS YOOAL 
EXPANSIONS FOR ANY BEAM SUBSYSTEM. 

I E X P A N O = l t  YODAL EXPANSION WILL B E  PERFORMED 
IEXPAND=O, NO MODAL EXPANSION ( O R  N 3 T  A P F L I C A B L E l  

NSPADD = NUMBER OF S P R I N G  CONSTANTS TO B E  ADDED 7 N  AND ABOVE 
DIAGONAL 'IF FREE-FREE S T I F F N E S S  M A T R I X  I N  A G I V E Y  

--NOTE--THESE S P P I N G S  T I E  BEAM OR R I G I D  BODY 
BLOCK. P90GRAM W I L L  PROVIDE SYMMETRY A S  REQUIRED. 

ELEMENTS T O  GROUND ONLY AND NOT TO OTHER ELEMENTS. 

MASADO = NUMBER OF MASSES TO BE ADDED Ch' ANC ABOVE 
DIAGON4L OF THE FREE-FREE MASS-ROTARY I Y E R T I A  

PROVIDE SYMMETRY A S  REQUIRED. 
X A T R I X  I N  A G I V E N  BLOCK. THE PROGRAM WILL 

MASCRT = NUMBER OF S T A T I C  UNBALANCE TERMS ABOVE DIAGONAL 
OF COUPLED BENDING-TORSION MASS MATRIX.  THE 
PROGRAM WILL PROVIDE SYMMETRY P S  REQUIRED. 

I R I T A L L  CCNTROLS I N T E R M E D I A T E  OUTPUT T C  TAPE 6 WHICH 
MAY BE POUTED. 

I R I T A L L = l r  SUBSYSTEM MASS AND S T I F F N E S S  VATRICES 
FOR FREE-FREE AND R E S T R b I N E O  C O N D l T I O N S  
WILL BE OUTPUT 

I R I T A L L = O .  ABOVE NOT OUTPUT 

NBLKS = NUMBER OF BL3CKS I N  UNCOUPLED, FREE-FREE S Y S T E Y  
MASS AN0 S T I F F N E S S  MATRICES 

NORDER = CROER OF UNCOUPLED* FREE-FREE SYSTEM 

REAC NUMBER OF BLQCKS I N  UNCOUPLED SYSTEM MASS AN0 S T I F F N E S S  
MATRICES AND ORDER OF SYSTEM 

P E AD 10 20 T NBLKS 9 NORDE R 
U R I T E I 6 ~ l O l l J  NBLKSsNOROER 
P P I N T  1 O l l t N B L K S t N O R O E R  

1011 FORMAT( 1H1//* NUMBER BLOCKS I N  UNCOUPLED SYSTEM MbSS AND S T I F F N E S S  
1 MATRICES * r I 3 / / *  OROER OF SYST€M t **I31 
00 200 N B L O C K = l g  NBLKS 
k R I  T E ( 6  t 1019 f NBLOCK 
P R I N T  1 0 1 9 r N B L O C K  

1019 FORYAT( 1H / / l X t  19H**********+********/lX9 1 9 H *  */ 
1 1x9 14H* BLOCK NUMBER t I392H */ 1x9 19H* * /  
2 l X ,  19H****+***+**********) 
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C KP=Ol;DtR r F  BLOCK 

C L O C z l t  BEAM B E N D I N G  
C i S C = 2 1  BEAY T’IRSC?N 
C L 3 C = 3 r  B F A Y  A X I A L  
C LOC=4, S P P I N G  03 R I G I D  BODY ELEMENT 

C FOP S P R I N G  ’3R R I G 1 0  BODY ELEMENrS --- 
C M K = l *  D E A D  S T I F F N E S S  FRnM CARDS 
C W K 1 3 r  YO READ 

C 
C 

Y U = l ,  P E A D  MASS FP’JM CARDS 
M M = 0 9  Nf f  R E A D  

C FOR A SYMMETRIC OR A N T I - S Y M M E T R I C  FORHULATI ’3N  O F  THE 
C PRCIBLEYp T l i E  YASS AND S T I F F N E S S  M A T R I C E S  FOR BLOCKS 
C COPRESPONDING TO SUBSYSTEMS OUT OF T H E  V E R T I C A L  P L A V E  
C !IF SYMMETRY MUST BE Y U L T I P L I E O  B Y  2.0 
C I S Y M = l r  M ’ J L T I P L Y  B L 3 C K  MASS AND S T I F F N E S S  M A T R I X  B Y  2.3 
C I SYMzO, h l 0  M U L T I P L I C A T I O N  

GLAD 1 9 2 ’ 3 r K K ~ L O C , Y K p Y M ,  IEXPAND,  I S Y M  

GC TO ( 1 1 3 r 1 2 G r 1 2 0 ~ 1 3 3 J ~ L O C  
1020 FCRHAT{  20 1 4 )  

** ******** ****** 
* OEAP B E N D I N G  * 
******I********* 

C FOR BEAM BENDING, FREE-FREE S T I F F N E S S  Y A T R I X  I S  
C GENEQATEO I N  THE P A R T I T I O N E D  FORM ( A  8 )  
C I B T  C )  
C WHERE A=(K*K) ,  B = l K * Y ) ,  B T = ( N * K l r  C Q ( N * N )  
C FOR THE FREE-FREE CASE,  K I N  

115 EE AD 1020 9 KI Nt K A S E  * I C B T  9 I F f  PC e NSP ADD, Y AS ADO, I R  I T A L L  
kR I TE(  611030) 
FF I N T  
FORMAT 1 / - / 9X* *K*  ,9Xq*N* r  ~ X I * K A S E * * ~ X I * I C B T * ~ ~ X ~  * I F F P C * r  7x9 *NSPADD*t 

K ,N,KASE, I C B T ,  I F F P C  ~ N S P A D O I  #ASADO*! R I T A L L  
1 0 3 0 9 K 9  NVKASE, I C B T ,  IFFPC~NSPADOIMASADOI  I R I T A L L  

1C.31) 
1 6 X  ,*MASADD* t 5 X  9 * IR I T A L  L* / /  41 10 941 12 1 

1 C 4 0  f O R M A T ( 5 E 1 4 . 8 )  
I F (  ICBT.FO.1) K A S E S A V z K A S E  
K V l = K - 1  
C A L L  Z E R O w (  A, K , K ,  MAX, MAX)  
C A L L  LEROMlR9K,N tYAX,YAX)  
C A L L  ZE ROY ( C  q NI N 9 MAX, MAX)  
C A L L  Z E R O M I W , K ,  l , Y A X * l I  
C A L L LE POW ( R I 9 1 MAX t 1 1 
READ l O 4 0 t l X l  I ) r I = l , K )  
P E A D  1 0 4 0 , ( S (  I ) , I = l r K Y L )  
F E A D  1 0 4 0 r l D M l I ) r I = l r K I  
1F IKASE.NE. l l  R E A D  10401 l R I (  I ) r I = l r N )  
P R I N T  1 0 5 C , I J , X ( J ) , S I J I , D ~ ( J ) t R I ( J ) r J P 1 1 K M l 9  
hP I T € (  6,1950 1 ( J 9 X I  J)  , S( J) rDM( J1 r R  I 1  J9 
Pli  I N T 
M R I T E ( 6 9  1051 1K1 X(K) *04(K) r R I ( K )  

J x l  T K C l  ) 
1 05 1 9 K 9 X l K J 9 DM ( K 1 9 R I ( K 1 
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8 9  hFOW=NROW-K 
kCOL =NCOL -K 
C I NROW 9 NCOL 1 =C I NROW r V C O L  
I F  I NROW oNF-NCGL ) 

+E 4 J J 1 
C(NC0Lr NROW )=C( NCOLr NROW i +E i J J) 

90 CCNTINUE 
C FORM FREE-FREE BENDING STIFFNESS AN0 MASS MATRICES 

KPN=K+N 
KP l = K +  1 
I F (  ICBToEQ.11 KK=KK+KK/2 
I F (  ICBT.EO.11 KKSAVzKK 
I F (  ICBT.EO.1) MAXTZtYAXT3 
CALL ZEROM(AArKKrKKrMAXT2 rMAXT2 1 
CALL 2 EROM ( BB 9 KK ~ K K I  H4XT2 rYAX T 2  1 
REWIND 3 
kF I T E I 3  1 I ( A (  I r J 1  9 J = l r K )  r I = l r K  1 r (I 611 r J 1 r  J z l r N 1  e I = l r K l r  I ( B I  1 9  J )  9 

1 I = ~ ~ K ~ ~ J = ~ , N ~ ~ ( ~ C ~ I ~ J ) ~  J = ~ ~ N ) ~ I = ~ ~ N ) ~ I D Y (  JI r~= l r~ l r  
2 I P I ( J 1  r J = l v N l  

PEWIND 3 
PEA0 13)  I I AAL I r J 1 t J = l *  K )  r I = l r K  1 9  I I AA( I r J )  r J t K o l  pKPN 1 9 1 - 1  rK  1, 

1 
2 

[ I A A I  I ,  J)  r J I l r K )  r I = K P l r K P N )  p I I A A (  I r  J 1 r J = K P l  r K P N l r  I = K P l r K P N ) r  
[ B e l  JI J 1, J = l r K P N  I 

IF(ICBT.NE.11 GO TO 1064 
REWIND 9 
h R I T E 1 9 ) 1 1 A A I I , J ) r J = L I K P Y ) , I = l r K P N )  

C MULTIPLY FREE-FPEE STIFFNESS MATRIX BY 2.0 I F  ISYM = 1 
1 0 6 4  IFI ISYM.EPoO1 GO TO Lot6 

D@ 1 0 6 5  I = l t K P P I  
DO 1 0 6 5  J = l r K P N  

1 6 6 5  A A ( I  ~ J ) = Z . O * A A I I v J )  
1066 IF( ICBT.NE-11 GO TO 1068 

KP-K S NP=N 
GC TO 1069 

C WPITE ORDER AND FPEE-FREE STIFFNESS MATRIX ON TAPE 11, 1 RECORD 
1C6 8 kP I TE( 11 ) KPNr I ( AA( I r J 1 r J= l v K P N 1  r I  = l e  KPN) 

IF(I4ITALL.EQ.O) GO TO 1069 
i - M T X ( l l = l O H  FPEE-FRE S hMTXI21=13HE BENDING 

C A  LL 

IF(MASADD.EQ.01 GO TI) 93 
FEAD 
GP 9 3  J = l r l r A S A O D  
hRCW=IR(Jr11  
hC ‘3L-I R I J v 2 ) 
R B ( N P ~ W , Y C O L I = B B ( Y R O W ~ ~ C O L ~ + E I J ~  
I F  ( NPOW .NE . NCPL 1 

IF(ICBT.NE.11 GO 10 9 9  

kP I T  E ( 10 1 I ( RB ( I 9 J 1 r Jx1r KPN 1 r I =1 r K  PN 1 

HMTX(31=lOHSTIFFNESS S HPTX(4)=1OHMATRIX 
WYTXCI A A r  KPN r KPN r YAX T2r  “l AXTZ 1 

i c  69 CCNTINUE 

l e 6 0  9 l IR ( J,  1) 9 I R  I J.2 ) * E  I J 1  r J = l r H A S A D D )  

BE I NCOL r NROW 1 =BB[ NROW rNCOL 1 
9 3  C O N I  INIJE 

REWIND 10 

C MLLTIPLY FREE-FREE MASS MATRIX BY 2.0 I F  ISYM 1 
99 IF(ISYM.EO.01 GO TO 9 8  

FEWIND 8 
k R I T E  I 8  1 I ( BE( I p J ) 
CO 96 I - l r K P N  
DO 96 J s l r K P N  

J z l  rK PN 1 9 I =  1 9  KPN) 

96 B B ( I v J 1 = 2 . O * B B I I r J 1  
9 8  IFI ICBT.NE.11 GO TO 9 5  

GO TO 97  
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C WPITE ORDER AND FPEE-FREE MASS MATRIX ON TAPE 1 2 r  1 PEC’IRD 
9 5  

94 

97 

1071 

kP I TE( 1 2 )  KPN, I ( B B (  I 
I F t I R I T A L L - E Q . 0 1  GO TO 94 

J ) 9 J = l r K P N )  * I  f11 KPN) 

H M T X ( l ) = l G H  FPEE-FRE 0 HHTX(2)= lOHE BENDING 
HMT X (3 1 = 10HMA SS MATR I S 
CALL W M T X C I B B ~ K P N * K P N I Y A X T ~ I M A X T ~  I 
CON1 INUE 
IF( ISYV.EQ-01 GO TO 97 
PEWIND 8 
P E A D 1 8 ) ( ( 6 B ( I r J ) r J = l r K P N )  v I = l r K P N )  
I F I I C B T - E O - 1 1  GO TO 2 0 0  
I F (  IEXPANOoEQ.1 I GO TO 1070 
CALL 
C@ 1071 I = l r K K  
J=KK+l -  I 
V ( I *  J l = l . O  
KPN=KK S K=KK 
GO TO 1000 

HWTX ( 4 1 = 1 OHX 

ZEROM( VI KK rKK9MAXT2r MAXT 21 

11 

12 

00 11 I S K P l t K P N  
00 11 J = l r K  
~ A ( I ~ J ) = A A ( J I I )  
I F I I R I T A L L . E Q o 0 )  G O  TO 12 
H H T X ( l I = l O H  F I N A L  ST $ H M T X ( Z I = l O H I F f N E S S  MA 
k M T X t 3 I = l O H T R I X  S HMTX (41.: 1 0 H  

H M T X ( l I = l O H  F I N A L  MA $ HMTX(2)=10HSS Y A T R I X  
HPTX 13) = 1CH S HMTX44) = 1 0 H  

CALL WYTXC(AAtKPNrKPN9MAXT2rHAXT2) 

CALL WMTXC ( BB 9 KPNpKPN 9 M A X  12 M AXTZ I 
F E W I N O  4 

C WRITE ORDER9 MASS MATRIX9 AND STIFFNESS MATRIX (IN TAFE Q I  1 RECCJRD 
h R I T E ( 4 l K P N ~ ( ( R B ( I ~ J ) r J ’ l r K P N ) q I ~ l ~ ~ P N l r ( ( A A ( I ~ J ~  , J = l r K P Y l r  

1 I = l , K P N )  
C C4LL EIGENVALUE SUBROUTINE 

C A L L  ALL E I G (  AA9 B B *  KPN, MAX T2 * M A X  9 M  A X 2  t K  9 Ne C 9 I P  I VCJT 9 INDEX r P 9 

1 CINVBTvBCINVBT,EM * E  I G V ,  VI EVIR KPRq ICRT ) 

d 
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G f  TO(  105 T 1021 102)  I F F P C  
C ADD R I G I D  BODY T R A N S L A T I O N  MCOE T O  YOOAL M A T R I X  

102 K = K P N / 2  
K=K+1  S J=N 

J=J+1 
DO 103 I = l r N  

b I  I r K ) * 1 * 0  
103 V ( J t K j s O . 0  

I F I I F F P C e E Q - 2 )  GO TO 105 
C ADC R I G I D  BODY R O T A T I O N  MODE TO MODAL M A T R I X  

K=K+1  S J-N 

J=J+l 
DO 1 C 4  ISLIN 

V ( I I K ) = X ( I )  
104 V(  J I K ) = 1 . 0  
105 C C N T I N U E  

C W R I T E  ORDER AND MODES (BY COLUMNS) O N  T A P E  201 2 RECCROS 
7000 W R I T E ( 2 O )  KPNIK 

~ R I T E I ~ ~ ~ I ~ V ( I I J ) I I ~ ~ I K P N ~ ~ J ~ ~ I K ~  

GO T O  200 
IFINBL~CK.EQ.NBLKSoAND.NBLKS.EO.1) GO TO 1 

** * * * * * * * * *+ * ** *** * * * ** * * 
* BEAP T O R S I O N  OR A X I A L  * ************************* 
C FREE-FREE S T I F F N E S S  M A T R I X  IS OF ORDER K 

1020, K ( K A S E  I I F F P C  q NS P A D 0  t MAS ADD* I R I T  ALL 120 C k AD 
W R I T E  (61 1 0 9 0 ) K * K A S E s  I F F P G  INSPADO* MASADD9 I R I T A L L  
PP I N T  
FORMAT t / / / 9 X *  *K*  q8 Xq *KA SE*q  5 X  I * I F F P C * r  5x1 *NSPADD* 14x9 *MAS ADD** 

1 0 9 3 q K * K A S E *  I F F P G r Y S P A D D t  HASADD9 I R I T A L L  
109@ 

1 ~ X T *  I R I  T A L L * / / 6 1 1 0  1 
K M  1 = K- 1 
I F (  ICBT.EQ.11 KASE=KASESAV 
C A L L  ZER’YMI  AIKI K r  MAXI MAX)  
C A L L  Z E R O W I B I K ~ K  ,MAXIMAX)  
F E A D  1 0 4 0 r I X (  1 ) r I ” l r K I  
P € A D  
& E A 0  1 0 4 0 , ~ R I I I ) r 1 = 1 1 K J  
I F ( L O C * E Q . 2 )  GO TO 1 3 9 8  
~ P I T E ( ~ ~ ~ ~ O ~ ) ( J I X ( J ) I S (  J J r R I l  J I  r J = L r K M l J  
W P I T E l 6 q l l O l l  K I X I K J T R I ( K  1 
P R I N T  1102q I J I X(  J I  q SI J 1 r R  I ( J )  9 J=l  r K M l )  
FF I N T  11011 KI X(  K 1 r R  I K ) 
GO T O  1099 
~ R I T E ( ~ I ~ ~ O O ) ( J I X ( J ) I S ~  J) T R I (  J) I J ~ l r K M l I  
C I R I T E ( 6 q  1101) K,X(K) I R I I K  1 
FP I N T  11091t J r X (  Jt * S I  J )  I R I I  J) tJ=1 r K M l 1  
PP I N T  l l O l r K q X ( K )  I R I  I K  1 

1040 T ( S (  I T I =1 t K M 1 )  

1098 

1100 FORMAT I / / / 3 X  r*  J* q 7 X r *  X I J) * 9 11 X * * G J  ( J  I *  I 10 X 
1101 FORMAT(  1 4 r E 1 6 . 8 9  16X1E16.8)  
1102 

*R I 

FOPMAT(  / / / ~ X I * J * * ~ X I  * X I  J) *e 11 XI*AE( J )*I 10x1 *DM 
C FORM FREE-FREE S T I F F N E S S  Y A T R I X  

1099 CD 121 L = l r K M 1  
121 E ( C ) = 1 . 3 / ( X ( ~ + l ) - X ( L )  ) 

122 S I J ) = S I J ) * E ( J )  
00 122 J t l r K M l  

A ( l r l ) = S ( l I  
A ( 1 T 2 1 =-S ( 1 1 
A ( K * K - 1  ) = - S ( K M l I  
A ( K I K ) = S ( K C l )  
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KTB=O 

CC=K TB+ J 
DO 123 J 1 2 r K Y 1  

A I  KO #KO-1 I =-S ( J-1 I 
A I  K D r K D b f  S I  J-1) + S t  J l  

123 A ( K D v K D + l l = - S I J )  
I F I N S P A D D e E O r O I  GO TO 124 
READ 1060 r ( IR (J 9 1 B t I R  t J r2 f r E(  J I r J= 1 9  NSPADD 1 
kRITEl6rlC61) 
DO 124 J J E l r N S P A D D  
NROW=IR I J J i l l  
N C O L x I R  ( J J.2) 
d l  NROWv NCOL ) = A (  NROWI Y C O L i + E (  J J 1 
I F  (NROW .NE.NCOL I 

Jr I R ( J 9 1 )  V I R [  5 . 2 )  r E ( J )  r J = l r N S P A O O l  

A (NCOL*  NROW ) = A I  NROWr NCOL I 
124 CONTIYUE 

I F [  ICBT.EQ-1)  GO TO 125 
I F (  1 R I T A L L E Q . O I  GO TO 1 2 5  
HMTX I1 ) LOH FP €E-FRE I H M T X l 2  1 =LOHE TORS I O N  
HMTX ( 3 1  = l O H S T I F F N E S S  t HMTX ( 4  ) =  l O H H A T R I  X 
C A L L  W Y T X t l A s K r K r M A X r M A X )  

I f ( ICBT.NE.1 )  GO TO 119 
k k I T E ( 9 I  ( I A ( I  r J 1  t J = l + K ) r  I x l r K  I 

125 CONTINUE 

C M L L T I P L Y  FREE-FREE STCFFNESS WATRIX 8 V  2.0 I F  I S Y M  = 1 
119 IF( ISYM.FQ.0)  GO TO 129 

FEWINO 8 
WR I T E t  8 
DO 129 I = l r K  
DO 129 J t l v K  

( ( A( I 9 J I t J = l *  K l  r I = l  r K  I 

129 P l I r J 1 = 2 . 0 * A ( I , J l  
128  CONTINUE 

I F I I C B T - N E o l )  GO TO 1292 
C FOPC FREE-FREE COUPLED BENOING-TORSION S T I F F N E S S  M A T R I X  

KPNPK=KPN+K % K P N P l = K P N + l  

I I = I -KPN 

J J= J-KPN 

DC 1293 I = K P N P l r K P N P K  

DO 1293 J = K P N P l v  KPNPK 

1293 A A I I r J l ~ A l I I r J J l  
C WPITE ORDER PMD FREE-FREE COUPLED BENDING-TORSION S T I F F N E S S  MATQ I X  
C ( B V  RO’CISI ONTO T A P E l l r  1 RECCRD 

WP I T € (  1 1 ) L P N P K s  I I A A (  I ,  J t v  J=l ,KPNPK 1 t I ~ l r K P N f ’ t O  
GO T C  1294 

C WRITE ORDER b N 0  FREE-FREE S T I F F N E S S  Y A T R I X  [ B Y  S O U S )  ON 
C TAPE 11r 1 REC’3FD 

1292 
12S4 I F l I S Y M * E Q - O )  GO TO 1291 

k R l T E (  1 L ) K r I I A l  I v J J  I J ~ L r K ~ , I = l r K l  

REWIND 8 

1291 CCNTINUE 
R E A D 1 8 1  ( I A ( I r J I  r J = l r K l t I = l r K )  

CC 1 3  J X l r K  

I F ( M A S A D D - E Q o O 1  GO T 3  126 
READ 
DO 126 J Z l t M A S A D D  
hROW=IR{ J r  1) 
hCCL = I  R (J 9 2) 
BlNROWrNCOA l=B [NPOWrNCOL)  +E(. J )  
I F  (NROW .YE.NCOL I 

13 @ l J , J l = P I I J I  

10609 I I F  ( J p 1 1 9  I R  l J92 l r E (  J )  r J = l r M A S A D D l  

B (NCOLv  NROW 1=8( NROWVNCOC) 
126 CONTINUE 
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I f - (  ICRT.NE.1) GO Tn 1259 
h h l T E ( l O ) I ( H ( l r J ) t J r I r K ) r l = l t K )  

C P U C T I P L Y  FREE-FREE MASS MATRIX BY 2.0 I F  I S Y M  a 1 
1259 IF(ISYH.EO.0) GO TO 1260 

PEkIhlD 8 
kF I T E I 8 
DC 1262 I = l r K  
D r  1262 J = l p K  

I L B I I p J 1 9 J= 1 e K 1 9 I 1 t K 1 

1262 B I t r J ) ~ 2 o O * B ( I t J I  
l26C IF(ICBT.NE.1) GO TO 1261 

C FGFV FREE-FREE COUPLED BE'4DING-TORSION MASS MATRIX 
DO 1264 I = K P N P l r K P N P K  
1 1 - I - K P N  
DO 1264 J tKPNPl rKPNPK 
J J= J-KP N 

1264 88l  I * J ) = B (  111 JJ1 
FEAD 10209MASCBT 
EFAD 
IF( ISYY.EQo91 GO TO L2b5 
CO 1266 J-19MASCBT 

10601 ( I R L  J1 18 9 1 R (  J12 ) * E (  J) r J = l r H A S C B T )  

1266 E(J)&!*E(JI 
1265 CC €27 J"19MASCBT 

N R O W = I F ( J * l )  
ACOL=IR ( J 12 
BBINRDWTNCPL)=BBINROW,NCDL)+E(J) 

127 frat NCOL,NRCW)=RBINROWI~COL 1 
C Wf I T E  O R D E R  AND FREE-FaEE COUPLED B E N D I N E T O R S I O N  YASS Y A T R I X  
C I E Y  ROWS) ONTO TAPE129 1 RECORD 

b R I T E I l 2 )  K P N P K I I ( B B ( I I J ) ~ J ~ ~ ~ K P N P K ) ~ I = ~ ~ K P N P K )  
REWIND 10 
CALL Z E R O ~ ( B B ~ K P Y P K I K P N P K I M A K ~ ~ ~ ~ A X T Z ~ M A X T Z ~  
PEAD (10 1 [ ( B B l  I t  J 1 9 J= l ,KPN I v I = €  vKPN1 
PEAD (10 1 I (BB( I ,  J 1 9  J=KPNPl rKPNPK) ,  l f K P N P l r  KPNPK) 
DO 1267 J = l * Y A S C B T  
I F (  ISYM.EQ.lI E ( J 1 2 o S * E ( J I  
NP OW =I  R I J 9 1 f 
M O L  = I R (  J 9 2 I 
BB(NROW1NCOL)=BB(NROW,~COL)+EIJ)  

GC TO 1268 
1267 BB(NCOLINROW)=BB(NROUINCOL) 

C W R I T E  OPDER AND FREE-FREE YASS MATRIX (BY ROWS) ON TAPE 121 1 RECDRO 
1261 UPIT€(  1 2 ) ~ .  ( ( E (  I , J ) ,  ~ = l  ,K B, I= 1 ,U) 
1268 IF(ISYM.EO.0) GO TO 1263 

GFWIND 8 
P E A D ( 8 )  ( 1  R (  I 1J) , J = l t K ) r  I = l r K )  

1263 PEWIhO 3 
I F (  I E X P A N D . E Q . l . A N O . I C B T . ~ ~ ~ l )  GO TO 1270 
I F (  IEXPAND.EQ.3.AND.ICBT.NE.l) 12759 1276 

Cn 1075 I=L,KK 
J = K K + l -  I 

KPN=UK f K=KK 
GO T O  2051 

1275 CALL Z E R O ~ ~ I V I K K , K K ~ M A X T ~ ~ C A X T ~ ~  

1075  V (  I 9 J ) = l * O  

C APPLY BCUNDAPY COYOITlONS TO FREE-FREE YASS AND STIFFNESS MATRICES 
1276 F E k I N D  9 

P E A C  (91 ( (  AA( I 9  J ) 1 J=L,KPN) r I = l  rKPN) 
PFAD(9)  ((AA(I~J)rJ=KPNPlrKPNPKl,lrKPNPl~KPNPKI 
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IF(IEXPAND.EQ.1) GO TO 1 2 7 7  
CALL 
DC 1278 I s l r K K S A V  
J=KK SAV + I- I 

1 2 7 8  1 r J IZ1 .G 
KPNaZKSAV f U=KKSAV 
GC T O  2 0 5 1  

I B A = l  S I B C = l  

ZER’3M I V r  KKSAV rKKS A V  r MAX1 29 MAX12 1 

1277 IF(CFFPC.EQ.1) GO TO 1269 

IF(IFFPC.GE.2) I B A - 2  
i F l  IFFPC.EQ.3) I B C = 2  
FEWIND 3 
J l = K P + I B C  S JZ=KPN+IBC 
W R I T E ( 3 1  [ ( A A I  1 1  J ) r J a I B A r K P I r  I = I B A v K P )  r ( l  A A (  1 1  J) r J X J l r K P N )  r 
1 
2 
3 
4 
5 

I = I B A , K P I +  1 I AA( 11 J 1 r J= J2rKPNPK 1 t I z I B A t  KP) P I ,  J 1 r 
J = I B A 9 K P I  v I=J1 (KPN 1, I I A A I  I rJ)  
( ( A A (  1, J I  p J= J2 r KPNPK 1, I l J l r  KPN) 9 ( f A A (  I v J ), J Z I B A  +KP I r 
1 = J 2  9 KPNPK I ,  I ( A A I  I 9 J) 9 JsJl  rKPN 1 s  I x J Z r  KPNPK B t 
( (  A41 1 1  J I r  Jx J29KPNPK)r I t J 2 e K P N P K )  

( AA 
JPJlr KPN) r l t J L q K P N )  9 

QEbdIND 10 
W P I T E ~ 1 O ~ ( ( B R ( I ~ J I r J ~ I ~ A ~ K P ~ ~ I ~ I B A ~ K P ~ ~ ~ ~ B ~ ~ I r J I ~ J ~ J l ~ K P N ~ ~  

1 
2 
3 
4 
5 

I =  I R A r K P )  r I I 8 B i  I ,  J J= J2pKPNPK ) 9 I = I B A ,  K P )  9 I ( B B (  I v J ) r  
J= I R A r K P I  * I s J l  r KPN ) 9 ( (  R B I  I r J) * JxJ lc  KPN 1 v I =  J l r  KPN) r 
( ( B B I  I ,  J J r J = J Z , K P N P K ) r  1 t J l r K P N ) r  ( ( 8 8 1 1  r J ) r J = I B A r K P )  r 
I = J 2  v KPNPK 1, I I BBI  I 9 J) p J= J1 r KPN ) 9 I = J 2 r  KFNPK 1 v 
I I BB( 1, J r J= JZ r KPNPK I *  I r J 2 r  KPNPK I 

I F 1  IBA.EO.2) KPSKP-1 
1FI IBC.EO-2)  NPXNP-1 
I(pN=KP+NP t K P P l = K P + l  
KPNPl=KPN+l  L KPNPK=UPN+NP 
REWIND 3 
RFAD ( 3 )  ( (  A A I  I ,  J) 9 J = l 9 K P l r  I s 1 9  K P ) r  ( f A A (  I, J 1, J t K P P l  r K P N )  I=l rKP I r 

1 
2 
3 
4 I = K P N P l r K P Y P K l r l ( A A I  I , J ) * J = K P P l 9 K P N ) r ? = K P N P l r Y P ~ P K I (  
5 I A A  I I p J I J = K P N P l *  KPNPK) 1-KPNPL 9 KPNPK I 

( ( A A (  I 9 J 1 9  J z K P N P l r  KPNPKI 9 I=l r KP) 9 ( ( A A  ( I r  Jt r J t l r  KP J r 
I = K P P l  9 KPN) t ( (  A A (  I 9  J ) 9 J= K P P l r K P N  1 9 I z K P P l  (KPY J 9 

I [ A A l  I 9 J 1 9 J=KPNPl,  KPNPK) 9 I l K P P l r  KPh 1 9  I ( A A (  I t  J I  r JP 1 9  KP I 

REWIND 10 
R E A D ( l 0  I I (BB(  I ,  J )  r J z l  vYP) r I = l r K P I  r ( l B B (  11 J ) r  J = K P P l r K P N ) r I P l r K P )  r 

1 ( l B B (  I r J I  v JsKPNP 19KPNPKI * I s 1  rKP) 9 I ( B B (  IC J I  9 J = l v K P ) v  

l ( R B ( 1  r J ) r J = K P N P l * K P N P K l  * I = K P P l r K P K l r  ( (B6(  1 r J ) r J ’ l r K P l r  
2 I=KPP~,KPN~, I (BB(I, J ), J=KPPl*KPN r ? = K P P l r K P N ) r  
3 
4 I ~ K P N P ~ , K P N P K ) ~ ( ( B B ( I ~ J ) , J ~ ~ J ~ K P P ~ ~ K P N ) ~ I = K P N P ~ ~ K P N P K ~ ~  
5 l l B B l I r J I r J = K P N P l ~ K P N P K ) r I l K P N P l ~ K P N P K I  

C W R I T t  OROER AND F I N A L  M A S S  AND STIFFNESS MATRICES ONTfl TAPE 4 
1 2 6 5  PEWIhD 4 

W R I T E ( 4 1 K P N P K ~ ( ( B O I I ( J I  r J = l , K P N P K ) r I = l , K P N F K ) r  I I d P ( I r J ) r  
1 

1 C INVBTrBC INVBT *EM *E I G V r V * E V + R  9 KPR I C B T )  

J = l r  KPNPK I 9 I =  1 9  KPNPK I 
CALL 

GC T C 1 2 0 5 r 2 9 6 r 2 0 6 )  I F F P C  

ALLE IG 1 AA, 88, KPN, MAXT2 9 M A X  vM A X 2  9 K 9 Nr C 9 I P  I V 7 T  r INDEX r P r 

C ACC R I G I D  BODY TRANSLATION MODE TO MODAL MATRIX 
206 h=KPh/3  

K=K+ 1 
DO 2C7 I = l , N  

207 U(  I rK)=l .O 
NT2=2*Y $ J=N 

J= J+ 1 
CC 208 I = l r N T Z  

2C@ V(JrK)=O.O 
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I F I I F F P C . E O - 2 )  GO TO 205 
C ADO R I G I D  BODY R O T A T I O N A L  MODE TO MODAL M A T R I X  

K = K + l  S J=N 5 J J = Y T 2  

J=J+ l  S JJ=JJ+l 
Gr 2 C 9  I = l r N  

V (  I i K ) = X (  I) 
V (  J c  K ) = l . O  

20s V (  JJ,KO=O-O 
C ADO R I G I D  BODY T O R S I O N  MODE TO MOOAL M A T R I X  

K = K + l  
00 210 I t l r N T Z  

2 L C  V (  I vK )=O.O 
J= NT 2 

J=J+l 

205 C O N T I N U E  

C U T O L T  l l B 4  

CC 211 I = l t N  

211 \r( JqK)=1 .0  

GC T C  2051 

1 2 7 C  I B A = l  
I F 1  1FFPC.EO-3) I B A = 2  
U ~ I T E ~ 3 ~ ~ ~ A ~ I ~ J ~ r J ~ S B A 1 K I I I I I B A v U ~ ~ ~ ~ B ~ I e J ~ ~ J ~ I B A ~ K ~ ~ I ~ l B A ~ K ~  
IF1  IFFPCoEQ.3 )  K -K-1  
H M T X ( l ) = l D H  K AFTER S H M T X l 2 l = l O H A P P L I C A T I O  
H P T X I 3 ) = 1 O H N  OF 8DRY- S HMTX(4 )= lOHCONO.  
W E  I T E 1 6 * 1 Z O O ) H M T X * K  

FEWINO 3 
KPN=K 
READ 43 ) ( 4 A( I 9  J 1 9 J = l r K  I t 1- I r K )  
H M T X l l l = l @ H  F I h A L  S T  S H M T X ( 2 ) = l O H X F F N E S S  M A  
H M T X ( 3 ) = 1 0 H T P I X  S H M T X ( 4 8 = l O H  

H M T X ( l ) = l P H  F I N A L  MA S H M T X 1 2 ) = l O H S S  M A T R I X  
H C T X ( 3 ) = 1 O H  S H Y T X ( 4 l = l O H  

P E W I N D  4 

W R I T E 1 4 ) K P V r t  I B I I ,  J) 9 J - l q K P N )  v I Z 1 r K P N ) r  ( 8  A t  IIJ) r J = l r K P N ) t I = l t K P N )  

C A L L  A L L E I G 1 A A ~ B B r K P N r M A X T 2 ~ M A X , M A X 2 e K ~ N ~ C ~ I P I V O T q I N D E X ~ P r  

GCI 

1200 FORMAT(  / / / / 1 2 A 1 0 / / 5 X 1 * U  x * * I  3) 

I I B(  I * J I 9 J t  1 r K  1 v 1 x 1  t K #  

C A L L  WMTXC(AIKIKIMAX~MAX) 

C A L L  W YTXC I B 9 K 9 K 9 MAX 9 MAX 1 

C W F I T E  CPDER AND FINAL MASS AND S T I F F N E S S  M A T R I C E S  DN T A P E  49 1 RECOPD 

C C A L L  E I G E N V A L U E  SUBROUTINE 

1 C I N V B T I B L I N V B T I E M I E I G V ~ V ~ E V ~ R ~ K P R I  I C B T )  
T C I  204 9 204 9 202 J I F F P C  

C ACC R I G I D  BclOY T O R S I O N  OR A X I A L  MODE TO MODAL C A T R I X  
202 K = K + 1  

DO 2 C 3  11l.K 
203 V ( I q K ) = l . O  
2 C 4  C C N T I N U E  

C WRITE CPOER A N 0  MODES ( B Y  COLUMNS) O N  TAPE 201 2 RECCRDS 
2051 W R I T E ( 2 O )  K P N r K  

k H I T E i 2 0  1 l ( V (  I t  J) 
I F ( N 8L J C K  - E O  oN BL KS -A  NO. NB LKS €0.1 ) GO TO 1 

I s 1  r K P N  1 ,  Jz1 r K )  

GO TC 200 
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****e+************+********** *** 
* S P R I k G  OR R I G I D  BODY ELEMENT * 
* 8  *+$+$***+**+***************** * 

130 C A L L  Z E R ~ H I A I K K ~ Y K I M A X I Y A X )  
C A L L  Z E  ROM I Br KK s KK t MAXI WAX I 
IF(MK.EQ.3) GO TO 131 
P P I N T  1301 
W P I T E ( 6 r 1 3 0 l I  

1301 F O R M A T I L H  / / 1 X t *  S P R I N G  t L E M E N T  - S T I F F N E S S  M A T R I X  W I L L  BE READ 
I F F O M  CARDS. P A S S  Y A T R I X  IS NULL.*) 

1540t ( ( A I  I t J)  t J = l t K K  1 t I = l  t K K )  READ 

I F (  1SYY.ETJ.c)) GO TO 131 
REWIND 8 
h R I T E ( 8 I  I ( A ( P  t J1 t J= l  r K K 1 9  I = l r  K K 1  
DO 135 I = l r K K  
CC 135 J = l r K K  
A 1  I t  J)=2.C*A( I p J) 

IF IMP-EQ.? )  GC Tr? 132 
P R I N T  1302 
W R I T E  ( 6  e 1302 

C Y L L T I P L Y  FREE-FREE S T I F F N E S S  M A T R I X  BY 2.0 I F  I S Y M  1 

135 
1 3 1  k R I T E ( l l I K K t ( ( A (  I t J ) r J = l t K K ) r I = l r K K )  

1 3 C 2  CORMAT(1H / / l X , *  R I G I D  BODY ELEMENT - M A S S  M A T R I X  Y I L L  B E  R E A D  F 
l F C M  CAQDS. S T I F F N E S S  M A T R I X  IS NULL.*)  

R t  AD 104C 9 f ( 8 I I t J) t J = L  9 KK ) t I I t KK 
C M U L T I P L Y  FREE-FPEE YASS Y A T R l X  B Y  2.0 I F  I S Y H  * 1 

IF(ISYM.E?.OI Gn TO 132  
R € h I N D  9 
b P I T E I 9 ) (  lo (  I 9 J )  9J= l ,K (K) ,  I = L ,  K K I  
DC 136 I = l r K K  
CO 1 3 6  J = l t K K  

1 3 C  B ( I t J ) = Z . C * B I I t J )  
132 WP I T E( 12 I KK 9 ( ( B ( I t J ) I J= 1 9  KK I 9 I = 1 * KK 1 

I F  (MK-NE-O.OR.MM.NE.0 ) GO TO 133 
P R I N T  1303 
bR I T  E (  6 t 1303 1 

13C3 F O R M A T ( 1 H  / / l X , *  MASS A h 0  S T I F F N E S S  M A T R I C E S  A R E  B D T H  N U L L  * )  
133 C D N T I N U E  

H M T X ( l ) = l O H  F I N A L  S T  S H M T X ( Z ) = l O H I F F N E S S  VA 
HMTX ( 3  J = L 3HTP f X b H M T X ( 4 ) = 1 O H  

H M T X ( l ) = l C H  F I Y A L  MA I HMTX(ZJ=LOHSS M A T R I X  
HMTX 13) 11 OH S H M T X I 4 )  =lOH 

C A L L  WMTXC ( A t  KK t KK t MAXI MAX) 

C A L L  
C A L L  Z E Q O M I V , K K I K K I M A X T ~ * P A X T ~ )  
GO 134 I = l * K K  

WWTXC ( Bt KK t KK 9 MAX t WAX 1 

J = K K + L - I  

H M T X ( l ) = l C H  F I N A L  MO S H M T X ( Z ) = l O H D A L  M A T R I X  
H P T X  (3 ) = 1 r H  S H M T X ( 4 )  =10H 

134 V ( I *  J I = l . O  

C A L L  
k P I T E ( 2 3 1  K K t K K  
W R I T E ( 2 O )  ( ( V (  I t  J 
1FINBLDCK.EOoNRLKS.AND.NBLK5.EP.11 GO TO 1 

WMTXC( V,  KK r K K q Y A X T 2 r  M A X T 2 l  

t 1x1  IKK) rJs1 r K K )  

2CC C O N T I M J E  
8998  UP I T E (6 t 8997 

P R I N T  8997 
EhlO 
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SUBROUT I NE A L L E  I G (  AA 9 88 IK PNe H A X T 2  *MAX 9 MAX 2 s K r N r t  r I P I  V 3 T  INDEX r P I 

1 C I N V B T s  B C I N V B T ?  EMIE IGVIV r E V 9 R  rKPR I C B T I  

1 I N D E X I M A X ~ Y A X Z ~ ~ P ~ M A X ~ I C I N W B T ~ M A X ~ ~ A X ~ ~ ~ ~ ~ N W ~ T ~ M A X ~ ~ A X ~ ~  
Z 

DI HE rVS1 ON AA f MAXTZ 9 Y A X T 2  I 9 88( MAXT2rMAXTZ)  r C g MAXIM AX I IP  I V O T  (MAX) I 

EM( MAX12 I I E I G V t  R A X T 2 )  r V  (MAXTZr  Y A X T Z )  pEV(MAXT2 ) rP  1 M A X T Z I  
t O W O N / S A ’ ~ E / H Y T X I l 2 )  IFCDNIKASEI JFFPC, I P I i A L l  
REWIhO 4 

P E A 0 4 4  I 

GO TO 4 2 1 0 1 2 2 0 1 2 3 0 r 2 2 0 r  2 3 0 )  9KASE 

C REAC OROER AYD MASS AND S T I F F N E S S  M A T R I C E S  FRCM TAPE 4 8 Y  ROWS 
KPNI ( ( B e (  I IJI 9 J f l r K P N  10 I X l r K P N I I  ( I A A t  I ,  J1 rJ=L r K P N )  I 

1 I =1 ( K P N I  

C S C L V t  FOP E IGENVALUES AND EIGENVECTORS OF MASS M A T R I X  
230 C A L L  J A C T V (  KPN, M A X T Z t  1.88 9 EM* VI D U H l r  DUM29 D U P 3 r  DUM4 9 I E R R  1 

I F ( I E P P e E Q . 1 1  GO TO 1500 

CC 10 J f Z r K P N  
IJ-J-1 
I F ( E P ( J I * C E - 0 . 9 )  GO TO 11 
I F I E ~ ~ I J ~ / E M ( J ) ~ G E ~ l O 0 0 0 0 0 ~ 0 ~  GO TO 11 
I F (  J.EQ.KPY) I J z K P N  

C TEST FOR NUMBER OF F I N I T E  E IGENVALUES 

10 CONTINUE 
11 P F Y E L = I J  

C R E W I N D  TAPE 4 AND WRITE COLUMNS CF MASS VECTOR M A T R I X  OW TAPE 4 
C REWIND TAPE 9 AND WQITE R’3WS OF MASS VECTOR M A T R I X  O N  TAPE 9 

2 3 1  E E W I k O  4 
REWIND 9 
CC 20 J s l r K P N  
W R I T E ( 9 I ( V (  J1 I )  r I ‘ l r K P N )  

20 W R I T  E 1 4  I I V( I r J I o I t  l r  <PN l 

FEWINO 4 
DC 3C J a l I K P N  

F E A D ( 4 )  (P  I I 1 1  I = l  IKPN) 

V t  1 9  JI=O.O 
DC 30 I J = l r K P N  

30 V I  I ?  J l = V (  1 1  J)  +AA( I 9 1  J ) * R (  I J) 

REWIND 4 
CC 40 I I L I K P N  

RE AD ( 4  J (P ( J I ,  J= 1 (KPN I 
CC 40 J = l * K P N  
A A ( I  rJ)=O.G 
GO 40 I J Z l r K P N  

C PCST-MULTIPLY S T I F F N E S S  Y A T R I X  BY MASS VECTOR Y A T R I X  AND STORE I N  V 

C REAC COLUMN OF MASS VECT’JR M A T R I X  

CP 3C I = l I K P N  

C CCPFUTE V TRANSPOSE * ( A A  * V )  

C REAL, COLUMNS OF YASS VECTOR M A T R I X  AS RCWS O F  VECTOR TRAnlSPqSE 

4 C  4 A I I r J ) = A A ( I , J I + R ( I J ) * V ( I J I J )  
P=NFMEV 
h K P k N F  Y E V 

C I F  THE hUMBER OF F I N I T E  MASS E IGENVALUES (NFMEV) IS EQUAL TO THE 

C Y A T F I X  AA 
C CPDEP OF THE YASS M A T R I X  881 BYPASS P A R T I T I O N I N G  OF THE S T I F F N E S S  

IF1N.EQ.O) GO Tn 220 
21G K P l = K + l  

C S T I F F N E S S  M A T R I X  AA WILL B F  PARTIONED A S  FOLLOWS ---- ( A  B I  
C ( B T  CI 
C WHERE A = ( K * K ) r  B ~ K * N I I  B T ( N * K I *  C I K * N I  

RtWIND 4 
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C STOPE H b T R I X  A ON TAPE 4 6 V  COLUMNS, 1 RECORD 
M R I T E ( 4 ) ( 1 A A I  1 1  J ) c  I=L IK I I  J = l r K )  
REWIkD 8 

C STCFE M A T R I X  C O N  TAPE 8 BY COLUMNS* 1 RECORD 

C S lOGE M A T R I X  B ON TAPE 8 BY ROWS* K RECORDS 
WR 1 T E (8 

DO 50 I P l v K  

4 I AA I I J 1 I p Y P  1 ,KPN ) * J= KP 1 s  K P N  1 

5 C  W P I T E I I l  l A A I  1, J) J a K P l p  K P h )  
C READ M A T R I X  C FROM TAPE 8 AND COMPUTE I N V E R S E  OF C 

REWIND 8 
G E A O I 8 )  ( ( C ( I * J )  r I = l r N ) t  J=l,N) 
C A L L  M A T I N V I C  r N  ~BIIOIDETI I P I V O T  * I  NDEXeMAX I SCALE) 

CO 60 J a l i K  

P E A O 1 8 ) I P ( I I v I = l r N )  
DO 60 I P l r N  
C I N V B T (  I *  J )=Oon  
DO 60 I J = l r N  

60 C I N V B T l  I *  J J=C I N V B T  ( I *  J b +C ( 11 I J )*P I I J  J 

C CClirFUTE C INVERSE * B TRANSPOSE 

C REAC ROW OF R AS COLUYN OF B TRANSPOSE 

P E Y I N D  8 

REAC 18) 
C TI-€ N E X T  STATEMENT I S  A DUMMY READ TO P O S I T I O N  TAPE 8 

C CCMFUTE B * ( C  I V V E R S E  * B TRANSPOSE) 

C READ COh OF B 
DO 70  I = l * K  

F E A C I B I  I P ( J ) r  J = l , N )  
CO 7 C  J = l t K  
B C I N V B T ( I t J ) = ’ I - O  
DO 70  1 J s l . N  

70 B C I N V B T (  1 9  J ) = B C I N V B T t  I *  J) + P t  I J ) * C I N V B T (  I J t  J I 
REWIND 8 

U R I T E I 8 1 I  ( C I N V B T l I  r J )  r I = l r N )  t J = l r  KJ 
FEWIND 4 

REAC (4) I( A A I  I 9 J  1 t I = l r K )  r J = l , K )  

C STCFE C I N V E P S E  * B TRANSPCSE ON T A P E  8 BY COLUMNS* 1 RECORD 

C READ M A T R I X  A F R C M  TAPE 4 

C CCMPUTE A - ( B  * C I N V  * B T )  
IFIKASE.NE.1) G 0  TO 220 
on 212 I = ~ , K  

212 EH(Il=SBfIrI) 
220 I K = K  

I f  (KASE-EO.2.OP. KASE.EO.4 K Z K P N  
IF(KASE*E0.2.OQ .KASE.EQ.4J N=O 
I F (  K ASE .E0.2. ’3P .KASE. EQ a 4  1 

E+’( I )=BE( 1, I )  

2229225 
222 DO 223 1=11K 
223 
2 2 5  DO 8 1  I = l v K  

E M I I ) = l . O / S Q R T ( E M (  11) 
I F ( N o E Q . 0 )  GO TO 8 1  
DO 8C J s l v K  

80 A A I  I J ) = A A f  I 9  J 1-BC I N V B T t  I I J 1 
81 CONTINUE 

C PRE- A N 0  POST-MULTIPLY S T I F F N E S S  M A T R I X  BY I * O / S Q R T I P A S S J  
00 90 I = l * K  
DO 9 C  J t l t K  

DO 100 J = l * K  
CO 100 I s l t K  
AA( I * J l = A A (  I *  J )*EM( J 1 

90 A A ( I t J ) = E M ( I I * A A ( I , J )  

1 t C  

d 



C A L L  JACT V ( 8  t MAXTZ r 1 
IF(NERReNE.0)  GO TO 1500 
CALL  FREO(EIGVtAAeK,MAXTZ) 

DO 110 I=lrK 
CO 110 J = l r K  

P E h I N D  4 

AA 9 E I G V r  V t DU M l  9 DUM2 r D U P 3 r  DUM4 r NERR ) 

C PRE-MULTIPLY VECTOR M A T R I X  B Y  l .O/SQRT(HASSI 

110 V I t J I =  EM ( I 1 *V ( I 9 J 1 

C STORE X SUB 1 VECTORS 9N TAPE 4 BY COLUMNS* K RECORDS 
cn 115 J = l r K  

1 1 5  b R I T E ( 4 ) I V ( I *  J) r I = l r K )  
1 F I N . E O . O )  GO TO 144 
REWlND 8 

READ(8 )  ( ( A A I  I 
REWIND 4 

DO 120 J = l t K  

E E A D ( 4 ) ( P ( I ) r I = l r K )  
DO 120 I s l r N  
V i  I r JIsO.3 
DO 120 I J - l t K  

120 V( I t  J l = V 4  I r J ) + A A (  I t  I J  ) * P I  I J )  

00 125 I = l t N  
DO 125 J = l r K  

C REAC C INVERSE * B TRANSPOSE FROM TAPE 8 
J)  r I = l  cN)  r J n l r K  8 

C C L L T I P L Y  I C  INVERSE * B TRANSPOSE) B Y  X SUB 1 VECTOR M A T R I X  

C READ COLUMN QF X SUB 1 M A T R I X  FROM TAPE 4 

C X SUB 2 VECTOR WATRIX = - VECTOR MATRIX  JUST CC*PUTEO 

125 V I  I r  J I = - V (  I t J )  
C STCEE X SUB 2 VECTOR MATRIX  CN TAPE 4 BY ROWS* 1 RECCRD 

~ R I T E ( 4 1 ( I Y ( I r J ) ~ J = L ~ K ) r I ~ l t N )  
C REWIND TAPE 4 9  THEN READ X SUB 1 VECTORS INTO F I R S T  K ROWS OF AA AND 
C READ X SUB 2 VECTORS I N T O  ( K + l I  TO K P N  ROWS OF AA 
C T k E  AA M A T R I X  IS NOW ( K P N  * K )  

144 P E W l h D  4 

1 4 5  
DO 145 J z l r K  
GEAD(4)  ( A A ( I t  J)  t I z l t  < )  
I F  IN.NE.@) 
IF(KASE.LE.Z.OP .KASE.EP.4) GO TO 150 

R E A D ( 4  J I ( A A I  I* J) t JZ1.K) t I Z K P l  9 KPN) 

C PCST-MULTIPLY MASS VEClOR MATRIX BY AA MATRIX  
PEW-IN0 9 
CC 146 I = l t K P N  

READ (9) ( n  ( J  ) 
CO 146 J = l r K  
V( I 9  JBt0.O 
CC 146 I J = L g K P N  
V( 1 1  J ) = V I  I ,  J J + R  1 I Jb*AA(  I J  t J) 

I F (  KASE .LE .2.fl? 0 KASE .EO04 ) 

C READ ROW OF MASS VECTOR MATRIX  
J + l t K P N  j 

146 
150 CChTINUE 

1 5 1  DO 155 I z l r K P N  
DO 155 J = l , K  

1 5 5  V 1  I r JB=AA( I t J )  
160 CCNTINUE 

15 1 t 160 

I F  (N.EQ.0 .AND.KASE-EQ.3) K A S E z 2  
I F t I F F P C - E O . 1 1  GO TO 170 
GO TO (161~162~161r163t163)rKASE 

KPN=K 
GO TO 169 

161 KPR=KPN 

d 
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162 K = I K  
KPR=KPN 
GG T O  169 

I F F PC=2 
KPP=KPN 

163 IF( IFFPC.EO.21 GO Yr) 170 

169 C A L L  A D D B A C K ~ V I E I G V ~ K P K P N ~ K P P ~ M A X T ~ ~  I C B T l  
I F  4 K ASE EO 4 .OR. KASE €9 I. 5 1 I F  FPC= 3 
K = K P h  
KPN+KPR 

H M T X ( 3 ) = l O H  S H M T X I 4 t * l O H  
170 H M T X ( L l = l O H  F I N A L  YO S H M T X ( 2 l = l O H D A L  M A T R I X  

C A L L  WYTXC! VI KPN t Y  t Y A X T 2 9  MAXT 2) 
1 5 C C  I F (  I E R F . - E O - l )  W R I T E ( 6 1 1 5 0 1 1  

W R I T E (  6 r  1532  1 I F (  NERS eNE.0) 
1 5 0 1  FQRM6T( / / *  EPRrJR RETURN FROM JACTV - F I R S T  C A L L  - Y A S S  *) 
1502 F O R H I I T ( / / *  ERROR RETURN FRCM J A C T V  - SECOND C A L L  - S T I F F N E S S  3) 

GETUPY 
END 

SUBROUTIYUE A O C B A C K I V r E t  K t  KPNt  K P P t  M A X T 2 t  I C B T )  
D I N E N S I f l N  V ( M A X T 2 t N A X T 2 l r E ( Y A X T Z l  
CONNCN/ S AWE /HMT X I 12 I t FCON t K AS E s IF FPC t I R I T A L L  
C A L L  Z E P O " [ E t K P N ~ l t M A X T Z t  1) 

IF t IFFPC.EQ.3 )  GO TO 9 
k F I T E ( 4 1 (  E (  J )  r J t l t  K P N )  t ( ( V L  I t  J l  t J = l r K P N l  t I s 1  t K P R 1  
KPR= KPR+1 
GI? T C  20  

KLM=KPN/3  S K L Y P l = K L Y + l  
KLPT 2x2 *KLM $ KLMT2P 1 =KLMTZ+ 1 

REWIND 4 

9 IF ( ICBT.NE.11  GO TO 10 

U G I T E ~ 4 J ( E I J l t J ~ l ~ Y P ~ l ~  ( ( V ( I t J I t J = l t K P N I t I = l t K ~ ~ )  * ( E (  J J r J = l t K P N )  t 
1 
2 

( ( V (  I t  J 1 t J=1 t KPW 
I I V (  It J I r J ' l r K P N l r  I = K L M T 2 P l s K P N )  

9 l o K L M P l r K L M T 2 )  9 (E I J 1 t J = L t K P N ) t  

K P R = KPR + 3 
GO TO 20 

L R I T E t C ) ( E I  J l  t J = l t K P N ) t  ( ( V (  1 1  J) t J S l r K P N ) t f = l * K ) r  
f E ( J J t J= 11 KPN J 9 I ( V I  I t J I t Js 1, KPN) 

1 C  K P l = K + l  

1 I = K P  1 9  KPR 1 
KFR=KPP+Z 

2 0  REWIND 4 

PETURN 
EhD 

SUBROUTINE ZER'~H(AIMILIMMAXIL U A X I  
G I M E N S I O N  A (  NMAXt  L M A X I  
on 10 I = l , M  
CC 10 J=L,L 

CETUPN 
END 

R E A D ( 4 )  ( V (  I t  J) 9 J = l t K P r J ) r  I = l , K P R I  

1C A(  1 t Jl=O.C 
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SUBROUT I N €  

G IME NS I FN 
COMMON/ SAME/HYT X (  12)  9 FCONIKAS € 9  I F F P C .  X R t T  A L L  

W T X C  ( A t  NR 9 'IC, NAXR * MAXC j 
C NFZkOWS OF A c  NCsCOLS OF A, MAXRsMAX ROWS OF A, MAXC=YAX C O L S  OF A 

A l  MAXR 9 YAXC ) 

KE=O 
K SE T=WC /8 

IF (KLEFT.UE.0 )  K S E T = C S E T + L  

KB=K E + 1  
KE=KE+B 

I L E F T = M O D t N C , 8 1  

C F  10 K T = l , K S E T  

I F  (KT.EQ. KSET 1 KEzNC 
WR X T E ( b r 5 0 0 1 1  
GO 10 I = l , N R  

HMTX, ( J  9 J t K B t  K E  1 

1 C  kff I T E ( 6 9 5 0 0 2 )  1, ( A (  I t  J )  e J f K 8 9  KE 
5001 FOPHAT(lHl//l2A1J////lOH GCW C O L * I 4 r 7 1 1 1 X I 4 )  1 
50'32 FORMAT(  1 4 1 R E 1 5 . 7 )  

RETURN 
END 

SLPPOUT I W E  FP E 8  ( E * A t  Kv MAX 1 
CI ME NSI OW E I MAX 1 r A  (MAX, PA X I  
C G C M C W / S A M E / H M T X I l 2 ) r F C O N , K A S E ,  I F F P C ,  Iff I T A L L  
CO 10 I = l r K  
A ( I , l ) = E (  I )  
A ( I , Z j = F C O N * E ( I j  
A (  1 , 3 ) = S Q R T I A B S ( A (  112) ) 1 

P R I N T  5 0 L 4 ~ ~ H M T X ( J l r J ~ 5 r 1 2 ) r F C O N l ( l r ( A ( I I J ) r J E l ~ 4 ) ~ I = l ~ K ~  
CIP I TE(  6.9 5 0 1 4  1 ( HYTX I J 1 I J=5 * 1 2 )  ~ F C O N I  I I , ( A I  I r J) 9 J=l 4)  e 1x1  t K  1 

10 P (  I , 4 ) = A (  I 1 3 J / 6 . 2 8 3 1 8 5 3 0 7 1 7 9 5 9  

5 0 1 4  F O P M A T ( 1 H l / / 1 X E A 1 3 / / 7 H  FCCN =~E22.14//4XlHJ9X9HLANBDA(J~l4XlZH~MEG 
1 A  SQ IJ)14XBHDMEGA(J)14X13HFREP.(J)r  C P S / 3 4 Y l B H ( F C C N  * L A M B D A ( J I ) l  
Z 2 X b H I R E A L 1 / / ( 1 5 r 4 E 2 4 . 1 4 ~ 1  
FE TURN 
EN 0 

d 
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A I 3 P  LANE 
e 68  

26 1 
13 13 

c.0 
19.2 
40.0 
47 790.0 
47r9c.c 
47790.C 
.COO2063 
.C030006 
.DOC3750 

1 4  
.co5cc 

14 1 
1 7  

c.0 
23.0 
9440.0 
9440.c 
.OC03704 . C 00 1409 

7 2  
1 4  

C .Q 
20 .0  
1572G.C 
1572C.C 
-000 1235 
.E @ 024 70 

1 4  
aCO444 

12 1 
6 6  

0.0 
10.0 
9440.0 
.PO0 1852 

6 2  
6 4  

-0001852 

0.0 
10.0 
15720.C 

BEAM ASSEMBLY - 
0 0 1 0  
1 0 1 0  

4.0 
24.0 
43.2 
47790. o 
47790.0 
4 m o  .o 
.0004166 
.000458 3 
.0004166 

0 1 0 0  

0 6 1 1  
1 0 3 0  

4.0 
24.11 
9440.0 

.0007409 . 10037C 4 
3 J 1 1  
3 0 0 0  

4 .0 
24.0 
15720. o 

0002470 
.3001235 

0 1 0 1  

0 ’ 1 1  
1 0 3 0  

2 .0 

9440.0 
-0003704 

0 C l l  
3 0 0 0  

2 .o 

15720 0 

SY‘4METRIC M3OES - CLAMPED-FREE MODES FOR WING AND T A I L  

3 0  
8.0 12.0 16.0 
28.0 32 e 0  36.0 
48.0 
4rr9o.o 47190 3 47790.0 
47790.0 47799 .o 4 7 7 9 0 ~ 0  

-0004lb0 a0004166 .0303750 
a 0004166 .0004 166 .0004166 

300250 0 

0 0  
8 -0 12 .o 
9440.0 9440.0 

.0007409 .0001409 

.OOCC6177 00012354 . OG012354 

.COOC6177 
1 4 0 1 3 1  

.OO l e  5 

8 .G 12.0 

15720.0 15720. o 
.00024ro .0002 4 ro 

0 0  
4 00 

9440.0 
.0003704 

4 a 0  

15720.0 

6 -0 

9440.0 . 0003 r 04 

16- 0 

9460.0 

.0007409 

16.3 

15120e0 

.0002470 

8.3 

9440 .o 
.0003ro4 

6 e 0  8 -3  

157 20- 0 15720.0 
000 12354 *Oil012354 

d 
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PFCGRAM MODACCI I N P U T * O U T P U T i T A P E 2 S * T A P E Z t  T A P E 3 r T A P E 6 t  TAPE69 
1 T A D E l l  * T A P E  129 TAPE 8 r T A P E 9 )  

r(***++*******************************#********************************* 

* * * PROGRAM KODALC FORMULATES THE E I G E N V A L U E  PRCBLEN FOR * * THE D F T E Q C I N A T I n N  OF THE COUPLED MODES AND FREQUENCIES * 
* OF TH€ COPPLETE I A S S E C B L E D )  STRUCTURE. * * * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C L O  S P E C I F I E S  THE SOURCE 'JF THE MODAL DATA Fr)R THE SUBSYSTEMS 
C C D = l  - MODAL D A T A  OV MAGNETIC TAPE AND C O P I E D  ONTC T A P E 2 0  
C V I A  CONTROL CARDS 
C 10-2 - MODAL DATA READ FROM CARDS 
C L D = 3  - MODAL DATA GENERATED I N  PROGRAY BRANCHB 

C h B  - hUCBER '1F SURSYSTEMS I N T D  WHICH STRUCTURE IS P A R T I T I O N E D  

C hPS - TCTAL NUMBFR OF SUBSYSTEM YODE SETS 

C NCEOS - NUMBER OF CONSTRAINT EQUATIONS 

C BCS(  I )  - NUMBER OF YASS S T A T I C N S  ON EACH BEAM SUBSYSTEM 

C D C F ( I 1  - DEGPEES OF FREEDOM IN EACH MODE SET 

C S C I I I I  - VUMBFR OF CALCULATED MODES SELECTED FRCH EACH MODE SET 

C I S T A T I C ( I 1  - NUPBER OF A D D I T I O N A L  DEFLECTION SPAPES (SUCH AS 
C MEhSURED MODESI STAT IC D E F L E C T I O N  SHAPES, DR A S S W E D  
C D E F L E C T I O N  SHAPES1 TO B E  ADDED TO THE CALCULATED 
C WOES SELECTEC FROM EACH SUBSYSTEC MflCE SET 

C NCC - TCTAL NUMBER OF DEGREES OF FREEDOM FOR UNCOUPLED SYSTEM 

C h C T  - TCTAL NUMBEP OF YODES SELECTED FOR SYNTHESIS  

C Ch EhTRY T 0  T H I S  PROGPAM -- 
C TAPE 11 HAS ORDER AND FREE-FREE S T I F F N E S S  M A T R I X  FOR 
C EbCH SUBSYSTEY 
C TAPE 12 HAS ORDER AND FREE-FREE YASS M A T R I X  F@R EACH SUBSYSTEM 
C TAPE 20 HAS OPDER AND MODES FOR EACH SUBSYSTEM 
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R € A O  1 4 1 t ( H Y T X I  I ) t 1 = 5 1 1 2 i  

E E A D  l C r L D r N B * N M S 9 N C E P S  

E E A D  10 9 I BMSl1) 9 I = l r  YB 1 
F E A 0  10 t ( DOF L I 1 t I = 1, NMS I 
F E A D  l O t ~ S Y I i 1 r I ~ L * N M S 1  
R E A D  l O t ( f S T A T I C ~ I ) r [ = l v N M S )  
P R I N T  l l v L D t N B , N Y S * N C E Q S  
k R I T  E I 6  t 1 1 1 L D  NE 9 kMS 9 NC E R S 

11 FOPMAT(  1H I//* L D = *  9 I 3 t l O X  **Ne=* t I 3 t l O X t * N M S = * r  I 3  t LOX t *NCEQS=* 9 I 3  1 
PF I N T  
k R  I T E I 6  t 121  I I t B M S I  I ) 9 DOFI I 1 * S M I  I 1  9 I S T A T X C  ( I 1 I I = l r  N B )  

141 F t R M b T  t 8 A 1 0 )  

LO F C R M A T ( 2 0 1 4 )  

129 I I t  BMS I 1) D O f  t I) rSH( I ) ,  I S T A T  I C (  I 1 9 I = l r N B  1 

12 F O P M A T I l H 0 / / 4 X t  ~ H J ~ ~ X I ~ H B H S I J ) ~ ~ X ~ ~ H D O F ( J )  * 9 X t 5 H S M I J )  r 9 X t  
1 10HISTATIC(JI//I15~9XtI3~12X~I3t12XtI3rl3X~I3) 1 

I f ( N B . E Q . N M S I  GO TO 9 

P R I N T  
CP I T E ( 6 r 1 3 1 I  I # D O F (  I 1 t S Y (  I ) t I S T A T I C I  I )rIsIY,QMS) 
FOPMAT(  I 1 5 r 2 4 X ,  X3r 12x9  1 3 9  13Xt 13)  1 

IF(LO.EQ.l.OR.LD.EQ.3) GO T O  5000 

I W = N B + l  
1 3 9  (ItDDF( I )  r S Y 4  I ) t  I S T A T I C (  I ) ,  I = I M * N w S l  

1 3  
9 C O N T I N U E  

R E W I N D  20 

C FCR E A C H  S U B S Y S T E M  MODAL S E T  --- 
C REAC ORCER 3F M@CAL M A T R I X  
C R E A C  VODES ( B Y  COLUMNS)  FRGC HIGHEST T O  LOWEST 
C W R I T E  O N  T A P E  20 

DO 5C50 I K = l 9 h Y S  
GEAD 1 5 t K q N  

R E A D  161 I ( A I  I J 1 r I = l t  K )  t J = l t N )  

kP I T E ( 2 3 ) k t N  
5050  WP I T E ( 2 0 )  ( ( A i  I t  J)  t I = 1  t K  )P J = l r N )  
SOCC CCNT INUE 

R E W I h D  20 
h K = O  
CC 30 I = l t N Y S  

P R I N T  3 l t k M C  
W P I T E ( 6 9 3 1 1  FIMC 

1 5  F C P M A T ( 2 1 4 1  

16 F C R C A T ( 4 E 1 6 . 8 )  

30 NMC=NYC+DCFI  I )  

3 1  F O R M A T ( / / *  T O T A L  NUYBER O F  DEGREES nF FREEDCM = * * 1 3 )  
CCT= 0 
C P  40 I=ltYYS 

P R I N T  4 1 r N M T  
h R I T E ( 6 t 4 1 1  NlirT 

4 C  b ~ T = N Y T + S ~ I I ) + I S T A T I C I I l  

4 1  F O R H A T ( / / *  T O T A L  NUMHER O F  MODES EMPLOYED = * t I 3 )  

C FCRC THE MODAL E X P A M I O N  Y A T R l X  FROM T H E  S E L E C T E D  YnCES 

hPF=O S N C F - 0  6 KK=O S ID=O 
M B = 1  S N R B = 1  
GO 100 I J = l r M M S  
READ I29  1 K t N  
R E A D  120 1 I I A I  1 p J 1 t I = l r K )  t J = l r N  1 
I F I I S T A T I C I I J ) - E Q . O )  GO T O  42 



4 3  
1 7  

4 2  

110 

120 

130 

100 

1 S l = 1  S T a T I L t I  J )  
O J  6 3  J = l r I S T  
K E A U  1 7 r ( A ( I r J + i J ) v 1 = 1 . r ( J  
F J k M A T ( 5 t  I + . & )  
h = N + I S T A T I C ( l J )  
hP  F=NRF +K 
I O = I D + l  
hCF=N€F+Sw( I J ) + I  S T A T I C  I I J ) 
M= 0 
IF( IC.EQ.1)  GO TO 113 
M=KK 
J J= N +NC 8 
DC! 120 I = N R B r N R F  
00 120 J Z l r N W T  
U(IvJ)=O.9 
00 130 I = N R B * N R F  
CC 130 J=WCB* YCF 
UI I 9  J )=A(  1 - r ~  JJ-JI 
NCB=NCB+SM( I J  ) + I S T A T I C (  I J  1 
hRB=NRB+K 
KK=KK+K 
CCNT INUE 
H M T X I l ) = l 3 H  MODAL EX E H Y T X I Z ) = l O H P A N S I O N  MA 
HMTX13)= lOHTF I X  U S HLTX4 4 ) = l O H  
C A L L  WMTXCI UINMC r NMT r NMC. hMC) 

C WRITk  'lRDER U Oh' TAPE 29 ONE RECORD 
C WRITE U M A T R I X  P N  TAPE 2 BY ROWS* NHC RECORDS 

F E W I k D  2 
kR I T  E(  2 1 NMC r NMT 
DO 150 I I l r N Y C  

1 5 C  W R I T E ( 2 1 1 U ( I ~ J ) ~ J ~ l ~ N M T )  
REWIhO 2 

PEWINO 8 
DO 1 5 1  J z l r N C T  

151 WP I T E I  8)  
C A L L  CONEQS(CrNCEQS9NMC) 

C W R I T E  U M A T R I X  ON TAPE 8 B Y  CDLUMNSr NMT RECSRCS 

(Ut  I I J ) r I = l r N M C l  

C M A T F I X  CF CONSTRAINT EQUATIONS I N  P H Y S I C A L  GOOROINATES I S  
C TRANSFORMED TO ONE I N  MODAL COOROINATES V I A  THE M A T R I X  
C C P E P A T I C N  C * U 0. 

REWIND 8 
CC 152 J r l r N M T  
R E A O ( 8 )  (R(I)eInlrNMZ) 
cc 152 I = i l N c E a s  
E( I r J )=O.C I  
CO 1 5 2  I J = l r N M C  

192 O( I ?  J ) = D (  I J )+C( 11 I J )*R ( I J1 
C WRITE D M A T R I X  ON TAPE 9 B Y  COLUMhlS, NMT RECORDS 

F E W I k D  9 
CG 153  J Z l r N M T  

PEClIND 9 

CC 154 I z l s N M T  

153 k R I T E ( 9 1  I D ( I r J ) * I = l r N C E Q S )  

C R E A L  COLUMNS OF D AS ROUS OF 0 TRANSPOSE 

1 5 4  F E A O I 9 )  ( B B ( I I J ) * J = L I N C E Q S )  
C EVALUATE M A T 9 I X  PPODUCT D TRANSPOSE * D 

R E k I N D  9 
CC 1 5 5  J = l p N C T  

d 



FEbD19) ( R f I ) , I = l , N C E O S )  
00 155 I Z l r N M T  
OTD( 1, J ) = O - O  
DE 155 I J = l r N C E O S  

1 5 5  D T D I I ~ J I = D T D ( I r J ) + B B I I I I J ) * R (  I J )  
C SC!LVE FOR E IGENVLLUES AND EIGENVECTORS OF DTD 

C A L L  J A C T V t  N H T r  NMC, 1 r OTD. E I G V  rBBr DUM1 .DUM2 r DUM3rDUM4* NERR 1 
IF(NERR.EQ.1) GO TO 2200 

C TEST F O P  NUMBER OF F I N I T E ( P O S 1 T I V E )  E IGENVALUES OF DTO. MODAL 
c CCLUHNS OF DTD CORRESPONDING TO THE ZERO EIGENVALUES ARE THEN TAKEN 
C TC BE THE CCLUMNS OF THE BETA M A T R I X  

E F E V =NYT 
DC! 7 5  J=Z1N?4T 
I J = J - 1  
IF(EIGV(JI .LE.0.O) GO TO 76 
I F  ( ( E I G V  ( I J I / E I GV( J 1 ) GE. 1000 000.0 1 GO T 3  76 

75 C C N T I Y U E  
7-5 I F I N F E V . Y E . I J )  N F E V r l J  

1 4  F O R M E f ( / / *  NUMBER OF F I N I T E  E I G E N V A L U E S  O F  DTD * r I 3 / / )  
P R I N T  1 4 r Y F E V  

C WPITE E IGENVALUES OF D TRANSPOSE * D ON TAPE 6 
CrP I T E 1 6 r l l l l )  ( E  I G V (  I 1 P I  =l rNWT 

1111 FORMET( / / *  E IGENVALUES OF DTD * / / ( 2 X r E 1 5 * 8 )  B 
C R I T E ( 6  ,141  ClFEV 
hC BE TAzNMT-NFEV 
DO 8 0  I Z l t N M T  
OC 8 C  J S l r N C B E T A  

BC B E T A ( I r J l = B R (  I ,NFEV+J)  
WRITE BETA Y A T R I X  ON TAPE 9 BY COLUMNS, NCRETA RECORDS 

REWIND 9 
GT 8 1  J Z l o N C B E T A  

8 1  h R I T E ( 9 J  ( B E T A (  I r J ) r I = l r N M T )  

h R I T E  OPOER BETA ON TAPE 3 r O N E  RECORD 
WRITE BETA ON TAPE 3 BY ROWS, NPRETA RECORDS 

FIP$ETA=NMT 

F € k I W O  3 
kP I T E ( ~ ) N P R E T A I N C B E T A  
el' 66 I = l , N R B E T A  

6 C  W K I T E 1 3 )  ( B E T A ( I I J ) ~ J = ~ I N C B E T A )  
REbC M A T R I X  IJ FFOM TAPE 8 

PEWIND 8 
DO 8 2  J = l r N M T  

R E W I k D  9 
CO 8 3  J - l P N C R E T A  
F E A D I P )  ( P ( I )  * I = l r N M T )  
GO 8 3  I = l r N Y C  
BB(IrJI=OiO 
DO 8 3  l J = l r ' d F B E T A  

82 F E A D ( 8 1  I U ( I r J l r I = l t ~ Y C  ) 

8 3  B B I I t J ) = B B ( I t J  )+Ut I ?  I J ) * R I  I J )  

REWIND 8 
DC 8 4  J = l ? N C B E T A  

h P I T E  U*BETA C N  TAPE 8 BY COLUMNS 

84 W R I T E ( 8 )  (Bet I t  J ) r  I = l r N l U C I  
FCRY MASS M A T R I X  f?f UNCOUPLED SYSTEM 

REMIM) 12 
F(RB=l S hlRF=O S KK=O S I D S O  
I \ 'CB l= l  d NCFl=C) 

d 



I D = I C + l  
NC F 1 =NCF 1 +DOF ( f J I 
M= e 
I F 1  I C.lrlE-1) M x K K  
DO 220 I = M R B * N R F  
GO 220 J t l r N M C  

DO 231 I = N Q R * N F F  
CC 231 J=NCRL r N C F 1  

2 3 1  B C ( I , J ) = A ( I - M r J - M J  

220 6M(I rJJ=O.@ 

N C 6 l = N C 6 1 + O O F t  I J )  
k R B = k R B + K P N  
K K = K K + K P N  

H M T X I 1 1 = l O H  UNCOUPLE S H M T X 1 2 ) = l O H D  S Y S T E M  M 
H M T X ( 3 )  = l 9 H A S S  M A T R I X  S HMTX (4)=lOH 

C G E k E R A T E  MASS M A T R I X  FOR C O U P L E D  S Y S T E M  
C F C P C  P A T R I X  PRODUCT M * I U * B E T A )  

2CC C C N T I N U E  

C A L L  WYTXClBH,NMCrN~C.NMCINHC 1 

R E W I N D  6 
DO 8 5  J t l r N C E E T A  
P E A O l 8 1  (Fft)vI=lrNMCI 
GC 8 5  ItltNMC 
BBfI 9J)=@.O 
00 8 5  I J = L p N M C  
68( I r J J = B B ( I  r J ) + B M ( I  * I J I * R (  I J  1 

P E W I h D  9 
DO 00 J I L r N C B E T A  

8 5  
C V P I T E  PRODUCT O N  T A P E  9 BY C O L U M N S  

8C k R I T E 1 9 1  (BE( I r J l r I = l r N M C l  
C REAG COLUMNS OF U * E E T A  A S  ROWS O F  TRANSPOSE 

PEWIhD 8 
DO 8 7  I = L , N C B E T A  

8 7  F E A O  (8 1 BE( I t J J r J = l r N Y C l  
C FORP M A T R I X  PRODUCT B E T A  T R A N S P O S E  * U T R A N S P O S E  * * U * B E T A 1  

F E W I N O  9 
C C  68 J = l v N C B E T A  
GEAO 19) 

OH( 1 r J l = O . O  
CP 68 I J = l v N M C  

( R  I 1 1 r I l r  NMC I 
O r  68 I = l . N C B E T A  

88 0H( I * J I = R M ( I  rJ)+BB(19 I J  ) * R ( I J  1 

P E W I k D  4 
W R I T  E (4 1 

C W R I T E  C O U P L E D  MASS M A T R I X  ON T A P E  4 B Y  COLUMNS9 ONE RECORD 

I f BM ( I , J 1 9 I = 1 t NC B E T A  1 9 J= 1 9  N C B E T A  I 
C FCRM S T I F F N E S S  M A T R I X  O F  U N C O U P L E D  SYSTEM 

R E W I N D  11 
N R B - 1  S N P F = O  $ KK=O $ I D = O  
N C B l = l  S N C F l = O  
DO 300 I J = l r N M S  
GEAC I11 1 
hF F = NR F 4 K P N 
I D = I C + l  
h L F L = N C F l + O O F ( I  J) 
C= 0 
I F ( I O . N E . L I  M = K K  

KPNI t ( A 1 1 , J )  9 J = l r K P N J *  I Z l r K P N I  
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DO 320 I s N R B r N R F  
GO 3 2 0  J s l t N M C  

CO 331 I~NRBIFJRF 
00 331 J s N C B l  (NCFL 

331 B K l I r J ) ~ A ( I - H ~ J - H )  

320 B K ( I r J i = O i O  

NCB=NCB+SM( I J )  
RCB l=NCB l+OOF I I J I 
&RB=hRB+KPN 
KK=KK+KPN 

H M T X ( l ) = l O H  UNCOUPLE t HMTX(2)=1OHO SYSTEM S 
HMTX(3)=10HTIFFNESS M t HWTX(41=10HATRIX 

WMTXC [ BK rt lMC r NMC t NCC 9 NHC i 
C GENERATE STIFFNESS MATRIX FOR COUPLED SYSTEM 
C F C R V  MATRIX PRODUCT K*(U*BETA)  

300 CONTINUE 

CA L L  

P E h I N O  8 
GO 95 J= l rNCBETA 
FEAG ( 8 )  
DO 9 5  I = l r k M C  
8811 tJ)=O.O 
DO 9 5  I J = l t N M C  
BB( I tJ  ) = B R (  1 1  J)  +BKf I t  I J J * R (  I J 1 

REWIND 9 
DC 96 J Z l t N C B E T A  

( 9 4  I) r 1x1, NMC I 

9 5  
C MRITE PRODUCT 04 TAPE 9 BY CCLUYNS 

$6 W R I T E ( 9 )  I B B I I t J l r I + l , N M C I  
C PEAG COLUMNS OF U*BETA AS ROUS OF TRANSPOSE 

PEWIND 8 
00 97 I = l t N C B E T A  

57 READ (8 )  i BB( I t J  I t  J = l * Y Y C I  
C FCRM MATRIX PRODUCT BETA TRANSPOSE * U TRANSPOSE * ( K  * U * BETA) 

REMIhD 9 
Of’ 9 8  J z l t N C B E T A  
READ (9) 
CC 9 8  I = l r N C B E T A  
BK( I * J ) = O - O  
DC 98 I J s l p N I C  
BK( I * J ) s B K (  I p J l + B B (  1 9  I J  I * R ( I J )  

kP I T E 1 4 )  

( 9  ( I )  r I=leNMCI 

9 8  
C WRITE COUPLE0 STIFFNESS MATRIX ON TAPE 4 BY COLUMNSt CNE RECORD 

( ( B K (  1 r J 1  r t = L r N C B E T A I  t J=L*NCBETA) 
PEWINO 3 
REWIND 4 
IF(NERG.EQ.0) GO TO 2300 

2200 W P I T E ( 6 r 2 2 1 0 )  

2210 FGRMAT(/ /+ ERROP RETURN FROM JACTV - DTD C A L L  * )  
23CG COhT INUE 

EN0 

P R I N T  2210 
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SUBRC)UTINC C f l N E Q S l C * N C E Q S ~ N M C )  

0 I MENS I ON C I NCEQSt NWC 1 
C A L L  Z E R O Y l C t  NCEQS tNMC9 NCEQS,t%MC) 
C l1127)= -1 .0  S C ( l 1 4 9 ) = S 1 N ( . 5 2 3 6 0 )  S C f Z t 4 9 1 ' C O S l  e523601 
C ( 3 r O ) r - 1 - 0  S C I 3 1 2 8 J = 1 - 0  S C ( 4 r 3 5 1 4 O S l . 5 2 3 6 0 1  
C ( 41 42 )PS IN(  52363 b 
C l 5 9 42 1 = C n S l  52363 I 
C (  7r68 )=COS( -52360) S C( 81 12)=-1.0 S C t  8950)=1. C 
Cl9r56l=cCCIS(  -52360) 0 C f 9 9 6 2  )=SI N(0523601 
C I  1 0 1 2 5 b l . O  S C ~ 1 0 ~ 5 6 1 ~ - 1 ~ 0 * S I N l ~ 5 2 3 6 0 ~  S C ( 1 0 ~ 6 2 ) = C O S l  -52360) 

C H A T F I X  OF CONSTRAINT EQUATIONS I N  P H Y S I C A L  COORDINATES 

S 
S 

CL 59 19 I =  1.0 
C( 6927 b =-1-0 S 

S C(  5 t 35 ) - - l o  O*SI N l  -523601 
C(  6 e 6 8 ) s S I  N( e52360 ) 

RETUPN 
EN0 

SUERCUT 1 NE 
01 HE hS I ON 
DC LC I = l * w  
GO LO J = l t C  

PETURN 
ERD 

ZER@M(AIN,L~ MM AX* LMAX) 
A(  MMAXt LUlAX 1 

1C P (  I r J ) = O - O  

SURRCUTIYE WMTXC(AtNRtNCtHAXR tMAXC1 

O I Y E N S I O N  A I H A X R t Y A X C  
CCMHCN H M T X ( 1 2 )  
KE=O 
KSET=NC /8 

IF IKLEFT.NE.0 J K S E T = K S E T + l  

KB=K F + l  
KE=KE+B 
IF ( K  T.EQ.KSET I KE=YC 

C RP=RC!WS CIF A t  NC=COLS OF A *  MAXR-MAX ROWS OF A t  MAXC=YAX COLS OF A 

K L E F  TIMOD (NC p 8 f 

DO 10 K T = l * K S E T  

WR I T E I 6  9 5 0 0 1  1 
DO 1 C  I = l t N R  

10 WR I T E l  6 9 5 0 0 2  1 

HMTX t ( J t J=K 8 ,  KE I 

I t l A l  I * J )  9 J - K B t  KE 1 
50C1 FORMAT~lH1//12Al9////lOH RCW C O L t 1 4 t 7 4 1 1 X 1 4 ) )  
5002 F O E M A T ( I 4 r 8 E 1 5 . 7 )  

FETUPN 

A I R P L A N E  @EAM ASSEMBLY - SYYMETRIC MODES - CLAMPED-FREE MODES FOR WING AND T A I L  
3 3 8 1 C  

13 7 6 
26 1 1 4  7 1 1 2  6 1 

8 1 5 3 1 3 2 1  
C O 9 r D 0 0 0  
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PT. OGRAM 

D I M E h S I O N  C M ( 6 8 r 6 B ) r V I 6 8 r 6 8 )  € M I 6 8 1  v C S ( 6 8  96819 E ( 6 8 ) r B E T A ( 6 8 , 6 8 )  

B J 0 5 M  4 l N P U T  r O U T P U T  * 1 A P E  2 T A P  E 3 9 TA P E 4 r T A P E 6  9 T A P E 8  r T A P t 9  
1 T A P E S =  I N P I l T  I 

1 
2 

R (68 I, P ( 6 8  J r C I 6 8 r 6 8  I r C I N Y B T (  689 6 8 )  r B C B T ( 6 8 r  68) 9 

I P I  VfY T 168) I N  DE X [ 68 9 2 I 9 RU t 68 1. PCI (68 ) 
COMMON H M T X I l Z l  ( F C O N  
E O U I  VAL ENCE 

XV E t  I 6  8 9 68 I 

I X V E C ~ L I  1 9 B E T A (  1 1 1 I C M I  1 9 1 )  r CS I 1 t 1 ) r  C I N V B T l  l r 1 )  9 
1 
2 

I N D E X (  1 9 1) 8 r I V (  1 r l I r C I  l r  l ) r B C B T (  l r l )  1, (1) r R U (  1) ) r  
( P I  1 I r P U I  1 J I 

WAX-68 S M B E T A = 6 8  
C ON E N T R Y  T O  T H I S  PROGRAM - - - - 
C T A P E 2  H A S  CRDER AND U M A T R I X  
C T A P E 3  H A S  CRDER AND B E T A  M A T R I X  
C T A P E 4  H A S  C O U P L E D  MASS A N 0  S T I F F N E S S  C A T R I C E S  

1 F E A D l 5 r 5 0 0 1 1  ( H Y T X ( J 1  r J = 5 r 1 2 1  
5001 F C F M  b f l  BAL(!) 

I F  I E C F  r 5)  89989 8999 
8957 F P R M A T I / / *  PROGRAM B J D 5 M  S T O P P E D  ON l E D F , 5 I * )  
8999 C r N T  I N U E  

H C T X ( l ) = l O H  F I N A L  MO C H H T X ( L ) = A D H O A L  M A T R I X  
h P T X t 3 I = l O H  C H M T X I 4 ) = 1 O H  

F E W I h O  3 
F C O K = l .  0 

C REAC ORDER OF B E T A  FRCM T A P E  3 
F E A D  (31 N F 8 r F ' C B  
PEWINO 4 

R E A 0  1 4 )  ( I C M (  I r  J1 r I = l p N C 8 1  tJ= l  r N C B )  

C A L L  
I F I I E R R - E O . 1 )  GO T O  1500 

C P E A C  C O U P L E D  MASS M A T R I X  FROM T A P E 4  

C SCLVE F C R  E I G E Q V A L U E S  A N D  E I G E N V E C T O R S  O F  C O U P L E D  MASS Y A T R I X  
J A C T V I Y C B .  MAX,NCBt CM *E#* V 1 0 l l M l r O U M 2 r  D U Y 3 r O U M 4 r  I ERR 1 

C T E S T  F O R  NUMBER OF F I N I T E  E I G E N V A L U E S  
DC 10 J - 2 r N C B  
IJ=J-1 
1 F I E P I J I . L E . O . C )  GO T 3  11 
I F I I E Y I  IJ~/EMIJ~~.GE.1000000~0) GO T O  11 
I F  I J.EQ.NCB) I J s N C B  

10 C O N T I N U E  
11 h F M E V - I J  

h P I T E ( t  ( 1  111 I (EM(  I )  r I = l r N C t 3 )  

FF I N T  1 4 r N F M E V  
WP I T E l 6 r  1 4 )  NFMEV 

1111 F O R M A T ( / / *  E I G E N V A L U E S  OF C O U P L E D  MASS M A T R I X  * / / ( Z X ? E 1 5 . 8 ) )  

14 F O R P A T I / / +  NUMBER OF F I N I T E  E I G E N V A L U E S  O F  COUPLED MASS Y A T R I X  = * 
l r 1 3 / / 1  

C REAC C O U P L E D  S T I F F N E S S  Y A T R I X  FROM T A P E 4  

C REWIND T A P E 4  AYO W R I T E  C O L U M N S  OF VECTOR M A T R I X  Q N  T A P E 4  
C R E k I N D  T A P E 9  AND W R I T E  ROWS O F  VECTOR M A T R I X  ON T A P E 9  

READ (4) I C s (  I ,  J 1 r I = l r  N C B )  r J = l  r N C 8  1 

REWIF!D 4 
FEWIhO 9 
OC 2 C  J = l t N C B  
h R I T E ( 9 I ( V ( J r  1 I r  I = l r N C B )  

2C kRITE14)(VII,J)rI=lrNCB) 
C Y U L T I P L Y  S T I F F N E S S  BY VECTOR AND STORE I N  V 

R E M I N D  4 
OP 3C J = l r N C B  

R E A D ( 4 J  ( P  ( I  1 r I = l r N C B )  
C R E A D  C n L U M N  O F  VECTOR MATR I X  

d 

c f 



C 

C 

C 
C 
C 

C 
C 
C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

CO 3C IilrNCR 
b l  1 ,  J 1  =O.O 
DC 30 I J = l t N C B  

30 V t  1 9  J ) = V (  I t  J J + C S I  I, I J  ) * R I  I J f  
CCPPUTE V T * ( C S * V I  

*€WIND 4 
GO 40 I s 1  r W R  

F k  AD (4) I R  I J I *  J=lrNCB) 
DO 40 J r l r N C B  
CSI I 9 J 1 x 0  -0 
CC 40 I J = l r N C B  

40 C S t  I ,J 1 =C S (  I , J J+R( I J) *V( I Jt J i  

READ CnLUwM OF VECTOR M A T R I X  A S  ROU OF VECTCR TFANSPOSE 

K=hFPEV 
h= NC B- NF  M F V 

I F  THE hUMBEP nF F I N I T E  MASS E I G E N V A L U E S  (NFMEV) I S  EQUAL TO TH€ 
C P D E R  OF THE COUPLED MASS MATRIX  CM, BYPASS P A R T I T I O N I N G  OF THE 
CCUPCED S T I F F N E S S  M A T R I X  CS.  

I F l N e E O . 0 )  GO TO 79 
K P l = K + l  
F E W I h D  4 

C S  WILC HE P A R T I T I O N E D  AS FOLLDWS---- ( A  B )  
( E T  C J  

WHkQE A = ( K * K ) e  8=1K*NJ), B T = I N * K ) v  C t ( N * N l  
PEWIND 4 

STORE Y A T P I X  A OM T A P E 4  BY COLUYNS, I PECOPD 
kR I T € (  4 1 I ( C S (  I , J 1 9 I t 1  r K  9 J * l g  K) 
REWIND 8 

kP I T E  (8 1 ( ICs( I t  J I t I = K 3  1 rNC.8)  9 J=KP 1 tNC8) 

DC 5c I = l , K  

STr)RE M A T R I X  C ON TAPE 8 BY COLUMNS, 1 RECORD 

S T q R E  C A T P I X  8 ON TAPE8 BY ROWS, K RECORDS 

50  k R I T E ( 8 1  I C s (  I t J l r J = K P L t N C B )  
READ M A T R I X  C FPOM TAPE8 AND COMPUTE THE I N V E R S E  OF C 

REWIND 8 
FEAD 18 J 
C A L L  Y A T I ~ ' V l C ~ F 1 , B I ~ O ~ D E T ~  I P I V O T ~ I N D E X I M A X I I S C A L E J  

CD 6 C  J = l , K  

P E A D ( 8 1 ( P ( I ) r I = l , N l  

C I N V B T I I t J I = 9 . @  
CC 6 0  I J t l t h l  

6 9 C I  NVBT ( I t J )=C I N V e T  I I t  J) +C I I ,  I J ) *P I I J ) 
FEWIhD 8 

F E A O ( 8 J  SKIPREC 

( C  I I r J1 v I = l , N )  9 J = l r N l  

CCYPUTE C INVERSE TIMES B TRANSPOSE 

P E A O  ROW n F  R A S  COLUMN OF B TRANSPOSE 

CT 6 0  I = l r M  

T k E  NEXT READ STATEMENT I S  A UUHMY READ TO P O S I T I G N  T A P E 8  

COMPUTC B * IC I N V E R S E  * 8 TRAYSPOSE) 
CC 7 0  I r l t K  

READ RnW OF B 
AEAD 113) (P( J )  , J = l * U )  
DC 7C J z 1 . K  
ECBT (1 ,  J ) = O - O  
CC 7 C  I J = l s h l  

70  B C R T ( I , J ) = B C B T (  I I J ) + P I  I J ) * C I N V B T l  IJIJ) 
R E H I Y D  TAPE8 

FEWIfVD 8 
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C STORE C I N V E R S E  T I Y E S  B TRANSPOSE ON T A P E 8  BY COLUMNS* 1 REC'JRD 
k R I T E ( 8 I ~ ( C I N V B T ( I r J J ~ I ~ l , N ) ~  J z l r K )  
REWIND 4 

P E A D ( 4 J  ( (  C S f  I t  J I  cI=lrK) 9 J t l r K I  
C READ M A T R I X  A FROM 4 

C CCMPUTF A - ( 8 * C I N V * B T )  
C R E P L A C E  THE F I R S T  K ( F I N I T E )  E I G E N V A L U E S  C'F THE MASS M A T R I X  8 Y  
C l .O / (SQUAPE ROOT O F  E I G E N V A L U E J  

79 00 8 1  1 ~ 1 . K  
EP( I J = l . O / S O R T ( E M ( I )  J 
I F ( N o E Q . 0 1  GO T O  8 1  
C@ BC J = l r K  

80 C S (  I rJ  B x C S I  Iv  J ) - R C B T (  1 1  J) 
8 1  C O N T I N U E  

C PPE-  A N 0  P O S T - M U L T I P L Y  THE C S  M A T R I X  B Y  l . /SQRTIMASS E I G E N V A L U E S J  
DO 90 I x l t K  
00 90 J=L,K 

DO 1CO J = l v K  
CO IOd Iz1 .K 

C A L L  
IF(YERR.NE.01 GO T O  1500 
C A L L  

CO 113 I = l t K  
CO 110 J = l r K  

REWIND 4 

9 C  C S I I r J l ~ E ~ ( I ) * C S ( I ~ J l  

LCP C S ( I r J l = C S ( I t J ) * E Y I J l  
J A C T V l Y  r M A X t K  rCS r E  9 VIDUM 1 rDUM29 DUM39 D U M 4 i N E P  P I 

FREO(  EpC SIK t MAX) 
C PRE-MULTIPLY VECTOR M A T R I X  B Y  L. /SQRT(MASS E I G E W A L U E S I  

113 V ( I 9 J ) = E M ( I ) * V ( I r J )  

C STORE X SUE 1 VECTOQS O N  T A P E 4 1  B Y  CDLUMNSr  K R E C O R D S  
D0 115 J = l , K  

115 W P I T E ( 4 )  ( V (  I t  J J 9 I l l 9  Y 1 

REWIND 8 
IF(N.EQ.Q) G r  T O  144 

C R E A D  C I N V E R S E  * B TRANSP17SE M A T R I X  FRDM T A P E 8  
FC AD (81 ( [ C S (  I t J 4 t I = 1  t N)  t J = l  ,K I 
GEWILD 4 

CP 120 J = l t K  

P E A 0  (4)  ( P  il I )  t I = l r K )  
CC 120 I = l t N  
V I  1, J l = O o  
OC 120 I J = l t K  
V I  I P J 1 = V (  I * J) +C S( I 9 I J )*P( I J 1 

CC 125 I = l r N  
DO 125 J = l t K  

12 5 V ( 1, J ) 3 - V  ( I t J 1 

kP I T E ( 4 f 1 ( V i I t J 1 t J= 1 9  K I , I 

C M U L T I P L Y  I C  I N V E R S E  * B T R A N S P O S E I  B Y  X SlJ8 1 VECTOR M A T R I X  

C READ CnLUMN OF X S U B  1 M A T R I X  FROM T A P E 4  

12(! 
C X S U B  2 VECTOR M A T R I X  = - VECTnR YATR I X J U S T  CCYPUTED 

E STORE X StJB 2 VECTOR M A T R I X  ON T A P E 4  BY RC'WSt 1 R t C O R D  

C REWIND 4, T H E N  R E A D  X SUB 1 VECTORS I N T C  F I R S T  K RCWS OF C S  AYD 
1 t N I 

C READ X SUB 2 VECTORS I N T O  ( K + L )  TO NCB PEWS O F  CS 
C TWE C S  V A T R I X  I S  NOW ( N C B  * K )  

144 REWIND 4 

1 4 5  R E A D ( 4 I I C S ( I * J I  v I = l r K )  
CC 145 J z 1 . K  

I f  ( N  o N E . 0  J R E P D ( 4 )  ( ( C S t  I C  J1, J= l ,K  ) 9 I = K P l v  N C 8 )  
C M U L T I P L Y  MASS VECTOR M A T R I X  BY C S  M A T R I X  

PEkIh'D 9 



c o  146 I = l , W B  

F E A C  ( 9 )  I R  (J1 rJ= L t N C B  I 
CO 146 J = l t K  
V i  I t  J)=O. 0 
DC 146  I J = l r N C B  

c READ GCW nF MASS VECTQP M A T R I X  

146 V( I J ) = V I  I t J b +R [ I J )*C S I I J t J I 
C COMPUTE B E T A  * T H E  F I N A L  VECTOR M A T R I X  

REWIND 8 
CO 1 5 1  I = l t N R R  

R E A 0  
CC 150 J = l r K  
P I J 1 =O.O 
CO 150 I J = l r N C B  

C READ ROW O F  B E T A  M A T R I X  
3 1 4 R I J 1 e J= 1 t NCB 1 

150 P (  J ) = P I  J I  +P( I J ) *  V I  I J t  J 1 
1 5 1  k P I T E l 8 1 I P I J ) t J = l v K )  

REWIND 8 
DO i t 0  I = L * N P B  

160 G E A D ( 8 ) I B F T A I I , J b t J = l , K ~  
C CCMPUTE U * B E T A  M A T R I X  

REWIND 2 
R E A D I Z )  N R U t N C U  
F E W I N D  8 
CC 166 I = l t N F U  

FEAC I 2 1  I R U I J ) T J = ~ ~ N C U )  
DC 165  J = l r K  
P U I  J )=0.0 
Cf 165 I J = l  r N C U  

1 6 5  P u t  J ) = P U I  J ) + Q U (  I J ) * B E T A I  I J t J I  
166 W P ~ T E I 8 ) l P U ( J ) r J = l r K J  

F E W I N D  8 
CO 169 I=ltNRU 

C A L L  WMTXCtXVEC t N R U t K t Y B E T A , M A X )  
F E k I N D  9 
W P I T E I 9 )  N R U t K  
W P I T E ( 9 )  I E (  J)  9 J = l r K )  
O C  170  J = l r K  
k R I T E ( 9  1 ( X V E C t  I t  J 1 9  I ~ l v N R U l  
GC T O  1 

150C I F 1  IERR.EQ.1) W P I T E l 6 t 1 5 0 1 )  
WP I T € (  6 t 1502 I 

C P E 4 D  P O k  Q f  U Y A T R I X  

165 F E A D ( B ) I X V E C I I t J ) t J = L I K )  

17C 

I F  I N E R G  . ‘~EE.O 1 
i 5 c i  FORMATI//* ERRQR RETURN FRCM JACTV - FIRST CALL - c n u P L m  M A S S * )  
1502 F O R M A T ( / / *  EPROP RETURN FGOY JACTV - SECOND C A L L  - S T I F F N E S S * )  

GCI TC 1 
855 e UP I T E l  69 8 5 9 7  1 

F P I N T  8 9 9 7  
END 



SlJHFOUT I N E  

C I YENS I f’N 
C O W C N  H M T X t  1 2 1  
KE=O 
KS€T=NC /8 
K L E F T = Y O D ( N C t 8 )  
IF (KLEF1.YF.C 1 K S E T = K S E T + l  
G r  10 K T t l r K S E T  
K B = K E + l  
KE=KE+8  

UMTXC(A9NR t N C 1  MAXR 9 M A X C l  
C h*=FCWS r)F A t  NC=COLS OF A +  YAXRsMAX ROUS (IF A t  MAXC=M4X C Q L S  OF A 

A (  MAXP 9 MAXC 1 

I F  I K T - € 0 - K S E T )  KE=NC 
k R I T F ( h , 5 0 0 1 1  H t ’ T X t I  J, J=KB,KE) 
Lfl 1 C  I = l r N P  

10 kP I T E ( t t 5 O 0 2 )  1 9  ( A I 1  t J f  rJ=KBt  KE 1 
5001  F n P M A T f  1 H 1 / / 1 Z A 1 O / / / / l O H  ROW C O L t 1 4 t 7 ( 1 1 X 1 4 1 1  
5002 FCRMAT(  1 4 ~ 8 E 1 5 . 7 )  

RFTURN 
END 

SUBR OUT I N  E 
DIMEhSIOW E ( H A X ) t A I M A X t C A X )  
CCIMMCN H Y T X ( 1 2 )  (FCON 
CC 10 I = l , K  
A (  I t  l ) = E l  I ) 
A (  I , E I = F C n N * E (  I I 
A ~ I I ~ ) = S ~ R T ( A B S I A ( I , ~ ) ) ~  

P R I N T  
WP I T E (  6 

FREQ ( E * A ,  K *MAX 1 

10 A (  I t 4 1 = A (  1 9 3 ) / 6 . 2 8 3 1 8 5 3 C 7 1 7 9 5 9  
5n14t I H M T X I  J 1  rJ=5*12) r F C O N 9  ( I t  ( A (  I r  J ) r  J = l r 4 ) r  I t l r K )  
5014) I HMTX(  J t J =5 9 12 J r FCCNI ( I t ( A (  I t J  1 t J z l r 4  J * I = l t  K I 

5014 FORYAT ( l H l / /  l X 8 A l 0 / / 7 H  FCON =rE22,14//4XLHJ9X9HLAMBOA( J l 1 4 X l Z H O M E G  
1 A  SQ (Jll4X8HOMEGA(J)14Xl3HFREQ.( J) r  C P S / 3 4 X 1 8 H ( F C C N  * L A M B 0 A I J ) ) l  
22X6HEIPEAL ) / / ( 1 5 9 4 E 2 4 . 1 4 ) )  
RE TURN 
EN 0 

AIF ’PLANE PEAM ASSEMBLY - SYMMETRIC HOOES - CLA%PED-FPEE MOOES FOR UING A Y J  T A I L  

b 


