
(NASA-CR-132780) TETHERED BODY PROBLEMS N73-31723
AND RELATIVE BOTION ORBIT DETERMINATION
Final Report (Analytical Mechanics
Associates, Inc.) -3t-p BC $18.00 Unclas

317 CSCL 22A G3/30 08461

Final Report

TETHERED BODY PROBLEMS AND

RELATIVE MOTION ORBIT DETERMINATION

AITI

J. B. Eades, Jr.
Henry Wolf

Contract NAS5-21453
Report No. 72-35

August 1972

ANALYTICAL MECHANICS ASSOCIATES. INC.
10210 GREENBELT ROAD

SFABROOK. MARYLAND 20801

https://ntrs.nasa.gov/search.jsp?R=19730022991 2020-03-23T01:48:04+00:00Z



FOREWORD

This report was prepared under NASA Contract NAS5-21453. The

work was conducted under the direction of E. R. Lancaster, Trajectory

Analysis and Geodynamics Division, Goddard Space Flight Center.

The Analytical Mechanics Associates, Inc. program was conducted

under the direction of Dr. J. B. Eades, Jr.

//



TABLE OF CONTENTS

List of Figures ... ............................. . . .... . Viiil

Major Symbols ................................................. xii

Summary ........................................... 1

I. Introduction .................................................. 3

It. Tethered Body Systems, with Elastic Tethers

II. 1 General ............................................. 9

II.2 Equations Describing Tether Motions ................. 9

II.2.1 Circular Orbit Approximation ......................... 11

II.2.2 Characteristics of the In-Plane Motion .... . . . . . . .. 1 3

II.3 Summary ........................................... 21

11.3.1 General Differential Equations ..................... 22

1I.3.2 Approximations ........................................ 22

II. 3.3 Small Displacement Approximations (Linear Theory) ..... 23

II. 3.4 Small Displacement Approximations (Restricted Cases) .. 24

II.4 The Swinging Tethered System ......................... 27

II.5 Tether Forces ................ ................. .... 33

11.5.1 Extremals for the Specific Tensile Force ............... 35

II. 5.2 Zeros for the Tensile Force .......................... 37

II.5.3 Representation of Tether Tension......................39
II.6 Eccentricity, A Disturbing Influence ................. 44

II.6.1 Illustrating Eccentricity Effects .............. .. 45

III. Extensible Tethers

III. 1 General .............................. .... ... ....... 54

II1.2 A Proposed Analytical Experiment ..................... 54

III. 2.1 Tension Laws.............. ............ .............. 55

II1.2.2 Example Situations .................................... 57

Example 1 ................. .... .... ....... 57

Example 2 ..................................... 62

Example 3 ..................................... 67

III. 2.3 Remarks .7.................... o ..............*79

111.3 Numerical Studies for Extensible Tethers.............80

III. 3.1 Assumptions ........................ .... . . . . 81

III.3.2 Program Descriptions .............................. 81

111.3.3 Control and Handling of Tethers ..................... 82

111.3.4 Extensible Tether Operation Modes .................... 8 3

1I.3.5 Discussion. ............ 0...... ......... .... ....... 87

111. 3.6 Transfer from an Extensible Tether System ........... 106

III. 3.7 Remarks .......................................... 109

III.3.8 Variable Tension, Extensible Tether Systems ......... 109

III.3.9 Examples: Fixed 8, Extensible Tethers .............. 111

III.3.10 A Universal Representation for Tether Operations ...... 120

111.3.11 Remarks ........................................ 132

iii



IV. Some Applications for Tethered Body Systems

IV. 1 General .................................... 135

IV. 2 Gee Force Developed in a Stabilized Tether System ........ 136
IV. 3 Transfer from a Stabilized System ....................... 141
IV.3.1 A Comparison Transfer................................... 145
IV. 3.2 Influence of Launch Speed on the Transfer ................ 148
IV. 4 Transfer from a Rotating Tether System ................ 151

IV. 4.1 Example ................. ........................... 152

IV. 5 Discussion ....................................... ,.,... 159

V. A Satellite to Satellite Orbit Determination and Error Analysis Program

V. 1 Introduction ........................... ,............... 161

V. 2 General Discussion of Features for Various Orbit ,
Determination and Error Analysis Schedule............... 161

V. 3 Summary and Conclusion ............................. 169

VI. Concluding Remarks

VI. 1 General .............................................. 170

APPENDIX A - MaLhematical Developments

A. 1. Introduction ..................................... 175
A. 2 Partial Derivatives of Lancaster's Parameters ........... 180
A. 3 The 0 Matrix ............ ................. ............ 185
A,4 Range and Range-Rate Derivatives ...................... 188
A, 5 Derivations ..... ......... ............................ 190

APPENDIX B - An Analytical Description of the Tethered (Two) Bodies
Problem (Including an Elastic Tether)

B.1 Introduction ........................................... 194
B.2 Equations of Motion ..................... ............... 195

B.3 Kinematics ................................. .......... 196

B.4 The Gravity Force ..................................... 196
B.5 Component Equations of Motion ...................... 197
B. 6 Approximations to the Equations of Motion ............... 198
B. 7 Description of Spring and Damping Constants ............. 201
B. 8 Gravity Gradient ...................................... 202
B. 9 Special Cases ..................... ............ ...... 202
B.10 A General Description of the Approximate Motions ........ 205

iv



APPENDIX C - Net Force Developed by a Stabilized, Orbiting
Tethered System

C.1 Introduction .......................................... 209

C.2 Equations of Motion ................................... 210

C.2.1 Kinematic Definition of 4 ............................. 210

C.3 Special Case (Circular Orbit) .......................... 211

C.4 A Gravity-Gradient Stabilized System .................... 213

C.5 The Specific Force in Gee's ............................ 214

APPENDIX D - Transfer Orbit Properties for a Particle Released from

a Stabilized Tether System

D. 1 Introduction .......................................... 216

D.2 The Tether Initiated Orbit .............................. 216

D.3 Kinematic Descriptions ................................ 216

D.4 Orbit Conditions ...................................... 217

D. 5 Initial (Release) Conditions ................ ........ 217

D. 5. 1 Tether Tension ................ .................... 218

D. 6 Orbit Parameters ..................................... 219

D.6.1 Eccentricity ............................................. 219

D.6.2 Semi-Major Axis .................................... 220

D. 6. 3 Peri-Radius .......................................... 220

D.6.4 Time to Reach Peri-Radius ............................ 220

D.6.5 Speed at Peri-Radius ............................ 221

D. 7 Summary ............................................. 221

D. 8 A Hohmann Transfer .............................. 223

D. 8.1 The Change in Energy ................................. 225

D. 8.2 The Specific Energy Describing the Transfer Path ........ 225

D. 9 The Effect of Tether Length (4) on an Orbit Transfer ...... 226

D.10 Summary ........................................... 228

D. 11 Effect of Initial Speed on Tethered Transfers ............. 230

D. 11.1 Elevation Angle (y ) .................................... 231
0

D.11.2 Energy (E2) for the Transfer Orbit ...................... 232

D. 11.3 Moment of Momentum (h2) ............................. 233

D. 11.4 Eccentricity (2) ......................... ................ 233

D.11.5 Radius to Pericenter (r2) .......................... 234

D. 11.6 Speed at Pericenter (Vp2) ................................. 234

D.11.7 Transfer Angle to Pericenter (A 2 ) ..................... 235

D. 12 An Equivalence Problem .............................. 236

D. 13 Summary ................... .......................... 237

V



APPENDIX E - Development of Equations for Tethered Body Systems

E.1 Introduction ......................... ......... ..... 240
E.2 Position Geometry ..................................... 240
E. 3 An Euler Sequence of Rotations ......................... 241
E. 4 External Forces ..................................... 243

E.5 Dynamical Equations for the Motion ..................... 244

E.6 Kinematic Equations .................................. 244

E.7 A Specialization. Circular Orbit for r ................ 246
g

E.8 Dimensionless Variables .............................. 249

E.9 Conversion from t. to ..................... ....... 250

E. 10 A Special Situation .................................... 251

APPENDIX F - An Analysis for the Extendible Tether System

F. 1 Introduction .................................. ........ 255
F.2 Equations cf Motion ................................... 255

F. 3 Kinematic Definition for .......................... 256
F.4 Specialization for the Tether Problem................... 258
F.5 Dimensionless Variables .............................. 258
F. 6 Linearization and Reduction of the Governing

Expressions. .............................. ........... 259
F.7 An Equilibrium Condition ............................... 259
F.7.1 Conditions for Equilibrium ........ ..................... 260
F. 8 A Simplified Energy Analysis ........................ 261
F. 9 Extensible Tether with Variable Tension ................. 263

APPENDIX G - A Rotating, Tethered Body System

G.1 Introduction .................. ....................... 266
G. 2 Equations of Motion .................................... 266
G. 2.1 Special Case ...................... ........ ,. ...... 266
G. 3 The Free Orbit, from a Rotating State ................ 267
G.3.1 Position of Velocity Coordinates ........................ 267
G.3.2 Momentum and Energy Equations ............... ...... 269
G. 3.3 Orbit Eccentricity ..................................... 270
G.3.4 Angle Descriptions ....... .. ,..... .................. 271

G.3.5 Pericenter Radius and Speed........................... 272
G.4 Summary ..................................... 273

vi



APPENDIX H - Computational Equations

H. 1 Introduction ...... ............. ... ................... 274
H. 2 Basic Formulation .................................... 274
H.2.1 Kinematics ........................................... 275
H.2.2 Scalar Equations of Motion ............................. 276
H.2.3 Dimensionless Variables .............................. 276
H.2.4 The In-Plane Case ..................................... 277
H.2.5 The Fixed Length, Pendulous Motion .................... 278

H. 3 Computational Procedures ............................ 280
H. 4 Description of a Free Orbit, from Tether Release ....... 281
H.4.1 The Initial State ...................................... 281

H.4.2 Energy, Eccentricity, for m 2 ........................... 282

H.4.3 Angle Relations ................................. *... 283
H.4.4 Pericenter Values .... ,,,........... .................. 285
H. 5 Summary ............................................. 286

APPENDIX I - TETHER, A Computer Program

I. 1 Introduction .......................................... 287

I. 2 Operating Modes ...................................... 287

I.3 Inputs ... ............................................. 289

I.4 Definition of Input Parameters .......................... 291
I. 5 Sample Inputs ......................................... 293
1. 6 The Iterator ......................................... 294

REFERENCES ...................... ....... o ........ .............. 299

vii



LIST OF FIGURES

Number Title Page

II.1 Description of C7 on Graph of a = a (t) ...................... 13

II. 2(a) Argand Diagram of Characteristic Roots s ( " a + i o),
for a Damped Oscillation ................................... 15

II. 2(b) Characteristic Roots ........................................ 16

1I. 2 (c) Motions for Two Roots with a Same Frequency but Different
Time Constants ...................................... . 16

II. 2(d) Motion for Root Pairs with a Same "a" Value ................. 17

1I.3 Sketch Depicting a "Swinging" Tether System ................. 27

II.4(a) Pendulous Motion (8), in terms of 0, for Selected Values of
the Constant 1 ................ ..... ............ ........... 30

II.4(b) The Pendulous Motion, Showing ± 8 values, as a Function
of 0, for Selected Values of .............................. 32

II. 5(a) Variations in Tether Tension (T ) due to Assigned Values
of ....................... ............... ...... ..... 40

II. 5(b) Variations in Tether Tension (T ), for Values of (1 2
Describing 8-Rotations (Primarily) ......................... 41

II. 6 (a) Trace of an In-Plane Tethered Body Motion for an Elastic
Tether with c/ce 0. 03 ....... .......... ................... 47

II. 6(b) Trace of an In-Plane Motion for c/c -1.0 .................. 49

II. 6(c) Trace of an In-Plane Motion, Illustrating Effect of Eccentricity
and Damping ............................................... 50

II. 6(d) Trace of Under-and-Over Damped In-Plane Motions for an
Eccentric (E = 0.1) Reference Orbit ......................... 51

III. I1 Sketch of a Tether System ..................................... 58

111I.2 Trace of a, 0 Coordinates During Tether Extension;
Example 1, a Reel-out Case ...... ........ a.... 60

viii



List of Figures (cont)

Number Title Page

III. 3 (a) History of the Specific Tension Parameter, for Assigned 8

Rates; Example 1 ........................................ 60

III. 3(b) Variations in 2, During Extension, Due to the Assigned
motions (, )2 ......................................... . 61

1II. 4 Trace of Coordinates (r, 0), During a Reel-in Operation;

Example 2 .................. ............................. 64

II.1.5(a) Specific Tension Parameter Variations, During Reel-in,

for Assigned 0 Rates ..................................... 65

III. 5(b) Variations in c2, During Reel-in, for the Assumed Motion

(a, 0); Example 2 ........................................ 66

111.6 Initial and Final Extension Rates ( , t ) for Constant 9,
(a,b) Variable Tension Examples ...............................- 74

iII.7 Required Initial Specific Tension for Constant 0-Variable

Tension Tether Extension Operations ....................... 76

II1.8 Time Needed to Complete Constant 0-Variable Tension Tether
Extensions ............................................... 77

ill. 9 Sketch Depicting a Mode A, Constant Tension Extension ....... 88

III.10 History of t, 8 for a Mode A (180/180) Operation ............ 90

III.11 A Limit Case for Mode A Operation ......................... 92

111. 12 Example of a Mode A Constant Tension Tether Extension ...... 93

III. 13 A Limiting Situation for Constant Tension Operations ......... 95

II.14 Sketch Depicting Mode B Tether Extensions ................... 96

111.15 Motion Trace for the Mode B(180/180), Constant Tension

(With Snubber) Tether Extension . ,.......................... 98

III.16 A Limiting Case for Mode B Operations. Limit due to 9 ..... 99
O

ix



List of Figures (cont)

Number Title Page

111.17 A Limiting Case for Mode B Operations. Limit due to f ...... 101

III. 18 A Mode B Constant Tension (with Snubber) Operation .......... 103

1I. 19 A Constant Tension Tether Extension Operation Without

Distinction Between Mode A or Mode B types ................. 105

III. 20 Description of Transfers-to-Pericenter Accomodated by

Tether Extension Operations .... .......................... 107

III. 21 Sketch Describing Mode C Extensions .......................... 110

III. 22 A Mode C Variable Tension Tether Extension Operation ........ 113

111.23 Comparison of a Mode C Operation, Using Analytic and
Iterator Determined (converged case) Initial Values ............ .. 115,116

III. 24 Variation in 0, During a Mode C ( a- 1350) Extension for

Iteration Determined (converged case) Initial Values ........... 117

III.25 Mapping of Universal Parameters for Mode A Tether

Extension Operations, with f = 180 ......................... 123

III.26 Mapping of Universal Parameters for Mode B Tether

Extension Operations, with = 180 ......................... 124

11.27 Mapping of Universal Parameters for Mode A Extension

Operations, with 8 = 155 ............................... 126

III. 28 Mapping of Universal Parameters for Mode B Extension Opera-
tions, with 8 =.210 .... . ............ .................. 127

IV. 1 Sketch Describing (a) Stabilized, and (b) Rotating Tether

Systems .......... .... .. ...... .... 0......................... 136

IV. 2 Specific Force (in gee's) Developed on a Tether Suspended
Mass, as a Function of Tether Length.. ..................... 138

IV. 3 Specific Force (in gee's) Developed on a Mass Suspended
by a Stabilized Tether System ....... ,...... ........... 139

x



List of Figures (cont)

Number Title Page

IV. 4 Expected Variations for Parameters Describing a Tether

Initiated Transfer ................... ......................... 143

IV. 5 Transfer Parameters for a Mass Released from a Gravity
Gradient Stabilized Tether ................................... 144

IV. 6 Description of Tether Length (Z) Required to Provide Transfers

to a 70 n.m. Pert-center Altitude ............................. 146

IV. 7 Description of Av Requirement, and Energy Change (AE),
for Hohmann Transfers to a 70 n.m. Peri-center Altitude ....... 147

IV. 8 Schematic of the Rotating Tether System ....................... 153

IV. 9 Description of Peri-center Altitudes Acquired from a Rotating

Tether System ............. ......... ....... ............. 154

IV. 10 Transfer Angles (Agp), Required to Reach Pericenter ........... 156

IV. 11 Specific Force Developed in Tethers Due to System

Rotation(s) . ......................................... ....... 158

B. 1 Tethered System Geometry .................................. 194

B, 2 Forces Assumed for Tethered Systems ................ ,. ........ 194

B. 3 Description of Spring Force .................. ................ 201

B. 4 Damping Force ........... ,... ............................. 201

B. 5 Argand Diagram for a "Roots" Representation .................. 206

C.1 Sketch Describing the Tethered Bodies System ................. 209

D.1 (a) Geometry . .......... ... ...... . .............. ............... 216

D. 2 The Hohmann Transfer ...................................... 223

D.3 Transfer from a Stable Tether Configuration .................. 226

D, 4 Geometry for Transfer, with x ............................... 230

xi



List of Figures (cont)

Number Title Page

E.1 Geometric Description ..................................... 240

E.2 Euler Angles .............. .............................. 242

E.3 Forces and Orientation ............... ................. 243

F. 1 Geometric Description ............... .................... 255

F. 2 Reference Triads .. ............................................ 256

F.3 Description of Problem .................................. 263

G. 1 Description of Rotating Tether Systems......................... 268

H. 1 Geometry for the Computer Program .............. .... 274

H. 2 Angles; Descriptions .................................. . 284

xii



MAJOR SYMBOLS*

a Coefficient (see eq. (B.21)); semi-major axis length.

AJ, B. Constants.

ARG Argument.

V, i. Constant.

c Damping constant (see Appendix B).

e. Unit vector (j x, y, z; r, p, z; 4, n, z).
J

Det. Determinant value.
I

E. Specific total energy.

F Force
F/m

F Dimensionless specific force parameter, in gee's ( -- 2).
g g0

g Gravitational vector ( g /r).

h. Specific moment of momentum.

H Unit operator (see Appendix B), altitude.

H. O. T. higher order term.

i Complex number (~ ) .

k Spring constant (see Appendix B).

K Constant (j = 8, 7; see section II).

4, L Tether length.

m. Mass (particle).

M Mass parameter (E mi.).
mlm

ii Reduced mass parameter (. )"

*Symbols for Appendix A and Section V are found in those parts of the report rather
than here.

xiii



n. Unit normal vector (see eq. (H. 23)).

N. Dimensionless parameter (j = v, L, f; see section III).

r., r. Radius vector, distance.

R. Dimensionless ratio (j = t, sw; see section III).

s Root (value) from characteristic equation (see eq. (B. 20b)).

sgn (=) sign of (-).

T Tension force.

T Tether force (section III).

T. Period (j = n, d).

t Time.

V., V. Velocity vector, speed.

v. Relative velocity vector.
t

x, y, z Cartesian coordinates (local valued).

Position angle (for F., Appendix E).

/3 Position angle (see eq. (B.21c)).

7. Elevation angle (see eq. (D.39)).

6. Slope parameter (see eq. (III. 18)).

A. r/rg , r/r 1 (see eq. (B.6)).

E. Eccentricity of orbit.

8 Position angle, tether (measured from er).

> Dimensionless tether length (= 4/rl, L/r ).

Primary mass particle (parameter).

xiv



, 77, C Dimensionless cartesian coordinates (see Appendix H).

a Dimensionless length ( 0 /Lo )

Value of a measured from ast.

" Dimensionless specific force parameter ( F/_,

see also eq. (H. 6). rl 1

)p, P True anomaly, orbit rotational rate.

x Tether stretch.

. ; C. Rotational vector; frequency (see Appendix B).

Frequency ratio (- ki 2./

Subscripts

a Apocenter (Appendix C).

a, b Index values (section III).

c Critical value; constant; circular orbit value.

d Damping.

e Equivalent value (Appendix D).

f Final values.

g Refers to c.g.

i, j Indices.

m Extremal.

n Natural; normal.

o Initial (natural), reference value.

p Pericenter (Appendix C).

xv



r Relative value (Appendix H).

s Spring.

st Static parameter.

T Transfer path parameter.

9 Pertaining to U-motion coordinate.

1, 2 Refers to mass particles.

Superscripts

i Index.

() Time derivative.

Derivative wrt <p; index.

xvi



TETHERED BODY PROBLEMS AND

RELATIVE MOTION ORBIT DETERMINATION

by

J. B. Eades, Jr. *
H. Wolf**

SUMMARY

For this investigation selected problems dealing with orbiting tethered

body systems have been studied. In addition, a relative motion orbit determina-

tion program was developed. Results from these tasks are described and dis-

cussed in this report.

First, the expected tethered body motions were examined, analytically,

to ascertain what influence would be played by the physical parameters of the

tether, the gravity gradient and orbit eccentricity. After separating the motion

modes these influences were determined; and, subsequently, the effects of

oscillations and/or rotations, on tether force, were described.

This information is expected to serve as the basic guidelines for design

and understanding of these systems.

Second, a study was undertaken, by examining tether motions, to see

what type of "control" actions would be needed to accurately place a mass

particle at a prescribed position relative to a main vehicle. In conjunction with

this part of the analysis a set of universal parameters were developed; these

are used to determine the operating parameters for prescribed extensible tether

operations. (Several modes of the extension maneuver were examined, here).

Next, following the above, other applications for tethers were studied.

Principally these were concerned with the producing of low-level "gee forces"

by means of stabilized tether configurations; and, the initiation of free "transfer"

trajectories from tether supported vehicle relative positions.

*Senior Analyst, AMA, Inc.
**Senior Scientist, AMA, Inc.



The orbit determination method, which has been developed for this

work, was built around a particular set of relative motion equations utilizing

a Kalman filtering technique. The analysis is complete; a working computer

program could be formulated, as a next step.
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INTRODUCTION

To those readers having a knowledge of maritime terminalogy, names

like "heaving" and "messenger" lines, "distance" and "high" lines, and a

number of other such nautical terms, form a familiar nomenclature. The idea

that the uses which these names imply might be carried over into astronautics

may come as somewhat a surprise. Yet, it is not too far-fetched to envision

situations and conditions where the same sort of operations may be adapted to

spacecraft and related vehicles. For example, the transfer of cargo, men and

materiel, by some system akin to a "high line", is both realistic and natural in

concept. In fact, schemes close to this idea have already been suggested in the

popular literature.

The one factor to which all of these schemes relate, here, is the use of

a light weight, flexible line in the execution of some specific task. This is, then,

the concept which can be carried over, and put to use, in the performance of

similar tasks for space operations. To date, some small use has been made of

tethers - as an application of light weight, flexible connectors - in space ventures.

However, there are many more uses to which flexible lines can be put other than

those which have been demonstrated in the past.

In part, the current work, as reported here, has been directed to the

study of systems involving tethers; and, to possible applications for these

flexible connectors. For some of the problems investigated, the tasks are

aimed at specific situations while for others the concepts are more general.

As a means of providing information, and for orientation purposes, a brief

outline of the work discussed in this report is presented in the following para-

graphs.

Descriptions of the various tasks undertaken in the course of this in-

vestigation are given in the four main sections of the report. In section II the

emphasis was on ascertaining what influence the physical properties of the

tethered system had on its motion. Coupled with this was the influence of gravity

3



gradient and orbit eccentricity, these have been considered separately and

together.

Through this approach the several influencing factors could be identified

and their effect on the system's motion could be evaluated. Many of these conse-

quences, which were noted, have been reported previously in the literature. The

interested reader might wish to peruse references [5], [13] and [4], in parti-

cular. For additional information on these types of systems, it is recommended

that references [6], [7], [8] and [14] be consulted. From these the reader will

gather more than is needed for a basic understanding of tethered body system's

behavior. These references are concerned with studies which are directed to

more varied situations than those supposed in this investigation.

In this section of the report the basic motions, for this system, and the

influencing factors, are identified and described. In addition to the above an

examination of in-plane oscillatory (and rotational) motions has been conducted.

From this the motion types were separated and the subsequence levels of tether

force were described, in a manner somewhat analogous to that discussed in

reference [3 ].

It was determined that the effect of orbit eccentricity could not generalize

in the same fashion as the other influencing factors. Consequently, the manner

in which this affected the tethered body motions had to be examined on a case-

by-case basis. For this purpose use was made of the program which was de-

veloped by the contractor, and is described in reference [12].

Section III of the report describes the work which was carried out on

extensible tether systems. Here both analytical and numerical studies were

undertaken. In part these were done to determine what forces should be

applied through the tether, per se, to accomodate a given motion for a sus-

pended mass particle. This indirect approach was undertaken since the govern-

ing equations of motion were not amenable to a direct analytic solution. However,

4



in conjunction with this work it was discovered that one closed form solution

type could be obtained, for an "extensible" tether system. (This case is docu-

mented in the section).

The numerical studies, noted above, were undertaken to obtain more

explicit information on the handling and control of tethered mass systems.

Recently some work on this aspect of the tethered bodies problem has been

reported, see reference [161. The primary undertaking, for the present work,

was directed towards ascertaining how one might maintain control over the

tethered system during its reel-out and reel-in operations. In this regard it

was found that proper "control" could be maintained by selecting the correct

"launch conditions", and holding a proper level of line tension throughout the

maneuver.

For this phase of the investigation three modes of operation were

examined. For each of these the conditions required for a successful handling

of the system were determined, as were the "limits" imposed on each opera-

tional type. In addition to describing the "control" aspects of these problems,

it was found that the operating characteristics for each system could be re-

presented in a "universal parameter" format. The advantage of such a repre-

sentation is that all solutions of a similar type are described by the same

universal parameters. Hence, all solutions of a given family are known once

a single solution has been acquired. (A similar approach to this concept was

noted in reference [17]; however, there, a discrepancy in notation was apparently

made. This led to an erronous representation, in the universal format, for the'

describing parameters). It is demonstrated, herein, that these systems can be

manipulated so that tethered masses can be directed to almost any position (in-

plane) relative to the spacecraft. These positions may be close (within a few

meters) or far (hundreds of meters) from the main vehicle; of course, the

positions, per se, must be within the dynamical limits attainably by the system.

The advantage of such an operating scheme iN most obvious -- here is a

5



maneuvering capability which will allow tethers to be used for an almost un-

limited number of applications: Rescue, retrieval, cargo handling, other

transport and transfer operations, to mention but a few. Not only is system

versatility in evidence, but here is a scheme which can be employed over and

over again at an almost negligible weight penalty. It is likely that some of the

past reluctance to the use of tethers has been due to not having this understand-

ing of "control" for these systems. Certainly it would be worthwhile to con-

sider tethers seriously, for operational purposes, in future space ventures.

In section IV, herein, some special applications for tethers have been

described, also. Specifically, the use of this system as a means of developing

various levels of "gee" force has been examined. There one will find what

length of line is needed to acquire a given force, for a prescribed orbit altitude.

The range of "gee" which could be achieved by this means, gives rise to a large

range of applications. It would seem that here is the means to maintain a steady

force, at almost any level (within physical, practical limits), for as long as de-

sired. This suggests uses for all sorts of experiments, for manufacturing and

for direct spacecraft housekeeping (etc.) chores.

Allied with this phase of the investigation is another application for this

system. That is, using the tether to establish a positional state, (say) below

the spacecraft, where one could initiate a free "transfer maneuver" for the mass

particle suspended from the line. Of course, variations of this basic concept

also come to mind; and, in the report, several of these are examined, described

and discussed. For reference purposes comparisons between these various

transfer modes are made so that the reader may determine the relative merits

of each. Here again is the evidence of a reusable system which would "cost"

very little to operate as a space application. Of course, this idea could be

incorporated with some other uses for tethers, making the whole concept more

attractive than before.
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Section V is devoted to the discussion of an orbit determination formu-

lation which has been developed in conjunction with this investigation. This

scheme differs from most other such methods in that it has been built around

a set of relative motion state equations. Hence, this is a "relative motion"

orbit determination scheme -- one referred to a moving "base point" rather

than a "fixed" origin. Even though the work presented herein shows only the

mathematical developments, the work is sufficiently complete to allow for the

building of a computer program, implementing this method. (Development of

an o.d. program has been partially completed, insofar as the mathematics is

concerned. It is being developed as an Encke scheme).

With regard to tethered bodies problems, which have been the basis for

most of this report, it is envisioned that this relative motion o.d. scheme could

be adapted to some of these other situations. For example, the method could be

employed to monitoring tether operations, and to '"warn" at the onset of undesir-

able motions being developed. One possibility would be to monitor the tether

force, and the motion of the suspended body, using this knowledge to predict

subsequent events and to sound warnings as necessary. Whether or not this

is a best concept to pursue has not been ascertained; such a task was not pro-

posed for the present study.

The foregoing paragraphs have outlined the various tasks undertaken here.

However, before leaving this section of the report, it seems advisable to say a

few words which are more explicit regarding the report's makeup.

As noted above the several sections of this document are given to describing

the work undertaken in this investigation. There the descriptions and discussions,

along with sample cases, are presented. For all practical purposes no mathe-

matical developments are presented in the main body of the report. This does

not imply that the supporting mathematics is not to be found (here). The several

appendices, included as the latter pages of this document, are devoted to these

mathematical evaluations. They are referred to, as needed, in the descriptive

7



materials - thus, the reader can easily find the appropriate formulation if

he so desires. The reason for constructing the report in this manner was to

unincumber the descriptive material by keeping the mathematical developments

separate from it. In this regard, it was felt that the reader would be better

able to peruse the descriptive comments if the analytical statements were not

immediately in evidence.

It should be mentioned, also, that one of the purposes for which this

material is intended, is that it serve as a guide for the design and understand-

ing of tethered body systems. It is for this reason that the first section (II) of

the report has been included; and, for that matter the reason for some of the

applications in the latter sections. Hopefully, these purposes are met, in

addition to the reporting of other findings which have come to light as a conse-

quence of this investigation.

8



TETHERED BODY SYSTEMS, WITH ELASTIC TETHERS

II. 1 General.

The concept of two or more bodies joined by tethers, and used in space

operations, is certainly not a new idea. Historically, the first astronaut's

"space walk", or EVA* operation, was accomplished with the aid of a tether -

primarily as a safety line. Subsequently, during the GEMINI series of flights,

a tethered body experiment was conducted. There, the parent spacecraft and

the spent AGENA stage were maneuvered together as a tether connected body

system.

In this latter experiment the line length and properties were more akin

to an elastic tether than was the system used during the earliest (and subsequent)

EVA operations. From a speculative point of view it is likely that tethers will

see expanded usage in future space applications, and for a variety of tasks.

In connection with this possibility the following paragraphs will discuss

certain concepts and mechanical properties of these systems; and, some of the

attendant consequences to operational situations. It should be remembered

throughout this part of the report that the tether is considered, essentially, as

an elastic member, not as an extensible one. The study of extensible tethers

will be deferred until later in this documentation.

II. 2 Equations Describing Tether Motions.

The differential equations describing the action of two tethered bodies,

subject to gravitational attraction and the elastic forces of the tether, per se,

are set down in Appendix B, in several forms. The most general expression

is that given by eq. (B. 2a); while the corresponding scalar (in-plane) expressions

are noted as eqs. (B. 9).

In these various equations - is the tether length while 8 is the orientation

angle, for the line, relative to a local vertical, directed through the c. g. of the

*EVA is the acronym for Extra Vehicular Activities.
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system.

It is immediately apparent that these general expressions are not amen-

able to analytical solution; and, that subsequent approximations are necessary

if a form, which is convenient for mathematical manipulation, is obtained.

Several such approximations are developed in section B. 6 of the appendix. One

of the more revealing formats is that shown as eqs. (B. 13). There a simplifica-

tion of the earlier noted equations is presented; one for small displacements,

written in terms of the normalized stretch length (a x/o). These particular

expressions are:

6+ 6 + - +2 o --2 8+ + 2 ,

r r
g g

and

S+ 3 ' - (2, T + ). (II.1)
r

g

These equations are approximations for in-plane* motions; they include

the necessary elastic properties (c, k), the gravitational influence (g), and the

effect of the orbit (through (,, ). The expressions are not independent, even

through the small displacement approximations have been invoked. Here coupling

is present through the Coriolis terms (a consequence of selecting a moving re-

ference frame in which to describe the motions).

Interestingly, one can see that the 0-equation shows an influence of orbital

eccentricity (through the 6 quantity). As a matter of reference this quantity may

be described, for Keplerian motion, by

2V 2

=- sin p. (II.2)

r

Here V , r, q are 'local" orbit values; however, c is the path eccentricity;
c

(Vc is the local circular orbit speed defined by V 2 = p/r).

*See figures in Appendix B for a graphical representation of this system.
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A study of eqs. (11. 1) indicates that they are in the same form as noted

by eqs. (B. 20a), Appendix B. This would suggest, for instance, that the "a-

frequency of motion" can be identified as:

2 +k .2 . (II, 3a)
a0 - +2 ,m3

r
g

wherein
2 k
o E (the "natural frequency" of the

m spring-mass system)*. (II. 3b)

In addition, the "0-frequency of motion" may be described as:

2 __3 (II. 3c)

rg

Looking for the moment at Wo, one sees that this frequency is less than the

natural frequency, w,, by the amount indicated. There the two parameters

noted are locally influenced. That is, they are affected through the orbit ( ),

and by the gravity gradient effect, 2 -u- (see section B. 8, Appendix B, for a

r g

discussion). It is somewhat unusual to find that these same two influences appear

as "driving functions" in the equation for a.

The remaining "forcing function", 2q 6, for that expression, is the coupling

term mentioned above.

The differential equation for e (in eq. (II. 1)) is the lesser affected of the

two. It does not have a damping term, per se; it is not influenced (obviously)

by the tether's elasticity except, in an implicit fashion, through the coupling

(Coriolis) term. Yet it does have the afore noted effect from eccentricity

through .

II.2.1 Circular Orbit Approximation.

When the concept of a circular reference (c.g.) orbit is impressed onto

*The parameter iii is the "reduced mass" of the tethered mass system.
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eqs. (II. 1) the results are found to be:

c k .2 2+ + h+ -3~< 0 ra +30 ,mm

and

.2
+3 2e - 2 & . (-iI26

It is evident that here, also, the in-plane coordinates cannot be described,

analytically, in a closed form solution - the coupling terms do not allow this. How-

ever, it is not necessary to acquire such solutions in order to gather information

about the motion of the system (see Appendix E, for more descriptive developments).

Considering the left side of eqs. (11.4) to be the "driving functions"; then

the form-of-the-motion can be ascertained from the homogeneous equations. The

'"forcing functions", of course, have an influence provided through coupling

(0, 6); and, from the orbital altitude (through <). Even though these latter

effects are not readily described, analytically, the nature of them can be gathered

from prior knowledge of similar solutions, from numerical results, or from a

reasonable approximation (having some a priori knowledge of the motions to be

simulated). Rather than to pursue this aspect of the problem, at this time, we

shall pass on to a more general perusal of this situation.

From eqs. (I.4) it can be shown that the apparent (0, 8) motions will

not be, necessarily, displayed symmetrically. As a matter of fact (see section

B. 9b, Appendix B) there is a static state for these variants, namely:

Cst st =  II. 5
2 -1

wherein
2

2_ k/ ~- 2 22 k/2 2 (W = 3p2 for circular orbits).
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th
The value of 0 is obvious; i.e., the system should seek a zero - position

st
(this, of course, can be construed as a 9 = T position, also). What is some-

what unforeseen here is the st level. Regardless of this it should be recog-

nized that a represents a stretch, produced by the combined gravity gradient-

orbit influence, and counteracted by the "spring" effect of the tether. Now, it

is apparent that if the system is to have a-oscillations, it will be necessary
2 2

that Q > 1.0 (hence Wt > w0, as a lower limit on k).

As a consequence of ast a new variable (8) is defined - this is the dis-

placement measured from ast Correspond-

ing to this definition the homogeneous differen-

__ tial equations are (see eqs. (B.18), Appendix B)

now

ct a + 2 ( 2 0,
t m

and

Fig. II.1. Description of & on +3 2 6-o. (1.6)

graph of a = o (t). (Note that the coupling terms have been

neglected here).

The basic motions (in a, 6), for this system, are oscillations; one (for

6) is a damped sinusoid, while the other is not damped. (Actually, the damping

in 0 was noted, earlier, to be of second order - involving both a, 8 - this

quantity was deleted in the "reduction - to-first-order" of terms).

II. 2. 2 Characteristics of the In-Plane Motion.

When the two motion types, depicted by eqs. (II. 6), are examined in-

dependently it is found that they are generally patterned after the quantities

described in section B. 9, Appendix B.
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For identification purposes the following quantities are noted:

(a) the natural a- and @-frequencies are,

2 .2
E 3p ,

and
2 2 2 2 2

a 3 ( - 9 . (II.7a)

Incidentally, the "natural frequency" for the circular orbit will be defined herein

as: W E e (a constant for the motion).
O

(b) For the damped a-oscillations the characteristics of the motion

are described by the root pair:

s = ±[ i 1 c )2 (I. 7b)
1, 2 a c c c

C C

wherein, the critical damping coefficient,

* 12
c 2mbw = 2mp 3(2 - 1) (II. 7c)c a

with Q described in eq. (II. 5). This form for the s. presupposed that c/c c < 1.0;

if this is not so (overdamping being present), then the motion is described in

terms of real exponential functions.

Also, in agreement with the description of a damped frequency (see eq.

B. 20d, Appendix B), it is apparent that this quantity may be expressed here by,

d % 1- o (II. 7d)
ad aac c

where W is defined above.

(c) Representing the characteristic roots (II. 7b) as

s. =  (a i )j , (j =1,2), i= / -- (II.7e)
14d
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(see section B. 9, Appendix B), it is evident that eq. (II. 7e) can be graphed

as the unit circle,

s a
_ _ b3 4i ) d = a1,2)

a" j

shown below. The shaded region, as noted in the appendix, represents a zone

for divergent a-motion (herein c < O0, and

I . the system is fed energy through this "ex-

ad citation"). The region where a < 0 is that

one which describes "damped motions".

Note that here a representative

root pair has been depicted. The points

- af and Q describe "i w " from the
a d

a characteristics; while point describes

1the reciprocal of the time constant for the

motion.
-2

2 The angle f, shown on the sketch,

can be used to represent the damping ratio

Fig. II.2(a). Argand Diagram of for the system, since
Characteristic Roots c )2

sl,2 (-a+Wi), for a d 1-1,2 f or) c c (11.8)
Damped Oscillation. tan j = = , (II. 8)

c
c

(for j = 1, 2).

Note that I I > is a necessary condition for damped sinusoids to occur, as a

trace of the a-displacement in time.

If the sketch above is altered, so that the radius of the figure becomes

w , then the effect of varying the parameters (k, c) for the system can be
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simply illustrated. That is, on this modified figure, the points Q and 1

denote . i w , while point is a location described by -c C . It should
ce

rU'O hbe recognized that as J9 (s) ( W ) is in-
a d

0 + creased, in value, the period of the motion

4 - ia is decreased (see eq. (B. 22a), Appendix B);

/ 0 / conversely, as I~R (s) I is increased the

S - "stability" of the system is enhanced (or,

Fig. II. 2(b). Characteristic Roots. the time constant, is decreased).

(d) The following diagrams will aid to clarify these comments.

First, two root pairs,(s )1 and (s )2, are assumed. These have a

common value of frequency (W d), but differing time constants (1/a ). As a

consequence of these differences the envelopes, enclosing the motion's amplitudes,

are not identical throughout. Necessarily, the root pair (-)2 has the more con-

fining exponential (decay) - hence the smaller time constant. Since the (assumed)

frequencies are identical then the two motion types have a same periodicity for

the oscillations.

(O (I). envelope (~ a)

. I "pair (1)-

1/' i r pair (2)

I-I- - - -

(S2) ()1 oscillations (~ W )
d

Fig. II.2(c). Motions for two Roots with a Same Frequency but Different Time
Constants. Pair (~)2 is the more Stable Case; both Pairs have a
Same Period of Motion.
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Contrary to the example above, the two root pairs, (sj)3 and ( j)4 have

a same a -value but different frequencies. Typical motion traces for these

root types are depicted on the accompanying sketch (Fig. II.2d). There it is

evident that the amplitude envelopes are identical for both traces, but that the

oscillations have their individual periods, as indicated.

We.

c, envelope ( a)

(S 
oscillations

/ pair (3)

Fig. II. 2(d). Motion for Root Pairs with a same "a" Value. Pair (-)3 has the

Larger Period; both Pairs have same Stability Trend.

(e) The characteristics for the e-motion are considerably simpler

than those in the case just described. In this instance (see eqs. (II. 6)) the roots

are:

s =i ' , (II.9)

signifying a pure oscillatory mode with a frequency which is / 3 times that of

the orbit (w 0 - ). (Note that when this root type is described on a phase diagram

(w, a) the points corresponding to eqs. (II. 9a) are located where the circle cuts

the vertical axis - i.e., where a = 0!). Here the frequency is related to the gravity

gradient effect of the orbit rather than any mechanical property of the system.

(f) The full characteristics for the (a, 0) motions are those to be obtained

from the approximate governing equations (see eqs. (11.4)), reduced for motion
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occurring about st

For conciseness, and simplicity in notation, let the independent variable

(t) be replaced by an equivalent quantity - namely p (- p t)* For these special-

izations eqs. (11.4) reduce to the following set:

c 2)
S"+ o '+3( -1) 2 -28' ,

and

8" + 3-- - 2'J ; (II. 10a)

wherein w 0 , and (-)' refers to differentiation with respect to qp.

The characteristic equations (in s), for this system of expressions (ob-

tained by assuming a solution of the form, K exp (s (), for each of the variables)

are found to be:

2 c 2_
+-7- s + 3 ~2s - 2) -1 0,

and

s2+3 8 + (2s) -- 0. (II. 10b)

The characteristic determinant for this set of algebraic equations is

readily noted to be:

4 c 3 2 2  c 2Det = s + s + (3+ +4) s 3 s + 9 (Q -1). (II.10c)c mw m
O o

Recalling that the roots here (Det = 0) describe the characteristic

eigenvalues for the equation set (II. 10b), then the solution to the above quartic

determines the fundamental frequencies for the problem at hand. Obviously

these values are explicitly dependent on the physical parameters which describe

a particular tethered bodies problem.

*The b value used here is that corresponding to the motion on the circular orbit.
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2
It is easily seen that for the limiting state conditions (2 = 1), see eqs.

(II. 5), and without damping in the system, the motion is divergent (as expected).

Likewise, it can be argued that the absence of damping (c = 0) would lead to a

situation which cannot necessarily guarantee a "stable" mode of motion - at

best the system's motion could be classed as quasi-stable. As a matter of

fact, it can be demonstrated that a stable mode of motion does not occur unless

there is some damping in the system. It is not so much a question of "how-

much damping" as it is the fact that there is damping present. Of course, it is

also presupposed (here) that the "design" of the tether is such that the static

state (a st, st) is satisfied for any problem under consideration.

These statements, regarding the stability of in-plane motions, are based

on the idea that the roots of the characteristic determinant will have negative

real parts, ideally. It is essential not to have any roots with positive real parts

since such quantities lead to the divergent motions which ultimately drive the

system unstable. A systematic investigation * of the equations used here will

indicate that the system, moving from its static state, will at least exhibit

asymptotic stability.

A brief summary of the requirements for stability of a linear autonomous

system (the Routh-Hurwitz Criterion for asymptotic stability) are set down below:

Suppose the characteristic equation from the determinate,

eq. (II. 10c), is expressed symbolically by:

4 3 2
aos + als + a2s + a3s + a4 = 0. (II. 10d)

The conditions which will guarantee that all roots here have nega-

tive real parts are that the following determinants, formed from

the constant coefficients, will be positive valued. That is, all of

the determinants,

*See Art. 6.3 Stability of Linear Autonomous Systems. Routh-Hurwitz Criterion,
in Methods of Analytical Dynamics, by L. Meirovitch, McGraw-Hill, 1970.
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Det I = a , Det = a a - aa ,1 1 2 12 03

Det 3 = alDet 2 - a4a 1 , Det4 = a4 Det 3 ,  (II. 10e)

must be positive valued when the system parameters are known*.

For reference purposes these determinants, for the current case,

are:

Det = , Det = (3 +1),1 mW 2 mWn
0 0

Det = 12 ( 2 and, Det = 9(2- 1) Det 3 . (II. 10f)
0

Necessarily the numbers obtained from these determinants are

for the present problem. For other cases, examples, etc., the

reader should consult reference [9].

Another consequence of equations (II. 10a) is the modal amplitude ratio

for these motions. What is inferred by this quotient is a description of the re-
lative amplitudes of the motion for each eigenvalue from the characteristic equa-

tion.

Based on the premise that the motions are not unstable, the amplitude

ratio may be written down immediately, and most simply, from the second of

equations (II.10b). Thus,

2Ss2+3
S2s + (II. lOg)

wherein s represents any of the characteristic roots from equation (II.lOc). A
more illuminating representation of this is acquired by assuming that the general

solution format is expressed as
4

& (t) - A. exp (s.t), (II. 10h)
1

and

*An assumption here is that eq. (II. 10a) was written with a > 0.
O
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4

8(t) 2 B. exp (s t); (j = 1,...,4), (II. 10h)
1 cont.

for the present system.

Making substitutions into eqs. (II. 10g) it follows that (after manipulation),

A. s. +3
. - , (j = 1, ... , 4). (II. 10i)

I I I

This determines each B. (= v.A.) with the U. described as shown. For an initial

value problem it is evident that the A. (or B.) are acquired from the description

of the initial state pertinent to the case being considered. For a more detailed

discussion, see reference [151.

II.3 Summary.

For more immediate reference purposes the various descriptions pre-

sented and discussed in the foregoing paragraphs are summarized below. It is

expected that in this manner the reader will be better able to quickly locate the

various situations discussed, and to compare results in a more comprehensive

manner.

The various case situations, for the in-plane motions (L, 6), are des-

cribed in terms of the governing differential equations, and as typical solution

expressions, where applicable. The pertinent parameters for these solution

types are noted; also, these are correlated to one another, generally, and as

applicable.

For the small displacement approximations the usual coordinates (t', 8)

are replaced by the relative displacements (a, 8; and/or 6, 0). This has been

done for convenience, conciseness and mathematical simplicity of representation.

It should be recalled that here, t, - C + X; a X/ ; =  a St, with ast

referring to the static state value for a (see section 11.2.1).
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Summary (Linear Elasticity)

I1.3.1 General Differential Equations. (see section B. 5, Appendix B); in-plane motion, two tethered bodies.

.2 j-F/-3o c(tether motion) - (6 +~ )2 =- rgcos 2 3 -3 13 + 223 - (1 -
r2 1 1

g

(6-motion) 2z (6+p )+ (6+g) = r sin (&3 13Sg r
g

1 2
wherein A. f 1+2 (-1)i( ./r )cos 6+(. /r )2 ,  =m m /I m (see Appendix B for other definitions).

1 L 1 g 1 2 1

II. 3.2 Approximations. (a x/ -o, = to + x = o (1+u); 0= unstretched length, x stretch).

(stretched tether a++c  +  -( ( +)2- -~(+3 cs 2 ) - (1+3 cos 2) + (6+; )2;
motion) 2r 3  2r

g g

+ 2a 3 3+ 26 *
(1+-motion) + a + 32r sin :-  1+

2r
g

or

d [(1+)2 (6+') - (1+a )2 - sin 26; ()g refers to c.g. values*.
2r 3  g

*(_) has been dropped from p , for convenience; the subscript is inferred.
9



II.3.3 Small Displacement Approximations (Linear Theory).

1. General Descriptions:

+ - 2+ 2 -2 , ~ 8" 2 2 A
m 3 3

r r
g g

6+ 3 - 6+2& -6; where rg, ~, etc. are for c.g.
r

g

2. Special Case Description: (c.g. on circular orbit; = .2

C 2 2 g
+ a + 0a2w 0 +3W 6 -20 a;

m a o oo

wherein
2 2 2 2 2 2 k _ 2

W0 -30 W ; w -3w , , m m /I m..0 o o a m 12 t

3. Static State:

a (~-1) , 2  / 0 ; = 0 ( 8st are constants for the linear approximations).
st st st tst

4. Motion Relative to the Static State: ( a - ast; 0 - 0 = 5)

* c 2 2 2 , -2 a.
r +-z +3 + -1) e -w , + =-2w 0.

m o 0



II.3.4 Small Displacement Approximations. Restricted eases.

1. Independent Motions: (a). 0-only: 0 + 3 =0
0  .

0
Typical Solution (SHM): e(t) = o cos (,3 t + sin (,3 t); W 3 V t, (~o = init. value.

T
2ff 2ff orb 2fI

Period of Motion: T = T (Modified Schuler Period).e , or b

2 2
(b). & - only (undamped): T + 3 2 (~ -1) = 0.

S sin (0 3( 2 -1) t)
Typical Solution (SHM): E(t) = cos (3(0 -1) ~t)+ o

27r orb T ; 2 _k/
Period of Motion: T~ 2 ;or, T= T0 2

a j3 2 a 2
S 3( 2 -1) 2_

(c). -only (damped): a + z & + 3w2 21) = 0; oscillations occur when:
m o

2 2 cc )2.2
3W (0 -1) > Critical damping constant: -4 2w 3( (W 1)

o m W' m o

damped frequency: d- w 11- 2 , 0w 3 (02-1) w
c



II1.3.4 Small Displacement Approximations (cont)

c . 2
Characteristics: s - - W : i 1 - c 2 ; or, s a i -

1,2 c e c c 1,2 a ad
ac -a~d

Typical Solution: (t) = exp (ast) LEos ( t) + o sin ( t).ad ad

277 a orb
Period of Motion: T2 a = =

d Cd 1- c 3(21)[1 c/c

Time Constant for Motion (Time required for a reference displacement (6ref) to reduce to ref/e):

c )2 T

Ia.i ad orb

2. Interdependent Motions (with Coupling).

c 2_)
a"+m 0-5+3( 2_1)6=20'; where, e.g., 6' , etc.;

o + -

8" + 30 = - 25'.



11.3.4 Small Displacement Approximations (cont)

4 c 3 (32 +4) 2 c (2_1)
Characteristic eqn: Det =s + s +(3 +4)s +3 s+9 (2 -1) 0.c mo mW

o o

(Solutions to this quartic describe the characteristic roots (eigenvalues, s. (a± i wd) for system).

2
s +3

Modal (Amplitude) Ratio: - = (for each eigenvalue).( j 2s.

4 4
Solution Type (format): E(t) = 1 A. exp (s.W t); 8(t) = B. exp (sj o t),

1 o 1 o

wherein; B A. G. (see above).
jJ J



II.4 The Swinging Tethered System.

The studies conducted in the foregoing paragraphs have been addressed to

describing particular, but somewhat general, in-plane tethered body motions. In

this section the @-motion, alone, is examined to define the pendulous behavior of

this dynamical system.

For the study of this motion consider (again) a circular reference orbit

(9 = constant); thus, the appropriate governing equation is (see eqs. (B.11),

Appendix B):

. 3 2
4 + 24 (+p) + 2 p sin 2 O"0. (II.11)

(Note Fig. 11.3, below, for a description of coordinates, etc.).

Assuming that the tether stretch is
e

m2 x small, then L - constant, and the expression

above reduces to

r2 6 + 2 sin 2080.

c.g.

-- To solve this equation, multiply it

Y rg through with 6; then it may be recast as;

n r1  2geeg.
n d 62 3 .2

- - -- p cos 20 = ;

g from which it is inferred that,

2 3 .2
1 2 -p cos 20=1 , (II.12)

Fig. 11. 3. Sketch Depicting a
"Swinging" Tether where V1 is a constant.

System.
If eq. (II. 12) is examined as an ex-

plicit state-valued problem, then the con-

stant can be evaluated for (say) the condition:
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6-0 as O-e :m

(this infers an oscillatory motion). Here 0m refers to the extremal in this

variable; hence eq. (II. 12) could be rewritten as;

( )2 3 (262 ) (II. 13a)) 2= 3 (cos 20 - cos 28 ), (.13a)

with (8, 6) describing the "state" at some given "point" during the motion.

Equally useful as a general form is eq. (II. 12) written as:

2 =3 1+cos 2[ + (ii. 13b)

wherein, the state (6, 6) must be consistently described.

To acquire some insight into the representations drawn from this result,

consider the following situations:

(1) For oscillatory motions:

Since 62 > 0; and, here, Icos 219 1.0, then it is apparent that for,

-1 < cos 26 1,

2 1 2

(2) For a rotating system:

In view of the conditions set down above, it is evident that for this case,

1 2

This should provide for 82 > 0, for all times, generally. Thus, the system is in

a continuous rotational state of motion.

*SMH is an acronym for simple harmonic motion.
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With this information at hand, it is intersting to graph eq. (II. 13b) - as

a means of representing the behavior of 0 = 0(e).

Figures II.4 are plots of (/p)2 , and 6/ , as functions of 0, for the

angle range 0 0 IT . This restricted range in 8 has been used since the

symmetry of equation (II. 13b) describes the repetition in graphing over a full

(217) range. The cyclic nature of these functions is indicative of the obvious

symmetry which must exist.

Looking at Fig. II.4a, one sees the several curves plotted for selected

values of V1 2. The reasoning behind the selection of these numbers, in

particular, will become evident subsequently.

Recognizing that 62 > 0 for any "real" case, then the shaded region

(for 62 < 0) has no physical significance to the tether problem. Also, from the
2 3

graph, it is apparent that for values of dl/2 < - the motion is constrained

to a specific range of 0. Also, note that if /02 = - 3, then there are no real
1 2

motions apparent. At best, then, the system will remain static at the positions

(0, I).

When ( 2) is increased to - - there are B-regions in which oscillations4
may occur. In particular, for this level for h12, the motions are constrained to;

-16.780 08 +16.780, and 163.220 8 196 .780

An overall view of this figure indicates that oscillations may be predicted

for assigned values of 1 /2 satisfying the inequality

3 1 3
2 .2 2

1 2
3

41 /2 = the motion remains constrained (in one or the other of the 0 = I regions)

since 0 vanishes at 0 = 17/2 (and -7/2).
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11

2
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3/2
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Fig. II. 4(a). Pendulous Motion (6), in Terms of 0, for Selected Values of the
Constant, "
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As an aid to understanding Fig. II.4a, the tabulation below describes the

constraint boundaries, for the oscillations. (This is for /2 < , as seen on
s2'

the plot).

1/2 Bounds on 8 (I, IV)* Bounds on 0 (II, III)*

+- -90 s + 90 900 8 <- 27 0 0
2

+ 1 -65. 905 0 + 65. 9050 114. 0950 1 0 < 245. 9050

+- -54.736 8 + 54.7360 125.2640 < 6 234. 7360
2

0 -45.0 0 9 + 45.00 135.0 < 8 9 225.00

5 o o o o4 -16.78 0 + 16.78 163.22 < 8 196.78

3 9 = 0 (static state) 0= f (static state).
2

The more interesting graph here is that shown on Fig. II.4b; here one finds

the angular speed ratio, 86/, plotted as a function of 0. This figure is simply

a revision of the former one, but one which shows both the ± 6 range (and the

Sconstraints) for the prescribed values of ~l 2

It is immediately apparent that 0 is limited, in magnitude, for each level

of V1 /A 2 assumed. Likewise the possible range in 8, for which oscillations may

occur, is graphically evidenced here. Once again, the static state situation, exist-

ing for l/~c 2 = - , is noted by the = 0 value(s) at the 8= 0, 7r positions.

For the range - < 2 3<+ oscillations are predicted; however,

when 1 / > -, the system is rotational (as noted earlier).

The curves drawn here, depicting the oscillatory modes, are not complete

insofar as the region(s) of acceptable 0-values are concerned. It should be re-

called that (from symmetry) there is a corresponding trace - below 8 = 0, and

above 8= T - into which these constrained motions continue**. Also, recognizing

* Denotes quadrants.
** This is described, and accounted for, on the figure by means of the dual 8-scales.
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Fig. II.4(b). The Pendulous Motion, Showing + 6 Values, as a Function of 6,

for Selected Values of Q1"
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that any oscillation will have both ± 0 values, then each curve (of this type)

depicts the 6, 0 relationship which must exist for a "non-rotating" tethered

body problem.

Those curves, for > , which do not reach the e = 0 line describe

rotating tethered systems. Since these modes are unconstrained in e, these

particular curves are mainly indicative of the variations in 6 which may occur

for a given (selected) system.

Allied with these various motions is the force system which is developed

and counteracted by the tether, provided the system retains its constrained

length. Following along with the conditions and results noted immediately above,

the investigation described in the next few paragraphs will be concerned with

these tether forces. Not only will the force magnitudes be determined, but the

consequences of the (6, 8) state will be indicated.

II.5 Tether Forces.

So far, here, the problem investigated has dealt with various mechanical

actions for the tethered bodies problem. In particular,information on the dis-

placements of the system has been gathered. Throughout these studies it was

presumed that the member joining the masses was itself massless - thus it has

not been affected by external forces - also, it is incapable of sustaining com-

pressions. In this regard the study has not been complicated by having to con-

sider traveling waves, etc. along the tether.

Even with all of the simplifications presumed so far, it would be useful

to have some idea of the force magnitudes which the tether must support. Like-

wise it would be interesting to learn how these forces may be affected by particular

motions for the system. In the paragraphs which follow, this topic will be pursued

and examined.
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In defining the force levels which must be supported by the tether, it

is assumed that this task depends directly on that one conducted in the previous

section. That is, the forces will be dependent on the e-oscillations and rotations

for the system.

Knowing that the swinging motions are not symmetrically disposed, with

and against the orbital motion, then it follows that the force magnitudes would be

affected accordingly.

The describing equation, to be used in determining the supporting force(s)

from the tether, is eqs. (B.11), Appendix B. For compatibility with the dis-

cussion on the 0-motions it is assumed that the tether length is essentially

constant.

Here eq. (B.11): i.e.,

+ 2 3k c('s 2,o) c3 m
2r

g

is specialized as noted above, and simplified for a circular reference orbit

(rg = constant); it becomes,

T * 2Ts 2 +
- ( + ) + (1+3 cos 26), (Im 2

wherein T is the supporting (tensile) force developed in the tether. This force,

obviously, can become or replace the elastic spring force assumed earlier.

Since the conditions, here, must be compatible with those used to study

the 0-motion (above); then those results may be impressed onto this evaluation.

Consequently, eq. (II. 13b) is used here, subjected to the constraints and con-

ditions described in section II.4.

Rearranging eq. (II. 15) and drawing on eq. (II. 13b) for the description

of 6/o. then it is found that the specific force equation is:
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T 22 20 (11.16)
S 1+ + 2 os cos 28

mii 34 34

Note that this is a dimensionless format; and, that the + sign on the radical re-

fers (directly) to the ± 6 rotations (oscillations) for the system.

The correspondence between the supporting tension and the 6 -motion is

apparent here. Particular solutions relate to the particular values of 1 2 used

in describing the e regimes. The task now is to define the force variations and

to determine the extremes and the zeros for the forces.

II. 5.1 Extremals for the Specific Tensile Force.

An evaluation of the extremals can be carried out by classical theory. In

this regard it is convenient to examine eq. (II. 16) in terms of the variant, (28).

Thus the conditions for extremals may be obtained from

2T
d(2e) I .2 0

After differentiation and simplification it is found that the conditions ob-

tained for extremals are:

(a) sin 20= 0,

and

(b) cos 28= 6 3 * (II.17a

The first condition obviously indicates extremals are to be found at

8= 2 , (n = 0, 1, 2..... ). The second condition should be somewhat more

revealing since it is tied to the 'qevels" of B/a which the system experiences -

and, correspondingly, to the regions of 0 where these occur.
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One condition to be placed on the extremals for this study is in conjunction

with the recognition that - 1 < cos 28 < + 1. For this condition it follows, directly,

that

5 1 7
_-5 (II. 17b)
4 *2 4'

but without regard to sgn 8.

A look at Figs. 1. 4 indicates that for this range of 1 / 2 the tether

system will exhibit oscillations, for the most part; but it may have some rotational

modes for a part of the range. In particular, oscillations are expected for,

5 35- : -. (II. 17c)
4 .2 2'

and rotations are apparent when,

3 1 73< -. (II. 17d)
2 *2 4

PT

It is evident, now, that some of the extremals for the tension parameter

occur at other than 8= , for oscillatory motions. To ascertain whether or not
2

these positions correspond to maxima or minima, one could examine for this,

via the second* derivative,and check the sufficiency conditions there.

For reference purposes several values of 1/ 2 are examined to define

these extremals, and to indicate the location(s) for each. Generally the numbers

used here are those indicated on Fig. II. 4.

*It should be recalled that second derivatives may not be sufficient, within
themselves, and higher derivatives may be needed. See standard texts for a
more complete discussion.
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EXTREMALS FOR THE TETHER TENSION

Extremal type for Location of ex- Value of T /fin-t2
S

12  (Ts/j.t2) tremal (a ) at the extremal

4 min 2700, 900 3 5 (d)
4 4

3 0 0 1
min 253.22 , 73.22 1

2 2

1 min 2400 , 600 0

o 1
1 min 229.797 ,49.797 +-
2 2

0 min 220. 2030 , 40. 2030 + 1

min 360 , 1800 +-
4 4

(a) cos 20= - 2 (b) Rotating System. (c) Values are for 8<0.
(p (d) Value at 6 > 0.

The extremals listed here appear to be minima, generally. Evidentally

these conditions occur as such since the maxima are described by the first con-

dition for the extremal. It will be noted, subsequently, when representative plots

are presented, that these various conditions do occur as predicted.

There is, yet, one other condition for the specific tension which should be

examined and commented upon. This is a determination of the "zeros" in the ten-

sile force. In the next subsection this topic is explored.

11.5.2 Zeros for the Tensile Force.

From a physical point of view it is likely that this condition will be most

evident for a system in rotation, and in oscillation, with 8 < 0. What would be

happening in this case is that the pendulous action, and/or rotation, would be

"against" the orbital motion. This would tend to reduce the centrifugal force

acting on the "suspended" mass of the tether system.
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To examine this situation return to eq. (II. 16), let T = 0, separate

and solve the resulting quadratic. Of course, the condition of 0 < 0 infers a

negative radical in this equation. Having carried out the mathematical opera-

tions and simplified the result, one finds that the 0-position, for Ts = 0, is

described by:

C= cos-'1 + 2 1

For this expression it is apparent that 1 ! Z. 1 There does not appear to
2

be any upper limit on this quantity. However, it is recognized (see Fig. 11.4) that

- 1 indicates the upper limit for oscillatory motions. Values in excess of this
.2

level would represent a rotating tethered mass system.

One added piece of information on this problem can be gleaned from eq.

(I.18). This answers the question regarding any other limiting value, for d1/2

at which T = 0.
s

Without becoming involved in the mathematics of this relationship, it is

easily demonstrated that 1 - describes this limit. Apparently for Q1 >

11 2 
2

- c the (-E) rotating system acquires sufficient energy to keep the tether

taut throughout each cycle. In this regard, then, the sought for limit on 41 has

been determined. Consequently, the reader now should have a firm understanding

of these rotating (or oscillating) fixed length, in-plane tethered body motions.

For the purpose of illustrating these varied conditions, and some others,

several plots will be presented, next. These describe the variations of T with

6, for both the oscillating and rotating systems. Also, they lead to descriptions

of other factors influencing the problem.
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11.5.3 Representation of Tether Tension.

Figures II. 5 are graphs showing variations of the dimensionless, specific

tension (Ts /ii 2) with 8, using / 2 as a plotting parameter. (To correlate

the tensions with the turning rates, 9, the reader should consult Figs. H. 4).

Generally speaking, Fig. II. 5a* depicts the variations for oscillatory

motions, while Fig. II. 5b is more representative of the rotating systems.

11 -2
On this first graph (II. 5a), the curve for (1 = 2 (p does not define an

oscillation; however, it does represent a limiting situation (the boundary value

described in section 11.5.2).

It should be brought out, rather strongly, that these plots are for only a

region of the total @-range which does exist. In particular, only one quadrant

of the overall situation is described on these graphs. From the symmetry of

the governing equations (Ts/m tj2, 6/ , B2/ 2) it is recognized that the

figures "repeat" over the full 0(2fT) range. Specifically, these plots are re-

flected in the 0 = 0 axis, and in the e = 1 axis. This accounts for the two angle
2

scales shown on the figures. Also, since the system assumed here cannot accept

compressive forces, the curve segments for Ts < 0 are always shown as broken

lines.

To describe a particular behavior of T with 0, over a given cycle of
*2

motion, consider (as an example) the curve for l = p , Fig. II. 5a. Beginning

with the uppermost ordinate, and presuming that this corresponds to 6 = 7, then

the 0-motion is traced out and down along that curve. What is implied is that

as 0 increases (beyond 7T) the tension is decreasing! Here the motion is given

by 8 > 0. The largest value of 0 which can be reached by this system (with

S~) is B - + 65. 905° . At this point 8 = 0 (see Fig. II. 4a and/or II. 4b)

1 ~ *t2
and there the tension is T = - mf4

s 2

*A curve similar to this one is found in reference [3]. The analysis has been

expanded here.
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Fig. II.5(a). Variations in Tether Tension (T.) due to Assigned Values of + 0.
Note Values of V/< 2 designated on Curves. Each Curve, for
Oscillatory Motions, has a tic noting Location where 0 Changes
Sign.
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The oscillation continues, but with 8 < 0 now. As the motion continues
41

T diminishes, reaching its lowest level, T = 0, at 8= - (an extremum). Be-
s .s 3

yond this point the tension is increasing, 0 < 0, and the system is tending (back)

toward 8 = I. When the oscillation reaches 8 = f, the tension reaches a local

maximum (T = 2.3377 minp ).
s

With the motion continuing into the -6 region, the trajectory is a mirrored

image of the trace shown on Fig. II. 5a. Thus, with 0 < 0, still, the tension is

decreasing toward T = 0 (the local minimum). The tension vanishes (again) at

8= - then rises to T = 0.5 n tp , at 0= T - 65.9050, where 8 passes
3 s

through zero and becomes positive. Continuing, the tensile force is increasing

and the system is moving toward 6 = T, along a trace which is the reflection of

that shown on the figure. Finally, at 0 = IT, the system has returned to the start-

ing point, having completed one full excursion in this oscillation. At 8= t the

tension reaches its maximum value of T = 8.6623 ii 2.s

In the description just completed it was mentioned that during the oscilla-

tions 8 changed sign twice. (At these points the tension is, necessarily, continuous

with T (-8) = T (+8)). The magnitude of the specific force, and the (0) location,
S S

at this condition should be of interest.

For computational purposes, expressions describing these quantities are

set down below; also, a tabulation, for selected values of ( /4 2 , is included here:

(1) Location (8) for the condition, T (-8) = T (+8):
s s

8= os .) (II. 19)
2 3 *2

(2) Value of Ts at this position:

S 1 _ _ 2 (II.20)S 2 2 3 2
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SELECTED TABULATIONS FOR EQS. (11.19), (11.20).
(0-OSCILLATORY MODE)

1 / 2  Eq. (II.19)* Eq. (11.20)

3 0 03 90 , 270 0
2

0 0 1
1 65.905 ,245.905 2

1 0 11 54.73 , 234.73
2

0 0 3
0 45 , 225 2

5 0 0 11
4 16.78, 196.780
4 4

* 8 values are inferred.

The "single point" on the graph, at 0 = IT (and/or 0), where T = 3rf 2m ,

3 -2
corresponds to 1 = - , as shown on Fig. II1.4. These conditions describe

a gravity gradient, stabilized system.

3 .2
The trace, on Fig. II. 5a, for 11 =2 p , is the upper bound on the oscilla-

tory modes of motion. Here the oscillations are confined to a range of A 8 = - 2

about the vertical. N6te that so long as 0 < 0, the "tension" becomes a compressive

force and the tether would go slack. For such a situation the motion could not be

predicted by the present analysis; another method would be needed; e.g., the study

of two bodies in free, relative motion.

From the analysis conducted here the largest value of V1 which should be
1 2

used, to guarantee a continuous tether tension, would be 1 =  Of course,
3 -2

it is readily seen that the system operating at 1 = 2 p would regain its tension

once the tethered mass moved back toward the vertical.

The remaining limit condition depicted on Fig. II. 5a is that correspond-
11 -2

ing to the curve 1 2 (and 6 < 0). A trace of the tension for this situation
ingtothe43curve
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also suggests a vanishing Ts; but T = 0 only at 8= ± 900. This is a momentary

condition, and is a lower limit on the rotating systems (see, also Fig. II. 5b).
11 *2

(From Fig. II. 5b, one can easily ascertain that so long as 1 > 1- <2 the ro-

tating systems retain their tension regardless of sgn 8).

There is no need to discuss Fig. II. 5b to any large extent. It is self

explanatory to a distinctive degree, and is not nearly as complicated as is Fig.

II. 5a. The symmetry of the traces, noted earlier, is also apparent here; i.e.,

the curves are to be reflected into the 8 = 0 and 7r axes. The remaining additional

information to be gathered is concerned with realizing that the tensions decrease

as one moves away from the vertical. Also, the + 8-rotations have continuous

tension, while the tethers with - 6-rotations may be conditionally tensioned.

This completes the examination of the tensile force developed in fixed

length tethers, during their in-plane motions. It has been shown that there can

be large variations in this force during the motions. Also, the systems have

been found to have some conditional characteristics (for Ts > 0); this could easily

become a factor of concern in an operational application using tethers. Cer-

tainly, the findings here do point to the need of exercising some care in the use

of these systems, if one is to be assured of retaining their mechanical integrity.

Prior to leaving this part of the analysis, in the report, it would be well

to discuss one more factor which influences tethered mass systems. This is the

effect of orbital eccentricity on the motions and reactions of the system, as a

whole. Unfortunately this factor was not too successfully simulated, analytically,

consequently the source of information on this was a numerical study. A dis-

cussion on some of these findings is included below.

II.6 Eccentricity, A Disturbing Influence.

The influence felt by a tether system having an eccentric base orbit,

rather than a circular one, was mentioned in the discussion of eq. (11. 1). A
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simple description of the effect was illustrated in eq. (II. 2) where the acceleration

( ) was related to the familiar orbital quantities, for a Keplerian trajectory. It is

surmised that such a condition will affect the tethered body problem much like

the influence from a small disturbing force. Consequently, the response to an

eccentric path should be akin to that expected from a force system having a periodic

variation to it. This variation might be explained in terms of the changing altitude

for the base trajectory.

In the analytical studies, which were undertaken during the investigation,

the eccentricity effect was not simulated well enough to warrent including it here.

In that simulation, expansion techniques were used to simplify the governing

differential equations. It was found that when solutions were obtained, they were

most conveniently expressed in terms of Mathieu functions (see ref. [10]). In-

stead of simplifying the analysis these functions add a complication due to the

inherent stability considerations which must be included. Of course, this could

be cared for, in a given case, by adjusting the problem's physical parameters.

Since the aim (here) was to provide easily followed guidelines, for the design

of tethers and tethered systems, it was felt that the complexity arising from the

use of Mathieu functions did not fit this concept. Hence, the approach was not

continued. Instead, the quantitative (and qualitative) effects of eccentricity

have been considered by means of numerical studies.

II.6.1 Illustrating Eccentricity Effects.

An example problem has been investigated, numerically, as the means of

demonstrating the effects of eccentricity and damping on a tethered body system.

This example problem was designed to have separate in-plane and cross-plane

motions. However, only the in-plane motion is shown here, graphically. The

damping was varied, as will be seen, and the base orbit was changed so that

the effect of eccentricity could be included. Since both problems were initiated

at a same altitude, the cases used to illustrate eccentricity are not for equi-
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energy paths. Even though this difference is present it does not negate the

effects which are to be demonstrated.

(The In-Plane Case). The circular orbit is at an altitude of 0. 025 earth radii,

and has a period of 5260 sec. In this first representation the initial state is set

so that the tethered body moves, initially, along the orbit radius. Due to the

tether's elasticity, and the dynamics of the problem, the "extension" becomes

coupled with the swinging motion and the geometry which develops is that shown

on Fig. II. 6a*. (Note: the damping for this case is some small percent of the

critical. The ordinates of this figure define tether length (c) versus x-displace-

ment. This x-displacement is in the direction of motion, normal to the radius

vector for the reference orbit).

A brief description of the motion follows: The suspended mass (m2) be-

gins its action at a tether length of 35. 052 m. (115.0 ft); t = 30.48 m (100 ft).

Leaving the initial point the tether stretches (L > 0) and m 2 moves forward (in

the direction of motion, x > 0). This continues until the tether attains a maxi-

mum extension; then it begins to contract, swinging forward and reaching its

maximum x-displacement. Following this, the motion is due to a contraction

and a backward movement (4, x < 0); this continues until . = 0; thence the

motion occurs with i > 0, x < 0 until the maximum extension (at x 2 0) is

reached. The full extension, as shown on the figure, is roughly 1. 7 meters;

also,the x-displacement, for this first excursion, was about 1.34 meters.

Subsequent motion continues, and is repeated for the following cycles, but at

a diminished scale.

From the numerical data obtained here it was estimated that the e-period

was T = 3440 sec. Comparing this to the calculated To value, (E 3066 sec), from

the linear theory expression (Torb/~/3 , see section II. 3.4), it is noted that

agreement is within 10%. In addition, the measured and calculated T values

have approximately this level of agreement.

*These numerical studies were carried out using the program developed and des-
cribed in references 111] and [12].
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Next, consider Fig. II.6b which shows a similar trace for this motion,

but where the tether is presumed to be critically damped. Here, a distinct

difference in the motions is apparent; certainly the cyclic nature of t, is supressed

and the x-displacement is reduced. It wculd appear, from this figure, that the

system is moving toward a gravity-gradient stabilized position (x = 0) with the

tether extended to approximately 35.97 m (118 ft). This would represent a static

extension of 5. 846 m (18 ft) beyond the unstretched length (o ).

The next two figures (II. 6c, II. 6d) are included to show the influence

of: (1), eccentricity; and (2), eccentricity and damping. The initial state for

these figures is the same as that for the two previous graphs.

Here, motion starts at pericenter on a trajectory whose eccentricity is

0.1. Figure II. 6c should be compared with Fig. II. 6b, to see the influence of

eccentricity, since both cases are "critically damped". It is interesting to see

that the motions begin alike, but rapidly diverge in their geometry. Now, the

suspended particle begins to move at Z > 0 but abruptly it changes direction,

begins to contract (i < 0) and moves counter to the orbit's motion (x < 0).

(The subsequent apo - and peri-center positions are indicated on the figure).

It is felt that this total motion is stable, though this is not fully evident from the

traces shown. There is not a sufficient number of cycles plotted for one to get

a clear indication of the ultimate trends.

Fig. II. 6d is the same as II. 6c except that the damping has been altered.

(Note that one curve is for an overdamped motion (10 time critical), while the

other is for an underdamper case). What is most significant here is that the

degree of damping does appear to be of real consequence. The highly overdamped

case shows only small excursions while the true converse is seen for the under-

damped motion.

From the limited information provided here, it is evident that damping

and eccentricity can be joined to produce significant effects on some tethered
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body motions.

Also, from the limited results obtained using other initial states (set to

produce other motion types), it has been found that the measured values and the

calculated ones (from linear theory) agree to an acceptable level. For instance,

the case of a cross-plane motion was examined (numerically) and found to have

a period of motion close to that of the 0-motion. It can be surmised that, in

general, the pendulous motions (for highly damped tethers) are not significantly

affected by other than gravity gradient effects (for circular, base orbits). Here,

as elsewhere, eccentricity caused a marked change in the geometry of the traces.

For a clearer understanding of the agreements and disagreements found in

these numerical studies, some numbers (measured and calculated) are given below,

for the several cases examined. All orbits begin at 1.025 earth radii. The cir-
-3

cular ones have p = 1.19452 (10 ) rad/sec., and T orb= 5260 sec.

The tether spring effect was set by k/i i 360 2; the damping was

varied, as needed and desired.

Three distinct motions types were attempted in the simulations. These

were: (a) a (tether) motions; (b) 0 (swinging) motions, and (c) z (cross-plane)

motions. Necessarily some coupling existed; this will be noted below. In the

simulations overdamping was employed as a means of suppressing the tether ex-

tensions from the other motions.

From the inputs in the simulations:

2 k 2
2 k = 360 (rad/hr)2 ,

S 3<2 = 55.46 (rad/hr)2 (circular orbits),

and

2 (/ e)2 -- 6.49.
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Static Extension for the Tether (circular case).

e2
st _2

S2 = 1.18212 (see section II.3.3(3)).
o0 2-1

Calculated Periods of Motion (see sect. 11.3.4).

orb 5260
T - 5 3036. sec.

orb 5260
T - orb 5260 1296. sec.

0 3(5.49)

Measured Periods of Motion.

(a) T (a 1180 sec. (with c < c ),

(b) T a 3122 sec. (with c Cc ) '

(c) Tz a 2760 sec. (with c Cc ). (Also T, (coupled) a 2760 sec., here).

This tabulation completes the discussion for this part of the investigation.

In the following segments of this report the tasks to be described and discussed are

related to special applications for tethered masses; and, to the control and handling

of these systems.
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EXTENSIBLE TETHERS

III. 1 General.

In the foregoing section of this report a discussion on elastic tethers,

their properties and behavior was presented. There the connected bodies were

assumed to have a described "orientation", in their tether-connected configura-

tion, with the subsequent motions which developed being the topic of interest.

For the next part of the report, efforts will be of acquiring a given

tethered-body configuration. Here the aim will be (first) to develop analytic

methods which define those conditions necessary to accomplish the desired

tasks. Second, and in conjunction with this work, results from numerical

studies will be presented. These will show how one may predict the characteris-

tics of a system, and thereby describe methods for controlling the extensible

tether connected bodies moving in orbit.

This kind of information is obviously of interest to systems designers and

operations planners. Especially so when one recognizes the number of possible

applications in which tethers may play a relevant role in connection with future

space ventures.

Generally, this section of the report is separated into two primary sub-

sections. The first will describe certain "analytical experiments"' which provide

information on tether operations. In the latter sub-section results from numeri-

cal studies will be presented. These are the consequence of various simulations

which were conducted to determine how the tethered body systems behave, and

how they might be made to perform in a desired manner.

III.2 Proposed Analytical Experiments.

The mathematical expressions developed in Appendices E and F will be

used to conduct certain analytical experiments. These are preliminary studies

concerned with the gathering of information relevant to the use of extensible

54



tethers. The proposed experiments are undertaken prior to performing more

exact studies of the problem by numerical analysis.

In part, the objective here will be to acquire analytic representations

for specific quantities which relate to the problem of tethered bodies moving

in orbit. The particular kind of information being sought is a consequence of

the fact that the governing differential equations cannot be solved in closed

form. Hence the influence of, and means to acquire, the specifics for these

systems are not immediately available.

III. 2.1 Tension Laws.

In the study of extensible tether-body motions the tensions laws, and the

inherent influence which they play, are of immediate interest. Even though one

cannot solve for the resulting motions, per se, analytically, when using a pre-

scribed tension law, the converse situation has merit and should be worth pur-

suing. A plan of attack would be to devise an analytical representation for the

body motions (t, 8); and, subsequently,to determine the tension law which re-

sults. In effect, this would be an indirect approach to the problem.

For this particular experiment a set of general equations could be those

given as eqs. (E. 20), Appendix E. However, a more useful and concise system is

found as eqs. (E. 25) in that appendix. (Note that the coordinates there have been

specialized to the non-dimensional pair (a, 0); these are defined just prior to the

mathematical expressions). Making use of some parameters defined from these

equations, one can obtain a "time history" of the dimensionless force components,

7m cos a 2 ', sin a2

Necessarily they evolve as a result of the motions assigned for study. From

these data the magnitude and direction of the "required force law" can be

ascertained; i.e.,
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m ( cos 22 + (7 sin a 2)2 (III. la)

and
7 sin a

a 2  tan-1 rm os (III. b)*

m 2

Necessarily, in an experiment such as this, the analytical representation

of the motion (a, 0) must be cast into a form which meets all desired end condi-

tions. For this reason it is advantageous to have a prior knowledge of the probable

behavior of these systems and their motions.

Even without a clear, a priori, understanding of the tethered bodies pro-

blem it is still possible to conduct a meaningful experiment,as proposed. For

instance, a motion could be described; subsequently a force law would be developed;

and, the results could be analyzed to determine whether or not the force system

is feasible and/or realistic. From this type of an investigation one could gain an

insight into the mechanization of tethered systems, and begin to understand the

interplay between the several factors which are involved.

To illustrate several features of this suggested experiment one should,

first, view equations (E. 25), but cast in a form which will define the "force com-

ponents"; e.g., write

3
7 sin a = aY"+ 2a' (+8) + a sin 2e,

m 2 2

3
7 = "-a (2 + ') 8'- a (l+cos28), (1II.2)
m2 2

wherein;
F /ii

m 2 ' 4 X L '
m m m m <p m m

mg g

m
with X r ; (m - maximum tether length), (~)g c.g. value.

g
From the standpoint of the analytical formulations which follow, the

*See Appendix E for sketches defining these quantities; also see Fig. III.1.
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motion coordinates must fit the general range of values:

a < a 1.0, (a0 0),

and

0 < 0 < 8 , (e , f (-terminal values)).
o f o f

Since the angle (2 ) describes an orientation for the line of action of

7 , relative to the direction ee (the unit vector directed from one particle to
m

another), it is reasonable to expect that this quantity should undergo changes

not to exceed ± IT/2. If it is outside of this range then the resultant tether

force would be directed not toward the mass it was holding, but away from it.

III. 2.2 Example Situations.

For the specification of a simulated tether motion the most convenient

analytical representation would be one assumed in the form of elementary

functions. These could include linear relations; trigonometrics; exponentials;

and, combinations of these.

In the interest of illustrating this approach to the extensible tether pro-

blem, two examples are described below. For these two cases the assumed

motions (o, 0) are defined, analytically, and parameters depicting the behavior

of the system are determined. In presenting the data acquired, some selected

results will be plotted. Those graphs will be examined and discussed to aid in

providing an insight into each of the case studies.

III. 2.2 Example 1.

For this example a "reel-out" tether system is assumed. That is, from

the main body (ml1 ) a particle (m2) is "ejected" with some initial payout rate.

During the ensuing motion the tether is unwound to its assigned final length (t I

or a= 1).
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In this example the tether is assumed to have a fixed pay-out rate (i. e.,

a' = constant), as well as an assigned 0-range. The initial and terminal states

for this case are described by:

at t = 0 (kp= 0)*:

n 0 o 0
2

-5
2 e r = 10 , a' const;

r X

m 2 at t =tf (kp

e n f1 8 = f, ' = 0
rf f

1 af = 1.0, a f const.

(Note that time (t) and position angle (p) may

- be used, alternately, to describe the inde-

8 pendent variable. The inclusion of "k" with

"p" will be justified and discussed below).

Fig. III.1. Sketch of a Tether
System. In simulating the in-plane motions

(a, 8), the following analytical expressions

are used:

a' constant,

and

8 8 + A6 cos (2kg), (III. 3a)

with
_ 7_ 17

8 8

Here 8 and A 8 are constants for the particular case at hand.

As a consequence of the above relations it follows that;

*The (~)g has been dropped from c for conciseness in notation. It is under-

stood that the reference value(s) are referred to the main particle.
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a' (2kpg)
Cr = +TaP a + 0o o 2k

and

6' = - 2kA 0 sin (2kg), (III. 3b)

where a is an initial value, etc.
0

Here, k is chosen so that 6' acquires its correct (assigned) value; also, r' is
o O

defined so that r acquires the specified value of af 1.0!

Having selected these various coordinate representations (directly, or

indirectly), a solution for the parameter r and a follows. As a point ofm 2

interest, three separate cases have been studied for this example; and, selected

data from these are presented on Figs. 1II. 2, III. 3, below.

On Fig. 111.2, one finds a graphic description of the assumed motions

(a, 6). These are plotted against fractional parts (0 to 1.0) of the argument

(2kp). The graph is presented in this form since it leads to a universal repre-

sentation for this particular problem (i.e., all cases are described by the same

curves).

It is evident, here,that a is linear in p (hence 2kg), and that e is

symmetric about the midpoint of the argument quantity. In particular, for this

case 8 varies from 1800 to 135 0, and back to 180 . (See Fig. 11. 1 for a sketch

of the problem's geometry).

On Figs. III. 3a, III. 3b, the specific tension parameter (m ), and the

action angle a 2 , are depicted for the three cases selected. Incidentally, these

cases are identified by a' values of: (1) 0.20264, (2) 0.40528, and (3) 0.81056;

and, each lead to transfer angles, p~1, of: (1) 282.740, (2) 141.370, and (3)

70.868, respectively.

The case (2) situation, from above, represents 8 = p, while cases (1)

and (3) describe 0 0. 5p and 0 = 2. 0, respectively. According to the graphs

this smallest 6 rate would come closest to describing a realistic tethered system,
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Example 1.
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(a, 8); Example 1.
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as would be desired for these simulations. There, the action angle (ae2 ) moves

toward I, rather rapidly, and remains close to that value from then on. Also,

it is seen that the tension varies most uniformly, and most simply, for this case.

Evidentally these conditions suggest an easiest control problem, if the mechaniza-

tion of this system would be undertaken.

Counter to this simplest situation, the case of 8 - 2p represents a most

complicated one - there the tension varies in a far more complex manner; and

the action angle undergoes wide excursions. It might be surmised, from the

limited data available here, that the constant tether payout mode behaves most

conveniently (from a controls point of view) when the rotation rate (8) is smallest.

A study of the graphs could indicate that this operational scheme may not be the

best* to select.

III. 2. 2 Example 2.

The second example is formulated to describe a "reel-in" tether system.

The primary difference between this case and the previous one, is the obvious

operational change. A more subtle difference occurs in the nature of the ex-

pressions used to describe the desired in-plane motions (o, 0).

The two primary descriptive state equations are chosen to be:

a= (1 + f) - sin (a' 1),

8= f + ,0 [1-sin (P)1 ; (III. 4a)

where, in particular, the following constants are applied:

f-5
8f -, A - , and aO 10

Note that here the angle argument, for the trigonometric functions, is modified

by c' . The reason for this will be noted subsequently.
o

*Best and ease of mechanization are synonomous terms, here!
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As a consequence of the above expressions it follows that:

a' = c' cos (c' p); with a' > 0;
O o 0

and

6' = - a' A0 cos (' 'p). (III. 4b)
0 0

For these analytical definitions, 0 < a' p < 1/2, necessarily. It should be
0

evident, also, that the reason for selecting this particular argument for the

trigonometric functions - i.e., (a' p) - is to be assured that the derivative

(a') would have a proper physical representation and dimension. In addition,

it is apparent, now, that a' will be chosen so that there will be a desired level
0

of rotation (8') for the system.

Based on the stated conditions above, and other data selected to represent

this system, the curves presented on Fig. III.4, III. 5, describe the behavior of

this simulated physical situation.

In discussing the geometric properties of this example it should be noted,

first, that Fig.' MI. 4 shows the displacement's time history. Here both a and 6

diminish, with a decreasing due to the reeling-in action, while 6 decreases

from its largest amplitude toward its terminal value, 6= 11. As before, the

state variables are plotted as a percentage of the argument (a' p).
0

The data shown on Fig. III. 5 are analogous to those of Fig. III.3. The

tension parameter (r) and the action angle (a) are presented for three cases:

(1) [1 =0. 5p; (2) el =P; and, (3) 1= 2'. Each of these corresponds

to a transfer angle, for mi, of 141.370, 70.6860, and 35.340, respectively.

It is interesting to note, again, the rather marked change in the system's

behavior due to the increase in rotational rate (0). So long as the rotation stays

below a level of O[p] the tether response has a lesser variance. For the case

of E p (and greater) the tension drops to a minimum but rises again as the

terminal state is approached. Also, the line of action for these cases appears

markedly different from that seen for the slower rotation.
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All in all, it would appear that this simulation could not be reasonably

classed as a passive tethered body configuration. Mainly, the gyrations which

would have to be imposed (physically) on the tether are not feasible. Undoubtly

the required response, through 7, would be indicative of some mechanical

system capable of being manipulated to meet the reaction requirements of the

system, and its state.

The two examples, above, were chosen somewhat at random to illustrate

the indirect approach which could be employed in obtaining a solution to this pro-

blem type. The limited data which have been acquired points to the fact that there

are numerous difficulties to be overcome if one is to obtain satisfactory and reason-

able results, here.

This comment, however, does not in any way rule out the ideas employed

here; there is much to be learned from this approach - unfortunately, most of

what could be gleaned from a systematic investigation cannot be described from

so few sample cases. A more exhaustive study would be needed if one wished to

develop definite conclusions about tethered body systems.

The next example is rather unique in that it does afford a direct, analytic

solution for a tethered body problem. Also, it will serve as a direct link to some
of the numerical investigations which were carried out and are to be described

later as a part of this work.

III. 2. 2 Example 3.

The previous examples were undertaken to determine '"tension laws"

based on assumed motion types. This next example is presented to extend the

knowledge gained from the previous simulations, and to overcome some of the

physical inconsistencies which did appear there.

Before formulating the example there are some pertinent questions

which should be answered regarding this extensible tether problem, in parti-

cular.
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A first question is: What conditions allow (or make) the action angle (a 2)

to be equal to w ? For an answer to this question return to eqs. (III. 2), noting

that one condition may be expressed by:

"= [2 (1 + 0) + sin 2 , (provided or 0). (III.5)
a2

It is immediately apparent that unless (a, 8) are restricted, 6" is not con-

strained. However, on the supposition that the operational constraint,

IT < 3IF

2 2

is imposed, then it follows that 0" ( 0 in agreement with the sign and magnitude

of quantities appearing in the equation above.

Suppose that in addition to this condition it is required that 6 remains

constant during a tether operation. As a consequence of this the example can be

described by the reduced set of governing equations:

S=-a" + - a (1+cos 26),m 2
and

a' = - a sin 20 (- K 6). (1II.6)

From these expressions one can obtain an immediate first integral (for

a); namely,

r = ao exp (Kop). (III. 7)

Here o is that value of a ( -/t m ) described at p= 0! It is apparent now that
0 m

the extensibility of the tether is exponentially defined, for the conditions stated.

In order to develop an appropriate tension law (r (<p)), substitutions are

made into the appropriate expression above. That is, from

3
S= a (1+cos 28) - a",
m 268
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after substitution and manipulation, one finds:

Tm= 2[. (1+cos 28) - K 2 r. (II.8)m 2 0

This last equation is seen to yield a tension law which is linear in the

extension, a. (If the constant of proportionality, here, is denoted as

3 2
K (1+cos 20) -K then 7 K a).

72 I m 7

Of course, it is also seen that the extension rate (a') is, itself, linear

in a - its constant of proportionality being K .

(a). Time Required for Extensible Tether Operations.

The time to complete a prescribed tether extension (or retraction) is

easily obtained from (say) the displacement relation a a (p).

For this evaluation, recall that

p ',pt;

thus, it can be shown that the time to reach a given tether length, t, is:

1 /a 1 1
t = n = n , (III. 9)

K g9 o K g o

wherein Co is the "initial length" (tether extension) at p = 0, the "beginning

position" for the operation. It should be pointed out that this time equation is

not restricted to just extensions of the tether alone. In this regard, since time

is construed to be a monotonically increasing quantity, the constant K 0 will

have to change sign (along with the logarithm function) to account for the system

operating with an extension or contraction of the connecting tether line.

(b). Motion Constraints.

Looking at the speed expression (a') it is evident that when a > 0 (an
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extensible system) it will be necessary for sin 20 < 0. This suggests a restricted

range of operation, in 0 (here); thus, for extensions:

- < 9 < Y , (say).
2

Conversely, for a contracting (or reel-in) system (a' < 0) it will be necessary

that sin 20 > 0; consequently, 0 is constrained to a range of values:

31
t< < -,

2

Necessarily, the schemes just described are recognized to be operating as

"earth pointing" devices; hence they will have motions only in the 2nd and 3rd

(6) quadrants. For systems pointing away from earth the operating ranges for

0 are equally well defined, occurring in the 4th and 1st quadrants.

(c). A Numerical Example.

To illustrate a calculations procedure, and to provide some insight into

this problem, an example is studied, in detail, below:

For this case let the system be for an extensible tether (a' > 0); one

which begins with a line length (Co ) of 10 ft. (3. 048m); also, let the final

length (In )be 10010 ft. (3051.054m). This assignment of lengths is made so
m4

that a / 0 for any computation, and to provide a At 104 ft.

The base (reference) orbit is assumed to have a constant angular rate ( g)
-3

of 10 rad/sec. For this example suppose the tether position angle is set at

0= 1500, a fixed value. Thus, the input information is:

t = 10.0 ft. (3.048m), tI = 10010 ft. (3051. 054m) t ,

8 = 1500 ,  = 10-3 rad/sec. (III.10)

For the system, then
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K E- -sin 2 = - J)=0.64952. (III.11)S 4 4 2

(1). The time needed to complete the extension, from 4 to
0

-C , is:

t1 (m n m (III. 12)

m K0 Pg o K(g o

(tm 3 0 5 1 .0 5 4 1

But, Ln - Ln 35.0541 6.90876; consequently,
0

tm =10.6367 (103) sec;

or, the extension occurs during a main body transfer of

<p = t = 10. 6367 rad. = 1. 6929 orbits.

(2) Next, the tension law for this tether action is obtained as:

T F 2 _ [3 (1 +cos 2) - K 2.S.2 2
m

[3 (3 3 2 9(13) III. 13)
2 2 4 2 64

To define the specific tether force ( 2/ii), one uses the definition for

7 , which leads directly to:
m

F
2 ( 2 9(13) * 2

m m g 64 mg

or

F
2 9(13) 10-6) (sincea=

mr 10~, (since ). (III.14)
m

(Note that the specific force is linearly related to the tether length, L; hence,

the specific force range expected here must satisfy the inequality:
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22 < -( 2 ,) . (since 4 & 4
o f

Corresponding to these expressions, the particular end values are:

(2 - 9(13) 2)6 -6)1(1. 828) 10-5 f/s ,
n = 1910 -6 2

o (or, (5. 572) 10-6 m/s );

and
and2 13) 10-6 11 (1. 83) 10-2 f/s2

f 64 (or, (5.58) 10-3 m/s 2).

(3). To calculate the "pay-out rates", (i), and in particular

the values at the beginning and end of the extension, one may proceed as follows:

Since o' K K ; then from the definition of o';

d(-4/ ) '

m <

it is found that,

= (KPg) , (III. 15)

as a generalization. Consequently, for the present problem the end values are:

S (4 2* (10 10.O = (+ 0.6495) 10 f/s,

-3
(or, (+1. 9797 10 m/s);

and

f = 0.6495 (10010.0) = 6.5017 f/s,

(or, 1. 982 m/s).

(For the purpose of "joining" these end values recall that the speed (i) has a

linear variation with tether length, 4).
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These calculations, and generalizations, are the results of an "exact"

analytical solution for this particular tethered bodies problem. It should be

apparent that the converse situation, that of reeling-in a tether, is determined

from a similar procedure. The one consideration which must be given to the

reel-in case is that for the action angle (0). This is (again) a constant value,

but is in a range between 7i and 31r/2, for "earth- or planet-pointing" systems.

This statement does not indicate that these tethered systems cannot function in

directions pointing away from the primary mass; obviously this is not a con-

straint for the class of tethered body operations just described.

In order to provide additional information on this problem the parameters

from a general analysis have been determined. These cover the entire operating

range: (ir/2 : 6 - IT) for reel-out tethers, and (r <0 <  37r/2) for reel-in systems.

By this description the total 8-region is "mapped" and particular quantities are

described for the problem. On the graphs, presented below, one will find infor-

mation on the time required to complete the operation; the initial and terminal

specific tether force(s); and the initial and final tether rates (t); all as functions

of the orientation angle (0).

(d). Discussion.

The information presented on Figs. (111.6, 1117, III. 8) is particular to

the example problem described in the foregoing paragraphs. For that study the

calculations were based on specified tether conditions (L, e, etc.) and a definite

orbit ( ). Here, the present conditions are the same as those in the example;

however these graphs cover an entire operating range, in 6, for an extendible

tethered body system.

Fig. (III. 6a) defines the required initial extension rate (t o) for this opera-

tion, as a function of 0, for 1T/2 < 0 < I. It is quite obvious from the figure

that the rate is largest at 8 = 31r/4, and tends toward zero as 0 -" f/2 and 7.

From an inspection of the equations describing this problem one will note that

the system cannot function at 0 = nf/2, (n = 0, 1...).
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Fig. (III. 6b) depicts the terminal extension rate ( f) for this operation

over the same 0-range. The noted similarity of this curve with the former one

is expected (see eq. (III. 15)). Also, due to symmetry of the parameter K 0
3

(E - - sin 20) one should expect that the extensible tether system would operate
4

in the angle range, 3r/2 :9 217. In this regard the information shown on

Figs. (111. 6) would be equally applicable to both ranges indicated. The reader

is reminded that the extension rate (t) is linearly dependent on length (t),

hence the speed at any intermediate extension, between Cto and f, can be

immediately determined.

To illustrate the influence of 0 on the specific force acting in the con-

necting line, the quantity (F/i)o has been plotted on Fig. (III. 7). Here the level

of force needed to initiate the extension (at , = to) for this example case is found.

On Fig. (III. 7) the 0-angle is varied as indicated. (Since the variation in force

extends over three orders of magnitude, for the plot, this is represented by

interrupted curves (as plotted) with a notation for the proper exponent attached

to each are. Because of symmetry (see eq. (111.13)) this curve is reflected into

the 0 = 1 line for the figure. The final tension level is not described graphically,

here, however the construction for it would have a marked geometric similarity

to what is seen on Fig. (III. 7)).

Fig. (III. 8) is a plot of the time required for the tether's extension to be

completed; this also appears as a function of the angle (0). One can see that the

required time is least when 0 = 31/4; however it grows without limit as 8 - n/2.

From functional symmetry, and the problem's physical considerations, it is

apparent that the time curve would be applicable to both extensions and contractions;

hence it would be a repeated geometry for each 0-quadrant (identically)*.

One of the more interesting facts drawn from a study of these figures is

that there can be large variations in the parameters which are needed to make

*It should be remembered that eqs. (E. 25), Appendix E, were written after the
quantity A( - r/r 1 ) was reduced by linearization. This reduction removes the
0liht difference, in predictions, causedy by ravity gradient, in the fully de-

veloped expressions.
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Tether Extension Operations. The Reel-Out Case is Illustrated;
Operating Conditions are noted on Fig. 111.6.
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Fig. III. 8. Time Needed to Complete Constant 8-Variable Tension Tether Ex-
tensions. Operating Conditions are noted on Fig. III. 6.
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the system work; and for small changes in the angle (0). This is, necessarily,

the situation which exists near the 9 = nlT/2 operating angles. Contrary to this

the system is best behaved near to the kT/4 points. There the specific tensions

are largest but the time required is least. Even though the required and developed

extension rates are (also) largest, there, the sensitivity of the scheme is best at

these latter angles. From a mechanization point of view it would behoove the

engineering designer to work in a vicinity near to these (kT/4) positions.

Another interesting aspect of this problem, and particularily its formula-

tion, is that the major parameters can be grouped and arranged in a universal

representation. That is, one can describe the overall operational characteristics

for these systems in terms of the constants, K and K . According to the for-

mulae developed in this study the dimensionless quantities T , a', tp, and a

can be related by these defined constants. That is, one can form the ratios noted

below:

T */() •I K , -= K , and (III

n o

where, as before,

K - sin 28,8 4
and

3 2
K -2 (1+cos 28)-K

7 2

Making use of these relationships, after having decided on the principal

character of a tethered system, it is possible to determine the system's general

behavior immediately. For instance, picking an orbital altitude (i.e., having

selected p), deciding on a tether length (m ) and an operating angle (0), then

the system's operational requirements are defined. Here, after calculating K9

and K , the required tension law, time of the extension, initial and final pay-

out rates (i) are all ascertained by simple calculations*.

*The one remaining drawback to this procedure is concerned with the lack of
knowledge regarding error levels, associated with these analytical results, as
compared to the numerical (more exact) counterparts. This will be shown,
later, not to be a critical factor for this study.
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There is no need to introduce an example of this procedure, here, since

it would merely repeat that one conducted above (in the example problem).

11. 2.3 Remarks.

The above case studies represent an analytical approach to the extensible

tether problem. The more general schemes, as indicated above, are those

associated with the determination of tension laws based on preassigned variations

for the state parameters. From a more extensive investigation of this type one

could gather considerable information on the "cause and effect" of a system's

operating characteristics, and the subsequent influence of these. While the

investigator may not be able to simulate a probable tethered body state accurately,

he certainly can learn much about the system's behavior through this type of an

analytical experiment.

The last example case studied could be of immediate use to the designer

since it gives information which is directly useful for prediction purposes. How-

ever, these data are limited in applicability due to the very nature of the constraints

placed on the motion. What would be most desirable would be to find a scheme

which provides general information for a wide range of operational conditions.

Unfortunately the general problem is too well coupled, and nonlinear in character,
for such a methodology to exist.

What would normally be the next logical step to undertake, in a general

information gathering sequence, would be a systematic study for a large variety

of conditions (initial and operational). In the next subsection a beginning of this

sort is made; however, it will be shown that it is not necessary to conduct a very

large number of numerical studies simply to obtain this needed information. In-

stead, a method is described which allows one to generalize the results so that

typical values can be applied to an entire family of like problem situations.
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III. 3 Numerical Studies for Extensible Tethers.

The previous paragraphs, on extensible tethers, were concerned with

analytical evaluations for the conditions necessary to maintaining a prescribed

state of motion. Also, there, a special class of tethered body operations were

examined, analytically, with the result that the system's requirements were de-

termined in a general formula format. All in all those examples which have

been studied were useful in providing general information; but, they lacked an

ability to produce "exact" results for operational purposes. Mainly the diffi-

culties which were encountered, there, are associated with the inability to solve

the general, direct problem in closed form. The main obstacle contributing to

this restriction can be traced to the analytically unyielding form of the governing

equations.

For the acquisition of "exact" information regarding the control, manipu-

lation and handling of tethered systems a computer program was designed. This

program was used to evaluate a variety of extensible tethered body problems; but,

to do so without the added complexity of an operationally sophisticated formulation.

The mathematical developments for this program are found in Appendices

E and F. The more general aspects of the formulations are found in Appendix E,

while the work described in Appendix F is addressed more to the specifics associated

with the present problems. Finally, in Appendices G and I one will find the equations

used in the program; and its description. For compatibility with other computer

formulations, employed herein, the computational equations were referred to a

moving cartesian frame; one attached to the main orbiting particle (ml).

Internally the program's calculations were carried out in a non-dimensional

format; but the output was converted to dimensional form before it was written as

a displayed item.
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In the formulation of the program it was assumed that the two tether

connected mass particles were moving (generally) under the influence of a

single attracting mass particle (p). For convenience the particles were pre-

sumed to be sized so that m 1 >> m2; and, subsequently, m 1 was assumed to

move on a circular orbit about p. The connecting tether was considered to be

a massless member, without elasticity but capable of transmitting some level

of tension throughout the entire "time" duration of the problem. Since the pro-

gram was not designed to solve the problem of two freely orbiting particles,

then it was necessary that the tether be kept taut at all times.

In keeping with the idea that m 1 >> m 2, that m 2 is the "suspended" mass,

and that the tether is massless, there has been no accounting made of the mass

"paid-out" during the "extension" of the tether; i.e., m 1  constant.

II.3.2 Program Description.

The computer program, TETHER*, has been designed to solve the ex-

tensible tethered body problem; i.e., to describe the motion of the "suspended"

particle as it moves on its own spatial path. Actually, the problem which is

solved is one of relative motion wherein the mass particle (m2) is influenced by

gravity (gravity gradient) and by the constraint afforded through the tether. Under

the assumptions used in the program the only force allowed in the tether is a

tension which must act solely along the line vector "connecting" the two bodies.

In this regard the connecting line serves as an idealized tether, but it does pro-

vide the desired constraint which, in turn, so effectively influences the subsequent

body motions.

Since the program was designed with the idea of simulating a variety of

operational modes, it accepts a variety of "end conditions" and other instructions

essential to its mechanization. In its most basic mode of operation the program

*See Appendix I for a brief description of TETHER, and its operations.
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will describe a "time history" of the suspended body's state, for whatever inputs

the investigator ha.s assigned. Thus, the state is determined from a set of initial

conditions (for the suspended mass) and from the influence of tether tension and

the gravitational attraction of the primary mass (I)*. These general studies are

useful in ascertaining the influence of initial values, etc.; however, when deter-

mining the control and handling qualities, of tethers, the program had to be more

specific, in design, to meet these requirements.

III. 3.3 Control and Handling Qualities for Tethers.

The qualities referred to here are those concerned with the manipulation

of tethered systems to meet and/or maintain the requirements designed into the

TETHER program. In addition they are expected to satisfy the specified end

conditions for each of the selected modes of operation.

In explanation of this design philosophy, it was felt that for whatever

reason tethers might be employed, one overriding requirement would be that of

control. Here control is considered as that ability to predict, maintain and ad-

just the system so that it can be manipulated in a desired manner. For all of

these defined conditions it was felt that a most desirable quality would be simpli-

city in operation coupled with a "means" to control the system.

Recognizing that tethers are likely to be used as cargo handling and trans-

fer devices; as safety and retrieval mechanisms, for men and material moving

on adjacent orbits; and for other concepts having to do with positioning and moving

of orbiting particles; the investigation has been channeled in the directions indicated

below.

For all of these operational modes there is the need to be able to maneuver

particles in a manner which does not lead to catastrophic consequences. Thus, an

understanding of how to "reel-in" and "reel-out" tethers, in a controlled manner,

is essential. In order to reach adjacent orbiting particles, using tethers, it is

*See Appendix F (and E) for a sketch of the problem geometry.
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necessary to know the correct "launch conditions", and control functions, if

success is to be achieved.

For some operations it may be necessary to constrain the motion of (say)

a retrieved particle; consequently, the manipulation of the tether, here, is of

prime importance. And, finally, under any operational scheme one must know

the limits of the system - when and where it can be made to function - if a

successful maneuver is to be achieved. These were the main considerations under

which this phase of the investigation was conducted.

In order to determine how control of an extensible tether system could

be acquired, the basic computer program was modified to describe, as output,

those conditions needed to achieve a desired "goal" during an operation. In

particular, if a prescribed terminal state was to be reached the investigator would

need to know how to start the operation, and what to do to maintain it. Necessarily,

before undertaking any maneuver, it is essential to know whether or not the de-

fined end conditions are a feasible consequence for the system and its operation.

As an illustration of how these aims might be met, the investigation described in

the following paragraphs was conducted.

III. 3.4 Extensible Tether Operation Modes.

The operational concepts, next set forth, are indicative of how one can

acquire the knowledge needed for the proper manipulation of a tethered system.

The schemes which are studied here were those aimed at satisfying the require-

ment types noted above. In principal this investigation leads to a determination

of those conditions which would assure that the tethers acquire desired end con-

ditions with the stated constraints imposed on them. By systematically varying

the initial values, the computer program is able to describe limits for the sys-

tem, and to define other conditions and constraints which are particular to

these problems.
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For the first part of this effort the tether was chosen to operate at a

fixed level of tension. It was manipulated so that it could reach its prescribed

final state (tether length (t), angular position (0) and angle rate (6)), while

undergoing moderate motions. For the system to operate in this prescribed

manner, it was decided that a simplest approach would be one where the pro-

gram iteratively scanned the initial values and (finally) determined-those which

produced the desired results.

In order to mechanize this approach the computer program has an iterator

built into it. This was used to scan the initial values and select that set which

led to the prescribed end conditions. In particular, the iterator was to provide

proper magnitudes for the extension rate (i) and specific tension (F/ii); other

initial values are given as inputs. In the determination of system limits, these

followed naturally as a by-product of the iterative scheme itself. E.g., in the

scanning process, when the system failed, completely, a limit was determined.

(Other limits followed in a like manner).

For the first applications of this method the tether was not restricted as to

how its intermediate state could vary. One exception to this was that during the

tether's extension (or contraction) it could not exceed its physical limit on length

prior to attaining the preset terminal state. That is, for a system designed as a

reel-out operation, it was not allowed to exceed the final length, or to reel-in

completely (as a dynamically induced phenomenon), prior to reaching the defined

final state. One other restriction placed on all of these tethered systems was that

they are constrained to oscillatory motions (at most); they are not allowed to be-

come rotational,about the main orbiting body, at any time.

As a consequence of the above restrictions any tether operation is said

to "fail" if:

(1) It could not attain the desired end conditions.
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(2) It exceeded the prescribed limits, of the operation, prior to
reaching the terminal state.

(3) The system became rotational rather than remaining oscillatory.

If, for any reason, the system '"failed" then those initial conditions were

deemed not to be acceptable values; consequently, such a set would be outside of

the bounds for the system.

The operational scheme described above will be designated as "Mode A",

the "Reel-Out, Reel-In System".

As a second approach to the control of tethered body operations, the sys-

tem was modified so that there was a restraint placed on how the line would be

allowed to extend. The condition which was to be overcome by this restriction

was that of having the tether alternately reel-out and reel-in during a given opera-

tion. It was reasoned that possibly the time or the force required for a desired

extension could be altered if this "yo-yoing" effect for the tether could be eliminated.

In the mechanization of this operational mode the computer program was modified

so that when, or if, the tether attempted to change its "extension-rate" (i changed

sign) the line would become fixed in length. During this fixed length condition the

tether could only have a pendulous (swinging) mode of motion; this would persist

until the tether could revert to a combined extension - swinging motion. When the

system reverted to this latter state, it would continue to extend until the terminal

conditions were reached.

In order to describe this 'locking" of the tether, when the i-term attempts

to change sign, the system is visualized as having a "snubber" installed on it. The

purpose of the snubber is to (figuratively) lock the "spool" on which the tether is

wound, much like the latching of a window-shade, so that it could not reel-in the

line. If the supported mass (m2) is subsequently acted on by forces which tend

to reel-out more tether, then the snubber is released and a "paying-out" of the

line is resumed.
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Obviously this intermediate, fixed length pendulous mode-of-motion is

provided for by the snubber. Without this locking device the system would be-

have as it did in the previous description (Mode A).

This second operational scheme is said to 'fail" If it encounters any of the

same constraining conditions noted in the discussion of the simpler reel-out, reel-

in system.

In this mode the tether also works against a fixed tension level, except

when the "snubber" is activated. (During the time when the tether length is fixed,

the line tension is below its preset operational level. Once this level is regained,

the snubber is released and the original reel-out operation is continued).

This latter mode for the tethered system is handled internal to the com-

puter program in much the same way as the Mode A system. That is, the

iterator is employed to determine those values of initial rate (i) and tension (r)

which produce the desired terminal conditions. Incidentally, the terminal con-

ditions here are conceptually the same as those for the previous operation.

The method just described, for maneuvering a tethered mass, will be de-

signated as "Mode B", the 'Snubber-Augmented System". A sketch depicting

its geometry will be shown subsequently.

There is a third extensible tether operation which has been examined

using the computer program. This method differs from the others in that, here,

the line tension is not preset to a fixed value, but has a variable magnitude. Also,

the method does not rely on the iterator to determine a proper initial state and

tether tension. Rather, these quantities are defined by an auxiliary calculation

(see Appendix F). From these calculations the tension law is predetermined, for

a described set of initial state quantities. All of this information is subsequently

incorporated into the computer program as input. The program, per se, is

exercised to obtain a time history of the motion, and to assure that the desired

terminal state is acquired.
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It should be pointed out that this scheme is conceptually the same as that

described in section III. 2.2. The two are different in that here the governing equa-

tions have not been "reduced" whereas those used for the analytic solution were

modified to yield a tractable set of mathematical expressions.

For continuity in notation and nomenclature the method just described

will be designated as '" ode C", the "Variable-Tension System". A sketch, to

aid in. describing this concept, is included with later discussions.

The word descriptions, above, are adequate for a general understanding

of these operational modes. However, to acquire precise information, and more

explicit definitions, each of the mode types will be examined in some detail below.

There, sample results will be displayed and discussed. This will allow the reader

to better understand and appreciate what was obtained from this phase of the in-

vestigation.

III. 3. 5 Discussion.

In these paragraphs the reader will find remarks addressed to describing

various example cases making use of the operational modes noted above. There

will be several graphs presented; these are included to illustrate the variety of

conditions examined and other particulars of these operations.

Generally, each of the "'VModes" will be examined separately, but with

some cross referencing indicated. For each of the sample cases pertinent state

information, and other data, will be mentioned so that one can compare cases and

become acquainted with the general behavior of each concept.

It should be mentioned that for each of the cases studied there will be

some data which are consistent throughout. Specifically, the final tether length

(f ), to be attained has been set at 10, 000 feet (3048. 061m). Also, the circular

orbit for the main body (ml) is to be at an altitude corresponding to a turning
t ( -3rate (p) of 10 rad/sec. (These numbers were selected for use, here, by
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virture of their convenience in plotting results,and for data reductions to be

described later).

For consistency and conciseness of notation each graph will be identified

by its operational Mode Type (A, B, or C); and, by a parenthetic notational re-

mark. The "remark" will be used to indicate the tether's position angle at the

"beginning" and "end" of an operation. For example: (150/180) = (9o/f), indi-

cates a tether orientation of 1500, at t = 0, and one of 1800, at t = tf. (See Fig.

F. 1, or 1II.1, for the proper geometry).

Each graph will be presented as a polar plot depicting the coordinates

(4, 9) for the various cases. The scale numbers shown on these graphs will

describe length (t), in 103 feet, and position angle (0), in degrees.

(a). Mode A; Reel-Out, Reel-In System.

This operational mode has been verbally described, earlier. The sketch,

below, is included to clarify this scheme and the state conditions encountered

v1  1  during a given "extension"*. On the sketch

- m 1 is the main particle; m 2 plays the role

7 /1ir- 0 of the suspended mass, connected to m by

the tether.
B

C) The initial state (o , 6 ; oL, 9 )
/ C - ) 

o

f and the terminal values (tf, f ; f = 0) are
A o

set conditions; -f is a parameter described

by the program's output.

Refer to the sketch, Fig. III. 9:

From the beginning point (~) , to "A", the

system pays-out line (i > 0); from "A" to
Fig. III. 9. Sketch Depicting a

Mode A, Constant "C" the tether is being reeled-in (- < 0);
Tension Extension. but, from there to the terminus, -t > 0. At

*The use of "extension" throughout these discussions should not be taken too
literally. The ideas, which are noted, generally apply to "contractions" as well
as "extensions".
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point "B", 0 = 0 (and changes sign); also, at the terminus 8 = 0 (this is a con-

straint imposed on the operation). Mainly, the terminal constraints have been

selected so that only minimal transients will need to be applied if the system is

brought to rest, therel

(1) Example Cases. The first case described is the simplest

mode of operation for an extensible tether system. See Fig. III. 10.

On the graph, the curve at left describes an extendible system; the one

at right portrays a contracting tether. These two examples are identified as the

"Lowering-" and "Raising-System", respectively.

This overall operation is designated as a: Mode A, constant tension sys-

tem (180/180). The initial (I. C.) and terminal (T. C.) conditions for these two

operations are noted below:

For the Lowering System:

I. C.: t 0, = 1800, =14. 9 f/s (4.54 m/s),o O 0

T.C.: = 104 ft, f = 1800, f=l10.7f/s (3.26 m/s), f = 0,

t (time, t0 to &f) = 2322 sec.,

F/mn (specific tension) = 0. 0204 f/s 2 (0.0062 m/s2.

For the Raising System:

. C.: t = 10 4 ft, 0 = 1800, = - 10.7 f/s (-3.26 m/s), = 0,

T.C.: =0, =180 , f= 7.8 f/s (-2.38 m/s),

t (time, to to tf) = 2322 sec.,

F/rni (specific tension) = 0. 0204 f/s 2 (0. 0062 m/s2).

ndFrom the graph it is evident that the 'lowering" of m 2 occurs in the 2 -

8-quadrant, while the "raising" is confined to the 3 rdquadrant*. The symmetry

*These quadrants are for an earth-pointing system.
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MODE A (180/180)

110 !
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Fig. III.10. History of Z, 9 for a Mode A (180/180) Operation. Dashed Curve Traces
Displacements During Extension; Solid Line iepicts a Reel-In Maneuver.
Here the Maximum Tether Length is set at 10^ Feet.
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which is apparent here is typical to this case only. It should be noted that

during the lowering of m 2 the motion occurs initially in a direction with the

motion of mi, while for the raising it is initially against the orbiting motion.

It can be seen that for both of these cases the 9-amplitude, during the operation,

is A-8 i r/4.

For the lowering case, the "reel-back" which occurs is not large. *The

tether undergoes an approximate 1000 ft. contraction; this is dynamically in-

duced by the system. "Loops" in the motion traces (reversals in the general

trends) are typical to these unconstrained modes.

(2). The second case to be described (Fig. III.11) represents a

limit situation for the Mode A (xxx/180) cases. This is the smallest 6 value

acceptable to the operation. As seen from the plot, the system is initiated at

0 = 1500; it terminates at 1800, and has a roll-back of approximately 4000 ft.

(1219 m).

F or this system the operational conditions are:

I.C.: = 0, 8 =1500, = 17.4 f/s (5.3 m/s),
O O

T.C.: Lf= 104 ft, 0 =1800, f =15.5 f/s (4.72 m/s), f = 0,

t (time, to to tf) = 2279 sec.,

F/rii (specific tension) = 0.01813 f/s 2 (0. 0055 m/s2).

It is interesting to compare this case with those above; and, in particular,

to note that the time needed here is shorter than that for the former. Also, this

case has a larger "roll-up" loop than the previous ones. In part,the shorter time

requirement is offset by the increased initial (and terminal) payout rates.

(3). The third Mode A simulation to be discussed is a (270/180)

case. (See Fig. III.12). From the trace plot the supported mass is seen to ex-

hibit a large 8-excursion; also it undergoes a rather extensive "roll-up" of the

tether during its reversed (i < 0) motion.
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MODE A (150/180)
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Fig. III.11. A Limit Case for Mode A Operation. This Limit is due to 68
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MODE A (270/180)
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Fig. III. 12. Example of a Mode A Constant Tension Tether Extension.



This case is interesting in that it is indicative of the extended range which

can be accomodated by these controlled tether operations. Apparently, then, one

is able to reach a position 'below" (8 = 1800) a spacecraft, with a particle (m ),

using a large range of "aiming" angles. Also, it can do this without having a

large variation in initial pay-out rates (-o).

The operational parameters for this mode are:

I.C.: = 0, 8 =2700, ~ =15.2 f/s (4.63 m/s),
O 4 O

T.C.: =104 ft, 0f= 180, f= 14.9 f/s (4.54 m/s), f= 0,

t (time, t to Z) = 3282 sec.,

F/iii (specific tension) = 0. 01545 f/s 2 (0. 00471 m/s2).

(4). On Fig. HI. 13 another limit case for the Mode A (constant

tension) trajectories is seen. This is the (155/205.9) case, where the terminal

angle, at Of = 205. 90, is the limit value.

From the trace geometry it is apparent that when one attempts to reach

a larger 0f position, the tether length exceeds 104 feet before reaching its ter-

minal state; and, by definition, such an operation would "fail". According to

the figure there is a large roll-up in the tether length (approximately 5000 ft. of

line are rewound) before the system recovers and returns to its extending itself.

The operating characteristics for this maneuver are:

I. C.: 0 = 0°, = 155, = 24.83 f/s (7.57 m/s),

T.C.: f = 104 ft, 6 = 205.90, f = 13.42 f/s (4.09 m/s), Of = 0,

t (time, -0 to f) = 1966 sec.,

F/fmi (specific tension) = 0.0339 f/s 2 (0.01033 m/s2).

Next, a sampling of the Mode B (constant tension; snubber) operations will

be made. As with the case studies above, both general and special situations will
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MODE A (155/205.9)
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Fig. 111. 13. A Limiting Situation for Constant Tension Operations. Limit due to Intermediate Tether Extension.



be described, verbally and graphically, and briefly discussed. Where corres-

ponding terminal states are to be achieved, a direct comparison between modes -

for operating characteristic - will be made.

Prior to actually examining cases, a description of this mode's motion

is presented. (See Fig. 111.14).

A desired motion for the Mode B

+ -0 system begins at e , o 0 9 
= 0. Leaving

1 I m 1 , the mass (m 2 ) moves to point "A"

working against the fixed line tension. At

"A" the snubber is engaged and the motion

becomes a fixed-length oscillation. At "B"

the particle reaches its amplitude position
B / *

-' ( = 0), the swing reverses, and the pendu-

A C lous motion persists until point "C" is reached.

There the snubber is disengaged, and the sys-

tem reverts to its original motion - paying

f- M2 out line and swinging toward its terminal loca-

D1 tion. At 'TD" the desired terminus is reached

y (4 = , = 8, , = 0); the final payout rate

Fig. III.14. Sketch Depicting (Lf) is again a consequence of the dynamics,
Mode B Tether etc. of the problem. A true null state could
Extensions.

be attained at "D" by means of a transient;

one to reduce the state residuals to zero.

The above description is general in context, not necessarily a composite

description for all cases to be expected. In the examples which follow a number

of situations will be described to illustrate various aspects of this operational

mode.
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(5). As a first example, Fig. III. 15, this case is designated as

a Mode B (180/180) case. Here, the system commences much like the Mode A

(180/180) example except that when the tether reaches 8 e 140 , the snubber is

engaged and the particle commences its pendulous motion, with t = 6581 ft.

(2006 m). The oscillation reaches a largest amplitude at 8 1370, it swings

back to 08 147 , where the snubber is released and the particle descends to

its 104 ft. terminal length.

The operating characteristics for this mode are:

I.C. C.: = 0, = 180 , C = 16.4f/s (5.0m/s),
0 O

T.C.: tf= 10 ft, 0 = 1800 ,  = 7.42 f/s (2.26 m/s), = 0,

t (time, t to tf) = 2536 sec.,

F/ii (specific tension) = 0. 0257 f/s 2 (0.0078 m/s2),

t (time in pendulous motion) = 760 sec.
S

By comparison with the Mode A (180/180) problem, this one takes a longer

time to reach its final state; and, too, it requires a larger specific tension

(slightly more than 25% increase) to make it work. Physically, the motions are

comparable (in state) except for the obvious differences which occur when the

snubber is and isn't operating. There is nothing of substance here to suggest

why one mode type should be recommended over the other.

(6). On Fig. III.16 the Mode B type is designated as a (155/180)

case; this can be correlated to the situation described on Fig. III. 11. Much like

that comparison maneuver, this one is also a limit situation. Here the limit is

linked to the initial angle (8 = 1550). That is, the system does not acquire the

desired end conditions for 0 < 1550
0

For this mode the tether reaches a length, t = 6009 ft. (1831.5 m), be-

fore the snubber is engaged, at 06 1200. During the fixed length oscillation the
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MODE B (180/180)
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Fig. III.15. Motion Trace for the Mode B (180/180), Constant Tension (with Snubber)

Tether Extension. Dashed arc Depicts a Constant Length, Pendulous

Action. All Cases are for a Tether Length of 104 Feet.
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MODE B (155/180)
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Fig. III.16. A Limiting Case for Mode B Operations. Limit due to 0
o
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maximum amplitude is reached at 6 e 1140; the back swing returns m 2 to

S135.40 where the snubber is released and the tether unwinds to its maximum

length. For this operation the system's characteristics are described as:

I. C.: = 0, 0 1550, & =17.45f/s (5.32m/s),
O 4O o

T. C.: f=104 ft, 0f=180, = 7. 9 f/s (2.41m/s), f= 0,

t (time, to to -f) = 2672 sec.,

F/mn (specific tension) = 0.027 f/s 2 (0. 00823 m/s2),

ts (time of pendulous motion) e1037 sec.

Comparing characteristics between the two limit cases (noted above) it is

evident that this mode takes a longer time to complete; and it requires an approxi-

mate 50% increment in specific force for its operation. The amplitude displace-

ment here is smaller than for the previous case, but not markedly so. It does

seem that now there could be a reason for selecting one mode type over another,

but only if the systems were rather critical in regard to load carrying capabilities.

One advantage exhibited by this present system is its relatively small

terminal extension rate (,f). Such a condition would necessitate a smaller energy

expenditure to overcome terminal transients, and bring the final state to rest.

(7). The system described on Fig. III. 17, Mode B (210/195. 75),

represents another limiting situation. This time the limit is in 6f; now the tether

cannot reach an angle 8 > 195.750, from the given 0 .
0

The characteristics for this case are:

I.C.: Z =0, 8 =2100, -L =22.76f/s (6.94m/s),
O 4 O

T.C.: f=10 ft, = 195.75 , Z= 0.19 f/s (0.058 m/s), f= 0,

t (time, to to tf) = 3190 sec.,

F/ i (specific tension) = 0. 0398 f/s 2 (0. 0121 m/s2),

ts (time of pendulous motion) 1340 sec.
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MODE B (210/195.75)
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Fig. III. 17. A Limiting Case for Mode B Operations. Limit due to Of.
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From the polar diagram it is noted that the suspended mass reaches a

length of 8002 ft. (2439 m) before the snubber engages. This occurs at 8 162.50

Then the system swings to its amplitude position, 60 1420; from there it swings

back to 80 157.750 where it is returned to the "pay-out" condition. This opera-

tion is unusual in that at its terminal state it would require only a very small

transient to null it completely. (Incidentally, the tension level here is only about

15% more than that for the limit case, Mode A (155/205. 9)).

(8). A rather interesting situation is depicted on Fig. III. 18;

Mode B (210/160.5), which is a near limiting simulation. What one surmises

from an inspection of this graph is that the pendulous action appears to be non-

existant. As a matter of.fact, that is almost the case; and, for all 8 < 160. 50

(approx.) the fixed-length oscillation disappears completely. Consequently, all

operational situations whose designations fit into the range, (210/160.5) to

(210/127), are free from the Mode B distinction. This means that there will be

no distinction between the Mode A and Mode B operations within the classification

range noted above.

For this near limit case the system's characteristics are:

I. C. : 0 = 0 , 0 = 210, = 9.0 f/s (2.74 m/s),

T.C.: f =10 ft, 08= 160.50, f= 10.57f/s (3.22 m/s), f=0,

t (time, Z to tf) = 2718 sec.,

F/rii (specific tension) = 0. 0118 f/s 2 (0. 0036 m/s2),

t (time of pendulous motion) = 42 sec.

For this example the tether reaches a length of 5931 feet (1808 m) be-

fore the snubber is activated. During the '"first motion phase" m 2 moves from

0 = 2100 to 0 = 138.50 (its "smallest" 0 value), in a time lapse At = 1664 sec.
0

From there to 0 - 138. 750, the system is in its fixed length oscillation; however,
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MODE B (210/160.5)
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Fig. III. 18. A Mode B Constant Tension (with Snubber) Operation. Note that
Pendulous Action is almost Non-Existant. For ef : 1600
Mode A and Mode B Operations are identical, at 6 = 2100
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after that, and to the end of the operation, the system reverts to its 'pay-out'"

condition.

(9). The last example to be described, now, can be simply

classed as a Constant Tension mode (either Mode A or Mode B). This duality

of classification is used since the system, operating as a Mode B type, would

not exhibit the fixed length oscillation. (See Fig. III. 19 for a polar plot geo-

metry). This case has been designated as a (225/135) simulation.

This rather peculiar motion trace is accompanied by a plot of i, versus

8, for the example. The numeric scale for i is the same as that for t; how-

ever, the scale values which refer to L are in f/s directly, while those for -t

are in 103 ft.

For identification, the characteristics for this operation are noted below:

I.C.: b = 0, 0 = 2250, = 3.82 f/s (1.164 m/s),

T.C.: tf= 104 ft, f = 1350 ,  = 9.03 f/s (2.75 m/s), f = 0,

t (time, t to f ) = 3125 sec.,

F/ni (specific tension) = 0. 00415 f/s 2 (0. 00126 m/s2).

On the figure the dashed line shows t to diminish initially (to almost

2 f/s, at 08 1300) from its value at e . Beyond this intermediate position, to

the terminus, the pay-out rate increases almost linearly with 0. The t rate

(here) is incrementing at an approximate value of 1.4 f/s per deg.

As an operational description the supported mass is descending, from the

6 1300 position, in an almost radial direction and at a continually increasing

rate. It is rather unusual to note, in comparison with the majority of cases

shown, that this system has increased its pay-out speed, instead of decreasing

it, at the terminus compared to the initial state value.
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MODE A, B (255/135)
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Fig. III. 19. A Constant Tension Tether Extension Operation Without Distinction
Between Mode A or Mode B Types. Note that both -t and t Traces
are Included.
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The fact that the tension level is low does, in part, explain the increase in

time needed for this maneuver. It is somewhat odd to see the initial behavior for

this operation, as compared to the latter half operating characteristics. In re-

lation to the more "usual" case, shown here, this one represents a rather unex-

pected situation.

III. 3.6 Transfer From an Extensible Tether System.

During the development of the computer program, TETHER, it was

suggested that some indication of the "transfer" capability for these systems

be included in with the various other calculations. In order to describe such a

maneuver the program should determine what pericentric radius and speed could

be attained, by the suspended particle (m2), if the tether would be "cut" at any

time during its extension. In this regard the motion state, during pay-out, would

play the role of "initial values" for the transfer.

The philosophy behind this addition to the calculation output was that the

extensible system might be used as a means of re-entering 'packages" from an

orbiting spacecraft. With the tether serving as the means of acquiring some

'lower-than-orbit" altitude, then re-entry might be made to occur (at pericenter)

by (say) the added influence of atmospheric drag which would occur there.

To illustrate this capability of the program, Fig. III. 20 has been pre-

pared from an example situation. The problem which it describes begins at a

circular orbit (rl) of 4267 statute miles (3706 n.m., or 6867 kin). The tethered

particle is ejected from the spacecraft (ml) and allowed to extend to a final tether

length of 23.03 st. mi. (20.0 n.m., or 37.06 km) against a constant tension.

The initial "direction" for this tether operation is 0 = 1550; the terminal value

is 0 = 2050; hence this is a Mode A (155/205) operation.

On the graph there are two curves shown; one is a trace for r 2 (the tethered

body planetocentric radius) and the other is for r (the peri-radius); both are
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Fig. III. 20. Description of Transfers-to-Pericenter ACcomodated by Tether Extension Operations. Note: A
Lowest Pericenter can be reached from 9 - 1790, with -t a 23 mi. Displacement Scale is in
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noted as functions of 0. From the plot it can be seen that the r 2 trace begins

at 4267.0 st. mi. (= rl). It descends to roughly 4250 n. m. (at the 8mi n position

a1140). From there it swings back toward the = 2050 point where the tether

has extended to its full length of 23.03 st. mi.

The solid line traced on the figure describes the peri-radius which could

be attained from any position (L, 0) during the extension. For instance, if the

particle (m2) would be released from m1 , at its initial state, it could reach a

peri-radius of 4240.0 st. mi. However, as the tethered body swings toward 8

-1140, the peri-radius rises (to the r 2 orbit altitude, itself). Just before

reaching the 8mi n position the attainable peri-radius begins to decrease, markedly.

As the system swings back toward the 8f position, the peri-radius continues to de-

crease, but more slowly.

From the computer output it is found that the lowest peri-radius which

could be achieved by the tethered particle corresponds to a "release" from the

8 1790 position. From there m 2 would acquire a pericenter whose altitude

would be approximately 72 st. mi. (62.5 n.m., or 116. 0 km). Beyond this 0

position the attainable peri-radius increases, slightly.

For reference, the characteristics of this operation are:

.C.: 4 = 0, 6 = 1550, 0 =331. f/s (100.9 m/s),

T.C.: t= 23.03 s.m., = 2050 , f= 181 f/s (55.17 m/s), f= 0,

F/i = 0.4995 lbf/slug of suspended mass.

The length of tether used here may seem rather large; and, as a consequence,

would be of some concern regarding its own weight. To quell any doubts which

might arise, it has been conservatively estimated that the "weight penalty" for

this tether is most modest. Actually this particular operation would require a

tether weight of only 1 pound (or kg) for each 15 pounds (or kg) of transported

mass. This is certainly a most modest requirement.
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The most obvious advantage of this system is that it is reusable! That

is, the tether could be rewound and used over and over again for this same pur-

pose, or for other purposes! Unlike a reaction system (where mass is expelled

and lost) this operational device could have an almost limitless lifetime.

It should be evident that this last example is only one of the many possibi-

lities for which tethers could be used in "space operations". Other system appli-

cations are to be indicated in the next section; also the imaginative reader can

easily visualize many other applications through his mind's eye.

III. 3. 7 Remarks.

It has been demonstrated that the manipulation and control of tethered

systems is both feasible and possible. The next and most impressive step will

be that of making use of these ideas in real and practical situations. This task,

however, will be left to the systems designer and operations planner.

There does remain the one other mode of operation to be discussed. This

one was mentioned earlier when it was described with the analytical developments

at the front of this section. In the paragraphs below a more rigorous evaluation

of this system -- the variable tension, fixed-B operation -- will be undertaken.

III. 3. 8 Variable Tension, Extensible Tether Systems.

The extensible tether method, which is described and discussed in the

following paragraphs, will be designated as a "Mode C" operation.

The idea, for this situation, is to produce and maintain an extensible

tether mode which can be carried out at a fixed 8 angle. It has been demonstrated

that such a maneuver is likely to exist since the analytical work described in

section III. 2.2 did allow a closed form solution to the problem described there.

That study was for an in-plane operation (as is this one), but one which utilized

equations with some small reductions in the order of magnitude of some terms.
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e =0 Here the full Keplerian type equations are

e + i i manipulated (in the program, TETHER).

As indicated on the sketch, Fig.

1 III. 21, this extensible tether simulation

e is initiated, in its' motion, at (to' ~ o

/ 0 ) with 0 = O0. An initial tension [(F/i) o

I0 is to be applied; however, to maintain the

the tethered body motion, at the fixed angle,

1/ 1 the tension law requires F/m to increase (with

S . Correspondingly, L must increase

Mbz simultaneously. Theoretically, the exten-

sion can be made to continue to any desired

t f , by properly adjusting the pull-back

Fig. II1.21. Sketch Describing force (tension) in the tether.

Mode C Extensions.
In order to determine what 'tension

law" is needed here, a set of equations were

developed (see section F. 9, Appendix F). The particular expression defining

this tension law is (from eq. (F.21)):

-3 r 3 sin2 0
= (1- ) + cos 1 3 sin 2  (III. 17)

4A

wherein

F/ i 2 1/2
7- , A -  , A [- +2X cos O+ ]1/2

*2 r1r 1 P1

An evaluation for the specific tension, as a function of X, should be carried

out as an a priori mathematical exercise. Once the "law" is determined, the data

could be fitted by (say) a polynomial expression; and, that used as an input to the

program. This polynomial must describe the required tension law over the entire

*To complete the set equations used for this problem, the expression for X', given

as eq. (F.19), Appendix F, should be taken into account.
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extension range. (From the limited number of case studies made, using the

program TETHER, it was found that a reasonable polynomial fit could be ob-

tained using a three term expansion. This would require no more than X 2_

terms in the series. The example cases to follow will demonstrate the parti-

culars of this methodology).

III1.3.9 Examples: Fixed e, Extensible Tethers.

Two sample cases describing Mode C operations are presented in the

following discussions. In these the tether system is used to lower a mass (m2)

from an orbiting vehicle which is assumed to be moving along a circular path

(r ).

For the most part the procedure used to establish inputs for these simu-

lations is that outlined above; however, it will be shown that, at least in some in-

stances, the analytical results (section III. 2. 2) would suffice for this purpose.

For conciseness only two cases, for different orientations (0), are re-

ported here. Of these, the first will illustrate that the program TETHER could

be used to define input quantities which subsequently produce tether operations

closely approximating those desired for the problem.

(1). In this simulation the tether operation is classified as, Mode C

(150/150).

For this case one input to the computer program will be defined from

eq. (III. 17); this leads to a tension law (7) which is needed for the full opera-

tion. Other conditions* for this maneuver are selected as follows:

Z 0 10 ft. (3.048 m),

S= 10010 ft. (3051.054 m),

0 1500 (constant),

-3
and E - 10- rad/sec.

*The input quantity, o0, is determined from eq. (F. 19), Appendix F.
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Subsequently, it was found that an appropriate "tension law" could be formulated

as:

F/ii - (F/i) + 6 (- o) + 6 (- Zo)2; (III. 18)*
o 1 o 2

with
-4

(F/m) (0.1828)10

-5
6 1 (0.1828)10 ,1

-13
and 6 = (-0.38) 10 .

2

The output from the computer program yields a time history of the ex-

tension (4), and its rate (C), in addition to the other information discussed pre-

viously (see, also, Appendix I). Since 4 and - are of principal interest here,

these quantities are plotted on Fig. III. 22 below. In order to account for the

full range of values obtained for this example they are plotted on logarithmic

scales, as noted. From an inspection of the figure it is apparent that the opera-

tion can be simulated as desired; and that the variants do behave as suggested

earlier.

Probably it is more evident here than it was in the section on the ana-

lytical formulation, that Z has the wide variations which it does. As a matter

of fact i predicts a very slow paying-out of the line during the early stages of

the maneuver. Note that, here, it takes roughly 3500 secs. for the line to attain

its first 100 ft. (30. 48 m) extension. Contrary to this, near the end of the man-

euver the line is extending at a more rapid rate. Consequently, it may be desir-

able to place some length constraints on the system in order not to have the

tether unwind too rapidly at some terminal-state conditions.

As a means of comparison the characteristics of this system are listed

(below) with companion values from the analytical solution. It should be noted

that the mathematical analysis appears able to provide reliable characteristics

for this operation, also.

*The program TETHER is designed to accept a polynomial expansion for the ten-
sion law. The input parameters needed are the quantities: (F/ni)o, 61 and 62.
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MODE C

104

1 0 - - .. . . . -- 7. - " - '_ ... .. _ . "-L- ... .. .... .. ...... .. 1 0 . 0

. --- -

10 --- 1

Time, Sec

.with e = 150

_.., .,- -. - -- - - --- -..
- - - -- - - - - -... . -- --------.--

0 -~~-.i_ . I. , . Ol~~------ i-- -- ---- - --- - -: ---------- -L- -_J~_ - -*---*------4---

-a -- - ------ ;-- -- - ---- ------------- ------- --- -- : ------
- - - - - -.- i- -----.-.---- .-- i I

~~ ---..--------

Time, Sec
Fig. III. 22. A Mode C Variable Tension Tether Extension Operation. Shown is a

History of . i during an Extension, for a Tether Length of 10 4 feet,
with 8=150
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Quantity Numerical Results Analytical Values

i, (f/s) 0.0065 (0.6495)10-2

f 6.5058 6.5017

t, (sec) 10635. 10637.

(F/in)o, (f/s )  (0.1828)10 (1.82813) 10 .

(2). The second example is classed as, Mode C (135/135). Here, as

in the previous case, the conditions imposed on tether extension, etc. are:

t E 10. ft. (3.048 m),

4 = 10010. ft. (3051. 054 m),

-3
(p - 10- rad/sec.

In comparison to the previous example this one will be different in that

the remaining inputs, for the computer program, are taken directly from the

analytical solution. In this regard the output, here, will serve to show the ade-

quacy of the mathematical results to serve as prediction values.

A second part of this sample study uses the program TETHER and its

iterator to solve the same problem. It should be remembered that the iterator

is employed to obtain a useable set of initial values (for io and (F/i)o). In this

procedure the iterator used the analytical results as an initial set of values which

were subsequently modified and these new values employed as inputs.

The two separate solutions (obtained) are illustrated and compared be-

low, with selected results plotted on Figs. III. 23 and III. 24. Figure III. 23

shows 4 and - (for both cases) graphed as functions of time. On the second

figure one will find a time history of e for the two cases. Some comments re-

garding these figures follow:

114



MODE C
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Fig. III. 23(a). Comparison of a Mode C Operation, Using Analytic and Iterator Deter-

mined (converged case) Initial Values, for a Reel-Out Case.
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MODE C

8
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Fig. III.23(b). Comparison of a Mode C Operation, Using Analytic and Iterator Deter-
mined (converged case) Initial Values, for a Reel-Out Case.
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Fig. III.24. Variation in e, During a Mode C (0 - 1350) Extension for Iteration
Determined (converged case) Initial Values.
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On Fig. III. 23 it is seen that the "iterated" solution does

not have the linearity which the other case exhibits. After in-

specting the input parameters it is noted that the iterator has

found a set of initial values (to and (F/ii)o) which are different

from the analytical ones. As a consequence the two solutions

do not agree except near the terminal state (as they must). It

is apparent that the iterator has not found the same solution as

the analytical one; or, for that matter, the same one as would

be acquired from the procedure in the first example. It is noted,
however, that during the latter stages of this maneuver, these

two solutions are essentially the same; and they do have essentially

the same, terminal conditions.

The second graph (Fig. 111.24) shows that 0 does not re-

main fixed in value for the iterator solution. During the initial

phases of this maneuver 0 is seen to vary; but, it does tend to

a fixed value as the system approaches the terminus. Interest-

ingly, the solution developed from the analytically defined initial

values does retain 0 as a fixed quantity; also, those inputs do

allow the computed solution to reach a proper terminal state.

In addition to the two graphs just described there is a tabulation of selected

data, below. These provide a more precise comparison of inputs and outputs from

the numerical analysis, etc. In the tabulation initial and terminal parameters are

indicated by (I. C.) and (T. C.), respectively.

Numerical Results: using Results from:

Iterator Defined Analytically Defined Mathematical
Quantity Inputs* Inputs Expressions

S(I. C.),(f/s) (5.267)10- 3  (7.5)10- 3  (7.5)10- 3

tf (T. C.), (f/s) 7.508 7.509 7.508

t, (sec) 9209. 9211.04 9211.67

(F/ii)° (f/s 2 )  (8. 276) 10 (9.375) 106 (9.375)106
-6 -6

61' 62 0.9375 (10 ), 0 0.9375 (10 ), 0

0 (I. C.)(deg) 135 135 135

0 (T. C. )(deg) 135 135 135

*o and (F/r)o values are determined by the iterator (where applicable).
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Studying this tabulation it appears that the program TETHER can generate

a solution which is close to that one acquired from the mathematically determined

tension law. However, indications are that these two analyses may differ slightly

as to how the terminal state is reached. It is not clear that the deviations seen

here are typical; unfortunately there have not been sufficient numbers of cases

studied to reach a more definitive conclusion.

One can conclude, however, that the iterator may achieve more than one

solution (type) for a given problem. This is apparent when it is recognized that

solutions, for both Mode A and Mode C operations, may exist with identical ter-

minal states. (This is not surprising since the two modes differ primarily in

the structure of the tension laws used). In addition, the time required for each

mode type solution to reach the prescribed end conditions is markedly different.

To a large extent, then, these solutions typify "fast" and "slow" tether extensions,

respectively.

The case studies described above have all considered tether extensions

exclusively; none of the examples represented a "reeling-in" maneuver. This

is not to be construed as an indication that- "wind-up" operations are not apparent,

or important. One should remember that the two situations differ only slightly,

in formulation. As was noted in discussing the analytical solution, a reel-in

operation can be described just as readily as can the reel-out case. The primary

difference between them can be explained in terms of the e-quadrants which

accomodate each, plus the obvious physical differences.

By all indications, any of these maneuvering situations can be handled by

the computer program; and, certainly the analytical aspects of this problem pre-

sent no difficulties at all, generally speaking.

One aspect of all these situations which remain unanswered, still, is the

question of sensitivity. It can only be guessed as how the solutions might behave

with regard to any and all input state conditions which may be applied. In

119



particular, it appears that simulations close to the region of 0 = k(IT/2) may

present some difficulties with regard to sensitivity. However, it will be necessary

to examine those situations carefully before explicit statements are made.

The next topic to be discussed is concerned with a means of representing

the several tether operations in a universal format. The advantage of such a

scheme is obvious in that all operational solutions, of a given type, can be re-

presented by (say) a single set of parameters. Incidentally, the universal des-

cription of the results will be by derived graphs - the methodology for this is to

be described below.

III. 3.10 A Universal Representation for Tether Operations.

In this subsection it is shown that a single curve can represent a full

family of solutions for either the Mode A or Mode B operations*. With this in-

formation one can immediately predict the behavior of tethered operations for

a large variety of possible terminal and initial conditions. Also, as a natural

consequence of this scheme, operational limits for each modal family of solu-

tions are defined.

For the situations which will be shown and discussed below the problem

types have been limited to those having in-plane motions; and, for extendible

tethers. There is no reason to expect that examples having small normal dis-

placements, and/or '"wind-up" tethers could not be represented by a same idea.

(a) Dimensionless Quantities.

In representing each mode type there will be a set of defined, dimension-

less quantities used. These numbers are typical to each operation; but they re-

present an entire class of simulations, simultaneously.

*Mode C operations are not included here since in the discussion of analytic so-
lutions, a universal representation was found. That representation can be shown
to be equivalent to the present one, in general.
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The principal parameters used to describe the characteristics of a given

system are obtained from the analysis carried out in section F. 8, Appendix F.

There the formulation provided the three quantities* (see eq. (F. 17)):

f
N v

0

N

fand N 2 (III. 19)

These parameters (Nj) are dimensionless quantities describing, (1) the

tether pay-out rates (N v); (2) tether length (N ); and, (3) specific tension (Nf).

In addition to the above, it is possible to define a dimensionless time parameter:

R- (II. 20)
t P

This ratio quantity has a different notational character because it was not

mathematically derived; instead it is a physically defined parameter.

It is recalled that the Mode B systems are distinctive in that they contain

a fixed-length, pendulous-motion not typical to Mode A operations. In order to

represent these actions, by a dimensionless parameter, one can "borrow" from

the definition (Ni) and, consequently, define a new ratio parameter,

swing
R = wing (II. 21)sw

Herein "si " refers to the tether length for the pendulous motion, per se; theswing
remaining quantities have been defined earlier.

*A similar representation is found in reference [17]. In the reference it appears
that some discrepancy exists in one of the parameters defined there. This gives
rise to a question regarding the universality of that scheme. The parameters de-
fined here do fit the concept of a generalized representation.
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(b). Graphs for the Universal Representation.

Figures describing the variations in the dimensionless numbers (Nj)

and ratios (R ) have been plotted. Each graph is for a particular operational

type (Mode A or Mode B) and for an applicable range of orientation angles, 0.

For precise identification and discussion, each of these will be noted separately

in the next few paragraphs.

(1). Figure III. 25 represents operations of the Mode A (xxx/180)

type. On that graph the dimensionless quantities describing that system are

plotted as functions of 0 (the initial orientation angle for the tether). For re-

ference purposes, the applicable range shown by the abscissa is, 1500 0 9 
0

2810. Consequently, for 0 values outside of this range the tether system "fails"

in agreement with some one or more of the criteria set down in section III. 3.4.

The curves shown here were plotted using data obtained from computer

runs of the program TETHER. Some of those same cases are represented by

the plots discussed in section III. 3. 5.

The first figure describes all extensible tether operations which would

lead to a final state (f , = 1800; f = 0). Since this is for a Mode A

operation, the tether does not have the "snubber" installed. Consequently, the

line is free to unwind (and rewind) as it extends and "lowers" the suspended

mass. (Recall that f , e f are assigned state values, but that Z f is ob-

tained from the operation itself).

(2). Figure III. 26 is analogous to what is depicted on Fig. III. 25

except that it is for a Mode B (xxx/180) operation. Here, the system has the

"snubber" incorporated to disallow any intermediate "wind-up" of the line during

the extension maneuver.

An inspection of the figure shows that the operational range, subject to

the fail criteria described for these systems, is 155 0 247 . (As before,
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MODE A (xxx/180)

1.0 - 1.0

0.8 0.8

NL

0.6 , 0.6

0.4 0.4

R

0.2 - 0.2

0

160 180 200 220 240 260 280

0 (DEG)

Fig. III. 25. Mapping of Universal Parameters for Mode A Tether Extension
Operations, wit Of = 1800
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MODE B (xxx/180)

1.0 1.0

Nf

0.8 0.8

N

0.6 -- 0.6

N
~~ -- "------

0.4 - -0.4

SW

0.2 0.2

t

0
160 180 200 220 240 260

8 (DEG)

Fig. III.26. Mapping of Universal Parameters for Mode B Tether Extension

Operations, with f = 1800
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all operations are to terminate at a specified f, with 0 = 1800 and f = 0;

the value of tf is not a prescribed quantity). This graph has, in addition to

the curves shown on Fig. III.25, one for the parameters R (see eq. III. 21).sw
How this figure, and the one above, may be used to predict operational character-

istics will be explained subsequently.

(3). On Fig. III. 27, parameters describing the Mode A (155/xxx)

operations are shown as functions of the terminal orientation angle, 0f. This

graph is akin to that one on Fig. III. 25; the principal exception being that here

the initial value of 0 is fixed. (The one set of values consistent to both plots is

that representing the operation, Mode A (155/180)). It is interesting to see that

these curves are skewed toward the lower end of the 6 range. On the companion

figure (III. 25) the curves were generally symmetric about a median point on the

plot. Also, on Fig. 111.27, the curves show a small reversal trend at this lower

end of the (abscissa) scale. (Note that these maneuvers occur for, 141.250

f 205.90, without "failure").

(4). The operation types depicted as "Mode B(210/xxx)" are

found on Fig. III. 28. This graph is akin to that one shown on Fig. 111.26, ex-

cept that the terminal angle f9 is the variable, now. It is seen that maneuvers

of this class can be accomodated, without failing, over the range 1260 5f 0

195.50; a '"failure" here, as before, is defined by the same criteria as noted in

the subsection above.

Earlier, when discussing the figures showing the geometry of these

operations it was mentioned that for some cases Modes A and B were not dis-

tinguishable. In particular, the "snubber" is not activated for all Mode B

maneuvers. Here this situation is graphically portrayed by a termination of

the curve for the parameter R . Looking at this figure one sees the snubbersw
operating only in the range, 160. 5 0 195.50; hence for 6f 160.50 the twof f
modal families are identical (when 0 0 2100). The disappearance of a pure

O

125



MODE A (155/xxx)

1.8 1.8

1.6 1.6

1.4 1.4

1.0 1.0

0.8 0.8

0.6 0.6

Rt
0.4 0.4

140 150 160 170 180 190 200 210

f (DEG)

Fig. III. 27. Mapping of Universal Parameters for Mode A Extension Operations,
with 8 = 1550.

0
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MODE B (210/xxx)

3.0 3.0

Nf

2.0 2.0

1.0 1.0

0 0
130 140 150 160 170 180 190

0f (DEG)

Fig. III. 28. Mapping of Universal Parameters for Mode B Extension Operations,
with 6 = 2100
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pendulous action is also evident (to a lesser degree) on the curve for N ; there,
v

a marked change in curvature is seen to occur at 0 160. 50. To correlate the

data shown on this graph with that on Fig. III. 26 one should look at values for

the Mode B (210/180) situation.

Here, as on Fig. III. 27, the curves are skewed toward the lower end of

the 8f range, with reversals indicated on a part of the data curves there. It is

important to recognize that for these present types of operations there is a wider

variation in the operating characteristics for these systems, compared to the

earlier ones.

(c). Using the Universal Parameter Plots.

Previously it was mentioned that the universal parameter figures could

be used to predict characteristics for an extensible tether operation. A pro-

cedure to do this will be outlined next. Since all operating situations are in

principle, the same, only one example will be discussed.

For the sample case suppose that a Mode B (210/170) operation is to be

performed. In this maneuver a tether supported mass (m2) is to be lowered

from a spacecraft (ml1 ), which is traveling along a circular orbit (r ). Particle

m 2 is let down to a final tether length (tf) "below" the main vehicle. In this

operation the action commences with m 2 leaving m1 along a line oriented at

(80 =) 2100. The final position for m 2 is described by = 1700 (e is measured

from the local vertical).

-3
Suppose that the circular orbit (rl) is at an altitude where q= (0.5)10-3

r/s. If the tether line is to extend to = (1.0)104 m. ; and the terminal con-

ditions are such that 8 = 0, when 8 = 1700 , then calculations may be carried

out in the following sequence:
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(1). From Fig. 111. 28, read:

N = 0. 8068; N = 0.7542;

Nf = 1.163; R t 
= 0.2945;

and R = 0.5087.
sw

(2). Determine o from N; i.e.,

S f [(1.0)104] E(0.5)10 - 3 1
o NI 0.8068

or - = 6.1973 m/s.
0

(3). Next, describe F/ii (a constant) from Nf ; that is,

Nf 2
F/rii fo 1.163 (6.1973)

Sf 104

or F/i i F/m2) = 0. 00447 m/s

These calculations provide sufficient information to initiate the desired maneuver.

In order to ascertain how long the operation will take; and to find out how the

pendulous motion proceeds - as well as determining f -- the procedure continues

as shown below.

(4). To describe if, use the definition of N ; hence,

SN v0 = 0. 7542 (6.1973),

so if = 4.674 m/s.

(5). The time needed to complete the tether extension is

acquired from Rt , as:

t ( = - = 0.8068 2.0 (103) = 5479.12 sec.
S• \0. 2945
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(6). The tether length, at the onset of the pendulous action, is;

LR R
So sw sw (0.5087 104

swing N f 0.8068 6305.16 m.

From the time computation it is seen that the main particle (m l ) travels

roughly 0.436 orbits during the period when the tether is extending; hence,

P, 156. 960. Also, here, it is seen that at snubber activation the tether's

fixed length is, L 2 6305. m. Finally, at the terminal state (f = 170 ,

6f = 0) the tether's extension rate is (tf) 4.67 meter/sec.

(d). Correlation of Modal Type Maneuvers.

The example above is typical of one use which the engineering designer,

and/or operations planner, could find for these universal plots. However, the

curves have other uses which may be of significant value in preliminary planning

stages. In particular, one application would be in the correlating of mode maneu-

vers and their characteristics. From this one could ascertain, quickly, the

effects of (say) base orbit altitude (or, (p) and tether length ( f) on a given opera-

tion.

As an illustration suppose that it is desired to find the influence of

((p, tf) on a prescribed situation study. Here, then, Mode type is not of

immediate concern, nor is the (0 /0) characteristic, at this time. What is

essential, and is inferred, is that the mode and operation must be consistent

in the comparisons (to follow).

To correlate operations*, consider two hypothetical situations, designated

as (-)a' ( b* Now, by forming typical ratios (a to b, say) one can ascertain the

parametric influence which is sought.

(1). For instance, using the number Nd the initial payout rates

may be related to one another by:

*For these correlations, the parameters (N , R.) are assumed identical for the
systems compared.
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(2). Using the dimensionless quantity N the terminal payout
V

rates are correlated as:

(f )b (o)b ( f b) bS - (III. 22b)

f)a (o)a fa

(3). Making use of Nf it is shown that the (constant) specific

tensions are related by:

(F/m)b  ( f 2) b. = (III. 22c)
(F/rn)a *f2

(4). As an indicator of the time requirements, for the maneu-

vers, it is found that this correlation can be given as:

t = .
(III. 22d)

t
a p

(5). Lastly, if the maneuver would be one having a fixed-length

pendulous motion, which developed during the maneuver, the line lengths for this

would be related by:

(Iswing)b (f)b
S- (III. 22e)

( swing a f)a

(obviously).

From an inspection of eqs. (III. 22) it is evident that when a particular

operation is to be conducted (from a given orbit (p = constant)) then the various

maneuvering characteristics are correlated accordingly. Specifically, the ex-

tension rates (,zo f), the specific tensions and the pendulous swinging motions
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are all related (directly) to the length ratio, (4f)b/( f) a , for this situation.

Conversely, when the operations are considered for different altitudes

(i.e., for varying ), but for a same tether length (4f), the correlations are

differently described. Here, the extension rates (t o , tf), and the operating

times (t), are proportional to the ratio (k)b/() a . The tension requirements,

however, depend on the square of the (c) ratio, while the . parameters
swing

are unaffected.

According to the word descriptions in the paragraph above, the various

maneuver characteristics are in a same ratio as the c and 4f ratios, respec-

tively. In this regard, for instance, a doubling of tether length (for q fixed)

would lead to a doubling of the pull back force and the extension rates. Like-

wise, changing altitudes (varying the base orbits) would similarily alter the

maneuver time and extension rates (directly); but, the line tensions are

affected as the square of the orbital turning rate ( ) ratio.

Finally, if one would correlate operations for simultaneous changes in

both parameters (p, 4 f) it is evident that the operational characteristics are

all differently affected (and to the degree indicated in the appropriate equations

above).

One reminder here: These correlations have all been described under

the supposition that they represent only those maneuvers for a given (specified)

Mode type (A, or B) and for a prescribed (8 /8 ) operation. This, one re-
of

cognizes, is essential to the results above since the correlations are developed

using an assumed constancy for the parameters (N., R.).

III. 3.11 Remarks.

In agreement with the information presented throughout section III. 3,

the reader should have a much better understanding of extensible tethered body

operating modes; the control of these systems, and their handling requirements.
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Generally, from the studies reported here it is evident, now, that a

properly designed system can be usefully employed for a variety of space re-

lated applications. It has been demonstrated that the control of tethers can be

accomplished; and, it is easy to surmise that the "costs" involved for many of

these tasks would be quite moderate, in terms of tether weight.

The three operational schemes described and examined in this section,

Modes (A, B and C), are sufficiently general to take care of most local transfer

situations, which could involve men and/or materials. Having the ability to

maintain control and to manipulate tethers it is possible to use these systems

for all sorts of extra vehicular tasks where safety and/or transport lines would

be needed.

Also, with the ability to represent families of solutions, by means of

the universal dimensionless parameters, the task of designing these systems

is immensely easier than if one attempted to evaluate each case individually.

Of course the results (shown) are by no means complete, In order to describe

a complete parametric representation, for these several types of tethered body

maneuvers, one would need to produce carpet plots similar to those found herein.

In accomplishing these tasks the basic ideas have been set down and the procedures

are well enough known now for this work to continue.

One last, but important, remark concerning the universal parametric

representations should be made:

As a test on the validity of these concepts and ideas, various spot checks

were made, on the systems types, to ascertain whether or not the universality

of these data was indeed true. For this the computer program (TETHER) was

exercised using, as inputs, information developed from the plots, Figures 111.25

through 111.28. In some cases the (p values (orbit altitudes) were varied; in

others the tether lengths ( f) were changed; and, for some few cases both para-

meters were altered simultaneously. Most of the parameter variations introduced
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in this sampling were "moderate"; i.e., their magnitudes were realistic in

terms of earth orbiting spacecraft, space stations, etc.

For all of these cases examined it was found that data developed from

the program (TETHER), using inputs determined from the dimensionless para-

meters (N., R.), agreed* to within less than one-half of one percent (as a maxi-

mum). In most instances, the characteristics of these systems were found to

differ by less than one-quarter of one percent. These checks have given confi-

dence and credence to the method and to its ability to predict behavior for

tether applications.

It is apparent that these systems would be very "flexible" insofar as their

useage is concerned. In addition, they are more adaptable than "rigid-arm"

devices; and, the ability to rewind and reuse the tethers should place them in

a most favorable position compared with "reaction devices" used to (say) trans-

fer orbiting masses.

Aside from the fact that extensible tethers are versatile in their appli-

cation and use, it can be demonstrated that these systems represent only a

modest weight penalty. That is, the weight of tether per unit of mass handled

by these systems is quite small. For instance, it is known that for low altitude

operations a twenty mile tether would only weigh about six percent as much as

the mass (weight) it could handle. (In all likelyhood this is a conservative esti-

mate). For most applications, such extensive tether length would not be used,

hence the weight requirement for the tether would be almost negligible. In view

of the comparative simplicity which tethered body systems possess, it is evi-

dent that they represent a concept which should be given very serious considera-

tion in future space operations.

*"Agreement" is for comparisons between iterator developed (TETHER) results,
and those determined from the figures.
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SOME APPLICATIONS FOR TETHERED BODY SYSTEMS

IV. 1 General.

In this section some specific examples, utilizing tethers, will be des-

cribed and discussed. The applications to be considered here are, first,

associated with a gravity gradient stabilized configuration; and, second, those

which will make special use of a rotating tethered body system.

For all of these applications the bodies are presumed to be connected

by ideal tethers; i.e., lines without mass and with negligible elastic properties.

In addition, the entire system is gravitationally attracted by an ideal central

mass particle, (g). Consequently, in the gravity gradient stabilized mode of

motion the bodies are radially aligned; and, the two suspended particles are

held in position by the tension in the tether.

When the system above is stabilized, the configuration represents a con-

venient "platform" from which to initiate a transfer maneuver. Also, a particle

in this same configuration could be manipulated so it experiences the various

"g" levels associated with several different space applications. These are the

problem types to be examined in the following paragraphs.

The rotating tether system, mentioned above, suggests a second scheme

which can be used to initiate a transfer maneuver. This concept will be com-

pared with the stabilized system (above) to ascertain what advantage, if any, can

be gained by introducing a velocity component arising from the tether's rotation.

The sketch, Fig. IV. 1, is presented to clarify the notation and geometry

pertaining to these examples.

Since the stabilized mode represents an "in-plane" orientation, the to-be-

compared "rotating system" will have a like orientation. This is done for both

convenience and reality; and follows from the assumptions set down above.
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IV. 2 Gee Force Developed in a Stabilized

V - 1~1 Tether System.

F ) The system shown in Fig. IV. l1(a) has

been examined to ascertain what levels of

2 m 2  force might be produced on the bodies mak-

r. ing up that configuration. Since the system

is assumed to be stabilized, then both mass

(a) particles move at a same rate (p) about the

central mass particle (j). Also, in this

0 - configuration, m I and m 2 are radially

V1  
1 - -  aligned; hence, there is no pendulous mo-

m r tion to be considered for the tether.m2 r

Again, for convenience, it is assumed

that m >> m , hence the c.g. of the sys-

2 0 tem is located at m. Consequently, the

c.g. is, now, considered to circulate about

(b) p at the rate P E p1. In addition, the

Fig. IV. 1. Sketch Describing orbit for m I is allowed to be circular;

(a) Stabilized and hence, are a priori, chosen con-

(b) Rotating Tether hence, and r1 are a priori, chosen con-
Systems. stants for these examples.

The mathematics which is used in describing this example's results is

found in Appendix C. The formulation developed there includes the various

assumptions noted above, and is specialized for the idea of a stabilized config-

uration. That is, the position parameters (t, 0) are fixed in value, with

As an aid in generalizing the results obtained here, the equations have

been written in a dimensionless format. In part, the specific tension para-

meter, 7 ), is expressed in terms of the dimensionless tether length,

rl(P
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X ( e/rl). That is, (see eq. (C.10b)) 7r= r(X); or,

[ 3 + ( .0 (IV. 1)

In this equation the quantity X /(1-X) defines a second length parameter for the

problem; namely,

_x
. (IV. 2)1-X r

2

Equation (IV. 1) does not describe the "tether tension" in a form expressing

the "gee-level" developed at the suspended particle (m2). In order to recast 7

so that it can be expressed as some multiple of a reference "gee", the expression

(above) is modified to become the "specific force" parameter,

F/m
F / 2  (IV. 3)
g go

This quantity (F ) is recognized as the specific tension (F/m2) expressed in

ratio to the reference "gee" value (go). Since this reference value is re-

lated to the radial displacement, ro, then it can be shown that (see section C.5,

Appendix C),

1

or, making use of eq. (IV. 1),

g -14 r 1)2 (IV. 4)
1

As an example for eq. (IV.4), suppose that r is selected to be the
O

average geoid radius for earth, then F would represent F/m expressed in
g

!'earth gees". (It should be evident that this expression remains a dimension-

less quantity; and that it has retained its universal character).
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slope =2. 755 gee's per unit of X.

8

4

0
0 2 4 6 8 10

X (units * 10 - 5 )

Fig. IV.2. Specific Force (in gee's) Developed on a Tether Suspended Mass, as a
Function of Tether Length (X - /rl). Reference Circular Orbit at
150 n.m. Altitude.
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The above expression for (F ) is found plotted as a function of X (= L/r1)

on Figs. (IV.2, IV.3) below. Note that Fig. (IV.3) is actually an extension of

Fig. (IV.2); it encompasses the range 10 - 4 < X < 2(10-3). (For purposes of

definition a value of "", the tether length, corresponding to X = 10 - 4 is:

-= 2183. 664 ft., when rl corresponds to a 150 n.m. orbit altitude. Also, it

is seen, from Fig. IV. 2, that a tether of this length would allow m 2 to experience
-5

a specific force (F ) of (approximately) 27.55 (10 ) gee's. This level of force is

recognized to be a consequence of the "unbalance" provided by the stabilized

system; it represents the net difference in centrifugal force and gravitational

attraction experienced by m 2 in its stabilized configuration).

Fig. IV. 3 extends the F (X) range, shown on the previous graph; also, it
g

overlaps a portion of that graph. (Note the curve (a), on Fig. IV.3, and its

corresponding scale).

As an example of these data: From the figure it is seen that a specific force

of 10 - 3 gees is developed on a tethered mass having a connecting line (X . 364)

1.3 n.m. long (this corresponds to a length of approximately 2420. meters).

It should be obvious that these stabilized systems have a potential to de-

velop large variations in the "gee force", acting on a suspended mass for

various scientific and other purposes. In the stable configuration small line

lengths are associated with very low-gee levels while long lines would simulate

more moderate values.

In addition, experiments which require controlled levels of gee, over a

range of intensity (but within a realistic variation) could be accomodated by

these same tether suspended mass systems. These schemes are conceptually

more desirable than others which have been proposed - especially those which

have been envisioned to operate in conjunction with rotating space stations.
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There, a desired level of "gee" might possibly be no larger than the force varia-

tion which would be experienced as a consequence of the rotation itself. Also,

it should be mentioned that (now) many operational problems, associated with the

locating and stabilizing of such systems, can be overcome if one would take ad-

vantage of the control and handling concepts described in the foregoing sections.

IV. 3 Transfer From a Stabilized System.

Aside from the applications just discussed, the tether suspended mass

system is also ideally situated to initiate a transfer maneuver. In its stabilized

configuration the suspended particle is positioned where it could undertake a trans-

fer simply by having the tether "cut", thus detaching the suspended mass.

When this particle is released, it immediately commences the transfer

maneuver from (say) an "apocenter", moving toward a new "pericenter". Nec-

essarily this statement supposes that m 2 is released from a position between m

and li.

A mathematical analysis, which is set down in (a part of) Appendix D,

considers this same problem and develops the formulae for the characteristics

of these transfers. There the developments are directed toward obtaining those

equations which describe the transfer parameters, but does so in terms of

X (~/r I ).

Of particular interest, here, are the expressions which define the state

conditions at pericenter. Recognizing that a converse maneuver (pericenter-to-

apocenter transfer, with m 2 released from "outside" of the m i orbit) may be of

interest, both sets of equations are tabulated in Appendix D.

Table D. I lists several of the orbit parameters for these transfer modes,

each given in terms of the dimensionless length (X). To illustrate these quantities

several are noted below (for transfer to a pericenter):
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(a). As a description of the "'aunch" conditions:

( 2 1 (IV. 4)

lo 1 o

where (r2 , V2) define the state for m2, stabilized.

(b). As characteristics of the "transfer path",

(1). The specific momentum, and eccentricity are:

h2 2 ] .

- (1-X) , and E = [3 (1-X) +x 2 ] .  (IV. 5)
h 2

(2). Orbit "size" and transfer time;

a2  1-X t 1 1-X 3/2
-- =and - . (IV. 6)

r 1  2-(1-)3 P 2 1-(1-X)3

wherein, P is the period of the reference orbit.

(c). Radius and speed, at the pericenter:

r2 (1-X4 p2  2-(1-4)3
and - . (IV. 7)

r3 ' V1  (1-X)2r 1  2-(1-) 1 (1-)

(d) The specific tension, in the tether, just prior to release, is de-

termined from:

2 /- [ 3 + "-XX (IV. 8)
m 2 V1

(Note, this last expression is identical, in form, to eq. (IV.1). In all of the above

equations (-)1 and (-)2 refer to particles m 1 and m 2 at their appropriate positions).

In order to show how these quantities vary, with X, each has been plotted.

These data are found on Fig. (IV.4, IV. 5), below. On each graph the abscissa (X)
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extends over the range 0 s X 0. 8; this is rather extensive in view of the de-

finition (X 4 /rl). Of course, these graphs are not restricted to any particular

altitude range; however, the equations were developed from two-body considera-

tions and have an implied constraint.

The purpose in preparing these figures was to indicate the general be-

havior of these quantities, and to note any pecularities which they might exhibit.

Conversely, the most "applicable region" for these two graphs, insofar as

realistic operations are concerned, would be that region adjacent to X = 0. There

one sees how the plotted parameters might be influenced by "actual" tether lengths.

From studying these figures one can determine the relative degree in change,

which should be expected for an "extended tether line", in a stabilized tandem

configuration. (The reader is cautioned to view each graph rather carefully and

to ascertain whether or not a multiplier is implied for each of the curves).

It would seem redundant at this point to undertake any extensive discussions

on these curves. Certainly the information shown there is readily understood

without additional comment.

IV.3.1 A Comparison Transfer.

The transfer operation, above, will be compared to an equivalent

Holuann maneuver. This particular comparison was selected because the

Hohmann transfer is well known, and because its description has a simplicity

of representation, The mathematical description of this maneuver is found in

section (D. 8), Appendix D. For quick reference, the pertinent expressions may

be found listed in Table D. II, Appendix D.

A graphic comparison and description of these two transfers operations is

found on Figs. (IV.6) and (IV. 7). There, one will find, as an example, a transfer,

to a 70 n.m. (pericenter) altitude, from circular orbits ranging up to 500 n. m.

altitude.
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On Fig. (IV. 6) the tether length (Z), needed to initiate these transfers,

is plotted against the circular orbit altitude (H). Also, on the same figure,

the circular orbit speed (V1 , in f/s) is plotted versus the same altitude scale.

To aid in clarifying the information found on this figure consider the

following example:

Suppose a particle is suspended from an orbiting spacecraft which is

orbiting earth at a 300 n.m. altitude. If the particle is to be transfered to a

position 70 n.m. above earth, using a free (ballistic) are, it would need a tether

e -- 34.1 n.m. long. In other words, the particle would be released from a

gravity-gradient stabilized position 34.1 n.m. '"below" the spacecraft; hence its

"release altitude" would be (approximately) 265. 9 n. m.

Because of its "suspended" position, the particle, at release, would have

an "orbiting" speed V2 (=(l-X) V1 , see eq. (IV.4)) of 24647. f/s. (Note that

from the figure, V1 a 24873 f/s; and, by definition, X _ -/rl 1 . 9909).

From the information plotted on Fig. IV. 7, the corresponding Hohmann

transfer (from a 300 n.m. circular orbit to the 70 n. m. pericenter) would re-

quire a Av - 395. f/s. This means that the particle would be "ejected" from the

spacecraft, against the orbital motion, at a relative speed of 395. f/s.

Also, as an added bit of information, the specific energy changed (AE)

needed for this transfer maneuver can be determined from Fig. (IV. 7). For this
2

example, one can read, AE/E1  0.032; and since E1  - V /2, with V cor-

responding to the 300 n. m. (circular orbit) altitude, then it is easy to show that

AE =- 9.898 (106) f2/s2

IV. 3.2 Influence of Launch Speed on the Transfer.

The transfer operation just described was initiated from a gravity-gradient

stabilized configuration; with Z, 8 fixed in value, and 0. =  = 0. Now, according

to the investigations described in section III it is also possible to locate a particle
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at a given t, 0 position with 0 =0, but t > >0 In this case a transfer

maneuvers may not necessarily be initiated at the same physical state conditions.

To account for this difference (in t , primarily) the analysis in Appendix

D was modified to show the influence of .~ on these transfer operations. In that

analysis, - would replace the speed Jx , (this corresponds to a radially directed

velocity component). Subsequently, the influence of the parameter on the transfer

is demonstrated there. (It should be recognized that these modified maneuvers

do not initiate at (say) apocenter, per se, but begins at a location beyond that

position (for x < 0). Correspondingly, the subsequent pericenter's altitude is

altered). As an easy reference, illustrating the influence on this '"residual ve-

locity", x, a tabulation for several of the transfer quantities is given in Table

D. III, Appendix D. The parameters listed in the table are derived in section

D. 16 of the appendix.

In section D. 12 (Appendix D) an equivalent length-of-tether problem is

described; and a method of solution is outlined. There, the influence of x, on

the transfer maneuver, is converted into an added length of tether. For this

representation, the problem is solved to yield that length of line (eq ) which
eq

should be provided in order to attain a same pericenter radius, from a (purely)

stabilized configuration. Necessarily both of these situations are presumed to

be referenced to a same base orbit (i. e., all maneuvers are referred to the

same circular, reference orbit, rl)

To illustrate this equivalence situation, a sample case is outlined below.

For this example the reference orbit is assumed to be at an altitude of 300 n. m.

From a stabilized tether the test particle (m2) is released, and should attain

a pericenter altitude of about 70 n. m.

Now, in illustrating the influence of x, several values of X'o ( x/V1) are

assumed; and, the equivalent length of tether (teq) is determined for each using

the scheme described in section D. 12, Appendix D.
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For this example the base orbit (rl) is circular; its altitude is 300 n.m.;

and, the vehicle (m ) moves at a speed, V1 = 24873.06 f/s. The static (stabilized)

tether length is chosen as (to = ) 34. 076 n.m. When m 2 is released from this loca-

tion it reaches a pericenter which has an altitude of (approximately) 70.454 n.m.

For several assumed values df - ( - x), nondimensionally defined as X'o, the

added length (of tether, AC) to reach the same pericenter altitude is calculated.

These results are tabulated below:

Pericenter
Increment in

Alt., H
p Tether Length

/V) (n. m.) A- (ft)

0* (0.0 f/s) 70.454* 0.0*

0.001 (24.87 f/s) 70.38 68.71 (20.94m)

0.002 (49.75 f/s) 70.202 228.01 (69.50m)

0.005 (124.4 f/s) 68.932 1594.23 (485.92m)

0.01 (248.8 f/s) 64.544 5692.22 (1734.99m)

0.02 (497.5 f/s) 48.758 20491.49 (6245. 82m),

0.05 (1243.7 f/s) -26.084** 93349.43 (28452.96m)

* This is the static stabilized tether situation ( = 0).
**A pericenter below earth's surface.

From the table one can see that there is only a small effect on the peri-

center (and only a small change in tether length) so long as the "terminal pay-out"

rate ( - Ix I) is below, approximately, one percent of orbit speed (V1). However,

corresponding to this added speed, the increment in tether length (to be added to to,

accounting for the effect of i in redefining the pericenter) would amount to roughly

2.5 percent of the initial length.

It is equally apparent that the effect of Ix I is not linearly related to AC

(the added tether length); the tabulated information most vividly exhibits this fact.

E.g.; increasing the speed Ix I by a factor of 5 is equivalent to more than a
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16 fold increase in added tether length. On the basis of these findings, here, it

would seem that an advantage may be had by not nulling the residual speed(s)

for many of the extendible tether operations, if a transfer maneuver follows.

IV. 4 Transfer from a Rotating Tether System.

Having seen the advantage to be gained by adding a velocity increment to

an otherwise stabilized tether system, it is logical to extend this idea, and to con-

sider transfers originating from rotating tethered mass systems. The concept

which is to be examined, next, will employ the tether as a device used to induce

the velocity increment. Here the tether connected mass (m2) will be assumed to

rotate about the main orbiting particle (ml) at some prescribed rate (6).

In order not to complicate the analysis it will be assumed that during

rotation the tether remains inelastic and has a fixed length. In this regard the

transfer can be accomodated from any 0-position by simply "cutting" the line

and allowing m 2 to (immediately) proceed with the transfer maneuver along a

ballistic are. Quite naturally, one of the main purposes in this simulation is

to determine what altitudes might be reached, by the particle (m2), correspond-

ing to these acquired pericenters.

As an aid in this investigation the calculations were carried out by means

of a specially developed computer program. This is described, mathematically,

in Appendix G; there all of the general and particular expressions needed to

solve for this situation are developed.

In the operation of this program the fixed-length tether's rotation is con-

strained to the plane of motion for the main vehicle (ml). The main variable of

influence (here) is the relative velocity which is developed as a consequence of

the rate, 8. (Of course, the gravitation attraction on the tethered body (m2) is

accounted for in these expressions. Also, the program accepts rotations which

are "with" and "against" the main body orbital rotation).
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At each step in the calculation procedure the output lists a pericenter

radius and speed; the angle of transfer to pericenter; and its relative position

and speed; also, the line tension. As a consequence the investigator may

monitor (and trace) the history of the relative motion - as well as the developed

pericenter values - throughout the entire computational procedure. A perusal

of Appendix G is recommended for those readers who are interested in the formu-

lation and the possible output quantities from this program.

In order to illustrate the effect of a rotating tether system on this transfer

operation a study case has been examined, using several 6 rates, for a given

base orbit. This will be described and discussed below.

IV. 4.1 Example.

For this sample case a circular reference orbit at an altitude of 300 n.m.

is assumed. The rotating tether system will be considered to operate at rates

of: 1, 2, 3, and 6 deg/sec.; and, to use a 5000 ft. (1524.m) line. As before, it

is assumed that m 2 << mi; hence, the rotating mass is not presumed to perturb

the base orbit.

For these operations the tether is assumed to have reached its "steady-

state" of rotation; consequently, any "transients" which occur are a consequence

of the dynamics in the formulation. Also, the analysis will be set to begin at

S00; this selection is arbitrarily made, it has no influence on the output results,

per se. A schematic of this problem is shown below (Fig. IV. 8).

From this sketch it is seen that v is the relative velocity for m 2 ; it is due

to the rotation (9). Now, as a consequence, the "inertial velocity" V7 is;
2

V2 V1 + vi2 1

where v - ( X e ) 0. As shown on the figure, this system is rotating at + 8.
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In e Incide.tally, this direction will be used for

e + the data presented be:ow since "negative

rates" leads to larger pericenter radii.

6
(a). Results.

V ~w-.- - V- m

e 1 Selected data from these example

situations are presented, and discussed,

below.

(1). Using the values of 6

noted above,several curves, each showing

,a trace of the pericenter altitudes which

could be developed from these rotating

Fig. IV. 8. Schematic of systems, are depicted on Fig. IV. 9.
the rotating tether system.

The left ordinate scale describes
Here r1, 1 are fixed values;
v relative velocity of m (pericenter altitude (in n.m.), correspondingv relative velocity of m2 (vSe, wheree - - to each 8, and for a release at the e valuetX e , where e e e ).

z z er ep) noted on the abscissa. (Incidentally, due to

the symmetry of these results, data are

plotted only for 0 6 1800; for the second half of the 8-rotation-this curve is

repeated, but from 130 to 0 !)

The right hand ordinate indicates the change in pericenter altitude (AH)

which occurs for a transfer originating at each of the O-values noted on the

abscissa.

From this figure it should be noted that, at 6 = 0, the initial altitude (H)

> 300 n.m. (and, correspondingly, AH < 0). This is indicative of the initial

position caused by the tether length (Z = 5000 ft) in this problem.

As would be expected, a largest change in (pericenter) altitude is acquired

by the system with the largest 6-rate; and, for a "release" at the 0 = 1800 position.
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At this position the particle (m2) is moving counter to the orbit's motion, hence

it produces the largest change in 'launch" speed. Also, here, the position (r 2)

of m2 is smallest; so, the combined effects couple and lead to a largest change

in specific energy.

Studying Fig. IV. 9 one can see that for a rotational rate of 6 deg/sec the

system can lead to a ballistically attained pericenter which is below the geoid's

surface. However, at a rotation of 3 deg/sec the best that can be done (here) is to

reach a pericenter at approximately half the circular orbit altitude. It appears

that if this system is to produce a pericenter, at 70 n.m. altitude, it would need

a rotation (6) of roughly 4. 5 deg/sec. Of course, this same altitude could be

reached from a release at (say) 6 1360 using the 6 deg/sec rotational rate.

Thus, with a large enough rotation (such as the 6 deg/sec) this system may reach

almost any desired (lower pericenter) altitude by means of a properly controlled

release position (0). Conversely (though not shown here), if the rotation would be

reversed this system would allow the suspended particle to ascend to higher*

altitudes, also.

(2). Figure IV. 10 is included to illustrate the transfer angle (Ap2),

which m 2 must pass over, in going from its release position (6) to the acquired

pericenter. Thus, this figure is a companion to the previous one (Fig. IV. 9).

What is most interesting here is that for these rotation rates (10 /sec

through 60 /sec) there does not seem to be much change (or influence) produced

on the transfer angle. That is, except for the region around 0 900 there is very

little change (if any) noted in Ap. In particular, for a release beyond 80 1200

(through 6 = 180 ) the same transfer angle is needed for all of these 0-rates.

Incidentally, this figure has an abscissa scale extending over 0 5 8 1800

only. This is (also) due to the symmetry found in the results. Thus, the curve

from 1800 6 360 can be read by imaging the present curve into the 0 = Ir

line. Of course, for 08 1800 the particle must move-over an are (Aep) > 1800

to reach the acquired pericenter.

*Systems of this type are not considered at this time, though the program is
capable of these simulations.
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Fig. IV. 10. Transfer Angles (Ap), Required to Reach Pericenter, for a Rotating
Tether Suspended Mass Particle.
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(3). The information provided on Fig. IV.11 notes the specific

force (F/m2 ) developed in the tether line (as a tensile force) for each rotational

rate used here. This quantity (in f/s 2 ) is referenced to the 0-position (in degrees)

for each rate. (Note that the scales are incremented differently for each of these

rotations).

(It would be informative to compare these figures with some of the (rotational)

curves presented on Figs. 1.4(b) and 1.5(b) (section I). The similarity in geometry

is very marked (as it should be)).

Here, again, the abscissa scale extends over only half of the intended

range. Once more, this has been done in view of the symmetry which is apparent

for these curves.

A cursory look at this last figure will indicate that the specific force (F/m2)

decreases slightly, as the system approaches the 0= v/2 position(s), and in-

crements again as the 0 = f position is approached. This variation is repeated

as the system continues to rotate to the 3v/2 and 217 locations, respectively.

The apparent change in force (or the amplitude of these curves) is relatively

unaffected by these rates of rotation. It is evident, now, that for moderate rates

(up to 6 deg/sec) the primary force to be overcome, by the tethers, in these

systems is that due to centrifugal action.

In connection with this mentioning of force levels, it is worth noting the

rather large change in "gee" levels which the specific tensions imply; and, the

variations in these due to each rotation (6). A tabulation is shown below to

illustrate this point:
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Fig. IV. 11. Specific Force Developed in Tethers due to System Rotation(s).
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Maximum Variation;
Rotation Rate F/m 2 (earth's gee's) AF/m2 (decrement)

1 /s (1/6 rpm) 0.0537 2.0%

20/s (1/3 rpm) 0.2015 0.75%

30/s (1/2 rpm) 0.443 0.45%

6 Is (1 rpm) 1.738 0.115%

IV.5 Discussion.

The studies described in this section of the report have considered several

tether system applications which could be used for purposes other than those dis-

cussed in sections II and III. In particular the systems have been employed as the

means to develop (various) gee-field levels, and for the initiation of transfer

maneuvers. To a large extent these schemes require the establishment of a

stabilized suspended body configuration. In this regard some of the previous

handling and maneuvering capability studies would be directly applicable to pro-

viding for such configurations. (Of course, other approaches would be equally

applicable for some of the same purposes).

Experimenters, planning to make use of space stations and other non-

maneuvering vehicles, would quickly recognize the advantage of tethers as de-

picted here. Once a stable tether configuration is achieved, a connected experiment

package is essentially at a constant gee level, and would remain so (within the

limits of the natural gravitational variations). Also, the very wide variation* in

gee-level which is available under this concept makes the idea amenable to a large

number of applications -- from those needing near zero acceleration to (say) those

in the vicinity of one-to two-tenths gee. Recalling that there are cyclic changes in

the gee levels, produced by rotating tethered systems, and especially at the lower

gee ranges, then the stabilized configurations are much more attractive for

precision work.

*Experiments in manufacturing processes, bio-medical and engineering, artificial
gravity, etc. could fit within these ranges. Also, these same ideas could have
operational engineering applications for the vehicle itself.
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In the analysis pertaining to orbit transfers the philosophy there was to

describe systems which could serve to achieve "initial values" leading to a

priori defined pericenter radii. For these purposes several variations of the

basic idea were pursued. In each some added capability was introduced, with

a subsequent result of enhancing the system's ability to better achieve this

common goal. That is, the ideas here have evolved from a basic stabilized

system, through the addition of a "vertical" velocity component, to a system

which was described as a pure rotating tethered body concept.

It is to be expected that many other uses of these same systems (and

concepts) will be brought to light by those persons who are planning to make use

of "space" as a future experimental laboratory environment. Hopefully, these

data will find their way to such prospective investigators; and that they, in turn,

will see their needs described here.
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A SATELLITE TO SATELLITE ORBIT DETERMINATION

AND ERROR ANALYSIS PROGRAM

Analytical Description

V. 1 Introduction.

Many programs exist for the determination of orbits based on ground

observations. If such programs are adapted to describe the relative displace-

ments for two orbiting satellites, moving in close proximity to one another,

the errors in each individual satellite's position, while possibly acceptable for

itself, will project into completely unacceptable errors in their relative position.

In order to avoid this difficulty an orbit determination schedule, based

on the relative equations of motion, has been developed and is presented here.

V. 2 General Discussion of Features for Various Orbit Determination and

Error Analysis Schedule.

The component parts of any orbit determination scheme are numerous;

each may be introduced in a variety of ways, thus producing a large variety of

different possible approaches. In the following paragraphs there is to be found

a description of one such approach, its various parts, and a brief justification

for the methods selected.

(a). State Vector.

The simplest and most satisfactory description of a relative motion is

one which is comprised of the cartesian components of the relative displacement

and velocity vectors; incidentally, this description is not subject to the singulari-

ties which arise from the use of the Keplerian elements. Other quantities which

are to be determined in the problem are adjoined to the state vector; it is planned

here to include, among these quantities, the central mass parameter, Iu.
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In our case the state vector will consist of:

AR the relative displacement vector.

AR the relative velocity vector.

It will be augmented by:

(1). Dynamic biases in:

(a). /p, gravitational constant; and

(b). possibly other quantities.

(2). Observational biases, due to:

(a). Platform alignment errors; and

(b). Platform drift rates.

(3). Errors in the position and velocity of the reference satellite.

(b), Equations of Motion.

The state vector is propagated, in time, by numerical integration of the

equations of motion.

In our case, these expressions contain the familiar equations of motion

for the "mother" satellite; and could include a similar set to be written for the

second, or "daughter", satellite. However, when the two bodies are in close

proximity, large errors may arise from the simple subtraction of components;

therefore, a set of relative equations of motion has been chosen for use here.

Unfortunately, a set of linearized expressions is not adequate in all cases, since

during the motion large relative displacements may occur. For this reason

Lancaster's equations* of motion have been selected for use in this formulation.

Generally speaking, the equations are written in a modified Encke form.

The procedure requires that one numerically integrates the "deviations" from

a Kepler orbit. This method, for a single satellite, is well known and is des-

cribed in reference [1 .

*See reference [2].
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The equations of relative motion are expressed in Lancaster t s form, (see

reference [2]); these are given below for reference purposes:

The equations for a Kepler orbit are written as follows:

T = C + A (1-cos C) - B sin C, (V. 1)

r = [1-H (1-cos C)] r 0 + LD (1-cos C) + N sin C v 0 ,  (V.2)

v = - (P sin C) r 0 + [1-S (1-cos C)] v0, (V.3)

where

r = position vector at time t, r = r ,

v = velocity vector at time t, v = vi ,

E = eccentric anomaly at time t,

1/2
a = semimajor axis, b = 1/a, c = a

k2 = P = gravitational constant,

r - v = scalar product of r and v,

A = r0 o/(kc), B = -rb, T = ktb/c,

H = a/r0 , D 
= a(r 0  v0)/p, N = r0c/k,

P = kc/(rr0), S = a/r, C = E - E 0,

and a zero subscript indicates the value at time 0.

Let subscript 1 on a symbol designate the value of that symbol for

particle 1, on orbit 1, and subscript 2 the value for particle 2 on orbit 2.

Next, define:

y= C2-C1, C = r2-rl X v-v r=T2-T1

and
a= A -A .
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Also, let;

= B2-B, 77= H-H, 6= D-D, V = N -N1,2 1 21 2 1 21

p= P 2-P 1, r= $2-S 1

If a subscript 1 is placed on all symbols in eqs. (V. 1, V. 2 and V. 3);

and if the resulting equations are subtracted from the set with subscripts 2 on

all symbols, one obtains:

T' = Iy + A' (1-cos y) - B' sin y, (V.4)

= (1-H1F) c0 + (D1F + N1G) X - (H2Q + r7F) r20

+ (D2Q + 6F +N2R + G) v20 , (V. 5)

= - P1 G E + (1-S1F) X - (PR + pG) r20 - (S2Q + F) 20; (V. 6)

wherein

F =1- cos C1 , G = sin C1 , (V. 7)

T' = 7 + /fG - aF, (V. 8)

A' = A 2 cos C 1 + B 2 sin C1, (V. 9)

B' = B 2 cos C 1 - A 2 sin C1, (V. 10)

Q =cos C1 (1-cos y) +sin C sin y , (V.11)

R = cos C 1 sin y- sin C 1 (1-cos y). (V. 12)

To obtain equations for a, fi, 7', 7, 6, V, p and a which do not suffer

a loss of significant digits due to the subtraction of nearly equal numbers, one

may proceed as follows:

kcA = rO 0'
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k(c2 A2 - 1 A 1 = r 2 0  v 2 0 - r 1 0 * V10,

k[c2 (A -A ) + A1 (c -c )] = r20 v20 - r10 * V10

In order to avoid the loss of accuracy which occurs from the subtraction

of nearly equal numbers the differences are written as follows:

kc2o= r20 * v20 - r10 1 Vl0 - kA1 (c2-C1), (V. 13)

= r10 (bl-b2) - b 2 (r20 - r10), (V. 14)

c 7 = - kt (b -b 2) - T (c -c) ,  (V. 15)
2 1 2 1 2 1

rl07 = a2-al-H2 (r 2 0 -r 1 0), (V. 16)

6 = a2 (r20 20 - r10 10) + (a2-al) r10 v0 ,  (V.17)

kv = c 2 (r20 - r10) + r10 (c2-c ) ,  (V. 18)

r 1 0 r = k (c 2 -c) - P 2 [r (r 2 0 -r 1 0 ) + r 10 (r 2 -r 1 )], (V.19)

rlc = a2 -a-S 2 (r 2 -rl), (V. 20)

r 1 v -r v r + v (V. 21)
r20 v20 - r10 v10 0 ' 0 + 0 v20' (V. 21)

r20-r = (r10 + r20 )/(r0 + r 20), (V. 22)

r2-rl= (r + r 2 )/(r 1 +r2), (V. 23)

c2-c1 = (a2-al)/(c1 + c2), (V. 24)

a2-al = ala2 (b-b2), (V. 25)

bl-b2 = 2(r20 - r10)/rl0 r20 + X0 (V0 + v20 )/. (V. 26)
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In the derivation of eq. (V. 26) use was made of the expression:

b = 2/r - v 2 /. (V. 27)

(c). Covariance Matrix.

The error ellipsoid about a state estimate (see paragraph (b)) is given by:

Covariance Matrix

AAR (AART AA]R Ab Ab )
s u

AAR

AUG s

Ab

where: Abs = hiases to be solved for,

and Abu = biases whose effects are considered, but which are not to

be determined.

Here E is the expected value; and, the superscript T is used to denote the

transpose of a vector.

For economy of storage, and economy of computation, the covariance

matrix is partitioned as indicated below:

AUG T  B

wherein
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AAR1  (AART n&AT Ab T
P E AAR

Ab

dAAR) Ab T)

C E AAR

Ab

and

B E (Ab u AbuT)

The biases, Ab , included in P, are those biases which may be
s

corrected by the differential correction process; however, the biases Ab
u

are not expected to be estimated.

(d). Propagation of the Covariance Matrix Between Observations.

While it is essential to update the state vector between observations, and

to do so with extreme precision, the requirements for propagating the covariance

matrix are not as rigorous. Formally, the propagation is accomplished by:

P(t) = (t, to ) P(t )  (t, to) 0
wherein,

0 (t,t ) = (t(V. 28)
o S(to

with S being the state vector:
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The partial derivatives in equation (V. 28) may be evaluated by either

integrating the variational equations, or by the "secant" method. Each method

requires the integration of a large number of differential equations, making the

attendant computer program costly to run. Fortunately experience with single

satellite orbit determination programs has shown that for arcs which are not

too long the partial derivatives obtained from a Kepler orbit are of adequate

accuracy. However, longer arcs may be accomodated by piecing together several

short are matrices, along changing reference orbits, as indicated below:

0 (t, to) = (t, t RN ) (N tRN-)...

... 0 (tR1 to

Here t R, t RN_ etc. are "rectification" times, i.e., times at which the

reference Kepler orbit is changed. (The necessary partial derivatives, from

Lancaster's relative equations of motion, are derived in Appendix A).

(e). Observation Processing.

The modified Kalman scheme, for observation processing, is well known.

Its equations are summarized below:

AR (tOBS + 0) = AR (tOBS - 0) + AS, (V. 29)

Ab s  Ab

P(toBS + 0) = P(tOBS - 0) + AP, (V.30)

C(tOBs + 0) = C(toBS - 0) + AC, (V.31)

B(tOBS + 0) = B(tOB S - 0); (V. 32)
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where

AS = KAy,

AP= - K(HP + FC ),

AC = - K(HC + FB), (V.33)

T T -1
K = (PHT + CF ) Y

T T TT T 2
Y = HPH + HCF + FC T HT + FBF + E .

Quantities may be transferred from the Ab to the Ab category by zeroing
S U

the corresponding component of K.

The new symbols in equations (V. 29 - V. 33) are defined as follows:

Ay observation residual,

H , derivative of the observation with respect to the state,

F -,- derivative of the observation with respect to the bias,
ab

2 u

S = noise in the observation.

The H matrix, for relative range and range-rate, is described in

Appendix A,4, eqs. (H. 1) and (H.2).

V. 3 Summary and Conclusion.

(1). The equations and flow logic for an orbit determination and error

analysis method, based on relative equations of motion, has been obtained.

(2). This scheme (or a similar one) is necessary when an accurate

determination of the relative position and velocity, for neighboring satellites,

is needed.

(3). The scheme may be used to detect the onset of dangerous instabili-

ties in (say) reel-in, reel-out operations, for tethered vehicle.
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CONCLUDING REMARKS

VI. 1 General.

The information provided in this report is the consequence of an in-

vestigation directly related to orbiting tethered bodies, and to the description

of a relative motion, orbit determination procedure. It is expected that these

results will aid materially in the design and planning for future space opera-

tions.

From the very nature of these tether studies, it would be useful to give

consideration to this information whenever there is a need for local transport

capabilities, in space; or, when extra vehicular activities are contemplated.

The analytical and numerical work reported on here clearly indicates

that tethers may provide for controlled handling of cargo, materials, experi-

mental packages and for rescue operations in space. The ability to transport

mass particles to and from orbiting spacecraft, using light weight lines, and

to do so by simple manipulative means, suggests a marked advantage over

other methods. The fact that these connectors can be reused, time and time

again, and for a variety of purposes, makes them even more attractive. Add

to this the capability to provide transport over a large range of distances - up

to tens of kilometers - it would be difficult to visualize the use of other systems

for most of these same operational situations.

From a perusal of the foregoing findings one can easily conclude that

tethers have not been given the consideration warranted as useful work and

safety devices. Most likely this past neglect has been largely a consequence

of not knowing how to manipulate them so that adequate control could be main-

tained. Knowing, as we do now, how easily these systems can be made to

behave, as desired, it seems reasonable to conclude that they will be more

favorably considered in the future.

170



In one of the latter sections of this report it was shown (mathematically)

that by means of a "stabilized" tether a mass particle could be properly located

so that at release it would move, immediately, onto a free transfer arc. This

scheme affords a way to initiate transfers by a system which can be used over

and over again. That is, if the tethers are rewound, after each transfer, the

lines obviously have an almost limitless life-time. Of course these same lines

could be employed for many other operational uses as well.

For instance, the same gravity gradient, stabilized, static tether offers

an ideal way to achieve a rather wide range of "gee's". (Necessarily the range

afforded by this scheme has practical limits due to the length(s) of line which

can be utilized). The advantage provided by this operation is that whatever the

gee-load developed, it would have very little variation once the system is stabi-

lized. The only variance which should be experienced, by such a suspended

mass, would be that due to inhomogeneities of mass within the attracting primary

(e. g., masscons). It goes almost without saying that the static line would allow

for a gee-range from practically zero to whatever upper limit could be provided

by a (practical) length of connecting line. This method suggests the means to

conduct a variety of experiments, each of which could depend on a different

level of "gee". Similarily, the same suspension concept fits well into the needs

for some proposed space manufacturing methods, and for engineering require-

ments of the spacecraft itself (e.g., liquids transfer).

In the paragraphs above there was mention made of transfers from

"stable" static lines. It is worth noting that transfers may be initiated by

other means, or by modifications to the static system. Two illustrations

of these operating schemes were described and examined in the report. Those

variations considered were, first, the influence of a velocity component added

to the stable (static) tether; and, second, a whirling (or rotating) tethered

mass system.
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These examples, illustrated in the report, were aimed at the establish-

ment of a low altitude pericenter -- allowing for a subsequent reentry maneuver.

However, it should be apparent that these same ideas can be gainfully used to

accomodate other transfer operations; and, possibly, for other uses all together

different from the above.

In the first part of the investigation undertaken here, studies were made

to examine the consequences of the system's mechanical properties coupled with

its gravitational attraction. In a similar manner the influence of orbit eccentri-

city was examined, also. This last parameter appears as an added factor in

studies of the suspended body's motion state.

Prior to the introduction of eccentricity the aim was to determine how

the several parameters (mechanical and otherwise), singly and coupled, affected

the system's behavior. In these evaluations the state variables were non-dimen-

sionalized, and the expressions simplified so that the main influences were the

ones brought out. The information sought for here was mainly descriptive in

nature rather than explicit definitions of the motions. (A review of the summari-

zation (see section 11.3) will be more definitive of the implications in these

statements).

Following from these first studies a look at the force(s) generated by

rotating and/or oscillating systems was made. The definitions found here are

in evidence over and over again throughout the report (either directly or indirectly),

as other phases of the investigation are examined.

With the background which is available, on the use and application of

tethered body systems, it is to be expected that their utility will be more in

evidence, in the future. It should not be concluded, however, that follow-on

tasks are not to be undertaken - relevant to the design and implementation of

these schemes - this would be an erronous supposition.
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There are obvious extensions of the work (reported here) which should

be completed. And, there will always be inovations and modifications which

need to be examined. Some of the more interesting tasks, worthy of attention,

are those which would consider the influence of tether mass, per se; and the

sensitivity studies associated with the control and handling of these systems.

The natural extensions of this reported work, and the additional information

on the method studied (herein) are tasks important to a fuller understanding

of tethered operations. Hopefully interested and inquisitive investigators will

be motivated (sufficiently) to continue the work. In the opinion of the present

investigator this is an interesting and challenging problem area, one which is

worth the effort of further study. Also, it seems that the applications of this

concept represent a versatility which has somehow been overlooked or passed

by ih previous situations.

The orbit determination scheme, described here, is an inovation of

previously defined methods, and represents a concept which easily could be

modified and applied to tether operations. An examination of the mathematical

developments will verify that the scheme is composed from a particular set of

relative motion expressions and the familiar Kalman filtering technique. The

basic difference between this and other orbit determination methods is that the

present one is referenced to a moving base point -- the main vehicle.

It should be noted that the mathematics of this method are complete, as

reported. Consequently, the scheme could be implemented as a working pro-

gram without difficulty. This program would most likely be cast into an

Encke scheme; and, for this, a good bit of the formulation has already been

worked out (though it is not outlined here).

The implementation of this method to the tethered bodies problem is

envisioned as a scheme to warn of the onset of undesired motions. Possibly,

the addition of a means to monitor tether tension and orientations, within the
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program, could provide the indicators needed for these warnings. Regardless,

with the information available now - concerning the motions for (say) controlled

tether motions - the orbit determination program could be keyed to this system.

Such a concept would provide for a needed link in tether "design", insofar as

safety and versatility are concerned.
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APPENDIX A

MATHEMATICAL DEVELOPMENTS *

A. 1 Introduction

A recent paper by Lancaster [21 outlines a procedure for calculating

of the position vector, c, and velocity vector, X, of one space vehicle (denoted

by subscript 2) relative to a reference vehicle (denoted by subscript 1). Both

vehicles are assumed to be in Keplerian motion about earth, whose gravitational

constant /s GM. The procedure described there is exact (no approximations

are introduced) and is designed to avoid the loss of significance, due to subtraction,

for the case when the two vehicles remain close together for a long time.

In this appendix expressions will be obtained for the partial derivatives

of the vectors (E and X) with respect to their initial values (eo and )o), and

with respect to yj. Also, expressions will be developed for the range and range-

rate of the second vehicle, relative to the first (or, reference vehicle), as well

as derivatives of the range and range-rate with respect to c, A and jt.

For the most part Lancaster's notation will be used. It is assumed that

the two body motion has been previously calculated according to his procedure.

Any reference to equations appearing in Lancaster's paper will have a prefix

L attached to the equation number(s). The following modifications are made

in Lancaster's notation:

R 1 , R2 will be the position vectors of the two bodies relative to the

earth (these were denoted by boldface r 1 , r 2 in reference [2]).

R10, R20' R10, R20 describe the initial position and velocity vectors,

relative to earth; these were noted by boldface r 1 0 , r 2 0 , v1 0 , v2 0 in Lancaster's

paper.

F 1  1-cos C1 , was noted as F (reference [2]);

G1 - sin C1 , was the quantity G (reference [2].

*Mathematical developments in Appendix A due to Dr. Mary Payne of AMA, Inc.
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We will introduce many new parameters, including

R 1 , R2  the velocity vectors for the two bodies, relative to earth;

F = F + Q (i.e. F 2 = 1-cos C 2);

G = G + R (i. e. G = sin C);

fl =F 1 - 1;

f = F - 1;

Aa = a2 - al, (computed from L25);

and Ab = b 2 - bl, (computed from L26). (A. 2)

It is easy to show (see section A. 5) that

r. = R. = a. (1 + A. G. + B f ), for i= 1,2;

(this is Lancaster's italic r.). (A. 3)

Also, let

Ar a r + a2 (ArR + B2Q + OtG1 + fl); (A. 4)a 1 1 -- 2A2 1 1

this will replace Lancaster's calculation of r 2 - r l in equation L23.

The relative position and velocity vectors, E and X, are defined as

follows:

R2 = R1 + 2 =
1 +

R20= R 10+ o andR = R + X0. (A.5)

The partial derivative matrix, which is to be constructed, is the 7x7 matrix:
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o 0

O o

0 0 1 (A. 6)

wherein

Swith i = row number

a a j = column number; (A. 7)
o o.

and, similarly for e/8Xo, X/a oe, 6X/ 0 . The quantities 6E/3 and

bX/aBj are 3 component column vectors, while the two zeros represent 3 com-

ponent null row vectors. Using the defining equations for E and E , it is seen

that

S (R2  1 2  2  20 R2 2 2 20 2 20 R 2  (R0 +

a b R a R 6R ;5

SR 2 a (R0 + h o )  R
2 ( 1 0 + R 2  (A. 8)

20 o R20

since R 1 0 , R10 (and hence R1 and iR) and Xo are independent of o; and,

o = = 20 (A. 9)
0 0

Similarly;
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_o 2

o 20

o 20

and

o 0

Thus all derivatives with respect to E and X may be replaed by derivatives
o

with respect to R2 0 and R2 0 , respectively. In addition all derivatives of the

parameters pertaining to the reference body, with respect to E, Xo (or R20'

R20), are set to zero.

Lancaster's equations L5 and L6, for computing e and X, have the

form:

S= 1 o + x2o X x 3 R20 + x420 ; (A.11)

where xl and x 2 depend on R10 and k10 only. Hence,

0 13 20 R 2 3 20 R20 4, = (xl + x3 ) I + R20 gradR20 x3  R20 gradR20 x 4 ,

o = (x 2 + x4 ) I + R20 grad 0 x3 + 2 0 gradR20 x 4 ' (A.12)

178



where, as shown in section A .5, the gradients are to be interpreted as row

vectors; consequently these terms will yield 3x3 matrices. The coefficients

x3 and x4 are (small) differences of a function in R1 0 , R10 and the same

function in R 2 0 , 2 0 . As discussed in Section A. 5, their gradients can be

TT
written as linear combinations of RT and R .

20 20

Next, the following notation is introduced: for any scalar parameter z,

let

T *T
grad z zll R 12 R20 ,

R 11 20 12 2020
and

T T
grad z 21 R20  +z 2 2 2 0 . (A. 13)

20

In many instances such a parameter will already have a subscript (e.g., A1, A2,

B 1 , B2 , etc.) but since only parameters with subscript 2 will have non-vanish-

ing gradients with respect to R20 and R2 0 , no ambiguity will result from dropping

this subscript and introducing a double subscript notation when writing the gradients.

Gradients with respect to R20 and R20 will not involve small differences, con-

sequently no special care is required in their calculation.

Many of the derivatives with respect to pl do involve small differences;

thus, the formulas given are designed to avoid loss of significance.

The derivative of a scalar z with respect to ji will be denoted by an

asterisk: for instance,

z z*. (A. 14)

In section A. 2 there is a listing of the derivatives, for most of Lancaster's

parameters, with respect to ji, R2 0 and R2 0 , using the notation defined in eqs.

(A. 13) and (A. 14). It should be mentioned that additional parameters are intro-

duced as necessary.
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In the third section is found the 7x7 partial derivative matrix (0) ex-

pressed in terms of the results given in section A. 2. Finally, in section A .4,

one finds the expressions for range and range-rate, and the derivatives with

respect to ji, E and X. Lastly, section A . 5 contains a few proofs. It is hoped

that with this organization of the material the construction of a computer program,

for these derivatives, will be expedited.

A. 2 Partial Derivatives of Lancaster's Parameters

Most of the following derivatives are readily verified from the definitions

given in reference [2]. The one exception is y* x/2p; this is derived in the

section A. 5. In order to illustrate the notation used here, an example exercise

is shown which applies it to the semimajor axes (a1 , a 2) and their difference,

Aa=a 2 -a . Now,

Sa.
a.* - (for i = 1, 2),

and

5Aa
Aa* E --

also

grad a a R T+ a T (=grad Aa),
R a2  1 1 20 12 20 R20

20 20

and

grad a = a21 R + a22 20T (= grad Aa).
20 22 20 20

The starred parameters will be obtained for most of Lancaster's symbols.

Gradients, with respect to R20 and R20, of those symbols with subscript 1,

vanish; hence gradients of differences, such as Aa, are identical to those for

the corresponding parameter with a subscript 2.
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a.
a.* (1-2H), (=1,2),

(1-2 H1 ) Aa 2 t7a 2aa* = -

2
a 1 1 = 2H /r11 2 20

al1 2 = a21 = 0,

2
2a2

a2 2  g

A.
A.* = - -I (1-Hi), ( = 1, 2),

a * = 1 A 2 - a (1-H 1 ) !

All = - A2H/r ,11 22 20

A12= A21
"/l a2

A2a 2

22 --

1 + B.

1+B2

B (11,2i u ),

B3 = -

1 + B2

11 2r 2 0

B12 = B21= 0,

B22 = 2r 2 0 4.

181



T.* = - T. (1-3 H)/ , ( = 1,
L 1

* = 1 [ (3 H -1) + 3T1
J2

3H T
T 2

11 2
r20

T12 21

3a
T22=-- T2"

22 2

H.
H.* =  (1-2 H. 1, 2)

7* = - [1-2 (H1 + H 2 )

H2 (2H 2 - 1)
11 2

r20

H =H =0,12 21

2r 2 0  2
H *H22 H 2

2 H.D.
D * = - 1 (i 1, 2),

6* = - 2 [tD + H 6]

D = 2 D2 H /r 20
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(cont) D12 =D a ,2 /

D22 =2 a 2 D 2

H.N.

N ( = 1, 2),1

V*=-1 Hfv + 7N1 ]
u 2

N2 (1 + H2)

11 2
r

2 0

N12 =N21 = 0,

N22 = a2 N2

a.

SC. [T.* -F.Ai*+GB*, (= 1, 2),

a
C ij = 2 [T. -F A +G2B..], (i=1,2)

2  2 ij 13 (j =1,2).

T'* =* -( +G1 + 1) C1 F a* +G1 P '

a 2  A2Q(1-H 2

y* - r (T'* - (A2R + B2Q) C1* +
2

(1+B2 )R

See section A.5 for a derivation of these formulas.
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F *G C

G*=-f C *
1 11'

Fj = G Ci , (i=1,2)

(j = 1,2),
G =-f C

ij 2 ij

Q* R RC* + (R + G1

R* = -Q C1* = (f + Q) Y*

rL =G. A.* + f.B* - (Af -B.G) C*, ( 1,2),

r.
r.* = _ a.* + a. , (i = 1,2),

i a. i 1 i

3 = A2 R + B2 Q + a! G + f'

(4 = A2 * R + B 2*Q + a* G1 + 1* fl'

(5 = A 2 R* + B 2 Q*+ o GI* + F1
r

Ar* = a* + Aa + a 2* 3 + a2 (44 +4 5 ) '

1

r2 +a +A G +B F +f B ) (i =1,2)
= a2 ij 2 (A2 G. + I G2 B2 ij 2 = 1,2).
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a* r.*
P.*x 2 2' (i 1, 2),

i 1

Ar 1
1 r * ,-Ar*

r1 rr 2  1 r 2

1 1A - b a *+- Aa*,
2 2 2 2a1

a* r
* 2a2 r2 21

j 2 L 2a2  r 2 li 1 (j = 1, 2).
2 2

S, S.* =  a -S. r , (i = 1, 2),

i r. i

Ar 1 a
*=-- a + Aa* - * + S ~

r1 r 2  2 r1  r 2  2 1 '

1 (1 =1,2)
ij r 2  - 2 rj (j = 1,2).

This completes the set of derivatives for Lancaster's parameters. Note

that in all instances, a parameter with subscript "12" is identical with that whose

subscrip is "21".

A. 3 The 0 Matrix

To obtain the elements of the 0 matrix let:

X1 = 1-H 1 F 1'

X2 = D1 F1 + N1 G1,
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X3 = - (H2Q + tFI)(=H1 F 1 - H2 F 2 ),

X4 = D2Q + 6 F 1 + N2R + V G (=D2F2 + N2G2 - DF 1 - N1G1 )

Y1 - P 1'

Y2 = 1 - S 1

Y3 = - (P2R + pG1)(= P G 1 - P2G2 '

Y4 = - (S2Q + a F)(=S1  - S2F 2 ) ;

so that

F=Xl E+X o+X +X1 o 2 o + X3R20 + X4 R20'

= Y1 o  Y2 +Y3R 20 + Y4R20

Then, again using the asterisks to denote derivatives with respect to I :

X I* = - (H F I* + HI* F ),

X2* = D1F1* + D1 *F + NIG1* + N1* GI '

X3*= - H2 Q* + H 2 *Q + F1* + *F 1

X4  D2Q* + D 2 Q+6F1* + 6* F + N 2R* + N* 2 R + G1 * + V*G 1 ,

Y1* - * G1 G1*  '
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Y2* =S1F1* + S *F1

Y3* = - 2R * + P2*R + PGI* + p* G1

Y4* = - S2Q* + S2*Q + F I* + C* F .

The subscripts on the X's and Y's cannot be dropped without ambiguity; con-

sequently the double subscript notation is dropped and the gradients are written

as row vectors, U.T and V. T

gradR20 Xi = grad k20Xi = grad R20 Y = grad 20 Yi = 0, (i = 1,2),

1 = H2 12 '

2 = D2F12 D12 2 N2G12'

03 = P2G12 P12G2

04 = S2F12 + 12F 2'

u 1 T =grad X = - (H2 F + H  F ) T+ R T
SR 3 211 112 20 1 2 0

20

TT F T

U2 = grad X3 = 20 2 22 2 2 2 2 + H 22F2) 20 2 0

U3 T = grad R X4 = (D2F1 + D11F 2 + N2G1 + NG 2 ) R20 T  2 20187

U4 T = gradR20X4= [2R20+ (D2F22 +D22F2 +N2G22+ N22G2) R20T},
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VT = grad R Y3 = - (P 2G+1 1 1 G2
) R20 T + ¢3 R 20 T

T + TV2 grad R2 3 3R20 +(p2G2 2  22G2 R 20

V3 = grad 4 = - ((S2F11 +S 11F2) R 20T 4R20

V4 = grad R20 Y4 4 R 2 0 + 2 22 + 22 2  20

The elements of the 0 matrix can now be written as:

_ = (X +XI R20 U1 T +RZU T,
3 R 3 20 1 20 3

T * T
- (X + X 4 ) +R U + U

S24 20 2 20 4
2

=X* + X * o +X3*R X4* 20

4=1 0 2 0 3 20 4 20T T

(Y + Y3) I + R20V

1 20 201 20 3

(Y +Y4)+R U +R V ,

2 4) 2 0 2 204

=Y +Y*X +X *R +X*R0 1 o 2 o 3 *R20 + Y4* 20

A. 4 Range and Range-Rate Derivatives

The range of the second vehicle, measured from the reference vehicle,

is defined by:
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' I 2 -R IEEI.

Correspondingly, the range-rate is:

dt 1

Now, it can be shown that

T
grad p =  I

grad p-p =0,

= 1 8 e (H.1)

grad = [3 '

grad p =  E

and ax 4Eand

t l I Ic 3 6E)

- . + I (. x(Ex ) (H. 2)

I l IE lt

These derivatives are to be evaluated, using expressions found in Ref. [2] for

E and X, and the expressions given in the preceding section for b C /6 and

6X/ag . Either of the expressions for and may be used.
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A. 5 Derivations

In this section is a derivation for the expressions given in eq. (A. 3), for

r 1 and r2; a justification for the interpretation of the gradients in eq. (A.12) as

row vectors; and, a derivation of the expression given for y* in section A. 2.

1. From reference [2] we have

T = C + A (1-cos C) - B sin C, (L.1), (A.1)

a

with C = E-E - Eo; as a consequence C =  (A.2)

In addition, for two body orbits,

3T = E - e sin E, (A.3)

a

and

r = a (1-e cos E). (A.4)

Differentiating eqs. (A. 1) and (A. 3), with respect to T, and making use of eqs.

(A. 2) and (A. 4), it is found that,

(1+ A sin C - B cos C) C = (1-e cos E) E ; (A.5)

or

r = 1 + Asin C - B cos C = 1 + GA + fB. (A.6)
a

2. Consider the two column vectors,

1 
x 1

Y= Y2 , and X =  x 2  (A.7)

Y3  x3
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These are related by: Y = f (Xl, x 2 , x3) X; wherein f is a scalar. (A.8)

Let the 3x3 partial derivative matrix be defined as:

Sy _ Yi i = row number (A. 9)

a \ x ' j = column number.

Since eq. (A. 8) can be written as

y = f (x1 , x 2 , x3 ) x.i 
(A. 10)

then

i f (A. 11)

ax= f 6.ij . i ax.
J 3

If is defined as a row vector, then
Sx.

afi a 'f f x grad (A. 12)
6 x 6 x1 6 x 2 a x3 x

and consequently from eq. (A. 9),

Y f x2  f f f2 3

x

= fI + X grad f. (A.13)

For the problem considered here the dependence of f, on the components of X, is

restricted: Setting x = IXI , f is a function of only the two scalars x and X A,

where A is a vector independent of X: i.e.

f = f (x, X A), (A. 14)

hence

af af X T  f A T (A. 15)

X 6x x + (X " A)
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The vector X is either R20 (or R2 0) and the scalar product is R20 20

Consequently A will be R 20 or (R2 0 ) according to whether the gradient

is with respect to R20 or iR2 0 '

3. Derivation of *:

From Reference [2]:

T' 7 + G1 - F = y + A' (1-cos y) - B' sin y, (see IA and L8); (A.16)

hence

y* (1+A' sin y - B' cos 7) = T'* - A'* (1-cos y) + B'* sin 7. (A.17)

However,

A' = A2 cos C1 + B 2 sin C1 , (L9)

B' = B cos C1 - A2 sin C1, (L10)

and

y= C2 - C1  
(A4.18)

Now, the coefficient of y * is readily shown to be r2/a 2 . Furthermore, the

differentiation of A' and B' with respect to p yields

A'* = B' C * + A * cos C + B2* sin C1'

B'* = - A' CI* + B2* cos C1 - A2* sin C1 . (A.19)

A substitution of these expressions into the A'*, B'* terms, in eq. (A.17), yields

(after some trignametric manipulations) for these terms,

- A2 R+B B 2Q C1 * - A2 * Q + B 2 * R, (A. 20)
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consequently,

a

y* = 2 T* -(A2R + B2 Q) c 1* - A2 *Q + B2 * R , (A. 21)
2

where T'* is obtained from the first expression given for T', in eq. (A.16);

T'* = 7* + #* G1 
+ #Gl* - ca* F 1 - aF*. (A. 22)

Now, the expressions given for T'I* and y*, in section A.3, are obtained from

eqs. (A.21) and (A.22), using the equation previously obtained for A2 *, B2*, '*

$*, F * and G1*.
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APPENDIX B

AN ANALYTICAL DESCRIPTION OF THE TETHERED (TWO) BODIES

PROBLEM (INCLUDING AN ELASTIC TETHER)

m 2  B.1 Introduction.

2 A two-body, tether connected, mass

Ser system is in orbital motion about the primary

' etp q. The forces action on each body are those

e due to:

r (1) the gravitational attraction of ~,

(2) the elasticity of the tether.

The physical properties of the tether

are assumed to be such that the forces are;

(1) proportional to the stretch (producing an

REF. elastic restoring force); and, (2) proportional

Fig. B.1. Tethered System Geo- to the rate of extension (leading to a damping

metry. Note: t + - = t ; force).
r = rg + ti, (i = 1, 2).

F Assuming linear elasticity these

X F force magnitudes are represented as:

d 2  er
2 r - k ( , - ), (B. la)

e s o

c 29d dfor the spring force; and

2F - c t , (B.lb)

r 1
for the damping force; wherein k, c are

the constants of proportionality; to is the

unstretched length (of the tether); t, i are

the instantaneous length and rate-change of

length.

Fig. B.2. Forces assumed for

Tethered Systems.
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B. 2 Equations of Motion.

Writing the dynamical equations of motion to describe the tether action

(i.e., body m 2 relative to mi), then;

.. . . . •* -rg/ r r2 1 i2 1 s2

2  r 1  2 1i

r1+1 - 1+i -
In these expressions F =F (-1) et, Fd = Fd (-1) e, , consequently,

S i
after some manipulation, one finds

r 2 r I
SE k 1- [) +k c (B.2b)

r2  r1 2

where M m., and t is presumed parallel to t, generally. In addition
I

it is assumed that 4 > to throughout a specific motion.

For purposes of description (and for numerical work) the "unit operator",

3C, is introduced into these expressions as a control quantity. It has been pre-

sumed that the elastic tether cannot accept compression, hence the operator is

as shown below:

if Ite - , = 1;

or,

if t< Lo, K=0. (B. 3)

When the logic for X is included with the forces (F s and Fd) then the

tether does not enter into the dynamics of the problem when there is no stretch

present.
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B.3 Kinematics.

To complete the problem in consistant coordinates the acceleration ()

will be described, kinematically. In this regard, since,

then

e + t e.LE et x+ ( e.) t

wherein t is the angular velocity of the triad (of which e, is a member) re-

lative to Inertial space. Here ( + g ) ez, hence

= et+ ( + +g ) en

since e e x e . Correspondingly, it can be shown that the acceleration is:
n z

= )2 e + 2 + ) + +(p ( + L ) e . (B.4)

Eq. (B.4) is used in place of the acceleration in (say) eqs.(B. 2).

B. 4 The Gravity Force.

Before eq. (B.2) can be represented in a consistent format it is necessary

to express the gravity terms compatible with the other quantities present. In this

regard write the position vectors (r i ) as

r. r + = e + (-1)i Z e=r (B.5)
t g i gr 14

As a consequence of this,

-2 2 - - i 2
r =r + 2r - 4 + 2

i g gi i

or,

r. 2 1/2
= 1 +2 (-1) cos +-" , (B.6)

g g g
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for (i = 1, 2).

Also, for component projections, if each ri is projected onto e and

e (respectively), and in turn, then (see eq. (B. 5)):

r i et =r cos 8 + (-1) ~.,

and

i e =- r sin . (i =1, 2). (B.7)

Making use of eqs. (B. 6), (B. 7), it is evident that the specific gravity

force may be written as follows:

r2 r I Fr 1 1 ) + 1e
r 2

3  A r A3 A 3  3 3 e

g 2 1 g 2 1 2 1

+ [rg sin (13 3 n (B. 8)

2 1

wherein eqs. (B. 5) have been employed for the description of r .

B. 5 Component Equations of Motion.

Having described the various quantities making up the dynamical equa-

tions of motion one can, now, obtain the components of these, parallel to

(e, e n), directly. Thus, after substitution and separation it is found that

the scalar expressions are:

-~ ( +,c )2 -- r cos (.- + +
- =- 3 L 3  A 3 

g 2 1 1 2

[k) /t o+ c tI M

m2 t m2 m1

and

197



2i (6 + )+ (6+ )- rsin3( 1 3 (B 9)
g gg r A2

3  A
g 21

respectively.
2

Here 3C is the unit operator described in eqs. (B.3), M - mi; the
1

remaining terms have been described previously.

For identification purposes, the terms on the left side of these expressions

arise from the kinematic description of the acceleration while those on the right

are due to the forces assumed to be present. The terms with "~'l" as a multiplier

are the associated gravitational quantities, while those multiplied by the operator

(K) are due to the elasticity of the system (the "external" forces). It is well to

keep track of these various components so that one can identify the influence each

plays in subsequent approximations.

B. 6 Approximations to the Equations of Motion.

Due to the non-linearity, and coupling between the coordinates, in eqs.

(B. 9), it is a usual practice to introduce various approximations to reduce

these equations.

(NOTE: In the work which follows, the operator 'c" is deleted, for convenience,

with the tacit understanding that it can be recalled and inserted as desired).

(a) One of the first approximations to be introduced is that associated

with the A.3 quantities (see eq. (B. 6) for this definition). Since i << r then

it is reasonable to replace these with the following (1 st order) expressions:

i L .-3/2 i
- 1 + 2 (1) cos 6+ -3/21-3 (-1) r cos+ H.O.T., (B.10)

1 r 2 r
g r gg

for (i = 1, 2).

As a consequence the component equations (B. 9) may be recast into the forms:
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- (+( +) 1+3 cos 20 ]- (t -to )+ V I ,
- 3 m

2r
g

and

. -)+2 3 + sin2 6 ; (B.11)( + )+ 2 (9 + ) -_ s ,. 3
2r

g

wherein the (-)g has been dropped from pg (for councise notation) and i n

mm
S1 m2 (i = 1, 2) is the reduced mass of the system.

(b) The tether length (4) has an unstretched (o) and a stretch (x)

length; these bear the following relation to one another:

Letting t =,o +x;then =x and ' = x.
0 ,

Now, if = t ; then,a - ,and a
O O O

Making appropriate substitutions into eqs. (B. 11), it is easily demonstrated

that those expressions reduce to:

4 - (+ )2 3 (1+3cos26) a 3  (1+3cos 2) + (8 +(P)

m m 2r 2r
g g

and

8 + 2 + sin 2 + a (B.12)
1+ 3 1+c2r

It is interesting to recognize that the last equation, here, can be recast into the

form:

d[(+)2 ( 2 sin 26, (B.12a)
2r

which is indicative of variations in the relative moment of momentum for this

situation.
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In these expressions the origin of each component term is quite evident.

Those with the 1y-multipliers are gravitational components while those contain-

ing k, c are due to the (assumed) elasticity of the tether. All other elements

in the equations are a consequence of the (defined) accelerations.

(c) The Small Displacement Approximation is introduced, next, to

render the differential equations more amenable to mathematical manipulation.

For this reduction it will be assumed that products and powers of the primary

variants and their derivatives are of negligible order; and, that corresponding

to this,

sin 0~!0, sin 2 - 2 0 , cos 2601.0.

If these constraints are introduced, and if the quantity (1+a) - 1 is approximated

by an appropriate series expansion, then it is found that eqs. (B. 12) reduce to:

c +k .2 +
a+ 'z + - +2 a- (2) - + 2

r r
g g

and

e+ 3' 8+(2 ) a- . (B.13)
r
g

Eqs. (B. 13) should represent the essence of the problem, subject to the

restrictions imposed on the motion. Though the non-linearity has been removed

(except through the influence of the orbit, via the , etc. terms) the expressions

remain coupled, kinematically, through the Coriolis terms. This coupling suggests

a difficulty in obtaining analytic solutions for the problem, in general.

The origin of the various terms in each of these equations remains clear.

That is, the terms involving the parameter k, c are due to the elasticity of the

tether (with the unit operator, X(, still implied); while those terms involving A

are due to gravitational effects. All other terms (involving a, 0 and their de-

rivatives) arise from the definition of acceleration impressed onto the formulation.
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These are a consequence of the frame of reference representation selected for

the problem.

B. 7 Description of Spring and Damping Constants.

The representation of k and c used here can be described by the follow-

ing brief discussion:

Since the spring force is presumed to be proportional to the "stretch"

(t-to), then for a general situation (as depicted by the sketch below) the force-

displacement diagram may appear as shown.

Here the springs [(1), (2)] are non-

k 1 linear, with (1) representing a "hard" spring

while (2) suggests a "soft" one. For either

- (2) representation the "linear spring" is repre-

Ssented by the "constant" variation of force

0 with displacement (see the vicinity of the

Fig. B.3. Description of origin). That is, the spring constant (k)
Fig. B.3. Description of

Spring Force. will be described by the slope of the curve

in its linear range. Hence,
AF

k A, (a constant).

A representation for the "linear damping force" parallels the ideas set

down above for the linear spring force. Here, the damping is (linearly) related

to the rate of change of t (i) ; hence, a representation of this situation may be

expressed , as noted below.

Fd / 1 As before, the law governing the

/ c change in force, with iL, away from the

origin is not of concern. The presumption

. ~of linear elasticity considers only the region

in which the constant of proportionality (c)

Fig. B.4. Damping Force.
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is apparent. Thus, AF d

c - - (a constant).

The ideas of linear elasticity are not unduly restrictive since the concept

is, or may be adapted to, a rather realistic physical situation. If the linearity

is not physically evident in the system, it might be mechanically reproduced to

a significant degree.

B. 8 Gravity Gradient.

To acquire an expression for the gradient of the gravitational effect, on

these systems, it should be recognized that the point mass gravitational para-

meter p can be equated to "g" by

2
p= - gr ,

where g, r are "local" values. These quantities can be related, simply, to

some reference level of g (say go) by means of

r 2

g= go r .

Now, with ,= (r) it is evident that the "gradient of g", is:

dg =2 =_ (B.14)
dr 3 r

r

where g, r are (still) local valued quantities.

B.9 Special Cases.

(a) Circular Orbit

As a special case for the motion of a tethered body system, assume a

reference (or base) orbit which is circular. In this regard, then, rg and qg

become constants. As a consequence the orbital speed is:
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Sr g gr gg

hence,

2 __ (B. 15)
g 3- 3

r
g

If this relationship is incorporated into the motion equations (B. 13), one

finds:

Y + -3+ 3 r 2~ 6 + 3 ,
m m

and

;+ 3 2 8 - 24~ . (B.16)

This set of reduced, specialized expressions may be examined to describe

various aspects of the small displacement variations of the tethered system. A

look at eqs. (B.15) will show that these remain coupled (through the Coriolis terms)

and are not amenable to a simple analytic solution.

(b) Static State.

When the tethered system reaches its "static state" the physical motions

cease and an equilibrium condition is attained. Examining eqs. (B. 16) for this

situation one notes that

S32 1

st k .2 k/~i
- 3P - 1

3m

or, defining k/"' then
S.2

3qo

1 (B. 17a)
st 2_

203



From the second expression in eq. (B.16) it is immediately apparent that

9 = 0. (B.17b)
st

(c) Uncoupled, Independent Motions.

In order to describe the types of motion which the tethered system may

acquire,consider the cases wherein the governing expressions (B. 16) are un-

coupled. In this regard it may be assumed that these occur independently - not

necessarily as a physically realized situation, but as a vehicle of convenience

here.

(1) Motion in a alone (8 => 80 )

From eq. (B. 16), it is seen that this motion may be described by:

c k _ 2] 2
f+ " + -3 = ,

2 k/m \
or, using the definition of 0 2 ( k2), then

3<p

a + 2 2 (B.18a)
a+z 5 + 2-1]a 3

m

Now, since there is a non-zero static displacement (ast) apparent to the

system, let the motion be described about this as a datum, or

f-~st+f,

where a defines the displacement about (ast). Then eq. (B. 18a) can be cast

into the form

Sc *2 2 . 2

f + --- a +3 [ 11 ( +a)3 ;
m st

and, inserting eq. (B.16a), then
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c + c 2 2_1 c R . (B.18b)
m

(2) Motion in 6 alone (a => 0st

From eqs. (B. 15) it is evident that this case is represented by

6 + 3 2 e-0 , (B. 19)

which is indicative of a Simple Harmonic Motion (SHM) for this variable. What

is implied (here) is that the system oscillates in the vicinity of 0st (--0), and

suggests a motion for the tethered system which would appear much like that of

a pendulum.

B. 10 A General Description of the Approximate Motions.

For the sake of completeness a brief discussion of the motion types de-

picted by eqs. (B.18, B. 19) is presented here.

The general form of these equations can be expressed as,

+ k f(t) , (B.20a)
m m

where the constants (k, c, m) have the same meaning as before, but f(t) can

be construed as some elementary driving function. The basic motion type, for

( (t), is acquired from the solution to the homogeneous equation above. The

characteristics for that expression are immediately recognized to be

Sc c )c 2 k' (B.20b)
1, 2 2m 2m m

For simple harmonic motion (c=0), one recognizes that the "natural

frequency" of this system is defined by

S= - t (B. 20c)
n vm

205



while the "damped frequency, (c/O), is described by,

d -  -1 . (B.20d)
d n 4mk

Recalling that the critical damping constant for such a system can be de-

fined as

c =2Vm' ; (B.20e)
c

then, rewriting eq. (B.20b), as

1 = _- ± i - (B. 21a)

c c

it should be evident that these characteristics are indicative of a damped

sinusoidal motion so long as (c/c c ) < 1.0. Representing eq. (B. 21a) symboli-

cally as

s =a± i , (B.21b)
1, 2

it should be evident that the Argand diagram for this root set can be represented

as shown below, for a given set of constants (a, Wd).

d The case depicted on this Argand

s ,diagram (s 2) is for a "damped oscillation",

- i.e., a < O0. When a > 0, the motion is

B a one which is being fed energy through a

"negative-damping parameter". The angle
-(a > 0)

- (shown here) can be described as

s~tan 1 ( / c c . (B.21c)

A B = tan -c/c
c

Fig. B. 5. Argand Diagram for a Also, points "A" are indicative of c=0 (hence

"Roots" Representation.
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W = n ); and point "B" represents d 
= 0 (hence c = c ), a no oscillation

d n d

case.

From eq. (B. 21b) it should be evident that the period of any oscillatory

motion is related to Wd while the time constant for such motions will be related

to the parameter "a". Recalling that the period of an oscillatory motion is des-

cribed by

27T

then it is evident that the period of the damped motion is:

T
T 2 n (B. 22a)

d d - 2

c

where Tn describes the pure oscillatory case. As a consequence of this state-

ment it is apparent that increased damping causes an increment in the timing of

the motion.

With the time constant defined as that time interval required for the ampli-

tude to reduce the amount (l/e); and, with the envelope for these damped motion

described by

e =4o exp (at),

where 4o is some (initial, or t=0) value of the amplitude (true or hypothetical),

then the time to reach the desired displacement (say 4e (tc)) can be determined

from

e (to) e = o exp (at).ec e o c

As a consequence of this mathematical statement, the time constant (t ) is:
1c

t (B. 22b)
c a
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Making an appropriate substitution for "a", it follows that

1 (B. 22c)

4 ( Cnc c

It should be apparent, now, that eqs. (B. 22) represent a method by which

the damping, etc. for the system could be determined, experimentally.
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APPENDIX C

NET FORCE DEVELOPED BY A STABILIZED, ORBITING

TETHERED SYSTEM

C.1 Introduction.

+ .The general system to be studied

here consists of two mass particles (mi

m 2 2  x in motion about a central attracting mass

particle (g). The two orbiting particles

are connected by a tether (t), and the sys-

1 tem is oriented, relative to the local

m vertical according to 9.

e The entire system has a motion,

2 0, about p; however, the state of m 2 is

referred to the moving triad (ex , ey, ez)

which has its origin at m1 . As a conse-

quence, this is the relative state of mo-

X y tion for m2*

For this example the tether is

Fig. C.1. Sketch Describing the considered to be a non-elastic member;
Tethered Bodies System.

the line of action for the force in the

tether is along the line joining the m.;

and there is no mutual attraction between

the particles (mi).

In order to achieve a desired degree of mathematical tractability-it will

be assumed that m 1 moves along a circular orbit (at the rate, p); also, the mo-

tion of m 2 will be confined to the (x, y)- or motion-plane.
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C. 2 Equations of Motion.

The two particles are presumed to have Keplerian motion (each) with the

position vectors related by

r 2 = r + , (C.1)

as shown on Fig. C.1.

From classical mechanics the differential equations describing these mo-

tions are:

mi r'=- 3 ri+Y ,  (i = 1,2) (C. 2)
r.

leading directly to the corresponding relative displacement equation,

= (1-A - 3 rl-A-3 ] (F/i)e; (C.3)
r

mlm
wherein i = (the reduced mass*); F is the force magnitude (in the tether),m +m

and A is defined as;

r2 = Co 9 2 )1/2
As- 1+2rl cos 6+ --

r r 21 1 r
1

here, et is the unit vector, /Z.

C.2.1 Kinematic Definition of Z.

Since the relative displacement vector ( ) can be defined as

tee = (x e + ye + Ze), (C. 4)

then replacing the triad (ex , ey , e ) by another, designated as (e,%, en, e ) one

can differentiate (C.4) to acquire a description of the velocity, iC. That is,

*It should be recognized that if m 1 >> m 2 , then iR m2 . The symbol in is retained

here for the more general inference.
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L e = et + (w x e), (C. 5a)

with w we . An alternate, and more familiar, expression for G is,z

= +~e we . (C. 5b)

Carrying the differentiation one step further, to provide for t, it can be

shown that

)= ( I 2 e +(2 i w+* ) eni n

2- 1d 2=( 2) e + d(2). (C. 5c)

Here w is understood to be the angular velocity vector for the triad (el, en , ez).

Next, separating r l into proper components; that is,

r I = r (cos OeI -sin e ); (C.6)

then eqs. (C.3) and (C. 5c) may be joined, and written as the scalar set given by:

( - 2) 3 (1 - - 3 ) c o s - - 3 r)Cr F/ii, (C.7a)

r1 1

and

(2iW+,)= (2t 2 ) A(1-- 3 ) r 1 sin . (C.7b)

r1

Equations (C. 7) are a general set of governing differential equations

which may be examined for the in-plane motion of the tethered system.

C.3 Special Case (Circular Orbit).

Here the reference orbit is selected (arbitrarily) to be circular. For this

case those quantities which are affected are those noted below:
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r constant; p constant;

1 1
r 1=== ;and 1  3

Introducing these conditions into eqs. (C. 7) it is found that they may be re-

cast as:

+( -3  A - 3 c - -  F/rm
S- + - (1- )cos - rA- t+ 2 (C.8a)

* 2 r r * 2
rl 1 1 r 1 1

and

2L (1+0) ** b'
+ -- = (1A -3) sin . (C. 8b)

rl1 rl12

Introducing the dimensionless variable X (= t/rl), and transforming the

independent variable, t, to p1' via (Pl = 1 t, it follows that eqs. (C. 8) may be

reduced to:

-3 3
X" = X + (1-A ) cos -XA -, (C. 9a)

and

' (1 + ')+ " = (1 -A -3) sin ; (C.9b)

wherein

A [1+2Xcos + X2]1/2

and

7"-- -

.2
rl 

1 1

Eqs. (C. 9) describe the in-plane motion of a tethered system, in dimen-

sionless variables, for the system influenced by a central field gravity-gradient

and subjected to a tether force which constrains the movement of the suspended

masses.
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C. 4 A Gravity-Gradient Stabilized System.

Suppose that this tethered system is "stabilized" in gravity-gradient.

That is, the tether is "vertically aligned", and has no relative motion (i = 9 = 0).

For this case the mass (m2 ) is in "equilibrium" with the tether force counter-

acting the net force due to external influences.

The question to be answered here is, "how much force acts on m 2 , due

to external effects, in its stabilized configuration?"

For this situation let = i and 8 = 9 = 0; consequently eqs. (C. 9) may

be further reduced to yield:

=  -1)(1 - -3) , (C.10a)

wherein.

A= (1-2 +2)1/2 = (1-X).

Clearing eq. (C.10a) one finds that r7 (X) becomes

( (3 +3X " ) , (C. lo0b)

expressing the net force in the system in terms of X (- ./rl). This last expression

may be interpreted as the resultant force acting on iii (- m2). In effect this force

represents the resultant of the actions produced from gravitational attraction and

centrifugal force (this can be recognized from a study of the physical system, and

as verified from (say) eqs. (C. 8)). The quantity, X/(1-X), has an interesting

interpretation. Expanded

X r 1 2
1-X r- r21 2

where the r. (i = 1,2) define the orbits traced out by the masses, m.,. Here, as
I 1

before, rl is the reference (circular) orbit while r 2 describes the trajectory for

I 2 . (See Fig. C.1 for concurrence).
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Equation (C. 10b), being dimensionless, is a general form expression use-

ful for any orbital altitude where one central point of mass attraction is a reason-

able assumption. The force parameter (r) relates the specific force (F/ -i-F/m2)

to the centrifugal force (CF 1 
= r 12); consequently, a graphing of T (X) should

provide useful general information which is readily transformed into useful

particular information, for this system.

C. 5 The Specific Force in Gee's.

Rather than present the force (7) in its present dimensionless units,

suppose this parameter is to be given in (say) earth gee's. That is, let 7 7' (go),

where go is the acceleration of gravity, at the geoid's surface (ro), in whatever

units one would desire.

Returning to eq. (C. 10b) it is apparent that there

F F/m
F/m 2
F/ _ G (X) 2! (C.11)2 C2

rl1P2 rlc1

where G(X) represents the right-hand side of that expression. As a consequence,

from eq. (C.11), the specific tether force,

F/m 2 =r 1
2 [G(X)] . (C.12)

2
Since the gravitational acceleration (go) can be defined by 1/ro , then
.2 2with r 1  p/r , eq. (C.12) can be written as,

12

F/m r 2
SF = - [G()] , (C. 13a)

go g 2
r

relating the specific force to some g value. In this expression r is the earth'sO

(average) radius while r1 is the radius of the circular orbit for m 1 . Here F is
g

dimensionless, as is X - /rl (tether length in ratio to rl ).
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In expanded form the result from above is given by,

~= 1( _ )F3+X(_XX )( r0 (C 13b)
g 1-X L 1-X J r '

relating F/mrn 2 (for m 1 >> m 2 ) to (say) the earth's gravitational acceleration at

the average surface radius, ro
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APPENDIX D

TRANSFER ORBIT PROPERTIES FOR A PARTICLE RELEASED

FROM A STABILIZED TETHER SYSTEM

D. 1 Introduction.

In this appendix the problem situation to be examined has to do with the

orbits developed by a particle released from a stabilized gravity-gradient tethered

system. The characteristics of these orbits will be defined, for different initial

state conditions. For comparison purposes, a Hohmann type transfer will be des-

cribed in order to determine the relative "costs" for each mode.

D. 2 The Tether Initiated Orbit.

For this study the two particles (mj) are assumed to be gravity-gradient

stabilized (moving at given 1 (' p1 ) rate,
e

r with tether aligned in a radial direction).

- T m l  Particle m1 (assuming m >> m 2)

'P moves on a circular path (rl), at a speed

(r1 r 2) V1 (V 1  Vc -Ip/rl - thus, initial con-

V2  m ditions for the two orbits are known (a priori).

Using an inelastic tether, and without

-1 other disturbances presumed, one can deter-

- mine the orbit parameters which describe

the subsequent motion for m 2 , after release.

D. 3 Kinematic Descriptions.

According to the assumptions outlined

above, the initial orbital speeds are:
Fig. D.1(a). Geometry.

V1 (V1) = rl 1l= . (D.1a)

and
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V2 = r 2  1 . (D. lb)
o

As a general definition of orbital speed, recall that:

V2 )2 1 + C2 + 2C cos p], (D.2)

where, in general,

h specific angular momentum,

2.
= IrXV rV =r p (D.3)

wherein,

(p -position angle (measured from pericenter).

cP local angular rate for an orbiting mass particle.

D. 4 Orbit Conditions.

In order to ascertain where on a given free orbit the released particle

might be, the following conditions are noted:

(a) If V < Vc (local) the motion is for a particle above its orbital minor

axis (for closed paths); or, it is moving on the apocentric portion of its ellipse.

(b) If V > Vc (local) the motion on an ellipse is below (on the peri-

centric side) of the minor axis (assuming closed figures).

(c) If V = V (local), the particle is at the minor axis position (where
c

r a); or, the motion may be circular.

D. 5 Initial (Release) Conditions.

Suppose that m 2 is released from its tether at some initial time without

any relative motion. Consequently, the subsequent path for m 2 would be on an

ellipse, with the following local (initial) conditions (see Fig. D. 1):
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@t = t ; r =r - , V ( V) = r
2  1o 2 1 2 2

o O o

or V2 
= (r 1 - 4 ) W1 = V1 -ew 1.

0

Expressed in terms of the dimensionless parameter (A),

V2 = V1 (1-L/r ) 
= V

1 (1-X), (D.4)
0

where t /rl .

The corresponding specific angular momentum (h2) for this situation is:

h2 r V2 = (r1 - Lt)(1- )V 1  rlV 1 -= rr ,
o 1 1

or

h2 =h (-X)2. (D. 5)
0

D.5.1 Tether Tension.

When the system is stabilized m 2 must be "supported" by a tension in

the tether. Considering the nature of the stabilized system, then the equations

of motion for m 2 (see eqs. (C. 2), Appendix C) may be written as:

e r0
r 2_ T

V1  r -r 2  1 - , (r Econstant)
Sm / 2 1 r 2  m2 2

T or, after rearranging and making substitutions

from above,

2 - 2 T _1 r1 )2 r2

m2 rl . (D.6a)
Fig. D. 1(b).

Here T is the line tension, other terms are defined previously. Now, since

r2=rl - = r 1 (1 - X), for the stabilized system, then after substitution eq. (D. 6a)

is:
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T 13T 1 2X[ I+( )2] (D. 6b)
m 2  r 1- 1-

D. 6 Orbit Parameters.

The analysis here is concerned with determining the parameters which

describe the "free orbit" produced by simply 'cutting' the tether - releasing m 2

from its stabilized tethered state.

D.6.1 Eccentricity.

Knowing the initial (t ) state for m2 , then at release (t ), the free

orbit's eccentricity can be determined from eq. (D.4), written as,

V2  = 2 1+ 2 2Cos (D.7)
o 2 o

0

wherein 2 will describe the apocenter of the free orbit, (i.e. V2 < Vc (local),
o o

see section D. 4).

Now, from eq. (D.7),

V = (1- 2;
2 h 2o 2

or, using eqs. (D.4, D. 5),

W (1 - 2)
v (1-X) =

h 1(1 -X)

wherein V1 E/ -//r1 and, hi = rlV1 . After some manipulation, it is found that

2 = [3 (1- X) + 2 ]. (D. 8)
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D.6.2 Semi-major Axis.

To describe the "size" of the orbit for m 2 , consider the specific energy

(E2) expression:

2

2 2 r 2  2a2

which can be evaluated at any convenient location on the m2-orbit. Thus, with

the known initial conditions,

V = V1 (1-X), r r (1-),
20 1 2 1

substituted into eq. (D. 9) it is found that,

2  1-X 1-
2 _ - (D. 10)

r 1  1+3X (1-X)+X3  2-(1-X) 3

D. 6.3 Pert-Radius.

To determine the peri-radius for the m2-orbit, after release from the

tether, recall that from the polar conic expression this radius is described by:

r = a (1 - c). (D. 1lla)

Consequently, it follows that -p = a (1 - E), for this problem; and, using eq.r r
(D. 10),

r 4 4
2 (1 - X ) 4 (1 -A )4

. (D.11b)r 1  1 +3X (1 -X)+X 3  2- (1-A))3

D.6.4 Time to Reach Peri-Radius.

With the conditions of the problem such that the initial point is at apo-

center, then the time required to reach the (new) pericenter in half-a-period.
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Now, to describe the time for this operation, note that

3 3
a _Period 

a

t=-2 2 1

r1

or,

t 1 (1 -X) 3/2 1 1-A 3/2
Period 1 2 1+3X (1-X)+X3  2 2- (1- _) 3  (D. 12)

D. 6.5 Speed at Peri-Radius.

The speed of m 2 when it reaches its new peri-center may be found from

the statement for conservation of specific moment of momentum. For example,

on the m 2 orbit ,

(rV) = (rV)
peri apo

hence, symbolically,
r
a2  rV = V

P2 rl r a2

Now, if eq. (D. 11b), and the initial values are introduced, then

V 3

V -1 +3k (l)) 2  (1 (D. 13)

V1 (1-)2 (1 _)2

D. 7 Summary.

The various parameter, conditions, etc. examined above were for the

case of a gravity-gradient stabilized system hanging in a vertical direction

toward the attracting primary (gi). In this regard the free orbit transfer was

initiated from an apocenter.
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For the converse situation of a stabilized system hanging aw from the

primary the initial point becomes a pericenter, and the "free" orbit has a subse-

quent motion toward apocenter. To account for the differences in these two modes

of operation the following table has been prepared. There the corresponding para-

meters, etc. are listed (as equations) for reference purposes.

TABLE D.I

ORBIT TRANSFERS FROM A STABILIZED ORBIT

Free Orbit Conditions

Specific and Parameters
Init. Point Moment of Specific

(description) Initial State Momentum Tension

r 2/r =  V2o /V h /h l  T/m 2
2 1 201 201 2

2

Apo-center(a) 1- 1- (X)2 1 )]

2

r 1A 1+XPeri-center 1+ 1+X (1+X) 2  X

(a) System described in the development

Free Orbit Conditions and Parameters

Init. Point Eccentricity SemPeri-Radius Apo-Radius
Eccentricity Semi-Major

(description) E2 axis, a2/r r2 /r r /r

Apo-center [3(1-X) +X2 ] (1-A) 3  1-)

2-(1- ) 2-(1-X)

Peri-center [3(1+)+ 2  1+X (+1+X)
2- (1+X)3 2- (1+ )3

(table continued on next page)
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TABLE D. I (cont)

ORBIT TRANSFERS FROM A STABILIZED ORBIT

Free Orbit Conditions and Parameters

Init. Point Time (b to Complete Pericenter Speed Apocenter Speed

escription) Transfer, t/Period1  V /V 1  V a /V 1

3 3
1 1-_ 2-(1-Xl ) -

Apo-center 2 2-(1-X)3 (1-X)2

1 1+X 3 2- 3

Peri-center 2- 31 2 1+ 2+
2 -(1+X) (1+X )2

(b) Hohmann type transfers are used; (Period)l E 27T/ l.

D. 8 A Hohmann Transfer.

The purpose here is to describe the

V1  Av (impulse) requirement needed to achieve

a "transfer" from the initial (r ) orbit to a
VT "A" 1

A/ peri-center (rp) of known dimension. Since

/ i the initial point "A" (see Fig. D. 2) lies on
I

a circular orbit then the transfer is obviously
"T" r1 a Hohmann transfer; thus, the energy change

is to be a minimum.

The motivation for this computation is

)r to determine the Av "cost", and to use this

as a measure of comparison with other trans-

VT fer modes.

- - To initiate the transfer, the velocity

1  r on path r 1 (V1 ) has added to it an impulse

(Av); this should produce a "proper, initial
Fig. D.2. The Hohmann Transfer.
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velocity (V )" for the transfer ellipse. Thus, for the transfer orbit,

VT V +Av . (D. 14)
T 1

On the transfer path the specific energy (E ) can be expressed by;

V 2
T

E = A 1= _ 1 (D. 15a)
T 2 r 1  2aT

which refers to the initial point "A".

The specific energy for a particle on path (r1 ) is recognized to be

2
V

E - _=- __

111 2 rI  2a1

but a rI , so
2 2

V -V
E = V 2 (D. 15b)

1 2 c 2

For the evaluation of eq. (D. 15a), recognize that

2aT =r +r =r (1+ (D. 16)
1 1 r1

while the speed term, appearing there, is

V = iV +Av . (D.17)

A

With r given, a priori, then eq. (D. 15a) can be used - in conjunction

with eqs. (D. 16, D. 17) - to calculate (or correlate) (r p) with the speed component,

Av. That is, making appropriate substitutions, and solving the resulting quadratic,

it is found that the required increment in speed (Av) is defined by

2r /r

AV = Vl IP 1 , (D. 18a)
l+(rp/rl )
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r
wherein 1 > -2 > 0. Now by necessity the negative sign is selected; consequently,

2r /r
v=V 1  +(rp/r) } (D.18b)

and, accordingly,

VTA = V1 - v. (D. 18c)

Equations (D. 18) have shown that the size of the impulse, to be applied at

a selected point on the circular trajectory, is directly related to the size of the

pericenter (r p) which is to be produced.

D. 8.1 The Change in Energy.

The change in specific energy (AE) necessary to get onto the transfer

path from the circular orbit (rl) is readily determined. That is, if one defines

this change in specific energy as

AE =E T -E 1 ' (D.19)

where E T and E 1 are expressed in eqs. (D.15a, D.15b); then it is easy to show

that

1-(r /r 1-E n - I) (D. 20a)2r 1+(r/r (D20a)

or, in ratio to E 1, (see eq. (D.15b)),

AE 1-r /r
S p (D.20b)

E 1+rp/r 1  (D. 20b)
1 p1

D. 8.2 The Specific Energy Describing the Transfer Path.

With the result given in eqs. (D. 20), eq. (D. 19) can be recast as follows:

225



Since,

E
T AEE 1+TE

E E
1 1

then, when eq. (D. 20b) is employed here, one finds

E
T 2 (D.21)

E 1+(rp/r)

Equation (D. 21) defines the ratio of specific energy (on the transfer path

to that on the initial, circular orbit) and does so in terms of the desired peri-

center radius ratio (r /rl).

D. 9 The Effect of Tether Length (4) on an Orbit Transfer.

The concept applied here differs, to
-m

V 1 "A" some small extent, from that examined in

m rl the foregoing section in that the initial point

2 r (now) is not on the circle (rl) but on the con-

- "B" 2
centric path (r2 ). See Fig. D.3.

For this problem situation it is pre-

sumed that the particle (m2) is moving along

the path (r2) at a speed

r 2 fti
"T" V2  r 2 1 . (D. 22)

Here pl is the angular speed of particle m1

* P moving along the circle, r 1 . The two particles

r are connected by the tether and m 2 is stabilized

in gravity gradient. Since the two mass

particles are radially aligned (by assumption)

Fig. D.3. Transfer from a then they must move at a same angular rate,

Stable Tether Con-
figuration. 1"
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When relating the two particles (mi), with respect to specific energy

levels, it is apparent that:

(1) The specific energy for path r 1 is given by eq. (D. 15b) above.

(2) The energy level for m 2, at "B", but on the transfer path ("T"),

is defined by; 2
VB =

2 2 r 2  2a T  (D.

where V V 2  r2 (see eq. (D. 22)), r 2 =r- and 2a T r 2 +r2 12 p

After making appropriate substitutions (recognizing that- = 1 - -1 )
rI  r

then it can be shown that eq. (D. 23) reduces to the following "equivalent" statement:

r 4r P (1-X))4

(D. 24)r 1  2-(1-). 24)

(Note that this statement matches that given by eq. (D. l1b)).

Equation (D. 24) defines the size of the peri-radius produced by a particle

released from a stabilized gravity-gradient orbit, having been suspended from

m by a tether of length t. A comparison of eqs. (D. 24) and (D. 18a) would re-

late the tether length (4) to a required Av (impulse) producing a same pericenter

radius in the presence of a central point attraction (1s).

In order to relate the two (equivalent) transfers (that due to the impulse,
producing the Hohmann transfer to r , and that produced from a suspended mass

(m2)), the specific energy ratio for the present scheme is needed. For this, the

energy ratio (E2/E1) is described from eqs. (D. 15b) and (D. 23); or,

2 2E2  VB 2  r 1  (r 2 1 ) r1

-- + +2 -- 2 (D. 25a)
1 V1  2 (r 1 1 ) .2
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since VB  r2P 1 and V1
2 = l/rl Recalling that r 2 /r 1 =1- /rl ( ' 1-

then eq. (D.25a) becomes,

E 3  E2 - 2-(1-X) 3 T (D. 25b)
E 1 (- ) E

From here, eq. (D. 25b) is to be compared with eq. (D. 21) to ascertain

the energy levels describing the impulsive (Av) and the tethered mass transfer

modes.

In order to complete the comparison between these systems one last

ratio is needed, that for specific energy change. In this regard define the

energy change (from the orbit of m 1 to that of m 2 during transfer) as

AE = E 2 - E 1 ;

and the energy ratio as,

AE E2 X (4-3X + 2
E- 1 -- (D. 26)
E1  E! 1-

Equations (D. 26) and (D. 20b) describe like energy ratios, for the tethered

and impulsive transfer schemes, respectively. When these results are compared,

for a same pericenter radius, one finds the energy change brought about by the "ex-

tended tether" system transfer, and that by a particle undertaking a Hohmann transfer.

D. 10 Summary.

The expressions developed in section (D. 9) were for a transfer situation

whereby the initial position was an assumed apocenter. In order to illustrate

the converse case, of a transfer from a pericenter to an apocenter, the table

below was constructed to display the appropriate expressions. There one will

find these two situations described, in equation format.
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TABLE D. II.

ORBIT TRANSFER COMPARISONS

Hohmann Transfer
Initial Position

description Av (Impulse P Energy
descrption V Magnitude) Change

(Apo-Peri-center) AVdescribed(a) V1 Magnitude) Change
AE/E

1

Apo-center A 2(r /rl) 1-(r /rl
(ra =rl) IT =V _Av v 1- P

(r V1  1+(rp/rl) 1+(r /r

Peri-center 2(r/r) 1-(r/r)
(r =r) I VT I=V+Av - + a 1

1 V1  +(ra/r) 1+(ra/r

(a) ± sgn infers with (+), against (-) V1;

(b) rp , ra define peri- apo-radii, resp; r1 is the initial (circular) radius.

Hohmann Transfer from a Stable Gravity-Gradient
Transfer Position

Initial Position Orbit Energy Orbit
description Energy Ratio Terminal(c) Change Energy Ratio

(Apo-Peri-center) E T/E Position () AE/E 1  E /E

Apo-center 2 r 1 4 X(4-3+k2 2_(1-X) 3
2 (1-x) X(4-3X+A 2__1-__

a=rl ) +(r /rl) r 3 1-X 1-X

Peri-center r 4 2 3
Per-enter 2 ra= (1+X) -X (4+3X +X 2-(1+X)

pl) 1+(r a/rl) rl 2-(1+ )3 1+ 1+

(c) defined in terms of the tether length (4 = X rl);

(d) AE - ET-E1, (ET - energy on transfer orbit).
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D. 11 Effect of Initial Speed on Tethered Transfers.

Since the orbital transfer, from a tethered position, could be initiated

from a radial position, with a radial speed, the next development will describe

this influence on the maneuver.

In addition to the system "hanging vertically", now it will have a speed

component (± x), along the aligned tether. Consequently, the resultant speed

(V'2) is different from the stabilized position speed (V2). (See Fig. D.4).

The system, stabilized in gravity gradient,

moves at the angular speed (=1)'
e
x hence

e l V 1 rP 1, '

V2  r 2P 1,

Sr 2  V 21 * r 1  V 1
r r V

r 2  Assuming that m 2 is suspended from ml and
Definitions: --

• located between* m 1 and 1, then
+rl =r2 P l

ri=ri ex rI  1 rI  r2 +'

I=- or I

x r2)
r2 or

=rl -r 2  - r 1-X , (D. 27)
rl o 1

where (-)o implies an initial value.

Fig. D.4. Geometry for Transfer,
• Now, if m is to have an added

with x. -

velocity component x ( ± x e ), then

the initial velocity vector (V' 2 ) is defined

by, o

*An analysis for m1 located between m 2 and p would be described in analogous fashion.
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V'2 V +x . (D. 28)
O O

Now, in view of eq. (D. 28), it follows that the speed V' 2 is

( 2 .2
V'2 =(V 2 2 + x2 + 2V )* x 1/2

o 0

where, by definition V2 * x o 0 (orthogonal vectors, here), hence
0

V 2 = (V 2 2+x2)1/2 . (D.29a)
O o

In ratio to i71I , one has

2
V' V .2 1/2 2  2 1/2v2 ) v2 x 1 C 2 / x
V 2 2 + x2 ) = [(1-)+ V '

1 0 V V o 1 o
1 1

so,

V'1/2Ix
(1 2 2 where X'. (D. 29b)

1 o V1o 1

(Note that (V/V1 2 (1-X)2 infers the transfer mode with m 2 located according

to eq. (D.27)).

D.11.1 Elevation Angle (yo).

Since the velocity component xo has been introduced, the system (if re-

leased) does not initiate a "free orbit" at apocenter; but is at some neighboring

position "close to" apocenter. Thus, there is an elevation angle (yV); not zero
2-

(as at apocenter) but which has some non-zero (±) value.

Recognizing that

V 2 V2 e , (D. 30)

then iLt foIlLUW thatL
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V2 2 2 2 CO 2'

or V2 2

os 2 V2V'
2

2

Examining eqs. (D.30) and (D.28), one can see that

V2 *' V2 = V

hence
V 1-X

C0os o 1 (D.31)
0 V' o (14- 0 2 0 2

20

D. 11.2 Energy (E 2 ), for the Transfer Orbit.

By definition the specific energy for the "'free orbit" can be defined by,

V' 2

2 1 = (D. 32a)
2 2 r 2  2a

0

while the energy for m 1 is described by

V1
E = - V1 (D. 32b)

1 2

Writing the energy ratio, then;

2  2V + 2 r1 12

E V r a
1 1 o 2 2

or

E2 (1-)2 2 a- r

1 o o0

so

232



E2 (1+3)+ (1-) 3-X2 rl
2  (l+3) ' - (D. 3 3)
1 (1-) o 2

D. 11.3 Moment of Momentum (12 .

By definition the specific moment of momentum, for the "free orbit" of

m2 , can be described generally as

h2 = r 2 V' 2 cos 72, (D. 34a)

or, in ratio to hi (- r 1 V1),

h2_ r 2 V' 2
h1  r V 2

Evaluating for the initial state, specified earlier, it is found that,

h2 2
= (1 - ) (D.34b)1

D.11.4 Eccentricity (C2).

The path eccentricity (C2), for the "free orbit" is expressed as

h22 1/2D. 
35a)

2 = 11+ A (2E2) (D.35a)

or, in terms of the ratio parameters,

22=1+(1 (1-)2 ,)2 (1-)o-2 ,

and

2 = C . (D. 35b)
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D.11.5 Radius to Pericenter (r ).

The pericenter radius, for the free orbit, is described from the conic

equation as

r= a 2  
(D. 36a)

Expressed in ratio to r 1 , the radius of the circular orbit, one finds that

r

-2 2 ), (D.36b)
r I  r 1 2

where a2 /rl and c2 are defined in eqs. (D. 35b) and (D. 33), respectively. Due

to the complexity of these expressions (in X, X' ) they are not written herel How-

ever, for reference purposes the ratio a2 /r 1 , is noted to be:

a2 (1-X) (1-A)
2 3  2 3 (D. 37)

S 2 - (1-X) ,- )2 (1-X) (1+3 )+(3-XA'2 )(1-A)

(See eq. (D.33)).

D. 11.6 Speed at Pericenter (V ).

When the particle (m2) reaches pericenter its speed differs from the

value at the initial point (V' 2 ), but can be related to that speed through the

momentum expression. That is, writing,

h =r V
2 P 2 P 2

then h hr _
V _2 h2 r hl) (D.38a)
P2 r h1 r r1p 1 p2  1

2 2

or, in ratio form,
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V
P2 h2 rl

Vi\h .*(D. 38b)
P2

Inserting values for the ratios on the right, then it is found that

V
P2  2 rl

V1  o a2 (1-E 2)

or

V
P2 (1-X) f -

V 2  - (1-) _(1-)2 + (X)2 . (D.38c)

D. 11.7 Transfer Angle to Pericenter (Ap 2).

Since the initial point on the orbit is not at apocenter, then the angle

from that position to pericenter is not known, a priori, but is of interest to

this study.

An inspection of the problem's geometry will show that the elevation

angle (Y2) is positive if sgn x > 0, and vice versa; correspondingly, if 72 > 0
the transfer is larger than w, while if y2 < 0 the transfer angle is less than T.

From the definition of y2 it is easy to show that a solution for the trans-

fer angle (A~p2) is obtained from,

.2 2sin 2 sin 2-2
cos2 =- cos 2 2 (D. 39)

2 E
2

subject to the following conditions:

If Y2 > 0 ' A2 = 27T - p

If Y2 < 0 ', AP2 =2
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and, if (r2 /a2) > 1.0 the radical is negative while if (r 2 /a < 1. 0, the radical

is positive.

D. 12 An Equivalence Problem

The conditional problem examined here has considered a "free orbit"

established by releasing (in-plane) a mass m 2 which has some radial velocity

(x). This particle is released from a position located on the "local vertical"

axis.

In the previous investigation a gravity gradient, stabilized system was

studied, but that one had no initial speed component, Ix I. It is proposed now to

look at these two systems and to ascertain what advantage or penalty might be

had by including a velocity component (x). In this regard the criterion for com-

parison (here) will be selected as the pericenter radius which is achieved by

these systems.

To establish a comparison index, an "equivalent length of tether" is to

be determined; this is the tether length equivalent, corresponding to a velocity

component x. This length will necessarily be the added length of tether needed

to produce a same pericenter radius as for a system which does not have the

speed, ±x .

Assuming a same peri-radius, and the same basic orbit (rl), then one

sets the two radii equal to one another and determines an effective (equivalent)

tether length for the system with x = 0.

In order to determine the equivalent length, one can describe a peri-

radius ratio in terms of X ( e ); that is, write (from eqs. (D.11a), (D. 10)),
e rI

rp2 (1-e ) (1 -C e)
- (D. 40)

r 3
1 2-(1- e)
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wherein e 1+(1-X )3 (1- )3 _ 2 ]. Now, the left side of the equation is
e e e

obtained from

r 2 (1-)o(1-E
2

(D. 41a)r 3r 1 2-(1-X) 3_ (X) 2(1-X)

with

S = 1+(1-)3 [(i1-)2 + (X)2 (1-X)-2 ) . (D.41b)
2 o 0 0 0

In utilizing this scheme one may proceed as follows:

(a) For a given set of parameters (), '), use eqs. (D. 41) to define

2 and r /r 1 .

(b) Knowing r p/r , use eqs. (D.40) to ascertain a value for Xe.

(c) This value, ,e, describes the equivalent length of tether (needed)

to produce the pert-radius (r ) when i - 01

D. 13 Summary.

The operational methodology developed above was concerned with a

tethered mass system suspended so that the transferring particle (m2) was

"released" from a radial position between ml and p. In this regard the trans-

fer, for m 2 , was from a "near" apocenter position to a pericenter location.

Of necessity, there is a converse situation, possible, wherein the re-

lease point is near to the pericenter, and the transfer is to an apocenter radius.

In order to show a comparison between these two like (but unlike) cases the

pertinent parameters are tabulated below.
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TABLE D. III.

ORBIT PARAMETERS FOR TRANSFERS

INCLUDING x (VELOCITY INCREMENT)

Initial Point * Initial Initial Speed Initial Elevation
description: Position Ratio Angle (2 )

Near to, (Xo)(a) (V ,2/V1 b) o

r2 22 1 1_ o_\2

Apo-center ) =l-ao (1)2+ cos-1 1+ 1
1 o o

Peri-center =1 +Xo (1+) X2 ' 2 cos- )1+

(a) o __ (b) _ x/V-

o 1

Initial Point Transfer Energy Sp. Mo entum Path
description: Ratio Ratio 2) Eccentricity

Near to, (E2/E1) h 1 o 2

(1+ , )+(1-A )(3 -A'2 1+(-)3 [(1-) 2o o o 2 o o
Apo-center 2(1- - 2

1 0 +'(1-)-2

(1- )-(3A +' 2)(1+A ) 3o o o o 1-(1+A) 3 (1-XA)
Peri-center 1+A (l+k) 2

o -(3X +X' ) (1+, ) }j

(table continued on next page)

*Initial Point descriptions refer to situations wherein x is + x and - x, res-

pectively. When x is in the direction of e then y > 0, and the operation be-x 0
gins in the vicinity of the pericenter. Hence the notation used here.
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TABLE D. III. (cont)

ORBIT PARAMETERS FOR TRANSFERS

INCLUDING x (VELOCITY INCREMENT)

Initial Position Semi-majorSpeed at Terminal
axis (ratio)

description a /r Position
a2 rl

(1-X)o Vp 2  (2 2
Apo-center 2-(1-x) [(1-X2 +(X) )2

(1+X )+(3X-X ) (1-X) V1 - 2 o

1+X a2 (1+X) 3 2
Peri-center o 2 (-3)-(33 +X ) (

(1-X 3 )-(3k +' 2 1 V 1  (1+E2 ) o o0 0

Initial Position Terminal Radius
description: description

Near to,

r

Apo-center 2 2 (1-C )
r r 2

r
a2  a

Peri-center (1+ 2)
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APPENDIX E

DEVELOPMENT OF EQUATIONS FOR TETHERED BODY SYSTEMS

E. 1 Introduction.

et In this appendix a general develop-

Im2  - ment of the dynamical equations is described.

r 2 er Here two mass particles, connected by a

2 tether, move about a single primary particle

e P (p). The geometry for this system is shown

e "/ on Fig. E.1.

e
n r E. 2 Position Geometry.

g
Sr1  From the sketch it is evident that the

s7' I masses are located, relative to p, by

r.=r + ., (i=1,2). (E.1)i g i

Also, as a definition let

e 2 - 1 , (E. 2)

Fig. E.1. Geometric Description. wherein -e (e,), i = (-1) ; with

e- a unit vector of the triad (e., en, eZ)

centered at m 1. (Note, also that a reference

triad (er , e , e ), is centered at the c.g.,

which is located, from ., by r ). Now, for in-plane motions, the angle 0 posi-

tions the vector e relative to e ; as a consequence of 8, the two triads are
r

connected by the transformation matrix:

e cos 9 sin 0 0 e

e -sin cos 0 e , (E.3)

e 0 0 1 e
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or

e.= Tjkek (j =e , n, z; k = r, (p, z).

Making use of eq. (E. 3) in (E. 1) it is found that,

r. = [rg cos + (-1) L.] e - (r sin 0) e ,

and
[ (Ti 2 _liz '

r = r + +2 (-1) i cos (E 4
S g r r

g g

with (i = 1, 2).

E.3 An Euler Sequence of Rotations.

To account for the out-of-plane geometry another position angle (0) must
thbe designated; this will account for the z - coordinate which arises in a general,

three-dimensional representation.

When the two-positional Euler angle sequence is used it is essential to

have three triads designated; the intermediate one to accomodate the mid-posi-

tion orientation - between the desired beginning-and-ending-frames of reference.

For the situation visualized here the 'beginning" triad will be designated

as (er , e(p , ez) - centered at the c.g. The terminal, or "ending", triad will be

like the one denoted above but called the (e , en, e ,) triad; and the intermediate

one will be designated as the (e' en , ez') triad.

The operational sequence for applying the rotations is as follows: To

locate the (et , en , e z) triad, a rotation (0) will be applied about er. This

would be analogous to a yawing action, about the local vertical. The second ro-

tation (0) will occur about ez, , and will position the final triad (e , en, ez,).

This sequence of rotations leads to the following transformation matrices,

and to the relations noted below:
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(1) The rotation, a, impressed on the triad (er, e , ez ), to locate

the intermediate one (e,, , en , ez), is expressed by:

-e (1 0 0 e

en = o0 cos b sin e P (E. 5a)

Sez, O -sin t cos L e

, or e LTjk k, for(j = 'n', z'; k =r,p,).

(2) The rotation, 0, is applied about ez' to

locate the triad (e., e, e,); the transform foreze
S' this is:

e cos 0 sin 8 0 e.,

e 0 1 e ,

or e e = Ttk e., for ( = t, n, z'; j = L',n', z').
Fig. E.2. Euler Angles.

If these (two) matrices are combined, then the transform, relating the

"final-" to the "initial-" triad, is:

cos 6 sin 9 cos 4 sin 8 sin )r e

e -sin 8 cos 6 cos $ cos 0 sin e . (E.5c)

eZ  0 -sin ¢ cos e

It should be apparent that the transform which describes (e r , e , e ) in
r p z

terms of (e , en , e ,) is simply the transpose of the matrix immediately above.
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In general, and in the developments which follow here, to keep the pro-

blem simple (in arithmetic) only one positional angle will be used, (0). In this

regard the motions of the two mass particles are constrained to a single plane

of action - this plane can be described, at any instant, by the "state-vectors"

for both (or either) of the bodies.

Consequently, the formulations which follow will have €, = 0; and, there-

fore, the positional transformation matrix to be used is the one given in eq. (E.3a).

E.4 External Forces.

The investigation being conducted here considers, as forces acting on the

two mass particles, only those arising from the central mass attraction (gravita-

tional effect), and the tether force (Fi). No other forces (of consequence) will be

assumed herein.

Without designating the physical nature of the tether force; but in order

to define it geometrically, let it be designated as follows:

From the sketch one sees that the

m2 
Se orientation angles, for the vectors of force

(F.), relative to e., are noted to be, a..t
Consequently,

2 C g.

1= cos y, (i 1,2); (E.6a)

e I T
n 1 1

g, I and/or, alternately,
r

a '- (i+1) r - a.,i (i = 1,2). (E. 6b)

Fig. E.3. Forces and Orientation.

Without considering any other external forces (in-or out-of-plane), the

above representation will suffice.
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E. 5 Dynamical Equations for the Motion.

A formulation of the dynamical equations follows directly from Newton's

laws of motion. The (two) descriptive expressions are written below, for re-

ference purposes; and reduced to the specific form, directly.

Considering only the forces noted above, then one can write

(mr." -M r. +F (i=1,2);
ii = t 3 i ;

r.
t

or,
F. m. r.

r. =  r. + (i = 1,2). (E. 7a)
r. 3 m. m.

To complete the formulation of this problem, it is necessary to (kine-

matically) relate the "acceleration" to the problem's geometry; this is under-

taken next.

In eq. (E. 7a) the term involving m. would be interpreted as the "loss

of mass", from the bodies (mi), as a consequence of paying-out the tether. In

general, here, the tether is considered to be a massless member so that the

term(s) involving (m) would be neglected.

E.6 Kinematic Equations.

In this section of the development the vector velocity and acceleration are

described, kinematically. For convenience these quantities are described in the

two triads of reference (e , e n , e ) and (e , e , e ); however, it should be re-

called that both of these reference frames are in motion relative to inertial space.

Also, one should note that these reference triads do not have a same rotational

velocity vector associated with them - this will cause some differences in the

kinematic statements for the two frames.

Since (see eq. (E.1)
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t g r i , 1, 2)

then

r = e +r e + e + 4 . (-1) e , (E.8)
S g r g r

where in

e = g x e , (W (p o );or e r = p e
r g gg rg

and

e = w x e, (W +9 ); or e= ( + Pg) en . (E. 9)

If the transformation matrices (for = 0) are also introduced, then it can be shown

that the velocity vector (r i) is given by:

S= g cos + rg sino+ (-1)ii et + rg gcos 0-r sin + (-1)it +pg en

for (i = 1, 2). (E. 10)

Next, when the r. expression is differentiated, one finds that the (final)

kinematic equation for the acceleration is:

" ((g ,)2 )  i i +g (1)i'" " 2 -]r.= -r cos 0+ 2 p + )sin9+ - et g g g g g 9 g

+ -g gg r )sin 0 + (2g g + rg 0g)cos 6+ (-)i [2i (6+g

+ i + g )]en when (i = 1, 2). (E. Ila)

Additionally, since e = e cos e + e sin 0, and e = - e sin + e cos e; then,
r r' n r

ri g - rgPg2) )+ (-1) i  - +  )2 cos  -(-1) i [2 +g)

+ i ( + g )] s in 8 er + {(2r g 9 + r + (-1) iP i i +  g 2 s in e

(equation continued on next page)
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+ (-1)i ( +( ) + L +(+ p ) los 8 e. (E.11b)+ - i g

and (i = 1, 2).

Equations (E. 11) are the expressions which may be incorporated into the

dynamical equations of motion to describe the problem in terms of its geometry

and its physical parameters. The resulting expressions are those which (in

principle) must be integrated to define a time history of the state of motion.

E. 7 A Specialization. Circular Orbit for rg .

Let it be assumed, now, that the c. g. of the system moves along a cir-

cular path (hence r = constant, g = constant).

Now, for this constraint note that the appropriate equation of motion is:

.. (m + m 2 )
(m + r - 3 r , (E.12a)

r g

wherein, kinematically,

r (i - r )e + (2r 9 +rg) ep ; (E.12b)
g g g g r g g g p

which reduces (here) to,

S * 2-
r - r e
g gg r

Consequently, eq. (E.12a) becomes,

r p 2= , (sincer r e )
g g 2 g g r

or

S2 . (E.13)
g 3r g
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This relation is quite useful in subsequent reductions to the equations of

motion.

Carrying this specialization into the kinematic expression, developed

above, it is evident that the appropriate velocity (ri) and acceleration (ri)

equations are:

r.= Ir9 sin +(-1)i e t+ [rggp cos + (-1) L.(6+(8+pg )]e ; (E.14a)

and

r i{ r 9 2cos+-i[i i- ( +I2]J et g sin 6 +(-1)i 12ti(+g 9

+ ]} e; for (i = 1, 2); (E. 14b)

(the reduction of the r. equation, referred to the (e , e , e z)-triad, is:

r= -rP 2 ()i i= fg + 2] os e- (-1)i[24i (_) g)+2i i(n j er

+ g2 sin 8+ (-1l)[ 2i (O +Pg) +4t ]cos 0} e (E.14c)

with ( = 1, 2)).

Next, when these reduced kinematic definitions are used in the dynamical

equations, the following expression is obtained:

-r P2 cos +(-1)i Fi -ti ( g)2  e+ rg;g2 sin 8+ (-1)i[2-i [ g

+ Li en 3 r cos + + ii e -Pr sin enr.

+ - os U. e + sin ct e ; (E.15)
m. 'l n

wherein
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-3 -3f () 2  -3/2 -3 -3
r. r 1 + +2 (-1) - cos] r A(E.16)*

1 g r r g
g g

and (i = 1,2). As noted earlier the mi have been deleted.

If eq. (E. 15) is separated into its scalar components (referred to the

(er, e , ez)-triad, and constrained for / = 0) then it is easy to show that:

-r g 2 cos 8+ (-1)i~t'. - .Li + g I.3 r cos e+(-

.. g i

a g

F.
+ cos ct. (E.17a)

m. I

e

and

rgcg 2 sin 8 + (-1) ( + + i 3 r sin 9

a g

F.
+ sin ce.. (E. 17b)

m.

e

Here, as before, (i = 1, 2).

In the above expressions the terms were marked by "a", "g", and "e" -

this has been done to identify the source (or origin) of each term in the equations.

These designations indicate that the appropriate quantities arise from,

a acceleration component (consequence of selecting
a moving triad of reference, in part);

g gravitational terms;

-3
*Note that the expression for r. has a simple approximation (based on ti < < r ):

That is, since ri-3 r -3 i-3, then A. -3  -3 (-1) i  cos 9+ Oj
g r 9

g g
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e = external (specific) force quantities.

If the terms making up eq. (E. 17) are regrouped, and if eq. (E. 13) is in-

troduced, one can show that:

F" * .2 * 2 -3~ 2 -3 i
P( + •2+ ip 9 iP9=rgIngi (E. 18a)(-1)Li L - (6i g) 'i g A1  jrgdg cos 6 (1-A1  ) cos a ; E.18a

a a g e

and

F.
[(-1)24 (0 + ) + et ] =  r 2 sin 0(1-A-3)+ F sin i; for (i= 1 ,2 ).  (E.18b)

a a g e

E. 8 Dimensionless Variables.

The equations described above are written in terms of dimensional, physical

quantities. Even though these are descripttve of the problem, its geometry, etc.,

it is felt that a more compact (dimensionless) notation is desirable. In this regard

the following quantities are introduced:

. _F./m.
Let X. E- , 7. I -and, change the independent variable from t to

I r i 2
g rP

gg

<p by means of:

1 d d
S-- ; hence, ordered derivatives are noted to be:

9g dt dp (n) (n)

L K[H (E(-)'1 (. 19)

where 'In" designates the order of the derivative.

Now, if eqs. (E. 18) are divided through by (rg g2), and the transforms
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(eq. (E. 19)) are utilized, it follows that these differential equations may be

recast as:

(-1) i i (1+0') i i_3 os '1- 3] +7 i cos ai

and

(-1)i [2 (1+') " = - sin 8 (1-A -3) + r. sin , (E.20)

wherein

i  [1+2 (-.1)i Xicos O+X 2 ]1/2 , (i=1,2).

Equations (E. 20) are the same differential equations, describing the

motion, as before, except that the variables are now non-dimensional, and the

time dependence has been replaced by a position dependence.

E.9 Conversion from -. to Z .

So far the equations, as developed, describe a motion for the two (it-

bodies - somewhat independently - with respect to c. g. In order to examine

the full tethered motion it is best to convert to a full tethered separation; that

is, to rewrite the expressions in terms of (say) Z rather than ti. This is

accomplished by the following means:

Since +- I1 2+ I 2 ; and, from the sketch (E.1), r. = r + (-1) 4i e,
g

with t + t = , then it is evident that
1 2

= 2 -  
= (Zl + t2) e=e ;

2 1 1 2 Z Z

with the understanding that,

m24 mlt

1 =  m.' 2 Lm. '
1 1

(which proves out as

250



(m + m I)
1 + = 1 e ). (E.21)

-1 2 2m. QED.

Now, in order to convert eqs. (E.20) from (say) X. to a (--/r ), write

(E.20) for each i - body and add according to the idea set down in eq. (E.21).

When this has been done and terms are collected, it can be shown that the re-

sulting expressions are:

2 fvX k2 1 1
S"-1 X(1+8')2 + + = c 3 - ) + 2 cos U2 1 os co1

1 2 1 2

and

X8"+2 2(1+8')= sin A1 - 3 ) 2 sin2- sin l (E.22)

21

In these last expressions:

S 1 2  X ( )  (~); [1+2 (-1) X.cos ei+ 2 1/2
g g

F./m.
. 2 for (i = 1,2).
r 2P
gg

E.10 A Special Situation.

In the following specialization it will be assumed that m 1 is the "main"

(or more massive) body for the tethered system while m 2 is a much smaller

mass. Consequently in defining the motion of m 2, consider eq. (E.18a) written

for this body. That is,

.2 .2 -3 . 2 el-af3.2
- (- + .) + ( A = • 2cos 1 -3 F+ 2 cos 

2 2 g 2g 2 g g 2 m 22

and likewise, from eq. (E.18b),
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* 2 * 2 -3 2
22  (8+pg ) + t r sin 0 (1-A ) + - s i n a . (E.23)

2 g 2 gg 2 m2  2

mt

Now, since &2 -in- (M imi), then (E. 23) can be rewritten as,

m1 m 2 m1 2 -3 3 2 -3)
( + ) + -- p = rp cos -A

g MM g 2 g g2

F
+ cos 2 ,

m 2

and

m ( +( g) + 8 rp sin (1-I2 3 ) sin 2 .
M M rg g sn m2 s 2

Next, converting the above equations to dimensionless variables one finds

that:

F cos a
2 -3 M -3 2 2

" - (1+')2 + ~ 2-3  m cos 8 1-A2  + C
1 rg

and
F sin a

M (1 -3) + 2 2

m 22(E24
1 r p

wherein

S(~) M m.; +2 cos 1 / 2

r i 2 2 2 i
g g

To make the expressions above, eqs. (E. 24), more amenable to solution

the following (added) restrictions are made:
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(a) Let m > > m 2 (i.e., M n ml).

m mn
-3 l1 1 2 2 1-3/2

(b) Let t << r ; thence, A2 -3 +2X - cos 0 + 3/2

L1+2X cos 8+2 -3/2

1 - 3, cos 8 + H. O. T.

As a consequence of the reductions, eqs. (E. 24) reduce to:

X" - X (1+ t ') 2 + X (1-3X cos 0) 2cos (3X cos 8) + 72 cos a2 '

and

X 8" + 2X'(1+8') -- sin 8 (3X cos 0) + 72 sin U2;

or, retaining only first order terms in X and X' then:

3X
X"- X ' (2+8') - 2 (1+cos 28) -- 2 cos O2,

and

XO"+29' (1+O') + -- sin 2e--r 2 sina2

The parameter X, used to represent the tether length is not necessarily

a best representation in all instances. A (sometimes) more convenient normaliz-

ing quantity is the extreme length of the tether ( em), for a given situation.

IiDefining X I , and introducing a new nondimensional length (a),
ni r

where g

m m
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(recognizing that X is a fixed parameter for a given problem situation), thenm --

eqs. (E.25) can be rewritten, immediately, as:

2 290" - c8' (2+') -  Q (1+cos 29) 4 cos 2,
m

and

a"+2cr' (1+0')+ 3 Osin 2- sin2 e
m

To describe a more appropriate form for T2, let

2g r  F2/Iii

Zm . 2
m - <p

m g

hence the present non-dimensional, reduced differential equations for the motion

are:

a" - a O' (2+9') - a (1+cos 26) = 7 cos 22

and

a0"+ 2a' (1+0') + rsin 29r sin a (E.25)
2 m 2

This last set of expressions describe (to a reasonably, expected degree

of approximation) the in-plane motion for a tethered system constrained as noted

in the development. Basically, the tether is massless; it may have some freedom

for motion itself (through a); and, the system experiences only gravity forces

in addition to the tether force. Also, the base (reference) orbit for this situation

is circular.

The set of equations (above, and given as eqs. (E. 25)) describe the action

of m 2 relative to mi, since m is on the circular path about g. One should

note that these expressions are (as yet) coupled and non-linear, hence a simple

analytical solution is not apparent (without added conditions being imposed).
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APPENDIX F

AN ANALYSIS FOR THE EXTENDIBLE TETHER SYSTEM

F. 1 Introduction.

The system is assumed to be com-

posed of two point masses (mi ) connected by

I~n F a hard-line tether subjected to a tension

-., force. The hardline has an instantaneous

length, t, and is located by the angle, 6,

2 In measured from the local vertical (e ); with

1 m sgn 10- 1 according to direction of motion.

r Forces other than tension and gravity

are neglected. The particles would describe

independent, two-body orbits if the tether

force would vanish.

F. 2 Equations of Motion.

In agreement with Fig. F. 1, the

differential equations of motion* may be

written as:

rl 3  m 1
r 1 1

Fig. F.1. Geometric Description.

r2 3 -2 (F 1)
r 2

where F IF, F I .1 2

Since Z = r -r, and t = r 2 -r ,21 2 1

then from eq. (F.1),

*The analysis here is similar to that in Appendix E, but sufficiently different to

warrant being included as a separate development.
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3 1 3 - F1

r1 2

mim2wherein r-= (reduced mass for the system).m1 + m

Defining the length ratio (r2/r ),
2 1

r 2 [r 1 1/2

1 r1 2

then,

A = +2 - cos + 3/2 (F.3)2~ (F. 3)
1 r1

Now, the dynamical equation for the tether can be expressed as,

= - . (F.4)
r

1

Next, a kinematical statement for L must be written; then these two ex-

pressions are joined, and the scalar motion expressions are extracted.

F. 3 Kinematic Definition for t.

e At m 1 two triads may be defined.

eC x One, (e , e y, e ), an orthogonal cartesian

system with e in the radial direction; ey,
x

e in the (local) transverse direction; and

Y m e normal to the plane of motion. The second,e z- -Z-

z denoted as (e,, , e e ),has et in the direction

1  of Z; e is the "normal" vector; and, e is asj n Z

e n before.

The two triads have a motion about

Fig. F. 2. Reference Triads. u so that they may retain their described
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orientations. The "motion" of the triad (e, en , ez ) is described by w = (0 +±0I

e , where r is the angular rate for m1 as it moves on its orbit. The w for the

other triad is simply = p ez .

Since Z - t e , then the kinematical manipulations here are markedly

similar to those shown in section B. 3, Appendix B. Consequently the description

of the acceleration vector is

S= (- ) e + (2t at+ ) e, (F.5)

wherein wt 0 + ~1. (The subscript (.) , in Appendix B, is dropped in

agreement with the definition of 1)'

To write the scalar equations of motion, combine eqs. (F. 3) and (F. 5) noting

that,

r =r cos e t- r sin 8 e ,

and obtain as a result,

S(1-3) r cos Fe-A-3]
(t , + -3 in

r

and

W, L =-2et (1-A 3)rlsin (. F6)
rI

These two expressions are analogous to the equations described in section

B.5, Appendix B.

The terms involving A-3 here are a consequence of gravity gradient; those

involving WoL are the (so-called) fictitious acceleration, or kinematic,quantities;

while F/mi is the "applied" force acting on the system. Here this force is the

tether tension.
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F.4 Specialization for the Tether Problem.

To affect this specialization assume that m 1 >> m 2 ; hence assume that

m moves along a circular orbit. Then following the corresponding reductions

in section E.7, Appendix E, it is evident that eq. (F.4) can be recast as

- 2 (1 -_, 3) r - 3 Z F t
= (F

Also, it is easy to show that the scalar equations (F.6) reduce to the

following set:

* 2 1 2 *2 F -3 -3 F
L= 1 (" 1+ -- +rl 2(1-A-) cos 8 -- -

1 .1

and

=24 ( )+--r( [1- 3 )sin] ; (F. 8)

wherein

-3- +2 C 0 + )-3/2
rl r121r

F. 5 Dimensionless Variables.

Eqs. (F. 8) indicate a natural non-dimensionalization of the governing

differential equations. This, fortunately, parallels the scheme used in section

(E. 8), Appendix E. Therefore, following that pattern it is easy to show the set

of equations (F. 8) become:

X" = (1+ ,)2 + (1-- 3) cos -xA-3 -

1 6 "= -2X' (1+ e,) - (1 -A-3 ) sin e; (F. 9)

wherein

3 2 -3/2 F/i
A-3 =(1+2Xcos + 2) - /2 and 7 (the ratio of specific

• 2
r l P1  force to specific centri-

fugal force).
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Eqs. (F.9) are the same "undiluted" set as (F.7); hence, they cannot be

made to yield a closed form solution.

One can see that the 6-equation is not directly influenced by "F", though

it is influenced, implicitly, through $, L (or X, X').

The general regimes of motion to be considered here are in the second and

third quadrants (where ! 0 1 normally lies between v/2 and r). In this regard one

can see, for instance, that 0" is negative when X' > 0 and 0' < 0. This verifies

the condition that 6 will usually go to zero along the are of motion for m 2.

F. 6 Linearization and Reduction of the Governing Expressions.

The term A-3 can be approximated as:

A-3 =(+2X cos 9+X2) -3/2 =1-3Xcos e+H.O.T. (F.10)

and, as a consequence eqs. (F. 9) reduce to:

X"= 2X8'+X 8'2+3X cos 2 0 + 3X2 cos 6 - 7 ,

3
) et= - 2X' (1+ e') -2 AXsin29. (F.11)2

This reduction has not produced a set of expressions which can be con-

veniently handled for a closed form solution. Further reductions are necessary;

some of these will be described subsequently.

F. 7 An Equilibrium Condition.

Suppose that the system is "quiet" (- = = = 08 =); then from eqs. (F. 8)

one finds:
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" 2  2 cose t y3 F
tpl 1 I[(I r

and

r 1 2 [(1 -3) sin e = 0, (F.12)

with

-3 + 3
A 3  (1+2- cos +- )3/2

r 2
1 r

F. 7.1 Conditions for Equilibrium.

A first condition noted is that, either:

(a) A- 3 = 1 (i. e., 4 = 0),

or

(b) sin 8 = 0 (O = n t). (F. 13)

These are natural consequences for the system.

Suppose, for the moment, that t j 0, and e= ?; then eq. (F.12) reduces

to:

t -3 & -3 F

r1 r 1 2
mr 1,l

and

- 3  - -3 
A =(1--) -1+3

1 rI r

or, using the dimensionless variables introduced in section (F. 5),

7r(3) = X() 3 (1-)),. (F.14a)

as an approximate equilibrium tension definition.
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If the system would be oriented so that 0 0, then from eq. (F. 12),

+(I 3 It -3
r r

1 1
with

-3 I -= +- (1-3- ;
r r1

1 1

or, since X -

r(() = r(0) 23X (1+ X), (F.14b)

as the approximate level of tension for equilibrium, here.

F. 8 A Simplified Energy Analysis.

To this point in the study, no concern has been given to the energy of the

system, though it is of interest for several reasons.

In the following development a simplified analysis is undertaken for the

purpose of determining how terms may be grouped in this problem. Such group-

ing have definite advantages; one reason is that this leads to an intrinsic form of

nondimensionalizing for the various parameters defining the system and its motion.

Returning to eq. (F. 2), the dynamical equation for the system; i.e.,

_ -3  -  -3  F ,
S (1 - e,, (F.15a)

3 1 m
r1

wherein
- r 2

-3 + 1-3/2 and

rl r

Since t << r 1 , for most situations of interest, then

A- 3 _. 1.0 for these many cases.
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Now, to the degree of approximation inferred here, eq. (F. 15a) reduces to:

(- F-(-) - - e (F.15b)3 m 4
r1

which is descriptive of the system insofar as is concerned.

Now, scalar multiplication, using t, gives:

3 m '
r

or, in terms of equivalents,

d 2 d F d
dt 2 dt 2 dt '

wherein 2 = (for circular orbits). Now, a first integral from the above
r

is:

+ + ( = , (F.16a)& 2 m

where V is a constant of integration.
2

Assuming that 4 = 0 and & = finite value, then Q = o and, conse-o o 2
quently, for the final state,

-2 2 ,2 *2
f fl F oS _ n + = 2 (F.16b)2 2 mf 2

or, after rearranging,

• 2 e 2 (F/ri)
ff 2 (F -

S= 1. (F.16c)

o 0 o
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This grouping of terms suggests combinations which describe the operating

characteristics of the system. Logically, then, this system can be described by

means of the parameters:

f tfp 1  (F / in) f
Sand (F.17)

0 0 o

These "numbers" may be evaluated for (say) one system and its operation;

then, all other compatible operations for this system are described accordingly.

This allows one to describe all similar tether systems, of a same opera-,

tional type, in terms of these same intrinsic quantities.

F. 9 Extensible Tether with Variable Tension.

The development carried out here is

2  ex for a tethered body system operating at a

±+ fixed position angle (0), with variable tension.

- This tether is a flexible, massless connector

F capable of supporting an in-line force (tension)

2 e but no other forces.
Y m

1
The entire system moves about at a

fixed rate ((p). The positioning of m 2 is des-

cribed by r 2 measured from p; and by --

measured from mi.

-1 From the sketch it is apparent that

the "inertial" position vector for m 2 is ex-

pressed as:

r =rl +.

Fig. F.3. Description of Problem. The scalar (in-plane) governing equa-

tions for the "tethered motion" are given
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as eqs. (F. 6). When the specialization of a circular orbit (rl ) is introduced,

and the transformation of variables is included, the differential equations are

those noted as eqs. (F.9). These are repeated here for convenience:

X" = (1+')2+ (1- A-3) cos 0-XA A -r,

and

S8"= - 2' n + ')-(1- A- 3 ) sin 0; (F. 18)

wherein

WE (1+2Xcos ++X 1/2

and

F/i
.2

rl (P

If the restriction of constant 0 is introduced, then eqs. (F. 18) reduce to:

X"= (X + cos )(1- A -3 - r,

and

-3 sin6
273 =si e (F.19)

A simplification can be afforded by differentiating the second expression and in-

corporating it into the first equation. Thus, the differentiation produces,

"- 5 (5X + cos 6) sin 6;
2A

and, after incorporating the second of eqs. (F. 19),

= sin (1-A )(X+cos ). (F.20)
4A

Now, in place of the first expression in eq. (F.19) write:
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-3 r 3 sin2 e
= (1- 3 ) (X+cos 9)1 - 3 (F.21)

4A

Equations (F. 19) and (F. 21) give sufficient information to proceed with a solution

to this problem. Herein, X (hence A) can be specified - for a given situation - then

the required speed (X') and tension force (7) are determined from these governing

equations. These are the values which will assure the manipulation of a tethered

body system at a fixed angle (0).

On the premise that the quantity (1 - A-3) 0, then it is evident that A' r 0

so long as sgn (sin 0) 0; and conversely A' s 0 if the converse of the situations

exists. What is implied, then, is that a "roll-out" system can be established in

the first two 9-quadrants; and a "roll-in" system can be put into operation in the

remaining quadrants.

It is apparent that A' 0 when (1 - A-3) $ 0 and 0 / 0, ff. This suggests

a non-vanishing tether "extension" for other than local vertical actions; and for

the positioning of m 2 away from ml.

-3 -3 -3
As a general evaluation, note that 0 (X) = 10 - 3 ; 0 (1 - A-3) = - 3x10-3, etc.

Consequently, 0 (7) n10- 3 , and the system behaves as expected. As the antithesis

of this, note that as A - 0, (1 - A-3) - 0, hence ' and 7 become vanishingly small

quantities. Or, the system ceases to be operable as a dynamic entity.
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APPENDIX G

A ROTATING, TETHERED BODY SYSTEM

G.1 Introduction.

The subject of this appendix is the mathematical description of a tethered

system which operates at a continuous rotation. Various expressions describing

such a state of motion are to be developed; and, a subsequent "free orbit" deter-

mination is to be made. The "free orbit" description could be the consequence of

releasing a tethered particle (m 2 ) at some arbitrary 8-position during the rotation.

The purpose in this immediate effort was to obtain equations for a computer

program to evaluate such an operational maneuver.

G. 2 Equations of Motion.

The basic differential equations describing this problem may be found in

Appendix F, as eqs. (F. 8), and eqs. (F. 9). Since this latter set is simpler in

format (dimensionless expressions), the descriptions below will result from a

manipulation of these. Thus, the equation of interest are:

X"- (1+8') 2 = (1-A - 3 ) cos - A - 3 -,

2V (1+0') +X "= 1 d [ 2 (1+')] = - (1-A ) sin 0, (G.1)

wherein

SF/m 1
S=_ " _ F( = _) and

r - 2 I1r1/

A [1 + 2X cos 0 + X2] 1 / 2

G. 2.1 Special Case.

Suppose that the rotation of m 2 , about m1 , occurs at X = constant (Z

fixed). Accordingly, eqs. (G. 1) are modified to:
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r= X(1+0')"- -j+ (1-A-3 cos ,
and

XO" + (1-A- 3) sin 8= 0. (G. 2)

This last expression (for 8") can be simplified by the following operations:

A multiplication by 8', and the recognition of several equivalent differential forms,

leading directly to:

d 8'2 cos 8 1(G3a
do 2 . (G. 3a)1 2A

As a consequence of this result, it is apparent that

(X8') 2  
1- cos - = constant. (G. 3b)2 A

These expressions, ((G. 3b), and the first of (G. 2)), may be employed to

determine a time history of 8 and 7 during the rotational mode.

G. 3 The Free Orbit, from a Rotating State.

This section will describe the free orbit which results from m 2 being

released during the rotary motion about m. The case examined here considers

in-plane motion only.

G.3.1 Position of Velocity Coordinates.

With m 2 "whirling" about m (at ± 8), then at any instant, m 2 is located

relative to m by

S= e.

where et is a unit vector in the triad (e,, en, ez) , and is dependent on 8.

Similarly, the relative velocity for m2 , due to the rotation (8) is:

v2 = ( ( e ) sgn (8), (G.4)
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wherein sgn (9) E ± 1, depending on the rotational direction.

The inertial velocity for m 2 is recognized to be,

V2= V1 + v2 (G. 5a)

with

V r p e (G. 5b)

(See Fig. G. 1) below.

e From the figure it should be evident
x

0 0 + that the two relative positioning triads are

related according to the transformation:

l 8 e cos 8 sin 0 ex

S= -sin 8 cos 0 e
e n y

Y e _
n ez  0 0 1 e (G. 6)

1 - As a consequence of eq. (G. 6)

the relative state equations may be recast

Fig. G.1. Description of as:
Rotating Tether
Systems. ' = 4(cos e + sin 0e ),

x y

and v = 4 I (-sin 0 e +cos 8 en) sgn 0. (G. 7)

Carrying this operation into eq. (G. 5a), it is found that:

V2 = rl + (4 1 cos0 ) sgn b ey- (Lt Isin0) sgn 0e x .  (G. 8)

Herein, sgn 8= 1, and e 0 + Ot.

Making use of eq. (G. 7) it is apparent that m 2 is located relative to

by:
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r 2 =r 1 +4= (r +-Lcos B) e + (Lsin8) e . (G. 9)

Next, making use of eqs. C(G. 8), (G. 9)] the corresponding speed and

position ratios are readily obtained as:

(1) Speed Ratio-

- 2

V +( cos ) sgn 0+ V 1/2 (G. 10a)
1 1 V

(2) Position Ratio:

r 2 L +( )2]1/2
- =L + 2 - cos 0 + =. (G.10b)
rl 1 1

G. 3.2 Momentum and Energy Equations.

For the free orbit,developed here as an operational maneuver:

(1) Momentum Expressions:

With h r X V, relative to p ; it follows that,

2* -
S=r 1 X V 1  r1 ez (G.11a)

Similarly,

h2 = r2 X 2', with r2, V2 defined in eqs. [(G. 8), (G. 9)].

After carrying out the indicated multiplications, one finds:

h = 1+ [(F ) sgn 0 + rl cos (1+ sgn ) e z1e (G. 11b)

with h defined immediately above.

Expressing eq. (G. lb) as a ratio, then-
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S1 +- 1 + sgn cos + sgn (G. lc)
h r ) rl 11 1 91

(2) The specific energy expression for the m -orbit is defined as:
2 2

E V2 1 (G. 12a)
2 2 r2  2a

or, with mi moving on a circular orbit (by assumption),

2E2  V2 2 2 1
12 ~V 1 / r2/r a/r

V 1 1 2 1 - 2 1

which, after recognizing that E 1 
= - V12/2, leads directly to the result

EVE 2  2 2 1
S+ 2 (G. 12b)

1 1 i2 21

From this resultant one can obtain a description of

a2 E 1  1
S E/E . (G.12c)rI E2 E /E 1

with the ratios, (V2/V 1)and (r2/r ) determined from eqs. (G. 10).

G.3.3 Orbit Eccentricity.

The eccentricity for the free orbit of m 2 is determined from the expression:

2

2 = 1+ 2 (2E2) ] /2. (G. 13a)

In terms of the ratios defined above, this can be recast into the form:

2 h E

2 = h 2) 1(G. 13b)
1 1
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wherein the ratios are obtained from eqs. (G. lc) and (G. 12b), respectively.

G.3.4 Angle Descriptions.

The elevation angle (y2 ), for the velocity vector V2, and the position

angle (p 2 ) on the free orbit, where m2 is released from its tether, are to be

described next.

(a) Since all motions are restricted to a single plane, and since

V1 V1 e , then symbolically,

cos = V
2 V1V2

This can be reduced to,

+ cos 8 sgn 8
1

cos 2 = V (G. 14)2 V2/V1

Iv2 I lel
wherein r --- ; and, 0 0 + (1 It) sgn .wherein

V1 rI e0+( t) oS e

Due to the symmetry which is apparent for closed orbits, there is a

concern regarding the sgn (Y ). To overcome the ambiguity evident in eq.

(G. 14) the following test is suggested:
th

Define the x- component of v2 by:

v v . e = - (  I sin 8) sgn O . (G.15a)
2 2 xx

As a consequence of eq. (G. 15a), the test is:

If: v2 < 0, then y2 < 0;
x

v 2 > 0, then y2 > 0. (G. 15b)
x
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S2
Also, with sin C2 - cos 2 , then:

If: v 2 <0, sin y < ;0:
x

v2 >0, sin y2 >0. (G.15c)
x

(b) The position angle (P2), locating the "release point" for the free

orbit, can be ascertained from a description of the elevation angle ('2). That is,

with

_2 sin <2 sin y 2

tan E2 sin 2 - ; (G.16)
2 1+ 2 cos P 2  cos Y2

a quadratic expression in cos V2 (say) can be obtained. This quadratic has a

solution in the form:
2 2

sin y sin2 Y
os in2 cos 2  (G. 17)

os2  E 2  2
2 e2

The apparent ambiguity in sign, on the radical, can be rectified by examin-

ing the radius (at release) in comparison to the length a 2 . (For a more complete

discussion on the reasoning for this, see section H. 4.3, Appendix H).

The conditions governing the choice of sign for the radical, in eq. (G. 17)

are as follows:

(1) If r2/a 2 > 1.0, then sgn (/) = - 1.

(2) If r2/a 2 < 1.0, then sgn () = + 1.

(Note- The quantity r2/a2 is described in eq. (G.12c)).

G.3.5 Pericenter Radius and Speed

The magnitude of the state parameters at a pericenter (for the free orbit)

are of interest here. These parameters are a set of terminal conditions to be

described from the free orbit's characteristics.
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With these characteristics as known quantities, now, then the desired

descriptions are acquired immediately.

Hence, with the radius to pericenter defined as,

r 2  a2 (1-2); (G.18a)

its ratioed form is,

r
P2 a

- (1-2), (G.18b)
r r 1 2

wherein a2/rl and c2 are obtained from eqs. (G.12c) and (G. 13).

The speed at pericenter is most simply defined from

h2  (h2/h ) h1
V =

p 2  rp (rp 2 /rl) r l

or

P2  (h2/hl)
1 , (G. 18c)

V (r 2/r )

with the ratios used here determined in eqs. (G. 18b) and (G. llc), respectively.

G. 4 Summary.

The various expressions and methods described in this appendix have

been used to develop a computer program called TETHROT. This program was

exercised to acquire information on the establishment of free orbits from a ro-

tating tethered system.
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APPENDIX H

COMPUTATIONAL EQUATIONS

H. 1 Introduction.

In this appendix the equations employed in the main computer program

(TETHER) are developed. These expressions are primarily for an extensible

tethered body system, not considering the

e x connecting line as an elastic member; and

with the mass particles having Keplerian mo-

n2 tions. For consistency with the formulations

developed and manipulated in other sections

1F2 iF1 of this report this development will consider

----ml the one particle, m 1 (>> m 2 ), to be on a

r2 y circular path. Particle m 2 , however, travels

e its orbit under the added influence of the tether
rI action.

For compatibility with earlier pro-

- 1 gramming efforts, the present development

is primarily constructed in a cartesian re-

presentation. Also, the equations are cast

into a dimensionless format, using the ideas

set down in Appendix E. These equations

Fig. H. 1. Geometry for the are non-linear and coupled.

Computer Program. The motion for each body is treated

as a two-body problem; the relative position

vector rr = rr (x, y, z), with the triad (ex,

e , e ) attached to, and moving with mi, thus

W 4P 1 e .
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The tether (Z) is parallel to r and has a tension IF , thus:
r

.. (F/m)
r - - * (1), (=1,2). H.1)

From the geometry shown, r 2 
= rl + t, with

r2  (r +x)e +ye +ze
2 1 x y z

hence

r 2 2
r2 = 1+ - + (H. 2)

1 1 r1

Since & =r 2 - r1, then = r2 - r 1 ; and, from above,

3

S=- r r +r )-r (H.3)

rI  r2
with

1 2m 1 + m 2

H.2.1 Kinematics.

Defining the tether vector (t) as,

5= xe +ye +ze x.e. i;x y z it

then:

S= x i ei+xe , etc.,

and, consequently, it is easy to show that:

. 2 *2
Z= (- 2yl - X- )e + (X +2x( - y 2p )e +ze . (H.4)

275y z
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H.2.2 Scalar Equations of Motion.

On combining the results above, and separating into scalar expressions,

noting that i 2 = p/r 1 , it is found that:

S212 + (x/r1 Fx

(a)* x-2yPl-x l - rl L 3 -1 -1

/r2 y/r

S2 z/r F z

wherein
2 2

r 1 r12

Note: Eqs. (H. 5) have been programmed to solve the tether problem for the

conditions described, herein.

Since m 1 is assumed to move along a circular orbit, then there is a

need to retain the inequality m 2 << m; however, there is no restriction

on F (it may have any desired dependence); the coordinates (x, y, z) des-

cribe the relative displacements; and, the first time derivatives describe

the relative speeds.

H. 2.3 Dimensionless Variables.

Introduce as dimensionless variables the quantities defined by:

d (x/rl
x y, _ - , etc.

r r r dt d 1

and,

S=_ ,etc., where X 4 /r . (H.6)

I 11

*(a), eqs. for the planar case.
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Now, employing these in eqs. (H. 5), one finds:

7(" + 2 -' - n - 7 77,

"=--- - 7; (H.7)

wherein

3  [(4+)2 + 2 + 2 ]3/2

H.2.4 The In-Plane Case.

The tether problem expressed in variables (4, 0) describes the in-plane

motion for m 2 , relative to m 1. Since eqs. (H. 1) express the problem, symboli-

cally, then in place of eq. (H. 2) one could write

r + 3
SV +cos )2+sin2 z 3/2. (1.8)

1 1

Equation (H. 3) is the dynamical expression for the system's "tether motion".

The kinematic expression for G is that shown by eq. (F. 5), Appendix F, wherein

8 l As a consequence of these definitions, etc. the scalar differential

equations for this problem are those given as eqs. (F. 6), Appendix F. Expanding

the results given there, it is found that

• 2[4C + r cos 6
S- " (0*<1)2= -1 3 -rl cos - ,A 3 m

and

S2 rl in O
8 j+2 ( 1)=~l1 A3  rl sin . (H. 9)

In dimensionless form these equations may be recast as:

* Actually, these are the equations programmed for solution in the program TETHER.
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2 X+cos 0
"- (1+') =cos - 3 '

X8 " + 2X' (1+8') = (-3- 1) sin 8, (H.10)

wherein ;

X -, ' = , A= [1+2X cos e + X1/2
rl 1

and,

r1 1

H. 2.5 The Fixed Length, Pendulous Motion.

For computational purposes, eqs. (H. 10) are useful in describing the

pendulous motion for the tether problem, where t is constant. These expressions

are best to use in specializing for this mode of motion. This is,

for t. fixed; from eq. (H. 9),

F 2 + Cos 1 3 + + 61F= r +o 1)( -:)- 1+
m1 r rS£= 1 1 - r1  r 1  1

and,
Sd- l 2 (1-A 3 ) sin 8; (H. 11)

with

- 3  ( i 2 -3/2
A = 1+2- cos + - .

r 2
1 r

The second of eq. (H. 11) can be manipulated as follows, for a solution:

• sin 0
(a) Multiply through the expression by 0 ; recognize that

d /1\d(' ' etc; then obtain:

62 r
=2 - cos e+ + ,

.2

278

278



as a first integral. Here V1 is a constant of integration. Evaluating 1 for the

condition; 9 - 0 as 8 -0; then
m

r
( )22 os cos 0 + (H. 12)

14 m + m

where in

+ 42 ]1/2
1+2 - cos e + t

m L r m 12

Unfortunately eq. (H. 12) cannot be conveniently manipulated to determin-

ing 8 without working through an iterative solution. This, of course, could be
m

mechanized without much difficulty.

In order to describe the tether tension, at 6 , the first of eqs. (H. 11) can

be made to yield:

F 12 ( -3 
S= r 1 1p  + cos )(1 - , (H.13)

m r1Im m

wherein A A( ), as shown above.

m m

Rather than follow through with the mechanization hinted to above, for

defining 6 , etc., the simpler (linearized solution) should generally suffice.

At least, these provide good estimates of where to look (first) in the iterative

solution. Such a resultant has been obtained previously; it is:

)2= 3 (cos 20- cos 20). (H.14)
S 2 m

(Here one can find 8 by "measuring" 8 at some 0, when 4 is fixed, and ac-
m

quire a good approximation for e . This quantity is the angle amplitude form
the pendulous mode).

Similarly, an estimate of F/ii is acquired from a modification of the

first expression in eqs. (H. 11). Letting A-3 1-3 cos 0, and accounting for
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eq. (H.14), deleting the (rl) terms, then for the pendulous mode:

F/rii i 3 3 8
2F _:2 -_(1-cos 2 0 ) +- cos 2+ --2 r 4 m 2 P

rl 1 -= fixed

or

1-cos 20
L2 r / F/ru m, cos 2 a (1. 15)

2(Zr 2 L 4 2 3 co
1 Ip 111

Eq. (H. 15) will provide a time history of the tension, during the pendulous

mode (-C fixed), as a. function of 0.

In dimensionless variables eqs. (H.14) and (H. 15) are described by:

0,2 3 (cos 20 - cos 2
2 m

and
1-cos 20 os

3 Im cos 26 8 ] (H. 162X-3L m ++ (H.16)2. L 4 2 3

H. 3 Computational Procedures.

A Fixed Tension Mode, for Extensible Tethers.

This scheme uses eqs. (H. 5), or its equivalent, in a program to determine

the variations of state variables during this motion type.

The parameters for input are: characteristics of the circular orbit, for

ml; a level of tension (magnitude); and an initial relative state for m 2 .

A Fixed Tension Mode, with the "Snubber" Included.

The basic difference in the operation here, from that above, is that the

"snubber" is activated when = 0. There, 0 is defined and the system operates
m

in a 'fixed length-pendulous mode" until the tension returns to the preset value.
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When the preset tension is reached the snubber is removed (mathematically)

and the operation reverts to that method used before it was engaged; i.e., a fixed

tension mode, with i > 0.

H.4 Description of a Free Orbit, from Tether Release.

The methodology described above is for extensible tether operations,

where m 2 is constrained by the tensile force in the connecting line. On the supposi-

tion that the tether is "cut", and m 2 is allowed to move onto a "free" orbit; then

the developments which follow will describe this situation. Herein the motion state

is defined, the subsequent orbit is described, and certain desired "end conditions"

are obtained.

H.4.1 The Initial State.

Assuming that the main body (ml) motion is unaffected by the release of

m 2 (ml >> m2), then the state of m 2 with respect to m is described as:

rr = r (x,y,z); and, r =rr (x, y, z, cp ).

From the problem geometry (see Fig. H. 1) the position of m 2 is

2 = r rI r

(r +x)e +ye + z e , (H. 17a)1 x y z

and the magnitude of r 2 is:

2 +2 +2 1/2r 2 = (r1 +x) +y + z 2 . (H. 17b)

Corresponding to this, it can be shown that the velocity is:

r 2 r= (Il+x -ypl)e x + [y +(rl+x)(p e + ez. (H.18a)
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Defining V 2  V e + V e + V e , then from eq. (H. 18a), note

2 x2 x Y2 y  z 2 z

that:

Vx2 r + - 1 '

V -2y + (r +x) <oPy2 1(rl '1

V z ; (H.18b)
z2

and, also, that

2[V 2 2 2 1/2 (H.18c)
2 x 2  2 z 2

H.4.2 Energy, Eccentricity, for m2.

The specific energy for the free orbit is defined by:

2 2 r 2  2a2 2

The quantities V2 , r 2 are known, hence the energy is readily determined. Also,

by manipulation, the parameter a 2 is described, directly, by:

a -- . (H.20)
2  2E 2

Since the orbital eccentricity is known to be:

2

[ 2 E ]1/22 (H. 21)
2 + 2 2

then it is seen that c2 can be determined once an appropriate description for h2

is found. The specific moment of momentum (magnitude) is evaluated in section

(H.4.3), below.
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H. 4.3 Angle Relations.

The two principal angles to be determined here are the position and

elevation angles, for m2, at the release position. A method for this is out-

lined below.

(1) Specific Momentum (h2) defined.

Sinceh r 2 xV = h. e , (i= x, y, z); with r2 and V des-

cribed in section (H.4.1); it can be shown that:

h =yV -zV ,
x 2  z2 Y2

h =zV -xV ,

Y2 X2 2

h z (x + r ) V - yV . (H.22a)
2  2 2

Corresponding to this the magnitude,h2, is:

2 1/2
h2 = [h2 /2 (H. 22b)h2

(2) A unit normal vector (n2 ), which lies in the plane of motion, ortho-

gonal to both r2, b2, is defined here as:

h2 X r2
n2 = h r (H.23)

Note that r2 is defined by eq. (H. 17b).

(3) Having the vectors V2, n2, r2 (all in the plane of motion), then

a means for determining 72 is as follows:

cos y
V 2
V2
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V2 ° 2
r2 =sin y2 ,

and

2 tan- 2 2 r1  (H.24)

2 2

It is readily seen that Y2 is the elevation angle of the velocity V2"

(4) Next, the position angle 02 is to be determined. Recall that,

tan sin 2  sin 2 (1H.25)
tan 72 1+Ecos P 2  cos 72

Nominally, for closed orbits I2 lY I /2, hence cos 72 - 0, while -15 (sin 2) S

+1. The sketch, below, indicates angle range and sign for the quadrants of that

geometry.

Note that: y2 > 0 in Quadrants I, II,

y 2 0 in Quadrants III, IV.

Y= The angle p2' locating m 2 on its free orbit,

3 >  >  (P= I relative to the pericenter may be obtained

as a solution to eq. (H.25). That is, after
(7 < 0) (>0)

squaring that expression a solution to the

quadratic is:

"B"os 2=- sn 2 cos 2 1 2 2) (H.26a)

r~a 2

v where the sign on the radical must be
T2

(7 <0) y > 0) assigned in accord with the symmetry noted

3<p<2 2 > P > 0 for the 72 angle. A methodology for assign-
2 2 f e2

y = 0 ing this sign is explained below:

Fig. H.2. Angles; Descriptions.
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It should be recognized that 72 is symmetric, in magnitude,

about point "A" (see Fig. H. 2), for the first half of orbit
(I, II), and is positive; while it is symmetric about "B",
for the second half (III, IV), but negative. Also, it is known
that (V=Vc )local at A, B; but (V >Vc local between cp = 0 and

A, B. Conversely (V < V )local between A, B and (p = ± v.

In addition, one should recognize that rA = rB = a2 at these

positions.

With this information at hand it is noted that, at
(A, B),

A, B 2

The test to be applied for determining the sign on the radical may
be summarized as follows:

(1) If r 2 (local) > a2, the sgn () = -1.

(2) If r 2 (local) < a2, the sgn ( +) = + 1. (H. 26b)

What is inferred here is that condition (1) describes positions in
the apocentric region between "A" and "B", while condition (2)
refers to the pericenter region (below the line A to B).

Suitable solutions to eq. (H. 26a) may be obtained, now.

H. 4.4 Pericenter Values.

The values to be determined here are the radius and speed at the peri-

center position. Also of interest is the transfer angle, from the release point

to the pericenter; however, this quantity is determined (implicitly) by P02'

The pericentric radius is described, from the conic equations, as

r 2 =a2 (1-2), (H. 27)

where a2, E2 are given in eqs. (H.20), (H.21).
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In a like manner the speed at pericenter can be described as

V (H. 28a)
P2 h2 (1+E 2

= , (H. 28b)
r
P2

with an expression for h2 found in eq. (H. 22b).

H. 5 Summary.

The various descriptions set down in this appendix have been developed

into a computer program (TETHER) which was exercised to provide various

data needed in this study. A general outline of this program is the subject of

Appendix I.
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APPENDIX I

TETHER, A COMPUTER PROGRAM

I.1 Introduction.

TETHER is a computer program designed to solve for the relative motion

of two bodies connected by a non-elastic tether and moving under the influence of

a small initial displacement, a non-zero initial relative velocity and an initial ten-

sion. The main body is traveling on an undisturbed circular orbit, while the

tethered body moves under the influence of gravity gradient, the initial velocity

and the tether tension. The motion of this second body is described by a set of

differential equations which are numerically integrated with respect to time, im-

plicitly, and with respect to a position angle, explicitly.

In one of its selected modes of operation the program solves for the initial

tension and initial velocity magnitude needed to have the tethered body reach a

final tether length (L), at a prescribed positioning angle (0), with the angular rate

(6) of zero.

The program operates under two main options. In one, the simple ex-

tensible tether problem, the tether pays out to the given length, satisfying the

end conditions. In the other mode, the tether pays out until the rate of change of

length goes to zero; then the system gyrates at a fixed length (until the tension

builds up to the initial level) when the tether again pays out to the end length and

end angle conditions.

I. 2 Operating Modes.

In option "one" the differential equations are described symbolically as:

R = f (R, R, T, t) where R, R are the position and velocity; T is the initial ten-

sion; and, t is the time for the program to run. The scalar equations describing

this problem are:

287



xl =x+ ,

(2 2 2 3/2
W=(xl +y +z )

2  2 2 1/2
L = (x + y + z (dimensionless length of a tether;

a positive number)

' rX1 x
x = 2y + xl - - T , (dimensionless)(T specific tension

magnitude, a positive number)

y=-2x + y - -W '

Z -- -T -
W L'

L = (xx + yy + z z)/L, (The dimensionless value for the
tether "pay-out" rate).

1 d
(Primes denote angle derivatives: d/d(p - ).p dt

These equations are integrated until L = Rf, where Rf is an input quantity

defining the final, desired tether length.

In option 'two", the above equations are integrated until L = 0. At this

time the length of the tether, L, becomes fixed and the following equation is inte-

grated (to determine the history of 0, with L = fixed value):

8"= -1 [(1--3) sin 0];

here A 3 [1 + 2L cos 8 + L2 -3/2, The starting conditions for this segment

of the problem are:

80=tan (X ,
0 x

and

6 = (x - y )/(x2 + y2),

using the position and velocity at the instant when L = 0.
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The dynamic tether tension is computed as:

Td = (L+cos 9)(1- A 3 ) + L ' (2+6').

Integration continues in this mode until the dynamic tension equals the

initial tension (Td = T). At this point, in the integration, the program reverts

to the previous mode of operation.

The new position and velocity vectors are computed, to reinitiate the

integration, and the program proceeds, again, under option one. Integration

is terminated when L = R . The scalar, kinematic equations for R and V which

initiate the option one mode again, are:

x=Lcos x=- L e sin

y= L sin 8 y+ L cos e

z = z (value at L = 0) z= z (value at L = 0).

Under either option the iterator routine, MINMX3, makes repeated calls

to the integration package, using these trial trajectories to find a desired initial

tension and velocity.

I. 3 Inputs.

The inputs to the program are in dimensionless units; however, the pro-

gram performs all calculations, and produces outputs in dimensionless units.

The program is written in the FORTRAN IV language under the H compiler for

the IBM 360 Operating System. A description of the inputs, program operations,

and outputs follow below.

Inputs to TETHER are given through the namelist feature of the IBM

Fortran IV programming language. The input namelist is called NML; every

input required or used in the program is declared, by name, in the list. The

general form for assigning an input value to a named quantity is, simply,
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NAME = VALUE

Here NAME is the name assigned to the variable and included in the namelist.

VALUE is a numerical or logical quantity consistent in form (i. e., logical, in-

teger, or real) with NAME. Unless otherwise specified, all NML names com-

mencing with the letters I-N represent integers; whereas all names commencing

with the letters A-H or O-Z are double precision floating point numbers. Each

namelist case must begin with the characters,

&NML

commencing in card column 2 and followed by at least one blank. Each namelist

ends with the characters,

&END

preceded by at least one blank, if data is specified on the same line.

Card column 1 is ignored on all input cards. Multiple data assignments

on a single card are permissible if separated by commas. Blanks in the variable

field, VALUE, are taken as zeros. A comma following the last VALUE on a

card is optional.

The order of the input data assignments is arbitrary; i.e., they need

not be in the same order as listed in the namelist. In fact, there is no require-

ment that any specific input parameter be represented in the input data set. If

no value is included in the inputs, for a particular parameter, the default value

is used, if defined. (See Default Values).

For other details regarding the namelist feature, the reader is referred

to the IBM System/360 Fortran IV Language manual. Namelist cases may be

stacked in sequence. A single namelist error may wipe out the remaining name-

list inputs.
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I. 4 Definition of Input Parameters.

NAME DIMENSION DESCRIPTION DEFAULT

RIN 3 Initial input position vector,
(nominally in feet).

RDIN 3 Initial input velocity vector,
(nominally in feet/sec. ) (the
magnitude of this quantity
is an initial guess for the
iterator).

THRIN 3 Initial input specific tension
maritude, (nominally in feet/
sec )(the magnitude of this
quantity is an initial guess for
the iterator).

TO Initial time in sec.

TFIN Final time in sec. (used as an
upper limit, to terminate inte-
gration).

EMU Earth's gravitational con-
stant (feet3 /sec 2 ). 1. 4076468532785D16

RCNV Conversion factor, to con-
vert input position vector. 1. DO
(nominally into feet). 5280. DO

VCNV Conversion factor, to con-
vert input velocity vector.
(nominally into feet/sec, .). 1.DO

R Input circular orbital radius.
(nominally in miles).

HS Integration step size. 0. 1325D0
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NAME DIMENSION DESCRIPTION DEFAULT

LSRCH Trigger to determine whether
to use option 1 or option 2.
(LSRCH = 0; option 1 - do
not search for L =0).
(LSRCH = 1; option2 - search
for L =0 and integrate 6 equation).

ISOLVE Trigger to determine whether
to calculate a single trajectory
or iterate for a solution.
(ISOLVE=1, iterate),
(ISOLVE=0, single trajectory).

THETAF Final value of 0 to be iterated
to.

THETDF Final value of B to be iterated
to.

RF Length of tether to be integrated
to. (Input in feet).

The output for each case will be:

(1) The initial velocity magnitude.

(2) The initial tension magnitude.

(3) A time history of R, V, T (position, velocity, tension) L, L, 8, e,
<p, ~p; and, if under option two, a time history of 0 and T.

(4) A time history of the pericenter and the speed at pericenter, if

the tether would be "cut" at any time during the integration.

(5) A time history of the position radius and speed, for the tethered

mass, during the integration.

(6) A time history of the eccentricity, transfer angle to peri-radius,

and the local elevation angle, for m 2.
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All of the above outputs are tabulated during the normal operation of the

program.

I.5 Sample Inputs.

Example Case: An in-plane simulation, wherein:

8 =1500 ,  = 1 8 0 , f = 00 / s , t =1. f t, f = 10. 000 ft, -t =17.4 f/s,

also, set:

to = 0 sec, tf = 4000 sec; estimate F/m 2 (const) 2 0.00075 f/s

Let the operation be defined as type Mode A (reel-in, reel-out case, constant

tension). For this case let the iterator be employed to determine a proper set

of initial quantities (ISOLVE = 1).

Note: (1) For a Mode B operation, set LSRCH = 1.

(2) With ISOLVE = 1., the integration terminates when the end
conditions (of state) are reached.

(3) For variable tension systems (Mode C), assign values to
SOLPE, SLOPE2.

Inputs are:

&NML
RIN = - 0.86603, + 0. 50000, + 0. 0000,
RDIN = - 15.06892, + 8. 100, + 0. 0000,
TO = 0. DO, TFIN = 4000. DO,
EMU = 1.4076468532785D16,
RCNV = 1. 0, VCNV = 1.0,
R = 24145223. 9527,
HS = 0. 15625D-1, LSRCH = 0., ISOLVE = I.,
THETAF = 180.0, THETDF = 0.0,
RF = 1.D + 4,
SOLVE = 0.DO, SOLVE2 = 0.DO

&END
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I. 6 The Iterator.

The iteratory used here is the software module (MINMX3) which drives the

two-boundary value problem to a solution. The following discussion is taken from

TOPCAT I*.

Correction scheme. - The iterator's underlying mathematical operation is for-

mulated as follows. Let X denote the vector of independent variables and let

Y denote the vector of dependent variables. The relationship between these two

vectors is given by:

Y = F (X).

The vector function, F, is evaluated by integrating the trajectory; that is, given

a complete set of control parameters and initial conditions, the corresponding

values of the end conditions Y can be determined. Subroutine TRAJ maps X

onto Y and is therefore the software package which corresponds to the function

F. The problem is to find the vector X* which will result in specified values of

the dependent variables Y*, that is to solve

Y* = F (X*)

where Y* is known. This is formulated as a minimization problem. The weighted

sum of the residuals qi is given by

q i[Y*-F (Xi) TW [Y* -F (Xi)I,

where x. is the current estimate of the independent variables and W is a diag-
I y

onal, positive definite weighting matrix.

The problem is to choose a new value Xi+1 to minimize q i+. If Xi+

is close to X., then

F (Xi+l) = F (X) )+ PAX,

*Lion, P. M., Campbell, J.H., and Shulzycki, A.B., "TOPCAT I: Trajectory
Optimization Program for Comparing Advanced Technologies", Aerospace
Engineering Report No. 717s, Dept. of Aerospace and Mechanical Sciences,
Princeton University, March 1966.
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where AX = X. - X. and the partial derivative matrix, P, is given by
1+1 1

bY
P- .

ax

Evaluating qi+1 with the approximation leads to the expression

q+1 = (AY - PAX)TWy (AY - PAX)

where AY, the residual vector, is given by

AY =Y* -F (Xi).

The problem is then to choose AX to minimize q.

Inhibitor control. - For nonlinear functions F, linear approximations work only

if AX is small. Therefore, the following constraint is imposed:

AX W AX ,
y

where W is the input diagonal, positive definite weighting matrix associated
x

with the independent parameters.

Attaching the constraint with a scalar inhibitor, X, the vector to be mini-

mized is given by:

Q = (AY - PAX) Wy (AY - PAX) +X (AX Wx AX).

Finding the minimum of the vector function yields the solution:

AX= (Tw P+W ) -1PTw  AY.
y x y

It has been shown (see HILTOP reference) that as A increases, -t decreases

monotonically. Therefore, X can always be chosen large enough to satisfy

the above inequality. Moreover, if A is sufficiently large, the correction is

approximately:
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AX=1 W-1 (PTW) AY.X x y

For AX small enough, or X large enough, we are guaranteed that,

q i+ < q.i

It is advantageous to take as large a step toward satisfying Y* = F (X*)

as possible. The procedure is initiated with a relatively small value of X. The

idea is to make a correction, determine if any improvement is made and, if not,

cut back on the correction. The following iteration scheme is utilized. Given

X, the trajectory is integrated again to produce Yi+1 starting with the values

X.+ 1 = X. + AX, and q is calculated. qi+ is then compared with q.. If

there is no improvement, X is increased. AX is recalculated and a new tra-

jectory integrated. This is repeated until an improvement results. When this

happens, the trajectory is integrated again and the partial derivative matrix is

computed. A is reset to its original value. The iteration continues until q is

less than the prescribed tolerance or no further improvement can be made or the

maximum number of iterations is exceeded.

Constraints (dependent variables). - The constraints, Y, are divided into two

types, parameters that are driven to a given value (point constraints), and para-

meters to be maximized or minimized (performance indices).

For a well-posed problem, there is only one performance index. For

each dependent variable, yi, two values must be specified. Ymin and y max If

a dependent variable is a point constraint, Ymin and ymax are chosen close to-

gether

y =y*6;y = y*+6,
Ymin -; Ymax= *

where y* is the desired value and 6 is a tolerance utilized for weighting pur-

poses. For the performance index, the interval is chosen so that it cannot

possibly be attained if the other constraints are satisfied. For instance, if y
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is to be minimized, Y.in and Ymax are taken smaller than attainable, con-

versely if y is to be maximized, Ymin and Ymax are taken larger than attain-

able. In this way the iteration procedure drives the variable to be optimized in

the correct direction until no further improvement is possible or the input maxi-

mum number of iterations is exceeded.

Modes. - Two modes of solution are available, the indirect (select) mode and the

direct (optimize) mode. In the indirect mode, a solution which satisfies the end

conditions is attempted. Indirect optimization is performed in this mode. The

direct mode computes a series of trajectories, each of which satisfies the speci-

fied end conditions while successively minimizing the performance index residual.

The specified end conditions are first satisfied using the indirect mode while

ignoring the performance index.

Weighting. - The scale matrices W and W are used to make elements of the
x y

vectors X and Y compatible for the iteration procedure. The relative importance

of the variables is represented in this way. Differing magnitudes are compensated

for through the weighting matrixes. W is input to the program, W is computed
x y

internally using the input tolerances and importance factors. For point constraint

variables, the elements of W are given by the following relation:
y

-38
W= 2

y 62
y

where 6 is the corresponding tolerance.
y

The weighting factor for the performance index is computed from,

n -38
W 2

y 2
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when n is the number of dependent variables and r is the performance index

residual. This balances the residual in the parameter being optimized against

the weighted residuals in the other variables, to satisfy the constraints as the

optimization proceeds.
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