
N A S A C O N T R A C T O R

R E P O R T

CO
CO

m N A S A C R - 2 3 3 9

CASE FILE
COPY

RESEARCH ON THE SONIC BOOM PROBLEM

Part 1 - Second-Order Solutions for the Flow Field

Around Slender Bodies in Supersonic Flow

for Sonic Boom Analysis

by M. Landahl and P. Lofgren

Prepared by

THE AERONAUTICAL RESEARCH INSTITUTE OF SWEDEN

Stockholm, Sweden

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • OCTOBER 1973

https://ntrs.nasa.gov/search.jsp?R=19730023195 2020-03-23T01:53:58+00:00Z



1. Report No.

NASA CR-2339

2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle RESEARCH ON THE SONIC BOOM PROBLEM PAB3P 1

SECOND-ORDER SOLUTIONS FOR THE PLOW FIELD AROUND SLENDER BODIES
IN SUPERSONIC PLOW FOR SONIC BOOM ANALYSIS

5. Report Date

October 1973
6. Performing Organization Code

7. Author(s)
M. janfiahl and P. Lofgren

8. Performing Organization Report No.

FFA AU-621

10. Work Unit No.
9. Performing Organization Name and Address

The Aeronautical Research Institute
of Sweden

Aerodynamics Department
Stockholm, Sweden

11. Contract or Grant No.

NGR-52-120-001

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D. C. 20JU6

13. Type of Report and Period Covered

Final

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

A second-order theory for supersonic flow past slender bodies is presented. Through the
introduction of characteristic coordinates as independent variables and the expansion
procedure proposed by Lin and Oswatitsch, a uniformly valid solution is obtained for the whole
flow field in the axisymmetric case and for the far field in the general three-dimensional
case; For distances far from the body the theory is an extension of Whitham'a first-order
solution and for the domain close to the body it is a modification of Van Dyke's second-
order solution in the axisymmetric case. From the theory useful formulas relating flow de-
flections to the Whitham F-function are derived, which permits one to determine the sonic boom
strength from wind tunnel measurements fairly close to the body.

17. Keywords (Suggested by Author(s))

Sonic Boom
Supersonic Flow

18. Distribution Statement

Unclassified - Unlimited

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of

6k

22. Price*
Domestic, $3.50
Foreign, $6.00

For sale by the National Technical Information Service, Springfield, Virginia 22151



Page intentionally Uft Blank



ill

TABLE OF CONTENTS

NOMENCLATURE

1. INTRODUCTION

2. GENERAL ASSUMPTIONS, BASIC DIFFERENTIAL EQUATIONS
AND CHARACTERISTIC COORDINATES

3. A UNIFORMLY VALID SECOND-ORDER SOLUTION FOR AXI-
SYMMETRIC FLOW AROUND A SLENDER BODY OF REVOLUTION

4. DETERMINATION OF SHOCK WAVES FOR AXISYMMETRIC FLOW

5. SECOND-ORDER THEORY FOR THE FAR FIELD IN A THREE-
DIMENSIONAL FLOW

6. EVALUATION OF THE F-FUNCTION FROM WIND-TUNNEL
EXPERIMENTS

7. CONCLUSIONS

REFERENCES

iv - Vlli

1

7

19

23

28

31

33

APPENDIX A : CHARACTERISTICS IN THE AXISYMMETRIC CASE 35

APPENDIX B : TRANSFORMATION OF THE THREE-DIMENSIONAL
FLOW PROBLEM INTO CHARACTERISTIC FORM 37

APPENDIX C :

APPENDIX D :

APPENDIX E :

EXPANSION .OF THE LINEARIZED AXISYMMETRIC
SOLUTION FOR LARGE r 48

THE FAR FIELD IN THE AXISYMMETRIC CASE 50

DERIVATION OF u ,v ,w ,0 AND r /r ASo ' o o o o '
FUNCTIONS OF o, T, AND r IN THE FAR-

FIELD DOMAIN (r = orti(e )) 5 4 - 5 6



iv
NOMENCLATURE

English alphabet

A, A1 , A and A'' ' o o

An, n = 1,2,3.

a±J,

B

= 1,2,3.

see Fig. 3.2 and p. 18

see p. 40

see p. 3.9

Bn, n = 1,2,3. see (B.7)

see (B.8)

local speed of sound

speed of s'ound in the free stream

the basis vectors in a cylindrical coordinate system

Whitham's F-function

generalized F-function (see (4.10))

see (C.6)
"" / \ '

Fn(5), n = 'J,1,2,.,
j

5^, n = 1,2. see (D.7), (D.15), (5-6) and (5.21)

f(t) see (C.1) - (C.4)

fn, n = 1,2,...,7. see (2.9.).- (2.15) and (B.23) - (B.29)

H

see p. 7

4 • '
= 2Bre except in Appendix B, where H is a

column vector (see p. 4o)

H , n = 0,1,2,... see p. 19 and (5.1)

h

hn, n = 0,1.
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k
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see p. 41

K / 3 M2 2Kx
= 2 (K + 2 M - ~'
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£n, n = 0.1 see (5.18), (D.8) and (D.16)

M free-stream Mach number

M^ local Mach number

n unit vector normal to the shock

ord see p. 10

Pn« n = 1,2,3. arbitrary real numbers

p row vector (p.,, p2, p_)

Q see p. kO

q flow velocity vector

<ll = u

q2 = v

q-j = rV

q Bernoulli constant (see p. 5)

r = R(x) = eR(x) is the body contour in the

R(X) J axisymmetric case

R
0(

X
0) rQ = RQ(XO) is the image of the body contour

in the x r -planeo o

r cylindrical coordinate

rn, n = 0,1,2,... see (3.3), (5-29) and (5.34) - (5.35)

r _ see subscript B below

rm see Fig. 6.2

U q = Ue + Ve + We.x r y

U free-stream speed
00 *

Un, n =s 1,2,... see p. 19 and (5.1)

u U = U (1 + u)
00.

u row vector (u,v,w)

UQ see (3.21) and (5-29)

un, n = 1,2,3,... see (3.3)

Ug = u see subscript B below



V ' / ; , . „ ; , , ; • : . - • se;e ;,JJ., ,;,,,; - ; - . , . . , , . . . •.

Vn, n = 1,2,3,... see p. 19 and (5.1=)..

v V ' = .,U v. , '
G O - • - . , . • . . . . : '

v , see (3.2.2.) and (5.29)

vrt, n = 1,2,3,... ; see ( 3 . 3 ) , , • ,,• . ....

v_ = ..- ,-.j=.'v -j.see" subscript B below
O • • • • • • • • O B ' " . • • ' . ' • • ' • • . • . ' •

w see u .. :,;: ;-. --••=-• .'. .

Wn, n = 1,2,3,.. . see (5.1) ,. ';; : '.-

wo see (5.29).

x - cylindrical coordinate

x ' row vector (x,r,9)

xn, n = 0,1,2,3,... see;(3.3'), '(5.29) :and (5-34) - (5.35);.-;.

in Appendix B x-. = x, x« = r and x~ = 9,

x see 'Subscript ;B below • - • • • ' . - . " • • • ; ;; •'' - ,:*

x (r) ' -•- .- ." . . , ;x-= x- (r) '"Is- apsriock surface _••*'

y ,' n = 1,2,3. see..p...41 -",

y row vector " ( y ^ , ^2 j ' y 'T) '-> ~ -,..:•

Greek alphabet

sin a = — !.

e overall thickness ratio of the body

£ characteristic variable (see p. 44 with

y-1 = 5, Y2 = 11 and y3 = C )

T| characteristic variable (see £ and p. 38)

6 cylindrical coordinate

6, n = 0,1,2,3,... see (5.1)
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flow deflection angle (V = U tg' 0)

see (5.19) , "•'

H see (C.7)

see (3.51) ••' ' .

Xn, n = 1,2,...,6. see (3.8),(3.9),(3.15),(3.16),(3.36),(3.3?),

(3.40) and (3.53) - (3.55)

X ,n = 1,2,3. see p. 45 ; . ' , ' " • "

2 v-1
•* •* =vTT ' • ' - - ...
5 characteristic variable (see £ and p. 38;)

o~ 1 • '
r see Fig. 6.1

$ velocity potential (3 = V$)

0 ue + ye + weQ > = V 0

00 see (3.25) and (5-29)

0n, n = 1,2,3,... see (3.12).and (3.31:)

0_ - v • = 0 -D see 'subscript B below , , ,
D ' OJD '

X = x - Br : • . , t -, . . . .-

X , n = 0,1,2,... see p. 19 and (5.1)

\|i(r) x = \|i(r) is a shock surface

f̂(x) t(x) = const, is a characteristic surface-

see (B.9) " " "'" ' ' ' '"

f^ see (B.11)

u(xn) see (C.3)
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0)Superscript

(2)

(a)

Subscript B

S_
ox

a (x,r,e
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denotes quantity in front of the shock

_»_ _»_ behind -"-

-"- the corresponding axisymmotric expression

values taken at the body contour (see p. 15)

/a a arow vector {— , — , —

L

a a

and

• . are functional determinants



1. INTRODUCTION

In the well known Whitham theory [8] for predicting the strength of

the sonic boom at large distances from a supersonic vehicle only

such nonlinear effects are included which produce a distortion of

the signal as it travels away from the vehicle. These have a cumula-

tive effect at large distances and are therefore important even for

very small disturbance levels. Whitham's simple first-order rule,

namely that the perturbation velocity field is the same as the one

obtained by linear theory but displaced in the streamwise direction

so as to take into account the distortion of the downstream Mach

cones, will usually be satisfactory for the very slender configura-

tions of interest for commercial SST's when flying- at moderate

supersonic Mach numbers. For not so slender configurations or high

Mach numbers (above 3, say) higher-order nonlinear effects can be

expected to become important in regions close to the vehicle. For

larger distances, say a few body lengths away, linear acoustics

would still be expected to hold, although the signal strength would

not be correctly given by the first-order theory relating signal

strength to vehicle geometry.

To assess the importance of such higher-order nonlinear effects in

the near field, a second-order theory for the complete flow field

would be of great value as it would allow one to estimate the errors

inherent in the first-order theory. Such a theory for the near field

of a body of revolution at zero angle of attack was obtained some

time ago by Van Dyke [7] by the use of a regular perturbation method.

This solution is not uniformly valid in the far field domain — or in

regions influenced by discontinuities in the body surface slope —

since the second-order solution thus obtained has the same set of

characteristics (free-stream characteristics), and hence influence

regions, as the first-order (linearized) solution. Therefore,

Van Dyke's theory needs to be modified so as to account for the

change in the characteristics. A systematic e'xpansion procedure

yielding a uniformly valid solution in the whole flow field has been

proposed by Lin [2] and further extended by Oswatitsch [3]. In this,



both famili'es of- characteristics' are 'readjusted at' each step. In

an earlier publication1'[ 13'] » it was shown that this procedure could

be used to cast Van'Dyke's second-order solution for axisymmetric

flow in a'uniformly valid :form for moderate and large radii. The

present -report shows how the uniformly valid solution can be obtained

directly by aid of•• the Lin-Oswatitsch formal expansion procedure.

Van' Dyke'1 s results ""are obtained when the solution is expanded in a

Taylor series around the free stream characteristics. Thus, an

extension of Whitham's Q8] rule to second order is presented.

The new theory'is also'modified to allow for discontinuities in body

surface1 slope.-1 For the determination of shock wave 'location a simple

extension" of Whitham's ""rule of'equal areas" is presented.

' The three-dimensional' far fie'ld is treated in a similar manner using

a'per'turbed cylindrical -coordinate system. For' the three'-dimensional

•mid and near fields, the'use of characteristic variables does not

appear^to lead to a simple second-order solution. The far-field

solution is used to generate formulas relating flow deflections to

the Whitham F-function. ..With the aid of such formulas a new experi-

mental technique was devised [14] for the determination of the sonic

boom strength from wind tunnel measurements which, particularly for

high Mach numbers, can be carried out fairly close to the body where

the disturbance levels are large enough to give good experimental

-accuracy.

.2. GENERAL ASSUMPTIONS, BASIC DIFFERENTIAL EQUATIONS AND '

CHARACTERISTIC COORDINATES

•We study the steady supersonic flow field around a fixed rigid body,

placed in a homogeneous parallel stream of a polytropic ideal gas.

Viscous forces, gravity and heat conduction, are neglected. Cylind-

rical coordinates x,r and 9 are introduced such that the free

stream is in the positive x-direction and the body is situated in

the half-space x 2: 0. Further, it is assumed' that all streamlines

start from x = -co.
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The entropy .change across a weak shock waye. -is of the order-of the

shock strength to. the third power, i.e. of the order of the cube .

of the velocity perturbation jump across the wave. In..the second-

order theory considered here only, .contributions from."terms, which,

are quadratic in the velocity perturbations, are retained,, except,-....

near .a slender body of revolution, where some, terms which are - . . . ; .

formally cubic in the v-perturbation-sare .included..; :Fqrj a smopth^

pointed body, however, the bow shock strength will.be of the order.
2 '

u also near the. body, .so .that entropy changes .may. ,s,till be neg-

lected in this region. If the body has slope discontinuities of

order e, where e is the overall thickness ratio of -the. body,,._r-

. the perturbation velocities and Hence the shock strength-will.be x.,

of order e, so that entropy changes and. the ent.ropy. gradients. •,..
-; . . -.-

become of order e , which may be neglected in the second-order
2

theory, then retaining only terms of order e, .. Tlius.,-, to .the apprpxi

matipn considered, we may neglect the. entropy, changes and-.hence con-

sider the flow to be isentropic and irrotational throughout the flow

field. .We may thus start.,from the equations, for irrota.tional-fl.ow-.

W|2 + au\ax--

'au
.--: -(2.2)

5" . .-. ., .,:-,:, :•.:.- .,', ..- '-....v, • ' -(Z.3)

¥ av
aT' +- .

\
a r ' r -

with'the velocity of sound c given by

Y-1

(Bernoulli's equation).



k
Here q is a constant, v = C /C and U, V and W are defined by

q = U ex + V er + W eQ

q being the flow-velocity vector.

The above equations together with the shock relations and the con-

ditions for the flow to be tangent to the body surface and to tend

to the free-stream flow for x -» - CO specify the flow in the whole

field.

In the following we consider x and r as dimensionless coordinates,

obtained through division by a suitable reference length such as the

overall streamwise dimension of the body. This does not change the

form of (2.1) - (2.4). We shall also use dimensionless disturbance

velocities u, v and w defined by

U = irO + u)

V = U v
00

W = U w
CO

U denoting the free-stream speed.
GO

In the axisymmetric case (with the x-axis as symmetry axis) we have

S/&Q = w = o so that (2.3) and (2.4) need not be considered. In

that case it is advantageous ([2],£3]) to introduce characteristic

coordinates | and T) as new independent variables (see Appendix A),

If we choose § and T| such that £ = const, is a downstream cha-

racteristic and T] = const, an upstream characteristic the trans-

formation (?,Tl) -• (x,r) can be written

(I+U-BLV)|!+ (BL+BJU + V)!! = o (2.5)



and equations (2.1) and (2.2) are then transformed into

B . U + V ) — - (1 + u -Bjv)— - 0 + u - B j v M l +GLv2)j|£.= 0 (2.8)

— 1

Here B, = . /M T
2 -1and GT = M2fl - "^ M2(2u + u2) - :^- M2 V2) .

.L/ y Jj AJ x & ^ /

Index L denotes local values and M the free stream Mach number.

Prom Bernoulli's equation we obtain

r 2 ? P \ / I P p p " " 1

BL = B 1 + (K- M )(2u + u + v*)(l-^jp- M [ 2 u + u + v ])

. .. „ y+1 Mwith K = •'••- —-~
B

and B = VM -1

Each of the equations (2.5) - (2.8) contains derivatives with respect

to only one variable. This simplifies the integration of the dif-

ferential equations considerably.

In the .general three-dimensional case one speaks of characteristic

surfaces and bicharacteristics belonging to the system (2.1) - (2.4).

(see Appendix B). For the special case of undisturbed flow, i.e.

q H U e —which is a trivial solution of (2.1) - (2.4) — the down-

stream Mach cone x - Br = const, and the upstream Mach cone x + Br =

const, are characteristic surfaces and the meridian plane 9 = const,

intersects the downstream Mach cone along a bicharacteristic (see Appendix B)

In our study of the general three-dimensional case — with the only restric-

tion that the disturbance caused by the body is small — it appears to be

advantageous to introduce new independent variables f*,T| and £ such that

5 = const, is.a characteristic surface and a disturbed down-

stream Mach cone (x - Br « const.),

1] = const, is a characteristic surface and a disturbed up-

stream Mach cone (x + Br ** const.),



• £'= const, intersects 5 = const.1 along a bicharacteristic

and is a disturbed meridian plane ,(9 <« const.)'.

In the following, the variables §, T) and £' will be referred to

as characteristic coordinates. The transformation (5»T|,C)-> (x»r»9)

can be' written formally (see Appendix B)

(̂r.u, |f, |f ; M,Y) = O (2.9)

,̂||, |f ;^MVv) = 0 • " > • ' • (2.10)

i3(r,u,||; "If 5 M ' Y > = 0 > ' ! (2.11)

Also the equations (2.1) - (2.̂ ) can be transformed to equations of

the form '••' '-•--•'-•- ' ; ' --r . . - --

.-If-If. If. If. If '»-v) =0

„ / - dx x 9x ou u ...f5(r'u' a?' 5rf. aT Sri' ac ' M'

(^ ̂  v i u,H. H^ ^ h
?(r,w, —, —, ̂ -, —, a<n, j - 0
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Here x and . u denote the vector quantities. (x,r,9) and (u,v,w),

respectively,, and the f 's are complicated expressions given by the

left-hand sides of equations (B.23) - (B.29). The following can be

said about (2.9) - (2.15): . • .

Equations (2.9) and (2. 10) are the conditions f or, T] = const, and ..

| = const., respectively, to be characteristic surfaces. In case of

axisymmetry they are equivalent to (2.5) and (2.6), respectively.

Equation (2.11) is the condition for £ = const, to intersect £, = const,

along a bicharacteristic. In the case of axisymmetry equations (2.12)

and (2.13) are equivalent to (2.7) and (2.8), respectively. Similarly

(2.14) and (2.15) are just (2.3) and (2.4), respectively, (fg does

not contain dv/k§, Sv/^Tl, an(^ dv/3£ and f_ does not contain

S u/d % , 9 u/d T\, and d u/d £ ) .

As in the axisymmetric case, absence of certain derivatives in (;2.9) -

(2.15) helps simplify the integration procedure.

3. A UNIFORMLY VALID SECOND-ORDER SOLUTION FOR AXISYMMETRIC FLOW :

AROUND A SLENDER BODY OF REVOLUTION

Let the body considered be located in the half-space x S 0 with-

the positive x-axis as axis of symmetry and let its contour be de-

scribed by

r = R(x) = eR(x) , : '. (3.1)

where R = 0(1). The body is assumed to be pointed, and is allowed

to have slope discontinuities of order e.' The flow must satisfy

the tangency condition at the body surface, " , . •

v = R*(1 + u) (3.2)

and must be undisturbed upstream of. the. body. In addition,, shock

waves give rise to boundary conditions on surfaces x = x (r) which
S
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cannot be specified a priori. It turns out that shocks lead to a

nommiqueness in the transformation (§ , T| ) -• (x, r ) which requires

special treatment as shown in the subsequent section.

In attacking the problem for axisymmetric flow we shall first de-

termine a .second-order solution valid in the mid-field region
7

r ord (1) and then extend this to regions near the body and far

from the body.

For the mid-field expansion we assume, following the procedure

proposed by Lin [2] and further extended by Oswatitsch [3]>

u = ui + up + * * *

v = ' v. + v0 + ...
1 2 (3.3)

X = X + X.j + . . .

r = ro + r1 + •'•

where the different terms are to be regarded as functions of the

characteristic coordinates 5,T] . Here, x and r are of order

unity, u1, v-, x1 and r.. of order e . Upon substitution of

(3.3) into (2.5)-(2.8) we obtain

f (xo + B r0) = 0 (3.4)

= 0 (3.5)

= 0 (3.6)

(3'7)

By r = ord (1) we mean •! n ^ '
L r = 0(1)



The solutions of (3.4) and (3.5) read

XQ + B ro = X^ll) (3.8)

Xo - B ro = X 2 ( S) (3'9)

Without loss of generality we may choose X 1 = T| and \2 = I

characteristics will appear as straight lines in the x.̂ rQ-pl

and it may be convenient, following Oswatitsch [3], to use

x = Ol + ?) (3-10)

in lieu of | and T) as characteristic coordinates.

Substituting (3.10) and (3.11) into (3.6) and (3-7) we obtain the

usual linearized equation for -u^ and v.. , i.e.

2 2a 01 1 o01 B 01
-B2 -4 + ̂ -̂4 = 0 (3.12)

ox o o dro o .

where u- =o0 1 / ^x , v = 3 < j > - \ / d r • .

We proceed now to next order. From (2.5) and (2.6) we obtain

f- (x1+B ri) + (UI-B V1)̂  + (B[K-B2]u1+Vl)^ = O (3.13)

= o (3.14)
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It, is readily verified using (3.10) - (3.12) that the solutions of

(3.13) and (3.14) can be written

I+B r 1 + M 0 l + K ro(B U l + v t ) = \3(ll) (3.15)

l- B r 1 + M 2 0 1 - K rQ(B u, - Vl ) = X4( |) (3.16)

The discovery of the explicit solution first given in [ 12] makes pos-

sible considerable simplifications of the results.

Becuase of the condition that disturbances vanish upstream of the

body so that the Mach lines then become those of the undisturbed
V V ... '' - • •

flow we select \~ ̂  0. Also, the solutions for u~ and v~ turn

out to be particularly simple with the choice \K a 0. Thus, we have

X1 = - K ro V1 <X0'
 ro> - M^1 (xo'ro) <3

r1 = - K ro U1 (V ro> (3

Now we return to (2.7) and (2.8), Substitution of (3.1?) and (3.18)

and retention of the next order terms yields

K + B vi)r a!2 - K vi air = ° (3<19)

dr° K^̂ —̂ 4. K v
9T1 io

With the aid of (3.6) and (3.7) and with introduction of the new

dependent variables
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uo = U1 + U2 -

vo = V1 + V2 -& + K) U1 V1 (3.22)

we find that (3.19) and (3.20) may be written in the following simple

way:

2 P = o . - . , - • (3.23)

. - ,

Thus, a comparison with (3.6) and (3.?) shows that u and v are

obtained from the solution of the.linearized equation

with u = d 0 / & x , v = 9 0 / ^ r . Therefore, the second-ordero o ' o o o ' o
solution can be expressed directly in terms of the solution of the

linear equation (3.25) by. ' ' ' • : ; .

u = (1 + M2 U6) UQ . (3.26)

\ .

v = (1 + [K + M
2]uQ) VQ (3.2?)

: '

where u and v are considered functions of x and r , ando o o o
x and r are given, by

x = XQ - M
20o - K ro VQ (3.28)

r = ro (1 - KuQ) , , . . - , - . . : •:. , • ... (3,29)

One can also readily show that the velocity potential to second
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order is given by

uo vo

Next, we shall extend this solution to the region close to the body,

r = 0(e), by making use of Van Dyke's [7] solution. Through a regular

expansion procedure Van Dyke found the solution for the velocity

potential 0 = 0.. + 0_ to be

02 = u1(M"01 +Krvr) -^-rv^ (3.31)

from which the following velocity components can be obtained:

Kr . ,

3 2 3U, (3.32)

v = Vl + v2 = Vl[1 + (M + K) u + Kr§— ] +s-i(M 0 + K r v )-
(3.33)

These are to be compared to the velocities, obtained by expanding the

uniformly valid solution for r = ord (1) obtained above.

Setting u,(x , r ) = u.. + (x - x )r + (r - r )? + , r = r H0 1V o o' 1 v o/dx v o'Sr o
etc., we obtain

u = u , ( l + M Ul + Kr _) + _(M 0, + K r v n ) (3.34)

v = V1[1 +(M2+ K) u 1 + K r —I] +§-l(M
201 + Krv^ (3.35)

which differ from (3.32), (3.33) only in that the triple product terms

are missing. Van Dyke £7] pointed out that these will be of the same

order as the quadratic ones near a slender body for r = O(e). For
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r = ord ("l), however, they are negligible and of the same order as

contributions from other terms already neglected in the differential

equation. It is possible to make the solution (3.26) - (3.29) uni-

formly valid also for r = 0(e) by modifying it as follows:

r = ro(1 -KuQ) -^M
2 rovQ

2 -^X5(?) (3.37)

v = [1 + (K + M) UQ - TJ-M
2 vo

2] VQ (3.38)

The expression for u is the same as before. The additional terms

involving the as yet undetermined function \ _ , and the one with
2

v in (3.36), are everywhere of higher order and incorporated to

avoid discontinuous behaviour of x when u and v have dis-o o
continuities at a body slope discontinuity. The term r has been

included in order to eliminate the spatial derivative terms in the

triple product contribution to u and v given by the last terms

in (3.32) and (3.33). -It becomes comparable to the previously

derived term -K r u only for r = 0(e) and is therefore at most
3

of order e . In constructing the new term we have freely taken

advantage of the slender-body behaviour of v . Thus, for example,

for r0 = 0(e), Sv^r « dvQ/&r « -VO/TO .

To determine X _ > let the body contour in the transformed plane be

defined by

ro = RQ(xo) (3.39)

By choosing

(x - M2 B v R ( X ) (

where UB = UO(XQB, r^) , vfi = VO(XQB, r^) and XOB, r^ are the



coordinates for the intersection of the particular characteristic

5 = const, with the body contour (see figure 3.1) we can ascertain

that both x and r become continuous at points of body slope

discontinuities. '

. . . Figure 3 . 1 . . .

This follows, because din the immediate neighbourhood behind the

body corner the flow must behave locally like a two-dimensional one

•with.-the velocity component, jumps .to lowest order satisfying Au_ =
'.•-•• "'. -" ' • • - ' • • • • • ' B '•-•••
-, Av_/B =."-,.,AR'/B, .where &R1 is the slope discontinuity. From

the1 expressions (3.36) "and (3.3?) it then follows that a continuous

body contour in' the x , r plane leads to a continuous" contour in .

the physical plane with

r = R = R [xOL (3.41)

and x given implicitly by

X = BV

(Continuity in x ' follows since the combination v + Bu is con- ,'

tinuous, as well as 0 .) Thus, a solution, uniformly valid to second

order everywhere for r' — o( 1) , is given by . , : • • .- -•

u = UQ(1 + M UQ)

..2
v =

(3.̂ 3)

(3.44)
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r = r0(l-ku0) v/ - vfi
2) (3.46)

A comparison with the previous result shows that the added terms

give contributions which are of higher order everywhere with the

exception of the added term in v , which gives a contribution of

the same order hear the body as the term (K-M )u . For r = ord (1)

it becomes of higher order and may be neglected. The additional
3terms in the expressions for x and . r are of order e everywhere

and are only important for representing the details of a non-smooth

body in the transformed plane. It should be noted, that for a body

contour with slope discontinuities, the transformations x = x(x ,r )

and r(xo,rQ) as given by (3.45) and (3.46) will be discontinuous

outside the body along the downstream characteristic from the corner.

For a convex corner (expansion) there is a negative Jump in' v and

a corresponding positive one in UQ giving a positive jump in x

and a negative one in r as illustrated schematically in figure 3.2 a),

^ --'"const r A /—̂ "overlap- const. Î A. ? = ;COMt<̂ . 7 reglon

shock
r A fan

7) = const.

a) Convex corner
(expansion)

b) Concave corner"
(compression)

Figure 3.2. Coordinate transformation near discontinuities.



16

A double point A A', on the upstream and downstream sides, respect-

ively, of the characteristic § =const, from the corner thus becomes

transformed into a line along 7] = const, as shown. The gap between

A and A1 in the physical plane must of course be filled with an

expansion fan, as is well known from the two-dimensional theory.

In the present problem the actual variation of flow quantities across

the fan can.be determined by considering the sharp corner as the

limiting case of a rounded one as the radius of curvature tends to

zero. For a concave corner, on the other hand, the downstream point

A ' is transformed to an upstream one in the physical plane (see

figure 3.2 b)) and a problem of non-uniqueness thus arises, since one

and the same region in the physical plane might correspond to two

regions in. the transformed one. This difficulty is to be resolved

by the insertion of a shock wave to remove the overlap, region in

the transformed plane. Such regions may of course also appear even

for a.body without sharp concave corners, and the .problem of deter-

mining shock wave locations will therefore require a more general

treatment given in the following section. • .

With the uniformly valid solution near the body thus derived we may

proceed to consider the boundary condition on the body surface. By

introducing the second-order solution (3-̂ 3) - (3.46) into the tangency

condition (3.2) we find upon neglecting higher-order terms,

vQ[1 + (K + M
2)uQ - ̂ j- v/] = (1 +uo)R'(x) (3.47)

which, together with the initial condition of zero disturbances up-

stream of the body, provides the boundary condition for the linear

equation (3.25). As the transformed body contour is continuous,

the problem of finding the transformed body contour in the x ,r -

plane can be solved by iteration starting from the ordinary first-

order solution with the linearized boundary condition

v(x ,R(x)) = R'(x) (3.48)
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It remains to be studied the behaviour of the solution in the far

field, r = ord (e ), § = 0 (l). In Appendix D it is shown that by

assuming

4 TT 8 TTu = e U.j + e Up + ...

v = e V1 + e V2 + ...

4
x-Br = X = X0 +

 e XT + •••

k ke • 2Br s H = HQ + e HI + ...

where U, , V, , x- and H. are functions of | and T) » all of

order ur

written

order unity, and H = ord (t), one finds that the solution may be

v = - Bu + ^^p- \ F (5 ' )d5« - BK?ffi) + 0(e12) (3-50)
(2Br)3/2 J 2Br
v ' o

x - Br = 5 - K 1/2!? F(5) + - - C F(?')d?' + (3.51)

o

In Br + \ (§) + 0(e8)

_ K /_, 3 .»2 2K \
where L = -5" (K + 3- M -- 5-)

. M

From the mid-field solution expanded in the same manner one finds ,

using the far-field expansions for u , v and 0 given in



18
o

Appendix C, and noting that from (3.3?) r . == r + Kru + 0(e ), the

same expressions for u and v as above, but that (3-51) is re-

placed by

x - Br = ?,

M2 B2 F2(|) +\ (3.52)

The last two terms may be absorbed in the function \(§) of (3.51 )•

However, the term proportional to In Br which is the result of

higher-order cumulative effects in the characteristics in (3.5̂ )

has no correspondence in (3.52). We thus need to complement the
2midfield solution with terms which behave like LF In Br in the

far field, but which will only give higher-order contributions near

the body. The added terms., however, must not lead to discontinuities

in the transform of the body contour. This can be achieved by re-

placing (3.36) and (3-3?) by

= xo - K ro vo - ™*o + ¥ ro vo + "

+ LET (lnBro)uo
2 +.jU6 . . (3.53)

where

= - 2BK uB(0 R0(xoB) - B v R^,^) -

- 2L B R ln(B Ru 2 (3.55)

The transformation (3-53) - (3.55) together with (3.̂ 3) and (

provides a solution which is uniformly valid to second order every-

where. The new terms in (3.53) and (3.5̂ ) give contributions to x
l̂and r which are at most of order e . In practice they are likely

to be unimportant since they .lead to contributions in: the mid field
Q

of order e. in the far field. Finally, it should also -be remarked
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that a uniformly valid solution can be constructed in many different

ways and the one given here was selected with computational simpli-

city in mind.

4. DETERMINATION OF SHOCK WAVES FOR AXISYMMETRIC FLOW

At a shock wave, the following conditions hold (see, e.g., [ 1] ,

p. 21k):

(4.1)

where q^ ' and q* ' are the velocity vectors ahead and behind the

shock, respectively, p,2 = (y-1 )/(y+1 ) » 42 = U2 + V2* W2* 2c2/(y-1 ) ,

c the local velocity of sound, and n is the unit normal to the shock.

Let the shock in the axisymmetric case be defined by x = \|i(r). Then

(4.1) gives

,(1U2).

Expanding this result for small values of the perturbation velocity

components and retaining only terms of zeroth and first order in.

consistency with the second-order theory for the mid-field, we find

= B [I +f (uOW^-^CBu^ + vf
1) + ... ] (k.k)

The second shock condition, (4.2), simply expresses that the .tangen-

tial velocity component is continuous across the shock. Thus,
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Combining this with (4.4) we find that, to lowest order,

,(2)_,,0)v — v Av

It can readily be shown that the condition (4.2) of continuous tan-

gential component, to the order considered, is equivalent to the

requirement that the potential be continuous across the shock.

Considering first the mid-field region, r = ord (1), we obtain from

(3.3O) and the requirement that the potential is continuous across

the shock

A0 = A* - K A(r u v ) = O (4.7)^ o o o o

Now, from (4.6) it follows that, to lowest order,

A(VQ + BUQ) = 0 (4.8)

across the shock. Therefore, making use of the identity

1 r i
u v = T-^— (v - Bu ) - ( v + B u )

o o 4 - B L o o o o y j

we may rewrite (4.7) as follows

f

where

(4.10)
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may be termed the "generalized Whitham F-function" as it tends to

the ordinary Whitham F-function for f] -» oo . The transformations

(3.28) and (3.29) give

x + Br = T) - |g (Tl - 5)(vQ + BUQ) - M20Q (4.11)

x - Br = 5 - |- (T] - |)(vo - BUQ) - M20Q (4.12)

Since both AX and &r are zero across the shock these relations

yield with the aid of (4.8)

(».,3)

+ M2

From (4.13) it follows that AT] is at most of order u , i.e. 0(e ),

so that to.lowest order the shock wave transition takes place along

lines of constant T| . The term Involving A0 is of order A? times

u and is therefore only comparable to the first bracket of (4.14) for

the near field r = (e), in which case both are negligible. From (4.13)

and (4.14) it also follows that ArQ/r^
1^= A(Tl-5)/(jl ~ ? ) = °(e2) so

that the change in r may be neglected compared to r itself. It

therefore follows, that to within the approximation considered (4.9)

and (4.14) may be simplified to

'(2)

(4.16)
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The left-hand side, of (4.15) follows from the definition (4.10),

since . •

The relations (4.15) and (4.16) express Whitham's "rule of equal areas"

[8] since by substituting F^ '- F^ ' from (4.16) into (4.15) one

obtains

F<S,T|)d5 =

Thus, by aid of (4.16) and (4.18) one can use the same graphical

technique as commonly employed in the first-order far-field solution

to determine the shock wave location in the mid field, provided the

definition (4. 10) is substituted for the F-function.

Consider next the near- and the far-field regions. For the near

field region, r = 0(e), some, additional triple - product terms were

required both in the expressions for x and r and in the v-velo-

city component because of the slender-body behaviour near a smooth

body. However, it is easily demonstrated that for a smooth' body

shocks can only occur for (5/r) = 0(e ) in which case the triple-

product term is negligible. For a body with' slope discontinuities,

shocks will occur also for r = O(e) '| = 0(1), but then the flow

will behave locally near 'the corner like a two-dimensional one arid

slender-body triple product terms will be negligible for the deter-

mination of the shock location. Thus, the mid-field procedure for

determining the -shock location will be valid to the required order

of accuracy for the near field, as well. For the far field, it was

demonstrated in the previous section that the mid-field solution

gave a uniformly valid solution- to lowest order. Thus, .the mid-

field procedure will give shock locations correct to order unity
4

with errors in location of order e and shock strength errors of
o

order e . Since such errors are likely to be unimportant in prac-

tice, the added complication of including the higher-order terms in

the shock wave location for large distances does not seem worth while.
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5. SECOND-ORDER THEORY FOR THE FAR FIELD IN A THREE-DIMENSIONAL

• FLOW ,

We consider the flow around a simple airplane-like form (wing-body

combination) located in the half-plane x s 0 with its (pointed)

nose at x = r = 0 and the fuselage mainly along the positive

x-axis. A suitable perturbation parameter e is here the thick-

ness ratio of the least slender of equivalent bodies of revolution

in the supersonic area-rule sense.

With Section 3 in mind, a suitable procedure might seem to be to

first carry out an expansion in the mid field and then extend it

to the near- and far-field regions. However, it is found that the

mid-field analysis employing characteristic variables for the

general three-dimensional case does not lead to a simple explicit

solution as in the axisymmetric case. This indicates that the con-

cept of characteristic variables is not of the same usefulness near

the body as in the axisymmetric case. Therefore, we will restrict

ourselves to the study of the far field. Following Section 3» we

define the far-field domain by

x - Br • = 0 (1)

2 Br = ord e"^

An expansion similar to the one used in the axisymmetric case is

assumed

u = e U1 + e U2 + ...

4 8
v = e V1 + e V2 + ...

w = e W- + e W0 + ...
k ' (5

x - B r = X = X 0 + e x 1 + . . .

2B e r = H = HO + e^ H1 + ...

Ne = eo + eS1 + ...

where Uk, Vk, Wk> X , H^. and 6k are considered functions of

order unity of the characteristic variables |, T| and Q. The 'ex-

pressions (5-1) could then be substituted into the equations of

motion expressed in characteristic form and a sequence of equations
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generated thereby. However, to obtain the lowest order terms it

is actually simpler to use (2.1) - (2.k) employing the new variables

X and H. In these, the irrotationality condition (2.2) becomes

av 9T, k ou _. ou , .
*t*2Be 55- Bax <5-2)

from which it follows that, to lowest order,

VT = - B U1 (5.3)

Also, (2.3) gives that

W1 = 0 (5.4)

With the aid of these results, we obtain through substitution of the

series ( 5 « 1 ) into (2.1) when higher-order terms are omitted

K 9U1 9U1 1
f ' U1 5T + 55- * 2H- U1 - 0 (5.5)

U * 0 0 0

This equation is most easily solved by means of the Monge theory.

It was shown in [ 10] that the solution can be given in parametric

form as follows

U = - — - - - (5.6)
^

X = ? - K^'e
0) (5-7)

By identifying the parameter with 5 we get a simple and obvious

relationship between ff*. and the Whitham F-function. Further, as

in the axisymmetric case H must be a function of T\ , alone, and

we may set

Ho = Tl , (5.8)

6 = C (5.9)
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Next, we proceed by substitution of the series (5.1) into (2.9) -

(2.14). Using the above results for the lower-order terms we obtain

the following set of equations to determine the next-order terms:

an

an 9 _ W2 av 2 as av
2 H - (5.12)

_
B H o-ac

sv 2 v_

*i TJ IM \ \r ~i I_T ~\T tl
1 On. y 11 ~ Q / /- j V ^ O * i - i 11

^ *O/ ™~ ^ TT -S i» •¥-» * •! "•" TTH ^*n Tj 1 W i Tl C^
O I -D I Jl O I TT *-

O ' . O n .

^^o _L^o-^2 2^/^X ?^_L!II° ,„+ HO an + HO at) ac " BHO vac /an "an ac ^3

aw0 _ av1 an
£_ _2 1 o f ,s

as " " H ac an (3'16)

These equations differ from those in the axisymmetric case only by

the underlined terms, and their integration will proceed in very,

much the same manner as in Appendix D. The final results read

H1 = - XQ + h^n, C) (5.17)

M2- K

^ X '^(g1, n, C )dg' + -^r IK + 4 M~ -^) V.-H InB
o

(5.18)
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<„ av , (5.19)

2 K - 5
M + f „ H1 V1 _

V2 = -—TT-V1 --HH- + W-o o

.. •• 2 S 2
Bf^d . c ) . 2K ,,av1v , (» a v1

+ + ̂  (j£~) - H~ \ —2~( ? '> l f 1 '£) d ? l (5.21)

\^
o

? 9V

^2 = - 7T *\ S7^ ( - ' .T l .OdS 1 ' (5.22)
•?• H

0 vJ 3C
O

The underlitied terms are the new ones which appear due to departure

from axisymnetry. A comparison with the .axisymmetric solution

therefore suggests that we may write the far-field solution for the

three-dimensional case in the following simplified form

(5.23)

2

v = v^a ; + 2KB (~^\ (5.2

w = w . . . (5.25)o - • . . . • • .

X = X

, x K r aw
(a} + -o-2 J72- (5-26)

r = r^-1 - J^r^ . . (5.27)

Q = c_ 4K^ . (5.28)
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where superscript (a) means the same expression as in the axi-

symmetric case and u , VQ and w are obtained from the solution

of ' • . •

' 2 2 2 • ' ' ' • , ' . - ,
2 9 00 1 S0n d 0 1 3 0n

+-- = 0 ' (5.29)

The terms in the expressions for u and v containing derivatives

with respect to the angular variable £ can be eliminated by making

the further transformation ' . .

a u • • • • • • • • • • - • • . . . . . . - . . • - • • • • ' . - -(3-30)

which leads to the final expressions

u = u(a) ' (5.31)

= V • • • • - . ..... 2 • - . - - . ; • - - -(5.33)
,, Kr dw . . u . ,

(5.32)

-(5.33)

(5.34)
o o 2

/ \ Kr 9w ,S
(a) _ 2 _ o 2 K

2 r f
2B 98 ' 2 K ro U0o v

Here, u , v and w are now solutions of (5.29) with £ replaced

by 0 . In considering the shocks in the far field one notices

that to lowest order the solution has the same functional behaviour

as the axisymmetric one, except that 6 appears as additional para-

meter in the F-function. One can therefore use the same method as

in the axisymmetric case to determine the shock wave location to

first order.
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6. EVALUATION OF THE F-FUNCTION FROM WIND-TUNNEL EXPERIMENTS

A new method to determine the F-function from wind tunnel measure-

ments, was proposed in [ 14]. In it, flow deflections are measured

instead of pressures as in previously used methods. Thereby, con-

siderably improved accuracy is made possible, particularly at

high Mach numbers, since flow deflections are much easier to mea-

sure accurately than pressures. The relationship between flow

deflections and the F-function becomes simple only in the far field,

so that the flow deflections must be measured sufficiently far away

for the flow to have approached its far field behaviour, but yet

close enough where the deflections still reasonably large to allow

good measurement accuracy. Inspection of the linear solution for

axisymmetric flow reveals that its far-field behaviour is attained

when Br is large. For slender configurations the far field

character may be dominant already for values of Br greater than

3, or sometimes even less. This makes the new method particularly

useful for high Mach numbers for which the far field may be approach-

ed already for r = ord(l).

The new experimental technique utilizes measurements along a cyl-

indrical surface r = const, of flow deflections a and T in

the radial and azimuthal directions, respectively. From figure 6.1

one obtains

- v \
S0 = 1+U (6.1)

- w I

Figure 6.1
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In order to make direct use of the results from the previous section

to relate these to the F-function we shall tentatively assume that
/ -k\Br = ord (e j so that these results are directly applicable. Through

expansion for small a and T and making use of the far-field

approximation for u, v and w in terms of u , v and w one

can derive expressions for u , v , w in terms of a and T

(see Appendix E). These, in turn, can be used in the expressions

relating the velocities to the F-function producing the following

relations :

where

= a(x,e) - a(x',e)dx' -

(M2+f) .X

= x - Br + 2Kr CT (x,9 ) - g \ <j(x ' ,6 )dx ' -

_ 2Kr
 ST(x,9) _ 4 K2. r (3a(x.9)

2
 + K ̂ 2,^ s f

o y ij o y H ^

2 ° »'' ^̂  ' O 1̂
R^ 1 £B - 1- 2 -

- [K+f M2 .--^]ln 2Br } (6.3)

and

. 2K aa(x.9)o = e - -B"e

Here we have omitted the additional terms that arise for a body of

revolution with slope discontinuities.

The error in F would be, formally, of order e if , as assumed

in the derivation, r = ord(e~ ). However, when used for moderately

large values of Br, the error will of course be larger and prim-

arily governed by the neglected terms in the linear solutions. The

terms which are quadratic in a (underlined in the formulas) are

therefore small compared to the others as they essentially represent

higher-order cumulative effects for large r , and could therefore

usually be ignored. The expressions presented in [ 14] are then

recovered .
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If; the F-function evaluated in .this way is plotted as a function

of ^ for constant 9, then the presence of shocks implies that

it will be undefined for certain ^-intervals. However, because the

F-function is.used only in the study of the far field, ,one-can.- as

a consequence of Whitham's•"rule of equal areas" (see Fig. 6.2) -•

overcome this difficulty simply by defining the F-curve in each

of the "missing" intervals as the straight line connecting the

end points of the curve. • ., . ...

arctg

the F-curve in a
meridian plane
9 = c ons t. . •

and T are measured
for r = r )

m .

"missing" interval

a = b + e

a + c = b + d
e. = d

Figure 6.2
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7. CONCLUSIONS . . . • .

By the use of characteristic variables a second-order solution valid

in the mid field r = ord (1 ) of an axisymmetric flow was derived

which was found to be identical to the one obtained before [13] by

a different method. The mid-field solution was then extended to the

near field, r = o(e), basically by adding terms equivalent to the

triple product term in .Van Dyke's [7] solution. Also, correction

terms were added to the expressions for the dependent variables so

as to make the transformation of the body contour continuous when

the body has slope discontinuities. The mid-field solution is valid

to first order in the far field, r = ord (e );by adding further terms

which are of higher order, in the near field it was made valid also

to second order in the far field. Thus, a second-order solution

for axisymmetric flow uniformly valid everywhere has been produced.

The solution is expressed directly in terms of the linear solution

and may be considered an extension to second order of Whitham's [8]

first-order rule. An extension of Whitham's method for construct-

ing the shock wave was also presented and shown to give the shock

strength to second order in the mid field. As the new solution

also allows the presence of body surface slope discontinuities, it

should be of practical value for the calculation of the supersonic

non-lifting flow around slender bodies of revolution even in such

problems in which the sonic boom is not of primary interest.

For the general three-dimensional case, introduction of character-

istic coordinates does not seem to lead to any substantial simplifi-

cations for the near and mid fields. For the far field, a second

order solution was obtained through the new procedure. The charac-

teristic coordinates used employed the downstream and upstream

Mach conoids as surfaces of. constant 5 anc^ "H > respectively, and

perturbed meridian planes £ = const, intersecting the downstream

Mach conoids along bicharacteristics. That the bicharacteristics

perhaps are not so fundamental in the three-dimensional case is

indicated by the fact that the simplest asymptotic far-field repre-

sentation, i.e., the one resembling most closely that for axisym-

metric flow, is obtained by instead using for the third angular
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coordinate 9 , where 6=9 + &9 and where A9 turns out to

be half the angular displacement of the bicharacteristic along the

downstream Mach conoid through that point [J3].

The asymptotic three-dimensional far-field solution can be put to

practical use in at least two obvious ways. First, its simple

structure indicates how good approximate solutions can be generated,

and some suggestions were given earlier [13] how one could use it

for such a purpose. Secondly, it makes possible the generation of

simple formulas relating flow deflections in the far field to be

Whitham F-function which can be;used in a new experimental proce-

dure to determine the sonic boom strength from wind tunnel measure-

ments. Application of this method to a simple body of revolution

reported in [14] shows that it is capable of yielding accurate

results.
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CHARACTERISTICS IN THE AXISYMMETRIC CASE

For axisymmetric flow ,the system (2. 1;.) — (21./*) becomes

cV

9V = 9U
9x 9r

'--•(A.1)

When studying-such a system-, it would certainly be an advantage if

x-derivatives and r-derivatives did not" appear in the same ;equation.

Therefore,we should be interested in the "possibility of finding for

example a new set of independent variables f, T] such that the

system could be brought into a form in which one of the equations

contained derivatives'" only with respect to ^ and the. other, one,

only with respect to T|. Now 'it is shown'in some text-books (see,

e.g. j [^] , p. 101 or [6], p. 433) that iri every domain where

the flow is supersonic (i.e. q > c) the system (A.1) can be brought

into such a form, namely

9V

9V

V 9r

V 9r
(A.2)

where the transformation (5,11)-* (x,r) is given by

9x
9f

(A.3)

and c, $ and <y are to be found from

2

V = U tg
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The system (A.1) is then said to have been put into characteristic

form with § and 1] as characteristic coordinates. The curves

^ = const, and T) = const, in the xr-plane are known as character,

istics (downstream resp. upstream characteristics). (See [4],

pp. 62-72, for example).

If we introduce the disturbance velocities u and v and make

use of (A.k), then (A.3) becomes (2.5)- (2.6) and (A.2) becomes

(2.7)- (2.8).
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A P P E N D I X

TRANSFORMATION OF THE THREE-DIMENSIONAL FLOW PROBLEM INTO CHARAC-

TERISTIC FORM

With Appendix A in mind it seems reasonable to try to introduce

new independent variables § , T] and £ such that the system

(2 .1 ) - (2.4) is brought into a form in which at least some of the

equations would contain derivatives with respect to only two of

these variables. The new variables 5 >T| and Q will be called

characteristic coordinates.

As the flow is assumed to be irrotational we may introduce a po-

tential function $ such that V$ = q, or in cylindrical coordi-

nates

I* = U
dx

ae

= V

_ w~

(B .1)

Then combination of (2 .1) with (B .1 ) gives the potential equation

/T12 2v d* /,,2 2^ d* 1 f.,2 2x(IT- c ) —* + (\r_ c ) —^ + — (W - c )
9x Sr r B9

In the following we will use the simplified notations

x = x.. U =

V =

rW = q.

and h = (c2 + W2).

(B.2)

L11

"22

*33

<c
- c

2
- c

o o
W2- c2)

J

a12

> a13

a23

= a21

= a31

= a32

= -u. v
1

= 7uw

_ v W
r
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We notice that

and

a.. = a. .
Ji - ij

= q4

' \Further, v and ^— are general notations for the row vectors
' • a a a' (ui> u0, UQ) and (r , -2—, ), 'respectively. We also introduce

.' £ J O U 1 O UQ O Uo ,

the matrices

Q. = H =

and

It is easily seen from the above and Bernoulli's equation that a..,

A. , h and H are functions of Q and r only.

.By means of these notations we can^now write, the .system (2.1)- (2.4)
' v • - .' • •

and the equation (B.2) in a more compact form, namely

I A. |5L = „x ex. (B.3)

and

I a. .
ij dx.dx.

-1- J

= h (B.4)

respectively.
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With a coordinate transformation

yi = yi^x1' X2' X3^ ' -1 = 1'2>3'

(B.3) and (B.4) — expressed in the new variables y.., .y_ and y~ —

appear as

Z Bit = H B-5

and

3 2

I v t~%— = k (B-6)

respectively,

where 3

B. = y T-^A- (B-7)T ^ / i - y - 1 \ • /

^_1 J

and
3 2

V- yk 1
k = h - \ a± . , 5 Ql *

-; , r" i_i 1J Xi XJ yk

Suppose now that we could find a function i|/(x) satisfying the first-

order equation

3

Y a..
Z-, ij 9x. 3x .

Then by choosing, for example, y. = t(r(x) we would have b-. = 0



uo ^2
from (B.8) which means absence of —*y from (D.6). Consequently,

dy-|
if Q were known on only one surface y.. = const., it would not

be possible to determine z uniquely from (B.5) on that surface.

Such a surface is known as a characteristic surface (see [6],

Chapt. VI, § 1). Thus the surfaces ty(x) = const. — where j is

a solution of (B.9) ~ form a family of characteristic surfaces.

In our special case we easily find that for arbitrary real numbers

P-|> P2
 and ?3

3

a±j P± Pj = n+(i,p) • n_(i,p) (B.IO)

where

n, (x,p) = up1

(Here U, V, W, c and hence also a. . are considered as given

functions of x ) .

Thus (B.9) can be written

• n±(x, ) = o (B
dx

From (B.11) we conclude that (B.12) has a solution only if M, > 1 .
.' • 1*

Now we consider only the case with 'Mj- > 1 everywhere in the flow

field. Evidently (B.9) is a partial differential equation of the

first order. Within the general theory of such equations (Monge's

theory) (see [4], Ch. II or [5], Ch. 2 or [6], Ch. II ) the

concept of characteristics plays a very important role. The charac

teristics belonging to (6.9) are called the bicharacteristics of

(B.4) (see [6], Ch. VI , § 1). The equation for an arbitrary bi-

.charact eristic follows from Monge's theory and reads

dx

where t is a curve parameter and ty satisfies (B.12).
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It.is easy to verify that f is constant along such a .curve. Thus

every bicharacteristic lies entirely on a characteristic surface

i/ = const. One may.observe that, in cas.e 3i|//kx.. '.£ 0, equation

(B.13) is equivalent to • •- , .

dx..

d

dx,

dT dp-
( x,.|±

= const.

(B.14) _

Consider for a moment the case of. undisturbed flow,, i.e^ q =

which is a trivial solution of (2.1)- (2.4).

By putting

= x - B r

= x + B r

y3 = e

one easily finds .that

dx
= 1,2.

and
dx •

) = 0

Thus (see (B.12) and (B.1^t) the surfaces y1 = const, and y« = const,

are two families of characteristic surfaces, the first of which is

intersected along bicharacteristics by the surfaces y« = const.

y1 =• const, is known as a downstream Mach cone,

y = const. as an upstream Mach cone and

= const, is a meridian plane.



Now we return to the general supersonic case, only with the restric-

tion ..that the disturbance, caused by the body, is considered to be

small. In the choice of new independent variables we can then take

over some ideas from the special case above.

y_.. is chosen such that;

const, is a chara

disturbed downstream Mach cone (x - Br ss const.).

y1 = const, is a characteristic surface (fl_(x, jr=~) = p) and a

y_2 is chos en such that; .

y2 = const, is a characteristic surface (h _ (x, —=—) = o) and a

disturbed upstream Mach cone (x + Br as const.).

y_o 'is chosen such that;

y^ = const, intersects, y.. = const, along a bicharacteristic (see

(B.15) below) and is a disturbed meridian plane (9 ?a const.).

From_(B.l4) we get the condition for y~ = const, to intersect

y. = const, along a bicharacteristic, namely

dy- = dy1 = 0 =>

dx

By, an
ax

= 0

or

_3
f2

an
ox

T̂ (*> . ax

= 0

(B.15)

Thus,for the determination of the transformation (x̂ x ,x«)-«

we have the following equations:



'''•>'' * "" " i /V "2. a.y2 . Sy2 . V)
3yo. //9yov.

u^ +-Vr-4 + r\J ^ T ' V ~ T •* — *^\/\-s y ' ' V -k I ' 1dx- . 9x2 r ox,, V\oX;j/ \dx2/ .. 2
•••_)

2 '2 2
/°y1 --1- / »y1\+ (r ) + ~5"vT3~)- (B.

u 9yi w 6y1
U — + V —L r 9x^ • r Qx2.

..2 2W - c
2r

dx,, r 3y!
= _2 u v ̂  + (V^ - c~) ̂ p + V •£

\ . '
((B.18) is obtained from (B. 15) by means of (B'.1?)).

We now return to the system (B.5)» which is equivalent to the dyna-

mical equations (2.1 ) - (2.4) expressed iri the hew variables.* Because

y1 = const, and y2 = const, are characteristic surfaces we get from'

(B.8) and (B.9) that b.^ = b22 = 0. But this means, as mentioned

before, that bQ/dy• (i = 1,2) cannot be uniquely determined from

(B.5) on a surface y. = const, on which Q is known.

We therefore try to rewrite (B.5) such that one of these equations

does not contain SQ/dy.. and another one does not contain

By putting (

/ 1 • -a - a-v / CI1O ^--lO

(.\ %y± I r.-:12 -13
XU; = ~ ( 0 a^ a^ 0 ) , i = 1,2,3,

9x

one obtains from.(B.?) and (B.9) that

X^1^ B± = 0 , i = 1,2.

Thus multiplication of (B.5) from the left by X and X^ gives

the scalar equations



I &<
1=1,3

and

V f (

2)B \ oQ
±> ay±

1) \ oQ

»_ ^

3x,

,3y '
OX.

(B.19)

(B.20)

i=2,3
respectively.

To these equations we add the last two from (B.3) expressed in the

new variables

£1 \ ox,, oy.
k=1 J

f ^ 9y* 9

i 4, _ ) i
/ 1 L \ ox1 dy.

k=1

3
\ r-> / ay,, ^\ n \ ( k d

x y
k=1 J

(B.21)

(B.22)

k=1

(B.19)- (B.22) are then equivalent to the original system (2.1)- (2.4)

expressed in the new variables y.., y^ and y"o-

We note that it is not necessary to set up a potential equation (B.2)

in order to define the concepts of characteristic surface and bicharac-

teristic as has been done above. We could just as well work directly

with the system (2.1)- (2.4) and obtain the same results, but we

follow here the usual approach taken in standard textbooks dealing

with second order scalar equations instead of with systems.

Now we put

I = yi
T) = y2

c = y3
Noting that

ox. (x .. ,« »x,.,

ax. -1 ox.-1

!iL
9y i,j mod.3



(B.16) - (B.22) can be written

1 A T— — — d r<\ (— — dx d6\ w/ar ax dr 5x\+ u " ac/ + \ac a? ~ as at/ + ^Va "
— — — — —ac a^ " as ac/ + \ac a? ~ as at/ + ^Vac a?." a? ac/

1 f£_\ J7a_e a_r ae a_r\2 /a_x ae_ a'x a_e_\2
+ M Vc^y'lVac a? " d? ac/ + Vac a? a? ac/ +

If - If

x /ae. ar^ ae_ a_r\ /a_x ae_ a_x a_e\ w/ar a_x a_r
+u; Vac a -si " 3T) ac/ + v\ac a-q " a^i acv + Aac a-n " -an

V

IT— \JV9-i9-£ M- *£\2 f'ajc ae a_x ae_\2

".M Vc^y IVac aii " a-n ac/ + Va; al^'aii ac/ -+

2 ^ivar ax _ ar a_x\ i _+ ^Vac an ail ac/ j - °

A ae w ar\ /ae ar ae ar\ (r 2 1 /c \ n
(v ali - r al) (ac ar[ ' al ac) + VLV - ̂  (~) J

M~ v~ce>' J ^

" v w a_r\ /ax ae ax ae\ ( w aj_ j_ r 2 j_ /c__\ n ar\
r av Vac aii ~ a-n ac/ + Vv r an " 2 |.w " 2 Vc^j J an/

/ a r a x a_ra_x \ _ fB 2-5 V
ac an an ac / ~ ^ 3;
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w 99 1
9T - r

2 .1

' -;? af

>.*;, ,• -t- 1 Ac \ T99 w 3r \ '^v
r - (- J.R,+ v:?5?J^.

^- + -1 fw2- J- (—} ~] ^} ^ac + r Lw 2 Uy J a g / ac

_
r
 M

2

, .
a_r a_9_ -B rae .V ' ra(x)- -.y ̂ i y-t y2i au~' " ' "

kl

9u

2
99 w 9r\ du /r 2 1 /c N 1 99 w 9r\ 9v
9T - r ac) al\ + ILV - 2 () J 9T ' v r aT/ al

1 r 2 1 /c N 1 8r>i 9w
- r LW - 2 J J dCJ a

99 2

M

99
all

v j_ /'^x /a_r a_9_
"

a_£ a9.N ra(x)
9n ac/ +

kl

(B.2?)

kl



/ar ax 3r 9x\ Su /9r 3x Sr ajc"\ Su
Vac a-n " at) ac/ a? + Va? a; ~ ac a?/ a 11'

(ajr a_x_ a_r a_x\ a_u fa^ae. ar ae\ aw
Vaii a? " a? av ac + r Vac ari " aii ac/ a?;

/ar ae a r a e x a w /ar ae a r a e x a w . / Rx
r Va? ac - aT af) ali + r lali a? ' a? ^ aT =- ° ' (B<28)

fir ax a_r a_x\ a_v /ar ax a_r a_x\ a_v
\ac aii " aii acv a§ + va^-.at " at a?Aa-n ~+,

/ar a_x_ ar ax\ a_v /ae- ax ae ax\ aw
Vaii a? " a? aiiy ac + r Vac a-n " ail ac/ a? +

/ae ax ae ax\ aw /ae ax ae ax\ aw
Va? ac " ac a^y aii + r Vaii a? " a? av ac "

In these equations

2- = (l - ^M2[2u + u2

c \ .2
00

which is easily obtained from Bernoulli's equation.
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A P P E N D I X C

EXPANSION OF THE LINEARIZED AXISYMMETRIC SOLUTION FOR LARGE r

The solution of (3.25) can be written (see for example [8],

P . 307) : . • ' : • ' • > . ; . - .

x - B r.o o . . .
f ( t ) dt

x -t) - B ro o

x - B r " .
1 ° ° (xQ-t) f ( t ) dt,

\,<-.-*.> - ~a ] L ., , a (C '2>
o V(xo-t)2- B2rc

with f given by the integral equation

x r t-BRQ(xo)
(x -t) f ( t ) dt

I .

V(x -t)2-B2R2(xJ

where ^QC^1 ) is °f order e (see j

Now (C.3) gives for f, approximately,

f(t) « T̂- [R (t) u) (t)]

Hence

f = 0(e2) (C.k)



In the following we will use the variables £ and r instead of

x and ro o . . . .

Then

B u + v =o O

o o

2B

(2B

/For 0 £ 5 < 2Br we can expand

and integrate term by term.

+ in, a series

Thus, observing that

yrr f ( t )

tr .' : .t]

d t l ^ d t 2 • • •
o o

r^idt]dtn ,
o o n

we obtain for 0 <. | < 2 B r

% - - E t12^
n=o

+ 00

v = _ B y fatiii
o L, 2n-1 n!

n=o

(2B

2 *
lUli"] _£
•<n -I Vot,

(C.5)

where

From (C.̂ ) and (C.6) one easily deduces that

,̂n+1

0(e2)

(C.6)

(C.7)

for some H in the interval [0,1].
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A P P E N D I X D

THE FAR FIELD IN THE AXISYMMEIRIC CASE

Assume the expansions

k 8u = e U. + e. U_ + ....-

^ ,, 8 „ 'v = e V1 + e V2-+ ...

k
x - B r 2 x = X0 + e X-, + ... .,

k 4
e • 2Br = H = HQ + e H| + ...

where U, , V. , ̂ j, an'& HI, -are functions of 5 and T) , all of

order unity and H = ord (1) .

These are substituted into the system (2.5) - (2.8) which leads to

the following set of equations:

To the lowest order we get from (2.5) - (2.8)

? [(M"- K) ui +^ vi] = ° (D'2)

Y 1 a n - . . - . - • • . - . - •
u, + vt) +- = o -; I' ' -~ (D.3)

Equation (D. 1) implies that

'""• . (D.5)



Substitution of (D.1) into (D.3) gives . .,, r •.• ^ •., . i _-^. f,. - ,.

.!-.-.„-.*,.~, „-•;• .:'• ••' '• "* **
„• .B U1 + V- = 0 (D.6)

Further, by introducing U, from (D.6) into (D.4) we arrive at the

equation ...... • - . ,• :,;••-

which has the solution

.:,. ,.,
V- = B -! - : (D.7)

- . • ' -

By. means of (D.6) and (D.?) we find from (D.2). .

x0 =

in which, in order for the Volution to 'take-the correct, form for.7- .,

zero disturbances, we choose £o(§) = 5 •

Using (D.5) - (D.8) we obtain from (2.5) - (2.8) to .the next order--;-;

|g. (X0 +.Hl),=,,0.. ..../,/..:,,, , : ; r ; ,,.,".,";. ,
(°'9)

' 9

BX1 = _K_[3K . M
2 4̂ ]̂  y-2 * JL^1-V.;- •;

2B 3T)
2[M -,.KO, B u )••;,, ;; •.: .. . ' (D.IO)

i v SV, V, 3Hn

oVBU2+V2>=-fB--ol--H1
aT

L (P'11):'

1 9H M""- £ „
^R TI V ^ - _J ?. ^ v ^(BU2 - V?) _ .̂ -̂ —-̂  V, +

+ i:o-Tr--br Bir^ir^2 ' (D-12)o
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From (D.9) we have

H1 = - xo +h

Using (D.7) - (D.9) we get from (D.11)

B U? + V = - I V
 2 + fi-

*C <C D ' Xl
O

O

Substitution of U2 from (D. 1̂ ) into (D. 12) leads by aid of

to the equation

V1 SH

1 9Ho

from which we find, using (D.y)>

M2+ H V

By means of (D.?), (D. 14) and (D. 15) we get from (D. 10)

M2 KM - T7

X -
2B M

Putting
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and remembering that

8HQ = . H - e H, + 0(e)

we finally obtain from (D,6) — (D.8) and (D. 14) — (D.16)

v = - B u + 0(e
12)

x - Br =

(K + M2 - to' 2Br + (M- 2 + )

X(5) + 0(e8)
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DERIVATION OF UQ , VQ , WQ , 0Q ^AND TQ/T AS FUNCTIONS OF

a, T, AND r IN THE FAR-FIEID DOMAIN (r = ord (e ))

By means of (5.31)- (5-33), (5.35), (6.1) and the formulas

0

= °<e 2) '
" . ; •

'o

0 = 0Q - K rQ UQ VQ + 0(e ) and

-Bu + 0(e8) ,̂ . -Buo .+. 6
:(e?) =

= vo + 0(e
8) = v = 0(e

4) ,

which can be deduced from (5.17)- (5.22), we obtain

v = (Uu)tg a = (1 - X) a + p(«
12);= (1 _ ̂ ,{(l--:f)a+ Ofc

12-)})a + o(e
12).

'•' v = (1 - - CT) o- + O(e ) .

=

1>(M2

iK A
B *

x

0 = u d x ' = - v d x ' + .0(e8) .
o o

X

V 0 = - -g C CT dx' + 0(e8) .

0o = 0. + K ro uo VQ + O(e8) = 0 - v2 + o(e
8)

' - | r C T
2

 + 0(e 8 ) .
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.= - ^-r ( 1 fill
B a I a

r

u = M 2 u ) u + 0 ( e 1 2 ) = u + ^v 2 + 0 ( 6 1 2 )
B

B ~ a I a
2B r

12,w = (1 + u) tg T = T + 0(e )

V W = T + 0(«1<4) .

12
= w + O(e ) .

V WQ = T + O(s ) .

O

r - K U + 0(
1 -.f v+ 0(e8)

0(e
8) .

Thus

= - T: I 1
B

K
2 N 1

— a a + —^ 12O ( e )

o(e
12)

w = T + 0(e12)

(E.1)

O(e8)

J
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and

u = -iro B \
, , JL.--C-

•T t r ^

VQ = ( 1 +
B 2

+ K+ K \ _/ 12Vg— a] a + 0(e. )

g •»• —5- \ a ax1 + 0(e )
2B- a

0(e12)

1 f
 CT dx« - | r CT

2 + o(e8)

- f a + 0 ( G
8 )

> (E.2)

NASA-Langley, 1973 1
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