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NOMENCIATURE

English alphabet

A, A, A0 and Aé see Fig. 3.2 and p. 18
A, n=1,2,3. see p. 40
aij’ i,j = 1,2,3. see p. 39
B =V Mo 1
B =/ -
Bn’ n=1,2,3. see (B.7)
'bij’ i,j = 1,2,3. see (B.8)
c .. . local speed of sound
C, speed of sound in the free stream
qx, 3?, 39 ‘ the basis vectors in a cylindrical coordinate system
F(g)
: _ Whitham's F-function
F(g’eo) - , , ,
F(g,m) generalized F-function (see (4.10))
*
F (g) o =
. see (C.6)
F(g), n =9,1,2,..
‘n
F,n=1;2. . see (D.7), (D.15), (5.6) and:(5.21)
£(t) see (C.1) - (C;h)
f,mn=1,2,...,7. see (2.9) - (2.15) and (B.23) - (B.29)
GL .sge P. 7
H = 2Breh except in Appéndix B, where H is a -
" column vector (see p. 40)
H,n=0,1,2,... see p. 19 and (5.1)
h ' , see p. 39
h,n=0,1. see (5.17), (D.5) and (D.13)
K oyl Mt
. 2 B2

k see p. 41

: K 3,2 2K
L = '5 (K + E’ M - —E)
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5 n = 0.1 see (5.18), (D.8) and (D.16)

M free-stream Mach number

M local Mach number

n unit vector normal to the shock

ord see p. 1Q

P> n = 1,2,3. ‘ arbitrary real numbers

P - row vector (p1, 'p2, p3)'

Q ' see p. 40

a flow velocity vector

a4 . ' = u

5 ' = Vv

QB = ™

q " Bernoulli constant (see p. 5)

R(x) r = R(x) = eR(x) is the body contour in the
R(x) axisyﬁﬁne’tfic case

Ro(xb) : A r = Ro(xo) is the image of the body contour

in the xord-pl@e'
r »  cylindrical oordindte

r,n=0,1,2,... see (3.3), (5.29) and (5.34) - (5.35)

f-.oB see subscript B below
T, see Fig, 6.2

U d = Ué’x + V'é'r + Wé'e
u_ free-stream speed
Un,n= 142,000 see.p. 19 and (5.1) -
u U= Um_(I + u)A

a _ row vector (u,v,w)

u see (3.21) and (5.29)

w,n= 1,2,3500. see (303)

up = uoB see subscript B below



Greek

L T T
HECT R

= 1,2,3,-no )

?71{233’{!{

1l

1,2,35...

21,3 :

Y - e

= 1’213°

s St nelm

alphabet -

n

= 0!112s3’-°'

O, 1 ,2,3’ oo .

see p. 19 and (5.1).

V.= U V.

; see (3.3)

oB-

see U.

see (5.1)

TK%WFE'U1W"””'
. o -

see (5.29)

row vector (x r 9)

see (3 3), (5. 29) and (5 34) -

1n Appendlx B x1 =X, X

see=subscr1pt’B'beloW’

xX-= xé(f)’is:agsﬁock surface

see p. 41

: PR )
. 1
sSin o = ﬁ_

c /c-

e
L.

cyllndrlcal coordinate

. see (3. 22) and (5 29)

- 2v i dee subscript B below

. row vector (v}, ¥, ¥3)

(5.35);;

and x = 0

;;3:

overall thlckness ratlo of the body

characterlstlc varlable (see P hh w1th

Y1 = g! y2 = n and y3 =()
characterlstlc variable (see
cylindrical coordinate

see (5.1)"{4

¢ and p. 38)
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E

,,n = 1’2,3,000

xn, n = 0,1,2’000-

vii

flow deflection angle (V = U tg o)

_ see (5.19)1_'f
see (C.7)

see (3 51)

see (3.8), (3’9) (3.15),(3.16),(3. 36) (3 37),
(3.40) and (3.53) - (3.55)

see p. ks . -
2 y-1
b= y+1

characteristic variable (see { and p. 38)

. see Fig. 6.1>

velocity potential (4 = V&) T
ue  + yer'+‘wee;= Y?

see (3.25) and 15u29i

see (3.12) and (3.31)

"¢0B see;sub?cript B below A

= x - Br

“ see p. 19 and (5.1).

= y(r) is a shock surface

§(X) = const. is a characteristic surface
see (B 9) g

- . T e

see (B.11)

see (C.3)



Additional Symbols

Superscript (1)
_n_ (2)
. (a)

Subscript B

9o

ox

3 _

Ay

3_

3p

aii) a(YpYZ’YB)'

a(}-') ’ 9 (x1 ,x2,x3)-

viii

denotes quantity in front of the shock

behind ="

" "

="- the corresponding axisymmetric expression

values taken at the body contour (see p. 15)

row vector (g—x , g? ) g——)

1 a .“
T G g?’z’ g_YB)

o) d o)
-"- KBPJ’_B_pz’ ap3).

and

> . are functional determinants




1. INTRODUCTION

In the well known Whitham theory [8]_for predicting the strength of
the sonic‘boom at large distances from a supersonic vehicie only
such nonlinear effects are 1ncluded which produce a distortion of
the signal as it travels ‘away from the vehlcle. These ‘have a cumula-
tive effect at large dlstances and are therefore 1mportant even for
very small disturbance levels. Whitham's simple first-order rule,
namely that the perturbation velocity field is the same as the one
obtained by linear theory but displaced in the streamwise direction
so as to take into account the distortion of the downstream Mach A
cones, will usually be satisfactory for the'very slender configura-
tions of interest for commercial SST's when flying at moderate
-supersonic-Mach numbers, For not so slender configurations or high
Mach.numbers‘(ahove 3; say) higher-order nonlinear effects can be
expected to become important in regions close to the vehicle. For
larger distances, say a few body 1engths away, linear acoustics
would still be expected to hold, although the 51gnal strength would
not be correctly given by the first-order theory relating signal
strength'to vehicle geometry.

To assess the importance of‘such higher-order nonlinear effects in
the near field, a second-order theory for the complete flow field
would be of great value as it would allow one to estimate the errors
inherent in the first-order theory. Such a theory for the near fleld
of a body of revolution at zero angle of attack was obtained some
time ago by Van Dyke [7] by the use of a regular perturbation method.
" This solution is not uniformiy,valid in the far field domain — or in
regions influenced by discontinuities.in the body.surface slope —
since the second-order solution thus obtained has the same set of
characteristics (free-stream characteristics), and hence influence
regions, as the first-order (linearized) solution, Therefore,

Van Dyke s theory needs to be mOdlfled so as to account for the
change in the Sharacterlstics. A systematic expansion procedure
yielding a uniformly,valid solntion in the whole flow field has been

proposed‘by Lin [2] and further extended by Oswatitsch [3]. 1In this,
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both families of characteristics’are ‘readjusted at'each step. In

an earlier pilblidatiori"[13] , it was shown that this procedure c¢ould
be -used- to ¢cast Van Dyke's ~second- order solution for axlsymnetrlc
flow in a’' uniformly valid ‘form for moderate and large radii. The
present ‘report shows how the ‘uniformly valld solution can be obtained
directly by aid of-the Lin-Oswatitsch formal expansion procedure.
Van' Dyke's- reésults~are obtained when the solution is expanded in a
Taylor series around the free streéam characteristics. Thus, an
extension of Whitham's [_8] rule to second order is presented.

-7

The new theory’is also'modified to allow for discontinuities in body
surface’ ’sloi)'e. ‘For thé determination of shock wave 'location a s:.mple

extension” of Whitham's "rule of" equal areas" is presented

-} The thréé-dimensiénal far field is tieated in a similar manner using
- & 'perturbed cylindrical coordinate system. For the three-dimensional
‘mid and near fields, the use of characteristic variables does not
appear: to lead”to a simple secorid-order solution. ' The far-field"

solution is used to generate formulas relating flow defleetions to
the Whitham F-function. Wlth the aid of such formulas a new experl—
mental technlque was dev1sed [114] for the determlnatlon of the sonic
boom strength from wind tunnel measurements whlch, partlcularly for
high Mach numbers, can be carried out fairly close to the body where
the disturbance levels are large enough to give good eXpte]'.ment'a;

‘- .accuracy.

.2, GENERAL ASSUMPTIONS, BASIC DIFFERE‘I’I‘IAL EQUATIONS AND -
CHARACTERISTIC COORDINATES

Tl We sttldy the steady supersenic flow field around a fixed rigid body,
placed in a 'homogeneous parallel streéxn of a polytropic ideal gas.
Viscous forces, ' é'ravity and heat.conduction, are neglected. Cylind-
rical coordinates x,r and 6. are introduced such that the free -
stream is in the positive x-direction ahd-'fhe bbdy is -siti;lated in
the half-space x 2 0. Further, it is assumed that all streamlines

start from x = -00,.



3
The entrOpy .change across a weak shock wave. is of the order -of :the
shock strength to. the third power, i.e. of 'the order of- the -cube
of the yeloc‘ty perturbation jump across the wave. 1In _the second-
order theory considered here only. .contributions from. terms, which.
are quadratic J.n the velocity perturbations are retained,. except....
near .a slender body of revolution, where some.terms which are .. ..
formally cubic in the v-perturbation.are included..:For, a smooth _
pointed body, however, the bow shock strength will be of the order
u2 alsp near the. body;, _So that entropy changes may:.still be neg-
lected in this region. If the body has sloi')e disc‘ontinuities of
,order. €, where e is the overall thickness ratio of -the body,. -
. the perturbation veloc_ities and Hence the shock strength. will.be |
df- order ‘ .e, .,S0. that entropy changes and the entropy gradients. ... .
become of on:ler 63, which may be neglected in the second-order
theory, then retai_n;i.rig only terms of order 32 _Thus,. to.. the approxi-
”.n;la't;'.on g‘ons;';lerea," we may neglect the.entropy, changes and-hence con-
si&er the flow to be i§enpr9pic and irrotational throughout the flow

field. .We may thus start from the equations. for irrotational-flow-

<., T VT e 0T RN - LR A

((Uz— ¢! )BE + (VZ— c )BV (w WA c2?) LI UV(-a—V-+ QE) ¥

moe X dr
| . - ‘CZV; P 2 T L - .
il ) WD e
dx ~ 3r (2.2)
AW _ 3U_ _ - ) - . .
a—x - Iae' e A L LT RSP . (203)
V ’ ) 4 ': .\‘_ Fa N
AW W oV . 4 )
. 9r’ +. B Y- B R S BRSSP P 2 2ls (2-1‘)l
\ R S e L T T Tl S . E
with’the vél‘ocity of sound c  'given by v - i L T owroo e
_ 1a2 . _ L
2(U2 V2 WZ) + -—_Tz -2-q - i “. : © e T2
“; e - - " " - . T .
(Bernoulll s equatlon) - B U
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Here q is a constant, vy = C_p/Cv and' U, V and W are defined by

qQ = Uex+Ver+Wee

Ei being the flow-velocity vector,

The above equations together with the shock relations and the con-
ditions for the flow to be tangent to the body surface and to tend

to the free-stream flow for x — - <O specify the flow iri the whole
field. ' '

In the following we consider x and r as dimensionless coordinates,
obtained through division by a suitable reference length such as the
overall streamwise dimension of the body. This does not ‘change the
form of (2.1) - (2.4). We shall also use dimensionless disturbance

velocities u, v and w defined by

U = Um(1 + Ll)
Vv = U v

m.
W = U w

©

Um denoting the free-stream speed.

In the axisymmetric case (with the x-axis as symmetry axis) we have
3/36 = W= 0 so that (2.3) and (2.4) need not be considered. In

that case it is advantageous ([2],[3]) to introduce characteristic

coordinates £ and 1 as new independent variables (see Appendix A)
If we choose E and 1T such that g = const. is a downstream cha-
racteristic and T = const. an upstream characteristic the trans-

formation (£,7) = (x,r) can be written
(1+u-Bv)RE 4+ (B +Bu+v)eE = 0 " (2.5)
EACCTI A ) dg = ° y

(“‘“BL")S_:][' (BL+BLu-v)_g—:] = 0 ' | (2.6)



and equations (2.1) and (2.2) are then transformed into

2)

o/

r

3 o (2.7)

0]

4
T

o

(BL+ BLu-v)-g—\:él + (1+.'u+ BLv)g—g + (1 +u+BLv)(1A+GL.v’-

- . 2 2\v dr '

(B + BLu+v)g—lT’; - (1+u—BLv§% - (1+u_BLy)(1+GLy )-;ia—nliz o (2.8)
-1
Here B[ = L2—1and GL=M2(1-%1M2(2u+u2)—-Y;—1M2 V2) .

Index L denotes local values and M the free stream Mach number.

From Bernoulli's equation we obtain

Dfms

-1.

B = B [1 + (K- M2)(2u+u2+v2)(1-%1— M2[2u+u2+v2]) ]
L
with K = ¥l M
2 2
B
a.rld B = M2-1 .

Each of the equations (2.5) - (2.8) contains derivatives with respect
to only one variable. This simplifies the integration of the dif-

ferential equations considerably.

In the general three-dimensional case one speaks of characteristic

surfaces and bicharacteristics belonging to the system (2.1) - (2.4).

(see Appendix B)'. For the special case of undisturbed flow, i.e,

q = u_ Bx — which is a trivial solution of (2.1) - (2.4) — the down-

stream Mach cone x - Br = const. and the upstream Mach cone x + Br =
const. are characteristic surfaces and the meridian plane 6 = const.
intersects the downstream Mach cone along a bicharacteristic (see Appendix B)
In our study of the general three-dimensional case — with the only restric-

" tion that the disturbance caused by the body is small — it appears to be

advantageous to introduce new independent variables £,T and { such that

€ = const. is . a characteristic surface and a disturbed down-
stream Mach cone (x - Br & const.),
Tf| = const. is a characteristic surface and a disturbed up-

stream Mach cone (x + Br =~ const.),



{'= const., intersects ‘£ = const.“along a’ bicharacteristié
‘and-is a disturbed meridian plane (8 ~ const.).

N P . .- . ' -
- . B LS. - ;o e ..

In the following, the variables £, 7 and ( will be referred to

as characteristic coordinates. The transformation (g ‘n ¢)- (x,r 9)

can be written formally (see Appendlx B)

- X Ox :
f1(r,u, g_zv a_z' H M"Y) = 0 (2-9)
P - a_ ' A_& . .
'<*~f2(l-“,’u,~ﬁ,'%~% s "My ‘Y) = 0 (2-.10)
I TR TR R P L )

Also the equatlons (2 1) - (2 l&) can be transformed to equations of

the form =~ - . =i i PO T
(£,(r,5, g_g g_;' %% %E? g‘lg‘l yM,y) = 0o T (2.12)
- a- - - - . - P -
f5(r,u, g_g’ _)1;’ %E’ g_ﬁ’ %‘i s Myy) = O (2.13)

—— e e— —

d3X dX 3x du du aﬁ-).__:_\ o - L (2:4‘:11‘)

3% QX BX 3@.2W By .. 5 . - o
A LA T AR U T e 13
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Here X and 1 denote the vector quantities.. (x,r,6) and (u,v,w),
respectivelyz‘and the fn's are complicated. expressions. given by the
left-hand sides of equations (B.23) - (B.29). The following can be
said about (2.9) - (2.15):

Equations (2.9) and (2.10) are the conditions for, 7| = const. and

g = const., respectively, to be characteristic surfaces. In case of
axisymmetry they are equivalent to (2.5) and (2.6), respectively.
Equétion (2.11) is the condition for { = const. to.intérsect € = const.
along a bicharacteristic. In the case of axisymmetry equations (2,12)
and (2.13)_are equivalent to (2.7) and (2.8), respectively. 3imilarly
(2,14) and (2.15) are just (2.3) and (2.4), respectively, (fé,ldoes
not contain 3v/3g, 3v/ATN, and 3v/AA{ and f., does not contain

duReg, dufem, and Julg).

As in the axisymmetric case, absence of certain derivativeg in (2.9) -

(2.15) helps simplify the integration procedure.

3. A UNIFORMLY VALID SECOND-ORDER SOLUTION FOR AXISYMMETRIC FLOW
AROUND A SLENDER BODY OF REVOLUTION

Let the body considered be located in the half-space x 2= O with,
the positive x-axis as axis of symmetry and let its contour be de-
scribed by

r = R(x) = eR(x) . . : oo . (3.1)
where R = 0(1). The body is assumed to be pointed, and is allowed
to have slope discontinuities of order €. The flow must satisfy'

. the tangency condition at the bodyisurfape,_‘ ' .

v = R'(1 + u) ‘ (3.2)

and must be undisturbed upstream of the body. In addition,. shock

waves give rise to boundary conditions on surfaces x = x_(r) which
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cannot be specified a priori. It turns out that shocks lead to a

nonuniqueness in the transformation (€, N)-(x,r) which requires

special treatment as shown in the subsequent section.

In attacking the problem for axisymmetric flow we shall first de-
termine a#second—order solution valid in the mid-field region

r ord (1) " and then extend this to regions near the body and far
from the body. '

For the mid-field expansion we assume, following the procedure

proposed by Lin [2] and further extended by Oswatitsch [3],

u = u1+u2+ L)
Vv =V, + VvV, +
1 2 LI ) .
(3.3)
X = X 4 X4 4 ecoo
o 1
r = r + I's + e
o - 1

where the different terms are to be regarded as functions of the
characteristic coordinates €g,T . Here, X, and r  are of order
unity, u,, Vi, X, and r, of order e2. Upon substitution of
(3.3) into (2.5)-(2.8) we obtain

g—g (x, + Br,) = O (3.4)
g—n(xo—Bro) = 0 (3.5)
%E_ (Bu, +v,) + :—i ;—gg = 0 o (3.6)
%ﬁ(BUH "’1)‘:1% ;_:];g =0 : '(3'7)_

o(1)

1:'-1 0(1)

"
]



The solutions of (3.4) and (3.5) read

Xx + Bnr
o o

xq(1) - (3.8)

»
!
o]
H
|

o = M(E) (3.9)

Without loss of generality we may choose A, =1 and X2 =g . The
characteristics will appear as straight lines in the xuro-plane,

and it may be convenient, following Oswatitsch [3], to use

o f% (h + €) . (3.10)

>
"

o czs (-8 e

in lieu of £ and 17 as characteristic coordinates.,

Substituting (3.10) and (3.11) into (3.6) and (3.7) we obtain the

usual linearized equation for u; and v, , i.e,

1
+r—-—~+ ) =A (o) ) ‘ ) (3'12)

where u, =23¢,/Rx_, v, =23¢,/0r .

We proceed now to next order. From (2.5) and (2.6) we obtain

' : ar E
gg(x +B r1)+(u —Bv)g—g—+(B[K B]u +v )ag = 0 (3.13)
3 on 2 aro
Y (x-Br;) + (u; +B V1)§ﬁ_ - (B[K"B']u1“‘VH)gﬁf 0 (3.14)
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It, is readily verified using (3.10) - (3 12) that the solutions of
(3.13) and (3.14) can be written

2 .
x,+Br;+M¢,+K ro(B u1+v1~) )‘B(T]) : (3.15)

. 2 M N
x,-Br +Mg¢,-K ro(B ul-v1)

W@  (.16)

The discovery of the explicit solution first given in [ 12] makes pos-

sible considerable simplifications of the results.

Becuase of the condition that disturbances vanish upstream of the

body so that the Mach 1lines then become. those of the undisturbed
e T . i - .

flow ﬁe select A\ ‘:‘vO. Also, the solutions for u and v turn
3 . 2 2

out to be particularly simple with the choice )‘4 g8 O, Thus, we have

|

. 2 4
-Kr_ v, (xo, ro) - Mg, (.xo,ro) (3.17)

r, -Kr u ( Xy ro) o (3.18)

Now we return to (2.7) and (2.8), Substitution of (3.17) and (3.18)

and retention of the next order terms yields

B—g (Buz"“’z)‘“r_2 3E ] [B(KB M —§_1+
o
. v, v, aro Bu1 :
h (u1+Bv1)a—§—+(u1+Bv1)}—' E-K‘HT = o - (3.19)
o

v or Ju
2 2 1
[%ﬁ (B u, - VZ). - S-ﬁ—o- ]+[B(K—B )u1 +Vy ST -
. » Ty ol . :
v v, dr ’au1

1 1 '
_(u1-Bv1)W—(u1—Bv1)-r—o.ﬁ+Kv1ST = 0 (3.20)

With the aid of (3.6) and (3.7) and with introduction of the new

dependent variables



11

B - T T : A 4 .
u, = u; +u, -M oy . (3.21)

<
1

Vi o+ Vs -(M2 + K) u; v, . - (3.22)

we find that (3.19) and (3.20) may be written in the following simple

way :
) Yo aro - Coe . - |
E (B u, + Vo) + r—o i— =0 R (3'23)
3 S Vo 'éro= R _ : - St goA
a—,n' (B ‘uo -‘-.'Vd) - _1": gﬁ— ] = (0] ‘ , ! (3'2“’)

Thus, a compérison with (3.6) and (3.7) shows that ug and v, are

obtained from the solution of the linearized equation

232¢0 , 30, 2% ' . .
- B 5 + , + = 0 (3.25)
r dr . .
axo o "o aro

with u_ = aq,o/éxo y Vo= a¢o/aro . Therefore, the second-order
solution can be expressed directly in terms of the solution.of the

linear equation (3.25) by: S

2 . - '
u = (1 +M uo.) u, s S o (3.26)
v = (1 +[K + Mz]u ) v | (3.27)
o o
where u, “and Vo are COI‘iSidéredi f-"unc'tions- of X, andi . r, , and

x and r are given, by

"
1]

2 '
x, -Mg¢ -Kr v (3.28)

H
1)

ro'-"(T - K‘uo) : . S e - (3.29)

One can also readily show that the velocity potential to second
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order is given by

¢ = ¢,-Kr u v, (3.30)

(o]

Next, we shall extend this solution to the region close to the body,
r = 0(e), by making use of Van Dyke's [7] solution., Through a regular
expansion procedure Van Dyke found the solution for the velocity

potential ¢ = ¢1 + ¢2 to be
5 .
¢, = u(Mg, + Krv,) - %Z-rv13 (3.31)

from which the following velocity components can be obtained:

, > Bu1 8u1 2
u=u; +u, = -u1(1 +M° u, +Kr-§r—)+$(—(M b4 +Krv1),—
Ju (3 32)
3 1 2 y
- FMr vy
-2 ovy CAS
v=vy+ vy, = vi[1+(M+ K) u,+ Key—] + W(M ¢1+Krv1)—(3 )

2 v
M 2 1
- (v13 +3rv," 5 )

These are ‘to be .compared to the velocities obtained by expanding the .

uniformly valid solution for r = ord (1) obtained above,

du, 3u
Setting u,(x_, r ) = u; + (x - x st (r - ro)g;— T =T 4 ..,
etc,, we obtain
5 du, au1 2 ’
u=u1(1 +M u, +Kr 5—1‘_)+BT(M %, +Krv1) (3.34)
_ ’2 av] av1 5 :
v =vi[1+(M+K) u1+Kr§'r—]+aT(M ¢, + Krv,) (3.35)

which differ from (3.32), (3.33) only in that the triple product terms
are missing. Van Dyke [7] pointed out that these will be of the same

order as the quadratic ones near a slender body for r = O(e). For
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r = ord (1), however, they are negligible and of the same order as
contributions from other terms already neglected in the differential
“equation. It is possible to make the solution (3.26) - (3.29) uni-
formly valid also for r = O(e) by modifying it as follows:

x = x -Kr v, - M2¢o + % MzBro vo2 + % )\5(§) (3.36)
2. 2 1

r = r(1-K uo) - 13; M™r v -5 -x5(g) (3.37)

v = [1+ (K+M) u, - -[}MZ v02] v, ‘ (3.38)

The expression for u, is the same as before. The additional terms

involving the as yet undetermined function A and the one with

’
vo2 in (3.36), are everywhere of higher ordéf‘ and incorporated to
avoid discontinuous behaviour of x when u, and Vo have dis-.

continuities at a body slope discontinuity. The term r has been
included in order to elimindte the spatial derivative terms in the
triple- ’prociuct cdntribu_tion to u and v given by the last tér‘ms
in (3.32) and (3.33). It becomes comparable to the previously

‘derived term -K r u_ only for r = 0(e) and is therefore at most
of order 63. In constructing the new term we have freely taken '
advantage of the slender-body behaviour of AP Thus, for example,

for r_ = 0(e), 3V, OT o~ dv for = -v()/r0 .

To determine )\5 s let the body contour in the transformed plane be
defined by

ro = Ry (x,) - (3.39)

o]

By choosing

- - (g y -3 MR 2
Ag = 2BKuB(g) Ro(xoB) -5M Bv g Ro(xoB) (3.40)
where wuy = uo(xoB’ roB)’ vg = Vo(xoB’ roB) and X _p, r o are the
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coordin»ates for the intersection of_the_ p?.rtlcular characteristic
é = const. with the body contour (see figure 3.1) "v:re can ascertain
that both X, and ro become .continii_ous at points of body slope
‘dlscontmultles. : »

r : /

(o] .
/ . ) .

° € = const, ‘

e s - . - . . T T

This follows,A because in the immediate neighboorﬁood ‘oehind the 4. ,
body comer the flow must behave locally like a two-dimensional one
w1th -the _veloc:.ty component Jumps to lowest order satlsf‘y:l.ng AuB
'- v /B = = AR'/B, -where AR!' is the slope dlscontmulty From
the expre531ons (3.36) -and (3 37) it then follows that a continuous

body contour in the Xgr Ty plane leads to a continuous contour in

the physical plane with

T S r = R = Ro[x;B(x)] o | ) ) 3 . (3,141)

LT g

and x given implicitly by

L, _ :
x = X5~ Még _KRO(VB + B uB) e S (3!42)

(Contlnulty in x follows since the combination v0 + Bu is con-

tlnuous, as well as ) Thus, a solution, unlformly va11d to second

order everywhere. »__for r = 0(1) is given by

T e .
D A

uo(1 + B/lzuo> _ ) (3.14_3)

u

. <-
I

B '
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: 2
. . . BM 2 2 .
X = xg- K ¥, vy - Mpge BRR, up 47 (v, v, oo Ry vg') - (3.45)
r=r(1- Ku )+KRouB 3 (r \A -Ro VBZ) (3.46)

A comparison with the previous result shows that the added terms
give contributions which are of higher order everywhere with the
exception of the added term in v , which gives a contribution of
the same order near the body as the term (K-M Ju; . For r = oxd (1)
it becomes of -higher order and may be neglected. The additional
terms in the expressions.for x and. r are of order 33 everywhere
and are oniy important for representing the details of a non-smooth
body in the transformed plane. It should be noted, that for a body
contour with slope discontinuities, the transformations x = x(x_,r )
and r(x T, ) as given by (3.45) and (3.46) will be discontinuous
outside the body along the downstream characteristic from the cormer,
For a convex corner (expansion) there is a negative jump in’ Vo and
a corresponding positive one in u, g:l.v:l.ng a positive Jump in' x

and a negative one in r as illustrated schematically :Ln figure 3.2 a),

' S overlap
raA _ ‘/. g = const, . region
. 1
A LA
o o.
/
e
> X, >X,
r A ~ A/ expansion fan
N = const.
——— y X »x
a) Convex corner : “+- # . b) Concave corner
(expansion) (compression)

Figure 3.2. Coordinate transf"omation“near discontinuities,
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A double point Ao Ac'>, on the upstream and downstream sides, respect-
ively, of the characteristic € =const., from the corner thus becomes
transformed into a line along 7 = const, as shown. The gap between
A and A' in the physical plane must of course be fi'll'ed.with an
expansion fan, as is well known from the two-dimensional theory.

In the present. problem the actual variation of flow quantities across
the fan can be determined by considering the sharp corner as the
limiting case of a rounded one as the radius of curvature tends to
zero. For a concave corner, on the other hand, the downstream point
AO' is transformed to an upstream one in the physical plane (s_ee
figure 3.2 b)) and a problem of non-uniqueness thus arises, since one
and the same. region in the physical plane might correspond to two
regions in the transformed one. This difficulty ‘is to be resolved
by the insertion of a shock wave to remove the overlap.region in
the transformed plane. . Such regions may of course also appear even
for a . body without sharp concave corners, and. the problem of deter- .
mining shock wave locations will therefore require a more general

treatment given in the following section.

With the uniformly valid solution near the body thus derived we may
proceed to consider the boundary condition on the body surface. By
introducing the second-order solution (3.43) - (3.46) into the tangency

condition (3.2) we find upon neglecting higher-order terms,
2 M 2 ) | | '
v [T+ (K +M)u, -7 v "] = (1+u )R (x) | | (3.47)

which, together with the initial condition of zero disturbances up-
stream of the body, provides ‘the boundary condition for the linear
equation (3.25). As the transformed body contour is continuous,
the problem of finding the transformed body contour in the X T -
plane can be solved by iteration starting from the ordinary first-

order solution with the linearized boundary condition

vi(x R(x)) = R(x) | (3.48)
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It remains to be studied the behaviour of the solution in the far

field, r = ord (e'), € = 0 (i). 1In Appendix D it is shown that by

assuming
u = el' U1 + 38 U2'+
v = th1 +38V2+ cee
X - Br = X = Xg t € Xq* oo
el"ZBrE H=H0+ehH1 + eee
where Uk’ Vies xk and H_ are functions of § and T] y all of
order unity, and Ho = ord (1),one finds that the solution may be
written ' N
& - _
Fggb 1 g 2 K F~ () .12
u = + -—7— F(E')dE" + (M- +0(¢ 7) (3.49)
./213r' U (213r)32 o 2Br
4
B
V:—Bu-tw SF(g')dg' -BK?]'B{:Q)' ) (3.50)
o
Rk 5
x - Br = € - K{2Br F(g)'+— F(g')dg' + (3.51)
o
2 8
+ LF(g) In Br + A(g) + 0(e")
where L = % (K + % M2 - ;{2%)

From the mid-field solution expanded in the same manner one finds,

using the far-field expansions for u, v, and ¢ = given in
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Appendix C, and noting that from (3.37) r, = r+Kruo+O(e:3), the
same expressions for u and v as above,but that (3.51) is re-

placed by

oK ¢ -
x—Br:g—K\/ZBrF(g)+———SF t)agE' +
Vel (")
+ -Z—Mz B Fz(g) * g ‘ (3.52)

The last two terms may be absorbed in the function A(g) of (3.51).
However; the term proportional to 1n Br which is the result of:
higher-onlier‘ cumulative efi‘ect’s in t_hé characteristics ‘in (3.51)

has no correspondence in (352) Wé thus need to complement the
midfield solution with terms which behave like LF2 In Br in the
far field, but which will only  give higher-crder contributions near
the body. The added terms, however, must not lead to discontinuities
in ’che transform of the body contour. This can bé achieved by re-
placing (3.36) and (3.37) by

2 3 .2 2
x=x0-Krovo-M¢o+EMBrovo+
2 1
+ LB’rO(.lnBro)uo + 5 Ag ‘ (3.53)
2 2 2 1
r = ro(j— K uo) - % M r o v."™ -Lr, ln(Bro)uo - 55 M (3.54)
where
A\ =-2BKu(E) R(x . ) -2Bv 2R (x.) -
6 = ‘B 0" 0B 2 B 0" oB :
- 2L B R, 1n(B R_)uy? (3.55)

" The transformation (3.53) - (3‘.55) together with (3.143-') and (3.144)
provides a solution which is uniformly valid to second order every-
where. The new terms in (3.53) and (3.51&) give co"ntribut-ions to x
and r which are at most of order ¢ . In practice they are likely
to be unimportant since they lead to contributions in:the mid field. .

of order 68 in the far field. Finally, it should also-be remarked. -.



19
that a uniformly valid solution can be constructed in many different
ways and the one given here was selected with computational simpli-

city in mind.

4. DETERMINATION OF SHOCK WAVES FOR AXISYMMETRIC FLOW

At a shock wave, the following conditions hold (see, e.g., [1],
p. 274): ' '

3g® = W22, (- BaMxa® | (4.1)
va(1)x_;; - 3@z ,v B . ‘(4;2)

where 3(1) and a(z) are the velocity vectors ahead and behind the

, . 2 +2 UZ \; w2 2

shock, respectively, u° = (y=-1)/(y+1), 4% = U +V + W+ 2c°/(y-1),

c the local velocity of sound, and n is the unit normal to the shock.
Let the shock in the axisymmetric case be defined by x = 41(17).. Then
(4.1) gives

@) = 2 EE L (@) ] ) @ 0@,
2
+ v(1)v(2)- oMF g—%(u“) %+v(1))- Mz(u“) g%+v(1)> (4.3)

Expanding this result for small values of the perturbation velocity
components and retaining only terms of zeroth and first order in.

consistency with the second-order theory for the mid-field, we find
1 1
%=B{1 +§(u(1)+u(2))-y]3—(Bu( )+v( )) + eee ] (4.4)

' The second shock conditien, (4.2), simply expresses that the .tangen-

tial velocity component is continuous across the shock. Thus,
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@R )t . +2) oM | (4.5)
Combining this with (4.4) we find that, to lowest order,

V(Z)-— v(1) Av

m = ZE = - B 4+ ... (h.é)

It can readily be shown that the condition (4.2) of continuous tan-
‘gential component, to the order considered, is equivalent to the
requirement that the potential be continuous across the shock.
Considering first the mid-field region, r = ord (1), we obtain from
(3.30) and the reﬁuirement that the potential is continuous across
the shock .
= - = - ) L|'. )

Ag Ap, - K A(r, u, v,) 0 (4.7)

Now, from (4.6) it follows that, to lowest order,

A(v, + Bu)) = O (4.8)

across the shock. Therefore, making use of the identity

1 2 2
u, v, = -W[(Vo_Buo) - (vo+Bu0)]

we may rewrite (4.7) as follows

2 .

s, = - 5 {aerfem) - 26, (e m () wey (5.9)
where -

P(e.1) = 25 [Br(v, - Buy) = o5 [T-E(v, - Bu) (4.10)
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may be termed the "generalized Whitham F-function” as it tends to

the ordinary Whitham F-function for 1 - o0 . The transformations
(3.28) and (3.29) give

x+Br=T]-2£B(T]-§)(VO+BuO)-M2¢O (4.11)
x - Br =€ - 5= (0 -g)(v, - Bu) - Mg, (4.12)

Since both Ax and Ar are zero across the shock these relations
yield with the aid of (4.8)

R | O P R e

b6 - K [P 6B 50 - G0 (M. 5] 4
, + M2 A, (4.14)

From (4.13) it follows that AT is at most of order u , i.e. 0(62),
so that to . lowest order the shock wave transition takes place along
lines of constant 1 . The term involving Aq)o is of order Af times
u  and is therefore only comparable to the first bracket of (4.14) for
the near field r_ = (¢), in which case both are negligible. From (4.13)
and (4.14) it also follows that Aro/rcS‘): A(n-g)/(n(1)- 5(1)) = 0(e?) so
that the change in Ty may  be neglected compared to r, itself. It
therefore follows, that to within the approximation considered (4.9)
and (4.14) may be simplified to

(2)

F(g,m)dg
g(1)

1xvaEe; (@) - ¢ ] - (4.15)

@ _ () _xvamr 73 - 57y (k.16)
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The left-hand side of (4.15) follows from the definifion (4.10),

since
o : K ;
1 [¢]
2B (Vo —Buo) = Y3 : (4.17)

The relations (4.15) and (1#.16; express Whitham's "rule of equal areas"
(2)_ 50

[8’]‘since by substituting F‘"/- F ) from (4.16) into (4.15) one

obtains
£(2)

( rem ag = 3 - ()@@, p(1)) C (us)
(M)
g

Thus, by aid of (4.16) and (4.18) one can use the same graphical -
technique as commonly employed in the first-order far-field solution
to determine the shock wave location in the mid field, provided the

definition (4.10) is substituted for the F-function.

Consider next the near- and the far-field regions. For the near
field region, r = O(s), some, baddit‘ional triple - product terms were
required both> in the expressions for x and r. and in the v-\}elo-
éity component because of the slender-body behaviour near a smooth
body'. However, it is easily demonstrated that for a smooth body
shocks ‘can only occur for (£/r) = O(eh) in which case the triple-
product term is negligible. For a body with slope discontinuities,
shocks will occur also for r = 0(e) § = 0(1), but then the flow
will behave loéaliy near ‘the corner like a two-dimensional one and
slender-body triple prodqu tef‘ms ‘will be negligible for the deter-
mination of the shock location. Thus, the mid-field procedure for
determining the shock location will be valid to the required order
of accuracy for the near field, as well. For the far field, it was
demonstrated in the previous section that the mid-field solution -
gave a uniformly valid solution- to lowest order. Thus, .the mid-
field procedure will give shock locations correct to order uni:ty
with errors in location of order eh and shock strength errors ‘of
order 68. Since such errors are likely to be unimportant in prac-
tice, the added complication of ;'.hc‘luding the higher-order terms in

the shock wave location for large distances does not seem worth while.
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5. SECOND-ORDER THEORY FOR THE FAR FIELD IN A THREE-DIMENSIONAL

FLOW

We consider the flow around a simple airplane-like form (wing-body

combination) located in the half-plane x > O with its (pointed)

nose at x

r

0 and the fuselage mainly along the positive

x-axis. A suitable perturbation parameter ¢ is here the thick-

ness ratio of the leést slender of equivalent bodies of revolution

in the supersonic area-rule sense.

With Section 3 in mind, a suitable procedure might seem to be to

first carry out an expansion in the mid field and then extend it

to the near- and far-field regions. However, it is found that the

- mid-field analysis employing characteristic variables for the

general three-dimensional case does not lead to a simple explicit

solution as in the axisymmetric case.

This indicates that the con-

cept of characteristic variables is'nbt of the same usefulness near

the body as in the axisymmetric case.

Therefore, we will restrict

ourselves to the study of the far field. Following Section 3, we
define the far-field domain by

x-Br = o0 (1)

2BI‘ =

ord

€

-

An expansion similar to the one used in the axisymmétric case is

(5.1)

assumed
u = eh U1 + e8 U2 + 4ee
8
v = eh V1 + € Vé + eee
4 8
{.w = € W1 + e Wé + s
X - Br = SXo t € Xq *+ oeen
4. ' o :
€ = =
2B ?* H H0 + € H1 + ees
\6 = eo + € 61 + cee
where Uk’ V, , K’ XK, Hk and ek are considered functions of

order unity of the characteristic variables €, 1T and (.

The ‘ex-

pressions (5.1) could then be substituted into the equations of

motion expressed in characteristic form and a sequence of equations
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generated thereby. However, to obtain the lowést order terms it
is actually simpler to use (2.1) - (2.4) employing the new variables

x and H. In these, the irrotationality condition (2.2) becomes

vV, = -BU, (5.3)

W'1 = 0. - : (5.1;)

With the aid of these results, we obtain through substitution of the

series (5.1) into (2.1) when higher-order terms are omitted

oU,

U aUT 1
1 axo

3H_ + 2H_ Uy = 0 : - (5.5)

np=

+

This equation is most easily solved by means of the Monge theory.
It was shown in [ 10] that the solution can be given in parametric

form as follows

5?(5,60)
U, = - —m .6
; e (5.6)
X = & - KVE F(5,8,) | ' - (5.7)

By identifying the parameter with £ we get a simple and obvious
relationship between Sq and the Whitham F-function. Further, as
in the axisymmetric case Ho must be a function of 71 , alone, and

we may set

Ho = 7

. (5.8)

A eo = ¢ | | (5.9)



Next, we

(2.14).

25
proceed by substitution of the series (5.1) into (2.9) -

Using the above results for the lower-order terms we obtain

the following set of equations to determine the next-order terms:

\ ,
55 (ko +Hy) = O (5.10)
Xy g 2 4k %, 2 g 3H;

— = — [3k-M"- B =2 o= v, - .1
1 4p2 [3 M2 9m 1 T 2Ban 1 (5.11)
1 %% 2 2 Kr_ 1 Ky _1_1 '
- Z_B_an (M V2 + [M -K] BU2) - B2 ( ac ) “ B Ho aHo ac . (5012)
&__&LEBH (5.13)
m T T B H_3C a7 )
2
3V V, 3H .
d .o Xx v 11
3¢ (BUz + Vo) = - 55 57 - & 3¢ (5.14)

: : 2- K
é—(BU-V)---l-a&(M-—z-) 2+ﬁa—Hl-V1H1+
3 27 %2 H, 3 B 1 U H e Héz

2
. Vv, oW, . 1 M3V, -2k <av1> dH_ -2 38, 3V, (5.15)
H 37 H 3n o BH_\aC / am an 3¢ '
Mo 2 N, (5.16)
3€ T T H ¢ oM )

These equations differ from those in the axisymmetric case only by

the underlined ferms, and their integration will proceed in very.

much the

same manner as in Appendix D. The final results read

- Xo *+ 1y(1,T) (5.17)
2 K :
M- & \ : : e
TES V1(§', N, € )dE +_§ (K +%M2 - ;_1;.)V12H0 InH -
[e] . .
€ 32y o :
25 V1 B KVES 7 ‘w(g")‘%g 5;2—1(5',11,@)@' (5.18)

[s)




e VL ' ' ' ‘
L 1
91 =, —BE éf- + 19‘1(§7C~\) . ) " . (5-19)
3
BU,+V, = - v ﬁ‘—g vi(g'mgag | (5.20)
° (o]
g
2 K
( Mm+3 2 Hi VY . :
R AR el {vie mioes
o ‘ o
3 _
\ BF,(€,0) - o <av1)2 ] S azv1( e (' )
e+ 5 \357) " ° ——(§ ,M,{)dE 5.21
VI B 3¢ Hy O 3¢ " _
\_ (o] (o] :
2 "'g aV1 ' ' ‘
Wy = 'ﬁZB st (85MmiG)ag - o (5.22)
J , _

The underlined terms are the new ones which appear due to departure
from axisymmetry. A comparison with the .axisymmetric solution
therefore s'uggests' that we may write the far-field solution for the

three-dimensional case in the following simplified form

_ (a) d %o -
u = u - 2K ( Y ) (5.23)
3 u 2'
v = v®) 2KB.( ago> (5.24)
W= W (5.25)
Kr ow .
x = x(a) + 20 BCO (5.26)
ow .
r o= (?) -%;ros‘gg ) : - (5.27)
3 u .
8 = (- 4k —=> . _ (5.28)



where superscript (a) means the same expression as in the axi-

symmefric case and U, Vg and w'o are obtained from the solution-
of '
09 o 379 1 9 ¢

1
+ — + + : = 0 - - . (5.29)
. OX lfo al_«o dr 2 r 2 agz . . , : .

The terms in the expressions for u and v cdntaining derivatives-
with reéspect to the angular variable ( = can be eliminated by making
the further transformation - ° ‘ '

du o

8, = € - 2K 57~ , oo « e (5.30)

which leads to the final expressions

SN CV S N ¢ 3D

v = @) (5.32)

w = w Kr-‘a e SR | T T (5.33)

. - ‘<a> —Z—BT:-g»zBK (2 ) B (TS
a Kr, awo -

ro= (@) EEak <ae ) (5.35)

6 = 6, - 2K ;;9 o - (5.36)

Here, u_, v, and w_ are now solutions of (5.29) with ( replaced
by 60 . In considering the shocks in the far field one notices

that to lowest order the solution has the same functional behaviour
as the axisymmetric one, except that 60 appears as additional para-
meter in the F-function. One can therefore use the same method as

in the axisymmetric case to determine the sho_ck'wave location to

first order.
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6. EVALUATION OF THE F-FUNCTION FROM WIND-TUNNEL EXPERIMENTS

A new method to determinc the F-function from wind tunnel measure-
ments, was proposed in ['lll]. In it, flow deflections are measured
instead of pressures as in previously used methods. Thereby, con-
siderably improved accuracy is made possible, particularly at

high Mach numbers, since flow defléctions are much easier to mea-
sure accurately than pressures. The relationship between flow
deflections and the F-function becomes simple only in the far field,
so that the flow deflections must be measured sufficiently far away
for the flow to have approached its far field behaviour, but yet
‘close enough where the deflections still reasonably large to allow
good measurement accuracy. Inspection of the linear solution for
éxis&metric flow reveals that its far-field behaviour is attained
when Br is large. For slender configurations the far field
character may be dominant already for values of Br greater than
3, or sometimes even less, This makes the new method particularly
useful for high Mach numbers for which the far field may be approach-
ed already for r = ord(1).

The new experimental technique utilizes measurements along a cyl-
indrical surface r = const. of flow deflections ¢ and =~ in
the radial and azimuthal directions, respectively. From figure 6.1

ornie obtains

tgo = T
1+u (6.1)
tg T = 1Yu
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In order to make direct use of the results from the previous section
to relate these to the F-function we shall tentatively assume that
Br = ord (e-u) so that these results are directly applicable. Through
expansion for small ¢ and T and making use of the far-field
approximation for u, v and w in terms of ugs vy and w one

o
can derive expressions for Ugs Voo W in terms of ¢ and -~
(see Appendix E). These, in turn, can be used in the expressions
relating the velocities to the F-function producing the following -

relations:

F(g,eo‘) =\/_%6(X39) /;S o(x’ ,e)dx '/—36 ank
+ (B + 8B) Fc (x, r) (6.2)

where
(M2+% x '
g:x-Br+2Krc(x,6)-T S o(x",0)ax" -
31 (x,0 K pg(x,0)? K 2 2 K
—ZKI‘ae -L‘Fr(ae )+§I‘o' (x,e){B-1-§-
- [:K-i--g-Mz_——]J_nZBr} (6.3)
and L

o B a6

8 = - ZKM : | , (6.4)

Here we have omitted‘the additional terms that arise for a body of

revolution with slope discontinuities.

The error in F would be, formally, of order e10 if, as assumed
in the derivation, r = ord (e—u). However, when used for moderately
largé values of Br, the error will of course be larger and prim-
arily governed by the neglected terms in the linear solutions. The
terms which are quadratic in ¢ (underlined in the formulas) are.
therefore small cdmpared to the others as they essentially represent
higher-order cumulatlve effects f or large r , and could therefore
usually be 1g;nored The expre551ons presented in [ 14] are then

recovered,
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If. the F-function evaluated in this way is plotted as a function
of €  for constant 6, then- the-presence of shocks implies that

it will be undefined for certain E-intervals, However, because the
F-function is. used only in the study of the far field, .one-can.- as
a consequence of Whitham's-"rule of equal areas" (see Fig. 6.2) -
overcome. this difficultéy- simply by defining the F-curve in each

of the "missing" intervals as  the straigﬁt line connecting the

end points. of -the curve.

1
S e

the F-curve in a
meridian plane
& = const,

< T

r
m

(g and 1 are measured

for r =1
) - m /

"missing" interval
a=b+e };} ' dA
c+ e = .
a+c=b +d

Figure 6.2
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7.  CONCLUSIONS

By the use of characteristic variables a second-order solution valid
in the mid field r = ord (1) of an axisymmetric flow was derived
which was found to be identical to the one obtained before [13] by

a different method. The mid-field solution Qas then extended to the
near field, r = O(e-), basically by adding terms equivalent to the
triple product term in .Van Dyke's [7] solution. Also, correction
terms were added to the expressions for the dependent variables so
as to make the transformation of the body contour continuous when
the body has slope discontinuities. The mid-field solution is valid.
to first order in the far field, r = ord (eh);by adding further terms.
which are of higher order in the neaf field it was made valid also
to second order in the far field. Thus, a second-order solution
for axisymmetric flow uniformly valid everywhere has been produced.
The solution is expressed directly in terms of the linear solution
and may be considered an extension to second order of Whitham's [8]
first-order rule. An extension of Whitham's method for construct-
ing the shock wave was also presented and shown to give the shock
strength to second order in the mid field., As the new solution
also allows the presence of body surface slope discontinuities, it
should be of practical value for the calculation of the supersonic
non-lifting flow around slender bodies of revolution even in such

problems in which the sonic boom is not of primary interest.

For the general three-dimensional case, introduction of character-
istic coordinates does not seem to lead to aﬁy substantial simplifi-
cations for the near and mid fields. For the far field, a second
order solution was obtained through the new procedure, The charac-
teristic coordinates used employed the downstregm ‘and upstream
Mach conoids as surfaces of constant £ and T, respectively, and
pefturbed meridian planes [ = const. intersecting the downstream
Mach conoids along bicharacteristics. That the bicharacteristics
perhaps are nof so fundamental in the three-dimensional case is
indicated by the fact that the simplest asymptotic far-field repre-
sentation, i.e., the one resembling most closely that for axisym-

metric flow, is obtained by instead using for the third angular
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coordinate 90 , where 6 = 60 + AB and where A8 turns out to
be half the angular displacement of the bicharacteristic along the
ddwnstream Mach conoid through that point'[13].' ’

The asymptotic three-dimensional far-field solution can be put to-
practical use in at least two obvious ways. First, its simple
structure indicates how good approximate solutions can be generated,
and some suggestions were given earlier [13] how one could use it
for such a purpose. Secondly, it makes possible the generation of
simple formulas relating flow deflections in the far field to be -
Whitham F-function which can be used in a new experimental proce-
dure to determine the sonic boom strength from wind tunnel measure-
ments. Application of this method to a simple body-of revolution-
reported in [ 14] shows fhat it is capable of yielding accurate :

results.
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APPENDIX A

T o A : B IR B N O

CHARACTERISTICS IN THE AXISYMMETRIC CASE

For axisymmetric flow the system (2.1) - (2.4) becomes

2

UZ 3 V2 . 2y dV.. - Vv U A\

( DR VAR W) =]

' §_='3_U’ ‘ . o e bR )
ox or v T

When studying -such a system, it would certamly be an’ adva.ntage 1f
x-derivatives and- r-derivatives did not" appear in the same equatlon.
Therefore,we should be interested in the” p0551b111ty of finding for
example a new set of independent variables €, T such that the
system could be ‘brought into" a form in whic¢h one of the equatlons
contained derivatives” only with respect ‘to € “and the other ene
only with respect to 1. ' 'Now it is’ shown 'in some text-books (see,
e.g., (4], p. 101 or [6], p. 433)" that ifi “every domain where

the flow is supersonic (i.e. q > c) the system (A.l) can be brought

into such a form, namely

I\J

) ) Var
3E cot(s+a) + Y v2 2 T3¢
(A.2)
oU Vv Var
—T] COt(z}— Q’) + a— = v2 ; _T]
where the transformation (g,n)q (x,r) is given by
5 3
3x _ 9or _
3 ~ > cot(ﬁ a)
S (A.3)
3x _ ar
31 © 37 cot(y + o) )
and ¢, ¥ and ¢ are to be found from
1U2 V2 02 : 1 ~2
2T+ V)T = 34
V = Utg s (a.4)
1 .
M, = Sin o



36

The system (A.1) is then said to have been put into characteristic

form with € and T as characteristic coordinates. The curves

£ = const. and T = const. in the xr-plane are known as character-
istics (downstream resp. upstream characteristics). (See [4],

pp. 62-72, for éxample).

If we introduce the disturbance velocities ‘u and v and make
use of (A.4), then (A.3) becomes (2.5)- (2.6) and (A.2) becomes
(2.7) - (2.8).
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APPENDIX B

TRANSFORMATION OF THE TIREE-DIMENSIONAL FLOW PROBLEM INTO CHARAC-
TERISTIC FORM

With Appendix A in mind it seems reasonable to try to introduce
new independent variables £, T]. and ( such that the system
(2.1) - (21&) is brought into a form in which at least some of the
equations would contain derivatives with respect to only two of
these variables. The new variables £,7 and ( will be called

characteristic coordinates.

As the flow is assumed to be irrotational we may introduce a po-

tential function & such that V@ = a, or in cylindrical coordi-

nates
2 .y
2 - v r | | (B.1)

Then Combination of (21) with (B.1) gives the potential equation -

2 2 ) 2
(FP-c2) 22, (VP-cB2) 22,1 wPockB)2re,
2 2 2 2
ax or r a6
v (B.2)
13% 13% 2% vV, 2 2 |
+2W?aree+2WU;aeax+2UVaxar = ;(C +W)
/
In the following we will use the simplified notations
2 . : .
X = X4 U=q1 a”=U2-c a12=a21=U‘V
2 1
r=x2 V=q2 8.22=\F—C a13=a31=;UW
1 2 2 1
= = = — - c = - = —VW
® = x4 W = qq as4 I‘2(1«( c) ayq = g, = TV
and h =¥ (c2 + W2).
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We notice that

ji 2ij
and
%Q_ = q
X. 1
i i
~\ - - . .
’ \Further, v and §: are general notations for the row vectors
1 U .
"(vi,[vz, ) and ( , 82 , Bv ), respectlvely. We also introduce
Jthe matrlces '
| .
a, h 211 ®12 13
0 o -1 0
=1 2% H =159 |"° A4=1 0 o -1
q3 0o 0O o© 0
.'/ ’ ) )
821 %22 %23 831 832 a33
A2 = 1 0 0] and A3 = 0 (@) 0 .
0o 0 0 1 0 O
lo} 0 -1 0 1 0

It is easily seen from the abové and Bernoulli's equation that aij’
A;, h and H are functions of Q and r only.

:By means of these notations we can: now wrlte the system (2.1)5 (2.4)

and the equation (B 2) in a more compact form, namely

3 S
3Q . S L
.E: Ai S;I = H S U ‘ (B.B)
i=1 | R -
a.rld + * N - -
3
2 H
I
) 1j 3% 3%, h (B.4)

resﬁectively.
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With a coordinate transformation

Yy = Yi(x1s x29 X3) ’ .i = 1,2,3,

i

(B.3) and (B.4) — expressed in the new variables vy, 'y, and Y3 =

appear as

3 . -
aQ _ s
z B; v, - H (B.5)
i=1
and
3 . .
2
3P
b, . = k . .
Z ij ayiayj (8.6)
l,j=1
respectively,
whefe
3
B, - vV i, (B.7)
i ° dx. T J -
j=1 4
3
e dy. dy.
- - S d . . . .
le T 2, k1 axk axl (B.8)
- k,1=1 ’
and
5, Bzyk axl
k = h - a,. s——=——z—Q .
/. ij axiaxj'ayk 1

iyj’k’1=1

Suppose now that we could find a function {(x) satisfyiﬁg the first-

order equation

, : B
2 a, Q0 _ - (B.9)

Then by choosing, for example, Yq = q(i) we would have b11 =0



4o 2
)

from (B.S) which means absence of B_QZ from (B6) Consequently,
¥1

if Q were known on only one surface Yy = const., it would not

be possible to-determine g%- uniquely from (B.5) on that surface.
] A

Such a surface is known as a characteristic .surface (see [6],

Chapt. VI, § 1). Thus the surfaces {(X) = const. — where { is

a solution of (B.9) — form a family of characteristic surfaces.

In our special case we easily find that for arbitrary real numbers

Pys Py and P3

~1w
'-J
-
e
=
ke
o
|

a,(%,8) - a_(%,5) o (B.10)

~~
b

ol
i

. p P 2
. 2
Up, + Vp, + W -—r3i c p_12+ p, + (_r3) (B.11)

(Here U, V, W, ¢ and hence also aij are considered as given

functions of X ) .

Thus (B.9) can be written

(i,a—“_i)= 0 o - o - (B.12)
ox

Q,

From (B.11) we conclude that (B.12) has a solution only if M > 1.
Now we consider only the ca_se».with .'-MLV.> 1. everywhere in the flow
field. Evidently (B.9) is a partial differential equation of the
first order. Within the general theory of such equations' (Monge's
th_(_aory) (see 4], Ch. IT or 55], Ch. 2 or [6], Ch. II ) ‘the
f:-.éncé.p..t 'c‘)f' characterist‘ics‘ play's a ver}; :'.miaortant ‘rGle' The( chara(c_
teristics belonging to (B.9) are called the bicharacteristics of
(B.4) (see [6]), Ch, VI, § 1). The equation for an arbitrary bi-

‘characteristic follows from Monge's theory and reads.

= —( x,

5 (B.13)

&l&

3q, oy
3%

where t is a curve parameter and { satisfies (B.12).
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It is easy to verify that -is constant along such a .curve. Thus

every bicharacteristic lies entirely on a characteristic surface

¥ = const. One may observe that, in case a¢/6x1:# 0, equation

(B.13) is equivalent to

dx

N

B
o

Q
ot

<+
!

Consider for a moment the case of undisturbed flow,.i.e.

which is a trivial solution of (2.1)- (2.4).

ot
sz
‘B,Q'i
ap3

const.

X

1

3y ) )

98)_(

2y
X

By putting
y.l = X-Bl"v".
Yo = X+ Br
Yy = 0
one easily finds .that
_ vy .
o(x, — ) =0 ,  4=1,2
X .
Q. _ 0yq
and — (x, — ) = 0

Thus (see (B.12) and (B.14) the surfaces

Y1 ='cogst. and y2

(B.14) —

const.

"are two families of characteristic surfabes, the first of which is

intersected along bicharacteristics by the surfaces y3 = const.

Y

const, is known as a downstream Mach cone,

const, as an upstream Mach cone and

const. is a meridian plane.
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Now we return to the general supersonic case, onlj' with the restric-
tiop ‘.‘that the disturbance, céu'Sed by the body, is considered to be
smalhl. In the choice of new independent variables we’can then take

over some ideas from the special case above.

Y, _is_chosen such that:-

. » , _ Y1 .
Yy = const, is a characteristic surface - (Q_(x, 8—3'—(_) = Q); and a

disturbed downstream Mach cone (x - Br = const.).

Y, is chosen such that:

y, = const. is a characteristic surface (0_ (x, 5_)73) = O) and a

disturbed upstream Mach cone (x + Br =~ const.).

Y5 is_chosen such that:

Yq = const. intersects y, = ?onst. along a bicharacteristic (see

(B.15) below) and is a disturbed meridian plane (8 =~ const.).

From_ (B. ) we g'ét the condition for y, = const. to intersect

yY,.= const., along a bicharacteristic, namely

o I B _
dy3 =d¥y =01 50 3y, 30 dy, =0
w ) wm TR
0%, OXq o «:
3, 3,
or 3. _ 2y, a0 _ dy, = 0
55, (x, = ) a_p'_3'(x."a? . .(B.15)

Thus,for the determination of the transformation ‘(x1,x2,x3~)—o (y,,yZ,yB)

we have the following equations:



/ 5 Y, .v;ayz W:%Y2r. c»véaXZ):; (§Y2, 'J_~<3¥2)
-~ ax1 '+' ax2 ra{EB ' --.-a.‘?(li . ax2/ . I‘2‘ axj -
Py
3y, 3y, ay1 ay, ay1 Ceet Oy
U 3x, +V 3x, T 3xq ( * :2—“ax3>”
9%, v ¥ oY wovr o v R 5Y1] =
3Y, [ T dxy T 3X,
By
3 1
= [U V + (V2 - C ) = _ax3

((B.18) is obtained from (B.15) by means of (B.17)).

We now return to the system (B 5), Wthh is eQulvalent to the dyna- -

mical equations (2.1) - (2. l&) expressed i the new var:lables.

Because

yq, = const. and y2 = const. ‘are characterlstlc surfaces ‘we get from
(B.8) and (B.9) that b, =
before, that aQ/Byif

(B.5) on a surface

We therefore try

does not contain

By putting
NO IS
dx

one obtains from

),

Yi

b

= 0.

ca.rmot be unlquely determmed from

22
(1 = 1)2)

= const, on which . . Q

is known .

But this means, as mentloned

to rewrite (B.5) such that. one of these equations

aQ/ay1 and another one does not, contain aQ/ayz.

0

0

1

a

a

i

22
32

_(B'.7):‘;é:.(B.95;tﬁét

1,2.

Thus multiplication of (B.5) from the left by ) (2)

the scalar equations
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Y 6% 8-

Ci=1,3
and

y 65
i=2,3
respectively.

To these equations we

new variables

)q1’ Z (
)‘.qz ki] (

ayk
ax1 ayk

ayk 3
3x, Byk

(B.19)

(B.20)

add the last two from (B.3) expressed in the

) q3 (B.21)

)q3

(B.22)

(B.19) - (B.22) are then equivalent to the original system (2.1) - (2.4)

expressed in the new variables &1, Yo

and y3.v

We note that it is not necessary to set up a potential equation (B.2)

in order to def:Lne the concepts of characterlstlc surface and bicharac-

teristic as has been done above.

We could Jjust as well work directly

with the system (2.1) - (2.4) and obtain the same results, but we

follow here the usual approach taken in standard textbooks dealing

with second order scalar equations instead of with systems,

Now we put

£ = Y1
n = Yo
g = y3
Noting that
ox 3ax .
1-1 ]-1
ayl a (Y1 ’y2 9YB) ayi"1 ayi+1
3X. D (Xq+X,,Xn)
127273 . ij_n axJ.i1
Y351 OYi4q

i,j mod.3
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L5
16) — (B.22) can be written

(. (30 ar 20 ar 3x 30 3x 38 §_1_~a_x dr 3x
(1+u) (52 3¢ - 3¢ ¢) * (ié'g"a_éaJ ‘(agag.’agag>*

N

M- G an

[ (14u o (L33 any,x20 2x38), %B_ré_x;a_ri'?ﬁ_x)_

FERE-RRERED

1
2

. 2
1-/dr dx or 9x - :
T Sﬁéf> } =0 o (B.24)

(o B G B (6
, 5
L ER-ER R
x(g—zg—%_g—gg—’g‘ =0 (B.25)




(1+u) (v%%-%%%)é—g+<v2_#<%)]gg__v_yl{__a_z)a_ng
R

2
+ (—vwé-% +—;—‘>w2-b-;—2 ('%;) ]B_;)B_Zq_+
2 )
LI (a_ra_e_éza_e_ L (2R § 2 y2] du _
_I‘MZ c . 14 ag ] BC a( ) & Uiaxk ox E o
:g; ; lﬁ ax2 ax3] a_z 0 ';:43-_(B.‘26)
3 :
e (B 2R (2@ R R
+<vw_39__1[w2__1_(2)2]§£)§1+
3 r M2 c, T 1
) 2 T i
P VR R R (L ) T
*(""”’a“e—*l - 2( )] >5E
" v i1 (c * 3r 30  3r 38 3 (x) F’a‘kl B‘>y1->ay2 du
'+;F(§> (ﬁﬁ'é_ﬁi)_f a_(}-,)_kzl R axl] an *
= a,, 9y, 3y :
Y RREER - 2

k1l "=



— —

In these equations

(o]
®

'which is easily obtained from Bernoulli's equation. *

+

—— —

— — o — a—

: : 1
= (1 -N;—1-M2[2u+u2 +v2+w2]>

1

W7

(B.28)

(B.29)
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APPENDIX C

EXPANSION OF THE LINEARIZED AXISYMMETRIC SOLUTION FOR TARGE r
The solution of (3.25) can be written (see for example [8],

p. 307)

e r # -Bx‘

g i £(t) dt e (C’.1)'
o \/(x —t) - B°r 2

u (x,,r,)

x -Br =~ . S
(x -t) f(t) dt -

2 Vo(xo’ro) = S 2 5 (c.2)
K J(x -t) - o
with f given by the integral equation
x - BR_(x_) _
(x,-t) £(t) at L
S = Ro(xo) wo(xo), X020 5o (c.3)

) J(xo-t)z—BzRi(xo)

where wo(xo) is of order e (see'3.h7).
Now (C.3) gives for f, approximately,
£(t) ~ SR (1) wg(8)]
dt - o' AN ‘

Hence

£ = o(e?) DR (c.b)



In the following we will use the variables

r
xo and °
Then

u = -

o \/-——-

4
2B
Bu +v, = W S £(t) \/g-t‘(1
o o]

For 0 s g < 2B1"o we can expand (1+—§——

and integrate

£ and ry instead of
f!t! VG - )
S (1 M 2B r, ) dt
,,>
g..t )
2B r,

in a series
2B r ’

term by term.

Thus, observing that

O nd 5 1 *h1 'n ft‘
T S £(t) (g-t) at = S dt, S dt, ... S[g —L)-t Fch;] .
- : T o Vitn S
we obtain for 0 < £ < 2Br
2' * . . N \.‘
u = Z‘ (- 1) (2n-1)1! ] Fn(g)
° 2" (2B r)"** _
> (c.5)
2 %
= - B 2ns1 (-1)° (2n‘1)":] (e
Yo 7 -1 L on s (ap ro')m%: )
where _
A c )
* ' 1
Fn(g) = S Fn_1(§ ) dg (n = 1’2y3’---)
o e S (c.6)
* £(t)dt i o
F(s) = F(g) = (22
o
From (C.4) and (C.6) one easily deduces that
2n+1 1
Fo(8) = [ Torryry Fleg 8)] - €% (c.7)
0(62)

for some #«

£ in the interval [0,1].

k9
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APPENDIX D
THE FAR FIELD IN THE AXISYMMETRIC CASE

Assume the expansions

\

where Uk’ Vk,- Xk

order unity and Hg = ord (1) .

4 8
u = € U1 + (-:_. U2 + 00,0"‘
4 8 ‘ :
v = e V1 + ¢ V2 + e
X = r L= -_xo + X1 +‘o.-o- i
¢ 2Br = H:Ho;el‘H1'+...

and H.k are functions of g and U all of

These are substituted into the system (2.5) - (2.8) which leads to

the following set of equations:

To the lowest order we get from (2.5) - (2.8) _

( on,
R
:%;-;—a—%[(MZ—'_K) U, +-}1§v1]
< gE(BU1+v1.>+;§§?§£? 0
\ g—ﬁ(BU1 ‘7.1),'31—1::: =0

Equation (D.1) implies that

H = h (1)

(.1)
(D.2)
(D.3)

(0.4)

» ﬂ(b.’_s)



Substitution of (D.1) into (D.3) gives

N I e Ga s 4
P O A S L

c-BU +V, = 0 (D.6)

1

EER L R S T

Further, by introducing U, from (D.6) into (D.4) we arrive at the

equation : ’ A
3V, V,3H oL :
31 H an e - o

which has the solution ' - R S A

7 (¢)
B _

vV, =

By means of (D.6) and (D.7) we find from (D.2). « -
Xo = 4,(8) - KVH F(g) T T ey
in which, in order for the ‘solution t°f’t"?‘1.‘e'fﬂ.1.e;' correct, form for:- .
zero disturbances, we choose Lo(i) €. . R Rt
 Using (D.5) - (D.8) we obtain‘from (2.5) - (2.8) to the next order-—-
d | A
( ﬁ (Xo +,H1)r' = ‘-:Ot Co L L et e B l (D.9) -
T R T TN et B ae e u
g—ax1 £ >[3K '-}le 8 ‘4K]r o, v2.X OH, v
. - - 4K 2, K Ty 3
[ M4 on 1 2B 3T..- 1 .
L&(sz M° - KJ.B U,)5 (.10)
, T 2Ban 2 + M - > (p.10
2
3V VvV, OH
g P2t V2 = -m I CE E (p;11)
2 >u M- K :
',v"‘sﬁ(BUZ-V2)—-i"—a—9‘ B2 V12+
- R ) n' - - L
+ gbﬁ, hn % + T2 % (;).12)
\ o am H 2 X)) HO 3N )
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From (D.9) we have

Hy = - X, +hy(n) (D.13)
Using (D.7) - (D.9) we get from (Dl.11)

2 1 '
BU, +V _-%V +io‘ V1(§"T\) ag’ (D.14)

oL uvn

Substitution of U, from (D.14) into (D.12) leads by aid of (D.7)

to the,_ equation

\' ‘ BH:MZ +l{-
2 1 93 1 1 0 2 2
-—-—-—(F"V)--———(H —) = - = — V,S +
\/-—-:3 H_ an 1 Sl Ho M B 1
o &
3.1
+%;I—2'—ﬁ£ S v, (g',M) ag’
0 -0
from which we fmd, using’ (D.7), '
.2 K g F
v, M+Ev2 ! )dg ! 0 Z(E) (D.15)
= - - + 5 , y — .
2 B "1 2H~ H S RV |
(o] [o]
By means of (D.7), (D.14) and (D. 15) we get from (D.10)
M- 'Il% : 2
K 3.2 2K .
X, = v, (g" ,n)dg +—5 (K+3M-%55)V."H InH -
1 B § oB? 2 21 o o
- 55 V4 Hy - K/E) %, + 4,(8) | (D.16)

Putting
2 7€) + £F,(E) = FE)

el‘ 11,1—X(§)+" (g)[M-2+—+4(K+—M2-A§21-{-)1n-:-_J
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and remembering that

H =,H-eL‘H1+o(e‘8)

we finally obtain from (D.6) — (D.8) and (D.14) — (D.16)

‘g) p 2
" e e VP + 0 - 5 LRI+ o(e™) (0.17)
g . 2
V='B“+'(';;B;37§ SF(E')dE' —M%ﬂ—+o(e12) ] (D.18) -

M- F 2
x - Br = € - KV2Br F(g) + S’F(g')d%' *
, 2Br ¥

4
T 1R 3 %) [F(5)] 1n 2Br + 3 (M- 2 + 3) [F(E)]° +

+

A(g) + 0(s") - (.19)
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APPENDIX E

(o]

DERIVATION OF Uy s Vg s Wy o, ¢ AND ro/'f AS FUNCTIONS OF
o, T, AND r IN THE FAR-FIELD DOMAIN (r = ord (e'l‘))

By means of (5.31)(- (5.33), (5.35), (6.1) and the formulas

Bu 6 +v_ +5— = 0(612)

$ = ¢, -Kr, 'u‘o v0‘+ o(e8) and

Bu + 0(c%),

-Bu, + 6(e%) =

it

=v_ + 0(68) h) )

o V=O(€

which can be deduced from.(5.17) - (5.22), we obtain.
' 12 1 vy .12 1
v = (1-.+u)_tgrg = (1 - %‘)lo + O(e ): (1 :_‘B,{(T‘_%)g+ o(e )})‘o+ o(e 2).

v = (1 —%0‘) o +O(e12) .

0=V+O£e ) . '(1'+———M ;Kv>v+0'(.e12).
1+ (M +K_)uo
> .
. B K 12y -
. Vo=(1+—B;o->o-+O(€ ).
x x
. 1 8
® = Sudx':-—BSvdx'+=O(e‘:)3.
o o ‘ '
X
1
¢=—§Scdx'+0(€8)o
o
¢°=¢.+Krouovo+0(68)=¢—%V2+0(68).
N . ”
. 1 K 2 8
. ¢0«=-§So—dx'-fro +0(€).

(o]



Thus

<
1]

v ¢ ¢ 55
) o] 12 o) ) 12
-‘_B--ZBI‘°+O(€ )—-?-Eg+0(e ),
2 K x
B + = :
u =-l(1+ 2 o)c+‘1 Scdx'+0(¢12)-
[ B B 2
2B r
2 12 M2 2 .12
u=(1+M u)u +0(e ") =u +=5 v +0(e") .
B
-‘|+E x -
1( 2 1 12
u =-=(14+ -g) o + S'cdx'+0(€)-
B B ) 2B : .
o
w=(1+u)tg-r='r+0(e12).
w =T + 0(e12) .
w+0(e12)
wo =T+ 0(312) .
L = 1 Evi 06 B
1 -Ku_ + 0(e”)
r
K 8
;2 = 1-50+0() .
_'I.’.E x
_%(1+ B2 0)o+ 12 Sodx'+0(e12)
2B'r :
1 12
(1-§o>c+0(€ )
" ; (E.1)
T+ 0(e ")
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