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ABSTRACT

This three-part paper describes a theoretical and experimental
study of an ionizing laminar boundary layer formed by a very high
enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with
allowance for the presence of Helium driver gas. The theoretical
investigation has shown t;hat the use of variable transport properties
and their respective derivatives is very important in the solution of
equilibrium boundary layer equations of high enthalpy flow. The effect
of low level Helium contamination on the surface heat transfer rate is
minimal. The variation of ionization is much smaller in a chemically
frozen boundary layer solution than in an equilibtrium boundary layer
calculation and consequently, the variation of the transport properties
in the case of the former was not essential in the integration. The
experiments have been conducted in a Free Piston Shock Tunnel, and a
detailed study of its nozzle operation, including the effects of low levels
of Helium driver gas contamination has been made. Neither the extreme
solutions of an equilibrium nor of a frozen boundary layer-will adequately
predict surface heat transfer rate in very high enthalpy flows. This has
been attributed to non-equilibrium gas relaxation processes in the
boundary layer. A satisfaétory approximation. can be obtained with
what has been called a composite boundary -layer calculation. A level
in the boundary layer is defined where the gas is assumed to change
from primarily chemically frozen in nature to primarily equilibrium in
nature. The position of this changeover is determined by a simple
criterion based on the recombination rate-in the gas stream tubes that
are taken to-form the boundary layer. The solutioﬁ Vare joined by

matching the velocities and shear stresses.
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PART 1

INTRODUCTION AND BOUNDARY LAYER CALCULATIONS



1. Introduction

The Free Piston Shock Tunnel, as described by Stalker (1967) is
unique in its ability to produce very high enthalpy gas flows well in
excess of 12 eV or 7000 cal/gm. The object of this paper is to report
the results of a theoretical and experimental study into the nature of a
laminar boundary layer formed on an inclined flat plate in such a flow.

An important subsidiary investigation was made of the nozzle
operation of a reflected shock tunnel with special attention being given
to the possible effects of Helium gas contamination upon the flow
characteristics.

At hypersonic gas flow speeds, as produced by the Free Piston
Shock Tunnel, the dissipated kinetic energy will cause ionization of the
test gas. The presence of free electrons greatly modifies the viscosity
and thermal conductivity of the gas, and the solution of the boundary
layer probelm becomes difficult.

Taking the y-axis normal to the plate surface, the equations for
a reacting gas boundary layer (neglecting thermal diffusion) a.re1 on

two dimensions:

Conservation of Mass:

Beurj + Bevrj = o0, (1-1)
2]
) X 9y

Conservation of Momentum:

9 u du 9P 9
pu——ax+pv——ay= -—X+"—ay.(l¢"‘—"l;), (1-2)

See Dorrance (1962), Chapter 2.



Conservation of Species:

E)Ci 8C 5 8C
Pu g%t PV'g— = 7y Dy 3o ) b, (1-3),

Conservation of Energy:

pu 55+ P"ayzaay [1%%3*“(1' )iggJ
9 1 N 8 cC
_3y[(Le-l)pDiz 18y:|’ (1-4)
i=1
where

j = 0 for two dimensional flow, j = 1 for axisymmetric flow,

p = density of the total mi#ture,
' P = pressure of the total mixture,

o= \./iscosity of the total mixture,

Ci = the mass fraction of species i,

D, = coefficient of diffusion of species i through the mixture,

\'i/i = mass rate of change of species i per unit volume

(reaction rate),

H=%h2+h
h

zZC
5.dT+h,

h;) = Heat of formation of species i,
Pr = Prandtl number = g cp [k,

k = thermal conductivity of the total mixture,

[g)
1]

2

2 C.c .
i pi

Le = Lewis number = p Di Cp /k .



These equations are nonlinear partial differential equations and
are difficult to solve. Fay and Riddell (1958), using integral transform-
ations suggested by Lees (1956), were able to separate the variables
and reduce the relations to ordinary differential equations. The
equations of Fay and Riddell are applicable to diatomic dissociating
gas boundary layers formed over axisymrﬁétric bodies of flat plates.

If the gas is in thermochemical equilibrium in the boundary
‘layer, i. e. vE/i = o, only the transformed versions of equations (1-2)
and (1-4) need be solved. Solution of the former will give the velocity
profile, while solution of the latter will give the enthalpy profile. The
criterion of chemical equilibrium will then permit the calculation of
the temperature, density, and species profiles. -

If the gas is assumed chemically frozen, i. e. v’vi = 0, equation
{1-3) must be used in addition to the two mentioned. Equation (1-1)is
used in the transformation of the other equations.

In the case of flow over a flat plate, there is no pressure
gradient along the x-axis since the stream lines external to the boundary
layer remain parallel to time surface.

In the equations of Fay and Riddell, the transport properties of
thermal conductivity, viscosity, and diffusion appear in dimensionless
groupings as the Prandtl number, Lewis number, and the density vis-

cosity product; the latter is defined by

, (1-5)

where the subscripts refer to conditions at the plate surface or wall.

It should also be noted that the Prandtl number, Lewis number, and
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density-viscosity product appear in the transformed equations of motion
as parts of derivatives.

Fay and Riddell (1958) numerically integrated the transformed
equations and obtained solutions at the stagnation point. They allowed
the density-viscosity product to vary throughout the boundary-layer, but
set the Prandtl number equal to 0.71. The Lewis number was assigned
values of 1.0, 1.4, or-2.0. The viscosity was calculated using Suther-
land's formula.

Fay and Kemp (1963) extended the work of Fay and Riddell to an
ionizing diatomic gas. The density-viscosity product was replaced by
a density-thermal conductivity product. The contribution of the free
electrons was taken into account in the case of total thermal conduc-
tivity, but not in the determination of the total viscosity. Fay and Kemp
.integrated the boundary layer equations with a varying Prandtl number,
but the Lewis number was set to constant values between 0.3 and 1.0.

. Finson and Kemp (1965) analyzed the problem of stagnation
point heat transfer-in ionized monatomic gases. The effect of free
electrons on the viscosity was estimated from the pure ion thermal
conductivity, using perfect gas relations. This theory gave good
agreement with the low Mach number-data of Rutowski and Bershader
(1964), but the measurements of Reilly (1964) at Mach 12 (a stagnation
enthalpy of approximately 2000 cal/gm) were about 40% lower than the
theory would predict.

Back (1967) studied laminar boundary layer heat transfer fro.‘rn
a partially ionized monatomic gas. He held the Prandtl and Lewis
numbers constant at values ranging from 0.1 to 0.67 and 0. 25 to 2.0,

respectively. The density~viscosity product was defined at a value of

unity for all calculations.
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Kn88s (1968) investigated the equilibrium boundary layer structure
in a 1 eV shock generated plasma flow. This work demonstrated that the
viscosity, thermal conductivity, and density-viscosity product could all
vary greatly throughout the boundary layer, and consequently, setting
‘the density=-viscosity product equal to a constant was_a poor assumption.

High enthalpy gas flows are produced in the laboratory by allowing
the reflected shock region of a shock tube to act as a reservoir for a
nozzle. A driver gas (usually Hydrogen or Helium) is contained in a
high pressure region, separated by a diaphragm from the shock tube
which contains the test gas. The pressure of the driver gas is raised
until the diaphragm bursts, and the consequent shock front followed by
a driver-test gas contact surface travels down the tube and reflects at
the end wall.

The Free Piston Shock Tunnel developed by Stalker (1967) differs
from others in the method used to raise the pressure of the driver gas.
This is illustrated in Figure 1.1. The piston compresses the driver
gas until the pressure is raised to the point where the main metal
diaphragm is burst. The principal performance difference is in the
flow stagnation enthalpies that are produced. In conventional high
enthalpy shock tunnels, the driver gas is ignited to produce high
pressure and stagnation flow enthalpies approaching 3000 cal/gm. The
Free Piston Shock Tunnel operates normally with flow stagnation enthal-
pies at, or-in excess of, 7000 cal/gm.

A major problem arises in shock tunnels when the reflected
shock front interacts with the shock tube boundary-layer. Kaegi and
Muntz {1964) investigated the test flow duration of a hypersonic reflected

shock tunnel, using.a combustion driver. Their results indicated that
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driver-test gas mixing significantly redu'ced test times at high enthalpy
conditions. Davies (1965) and more recently Davies and Wilson (1969)
have theoretically investigated this problem using the bifurcation model
of Mark (1957). They suggest that the reflected shock boundary layer
interaction will permit early contamination of the test gas by the driver
gas.

Bull and Edwards (1968) experimentally studied the reflected
shock interaction process in a shock tube and found that the-driver gas
appeared much earlier than predicted on the basis of a simple shock
tube theory. Their measurements were in close agreement with the
predictions of Davies (1965).

Slade (1970) expel;imentally studied this problem using a quad-
ropole mass spectrometer and confirmed that low level contamination
may occur quite early in the test run.

In the very high enthalpy flow of this investigation, the transport
properties of viscosity and thermal conductivity will vary greatly
across the boundary layer. In order to determine the importance of
these variations in relation to the overall boundary layer solution, it
was decided to integrate the equations of motion, taking into account
not only the differing values of viscosity, thermal conauctivity, Prandtl
number, Lewis number, and specific heat at each.level in the boundary
layer, but also the gradients or derivatives of these quantities throughout
the region.

Since there is the possibility of the presence of Helium in the
boundary layer, it was decided that the equations of 'motion_‘ must be
integrated in such a way as to allow the extimation of the effects of

contamination.
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The solution of the boundary layer problem is completely
dependent upon the free stream conditions that are assumed to exist
above it. The Free Piston Shock Tunnel is a relatively new device and
therefore its characteristics are not as completely understood as with
the older forms of shock tunnels., Consequeéntly, it was eemed neces-
sary to carefully investigate the nozzle flow. Special attention was
givéh to any changes in the flow characteristics that might occur due
to the Helium contamination.

The transport properties are changed primarily by the presence
of free electrons. It seemed logical to carry out the work using a
monatomic gas that would go-directly to the ionized state. The thermo-
dynamic relations for a monatomic gas are also more straightforward
and convenient to use than a dissociating gas, since only the translational
and ionized modes of energy need be considered.

Part 1 of this - paper will examine the boundary layer problem.
Theoretical solutions will be developed for very high stagnation enthalpy
flow (in excess of 12 eV), first in the condition of thermochemical
equilibrium and then in a chemically frozen state. Full consideration
will be given to the variation of the transport properties, and the
boundary layer equations will be integrated in a fully coupled manner
using a ""multiple shooting'' technique. The results of these solutions
will be used in 'a discussion of the physical processes that occur in the
boundary layer.

Part 2 of this paper-will investigate the problem of Helium
contamination. ..Firstly, the pure Argon flow is calculated, and secondly,
the calculations are repeated with -various amounts of Helium assumed

to be present. Boundary layer solutions for both equilibrium and
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frozen cases are shown with Helium contamination. A relatively

straight forward theory will be developed to facilitate clear understanding
of the physical processes that will be altered, and to what extent, when
Helium is present in the flow.

The experimental results and project summary are described
and discussed in Part 3. Laboratory investigaticns include time re-
solved pitot pressure of the on axis nozzle flow and surface heat transfer
measurements at several stations on the plate. It will be shown that
neither the equilibrium nor frozen boundary layer solutions can
adequately predict the surface heat transfer rate in.a very high enthalpy
flow. A crude theoretical model will be developed that will give satis-

factory predictions.

2. Boundary Layers

The boundary layer equations of motion for a flat plate are
partial differentidl equations and have an exact solution only at the
stagnafion point. Solutions can be readily found for the flat plate
préblem, however, at extreme values of the reaction rates, i. e.

\;v'i = 0 for a "frozen'" boundary layer and \5vi = o for an:''equilibrium’
boundary layer.

To invoke the concept of ''similarity", it is necessary to find a
suitable method of integral transformation to move the problem from
the x, y plane to a new plane where the partial differentidl equations

will reduce to ordinary differential equations. .. The integral transfor-

mations used were

n = —— S pdy , » (1-6)
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and

X
£ = ‘o’y Py My Be OX - (1-7)

In moderﬁ high enthalpy boundary layer problems, the major
interest is in heat transfer. With this in. mind, Fay and Kemp (1963)
suggested that the use of a density<thermal conductivity product is
more appropriately used in the transformed equations of motion than
the density-viscosity product.

For the purposes of this study, the use of viscosity in. equation
(1-7) offered some conceptual disadvantage. In dealing with ionized
monatomic gases, the effects of ionization upon viscosity are less
obvious than the effects upon thermal conductivity and specific heat.
Thus, where possible, it seemed desirable to use the latter quantities
in the boundary layer equations.

Parametric studies can be made of boundary layers assuming

.different values of Prandtl number, e.g. Back's work. In these cases,
if the viscosity has been replaced with the other parameters mentioned,
the problem is simplified significantly.

Consequently, equation (1-7) has been modified by ‘use of the

definition of the Prandtl number to the form

X Py, kw PrW
—_— u_dx . (1-7a)
o e

g.=_t1 C
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Equilibrium Boundary Layer Equations

Application of equations (1-6) and (1-7a) to the Equations of

Motion, equations (1-1) to (1-5), gave rise to the following results in

the case of an equilibrium boundary layer:

momentum:

T pw d Y Pr dz»f + i de
PrW dn

£ =0 (1-8)
2 3
p dn? dn
energy:
C
e §[1+A gg] +3i(’f1£
r, dn b n m
(1-9)
c u 2 2
_ Spw e_g_[l-Pr_g_f_df] 0
Pr HS dn Cp dn an
¢ 0]
where f'! = u/u_, f = g gt )
e 0 dn
= w?/2 + h)/H
g : J/HS,
Y = pk/pW k. »
- d o
A—(Le-l)hl[ﬂ]P’
f(0) = £'(0) = 0 ,
g(0) = gy >
f'(o) = g(=) =1
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The rate of change of ionization with the specific enthalpy at
constant pressure is directly determined using the equation for specific

enthalpy and Saha's equation.

Pure Argon:

—
n.lm
IR
(]
‘o
f—&\
NlU\
ol
>
-
+
L
fo¥ ko
815
+
(NI
o]
o>
-
+
—_
H,_J
A
=
!
et
o
&

Helium-Argon Mixtures:

_ 5 dT 5
[—dh]p = {XA > Ry (1+ a) az t *aA7T R T + x,I

-1
5 dT
**y 7 Ry 1@ } ’ (1-105)

where
3.8208 | ..3/21| 5. € €
[——P ]T [‘f*r].exp['k—'r]
dT _ 1 A
rraak (1-11)

l-a

The number 3.8208 was obtained from the evaluation of the
constant terms in Saha's equation, in c.g.s. units. It should also be
emphasised that the pressure is assumed to remain constant through-
out the boundary layer.

Frozen Boundary Layer Equations

If there are no chemical reactions in the boundary layer, the

gas is considered chemically 'frozen.' The value of ionization at
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any point in the boundary layer will be determined solely by diffusion.

The momentum equation, equation (1_—8) is still valid. The role
played by the Saﬁa equation in the equiiibrium caée is now filled by an
equation of species concentration. The energy equation ié also re~
written in a different form.

Conservation of species:

- Cpw a y 95 7. 5, '

Le.PP_T[-—— +f——= =0, (1-12)
Ty dn Ley dm n

Energy:

an pr cp e dn n
2
u_ Pr 2 2
¥ —_— [df] =0, (1-13)
e p dnz :
where
Si = a/oze, Si (0) = 0 or siw )
® = T‘/Te. ®(0) = @w )
Si (0) = Ox) = 1 ,

.Boundary Layer Equations with Variable Transport Parameters

If a solution is desired which will include the effects of the
transport property changes throuéh the boundary layer, the quantities
within the brackets in the above equations must be differentiated.,

In the case of the equilibrium boundary layer, in this investi=
gation, the following new parameters are defined; using the frozen

specific heat,



- 15 -

Cl =Y PI‘/C )
P
C, = (1+A)/cp , _ (1-14)
and
C, = (1 -Pr)/cp .

Equations (1-8) and (1-9) are then rewritten in the form

f'' + (k1f+c'1/c1)f" =0 , (1-8a)

and
g" + (CL/C, + K,f) g' - K, {(f")2 + £ f"]
2 .
u, . .
- -—C—ﬁ C% f' f'"" =0 s (1"93')
2 s
where K; = (Prw/cpw) / C1 ,
K2 = (varW/cpw) / (Y CZ) s (1-15)
and K, = (w2C/H C)
3 e 3 s ~2

In the solution of a-frozen boundary layer with variable trans-
port parameters, it is found that the momentum equation, in the form
of equation (1-8), remains valid. One additional transport parameter

is defined,

C,'= Y/cp : (1-14a)
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and then equation (1-12) and (1-13) are modified to the following:
Si” + l:C'l/C1 + K4f/Le] s'' =0, (1-12a)

and

e +[c;1/c4 + Kyf + K si'] ®' + K, M2 =0, (1-13a)

where
Ky = (PrW/ch)/C4 ’
© Ky, = (e, /e ) Le a, (1-15a)
and
Ky = (Pr uez) /(Tgc))

Integration of the Boundary Layer Equations

Back (1967) assumed equation (1-8) to be of the form
17" 4 ff' = 0,

and obtained solutions for the momentum equation by curve fitting the
original Blasius solution with the proper scaling. Back then solved his
equivalent equation to equation (1-9) via a Runge-Kutta integration. This
procedure is valid only if all the transport properties are assumed
const-ant in value - otherwise equations (1-8) and (1-9) are coupled.

(It should be noted that in their paper, f‘ay and Riddell did integrate the

equations in a coupled manner.)
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In this work, the equations are coupled and integrated uéing the
multiple shooting technique of Osborne (1369). This procedure is a
modification of the standard initial value problem. In the latter, one
assumes the boundary conditions at the surface, making a guess of the
unknown values, and then integrates the problem to an upper limit of
n — o . The final values calculated (usually a m value of 3 to 5 gives
a sufficiently good approximation tom —- ® ) are compared with the
upper boundary values that are known. The initial numbers used may
be modified and the problem redone. The method is repeated until the
final predictions and the upper boundary values are matched to the
desired accuracy.

Two major problems with this type of solution are:

(1) that there is sometimes instability in the differential

equations (i.e. two possible solutions are close to one
another) and

(2) one must usually start with ""good' guesses.
Osborne overcame these problems by dividing the boundary layer into
a number of intermediate levels and then carrying out an initial value
type solution from the ith to the (ith + 1) interface. He also developed
a sophisticated method to ensure quick convergence of the problem. The
starting ''guesses'' at each level need only be the free stream values.

A slightly modified Newton method was used in the overall cal-
culation. Using the free stream values, the equations and their respec-
tive derivatives would be evaluated at each interface. Correction factors
based on these derivatives would then be algebraically added to the first
solution estimates, and the sum of the squares of the difference between
the new values and the old was calculated. The procedure would be

repeated many times. Final solutions were obtained when the sum of
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the squares fell below a certain tolerance, or one of several other
criteria were -met.

Calculations were done on an IBM 360-50 computer, and the
basic integration subroutine was the IBM supplied Runge -Kutta procedure,
RKGS, which has a built in step size determination procedure. App;r.o-
priate substitutions were made to convert the problem to a system of
firs£ order, non-linear equations. Consequently, the equilibrium cases
required solution of a set of five equations, and the frozen solutions
were obtained by integrating a set of seven equations. As many as 100
intermediate levels were used, but generally the division of the boundary
layer into 50 layers proved more than adequate for the multiple shooting."

It was necessary to obtain an accurate estimate of the derivatives
of the transport parameters.1 In this study, all these values were
calculated numerically from data of each individual solution.

Initially, the problem was solved.with the transport parameters
held constant at the free stream values. Based on this solution, the
transport parameters were recalculated throughout the boundary layer,
and the new table of values stored in the computer. The program then
looped, and the second time around the required derivatives were
estimated using the first differences from the tabulated data. The
looping could be repeated as many times as desired.

The major changes occurred in the solution at the second loop.
The convergence time of subsequent loops increased as smaller and
smaller corrections were applied. The solution was normally termi-

nated after the second looping was completed.

1Tramsport ""'parameters' will be taken as the newly defined quantities of
equation (1-14) and (1-14a). Transport ''properties'' will refer to viscosity,
thermal conductivity, and diffusion.



- 19 -

Displacement Thickness

The effective physical thickness which the boundary layer exhibits
in changing or displacing the flow of the free stream gas, is called the

"displacement thickness' and is defined by

5" :oS‘ [1_ ;3 de . (1-16)

1
gF = (2 8)° 5‘ [p_e oo Jdn . (1-17)
0

Using the resulis of the boundary layer integrations, equation
(1-17) was in turn integrated using a 3/8 Simpson Rule. The value of
§ in terms of y was obtained using a quadrature formula derived from

equation (1-6).

Heat Transfer

The heat transfer to the surface of the flat plate, or in the
boundary layer proper, is taken to be due to conduction and to diffusion

of ion-electron pairs,

g = k == + D.ph, =2, (1-18)

Now

(1-19a)

_ _ d
dy dy dn ~ (zg)% d
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and similarly

sV
o
e

[o})

0

u
R

(1-19b)

Q)
g
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3

(2€)

Using in turn equations (1-19a) and (1-19b), two relations for the

heat transfer in transformed variables may be obtained,

k PUe Te 1 Le . 1-2
_q = —_———}_ @ + CpTe ae hi Si ) ( - Oa)
(2€)2 :
and -
k pu, HS ) ue2
-q = — [(1+A) g' - f'f'* — ] s (1-20b)
(2g)fcp H,

Equation (1-20a) was used in frozen boundary layer calculations
and equation (1-20b) was employed in the equilibrum boundary layer
solutions for both constant and variable transport parameters.

Transport Properties

The equations estimating the basic transport properties of
thermal conductivity and viscosity for pure ionized Argon and mixtures
of ionized Argon and neutral Helium, have been developed, Yanow
(1971). Those equations were employed in the above calculations.

The diffusion.term was calculated according to an equation
given by Camac, et al. (1963) for the Lewis number, for Argon in a
similar thermodynamic state as that in this problem,

Le = 0.255 (T/104) -0.16 (1-21)
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This formula was based on use of a.rnbipolaLr1 diffusion in the-
Argon. As Back (1967) has shown, the Lewis number is fairly constant

about a figure of 0.25 under this condition.

Free Stre_am Conditions

The free stream conditions used in the boundary layer calculations
are those that exist after the oblique shock which is formed at the leading
edge of the inclined flat plate. Consequently, a range of conditions was
obtained by adjusting the tilt of the plate. As the inclination angle is
increased (rear of the plate raised), the boundary layer free stream Mach
number and flow velocity will decrease while the pressure and density
will increase. The range of conditions could be further expanded by
using both a 7. 5° half angle nozzle with an exit area ratio of 147 and

a 15° half angle unit with an exit area ratio of 1204.2.

1That is, diffusion of electron-ion pairs.

2The former will be referred to as the '""small exit" nozzle, the latter as
the 'large exit'" nozzle.



"91ZZON 31X [[BWS Ul 3BOIYJ JO WUBDIJSUMO( "WID g8 7] PU® WD 7 JO 98P SUIpedT]

o3 W0 1] 938[d 9Uj dn eouejsi(] B I0J SUOI)Ipuo) ia4e’] Aiepunog wresilg 991.g TedtdA ]

1'T ITIVL
(31x2 [reWs
"W 88 " 21)
€8V S+d 9¢°L 815 °‘8 9-3 ¢¢°9 S+H V171 S€9°L 0°0 9¢1
! 9¢°¢ §+d 01°L LEYET 9-H 991 P+3 89°% Z2°'8¢ G°61 S€9°L 0°0 y021
! 9¢°¢§ S+H Iv°L €58°¢ 9-d €6°L y+d 80°6 891 892°L 9LV
02'¥% S+H 62°L 86 ‘L 9-d LL"S S+H $0°1 1°02 228 °L 66°0
00°'% S+ 81 L ¥L2°6 9-d 9% L S+tI PP 1 681 G°6 S€9°L 0°0 Ly
‘ON (0o9s/wx0) (31-92189p) (00 /wd) ANEO\mﬁ&,E (*3sp) (-3°p) (wB/1e0) . ssBN ouey
yosew L310019 A 2anjezadwa ], A3jtsus(g 2anssaxdg a18uy a18uy Adreyuyg Aq BRIy
Mooyg areld ‘8e3g °H 9% 21220 N



- 23 -

In general, it was desired to maintain a high free stream velocity
and Mach number while using different free stream pressures. These
basic parameters would ensure a very high stagnation enthalpy hypersonic
flow with different values of free stream dénsity, temperature, ionization,
and transport properties.

There are many complicating factors which had to be taken into
“ account when making the final choices of plate inclination-nozzle con-
ditions. These, and the calculations that were carried out, are discussed
in detailin Part 2 of this paper. For the purpose-s of this immediate
discussion, let it simply be stated that two c‘ondit‘ion"s will‘be shown;’
a9.5° plate inclination with the small exit nozzle, and a 19. 5° plate
inclination with the large exit nozzle. Table 1.1 is an abridged version
of Tables 2.8a and 2.9b, and illustrates typical free stream conditions
at a distance of 2 cm. up the plate from the leading edge. Table 1.1 also
shows the calculated free stream conditions in the small exit nozzle at
a distance of 12.88 cm. from the throat. This later calculation is
included for illustrative purposes, to show conditions before the oblique
shock.

Equilibrium Boundary Layer Calculations

Locally similar solutions were calculated for distances up the
plate from the leading edge of 1, 2, and 3 cm. These were '"Pieced"
together to form the total theoretical curves S}‘IOWn. Flow divergence
was taken into account in the manner described in Part 2 of this paper.
Experimental points will be discussed in Part 3.

However, before looking at the flat plate results, let us establish
some basic concepts and determine what changes result in solutions
when the transport properties are allowed to vary throughout the

boundary layer.
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If the transport parameters, as défined above, are held constant,
the parameter K1 as given by equation (1-15) also becomes a constant.
It has been found useful to consider K, a direct function of the velocity
profile, or simply a "profile factor.'" This concept is illustrated in
Figure 1.2. The thickness of the boundary layer is inversely proportioned
to Kl'

K, is the inverse of the classic density-viscosity product looked
at in a differenct light (i.e. (p p/p p, ) ). Over the years, this
parameter-has been set equal to one so often that its physical significance
has been overlooked. It has beencalled the profile factor in this study to
emphasize its significance.

The profile factor is a valuable concept when dealing with variable
transport parameters throughout the boundary layer. One caﬁ then
consider the effects that the transport parameters have on the velocity
profile at various points in the bouhdary layer. This is illustrated in
Figure 1.3, where the results are plotted for the small exit nozzle wall
boundary layer 12.88 cm. downstream.

At the surface Kl’ by definition, equals unity. Coming off the
plate, the profile factor.increases but remains below the free stream
value for a period. .Eventually, the free flow value of K1 is not only
reached, but greatly surpassed. After peaking in value, K1 quickly falls
back to its final free stream figure. The effect of this behavior is to
make the boundary layer eéfféctively very thick at the base. .

A detailed explanation of the change in velocity profile is given
in equation (1-8a). The temperature increases as it ascends from the
surface, with a consequent increase in the thermal conductivity. How-
ever, simultaneously the density drops off at a quicker rate, as is shown

in Figure 1.4. The result is that the parameter Y decreases in value.
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Figure 1.2

Velocity profiles for various values of the Profile
constant, equilibrium boundary layer
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Figure 1.3

Velocity profiles for constant and variable transport
parameters. Arrows are K, at different. levels
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Figure 1.4

Density profiles for constant and variable transport
parameter calculations, equilibrium boundary layer
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This means that the derivative of C, is negative and in fact is larger in
absolute value than C, itself. When Cll/C1 , a negative number greater
in absolute value than one, is fed into equation (1-8a), this has a
"braking'' action on the integration with the observed effect on the velocity
profile.

The inclusion of the variable transport parameters also has a
marked effect on the enthalpy in the boundary layer. The new shape of
the velocity profile produces a hot region well above the surface, but
decreases the temperature gradient near and on the surface. These
results are illustrated in Figures 1.5 and 1.6, the temperature and
ionization profiles of the same boundary layer calculation of Figure 1.3,

The lowering of the wall temperature gradient will in turn produce
a lower surface heat transfer rate. It should be realized that the above
characteristics become more pronounced the higher the flow enthalpy,
since the density drop off will be determined by the temperature gradient.

Figures 1.7 and 1.8 show two items that are of general interest
in boundary layer studies. Figure 1.7 is the shear stress, defined by
w (du/dy), and it can be seen that there is a non-zero value at the
surface. Although the velocity profile of the boundary layer with variable
transport parameters appears as if it were suffering an adverse pressure
gradientl, there should not be any separation at the surface. Figure
1.8 shows stagnation enthalpy as a function of velocity. As can be seen,
the constant parameter calculation can be approximated with a linear
relationship. This procedure will not Be as good in the case of the

variable calculation.

1The velocity profile with variable transport parameters also appears
similar to that of a boundary layer with mass transfer (blowing). -
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Figure 1.5

Temperature profile for constant and variable transport
parameter calculations, equilibrium boundary layer
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Figure 1.6

Ionization profile for constant and variable transport
parameter calculations, equilibrium boundary layer
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Shear stress for constant and variable transport parameter
calculations, equilibrium boundary layer
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Stagnation enthalpy-velocity relationship for constant
and variable transport parameters, equilibrium

boundary layer, large exit, Xp = l cm
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With regard to the inclined flat plate in the test section, calcu-
lations and measurements will be shown for a 19, 5° positive inclination
with the large exit nozzle, and a 9. 5° positive inclination with the
small exit unit, These results will amply display the physics of the
situation,

Figure 1.9 depicts the equilibrium velocity profiles. Figures
1.10, 1.11, and 1. 12 show the calculated temperature, ionization, and
density profiles for the 19:5° plate inclination, large exit case with
variable transport parameters. Results for the distances up the plate
from the leading edg;a of one and three cm. have been drawn to show
the effects of flow divergence upon the internal structure of the boundary
layer in an equilibrium condition,

The small exit 9, 5° plate inclination results are alike, as might
be expected from the similarity shown in the velocity profiles,

The flow divergence tends to lowér the temperature and density
throughout the boundary layer. In the case of ionization, the free stream
value is lowered. At a distance of three cm,, the curve is displaced
upward. This last point can be seen by referral to Figure 1.13, which
shows the conversion from the n to the y axis,

Figure 1. 14 and 1. 15 demonstrate the roles played by the
transport properties in the equilibrium boundary layer, Figure 1,14
indicates the profiles of the thermal conductivity and viscosity. The
thermal conductivity suffers a short term lowering of its value at
about m = 0.5, This is attributed to the fact that the ion-atoms and
ion-ion collision cross-sections are greater than the atom-atom. At the
onset of ionization, the electron numbers are still very small, however,

this number quickly builds up, and the electrons soon dominate with their
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Equilibrium flat plate velocity profiles.
Dotted lines are small exit nozzle, 9, 5°
plate inclination. Solid lines are large exit
nozzle, 19, 5° plate inclination, x =1 cm-
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Temperature profile for variable transport parameter
calculations, large exit nozzle, equilibrium boundary layer
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Figure 1.11

Ionization profile for variable transport
parameter calculations, large exit nozzle,
equilibrium boundary layer
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Density profile for variable transport parameter calculation,
large exit nozzle, equilibrium boundary layer
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Figure 1.13

Conversion from mn to y-axis for variable transport parameter
calculations, large exit, equilibrium boundary layer
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variable transport parameter calculation

large exit nozzle, equilibrium boundary
layer
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much larger thermal conductivity, The viscosity falls as the electron
numbers build up. This is again a function of the ion-atom and ion-ion
cross-sections. 1 The thermal conductivity peaks and the viscosity hits
its minimum value at the point of maximum ionization,

Figure 1. 15 discloses the profiles of the Prandtl number and the
newly defined parameter Cl’ as given in equation (1-14), The shape of
the two is similar except in the very important lower regions where the
Prandtl number goes to a constant limit, but C1 varies right into the
plate surface. This behavior of Cl plays a major roie in the var.iaple
transport parameter calculations, “ R

Figure 1,16 shows the calculated surface heat transfer rates.

The measurements will be discussed in Part 3. It is to be noted that a
calculation which considers fully the variation of the transport properties
gives a far lower heat transfer rate. This is due to the smaller tempera-
ture gradient at the surface that is predicted with the variable transport
parameter calculation,

Frozen Boundary Layer Calculations

In the case of equilibrium, the boundary conditions of velocity
and total enthalpy (along with pressure) were specified, but the
temperature, ionization, and density take on different values, depending
on the prediction of the Saha equation, |

With a frozen boundary layer, the boundary conditions of velocity,
temperature, and ioniz‘ation, together with the pressure, are specified.

| The range of values which the thermodynamic and transport properties
can take is much more limited, since the quantities are controlled by

diffusion processes, Consequently, little difference was found between

FSee Knsds (1968).



Q(cal/cm”-sec)

-42 -

103 —

i ' 85, SECONDS AFTER

! SHOCK REFLECTION

| 1 | |

1O

o I 2 3

xp (cm)
Figure I. 16
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large exit nozzle, '19. 5" plate inclination
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constant and variable transport parameter frozen solutions, For
example, the ionization does not obtain a value greater than the free
stream figure. This is in contrast to the equilibrium calculation where
the ionization reaches a peak value much bigger than the free stream
ionization.

From a computer standpoint, the frozen solutions usually con-
verged at a slow rate, After a series of survey calculations were made,
it was decided that on a basis of computer economics the variable
transport parameter frozen solutions could not be justified.

The free stream conditions used in a frozen boundary layer
calculation pose a probiem - if the free stream chemistry is frozen,
the only ionization that would be in the flow is that which was present
before the oblique shock, . This would be zero in the case of the large
exit nozzle, and about 1% in the case of the small exit. In order to
allow a better comparison between the equilibrium and frozen boundary
layer calculations, it was assumed that the free stream flow went to a
state of thermochemical equilibrium after the oblique shock, and that
only the boundary layer chemistry was frozen.

The results shown below will be for the sar:ne conditions, namely
the small exit nozzle, 9. 5° plate inclination, with a fully catalytic
surface, with a fully non-catalytic surface, and at a distance up the
plate of 1 cm. from the leading edge.

Figure 1,17 displays the velocity profiles. The surface recom-
bination rate does have an effect upon the velocity in the boundary layer,
If there is no recombination at the surface, the change of velocity in the

boundary layer is more gradual and commences at a higher level than

with the catalytic surface.
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Figure 1.17

Velocity profile for frozen boundary layer.

Transport properties set constant at free
stream values. Solid line 100 % catalytic

surface; dotted line 100% non -catalytic
surface ’
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Figures 1.18, 1.19, and 1. 20 exhibit the calculated temperature,
density, and ionization profiles. The free stream values for these
calculations are slightly different than the typical values shown in
Table 1.1. For the Work’described below, these values are Tm = 97030K,
Pp =969 x 10-6 gm/cc, and a_ = 0.034. The calculated differences
between a catalytic and non-catalytic surface boundary layerl will, of
course, be dependent on the amount of ionization that is present, It can
be seen that free stream ionization levels as low as 3% will produ;e some
change in the boundavry layer structure. - The. iqnizatibn »pArofhiLllcve, with ‘: |
regard to the 100% catalytic surface, is determined -by diffusion processes.

Figure 1,21 is to allow conversion from the 7 to the y axis, and
Figure 1.22 is the calculated surface heat transfer rate‘s for the .catalytic
and non-catalytic wall, The fully catalytic wall calculation, gives for
all practical purposes the same surface heat transfer rates as with the
constant transport property equilibrium boundary layer solution, This
means that the heat energy transferred to the surface by conduction and
diffusion processes will add up to give the same result in both cases,

The non-catalytic surface has a lower heat transfer rate - if the param-
eter Si' , defined as a/ae, is always equal to 1, then S'i must always

be equal to zero. Therefore, the heat transfer component brought down
to the surface by diffusion of electron-ion pairs is missing (reference
to equation (1-20a) will verify). Dorrance (1962)2 explains this
physically by a.''pile up' of diffusion-inhibiting blanket of unrecombined
particles which reduces‘the heat transfer. The larger the free stream
ionization, the larger will be the difference between the catalytic'and -

non-catalytic surface helat transfer rates.

1_' i. e. Either complete ion-electron. recombination or no recombination

at the surface, respectively.
See page 91 of reference.
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Figure 1.18

Temperature profile for frozen boundary layer, Transport
properties set constant at free stream values. Solid line
100 % catalytic surface; dotted line 100 % non-catalytic surface:
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Figure 1.19

Density profile for frozen boundary layer.
Transport properties set constant at free
stream values. Solid line 100% catalytic
surface; dotted 100% non-catalytic surface
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Ionization profile for frozen boundary layer.
Transport properties set constant at free
stream values., Solid line 100 % non-catalytic
surface; dotted line 100 % catalytic surface
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Conversion from n to y-axis for frozen boundary
layer. Transport properties set constant at free
stream values. Solid line 100 % catalytic surface;
dotted line 100 % non-catalytic surface
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line 100 % non-catalytic surface
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The above arguments also hold if there is some, but not complete,
recombination on the surface. In this case, the derivative S' is not

zero, but is nevertheless diminished .in value.

3. Co‘hclusion

New transport parameters have been defined aﬂd these have been
fully differentiated to form boundary layer equations that take into
complete account the variation of the transport .prdpe‘r.tiveS‘-‘.thrc')ughojutff
the boundary la;yer,,: \' ' o " | . - o . - | |

| These rela.tio.ns have béeiq ixw.-tegil";t{ea‘ir;.a..f’ul’ly coupledmarmer

The importance of using variable transport parameters, in the case |
of the equilibrium condition, has,begn demonstrated. Their use results
in lower predicted surface heat transfer rates for pure Argon flows,

At the same time, the work has shown that the added computing
time for a full variational transpo'rt parameter frozen calculation is
not warranted, and the setting of the trans'po‘rt properties to thei'i;'
constant free stream values is sufficient. In ‘the case of a frozen
boundary layer, the surface heat transfer rate is lowered if there is

either no recombination or slow recombination on the surface of the

plate.
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PART 2

FREE STREAM CONDITIONS AND EFFECTS
OF HELIUM CONTAMINATION"
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1. Introduction

The gas conditions in the test section of a shock tunnel are
determined by the reflected shock heated gas acting as a reservoir for
the nozzle flow. It is important to have a knowledge of the processes
that produce the high enthalpy gas and that accur during the subsequent
nozzle expansion. It is also important to have an understanding of the
conditions that will alter these processes, and to what extent flow
characteristics will be altered.

In this part of the paper theoretical i,nvest_ig'ations a,re,ma.d.é.‘of :
the reflected shock region, of the nozzle flow, and of the changes \
produced in the gas by passage across the oblique shock front produced
by the inclined flat plate in the test section. As discussed in Part 1,
previous work suggests that there may be a low level of Helium driver
gas contamination early in the flow. Consequently, the above investi-
gations take into account the possible changes produced by the presence
of varying amounts of Helium in the test gas. In the case of contamination,
possible changes in the boundary layer structure, or surface heat

transfer, are also examined.

2. Pure Argon

Development of the Reflected Shock Region

The conditions across the initial shock front, generated at the
time of the metal diaphragm rupture, will be governed by the normal

shock jump conservation relations, in shock co-ordinates

mass: P11y = PRY, (2-1)
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2 2
momentum: P1 t ey = PZ +pyu, (2-2)
2 2
energy: hy +u /2 = h, +u, /2, (2-3)

where the subscripts 1 and 2 refer to the regions before and after the

shock passage, respéctively.

Additionally, there are the thermodynamic equations of specific ’

enthalpy, state, and,' if equilibrium is assumed, the Saha equation, i..e,

h=%(1+a)RT+aI, (2-4)
P =(1+a)pRT, (2-5)
2 (@m0 2 e
T-a - .2 b z_ “*P. TX&T
(2-6)

Equations (2-1) therugh (2-6) have been solved in an iterative manner
for the six unknowns of Pos Uy, hZ’ PZ’ a, and T. The results
obtained, based on an initial shock tube pressure of 6, 77 x 105 dyne/crnZ
(2" hg) Argon and a measured shock velocity of 5.52 x 10° cm/sec,
are shown in Table 2. 1.

The normal shock will reflect at the nozzle end of the shock
tube. In laboratory co-ordinates, the reflected shock front will move
back up the tube with a velocity WR’ and the gas behind the front is

brought to rest in the laboratory system.
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- 4,74 E+45 cm/sec -

92
P, - 2.84 E+7 c‘iyne’/cmZ
p, - 1.74 E-4 gm/cc
h, - 3,600 cal/gm
T2 - 15,280 degree-K
a, - 0. 156
TABLE 2.1

CALCULATED FIRST NORMAL SHOCK CONDITIONS

cu, - 1.19 E+5-cm/sec
P, - 2,46 E+8 dyne/c:rnZ

Py - 3.86 E-3 gm/cc

h, - 7, 635 cal/gm

T3 -21,535 degree-K
ay - 0.424

ay - 2,82 E+5 cm/ sec

TABLE 2,2
CALCULATED REFLECTED SHOCK CONDITIONS

2.65 E+5 ¢cm/sec

o
¢
t

T, -19,940 degree-K

2.40 E-3 gm/cc

p:{: -
2
P, - 1.37 E+8 dyne/cm
h, - 6,800 cal/gm
e, - 0.375
TABLE 2.3

CALCULATED CONDITIONS IN THE THROAT OF THE NOZZLE
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A pocket of very high enthalpy gas is formed, and then in turn this
gas forms a reservoir for the nozzle. Equations (2-1) through (2-6) can

be rearranged using relations (2-7) to the forms

Py = Pylug + vy) uy, (2-1R)
uy = (1/v,) (Py/p,) - (Py/py) - v, (2-2R)
hy, =hy + v, (v, + 2us)/ 2, (2-3R)
h, = 5/2 (P3/p3) + al, (2-4R)

with equations (2-5) and (2-6) remaining the same. Iteration over this
set of equations, using the results shown in Table 2.1, gave rise to the
values shown in Table 2. 2,

The values of Table 2.2 may be modified further, depending on_
how far the shock tube operation is from the ''tailored' mode. This is,
the pressures on either side of the Argon-Helium contact surface are
such that this interface remains stationary. The Australian National
University Free Piston Shock Tunnel, '""T2," design is such that when
an initial shock tube pressure of 2" hg of Argon is used, the measured
reflected shock region pressure is within 5% of that shown in Table 2, 2,
and therefore the shock tube operation was considered, for all practical
purposes, tailored;.

Without specifying what mechanisms may occur, a parametric
investigation was carried out of the effects of enthalpy loss and/or freezing
in the reflected shock heated region. 1 The results of these calculations

were carried through to the test section in the form of a sensitivity

study and will be discussed in more detail below.

e.g. There may be loss via radiation or loss via heat conduction to
the walls of the shock tube.
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The prime assumptions made were that regardless of the loss
the pressure of the reflected shock region remained constant, and tﬁe
gas always returned to a state of thermodynamic equilibrium. That is,
any loss of enthalpy was followed by a lox;vering'of the temperature,
loss of ionization, and a density change, with the new values satisfying

the Saha Equation,

The speed of sound in a gas is given by

a? (-33 s - (2-7)
s

For an ideal gas equation (3-8) becomes

a’=y(Plp). = (2-9)

By comparison of equation (2-8) and (2-9), one may define an "effective

y'' for isentropic conditions, namely

- 4P p
Yetf = B dp (2-10)

Stalker (1961), using Lighthill's (1957) concept of an "ideal
dissociating gas, ' derived an expression for the effective gamma of a
dissociatiné gas. A similar solution can be obtained in the case of an
ionizing gas.

’ Using equations (2-4) through (2-6) with the standard thermodynamic
result obtained by a combination of the First and Second Law of

Thermodynamics,

T dS = dh - dP/p (2-11)
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it can be shown that the differential change of entropy of a. monatomic

gas, dS, is given by

S Rda+15% -(1+a1 27
T

s = - T

d

da a
+ 2R - + 2R T3 (2-12)

Under isentropic conditions dS = O and therefore-equation (2-12)
may be solved for the rate of change of ionization with temperature.

The result is

da (1+a)l

de _ _ (2-13)
dT © 5/2 RT°+1IT + 2R T [a(1 - a)]

1

Equation (2-10) may also be rewritten for isentropic conditions

in the form

_dP o»p .
Yetf =B dp (2-14)

The quantity dP/P can be obtained from the equation of state, '

’

equation (2-5), and a value for p/dp can be calculated from Saha's

Equation, equation (2-6). The final result is

_ 5/2T+I/(RT?) -2 ofl:a%y ! %;— (2-15)
Veff = > T
3/2 T +(I/R) T™ - (2-a) ofl-a) I

and the speed of sound is then evaluated from the relation

2 P
a = —
p

= Vett (2-16)

Nozzle Conditions

The mass conservation equation, equation (2-1), is modified

for the problem of nozzle flow to
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plu.lA1 = pyu A, = p u A, . (2717)

Equation (2-2) does not apply to nozzle flow, but equations (2-3) through
(2-6) remain the same, except now the conditions of region 2 refer to
those in the throat of the nozzle, while region 1 refers to the reflected
shock conditionsl. Additionally, there are now equations (2-13), (2-15),

(2-16), and an integrated form of equation (2-12), i.e.

s=—g-Ra+2R1n (l—aa) +(1+T")I +S, (2-18)
where the entropy chanée is referenced to the unspecified value So' All
of these equations were solved by iteration for the conditions in the throat
of the nozzle. A value of the ionization fraction lower than that in the
reflected shock region would be chosen. Using equation (2-16), a
corresponding value of the temperature would be found. A calculation
of the throat flow velocity could then be made via equations (2-6), (2-4),
and (2-3). An independent determination of.the velocity was also obtained
through equations (2-~13), (2-15), and (2-16), These two results were
compared and the iteration continued until their difference fell within a
specified tolerance. The resuits obtained, based on the values shown
in Table 2.2, are given in‘Ta;ble 2. 3.

Logan (1971) has examined the possibility of non-equilibrium
nozzle flow in'this nozzle at these conditions, His results indicate that

equilibrium isentropic flow is a good first approximation in the case of

Argon, and this condition has been adopted in this work,

! Note that in equation (2-3) the energy of the reflected shock region
equals the stagnation enthalpy.
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Nozzle flow calculations were carried out for two conical
configurations, each with the same throat radius of 0,159 cm. The
first nozzle had a 15° half angle and an on axis length of 20 cm. The
second nozzle had a 7.5° half angle and an on axis length of 13. 4 cm.
Figure 2.1 shows the relationship between on axis position and area
ratio for the two configurations.

- As a first approximation, it has been assumed that the nozzle
wall boundary layer is sufficiently thin to not significantly displace
the flow,

Results and Discussion for Pure Argon

Enthalpy Loss in the Reflected Shock Heated Gas

As stated, a.sensitivity study was carried out on the effect of
enthalpy'lqss in the reflected shock heated gas, and the results of this
work are iiiﬁsfrated in Figure 2.2. The most sensitive parameter to
enthalpy loss, under isobaric equilibrium conditions, is the ionization
fraction. The density also showed a sensitivity to enthalpy loss with
almost a unity ratio bet;veen the percentage of enthalpy loss and the
percentage of density gain. The temperature and the speed of sound
displayed about the same characteristic of a much lesser response to
enthalpy losses.

Exit Conditions

Mach No.: The maximum stagnation enthalpy was taken at 7, 635
cal/gm, as shown in Table 2. 2. Nozzle calculations have been carried
out for this figure and for possible stagnation enthalpy losses of up to
about 25% . Figure 2.3 illustrates the calculated exit Mach No. for the

two nozzles as a function of the stagnation enthalpy. The 15° half angle
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T 15° HALF ANGLE
- LARGE EXIT NOZZLE EXIT AREA
L RATIO= 1204
102 EXIT AREA
- RATIO=147
R 7.5° HALF ANGLE
5 SMALL EXIT NOZZLE
IO' | | | 1 | 1 |
0] q 8 12 16 20

ON AXIS POSITION

Figure 2.1

Nozzle area ratio as a function of on axis distance from throat
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. Figure 2.2

Reflected shock gas changes due to enthalpy loss
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I
— - max Hg = 7635 cal/gm
i N d__ ) J
80 % 90 % 100%

' 'PERCENTAGE OF MAXIMUM
STAGNATION ENTHALPY

Figure 2.3

Exit Mach No. as function of stagnation enthalpy



- 64 -

nozzle exit Mach No. exhibited a linear behavior and actually increases
* in value as enthalpy was lost. This interesting feature is explained by
the fact that while both the exit gas velocity and speed of sound decrease
as enthalpy is lost, the speed of sound decreases at a slightly more
rapid rate,

The 7.5° half angle nozzle displayed a non-linear behavior in
contrast to the larger exit nozzle. This is probably due to the fact that
while the ionization fraction is zero for all practical purposes in regards
to the 15° half angle nozzle, this is not the case with the 7.5° half angle
unit. For the values of 100%, 94%, 87%, 80%, and 75% of the maximum

possible stagnation enthalpy, there were ionization fractions of 6, 7 x.10'3,

3 5

1.3.x 10", and 4 x 10 °, respectively, for the first three, and the last

two had ionization fractions of less than 10'6.
Any ionization fractions as small as 1073 must be called ""significant'’;

for example,. the value of the effective gamma is slightly lowered from

5 3

1. 67 to 1, 66 at the ionization level of 4 x 107 "; at the level of 1,3 x 10"
this lowering has increased to the point where the effective gamma is
1.53,

Pitot Pressure

Figure 2.4 shows the calculated pitot pressures as a function of
the stagnation enthalpy, The most striking feature is the almost complete
insensitivity of this parameter to enthalpy loss., The experimental points

shown will be discussed in Chapter 4,

3, Ar gon-Helium Mixtures

Theory _
In this phase of the investigation, it is assumed that the final

effects of adding an arbitrary amount of Helium te the pure Argoen test
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Figure 2.4

Exit Pitot pressure as function of stagnation enthalpy
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slug are independent of the manner in which the contamination is added.
There is one qualification in that the characteristic time taken for
contamination must be short enough so that the properties of the pure
Argon alone would not have significantly changed.

Consequently, the following model has been adopted: At some
arbitrary time, a specified amount of cold Helium is added to the known
amount of pure Argon at reflected shock conditions, in the volume defined
.by the reflected shock region. The gases interact. The temperature of
the reflected shock region is the order of 20, 000°K at high pressures
and therefore as a first approximation it is justified to assume that no
ionization of the Helium takes place. Hence, the mixture affects the
rate of ionization of the Argon by absorbing some of the enthalpy of the
system but not by direct chemical reaction such as increasing the three
boﬂy recombination rate,

. The total enthalpy of a mixture of gases is given by

h = Z X, h, (2-19)

1

where X; is the mass fraction of component i. Specifically, in the case

at hand

h=x,h, +x (2-20)

ATA HhH’

or

_ 5 5
h=x, =>(l+a)R,T+al + > x R, T . (2-2])

Since no further mass is added or taken from the system, (the
later nozzle flow will be considered as an expansion of the system and not
a loss of mass) the mass fractions are taken to remain constant. In this

context, the mass fraction of the Argon includes the mass of Argon ions.



- 67 -

The total pressure of ionized Argon and neutral Helium mixture

has four components,

+ P

P=PH+PAN+PAI e 7

(2-22)

where the subscripts AN, Al, and e refer to the neutral Argon atoms,
the first ionized Argon ions, and the electrons resulfing from the Argon
ionization, The density ratio between the Argon total density (atoms
and ions) and the Helium density can be obtained through the respective

equations of state,

Pa A 1 H
py  Tta P, R, (2-23)
Equations (2-22) may be written as
RoT
P = _-V—(nAN+nAI+ne+nH) , (2-24)

where the n terms are the numbers of moles of each component in the
total volume V. R is the universal gas constant, The definition of the

ionization fraction, a, is given by

n
_ Al
@= 7 +n (2-25)

AN Al

and from charge neutrality, The first three terms in the

Ba1 T Per

bracket of equation (2-24) can be factored. Then,

R T
o

P= —g— (o, + (2-26)

n,p (1+0a)+ny

The Argon partial pressure is given by the Argon mole fraction and the

total pressure,
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(n +n,. )1+ a)
P = AN ___ Al P . (2-27)

(nAI\I+nAI)(1+a)+nH

Similarly, the Helium partial pressure is given by.

"y

P__= P, (2-28)
H (nAN+nAI)(l+a)+nH

and usiﬁg these two relations, equation (2-23) becomes,

p
A = ) (2-29)
PH H A

The right hand side of equation (2-29) is constant in value, so the

Helium density may be defined by

szFPA: (2_30)

where F is some arbitrary constant of value. less than one.

This same result is obtained for the case of no Argon ionization,
Thus, in all cases there will be differential changes of pressure between-
the two gases, but the density will change in a like manner for both
gases., “

The entropy of a gas mixture is given by the general relation

S = insi . (2-31)
i

or specifically in the case at hand by

_ 5 1 (1 +0a)l a
3 T 3
+>ﬁ-IRH Z—ln T - In s (2-32)
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where So” To’ and Pro 2Te all referenced to some arbitrary datum

level. In-this study, to avoid any complications from entropy changes
resulting from diffusion of one gas into the other, this reference level
has been set at the final reflected shock conditions of the completely
mixed system after any possible isentropic expansions,

By differentiating equation (2-32), considering the mixture to
behave in an isentropic manner, and differentiating equation (2-29), a

value of the rate of ionization.change with temperature can be determined,

*3 Rg

(1+a)+-5<E = I
da _ A TA
aT =~ 73
2R, T x
5 2 A H (2-a) 2
7 RpAT +IT+ opegy * %, aT-a RuT
(2-33)

. The effective value of gamma as defined in equation (2-10) can

also be determined for the mixture. In this event

dP A H
= p— + p— - (2-34a)
and
dp
S (2-34D)
P Pa
and therefore
5 I P 2, H (2-0) do
ZT. Z - a7
T +RAAT P 0(1_02) P ofl-a) dT
Yetr = "3 1 ~ (2-a) da
2T R TZ a(l-a) dT
A : (2-35)

where the term %% is defined by equation (2-33).
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If PH/P is set equal to zero and PA/P set equal to one, equation
(2-35) simply becomes equation (2-15). However, it should be noted
that for a non-zero Helium pressure component, both of these equations
tend to a value of 5/3 as the ionization fraction goes to zero,

The final values of T, a, and P of the various mixture ratios can
be solved by using equations (2-21), (2-6), (2-30), and the equations
of state for the pure gases. The nozzle flow conditions can be determined
with the added use of equation (2-35),

Argon-Helium Mixtures Calculations

Reflected Shock Region

Table 2. 4 illustrates the effects of Helium contamination in
specified amounts on the original pure Argon reflected shock conditions,

The addition of Helium cooled the test gas with a corresponding
drop in temperature and ionization., There was a rise in the density and
pressure, but the enthalpy was assumed to remain unchanged. Fast
response stagnation pressure readings of the reflected shock region
taken by Stalker (1967) show no significant changes during the first few
hundreds of micro-seconds after shock reflection, other than from a
pressure ''dip' at about 20 micro-seconds. Accordingly, if Helium is
added to the test slug, a corresponding expansion of the mixture must
occur to maintain a constant pressure. It has been assumed that this
expansion is isentropic, and the réflected shock conditions following such
a process are shown in Table 2. 5.

The gas mixture must do work on its surroundings to expand,
therefore the enthalpy of the gas mixture drops, as shown in Table 3. 5.
The expansion reverses the trend of the density, and rather than increasing

as contamination level is increased, it drops. The temperature and
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ionization fraction are further lowered. The speed of sound, while still
increasing as more Helium is added, does so at a lesser rate after
expansion,

Using the conditions of Table 2.5 as the final reservoir values,
the gas mixtures were further expanded to obtain the gas conditions in the
throat of the nozzle. These results are shown in Table 2. 6.

The specific enthalpy drop is accounted for by the kinetic motion
which the gas has obtained. This velocity amounts to, in enthalpy units,
about 1000 cal/gm. The throat pressure changes very little as Helium
is added, while the density, temperature and ionization fraction drop.

Nozzle Flow

The pressure of the Helium contamination modifies the real gas
thermodynamics during the expansion of the test gas down the nozzle,
Calculations for both nozzle configurations were carried out. The only
parameter that is different between the two units, as far as the solution
is concerned, is the area ratio, and therefore the physics is fully
demonstrated by the results for the 7.'50 half angle nozzle alone.

Temperature

Figure 2.5 shows how the calculated temperature varies down the
small exit nozzle. for different levels of contamination. Additionally, a
curve for a pure Helium flow is included, but note should be taken of the
different stagnation enthalpy for this case, 11,670 cal/gm, as compare;i
to a maximum of 7, 635 cal/gm for the Argon system. This former
value is obtained if the shock tube is filled initially with 20" hg of
Heliuml, and is included only for a relative comparison wit}; the other

results.

This condition is dynamically equivalent to filling the shock tube with
2'""Hg of Argon, if the Argon acted as a ''perfect gas. "
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Figure 2.5

Gas temperature down small exit nozzle
as function of Helium contamination
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The most interesting result is the change of slope or general
curve character from that of a pure Argon flow as Helium is added.
Curve "B", 1% mass Helium, shows an "Argon character'' until a
distance down the nozzle of approximately 10 cm (area ratio of. about
86), and then there is a change of slope. This changeover point moves
progressively up the nozzle towards the throat as more Helium is added
to the system,

Velocity, Density, Pitot Pressure and Static Pressure

No curves are shown for these parameters, The first three
quantities proved to be very insensitive to contamination, For example,
in the case of a Helium content of 4. 76% by mass, the exit velocity was
affected by an amount less than 5% of the pure Argon value, Similar
results were also true for the density and Pitot pressure calculations,

The static pres sure in the nozzle and at its exit dropped by
relatively large amounts, as high as an order of magnitude - when
approximately 10% by mass of HeliuLm was present in the mixture. This

pressure drop compensated the fall in temperature so the density remained

. “fairly.constant’in value. ..

.R'e\?r'lc'ila 's'Number

The Iﬁrédicted Reynold's Number, as given by pux/p, is of quite
different character as the contamination level is increased. In Figure 2. 6
it can be seen that with only 1% mass Helium, curve '"B", the slope
shows a change at a position of about 10 cm. It may be noted that this
is about the same point at which the corr'ésponding temperature curve
showed modification.

As the level of Helium is raised, the changes become more

pronounced and the slope changes from negative to positive,
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Figure 2.6

Reynold's number down small exit nozzle
as function of Helium contamination



- 78 -~

4, Test Section Conditions

Nozzle Exit Values

The gas conditions at the nozzle exit for the various cases
considered are summarized in Table 2. 7. The stagnation enthalpies
have already been presented in Table 2,5, It should be noted that as
the Helium level goes beyond about 1% by mass, the Mach Number
increases., At a concentration of 8,26% by mass, the exit Mach Number
of the 7.5° half angle nozzle is within about 30% of the value obtained
with the pure Helium flow shown,

Flow Divergence

A conical nozzle configuration has been used throughout thié
investigation. The emerging flow can, therefore, be considered a
source-type (that is, as if the flow were produced at a point source in
the nozzle throat), if the nozzle Wa..ll boundary layer is thin as assumed.
Consequently, the velocity vector of the gas will diverge as one proceeds
from the on axis position toward the nozzle wall.

This divergence means that the density and pressure of the flow
continually decrease after the gas leaves the nozzle. Since these param-
eters are important in the boundary layer calculations, it is necessary
to estimate the effects of flow divergence upon the gas conditions.

Hall (1963) ha,s‘investigated divergence effects in flow over
hypersonic test bodies. Hall's analysis included centrifugal effects. For
flat plate flow, these are not present since the stream lines after the
oblique shock are assumed to remain parallel to the surface. The original
problem, as defined by Hall for two dimensional flow over a sharp wedge,
is solved here in a simple geometrical manner. The problem is illustrated

in Figure 2.7,
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The.relationship between the ambient density, velocity, and

pressure changes in high Mach Number diverging flow was given by

Hall as

i;ﬂ ~ 2 (2-36)
and

LS L (2-37)

. Conditions Across -the Oblique' Shock Front

To simplify the analysis, the shock front is considered to remain
straight, Therefore, the complications brought about by divergence of
the flow are (1) the ambient pressure (or density) has been lowered and
(2) the stream line is not parallel to the axis of the nozzle. The first
problem is handled by using equations (2-36) and (2-37) to correct the
nozzle exit values. For the second item, the mass conservation
equation (2-1) is taken as valid, and examination of the velocity vector
components after the oblique shock (they will add a form a flow parallel

to.the surface of the plate) will show that from the geometry

“2n _ P1_ tan (B-0)

L P,  Tan(B-9)

. . (2-38)

where n denotes normal to the shock front, & is the flow divergence angle
and its value is obtained from the relation

x cos0O tan
p B

6 = R + xp cos B (2-39)

where § is in radians.. The term xp‘is the - point where the stream line
contacts the shock front, given in terms of distance parallel to the surface

of the flat plate measured from the leading edge.
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The work of Petschek and Byron (1957); Wong and Bershader
(1966); and Oettinger and Bershader (1967), has indicated that the position
of the shock front (the angle B) is determined by ideal gas or frozen
conditions., This is because the finite relaxation time of the gas flow is
enough to prevent immediate production of ionization after passage of the
shock layer.

The shock angle and inclination angle have been taken to be

related by the standard result
2 . 2
tan (B-8) _ (YN- 1) MN sin” B + 2

(2-40)
tan P (v + D) MN2 sin’B

where MN and YN aTe the free stream nozzle exit Mach Number and
effective vy .

Equations (2-36), (2-37), (2-38) and (2-39) were used to calculate
the frozen after shock conditions for various Xp distances.

The results of the above calculations are shown in Tables 2, 8a
and 2.8b. Table 2. 8a is for a pure Argon flow and Table 2. 8b is for
an Argon-Helium flow. As can be seen, the flow divergence can
produce lowering of the pressure and density in excess of 100% of the
non-divergent values,

Suggested modification of the shock angle with the addition of
Helium to the flow is quite interesting. A maximum value, as shown in
Table 2. 8b, was obtained with a contamination level of about 1% . This
is due to the fact that with this amount the calculated exit Mach Number
is approximately unchanged from the pure flow value, but the calculated
~ effective value of the quantity y is higher. At greater levels of contamina-

tion, the exit Mach Number, as calculated, increased with corresponding

lowering of the shock angle.
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5. Contamination Effects on Boundary Layer Calculations

The effects of Helium contamination on the boundary layer
calculations will manifest themselves in changes to the thermodynamics
(e.g. equation of state, détermination of specific enthalpy, and specific
heat) and to the transport properties. The new thermodynamic relation
has been discussed previously, and the new transport property equatio;ls
are discussed by Yanow (1971).

Nozzle Calculations

Ipitially, interest was focused on what effects, if any, the nozzle

- u"th-roat» And,noizle wall boundary layers migﬁt ha,ve‘on the free stream
flow. These problem areas are far more complicated than the equations
of Part 1 were designed to handle, but work was carried out to get a
relative comparison between pure Argon, Argon-Helium, and pure Helium
produced boundary layers,

To enable any use of the flat plate equations, it was necessary to
assume that the radius of curvature of the nozzle region was large in
comparison to the boundary layer thickness, and then limit the integration
to a very localized section - so localized that the pressure could be taken
to remain constant over it. Calculations were carried out for the small
exit nozzle configuration with use of the sonic conditions in the throat,
the conditions 2. 24 ¢cm. down stream, and 12. 88 cm., down stream. The
pure Argon flow was based on an initial shock tube pressure of two inches
Hg; the Argon-Helium mixture assumed 4. 767 mass Helium; and the pure
Helium flow was based on an initial shock tube pressure of 20 ihches Hg.

The integrations in the case of the first two Argon flows used a

variable transport parameter technique, while the pure Helium flow assumed
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constant parameters. The results of the displacement thickness are
shown in Table 2.9. The displacement thickness parameter is given in
terms of S*/R:,whereins the radius of curvature at the distance x
down the nozzle from the throat.

As can be seen in Table 2,9, pure Argon displacement thickness
is thin at all times.

Helium in the flow causes the displacement thickness to increase.
The value is still very small, however, and not significant in relation
to changing the effective area ratio,

Consequently, it would appear that some major change in boundary
layer displacement of the flow when Helium is homogeneously mixed into

the test gas does not occur.

Flat Plate Calculations

Equilibrium Boundary Layer

Figures 2.8, 2.9, and 2.10 show the changes that occur to the
temperature, ionization fraction, and density respectively, while
Figure 2.11 allows conversion from the n axis to the y axis. All the
information shown in these curves is for the small exit, 9. 5° plate
inclination, two cm. up the plate, and with variable transport parameters,

The Helium will cause the temperature to drop throughout the
boundary layer. The density is interesting, in that with 1% mass
Helium the value is lowered throughout the boundary layer, but with the
larger 4. 76% mass contamination the density regains some of its lost
value, In the latter case, the minimum density peak is also flattened.
The lowering of the specific enthalpy of the Argon is best illustrated by

the major changes in the jonization fraction. The peak ionization with
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Ionization profile for variable transport parameter calculation,
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=2.0cm



- 89 -

Pt

10-6 1079 1074
DENSITY (gm/cc)

Figure 2,10

Density profile for variable transport parameter calculation
small exit nozzle with contamination at Xp = 2.0 cm
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Figure 2.11

Conversion from m axis to y-axis for variable
transport parameter calculation, small exit
nozzle with contamination at xp =2.0 cm
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a contamination level of one percent is not much below the pure Argon
value, but occurs slightly higher in the boundary layer; the free stream
value for the one percent level is considerably lowered.

The 4. 76% by mass Helium content resulted in a drop in the
peak ionization of almost two orders of magnitude, The actual thickness
of the boundary layer, however, was changed very little by the Helium
contamination,

The changes in the transport properties due to the presence of
Helium are shown in Figures 2.12, 2,13, 2.14; Figures 2,12 and 2,13
are profiles of the thermal conductivity and viscosity, respectively,
for the same calculations as the preceding drawings. Notice how a
small amount of Helium, in this instance 1% by mass, does not destroy
the basic shape of the curves, but only changes the positions of maxima
and minima. At a level of 4. 76% mass Helium, the situation is quite
different, and the influence of ionization upon the results are greatly
abated.

Figure 2. 14 shows how the modifications of the transport
properties feeds through to the transport parameters of Prandtl Number
and Cl' The same basic comments made previously hold here also.
With 4. 76% Helium by mass, the Prandtl Number is practically a
constant throughout the whole boundary layer, Cl is also drastically
changed. The most important feature here is the modification to the
value of the gradient of C1 at the surface. It is most interesting that

these changes are such to maintain the surface heat transfer rate at

almost the same value regardless of the level of Helium for the figures

shown.
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Thermal conductivity for variable transport
parameter calculation with contamination at
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Transport parameters for variable transport
parameter calculation with contamination at

Xp = 2.0 cm., equilibrium boundary layer
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Figure 2. 15, the calculated surface heat transfer rates, shows
the importance of using a variable transport parameter calculation. .
With a constant parameter solution, it would appear that a substantial
lowering of the heat transfer would occur with contamination. However,
it turned out in each case that the transport parameter derivatives were
of such a value to compensate and the final heat transfer rates predicted
varied very little, régardless of the contamination level up to at least
.5% by mass.

Frozen Boundary Layer

If there are no chemical reactions in the boundary laye1; during.
the period of interest, the chemistry is considered '"frozen. "

All results shown will be for the small exit nozzle, 9. 5° plate
inclination, and at a distance up the plate from the leading edge of 2 cm.

Figure 2. 16 shows the velocity profiles for a frozen boundary layer
with a fully catalytic wall, A contamination level of 1% Helium by mass
modifies the velocity profile.

Figures 2.17 and 2, 18 are the temperature and density profiles
for the above conditions., 1% Helium by mass lowers the temperature
throughout the boundary layer, by partition of the total available
enthalpy., The density was also lowered, and the maximum decrease
correlates with the maximum difference between the velocity profiles.

Figure 2. 19 is the ionization profile. As can be seen, the level
of ionization is reduced considerably; by introduction of 1% mass Helium.
The smaller number of electrons in the gas will produce an increase in
the viscosity. Consequently, it is not surprising that the viscous effects
cause the velocity to start to drop off at a higher level in the boundary

layer.
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Frozen boundary layer velocity profile for small
exit nozzle, 9.5° plate inclination, x_ = 2.0 cm,,
100 % catalytic surface, with Heliumpcontamination
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Frozen boundary layer temperature profile for
small exit nozzle, 9. 5° plate inclination, x_ = 2.0 cm.,
100 % catalytic surface, with Helium contatination
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Figure 2.18

Frozen boundary layer density profile for small exit
nozzle, 9.5 plate inclination, 100 % catalytic surface,

Xp = 2.0 cm., with Helium contamination
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Frozen boundary layer ionization profile for
small exit nozzle, 9.5 plate inclination, 100 %
catalytic surface, x, = 2.0 cm., with Helium
contamination. Solid line 100 % non-catalytic
surface; dotted line 100 % catalytic surface
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Region Gas Displacement
Thickness N
Parameter ?
R"
x
Throat . 100% Ar assumed 0
" 95.24% Ar + 4.76% He assumed 0
100% He assumed 0
2.24 cm 100% Ar less than 3.0E-04

down stream

12.88 cm

down stream

95,24% Ar + 4. 76% He

100% Ar
95, 24% Ar + 4.76% He
100% He

less than 3. 0E-04

less than 2, QE-04
order of 8, 0E-04
order of 3. 0E-=03

TABLE 2.9

Relative Nozzle Displacement Thickness
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Figure 2.20 shows the difference that Helium contamination causes
in the conversion from the n to the y axis.

A level of 1% mass Helium in the boundary layer caused
essentially no change to the surface heat transfer rate for the fully
catalytic plate and therefore no graph is shown. This result is explained
in the following manner. The free stream ionization is lower with
contamination and consequently the diffusion of ion-electron pairs to the
surface contributes less to the overall heat transfer. However, the
temperature gradient at the surfacée, as shown in Figure 2,17, is larger
and compensates by producing a larger conduction of heat flux to the
surface. The thermal conductivity at the surface is made larger with
the presence of Helium. These results mean that the lowering of the
surface heat transfer rate with a non-catalytic surface is not as great

with Helium contamination.

6. Summary of Part 2

This study has included the effects of enthalpy loss and Helium
driver gas contamination. The results of the work have been used to
predict the nozzle exit conditions for a pure Argon test gas flow and with
various levels of Helium contamination. The Helium increases the exit
Mach Number of the nozzle, while lowering the temperature. Calcula-
tions were then made of the changes to these values when the gas flow
traverses an oblique shock front.

The presence of Helium will alter the displacement thickness of
the boundar‘y layer in the throat and on the walls of the nozzle. However,
this parameter remains small in all cases and would not be expected to

cause any changes to the effective area ratio of the nozzle.
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Conversion frong »n axis to the y-axis for the frozen boundary layer,
small exit, 9, 5  plate inclination, Xy = 2.0 cm., 100% catalytic surface



- 104 -

The flat plate boundary layers are also affected by the presence
of Helium. The Helium lowers the temperature, density, and ionization
in the boundary layer. If contamination levels of 5% by mass are reached
the general profiles of the thermal conductivity and viscosity will be
greatly altered.

With regard to calculations of equilibrium boundary layers with
full variation of the transport properties, and frozen boundary layers
with fully catalytic surfaces, the Helium contamination up to about 5%
by mass will cause practically no change to the surface heat transfer
rates., In the case of a frozen, non-catalytic surface calculation with
contamination, the lowering of the heat transfer by the absence or
diminishing of the diffusion of electron-ion pairs is lessened due to the

lower level of free stream ionization.
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PART 3

EXPERIMENTS AND DATA CORRELATION WITH THEORY*
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1. Introduction

The F.ree Piston Shock Tunnel is unique in its ability to produce
very high stagnation enthalpy flows. In this study, conditioﬁs were used
which gave rise to a calculated stagnation enthalpy of 7,635 cal/gm for
a pure Argon flow. This figure would be in excess of 100% greater
than that obtainable with combustion driven shock tunnels.

The Free Piston Shock Tunnel is a comparatively new device,
and it is important to carefully check the flow behavior to determine
Itest t'irnes for va:ridus exp‘eriments. In Part 3, experimental data will
be presented and discussed for test section pitot preséure, and surface
heat transfer rates on the flat.plate.

In all thev data shown, the point is the mean average of many
determinations, and the flags are the s;ca.ndard deviations of the data.

For details of the equipment and data reduction methods the

reader is in reference to Yanow (1971).

2. Properties of the Test Section Flow

Calculated Conditions

The test section has previously been discussed in Part 2 of this
paper. However, for purposes of clafity, the calculated pur‘\e""Argon
flow nozzle exit conditions are repeated below in Table 3.1 with some
additional information.

Pitot Pressure Measurements

For ease of reading Figure 2.4, the calculated test section
pitot pressures are redrawn.
The first experimental points are based on the Pitot pressure

measurements taken 85 micro-seconds * 15 micro-seconds from the
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time of shock reflection. The experimental technique used is discussed
fully in Yanow (1971). There is good agreement between theory and
experiment, validating the assumption of isentropic nozzle flow with
insignificant boundary layer effects at this time.

The pitot pressure at a flow time of 160 micro-seconds + 15
micro-seconds from shock reflection is a differnet matter. The
measured value dropped by a very significant amount. Three typical
oscillograms illustrating this pressure fall are shown in Figures 3. la,
3.1b, and 3. 1c. The data of Figure 3. la has a time base of 50 micro-
seconds per division, while that of Figure 3. 1b is 20 micro-seconds
per division. Both traces are for the small exit nozzle; Figure 3. 1c
has a 20 micro-second base and is large exit data.

The initial 30-40 micro-seconds of the traces can be attributed
to nozzle starting time. The rise time of the pitot pressure gauge was
a function of the density of the gas flow. In the instance of the small
exit unit, this latter time was estimated at about 30 micro-seconds,
and when using the 15° half angle nozzle this period lenghtened to
about 40-50 micro-seconds.

At first glance, these observations look analogou;s to the
pressure dip in the reflected shock region, observed by Dunn (1969a,
1969b) and others. Dunn explained this dip as resulting from an expan-
sion wave generated at the initial interaction of thg reflected shock and
the driver-test gas interface. Dunn also defined the usable test time
as the period required for this expansion wave to reach the shock tube
end wall, and oBtained typical values for usable test time of about 200
micro-seconds. Stalker (1967) has observed a dip in reflected shock

pressure measurements of the Australian National University device at
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Figure 3. 1a

‘Typical pitot pressure oscillogram for small exit
nozzle with 50 micro-seconds/division time base
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Figure 3.1b

Typical pitot pressure oscillogram for small exit
nozzle with 20 micro-seconds/division time base
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Figure 3.1c

Ty';)ical"pitot pressure oscillogram for large exit
nozzle with 20 micro-seconds/division time base
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approximately 20-30 micro-seconds after shock reflection. Logan
(1971) using streak photography has correlated this time interval with -
the period required for the expansion wave to reach the end wall. Thus
the pressure dip arising from the reflected shock expansion occurs on

a time scale which is too short to be clearly evident in the pitot pressure
traces, indicating that the observed pitot pressure drop must be due to
some other source. |

Davies :and Wilson (1969) have investigated the problem of .
';n_te:ractio'n of the. refleétea sﬁo.c‘ki‘flx'c,)ﬁ‘;éhid~ shocktube .b"oundary Fla)"r'er. .
As ‘t‘he 'refié’c"te& i‘-shock:rnkd’ves'ba"ék up the éﬁéck tube,lt éro‘rﬁne; in ~c:pntact
with the wall boundary layer formed after the i4nitia1 forward passage
of the front. ' The stagnation pressure of the majority of this boundary
layer is less than that of the free stream, and therefore the boundary
layer gas may not penetrate the reflected shock front. Because the
boundary layer cannot negotiate this pressure jump, it separates ahead
of the shock. An oblique shock forms at this point, and eventually
combines with the normal front at some distance from the surface.

This is illustrated in Figure 3.2.

Boundary layer gas. is trapped under the separated region
beneath the shock, and is carried along with the front. This system is
known as a 'bifurcated foot.'" Some of the gas immediately above the
boundary layer traverses the double obliq'ue shock system ahead of the
reflected shock and into the region behind it. A small amount of the
boundary layer gas may also get passed across this shock configuration,
and if so it will move along the wall with the other penetrating gas
toward the end of the shock tube at a velocity higher than that of the

reflected shock free stream.

\ -
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It is possible, according to Davies and Wilson, that when the
reflected sho'ck passes through the Helium-Argon contact surface a
small amount of Helium driver may leak into the test gas slug, move
along the side - wall, gather at the nozzle end of the shock tube, and
finally move toward the center in front of the entrance to the throat of
the nozzle.

Based on the discussion in Part 2, the drop in test section
Pitot pressure is not likely attributed to energy loss mechanisms,
Helium mixing with the Argon in the reflected shock region, or the
Helium altering the throat or nozzle wall boundary layer.

When Helium was used as a test gas and a driver gas, no Pitot
pressure drop was observed. This suggests that the fall of Pitot pressure
is due to some difference between the flow characteristics of the Argon
and Helium: Consequently, a plausible explanation for the observed
Pitot pressure is that the contaminating, relatively cold Helium gathers
at the nozzle end of the reflected shock region and moves toward the
center of the shock tube. When this gas mass reaches the area of the
throat, it feeds into the periphery of the Argon flow. The Helium may
occupy a greater relative area in the throat than further down the
nozzle, as shown in Figure 3.3. This would effectively increase the
area ratio as far as the Argon was concerned and thereby cause a
Pitot pressure drop. The possibility of this happening can be substan-
tiated using a very simple argument.

Let it be assumed that the gases are not mixed in the reflected
shock region, and the Argon and Helium are at the same approximate
pressure in the general area of the throat. Let it also be assumed

that when the Helium feeds into the throat, as described above, it
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occupies a certain percentage of the total area. From the Argon real
gas nozzle calculations, at an area ratio of 100 (that is, the area at the
peoint in question in the nozzle is 100 times greater than the throat area
occupied by the Argon), the gas pressure of the Argon would have
dropped by a factor of about 800 of that in the throat. It would seem
logical that the Helium would suffer approximately the same relative
pressure drop. However, to obtain this the Helium would need only an
area increase of about 20. This value was obtained using ideal gas
relations. Therefore, the Helium would occupy a much smaller per-
centage of the total area.

This particular phenomenon of Pitot pressure drop could than
be attributed to the fact that the Argon acts as a real ionizing gas in the

nozzle flow, while the Helium acts as an.ideal gas with no.ionization.

3. Boundary Layers

Leading Edge Effects

It is not the aim of this project to carry out an investigation of
the leading edge effects associated with rarefied hypersonic flow.
Indeed, the object of using an inclined flat plate was to maintain a
very high stagnation enthalpy while avoiding this problem area. How-
ever, it is important that a sufficient study be made to be sure of this
point.

The generally accepted flow picture is that at, and very near to,
the leading edge, the gas flow is described by kinetic theory. This area
is followed downstream by a region of transition to-what is known as
the '"'merged region.'" Pan and Probstein (1566) characterize the
merged region by continuum flow where the viscous boundary layer

and oblique shock wave are merged. There may be wall slip. Further
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downstream there are the regions of strong interaction and then weak
_interaction. These-are depicted by the fact that the boundary layer
and shock front separate and a region of inviscid flow forms between
them. However, they are.in close enough proximity for the boundary

. layer to affect the position of the shock front. The resultant curvature
of the shock produces a pressure gradient.

Heat transfgr measurements made in the r;aerged region, as
indicated by Vidal, Golian, and Bartz (1963), will ‘fall below the pre-
dictions' made using the equations derived in Part 2 of this 'paper.
Measurements made iﬁ the strong intera.ctidn region must also be
rejected because of the existance of a significant pressure gradient.

McCroskey, Bogdonoff,’ and McDougall (1966) have shown that

the relevant merged region interaction parameter is given by
— 1/2
V = M2 (C/Rez) ’ (3-1)

where C is the constant in a linear viscosity law and M2 and Re2 are the
post oblique shock Mach Number and local Reynold's Number, respec-
tively. McCroskey, et al., expefimentally demonstrated that when V
has a value between 0.15 to 0.20, merged region effects, such a
lowering of the surface density and heat transfer, could be expected.

Dorrance (1962) has shown that the relevant strong interaction

parameter is

1/2

X = M23 (C/Re,) (3-2)



- 118 -

From the work of Hayes and Probstein (1959), it appears that
strong interaction would be present for values of X greater than.3 or 4,
and weak interaction would be;the crite ria.belo;av these values.

Table 3. 2 shows the calculated values of Vand Xatl, 2, and
.3 cm. up the plate from the leading edge for the small exit, 9. 5° plate
inclination, and for the large exit, 19. 5° pPlate inclination data, with a
‘ pure Argon flow. The values of the Mach Number and the Reynold's
Number at each point have been.calculated with' flow divergence con-
sidered in the mannér described in Part 2. The only fneaéurement that
might suffer some merged region influence is at 1 cm. with the large
exit nozzle, at a plate inclination of 19.5°, It would dppear that the
strong interaction region is very limited in extent1 and consequently
.the assumption of a zero induced pre‘ssure gradient is valid to a good
. approximation.

It has been assumed that the flat plate induced pressure gradient
can come about only through some form of leading edge effect and not
by changes in the free _étream conditions. In his discussion Dorrance
(1962)'2 shows that if 8w is small and the pressure gi‘adient parameter
varies '"slowly', the integrated.boundary layer solutions seem insensitive
to the variation of the pressure gradient. Further experimentally, the
concept of ''local similarity", i.e. the integration of the boundary
layer equations at a specific location using the free stream conditions

present there, has been proven to be acceptable. Accordingly, in this

-.IIt should. bé noted that Rudman and Rubin (1968) in an experimental
study determined that the merged region went directly into the weak
interaction region when the free stream Mach Number was equal to or
less than 8,

2See: chapter 4,
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work the two dimensional flat plate boundary layer equations have been
solved at different locations up the plate using the free stream conditions
calculated at the respective positions.

Heat Transfer

Figure 3.4a shows typical data to calculate the Argon heat trans-
fer rate. The upper and lower traces were recorded by gauges 1.75
and 2.25 cm. up the plate from the leading edge, respectively. There
is a dramatic change in the character at approximately the same time
that the Pitot pressure drops. The initial noise is mainly attributed to
the presence of electrons in the flow. After the Pitot pressure drops,
the heat transfer also falls, and at the same time the noise for the most
part disappeared. It is suggested that this last point is due to the
quenching of the flow ionization by the injection of Helium into the test
gas.

Figure 3.4b indicates typical heat transfer information obtained
when Helium was used both as the driver and test gas. This data is
shown for comparison purposes with Figure 3. 4a. The upper and lower
traces were made by gauges 1.1 and 2.66 cm. up the plate from the
leading edge. Note that there is no change in slope, and that the
curves are for all practical purposes noise free. The former point is
important, and it correlates with the fact that no Pitot pressure drop
was observed with a Helium driver Helium test gas arrangement. 1 The
noise free traces are again attributed to the fact that there was no

ionization of the Helium.

lPitot’: pressure measurements with air as the test gas showed the
same large scale fall as with Argon.
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Figure 3.4 a

Drawing of typical surface temperature history in Argon
flow. Time base is 20 micro-seconds/division



-121 -

- TIME
1 \I-L\h—\ I R
| 1 ] 1 | | | | I
4 - ——__ ¥SURFACE
TEMPERATURE
L 1 1 T~ 1 1 1 1 CHANGE
I A N T .

Figure 3.4b

Drawing of typical surface temperature history in Helium
flow. Time base is 20 micro-seconds division
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DISTANCE UP PLATE

DATA v X
(cm)
Small exit, 1 .09 1.
o]
9.5 plate 2 .08 1.
.inclination 3 .07 1.
Large exit, 1 .14 1.
19.5° plate 2 11 1:
. inclination 3 .10 1.
TABLE 3.2

Calculated Merged Region and Strong Interaction Parameters
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Figure 2.15, redrawn here for reference, shows the calculated
and measured surface heat transfer rates for boundary layers in thermo-
chemical equilibrium. Theoretical predictions are s};own for both the
cases of constant and variable transport parameters. The measured
results are for a period approximately 85 micro-seconds after shock
reflection. It is reiterated that in the figures the point is the mean
value of many determinations, and the flags are the standard deviations
of the data.

The measurement at 1.1 cm.. distance up the plate has probébly
suffered me'rged'region effects, as sﬁggested'in Table 3.2. The variable
transport parameters markedly lowered the surface heat transfer rate.
The large exit prediction and measurements are close' to a factor of
two from one another, the limit set as acceptable, but the correlation
of the small exit measurements and theory is bad.

It was deemed wise at this point, based on the above results, to
carry out a limited series of calculations and measurements for a
pure Helium flow. The Helium would be divorced of real gas effects
and thereby act as a check on the basic theory. The result, using an
initial shock tube pressure of 10 inches Hg is shown in Figure 3.5,
again for a time of about 85 micro-seconds after shock reflection. The
large exit nozzle - was used with a plate inclination of 9. 5° and data is
only shown for a gauge position 2.66 cm. up the plate from the leading
edge. (The gauges closer to the leading edge could have possibly
suffered merged region effects).

The experimental and calculated data showed reasonable agree-
ment. If, with pure Helium, a fairly thick nozzle turbulent boundary

layer did develop towards the exit, the flow divergence would be
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xplcm)

Figure 3.5

Helium heat transfer rate at approximately 85
micro-seconds after shock reflection, large exit
nozzle, and 9, 5° plate inclination. Constant
transport parameters were assumed
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lessened and the flow pressure would be increased. As a result, the
measured heat transfer rate would be expected to be larger than the
theoretical prediction.

Composite Boundary Layer Calculations

The chemically frozen boundary layer heat transfer predictions,
with or without a catalytic surface, were higher than for a boundary
layer in thermochemical equilibrium with variable transport properties.
The results of Part 2 showed that Helium contamination would not lower
the predicted heat transfer rates to correlate with the data, and some
other mechanism must be found to account for the low heat transfer
rates.

Wong and Bershader (1966) argued that after a shock the gas
goes to a high temperature, given by the ideal gas equations. Atom-
atom collisions occur which tend to produce a low level of ionization.
Eventually, the electron numbers are sufficiently high to cause atom-
electron reactions to predominate, with a subsequent rapid pick up of
the ionization level. Finally, the gas reaches near equilibrium as the
rate of recombination comes into balance with that of ionization. Any
. impurities will cause the above chain to proceed at a faster rate.

In the situation at hand, the same processes are at work. How-
ever, as outlined below, it is probable that the gas relaxation processes
may be such as to promote a close approach to local equilibrium con-
citions near the wall.

Blottner (1964) has carried out a series of chemical non-equili-~
brium boundary layer calculations for air. He assumed the Prandtl
number was either 1 or 0.7, and the Lewis number was either 1.0 or

1.4. His results showed that the temperature and composition profiles
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of the non-equilibrium boundary layer could be considerably different
from either equilibrium or frozen results. However, Blottner's
constant transport property calculations did not suggest a major change
in surface heat transfer rates.

Pallone, Moore, and Erdos (1964) carried out similar calculations
in air. They, however, used variable transport properties. The max-
imum temperature in their boundary layers was about 5000°K and
consequently the amount of ‘ionization was small. This meant that the
Prandt]l number remained essentially constant in value at 0.75.

The inclusion of variable transport properties to the extent
that occur in this work. into a non-equilibrium calculation would be
most difficult, and computer time consuming. This, coupled with the
poor knowledge of the rate coefficients needed in the calculation, deman-
ded that some easier approach to the problem of non-equilibrium be
found. A simpler first approximation to the problem could be the
defining of a level in a boundary layer, at which the gas would change
from that of essentially frozen in character to that of essentially
equilibrium in character. The question is how to establish the position
of the point where the two solutions (i.e. chemically frozen and thermo-
chemically equilibrium calculations) could be put together.

Continuing the practice adopted in the calculation of.frozen
boundary layers, let it be assumed that the free stream is in thermo-
chemical equilibrium but that the upper portion of the boundary layer
is in a chemically frozen state.

The équilibr’ium constant for chemical reactions is given by the
ratio. of the ionizing reaction rate coefficients over the recombination

coefficients. Wong and Bershader (1966) give expressions for the
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reaction rate coefficient for Argon ionization and for the recombination

constant. They are, respectively

-

K = 10° (ZkT) } {44 [(BE/T) + ZJexp(4[3E/T)

+ 9.5 [(®I/T) + 2 Jexp(-@I/T) (3-3)

+ 4.4 (ﬁE/T)[l + (@I/T)J(:((“) /BE)-llJeXP( ® /T)} [secJ’

and
12 (Zwme)3/2 \)2
K; = 3 (kT) exp (-©,/T) , (3-4)
where
@I = ionization temperature, °K (1.828 x 105)’
Bgp = excitation temperature, °K (1.335 x 105).

Wong and Bershader gave the rate coefficient for ionization, KI’ as a
function of electron temperature, but the assumption will be made here
of thermal equilibrium.

The first term in the second bracket of equation (3-3) is
approximately 1000 times greater than the other terms, and to a good
first approximation the latter terms may be ignored. Taking the
recombination.rate coefficient, KR, as ‘the ratio KI/KE and calculating

the numerical constants, it is found

4
_ -32[13.35x 10 4.93 x 10
Kp = 1.3035x 10 [—T——— +2J expl: - J{Sec} (3-5)
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Figure 3.6 shows the value of the recombination rate coefficient
given by equation (3-5). The recombination rate increases as the
temperature falls, in agreement with a similar equation given by Kn&ds
(1968). Notice how the value increases very rapidly below temperatures
of about 70000K, and therefore approach to the surface must promote
an approach to equilibrium. Consequently, the recombination rate,
that is the number of recombinations occurring per unit time, appears
t,}q be a reasonable criterion for determining the position of the matching
ls.yer in the composite boundary layer. .

Wong and Bershader assumed only a three body recombination

process, i.e.

+

AT + e + e _ A+ e, - (3-6)

and therefore the rate of change of the electron numbers is given by

—° =N N, K. - N Kp (3-7)

where the term Ne3 KR is the recombination rate.

The integration of the boundary layer equations essentially defined
50 stream tubes within the boundary layer. The characteristic time in
each stream tube for particles to remain in the region of interest was

taken to be the period required for the gas particles to travel three cm.

from the leading edge up the plate.

The criterion where the solution was switched from-a frozen

.integration to an equilibrium integration was then taken to be given by

[ < —_¢ (3-8)

where t. is the characteristic time and Ic is some arbitrary constant

to be determined.
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Figure 3.6

Recombination rate coefficient for Argon
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Equation (3-8) can be interpreted as . meaning that if the number
of electrons is greater than some factor times, the possible number
that could be recombined within the characteristic time, the gas is
defined as frozen.

Figure 3.7 shows how rapidly the value of this criterion changes
with temperature. Referring back to Figure 2.17, the temperature
profile of the frozen boundary layer shown here again for gonv'enience,
it can be appreciated how suddenly the changeover of the two conditions
might indeed be.

Changeover stream tubes were defined based on choices of Ic
nearest the values of 10 and‘ 100. Table 3.3 shows the choices of stream
tubel, the corresponding values of temperature, the constant Ic’ and
the height above the surface.

The problem of matching the lower equilibrium and upper frozen
calculations in a composite boundary layer bears some comment. To
be correct, not only should the actual values of enthalpy and velocity
be matched, but also their derivatives. The enthalpy gradient, g', and
velocity gradient, f'', respectively, are measures of any heat flux or
shear stress paséed across the changeover layer from the frozen
portion to the equilibrium portion of the composity boundary layer.

The boundary layer equations, however, were not designed to
accommodate non-zero values of g'and f'"as m — o That is, it was
assumed that once the values of g and f' went to unity, they would remain

at this value and therefore the gradients of these quantities would go to

lThese values are based on integrations at two cm. up the plate.
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Matching criterion for composite boundary layer

calculation.

Small and large exit nozzles



- 132 -

zero. In the composite boundary layer, it is taken that g and f' may

only be unity at a single level and consequently gradients may be present.
In addition to the:intrinsic difficulty with the boundary layer

equations, there is also a problem area with the integration of the

relations when gradients are present at the upper boundary of the

solution. Osborne (1969) assumed that the differential equations to be

integrated were subject to the general boundary conditions given by

B. x(a) + B

1 x(b) = ¢ , B (3-9)

2

where B, and B,are n X n matrices, x(a) and x(b) are the values ’of x

1 2
at the lower and upper boundary, respectively, and c is a vector of the
values of the boundary conditions. B1 and B2 must remain uncoupled

and consequently the maximum number of boundary conditions that

can be stated is 5 in the case of an equilibrium boundary layer (fW = f'W
= 0, Bw = constant, f'e = 1, and Bo = 1) and 7 in the case of the
frozen boundary layer (f = f' = 0, ®_ = constant, S, = 0 or

w w w iw
a constant, f'e =1, @e = 1, and Sie = 1). To.include the additional

boundary conditions of f"e and g'e would require the defining of two
dummy variables to make B1 and B, in the equilibrium solution 7 x 7
matrices. Numerical experimentation showed this procedure to yield
unsatisfactory results. Therefore, if a direct integration from the
surface to the matching layer-is done, the effects of heat flux and shear
stress at the matching -level must be neglected with the present method.
Figure 3.8 shows a partial profile of the heat flux for both a
complete equilibrium and frozen boundary layer solution based on the
same free stream conditions. As can be seen, in the frozen solution,
the heat flux in the region of the changeover is about a factor of 4 less

than at the wall, while in the equilibrium case it is a factor of 2 less
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Heat flux for sma(}l exit nozzle, plate
inclination of 9.5, xp =2.0 cm
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n ~ .T(°K) I ~ y(cm) MODEL
0.330 7269 17.8 0.018 small exit
0.440 8823 132 0.029 9.5° plate
o . inclination
0.275" 5850 7.3 0.022 large exit
0.385 7415 115 0.039 19.5° plate

inclination
TABLE 3.3

Matching Levels in Composite Boundary Layers
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than at the wall. This suggests that the heat flux from the froéen
portion of the composite boundary layer may not play a dominant role
in determining the surface heat transfer rate.

| Figure 3.9 shows a partial profile for the shear stress of both
a complete equilibrium and frozen calculation for the same free stream
conditions. This graph would indicate that the shear stress in the region
of the changeover is large. If the gradient of velocity f'' feeds through
the integration and affected the value of the enthalpy gradient at the wall,
the surface heat transfer rate would be altered considerably.

From the above results, it would seem that as a first approx-
imation, the solutions could be mated in the composite boundary layer
by matching the values of velocity, the shear stress, and the specific
enthalpy, as well as possible, and by ignoring matching of the heat
flux.

As an alternative to the direct integration of the problem, lower
portions of the previops equilibrium calculations were matched to the
upper portions of frozen calculations, where both the solutions were
based on the same free stream conditions. The concept of similarity
has been exploited. It has been-assumed that when the velocity, shear
stress, and specific enthalpy are matched, the character of the gas
in the lower portion of the boundary layer may better be described by
the conditions of an equilibrium solution at some other position on the
plate, but which are still similar mathematically.

In terms of the transformed variables, the shear stress is
proportional by p f''.

Now,

2

3
55 — (3-10)

on °’

QalQ-
<3
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so that from equations (2-5) and (2-7a) the shear stress x, y plane will
be given by

du _ 3/2 -1/2 -1/2 '
S R (Pwkwprw/cpw) p X pf o, (3-11)
At the matching level, the ratio between the frozen and equili-

brium shear stress will be given by

. [
(shear stress)Fr g (p £ )Fr XEq Prr

- L)
(shear stress)Eq (p £ )Eq XFrI/Z qu

(3-12)

Using equation (3-8), the choice of the matching level in the
frozen boundary layer solution can be made. The stream tube in the
equilibrium calculation having the same velocity as that of the matching
level is located, and the corresponding shear stresses in terms of the
transformed variables and densities are put into equation (3-12). The
ratio of the xl/2 distances is adjusted so that the ratio of the shear
stress in the x, y co-ordinates will be unity. Table 3.4 shows the
results of these calculations for distances at 2 cm. up the plate for the
large and small exit problems.

Any resultant increase in xqu/Z , assuming XFrl/Z to remain
fixed, will decrease the surface heat transfer rate by the same amount,
since through similarity these quantities are coupled (i.e. Q Nx ).

Figures 3.10 and 3.11 show the predicted surface heat transfer
rates based on these choices of I for the small exit and large exit
problems. If the choice of IC is made at approximately 10, it can be
seen that in no instance is the difference .between the predicted and
measured heat transfer rates greater than a factor of two. Indeed

the accuracy is much better than this generally, with the normalized
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Composite boundary layer calculations of surface heat
transfer rates, large exit nozzle, 19,5 plate inclination
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standard deviation of all measurements from the theory being less
than 40% .

The lower values of Ic’ the greater is the tendency of the gas
to depart from the frozen condition. It is clear that the best correlation
between theory and data is obtained when a matching layer is chosen
:where there is a strong tendency to depart from the frozen state.

The large exit data, with a 19. 5? plate inclination gave the best
correlation with theory when I was set equal to 10. It is interesting
to note that this case also provided the best overall match of shear
stress, velocity, and specific enthalpy at the matching level. This
would suggest that further efforts should be made in developing a
method of integration of the boundary layer equations that will allow
the inclusion of the velocity and ehthalpy gradient as boundary condi-
tions. The composite boundary layer would seem to offer a reasonable
alternative to the much more difficult non-equilibrium calculations in
very high enthaipy flows, anci may be particularly useful for engineering
calculations.

The work of Kn33s (1968) predicted that much of the lower portion
of an ionizing boundary layer may not be-in eithér chémical or thermal
equilibrium. It is to be emphasized that the concept of a composite
boundary layer does not need to contradict the- work of Kné6s. The
basic assumption in the composite calculation is that at a certain
" point in the boundary layer the gas conditions are better approximated
by the extreme case of thermochemical equilibrium, rather f;han the
extreme case of a chemically frozen boundary layer. It is considered
that this condition will be true when there is significant recombination,

regardless of whether the gas is in a state of equilibrium or not.
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4. Summary of Part 3

In this part, the experimental data and its correlation with
theory have been examined. There was good agreement between the
measurement of test section Pitot pressure and an isentropic, real gas
nozzle expansion theory until a.time of flow of ‘épproximately 100 micro-
seconds after shock reflection. After this period, the measured Pifot
pressure dropped by approximately a factor of two. It has been suggested
that this drop may be attributed to the injection of Helium driver gas
into the periphery of the Argon.flow in the ared of‘the throat. The
Argon expands dowp the nozzle as a real, iAonizfing.gas, While the
Helium expands as an ideal gas. This difference in flow character
causes an increase in the effective area ratio in relation to the Argon
with the observed fall in Pitot pressure.

The surface heat ‘transfer rai;és showed a change of slope and
general character at approximately 100 micro-seconds after shock
reflection, correlating with the Pitot pressure data. The surface heat
transfer rate is not adequately predicted with either an equilibrium or
a frozen boundary layer assumption. However, improved prediction
can be obtained by treating the boun&ary layer in two regions (a composite
B/L), allowing the gas to pass from a chemically frozen region to one
that is approximated by local thermochemical equilibrium. The
position of the matching layer between the two regions is chosen by use
of a simple criterion based on the recombination rate, and the para-

meters of velocity and shear stress are matched across. it.



10.

11.

12.

13.

14.

- 143 -

REFERENCES

Back, L. H. (1967), '"Laminar Boundary Layer Heat Transfer from
a Partially Ionized Monatomic Gas,'" Physics of Fluids, 10, 4, 807-
819. T

Blottner, F. G. (1964), '""Chemical Non-Equilibrium Boundary Layer, "
AIAA, 2, 232-240.

Bull, D. and Edwards, D. (1968), "An Investigation of the Reflected
Shock Interaction Process in a Shock Tube, " AIAA, 6, 1549-1555,

Davies, L. (1965), ""The Interaction of the Reflected Shock with the
Boundary Layer in a Shock Tube and Its Influence on the Duration of
Hot Flow in the Reflected Shock Tunnel," ARC 27 110-Hyp 505,
Aeronautical Research Council.

Davies, L. and Wilson, J. L. (1969), "Influence of Reflected Shock
and Boundary-Layer Interaction on Shock Tube Flow,' Physics of
Fluids, 12, Supplement 1, 1-37.

Dorrance, W. H. (1962), Viscous Hypersonic Flow, McGraw Hill.

Dunn, M. G. (1969a), "Experimental Study of High Enthalpy Shock-
Tunnel Flow. Part I: Shock Tunnel and Nozzle Starting Time," AIAA,
7, 8, 1553-1560.

Dunn, M. G. (1969b), ""Experimental Study of High Enthalpy Shock-
Tunnel Flow. Part II: Nozzle Flow Characteristics,' AIAA, 7, 9,
1717-1724.

Fay, J. A. and Riddell, F. R. (1958), ""Theory of Stagnation Point
Heat Transfer in Dissociated Air," Jour. of Aeronautical Sci., 25,
2, 73-85, “'

Fay, J. A. and Kemp, N. H. (1963), "Theory of Stagnation Point
Heat Transfer in a Partially Ionized Diatomic Gas, ' AIAA, 1, 12,
2741] 2751.

Finson, M. L. and Kemp, N. H. (1963), '""Theory of Stagnation
Point Heat Transfer in Ionized Monatomic Gas, " Physics of Fluids,
8, 201-204.

Hall, J. G. (1963), "Effects of Ambient Nonumiformities in Flow
Over Hypersonic Test Bodies, ' CAL Report No. 128, Cornell
Aeronautical Laboratory, Inc., Buiffalo, N. Y.

Hayes, W. D. and Probstein, R. F. (1969), Hypersonic Flow Theory,
Academic Press.

Kaegi, E, M. and Muntz, E. P. (1964), "Driver-Driven Gas Mixing
and Its Effect on Shock Tunnel Test Time,' Paper, Third Hyper-
velocity Techniques Symposium, March 17-18, Denver, Colorado.



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

- 144 -

Kncos, S.-(1968), "Boundary-Layer Structure in a Shock-Generated

Plasma-Flow, Part l,' Jour. of Plasma.Physics, 2, 2, 207-242.

Lees, L. (1956), ""Laminar Heat Transfer Over Blunt-Nosed Bodies
at Hypersonic Flight Speeds,'' Jet Propulsion, 26, 4, 259-269.

Lighthill, M. J. (1957), "Dynamics of a Dissociating Gas, Part 1,"
Journal Fluid Mech., 2, 1-32.

Logan, P. F. (1971), Ph.D. Thesis (To Be Published), Australian

‘National University.

Mark, H. (1957), '""The Interaction of a-Reflected Shock Wave with
the Boundary Layer in a Shock Tube ;' Ph.D. Thesis, Cornell

- University.

McCroskey, W. J., Bogdonoff, S. M., and McDougall, J. G. (1966);
""An Experimental Model for the Sharp Flat Plate in Rarefied Hyper-
sonic Flow, ' AIAA, 4, 9, 1580-1587.

Oettinger, P. E. and Bershader, D. (1967), "A Unified Treatment
of the Relaxation Phenomenon in Radiating Argon Plasma Flows, "
AIAA, 5, 9, 1625-1632.

Osborne, M. R. (1969), "On Shooting Methods for Boundary Value
Problems, ' Jour. Math Analysis and Applications, 27, 2, 417-433.

Pallone, A. J., Moore, J. A., and Erdos, J. I., (1964), "Non-
Equilibrium, Non-Similar Solutions of the Laminar Boundary-Layer
Equations,' AIAA, 2, 10, 1706-1713.

Pan, Y. S. and Probstein, R. F. (1966), '"Rarefied-Flow Transition
at Leading Edge,‘ Fundamental Phenomena in Hypersonic Flow,
Cornell University Press.

Petshek, H. and Byron, S. (1957), "Approach to Equilibrium
Ionization Behind Strong Shock Waves in Argon,' Annal of Physics,
1, 270-315.

Reilly, J. P. (1964), ""Stagnation-Point Heating in Ionized Monatomic
Gases, "' Physics of Fluids, 7, 12, 1905-1912.

Rudman, S. and Rubin, S. G. (1968), "Hypersonic Viscous Flow
Over Sléender Bodies,'" AIAA, é_, 10, 1883-1889.

Rutowski, R. W. and Bershader, D. (1964), ""Shock Tube Studies of
Radiative Transport in an Argon Plasma,' Physics of Fluids, 7, 4,
568-577.

Slade, J. C. (1970), "Mass Spectroscopy in Shock.Tunnels, ' M. S.
Thesis, Australian National University.



30.

31.

32.

- 145 -

Stalker, R. J. (1967), "A Study of the Free-Piston Shock Tunnel, "
AIAA, 5, 12, 2160-2165.

Vidal, R. J., Golian, T. C., and Bartz, J. A. (1963), -""An Experi-
mental Study of Hypersonic Low-Density Viscous Effects on a

Sharp Flat Plate, " Paper No. 63-435, AIAA Conference on Physics
of Entry Into Planetary Atmospheres, August 26-28, M.I. T.

Yanow, G. (1971), "High Enthalpy Hypersonic Boundary Layer
Flow,'" Ph.D. Thesis, The Australian National University.



fl

- 146 -

SYMBOLS AND NOMENCLATURE
(Le - 1) hi '(da/dh)pt, see equation (1-9); Area
Speed of Sound

Y Pr/cp., see equation (1-14)

(1 + A)/cp , see equation (1-14)

(1~-~~'Pr.)/cp,, see equé,fioh.(l-14)
Y/cp., see-equation (1-14)
p;/p ., species mass fraction

;3 Ci Cpi , specific heat at constant pressure (frozen)
i

Frozen specific heat of species i

Coefficient of diffusion of species.i through -mixture of speties

X

Symbol for power of ten in computer type print out, e.g. 107 = Ex

See equation (2-30)

@

u/1.1e , see equation:(1-9): £ =S‘ df/dn
0"

(4%/2 + h)/H_ , see equation (1-9)

u?/2 + h., total enthalpy

-Specific enthalpy

ScpidT + hio., specific enthalpy of species i
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Heat of formation of species i
Ionization energy of Argon, 9026 cal/gm

Special constant in composite boundary-layer calculation, see
equation (3-8)

Thermal conductivity: Boltzmann's constant
(Prw/cpw)/Cl , see equation (1-15)
(Prw/cpw)/(Y CZ) s ;ee equation (1-15)
(Prw/cpw)/(HS CZ) , see equation (1-1.5)

see equation (1-15a)

(PrW/ch)/C4 ,

Equilibrium constant for Argon, see equation (3-4)

Argon reaction rate coefficient, see equation (3-5)
(ch/cp) Le @, see equation (1-15a)
Argon recombination rate éoefficient, see equation (3-5)
(Pr u 2)/(T c_)., see equation (1-15a)
e e p :d .
D; p cp/k , Lewis number
Mach number; molecular mass
Mass

Mass of electron
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n Number- of moles

Ne - Number of electrons per cc
P - Pressure

Pr n cp/ks,, Prandtltnumber

Q, -g Heat flux

R Rd/M; on axis length o£ nozz-?e_?lea;spr}é:fi frjo;n th_r,”da"tu
R, ' pux/u, Reynold's number
. Ro ~Universal gas constant‘

Rx Radius of curvature of the nozzle at x distance from the throat
S ‘Entropy

Si oz/oze , see equation (1-13)

T Temperature

t Timé

t. Characteristic time-used in calculation of Ic

u Velocity along x axis:in shock co-ordinate system

v Volume

? 1
v M(c/Re)?‘ , rarefraction parameter
v . Velocity along y axis in shock co-ordinate system

W Mass rate of change of species i per-unit volume
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GREEK SYMBOLS
I‘onilzation fraction
Angle between plate surface and nozzle axis
Temperature of excitation of Argon (see equation 3-3)
cp/cV , ratio or specific heats
Effective value of y, see equation (2-10)
Divergence angle of nozzle flow
Displacement thickness
Energy of Argon ionization, 2.524 x 10"11 ergs/mole
Transformed y-axis parameter, see equation (1.-6)
Angle of plate inclination of on axis flow
Temperature of Argon Ionization, see equation (3-3)
Viscosity
See equation (1-7)
Density

1
2

3
M~ (C/Re)? , leading edge interaction parameter
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SUBSCRIPTS
A Refers to Argon
Al Refers to Argon ions
AN Refers to neutral Argon atoms
e Boundary layer-free stream conditions
H Refers to Helium
N Conditions at nozzle exit
n Conditions taken normal to shock front
o Arbitrary reference condition
P Constant pressure condition
1 Conditions before passage of shock.front
2 Conditions after passage of shock front
3 ‘Reflected shock conditions

SPECIAL TERMS

equilibrium A gas in-which the temperature and ionization follow the
Saha equation; also thermochemical equilibrium.

frozen A gas in which.no chemical reactions occur during. the
time of interest.

large- exit Refers to-flow with né)zzle having an exit area ratio of
1204 and with-a 19.5" plate inclination.



-

- r
L RGP v \ PRSP SR A

-

small exit

transport
parameters

transport
properties

very high
enthalpy
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Refers to flow wit}}) nozzle having an exit area ratio of
147 and with a 9.5~ plate inclination.

The special terms defined in equations (1-14) and (1-14a)

Thermal conductivity, viscosity, and diffusion (ambipolar)

Flows with stagﬁation enthalpies in excess of 12 eV or
approximately 7000 cal/gm.
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