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ABSTRACT OF THE DISSERTATION

Detection and Estimation of an Optical

Image by Photon-Counting Techniques
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The statistical description of the photoelectric detector is

given. The photosensitive surface of the detector is divided into

many small areas,and the moment generating function of the

photo-counting statistic is derived forlarge time-bandwidth product.

The detection of a specified optical image in the presence of the

background light by using the hypothesis test is discussed. The ideal

detector based on the likelihood ratio from a set of numbers n of

xiii



photoelectrons ejected from many small areas of the photosensitive

surface is studied and compared with the threshold detector and a

simple detector which is based on the likelihood ratio by counting

the total number of photoelectrons from a finite area of the surface.

The intensity of the image is assumed to be Gaussian distributed

spatially against the uniformly distributed background light. 
The

numerical approximation by the method of steepest descent is used,

and the calculations of the reliabilities for the detectors are

carried out by the digital computer. An almost optimum intensity

estimate is proposed when the intensity of the object light is

unknown, and its statistical performance is studied. The application

of the photon-counting techniques is further discussed where

detectors are investigated for resolving two point sources with

Gaussian images.
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Introduction

An optical communication system, owing to its high

information-carrying capacity both in the temporal and the spatial

channels, is more advantageous than electromagnetic wave systems of

lower frequency. In general, the retrieval of the information will

rely heavily on prior knowledge about the field and the performance of

the detecting system. Usually the optical field at space point r and

time t is not a measurable quantity, and only its average power at

that point can be observed. A photoelectric detector, such as the

photo-tube, the photomultiplier, the image tube, or the image orthicon,

which carries the information about the optical field in the sense

that the probability of the photoelectron emission is proportional to

the intensity of the light at its photosensitive surface, plays an

important role in the optical system for the detection and extraction

of the information. For example, in observational astronomy it is

often a practice to use an image tube or a photomultiplier to detect

a star for the purpose of observation and navigation; in a binary

communication system a phototube may be used to detect a bit "1" when

a specified optical object is received.

In most applications, the background light, referred to as the

"noise", may also pass through the optical system and thus corrupt the

object light, referred to as the "signal". When the signal-to-noise

ratio is low, the observer will not only be required to detect the

optical signal,but also to seek the best strategy he can to make the

decision whether there is only the noise or whether the object signal

is also present. One way to observe the optical field by using a

1
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photoelectric detector is to count the number of ejected photoelectrons.

That is, as the photosensitive surface of the detector is divided like

a mosaic into many small equal areas, the set of data can be obtained

from observing the numbers of the photoelectrons ejected from each

such area during the time interval (0, T). Because of the stochastic

nature of the optical field, each of the observed data will be a random

variable. To make decisions, detection theory and the concepts of

statistical hypothesis testing can be applied when the object signal is

specified. If there are also some parameters of the object signal

unknown, the estimation of such parameters as well as the detection

must be carried out. In this thesis we will discuss the basic binary

detection and single parameter estimation of an optical image and some

of their applications in optical communication systems by using

photon-counting techniques.

A point source, at a known location, emits incoherent

quasimonochromatic light of given spectral density and is focused on

the photosensitive surface of a photoelectric detector. Its

electromagnetic field (1) , which is spectrally pure, is assumed to be a

stationary, spatio-temporal, circular Gaussian random process. A

brief description of the image formation and statistical description

of the photoelectric detector will be given in Chapter I. As the

observation interval T is much greater than the reciprocal of the

-1
bandwidth W , the distribution of the number of photoelectrons ejected

from a single small area of the photosensitive surface, discussed by

Mandel (2 ) and Helstrom (3) , will be derived in this chapter, following

Siegert , and it can be approximated by a Poisson distribution



function. The derivation will be then extended to the approximation

that the numbers of photoelectrons ejected from the different small

areas of the surface will be Poisson distributed and statistically

independent from each other. The moment-generating function (m.g.f.)

of the statistic, which is the sum of the number of photoelectrons

ejected from many small areas as these areas become infinitesimally

small, will also be discussed.

When the optical signal is specified, the simple binary

hypothesis tests can be used. Two important strategies, Bayes and

Neyman-Pearson, will be briefly described in Chapter II. The optimum

statistic based on the likelihood ratio and its m.g.f. for the

spatially varying optical signal, discussed previously by Helstrom(5)

will also be given. The performance of the ideal detector, in the

absence of the background light, will be discussed,and its detection

probability will be calculated for a preassigned false-alarm

probability. When background light also passes through the system,

only an approximate form of the distribution can be used. Because of

the complexity of the m.g.f. of the statistic, a Gaussian approximation

was suggested by Helstrom (5 ) . When the signal-to-noise ratio becomes

large, the Kth order cumulant of the statistic increases as K increases,

and the Gaussian approximation is not valid. Farrell (6 ) recommended

the gamma distribution approximation. We have used the method of

steepest descent to approximate the distribution with a uniform

asymptotic expansion series following Rice , as also discussed by

Daniel (8 ) . The performance of the optimum detector has been



investigated with a Gaussian image and uniform background light, where

the detection probability at preassigned-values of false-alarm

probability, and the average error probability will be calculated by

using the digital computer. As the signal-to-noise ratio is small,

the optimum detector can be approximated by the threshold detector and

will be also discussed. Besides the ideal detector, which registers

the locations of the ejected photoelectrons from the surface, a

simple detector, which observes the total photoelectrons ejected from

the surface without dividing it into many small areas, will be also

discussed. The performances of both the threshold detector and the

simple detector will be investigated with the Gaussian image and

uniform background light. Comparison between these three detectors

will be made with the evaluation of the average error probabilities

and of the detection probabilities at preassigned values of the

false-alarm probabilities.

When the intensity of the point source, which is located in

the field of view, is unknown, the observer must also estimate the

intensity of the image simultaneously if he makes the decision that

the optical signal is present. Since the observed data are a

set of random variables, no two experiments will yield the same value

of the intensity estimate even though the true value of the intensity

is the same in both. The most one can hope for is that the estimate

will be close to the true value of the intensity in the sense of "on

the average". Two most important strategies, Bayes and

maximum-likelihood, will be discussed in Chapter III. The intensity

estimate, derived from the Bayes strategy, which has been discussed
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also by Middleton and Esposito (9 ) , will be investigated with a quadratic

cost function where the prior probability density function (p.d.f.) of

the intensity will be assumed to be a gamma distribution function.

When the signal-to-noise ratio is not too weak, the Bayes estimate of

intensity will be approximately equivalent'to the maximum-likelihood

estimate. An almost optimum estimate therefore will be proposed,and

its statistical performance will be investigated with a truncated

Gaussian or a parabolic image. The expectations of the estimate will

be calculated by the digital computer at different values of

parameters such as the duration of the observation interval and the

radius of observation area, all at a preassigned value of the

false-alarm probability.

In Chapter IV, we will further discuss some applications to

optical communication of the photon-counting techniques. For example,

the ideal detector derived from the likelihood ratio given in Chapter

II can be applied to resolve two point sources with equal radiant

power at known locations from a single point source with twice the

power located between them. The m.g.f. of the ideal detector and its

cumulants will be given. Since the m.g.f. of the ideal detector bears

a complicated form with double integration,we will not practice the

numerical calculation though it can be carried out by the digital

computer. Instead, the ideal detector for detecting a bit "1" when

light from a point source located at x is received or a bit "0" when

a light from a point source located at -x is received will be

investigated numerically in the absence of any background light. A

Gaussian image will be postulated, and the calculation of the error
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probability, which is dependent on the separation distance of the

point sources, will be carried out. Two more detectors, the simple

detector that counts the total number of photoelectrons ejected from

half of the surface of the photoelectric detector and the counting

comparator that compares the numbers of photoelectrons observed from

the upper and lower half-surfaces of the photoelectric detector, will

be also discussed,and their error probabilities will be evaluated.

As the background light also passes through the aperture, the average

error probabilities of both the simple detector and the counting

comparator will be calculated with a finite square observation area.

Since the performances of the detector for detecting binary bits will

also depend on the prior knowledge about the locations of the images,

the effects of mislocation on the ideal detector and counting

comparator will be discussed.
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Chapter I Image formation and photon-counting statistics

In this chapter, the general terms such as intensity, co-

variance functionand point-spread function in image forming and

processing will be discussed. The optical field v will be considered

as a complex circular Gaussian stochastic process which is stationary,

ergodic and spectrally pure. In other words, the process can be

described by the complex random functions of space r and time t,

V1 ,(rt) and V2 (,t), where V1(r,t) and V2 (r,t) are the real and

imaginary parts of the process. The statistical description of the

photoelectric detector will be given. When the observation time T

is much greater than the reciprocal of the bandwidth W ~ the numbers

of the photoelectrons ejected from different small areas of the

photosensitive surface will be proved to be Poisson distributed and

statistically independent of each other. The moment generating

function (m.g.f.) of the photon-counting statistic will be derived

in a general form and discussed.

8



Image formation when diffraction theory is applied

The diffraction theory of image formation has been largely

used to describe imaging systems in which the process is considered

both linear and spatially stationary. The basic elements for an

imaging system are the luminous object o, aperture A (for example,

a lens) and image I located in the planes U, A, R respectively as

shown in Fig. 1, where zI and z2 are the distances of the object

plane U and the image plane R from the aperture A.

U . A R..

z1 Z z2

Figure 1 Image formation system

The optical field v at the point Q(,zl) of the object plane at time

t is assumed to be linearly polarized and quasimonochromatic and can

be characterized by

v( ,zl,t) iu VQ-,z 1 ,t) e o (1.1)
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where

V(u,z 1 ,t) = Vl(u,zl,t) + iV 2 (u,z 1 ,t) (1.2)

is the complex amplitude of the electric field and Vl(,zl,t),

V2(u,zl,t) are its real and imaginary parts, which are Gaussian ran-

dom processes . . is the angular frequency at the center of the

object spectrum. "RR" indicates the real part of the analytic signal

in t
V(U,Zl,t) e o . As the distances zl and z2 are much greater than the

wavelength of the light, the complex amplitude V(r,z 2,t) at point

(g,z2) of the image plane R at time t due to the object light can be

expressed (2 ) as

V(r,z 2 ,t) = fV(,zl,t) K(,r) d u (1.3)

where K(u,r) is the amplitude point-spread function describing the

propagation from the object plane to the image plane. o is the area

of the object.

The instantaneous intensity at any point (x,z) of an arbi-

trary plane X away from the aperture with a distance z and at time t

is defined by

I(,z,t) = V(-,z,t) V (x,z,t) , (1.4)

where V (g,z,t) is the complex conjugate of the amplitude V(x,z,t),



which is not directly measurable; the observable quantity is the

ensemble average intensity defined (3) by

<(,z,t) = (V(gz,t) V* (,z,t)) , (1.5)

When the process is also ergodic, the ensemble average is equivalent

to the time average through the interval (-T,T) as T - m.

The field is normalized so that the instantaneous power

density at point (u,zl) of the object plane at time t is

SIV(,zl,t)12, and the complex covariance function between the complex

field at point (ui,zl) and the complex-conjugate field at point

(Uj,Zl) of the object plane at times ti and t respectively is defined

by

(1t i : z <v(iz ,t i ) V jZl,j) (1.6)

(1.6) is known as the complex autocovariance function(; it is pro-

portional to the mutual coherence function (5 ,6) with a factor

in (t -t )e 1 o i . ~ iLi,tl,tl:zl) is the average power density at point

(ui,Z1 ) of the object plane along the direction z. For an optical

system that can be approximated by only considering the paraxial rays

and has small bandwidth W such that W << o, the property of the

spectrally pure light is characterized by Mandel (7) in such a way that

the superposition of light beams will not affect the spectral distri-

bution; the covariance function from (1.6) is then reducible to the
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product of two simpler functions as

r(uiu ,t ,t :z = u ,zl) X(t - tj) , (1.7)

where ( uj,j,zl) and X(ti - tj) are the complex spatial and temporal

coherence functions(8) In general X(T) is normalized so that

X(O) = 1 and X(T) = X (-T) for real power spectrum (T is real). The

ensemble average intensity from (1.5) can also be written as

(I(,z,t) = 2r, ,t,t:z) , (1.8)

which is the variance of the process V(,z,t) or the sum of the

variances of the two independent processes VL(X,z,t) and V2 (x,z,t)

at point (,z) of the plane X and at time t.

As the complex amplitude V(U,zl,t) is defined to be zero out-

side the object o, (1.3) can also be expressed by a convolution

equation (3 ) for the paraxial approximation,that is

V(-,z 2 ,t) = d2 u V(u l,t) K - ) . (1.9)

-G -00

The average intensity a't point (r,z2 ) of the image plane due to the

object light according to (1.5) is

<im(rze2't)> <V(r,z2,t) V (r,z2,t)>
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- 2 d 2 u d2

r,(ui j,t,t:zl ) K(r-u) K (r-uj) (1.10)

when (1.6) and (1.9) are used. rI ,uj,t,t:zl) is the covariance

function between points (!u,zl) and (u,zl) of the object plane at

time t. As the light is assumed to be spectrally pure, the average

energy received within the small area AA of the image plane because

of the object illumination during the observation interval (0,T) is

given by

AE = d2r f dt T(, ,tt:z2)

T d21 f d2 ui f d2

S 'jz ) K(d- ) K(r-u) )

as (1.6), (1.7) and (1.9) are used.



Intensity representation of light from an incoherent object

The average intensity at point (r,z2 ) of the image plane and

at time t due to the coherent object illumination can be expressed by,

(1.10) or can also be written as

(im~~,z2,t)>= <fJK(r-ui) Vui,zl,t) d 2  2) . (1.12)

-D -CO

For an incoherent object, the spatial coherence function from (1.7)

can be defined (8 ) as

-2
Q zl) = ko 2 B () 6 ( (1.13)

where B(i) is the radiance so defined that BQ(i)/47 is the power emit-

ted per unit area per steradian in the direction z normal to the object

plane. The radiance B(u.) is of limited extent. Here ko= %o/Cowith

Cothe velocity of the light, and 6(u) is the two-dimensional Dirac

delta function. The average intensity given by (1.10) can be

expressed in terms of the radiance B(ui) as

-2111(2 2
<lim(-r,2,t) > =.2nko d2 K-ru ) K (r- )

--CO -z 2  -O -D CO0

S -2Zi -u d2i (1.14)
-O -O1

14
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where S(--) = (K-, i ) 12 is defined as the incoherent point-spread

function. Thus we can see from (1.12) that for a coherent object

illumination the imaging system is linear in complex amplitude.

However, for an incoherent object the imaging system is linear only

in intensity as given by (1.14).



The statistical description of a photoelectric detector

When the photoelectric detector is used for image detection,

the photosensitive surface--for example, the surface of a photo-

multiplier--will be placed at the image plane. The output of the

illuminated photodetector carries information about the radiation

field in the sense that the instantaneous probability of the photo-

electron emission is proportional to the classical instantaneous

intensity IV(r,z2 ,t) 
2 of the light as long as the intensity of the

light is not so strong that the photoelectron emission cannot be

described by the first-order perturbation theory. The output of the

detector is a sequence ft.) of time-instants of absorption-emission

phenomena. These instants fti) are random and constitute a point

process. If we observe this process for a fixed time interval

Ct,t+T], a total number n of photoelectrons will be ejected from the

area A of the photosensitive surface. The sequence tl,t 2, ... ti

of instants when the photoelectrons are emitted can be written

symbolically as fti). When the total energy received from that area

A during the interval [t,t+T] is given, the probability that n

photoelectrons are ejected is a Poisson function:

P(n XT (t)) = (T(t)) n exp(-XT(t)) / n! (1.15)

where

16
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t+T

T(t) = IV(rt 1 ) 1  dt1 dr (1.16)

A t

is the average number of photoelectrons and can be predicted if the

coefficient a is given. a is proportional directly to the quantum

efficiency and inversely to the energy hQ/21r of each quantum of light,

where h is the Planck's constant and Q is the angular frequency of

the field. V(r,t) is the complex amplitude of the light field at the

point r of the photosensitive surface at time t. Since V(r,t) is a

stochastic process, so is the number X (t). The probability for n

photoelectrons in any counting interval [t,t+T] can then be expressed

only by the ensemble average(10) of the conditional probability

p(nIXT(t)). That is,

Pn(T,t) = (X(t))n exp(-X(t)) / n!> . (1.17)

The derivation(11,12) of (1.15) is well known and will not be given

here. The operation of the expectation on the probability from (1.17)

makes it depart from the Poisson distribution. For a stationary

process, the ensemble average is independent of the initial time t.

We will use the expression P (T) to replace P n(T,t) in (1.17) from

now on.



Distribution of the photoelectrons from a single small area when the

time-bandwidth product TW >> 1

When linearly polarized light impinges normally on the photo-

sensitive surface, the probability that a number ni photoelectrons

are emitted from a small area dAi centered at point r. during an

interval (0,T) can be written according to (1.17) as

iP *(T) X Ki 1 expFx) > (1.18)

where

1 ff V,t)12 dt d 2 r'i

= f (r) IV(r,t) 2 dt d2r (1.19)

0 A

with fir) as the function defined by

f (r) = 1 , c I dAi

= 0 , r dAi  
(1.20)

A is the entire area of the surface. Ai depends on the coefficient

a, the size dA and the amplitude IV(r,t)l e dAi . The distribution

of the random variable ni can also be derived from its moment

generating function (m.g.f.),which is the ensemble average of the

conditional m.g.f. with given Ai . That is,

18



h (s) = KEexp(sI) I >

Co n -

EC exp(sni) X ie / ni t >
n i=03-

<exp[Xi (es-l )] ) . (1.21)

Now

T

X (es-l) = a Jf (x)(es-) IVQ,t)I2 dt d 2x
0 A

= Tf J Kixl 2 :tl,t2 ) Vlt )t 2 ) V ) V* 2 't 2  dtldt2d2  2 ,
O A A

(1.22)

where the kernel

K i(xx2:tlt2) = Fi(s:-l) 6(-xl- 2 ) 6(tl-t 2 ) (1.23)

and

F (s:xl) = a (es-l) fi Y1 ) . (1.24)

The m.g.f. from (1.21) can be worked out as in the problem of finding

the m.g.f. of a quadratic functional of a circular Gaussian random

process (4 1 3 )
. One can show that hi(s) can be determined from the

expression
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hi(s) exp du L t,x, t:-u) dt d (1.25)
0 0 A

where LClx,tlx 2 ,t2 :u) can be solved (4,14) from the following integral

equation

L(l,tl, 2 ,t 2 :u) + 2u f Td2 1 d - 2 dhl dh 2
0 0 A A

Ki(XY 1 l:tl,hl) r(Z1 Y2,hl,h2) L( 2,h2 Lx2,t2:u)

2 f Ki (x 1: t l h )  ~  2 ,h l t 2 ) d2.1 dhl (1.26)

0 A

For spectrally pure light, the autocovariance function can be written

according to (1.7) as

(xlx2,tlt2)= 1x,52) X(tl-t 2 ) (1.27)

Thus, substituting (1.23), (1.24) and (1.27) into (1.26) and solving

for L(l',t1 2 ,t2 :u) recursively we have

L(xQ,t 1 ,X2 ,t 2 :u) = 2Fi(s:xl) 1 1x 2 ) X(tl-t 2 )

-u 22 d22 dh 2 Fi(s:x) ~, 2) X(tl-h 2)

0 A

F (s:2) (X2 2) X(h2-t2)
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+ u2 23  d Y2 d 3 dh2dh 3 Fi(s:x 1 "Y 2 )

0X(tl-h2 ) Fi(S:2) 2' 3 ) X(h2-h 3 Fi(s:3) 3 2 ) X(h3-t 2 )

+ ..... (1.28)

By substituting (1.28) into (1.25) we can write the logarithm of the

m.g.f. as

n hi(s) = 2 X(0) T F(s:) ((,x) d2x

+(s:x) i:1i d2x d211

A A
1 2 F 42 2

+(2T) ( j 2 F(s:x) F(s) i(s2 'y V ) d 2 2x)

2 A A

A ( 2 T)3  F(s:x) Fi(s:. 11) Fi(s:- 2 ) *_'/t I ) 4xi 2 ) *- 2 x)

2 2 2 -312 2 1d 2 d d 2 T 0 X(t-hl) X(hl-h 2 ) X(h2-t) dtdh1dh 2

T TS (2T) A A. Fi (s:x) Fi (s: 1 ) ' ' Fi ( s : £-1 , l'~ I11 2

* * d 2 d2 
1  2 £- J t X(t-hl) * * X(h,-1 -t)dtdhl0 0

S.d hl +..

2 X(0) T f Fi(s:Z) (x,x) d x
A
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+- E ( 2T )  f Fi (s:x)Fi(S:yl) " " Fi(s: -) 9IL1 2
£-2 A A

2 2 2
d ., 1,x) d 1 ,- P , (1.29)

where

p T X(-hX((h 2 -h 3  ) X (h -hl)dhdh . . . dh£
0 0 0

S 2 .(1.30)

Now the bandwidth W is defined(15) by

W = Ix(O)1 2 [ IX(t)I 2 dt]- 1 = [ Ix(0) 2 dn/2] - 1  (1.31)

as X(O) =

where

x() X(t) e - it  dt (1.32)

is the temporal spectral density of the complex field at the image

plane and is real so that X(T) = X (-T). We now let

h1 - h2 = t ,

h2 - h3 = t 2

. .. . .
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h£_ 1 - h = t _ 1 ,

h - h1  = -(tl + t 2 . . . t-) * (1.33)

1
When T >> we can extend the range of integration to (-m,m) and by

changing variables we can write (1.30) as

1 .~ 2  tt t . X(-tl-t2 .  _•t£ 1t** X(tl X(t2) * X(-t1-t2 I-1)dtldt2Adti-l

(1.34)

According to the convolution theorem (16 ) we have

f 0X(tl) X(-tt 2 . . . -t£_ I ) dt I

0 x2(R) exp[-iQ(t2+t3+ . . . t-1)] da/27 . (1.35)

By substituting (1.31), (1.32) and (1.35) into (1.34) we have

T- +l x2 (2) d2 SI X(t2) X(t-1

exp[-i(t2+t3 . . . t-1)] dt2  . dt1

-+1 x (1.36)

, (TW) - + 1 RI . (1.36)
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where

R di ff2 S -1 (1.37)

As WT >> 1, we can approximately write x(Q) N for 0 c (-eWrW)

and x() = 0 otherwise. Thus RI  - 1 is finite and P 0 for

Z > 2. For spatially slowly varying light and small area dAi we

define

-- 2
n i = 2aT f 2,3x) d2x

dA1

=2aT x x ) dAi  (1.38)

as the average number of photoelectrons ejected from the small area

dAi centered as x i. Since for the spatial coherence function

i'j)( i for all i # J,

I . f . Fi(s:x) , 1)Fi(s:l1 ~ 1 2)

22 2
F i(s: El E_1, ) d xdl . . . d2x) d xdi

s a ng n , y 1. ) (1.39)

Thus as long as n i defined by (1.38) is not too large, all the terms
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in (1.29) for Z t 2 are negligible by comparing with the first term

as WT >> 1. That is

an hi(s) _ ni(e-i) , (1.40)

which is the logarithm of the m.g.f. of a Poisson distribution
(17)

with mean ni.



Distribution of the photoelectrons from two small areas for TW >> 1

When the energy received by each of the two small areas dA1

and dA2 centered at x and x2 is given, the numbers of photoelectrons

n1 and n2 ejected from these areas during the time interval [t,t+T]

are Poisson distributed with the given mean values 'i for i = 1, 2

defined in (1.19) and are statistically independent. The joint m.g.f.

of the random variables nl and n2 can be derived from the expected

value of the conditional m.g.f.:

h12(1,s2) E[ e 1n ,s2 X i=1,2]>

(exp[X 1 (e 1-1) + X2(e -21)] > (1.41)

where now

1 2

1l(e-1) + X 2 (e -1)

S dt d Z[fl(x)(es-1)+(2() (e -1)]V(x,t) 2

0 A

f f f dtdt 2d 2ld x 2K12 1' 2 :tl,t 2)V(xl,tl)V* x2 ,t 2)

(1.42)

where fix) for i 1 or 2 is given by (1.20) and

26
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K12 x1' 2 : tl,t 2 ) = F12 (s1 ,s2 : 1 )6 ( l2 2) 6 (tl-t 2) , (1.43)

with

B 2

F1 2 (s1 ,s2: 1 ) = cfl1 l) (e -l)+af2Q) (e -1) . (1.44)

The m.g.f. can also be expressed in the form of (1.25) and the

following integral equation must be satisfied.

L1 2 - 1 ,tl 2' t2 :u)+2u f ' F 2( s1 s2 1 ) ( 1 ,tl 2,h2)
0 A

SL12 2,h2 d2, t2 :u)d 2 dh2

tF1)2(S 'S2 1 i'tl x2' t2). (1.45)

The kernel L12Ql,t,x 2 ,t2 :u) is solved for recursively and substi-

tuted into the joint m.g.f. as described before where K J(l,S:tl,t2)

and Fi(s:x I) in (1.23) and (1.24) are now replaced by K1 2( 1 ,x2 :tl,t2 )

and Fl2(Si,s2 :1). We have

£n hl2 (s1 ,s2) = 2X(O)T F12(s1 ,s2:x)(xZ,x) d
2x

+ (2T) 2 d2 d2  F 2 (s 1 ,s 2 ) 1 2 (s 1 ,s 2 1

*• 'x'l1 1V) P2
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+ (2T) d2 xd2 d2 2 F1 2 (s 1,s2 : F 2 (s 1 ,s 2: 1
A A A

+ .... + (2T) . . d .. d2 -1 F2(s1,s2 x)
A A

Fl2(1S2 1 2 (s 1 ,s 2: 1 )F~,f1) 1p ) 2 1 1 . ,x)2 P1

(1.46)

where Pk for £ r 2 is given by (1.30). By the same argument, that is,

when the average numbersni defined in (1.38) for i = 1, 2 are not too

large and WT >> 1, (1.46) can be approximated by the first term or

kn.hl2(Sls2) - 2Tf FI2 ,s2 x)( ,Z) d2 x

S2aTdAl 1 xl,l ) (es-1) + 2aTdA2  x2 x 2 )(e -1)

1 2
= nl(e -1) + n2(e -1) . (1.47)

Si
Since £n hi(si) = ni(e -1) for i = 1, 2 as given by (1.40), this

implies that the joint m.g.f. h1 2 (s1 ,s 2) is the product of the m.g.f.'s

h (s ) and h2(s2) as TW >> 1. In other words, the number of



29

photoelectrons ejected from areas dA1 and dA2 during any observation

interval are Poisson distributed and statistically independent of

each other when the time-bandwidth product is large.



Distribution of the sum of the photoelectrons from a large number of

small areas when WT >> 1

When there are a large number N of small areas dA for

i = 1, 2 . . . N, the distribution of the sum of the photoelectrons

from these areas can be derived in the same way just described as for

N = 2. For generalization, we discuss the distribution of a statistic

given by

N

Y = ni x ) , (1.48)

i=1

where x i is the center of each small area dA where ni photoelectrons-i*

are ejected. i(x1) is a weighting function to characterize the

location of ni. For example, when B(xi) = 1, y is the sum of the

photoelectrons ejected from the N small areas. As N is very large

we will then pass to the limit as dAi + 0.

The m.g.f. of Y can be written as

N

h (s) = &exp s ni ) J

r (1.49)

where
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j i(e -1)
im1

i a j (es i -1) /V(x,t) 12 dtd2

i=l 0 dAi

Sa (e -1i) fi( ) IV ,t) dt d 2x

i=1 0 A

J JTJ , L-~(x 1 2 :tl,t 2 ) V(xl,t) V* 2 ,t 2 )

0 0 A A

2 2
*dt dtdt2d z1d x2 . (1.50)

Now

~ (El'2:tl't2)= N(s l)6(l-X2)6 (tl-t 2 ) (1.51)

rwith

. (s ) a-(e i1) fi Q )  (1.52)
i-i

and fi i 1) is defined in. (1.20).

We must first solve the integral equation

L0 5,tl ,2,t2:u) + 2u fTf FN(s x) ,: 2)X(t2-h2
0 A
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*L0  2 ,h2 %x2,t2 : u ) d 2 dh2

= 2 FN(Sl) lX 2 )X(tl-t 2) . (1.53)

Now

S N(sx)4(x,) d2x

a (e -1)( dxi=1 
A

a x (es -) i) dAi , (1.54)
i=1

as Q((,7) is slowly varying spatially. When N is very large we can

pass the limit as dAi + 0. (1.54) can be written as

d 2
A FN(s,) (x,2) d2

a~ A (esB()-l) (x( d2x (1.55)

The logarithm of the m.g.f. can be obtained when the kernel

L0 l,tl x2,tl:u) is solved first recursively from (1.53) where (1.54)

is substituted. We have

L0(ltlZ2,t2:u) = 2 N(Sl) (-xlX2) X(tl-t2
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22 au (s , fT1 dh2 d 2

*(e -1) Ir1'2 ) 2*2,2) X(tl-h2) x(h2-t2)

T T

+ 2 (au)s2 (s f)f f dh2 dh3 d 2 d2 3

(e(2 -1) (es ( 3)-1) (-l Y-2) (Y2Y3) (3IxZ2)

x(ti-h 2) x(h2-h3) X(h3-t2)

+ ...... (1.56)

The logarithm of the m.g.f. can be derived as we pass to the limit

dAi + 0 where (1.55) and (1.56) are used.

£n hy(S) = o du Lo(x,t,x,t:-u) dt d2

2aX(0)T (e" -1) Q e) d2

A

1 2f d 2 2
+ (2aT) A d 2

-(e 1) - ' (es (2 -) .(1) l'2) (Y2') P2  + * * * .

+ (2aT) . d 1 d22 d



34

" (es i) i i 2) . (1(i ) P

+ . .. . . (1.57)

where P for k > 2 is given by (1.30). As WT >> 1, P + 0 for all

£ > 2, and by the same argument used in (1.39), all the terms in

(1.57) except the first term become very small. Then we can

approximate

in h (s) = 2aT (esB)-l) # (,x) d2 x , (1.58)

or the m.g.f. of the statistic Y can be written approximately

hr(s) exp %2aT (eB)-'-l) (,) d x (1.59)

where the mean and variance in general are

E[Y = 2aT B() x) d2x

Var[Y] =  2aT 82 ) ( x  ) d2 (1.60)

For -B) = 1, (1.59) becomes

hi(s) exp [2aTj ((x,) d2. (es-l) (1.61)
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which is the m.g.f. of a Poisson distribution with equal cumulants

2aT j ,x) d x for all orders.

On the other hand, as we expand

(es"01l) = (s())m / m! , (1.62)
m=1

if

f 2 2(x) (x,) d2

for m 3 , (1.63)

we can further approximate (1.59) as

h(s) exp 2aT s 8) ( 2x

+ 2aTf s20 ( ' d2 (1.64)
A

which is the m.g.f. of a Gaussian distribution.
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Chapter II Binary detection of an optical signal at a

photosensitive surface

Two important criteria, Bayes and Neyman-Pearson, used in the

simple hypothesis test for binary detection will be briefly described.

The optical signal is detected by using the photoelectric detector.

The photosensitive surface of the device is divided like a mosaic

into many small equal areas so that the observed data n are the set

of numbers of photoelectrons ejected from all the small areas. The

optimum statistic (1 ) obtained from the likelihood ratio in the presence

of the uniform background light will be discussed and its moment-

generating function (m.g.f.) will be derived. Because of the com-

plexity of the m.g.f., the distribution of the optimum statistic will

be approximated by the method of steepest descent (2 ) and compared with

two other approximate forms, the Gaussian and gamma distributions. The

detection of the optical signal in the absence of the background light

will also be discussed. Two other detectors, the threshold and the

simple detector, will be studied. In order to investigate the per-

formances of these detectors, a Gaussian image will be postulated and

the false-alarm probability, the detection probability,and the average

error probability will be calculated.
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Binary hypothesis test

In a communication system when a set of data b = bl,b2...b N }

is observed, the decision between binary hypotheses (34) H0 and Hi,

where H0 is the hypothesis of background noise alone and H1 is the

hypothesis that a signal is also present, can be viewed as a rule for

dividing the total N-dimensional observation space E of the data b

into two regions, E0 and E1 . Hypothesis HO will be chosen if the

observed data J fall in the region E0; H1 will be chosen otherwise.

The joint conditional probability density function (p.d.f.) P(bHk)

under Hk for k = 0 or 1 is to be given,and the likelihood ratio defined

by

P(b IH1)
A0 = p IH)  (2.1)

will be calculated. If the Bayes criterion is used, a decision level

defined by

C - Coo ]10 00
AO (1 -)[Co - 1 (2.2)
0 U-OLc0 1  C11

can be evaluated, where the prior probability E of hypothesis HO and

the costs Cij of choosing hypothesis Hi when Hj happens to be true

(i,j = 0,1), are given. The regions E0 and E1 are divided in such a

way that Eo contains all the data for A(b) < A0 and E1 for A(b) > AO.

The false-alarm probability and the detection probability are defined

as

38
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Q Pr [A~C) > AolH 0 ] = P(IHo)db

Q = Pr [A) > AO HI =P(bjH)db . (2.3)

When there is no information about the prior probability C and the cost

functions, the appropriate way to make the decision according to the

Neyman-Pearson criterion is that the false-alarm probability Q0 will

not exceed the preassigned value. The decision level A0 must be solved

from the expression of Q0 by (2.3),and the hypothesis H1 or H0 will be

selected according as A(b) > A0 or A() AO .

If b is a set of discrete random variables, the likelihood ratio

A( ) defined in (2.1) will be the ratio of the probabilities P(IH1)

and P(bIH). When the Neyman-Pearson criterion is used, randomiza-

(3)tion must be applied. That is,a probability f of choosing H1 must

be assigned at A(b) = A0 so that the false-alarm probability

Q0 =  Pr[A()>A0 1HO] +fPr[A()=A O JH0]

= P( P HO) + fP( :A()=AoIH) (2.4)
A(b)>A0

equals exactly the preassigned value. For given Q0, both A 0 and f can

be solved from (2.4) and will be discussed later for Poisson distribu-

tion. Hypothesis H1 or HO will be chosen for A(b) > A0 or A(b) < A0.

The detection probability for the correct decision can be evaluated in

the same way after the decision level A0 and probability f are

obtained. That is,
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d (b)>A P(bI1 1) + fP b:A) = A0 1H1 ) (2.5)

The average error probability for each decision is defined by

Pe 0 + (1-)(-Q (2.6)

If the relative costs C10 - C00 and C01 - C11 given in (2.2) are equal,

the hypothesis Hk with greater posterior probability P(Hk.b) for k = 0

or 1 is always selected when the Bayes criterion is used and the error

probability Pe given by (2.6) is minimized (3)

The reliability and error probability are used to measure the

performance of the detectors. One detector is said to be better than

the other detector if for a fixed value Q0 , the former has higher de-

tection probability and hence smaller error probability.

The operation of the hypothesis test for binary detection can

best be described by the block diagram on the next page. The selection

of the Bayes or the Neyman-Pearson criterion depends on the information

about the system we have and its application. The block labeled

"computer" implies that certain numerical calculations will be involved

so that the decision level AO, the reliability (Q0Qd) or the error

probability P can be calculated.e
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given ;,
.(c j Bayes

Computer ' Pe

given Neyman-

Q0 Pearson A0

Level Dis- 0 ,

given .criminator AHb>AO HI

data Ajb0
Likelihood

P(bjH k )  ratio

Figure 2 Block diagram of hypothesis test

for binary detection.



The ideal photoelectric detector

When a luminous object is located in the field of view of an

optical detector and focused on the photosensitive surface, the

photoelectrons emitted from the surface will be proportional to the

intensity of the object light, which is a fluctuating function of

time as discussed in Chapter I. If there is also background light

incident through the aperture, the information carried by the object

light will be corrupted. As the intensity of the object light is not

much stronger than the background light, in order to decide whether

a certain luminous object is present or not, we can use strategies

according to the hypothesis tests which we have just discussed. The

basic elements of the optical detector have been shown in Fig. 1,

where the photoelectrical emission surface of the photo-tube is

placed in the image plane and is divided like a mosaic with a large

number N of small equal areas dAi as shown in Fig. 3.

dA
i x2

Figure 3 Photoelectrical emission surface
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The received data are the values n = fnl,n 2 . . . nN) obtained by

measuring the numbers ni of photoelectrons ejected from each area

dAi = dA for i = 1, 2 . . . N during the interval (0,T). Since the

background light in general also enters the aperture, the 
observer

must choose between the two hypotheses: (HO) only background light is

present,or (Hi) object light is also incident through 
the.aperture in

'addition to the background light. When the observation time T is much

greater than W-, the numbers ni of photoelectrons emitted from each

area dAi under hypothesis Hk (k = 0, 1) are Poisson distributed and

statistically independent of each other as discussed in Chapter I.

The probability is given by

n. -n
n H ni ik / n (2.7)

i

where nik is the average number of photoelectrons emitted during the

interval (0,T) for k = 0, 1 from the ith area dAi and

nik = aTdA Ik ) , k = O, 1 (2.8)

with

Ik 6 x4) = 2k 2kxii) , k = 0, 1 (2.9)

when (1.38) is used. *k( ilj ) is the spatial coherence function under

hypothesis Hk for k = 0, 1 at point i and point xj. I ki) is the
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mean intensity at point x:" The joint conditional probability for

observing the data n under hypothesis Hk for k = 0 or 1 is

N

Pn(T Hk) P n, (TjHk)

N -

n -n
TT ni e ik/ n (2.10)

The likelihood ratio defined by (2.1) becomes

A. = Pn(TH 1) I n(TH 0)

N ni
n 1E. + T5
i e -n  + h (2.11)

i=1 nio

and will be compared with the decision level AO according to the Bayes

strategy or Neyman-Pearson strategy. Hypothesis HI will be chosen if

An > AO,and H0 will be chosen otherwise. It is also equivalent to use

the optimum statistic

N

g ni £n i - (2.12)
i=1 10O.

since A[n is a monotone function of g which is obtained from the

logarithm of the likelihood ratio A[n). The decision level of

this statistic is given by
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go =  £n A0 + AN , (2.13)

where

N

AN = (nl- n ) (2.14)
i=1

is the total average number of photoelectrons emitted over the entire

area of the surface when the signal field alone is present. Thus we

can compare g with g instead and select H1 if g > go and HO when

g go. When Neyman-Pearson criterion is used, the false-alarm

probability Q0 is preassigned. The distribution of .the statistic g

under H0 must be known so that the decision level g0 can be determined

from either of the expressions in (2.3) or (2.4) as discussed pre-

viously. To examine the reliability or the error probability of making

each decision we must also know the distribution of the statistic g.
C

The mean intensity Ik xi ) given in (2.9) can be written as

Ik xk ) = I0 x.) + k I (xi)

k = 0, 1 • (2.15)

where IOC(i) is the mean intensity due to the background light. In

most cases, such as thermal background light, IO~i) can be assumed to

be spatially invariant for all areas dAi over the surface. Is(x i ) is

the mean intensity due to the object light in the area dAi . Therefore
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we can write

I0 xi) b  for all dAi

-IQs) S= s  x) i 1, 2 . . . N. (2.16)

where IS  f Is(x) d x  is the total power transmitted to the

surface from the object and y(xi
) is the weighting function to

characterize the distribution of the power at point x.. A is the

entire area which is divided into N equal areas dA.

We also define a function

H ~i) = nil/ ni0

= [Io ) + Is i) / o(i)

= 1 + IS Y (i) /b

= + D2 uxi) (2.17)

2

where D2 is called the signal-to-noise and is the ratio of the total

average number aTIS of photoelectrons ejected from the surface by the

object light illumination to the average number aTIbAo of photoelectrons

ejected from a finite area A of the surface by the background light

illumination. The function ux) is only different from y(xI) by the
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factor Ao ,that is u(i) = AoY(x). Ao is arbitrarily defined. The

statistic g from (2.12) can be written as

N

g = ni n H(i) , (2.18)
i=l

which is similar to the statistic Y of (1.48) with BC(x) = Ln H(xi)

as discussed in Chapter I. As N is very large, by passing to the limit

as dA -+ 0, the m.g.f. of the statistic g under hypothesis Hk as TW >> 1

can be written according to (1.59) as

hk(s) E e-sg Hk

exp [aT (e-snH(x)-1 Ik) d( ]

* exp [aTIb H kW [s)-1 d x

k-= 0, 1 . (2.19)

The logarithm of hk(s) is

Xn hk(s) = aTb Hk ) [Hs()-l] d 2 x

for k = 0, 1 . (2.20)

The distribution of the statistic g.cannot in general be obtained in
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exact form. Only an approximation can be. used and will be discussed

later.

The logarithm of hk(s) from (2.20) is differentiable for any

order with respect to the variable s,and the nth cumulant under hypo-

thesis 1k for k = 0, 1 can be expressed as

n
G k = (-1)n d n k (s)

dsn s=0

M H k ) nn H. d2 . (2.21)

In particular, the mean and variance of the statistic g can be cal-

- culated by

EIg fH aTIb Hkx kn (x) d x

Var[gIHk] = aTIb H() kn 2H(x) d2

k = 0, 1 (2.22)

If the average intensity I ( ) given in (2.16) is zero outside a

finite area Al of the photosensitive surface, that is, if

11,) = I(is ) + 10(i) for xi C Al and Il i ) 
= I0(x ) otherwise,

then H(-i) = 1 when xi I A1 and the optimum statistic g involves only

the emission within the area Al, so that there will be a finite proba-

bility of getting no electrons under hypothesis Hk,
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Pr [g=O k] exp CaTf Ik(x) d2x

k = 0,'1 (2.23)

which is the result of (2.19) as s + *.

When Is ( ) is also spatially invariant, so is the function

H(xi). The optimum statistic is therefore equivalent to g/en C, where

C = H(xi) is constant for all i, and the statistic can be written as

N

g' n (2.24)
i=1

which is the sum of the photoelectrons from the total number N of small

areas dA. As TW >> 1, the m.g.f. of the statistic g' is given by (1.59)

with 8t) = 1 as discussed in Chapter I. g' is therefore a random

variable with a Poisson distribution.

The detector just described represents a particular way of

processing the light field behind.the aperture of the optical system

in order to choose between the hypotheses. It has been compared with

the optimum means of processing the field from the point of view of

(5)
quantum detection theory (5) . When diffraction is negligible and the

surface has unit quantum efficiency, this detector is equivalent to

(6)
the optimum detector of the image-forming light



Threshold detector

The structure of the optimum statistic is based on the

function Hx) which is a function of D2u(Xi) as given by (2.17). When

the signal-to-noise ratio D
2 is not known, the detector must be

designed for some reasonable standard value. If D2 is very small, the

appropriate thing to do in detection theory is to expand the logarithm

of the conditional likelihood ratio AL ID2 ] from (2.11) into a power

series in D2 , and the optimum statistic is equivalent to the threshold

statistic, which is based on the lowest order of D2 in that expan-

sion ( 7 ) . For detecting the image on the photoelectric surface we have

just discussed, the optimum statistic g from (2.18) can be expanded

into a power series in D 2 or

N

g = ni (-1)m- 1 [D2u()]m / m! . (2.25)
i=l m=l

Since D2 is very small and is independent of the location, we can base

the decision on the threshold statistic, which is the coefficient of

the lowest order of D2 in (2.25). We have

N

g = n iu(i) (2.26)

The m.g.f. of this statistic can be derived for TW >> 1 and is given by

(1.59) where B( i) = u(i). That is when N is very large. By passing

to the limit as dA + 0 we have

50
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h k(s) 1= E e-g Hk
hIlk -sue)2

= exp aT Ib Hkx [e-su0x-1 d2z

k 0, 1 , (2.27)

where H(X) and u(x are given in (2.17), and the logarithm of (2.27) is

£n hk(s) = aT Ib Hk(x) [e-su(x)-] d 2x

for k = 0, 1. (2.28)

The nth cumulant of the threshold statistic g6 under "k

can be written as

Gk = ( 1 )n n h ) (s) =

k n  Ok s=0

a= T Ib  Hkx) un x) d 2x

for k = 0, 1
(2.29)

and the mean and variance are

E[geIHk ] T Ib Hk() u() d 2x
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Var[gel ]H aT f k 2 ) 2 (2.30)

Since the m.g.f. from (2.27) is dependent on the signal-to-noise 
ratio

D2 only through the function HW, the distribution of the threshold

2llnotde
statistic go will not depend on D when H0 is true.



Simple detector

Instead of weighting the number ni of photoelectrons from each

area dA with a factor Zn H(xi), a simple way is to collect all the

photoelectrons ejected from a certain area Al, of the surface without

any weighting factor about the location. As TW >> 1, the probability

of n photoelectrons ejected from the area AI , under hypothesis Hk has

been proved in Chapter I to be Poisson distributed and

-n -nTk
Pn(T I Hk) = nTk e (2.31)

where

nT aTf k() d2x k 0or i, (2.32)

is the average number of photoelectrons ejected from the area Al , under

Hk,and Ik(x) is given by (2.9). The likelihood ratio of the simple

detector according to (2.1) is

A (n) = Pn(TIH) / Pn(TIH0)

n Tl -nT1 + nTO
e 2.33)

nTO

Hypothesis H0 will be chosen if A (n) < As0 and H1 will be chosen

otherwise, where As0 is the decision level,which can be obtained

according to the criterion we use. Because the likelihood ratio A (n)

53
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of the simple detector is a monotone function of n, it is therefore

equivalent to use the optimum statistic from the logarithm of A (n)

gs = n (2.34)

and hypothesis H1 will be chosen if gs > gs0 and H0 otherwise except

that at gs = gs0 a probability f will be assigned for choosing H1.

When the Bayes criterion is used the decision level gs0 of the statistic

can be determined from the likelihood-ratio decision level Aso and

-sO

gs = (Rn As0 + AnT) [Rn(1 + AnT/nT 0)] (2.35)

where AnT = nT - nTO is the average number of photoelectrons ejected

from the area A1 by the object light illumination alone and can be

calculated from the expression

An aT IS.  
Y (x ) d 2 2 (2.36)

The optimum area AI , for the observer to adopt is the area where the

detection probability is maximum for a fixed false-alarm probability or

the error probability is minimum.



Reliability and error probability of the ideal detector in the absence

of the background light

The performance of a detector can be characterized by the re-

liability, Q0 and Qd and the error probability Pe as defined by (2.3)

and (2.6). When there is no background light, there will be no photo-

electrons ejected from the photosensitive surface under the hypothesis

H0 . For both Bayes and Neyman-Pearson criteria the strategy is to

choose Hi whenever one or more than one photoelectron have been-

observed. As TW >> 1, the joint probability for observing the data

e = (nl,n2 ...nN) from the N small areas under hypothesis H1 is given

by (2.10). Since the probability of zero photoelectron emission

under H0 is 1, the likelihood ratio at n = 0 is

-N
A=0) = e s , (2.37)

where

N = aT I S  (2.38)

is the total average number of photoelectrons ejected from the photo-

sensitive surface due to the object light. For the detection of the

image when Bayes criterion is used, hypothesis H1 will be chosen at
-N

= 0 if e s > AO and H0 otherwise,with AO given by (2.2). If the

relative costs C10 - C00 and C01 - C11 are equal, the hypothesis with

greater posterior probability P(Hkn=0) for k = 0, 1 is always

55
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selected where

P(Hk k =0) = P(Hk) P (Q= I . ) / PQ=0)

k =0 or 1 . (2.39)

The minimum average error probability will be

-N
P = min(C, (1- ) e s) . (2.40)

e

In particular, when the hypotheses are equally likely

-N
P 2 e s= . (2.41)

e 2 2

For the Neyman-Pearson criterion, the randomized strategy must be used.

As the false-alarm probability Q0 is preassigned, hypothesis H1 will be

chosen with a probability Q0 when no photoelectron is emitted from the

surface during the interval (0,T). The detection probability at this

case becomes

-N

Qd =  1 - (1-Q 0 ) e s . (2.42)

Thus the error probability Pe can be calculated again according to

(2.6).



Reliability and error probability of the ideal detector in the presence

of the background light

When the background light is present and IO0) = b' the opti-

mum statistic g is expressed by (2.18),where its m.g.f. is given by

(2.19). It is not in general possible to evaluate the distribution,

which is known as an infinitely divisible distribution
(8'9 )

Helstrom(10 ) treated the distribution by a Gaussian approximation,

where the p.d.f. of the statistic g is approximated by

Nk(g) 1 exp-(g-k) /2 2 ] (2.43)
Jk 7 k k

with

gk =  E[gHk
for k = 0, 1

2 Var[gl Hk 1

given in (2.22).

The reliability of the detector can then be expressed by

the error-function integral,

Q0 = Pr[g>g 0 110 ]  = erfe (yo )

Qd Pr[g>g 0 H1 = erfc (yl), (2.44)
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with

1 -y2 /2 dy
erfc (yk) -- e / dy

Yk

yk ( 0 - gk) / ak , k 0, 1

As we have discussed in Chapter I, with the m.g.f. given by (2.19) the

distribution of the statistic g can be approximated by the Gaussian

function if only the condition from (1.63) is true. In other words,

with (x) = £n H(x) the condition from (1.63) will be satisfied if

D2 << 1. For large values of the signal-to-noise ratio D2, the

Gaussian approximation will not be accurate because the mth order

cumulant of the statistic increases as m increases. Farrell(ll)

recommended approximating the distribution of the statistic g by a

gamma distribution function. The p.d.f. of the statistic is approxi-

mated by

bk-1 -akg
Gk(g) = ak / r(bk)] (akg) k e g (2.45)

with

ak = E[glk ] / Var[glHk]

k=1, O

bk = (EE[gi]) 2 / Varglk ]
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so that the mean and variance of the gamma random variable are matched

with the mean and variance given by (2.22). Here r(bk) is the

gamma function.

The reliability of the optimum detector is then approximated

by

Q0 PCg>g 0 HO 0 80(z) dz ,

0
CO

Q P[g>g1H (z) dz , (2.46)

1

where

b -1
1 k -z

Ok(z) = (bk z e

zk akg0  k 1, O .

On the other hand, it is reasonable to use the method of steepest

descent as illustrated in Appendix A,where well-known distributions,

such as Gaussian, gamma and Poisson, have been used as examples and

good numerical agreement has been obtained, as listed in Table 3 and

Table 4.

The optimum statistic g given by (2.18) is a non-negative

random variable since the function H(S) exceeds 1 for all x. The

m.g.f. is given by (2.19). The probability that g exceeds the decision

level under Hk can be written as
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Pr[g>g 0 Hk ]  dF k (g)

go

k 0, .1 .(2.47)

and can be approximated by the asymptotic expansion series given by

(A12) in Appendix A, where Fk(g) is the distribution function 
of the

random variable g. The complex phase of the integral defined by (A7)

under hypothesis Hk for k = 0orl is

-1

k ( s ) = g0  an hk(s) + s

= g 0
1 aT Ib f Hk () (Hx) - s - 1] d 2 x + s

for k =0, 1 (2.48)

when (2.20) is used.

There is only one saddle point for this complex phase as

discussed in Appendix B, and it.can be determined from the equation

Sk(s) = 0 or

go =  aT I (H))k-s n H(x) d 2 x (2.49)

If we use the statistic

N

g = n ni- + N
1 n io0 s
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instead of the statistic from (2.12) we can derive the m.g.f. of g'

under hypothesis Hk for k = 0, 1 as

hk(s) = exp aT b [(H(x))ks-1l d2x + (s-k) N

which gives us the fundamental relation for all likelihood-ratio de-

tectors as

hl(s) = hI(s-1) . (2.50)
1 0

The saddle point s1 under H1 can be directly obtained through the

saddle point so under H0 for real values by

s1 = 8s + 1 (2.51)

The relation from (2.51) also satisfies (2.49) for a fixed value of go

for both H1 and Ho. Whether the saddle point sk for k = 0 or 1 is

positive or negative will depend on the following conditions

Sk < 0 if gO > E[g .H k

> 0 if g0 < E[glik

= 0 if g0o E[gHkl

k = 0, 1 . (2.52)
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The nth derivative of the complex phase *k(s) for n 2 under hypo-

thesis Ik is

n (s) = k(S)
k dsn

S(-1)n  0- 1 T b H x))k - s nn H() d2 x

for k = 0, 1 (2.53)

From the relation (2.51) we can have

0n(So)  = Iln(sl) , for n > 1. (2.54)

The false-alarm probability and the detection probability can be approxi-

mated (12 ,13) by using (A12) from Appendix A

Q0 = 1 - EO(g) - I0 (g0) ,

d = 1 - E(g 0) 1(g 0 ) , (2.55)

where

1 - erfc[(-2 gO k(sk)) , for Sk < 0

Ek(gO )

erfe[(-2 g gk(sk))  ], for sk > 0
0 k k fo k
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and

g) exp[g 0  k(sk)] I -2 S-1
Ik [ 9 (2) (2) sk

[2 g0  k (sk ) ]  j=0 g0 k (sk

2j n

(-s -2j+n A ,
n=0 k=0 , tj

(2) (S)

-sign (s k )  k ( (s 
)

k k 2 k(sk) ,0 k(sk

where A , sign(x) are defined in (A12) and (A10) for integers

£, n, j. If the Bayes criterion is used, the decision level go is cal-

culated by (2.13). The saddle point can be obtained by solving (2.49),

and #k(sk) and pkn(sk) for k = 0, 1 can be evaluated from (2.48),

(2.53) and (2.54) where numerical integration will be required. The

probability Q0 or Qd will then be approximated by summing the series

given in (2.55) up to the term after which the absolute values of the

terms either begin to increase or become insignificantly small. If the

Neyman-Pearson criterion is used, the value of Q0 is preassigned and the

decision level g0 must be hunted by iteration. Since go is a monotone

function of the real value so, both go and so can be found simultaneously

by iteration until the false-alarm probability calculated by the asymp-

totic expansion approaches the preassigned value Q0 within a tolerable

error such that (2.49) is satisfied. The saddle point sl under H1 will

be obtained according to (2.51), and the detection probability Qd will
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be approximated by the expansion (2.55). The numerical iteration pro-

cedure for searching for the saddle points so, sl,and the decision

level g0 is described in Appendix B.

When the relative costs C10 - C0 and C01 - C lare equal,the

decision level g0 for Bayes criterion is given by (2.13) with

A0 = 5/(1-5). The saddle points so and sl are calculated from (2.49)

and (2.51). The average error probability is minimized and can be

obtained after the probabilities Q0 and Qd are approximated by the

asymptotic expansion (2.55). The performance of the ideal detector

will be studied with a Gaussian image and compared with the threshold

detector and simple detector in the following paragraphs.



Performance of the ideal detector for a Gaussian image

In order to investigate the performance of the ideal detector

and compare it with the other two detectors, the threshold and the

simple detector, a Gaussian image will be postulated. The average

intensity function on the photosensitive surface due to the object

light given in (2.16) is described by the weighting function

2 2
x + X

2Yx 2 exp 2 ] (2.56)

2no 20

where a is the width of the image, this might be the image of a circu-

lar nebula or, more important, of a point source whose light has

(14)
passed through a turbulent medium

(  . If we define

N = 2 0 Ib aT (2.57)

as the average number of photoelectrons emitted from an area

2
A 0 27 a of the photosensitive surface due to the background

light and with N given by (2.38), the signal-to-noise ratio D
2 and

S

and function u(x) from (2.17) can be written as

D2 = Ns/NO for N O  0

ux) = exp2 2 2  (2.58)
25

65
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In the absence of the background light, that is NO 
= 0, and for a

false-alarm probability Q0 preassigned at 0.2, 0.1 or 0.01, the de-

tection probability Qd is plotted as a function of N in Fig. 4;

(2.42) is used to calculate Qd'

If the background light is present, the m.g.f. of the ideal

statistic g at WT >> 1 for the Gaussian image is given by

hk(s) = exp - (1+D2uX))k [(l+D2uX))
- s- ] d2x2no -m - ,

k = 0, 1 (2.59)

when (2.19), (2.56), (2.57), and (2.58) are used.

Now we can change variables by letting

xI = Ro cos 8 , x2 = Ro sin O

so that

uC = exp

The m.g.f. from (2.59) becomes

NO 22 2( k
hk(s) = exp No 2 (1+D exp(-R /2))

27r 0 0

[(1+D2 exp(-R2/2 ))
- s -1] 2RdRd6
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Sexp N (1+D k [1+D2)s - 1] y1 dy

k = 0or 1 , (2.60)

-R2/2

where (2.60) is obtained by changing the variable y = The

complex phase required in the asymptotic expansion series under Hk

for k = 0, 1 as given by (2.48) can be written as

k(S) = g0-1 N0 0 (l+D 2y)k [(+D2y)-s - 1] y-dy + s

k = 0., 1 (2.61)

where the saddle point is obtained by solving the equation

g 0 N0 f (1+D2 y)k-s £n(1+D2y) y- dy

k = 0,1 (2.62)

and s1 and so satisfy (2.51).

The nth derivative of the complex phase k(S) for n > 2 under

hypothesis Hk is

k n(s) = (-l)n g01 NO (+D 2y)k-s n (l+D2 y) y- dy

k Oor . (2.63)
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Figure 4 Detection probability Qd as a

function of N defined in (2.38) for the

ideal detector in the absence of background

light; false-alarm probability Q0 = 0.01,

0.1, 0.2.
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The mean and variance of the optimum statistic g from (2.22) for the

Gaussian image under Hk for k = 0, 1 becomes

E[gH] = N0  (+D2 y) k  n(l+D2 y)yldy ,

Var[gIk] = NO (l+D 2y)k Pn2 (l+D2 )y-1dy . (2.64)

In order to compare the three approximation methods, steepest descent,

Guassian,and gamma, the reliability of the ideal detector has been

calculated by the three approximate forms as given in (2.55), (2.44),

and (2.46) respectively. At typical values of NO  Ns =5 = 1),

the false-alarm and detection probabilities of the statistic are

plotted as functions of the decision level go in Fig. 5. It can be

noticed that both Gaussian and gamma approximations with the mean and

variance matched by (2.64) are least accurate in the tails of the

distributions. For small false-alarm probability Q0 , there may be a

serious error in the decision level go if either one of the approxi-

mate forms is used under the Neyman-Pearson criterion where QO is

preassigned. To apply the asymptotic expansion series given in (2.55),

an iterative search method was used to determine the decision level

go and the associated saddle point so . Detailed description of the

iteration is given in Appendix B.

To investigate the performance of the optimum detector and

later the threshold detector, the detection probability Qd of the

optimum detector is calculated by using the asympotic expansion series
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from (2.55) and is plotted as a function of the signal-to-noise ratio

D2 for typical values of NO at 0.5 and 5 in Fig. 6 where the false-

alarm probability Q0 is preassigned at 10 and 10- . The detection

probability is also plotted as a function of the mean number N by8

3 -5
the solid curves in Fig. 7 at Q0 

= 10- 3 and in Fig. 8 at Q0 = 10- 5

The detection probability Qd at NO 
= 0, given by (2.42), is also

plotted in Fig. 7 and Fig. 8 for the purpose of comparison. When

the relative costs C10 - C00 and C01 - C11 are equal, the minimum

error probability of the optimum detector at 5 = can be calculated

by using (2.6) and the asymptotic expansion series (2.55) and is

plotted as a function of the mean number N by the solid curves in
S

Fig. 9 where the decision level g0 = Ns is obtained-according to (2.13)

and the saddle point s is searched for by iteration to satisfy (2.62).
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Figure 5 Probability Q0 and probability

Qd as a function of decision level go for

the ideal detector calculated by the saddle

point, Gaussian and gamma approximations;

NO = Ns = 5, where NO is defined in (2.57).0 s
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Figure 6 Probability Qd as a function

of .the signal-to-noise ratio D
2 defined

in (2.58) for the ideal detector;

N = 0.5, 5, Q0 = 1 0 - 3 10-5
0 ,01
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Figure 7 Probability Qd as a function of

N for ideal, threshold and simple detectors;
S= 10- 3  = 0, 0.5, 5.

Q0 10 at N = 0, 0.5, 5.



77

99.99

99.9

98

No= 0 No= 0.5 No

90 /

70 /-

Qd (%) 50

20

10

0 = 10

Ideal Detector
0.1 - Threshold

- --- Simple

0.01 I I I

0 4 8 12 16. 20 24 28 32 36

N



78

Figure 8 Probability Qd as a function of

N for ideal, threshold and simple detectors,
S

= 10- 5 at N = 0, 0.5 5.
0 = 10at Ng = 0. 0.5, 5.
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Figure 9 Average error probability Pe in

detecting the Gaussian image against the

uniform background light vs. the mean number

Ns for ideal and simple detectors; NO = 0,

0.01,0.5, 5.
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Performance of the threshold detector for a Gaussian image in the

presence of the background light

When the signal-to-noise ratio D2 is small and the threshold

statistic g from (2.26) is used,the m.g.f. given by (2.27) for a

Gaussian image becomes

hk(s) exp aT Ib (1+D2 ux))k

[exp(-su(x))-lj d2 x

k = 0 or 1 (2.65)

Again by changing variables, we have

hk(s) = exp (+D 2 exp(-R/2))

(exp (-s exp(-R 2 /2))-l) a2RdRdO

exp {N 0  
l (1+D2y)k (exp(-sy)-l) y-dy

k 0or 1 (2.66)

The mean and variance of the threshold statistic g0 under Hk for

k 0, 1 are
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E[g ol ] = NO J (l+D2y)kdy = N0 (1+kD2/2)
01

Var[g01Hk] = NO  (1+D2y) kydy = N ( kkD2/3) ,

k = 0, 1 (2.67)

The complex phase defined by (A7) under HK for k = 0, 1 is

-1
06k(s) = ge0 Ln hok(s) + s

g60 N0 J (1+D2y)k[exp(-sy)-l]y-ldy + s
0

(2.68)

from which the saddle point s is determined by the equation

d 4ek(s) = 0 or

ge0  N0  (1+D2y)k exp(-sy) dy
0

= S-1 NO  1-exp(-s)+kD 2s-(1+s-)exp(-s)]

k = 0, 1 . (2.69)

Since the relation of the m.g.f.'s.by (2.51) does not hold for the
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statistic g, the saddle point s under hypothesis Hk for both k = 0, 1

must be calculated from (2.69),which has only one root of real value

as discussed in Appendix B. The nth derivatives of k(s) for n ; 2

are given by

,60 0 n- n

k = 0, 1 (2.70)

where

fn(s) f yn exp(-sy) dy
0

n

= n! s -n-l- s-1 exp(-s) E .n! (n-j)!] s- .
j=0

(2.71)

Again, with the mean number NO and the signal-to-noise ratio D
2 given,

the reliability of the 'statistic can be approximated by the asymptotic

expansion as given in (2.55). For each decision level g60 the saddle

points s0, s1 can be solved for from (2.69). The false-alarm proba-

bility and the detector probability are plotted as a function of g 0

in Fig. 10 at NO = 5 and D2 = 0.1, 1, 2, 3, 4, and 6. Since the
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distribution of the threshold statistic g0 is independent of the

signal strength under hypothesis HO, the advantage of the threshold

detector is that for each preassigned Q0 the decision level g60 is

fixed for all values of D2 as shown by Fig. 10. The detection proba-

bility Qd is also plotted as a function of the mean number Ns by the

dashed curves in Fig. 7 and Fig. 8 for typical values of NO at

Q0 = 10- 3 and Q0 = 10- 5 . The detection probability Qd of the

threshold detector approaches the curves of the optimum detector when

D2 is very small; however, the optimum detector always has higher

detection probability. To calculate the minimum error probability

P one has to solve the decision level g 0 such that the ratio ofe 0

the probabilities for go = go0 under H1 and H0 is equal to 5/(1-5).

We have not carried out the calculation.

/t
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Figure 10 Probability Q0 and probability

Qd vs. decision level go for threshold

detector; N0 = 0.5, D = 0.1, 1i, 2, 3, 4, 6.
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Performance of the simple detector for a Gaussian image in the

presence of the background light

For the simple detector, the optimum statistic from the like-

lihood ratio is the total number n of the photoelectrons emitted from

the optimum area A' as given by (2.34). If the radius of the area

Ai  is given by ORo, the average number nTk of the photoelectrons

emitted from A' under hypothesis Hk for the Gaussian image according

to (2.32) becomes

2
nTk taT [Ib + kIS y(x)] d x

= aT o (I b + kIS  exp-R2/202)
0 0 27o

•RdRdO

ai a 2 R2 IbT + ka I T (1 - exp(-Ro2/2))

SN O p+ kD2(l - e

k = 0, 1 , (2.72)

1 2 2 2
where p = R and A ' = w R

2 o 1 0

Since the statistic gs is a discrete random variable, when

the Neyman-Pearson criterion is used, randomization must be applied.
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That is, the reliability of the simple detector according to (2.4)

and (2.5) can be written as

n -nTO g0 -n TO
cQ = nTO e / n! + f nTO e /gs0 '

n>gso

_ * n -nTl - -nT ,

Qd = nT e / n + f nTl e / gso
n>gsO

(2.73)

where for preassigned Q0 the decision level gs0 is the smallest

integer such that

gso

nn
e (n / n! > 1 - QO (2.74)

n=0

f is the probability to choose H1 when n = gs0 and can be determined

from

-nTO nfn=0 (nTO) n+ - 1

-g 0  nTO
(nTO) e gs0 (2.75)

where nTO' nTl are given by (2.72) for k = 0, 1. Hypothesis H1 will

be then chosen if n > gs0 and H0 will be chosen if n < gs0. As the
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false-alarm probabilities Q0 are preassigned at'10- 3 and 10- 5 , the

detection probabilities Qd of the simple detector are calculated

from (2.73) at NO 
= 0.5 and 5 and are plotted as a function of the

mean value N in Fig. 7 and Fig. 8. For each point on the curves,

the radius R was varied to yield maximum detection probability.
0

When the Bayes criterion is used, with As0 given by (2.2),

the decision level from (2.35) becomes

gs0 [nAs0+N0 D2 (l - e ) ] [ n(l+D 2 p- ( 1 -e ))]-l .

(2.76)

Hypothesis H1 will be chosen if the number n > gs0 or H0 will be

chosen otherwise. The reliability of the detector can be evaluated

according to (2.73), except that we let f = 0 because the probability

for gs0 to be an integer is negligible. When the relative costs are

equal, the average error probability given by (2.6) is minimum and

can be written as

Sn -nTO
Pe = nTO e / n!

n>gs0

n -nT1
+ (1-n) nT e / n! . (2.77)

n=0

At = , gs0 is calculated from (2.76) with As0 = l,and the error

probabilities P are calculated and plotted as a function of meane
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number difference AN Ns at NO =0,0.0
1,0 .5 and 5 by the dashed curves

in Fig. 9. For each point on these curves the value Ro was varied to

yield maximum Pe

When the false-alarm probability Q0 is preassigned, the

decision level gs0 determined from (2.74) is a monotonically increasing

function of Ro . The optimum radius Ro at which the detection proba-

bility Qd yields a maximum can easily be searched by the digital

computer. The values of the optimum radius Ro at different values

of Ns are listed in Table 1 at typical values of NO = 0.5, 5. The

maxima are quite flat and the radius R0 of the observation area is

not critical. For the calculation of the average error probability

when the decision level gs0 is determined from (2.76), gs0 is also a

monotonically increasing function of R . However, both Q0 and Qd

are varied by changing gs0 and their sensitivities toward the change

are different. We found that there are several minima in a certain

small region as we vary the radius Ro,and we have picked the smallest

one for the plots in Fig. 9.



Discussion

It is important in detection theory to calculate the distri-

bution of the statistic as accurately as possible so that the statis-

tical performances of the detectors can be investigated. The statistic

given by (2.18) or (2.26) is the sum of N independent random variables

and is very common in detection and estimation theory. Since the

exact distribution of the statistic cannot be obtained, the Gaussian

approximation has been largely used for the statistical evaluations

in the past. On the other hand, the method of steepest descent has

been proved mathematically to provide approximations of an accuracy

that is often high; usually the error of the approximation is of the

order of the first term neglected in the asymptotic expansion series.

Furthermore, the asymptotic expansion series expressed by (2.55)

gives the exact expression of a Gaussian distribution and a fairly

good numerical agreement with the other two well-known distributions,

the exponential and Poisson distributions, as discussed in Appendix A.

It is therefore appropriate for us to use the method of steepest

descent to approximate the tail distribution of the ideal and

threshold detectors in order to investigate their performances,

although more numerical calculations may be required such as searching

for saddle point. With the availability of the digital computer at

the present time, the asymptotic-expansion approximation should be

very useful for solving many problems in detection and estimation

theory.
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Each of the detection statistics we have discussed is the

sum of every ejected number ni of photoelectrons weighted by a factor

as given by (2.18), (2.26),and (2.34). In order to design a better

detector, we must make the false-alarm probability of the detector

small and its detection probability as large as possible, or,

equivalently, make the magnitude of the statistic as small under

hypothesis H0 and as large under hypothesis H1 as we can. From

Figs. 7, 8 and 9 we can see that the ideal and threshold detectors,

which utilize the information about the shape of image, are not much

better than the simple detector when the optimum observation area

of the simple detector is used to yield maximum detection probability

or minimum error probability. In other words, to register the loca-

tions of photoelectrons does not help much to improve the detection

of the image. This is because when the background light is assumed

to be uniform, the effectiveness of reducing the magnitude of the

statistic on the average under H0 or increasing the magnitude of the

statistic on the average under H1 is limited, especially when the

signal-to-noise ratio D2 is low. On the other hand, by varying the

observation area, we can optimize the mean numbers of photoelectrons

under H0 and Hi effectively and reduce the error probability or

improve the reliability of the simple detector.
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TABLE 1

Optimum Radius for Simple Counter

NO = 0.5

Ns Ro (0 = 1 0 - 3 ) R 0 = 1 0 - 5 )

1 1.31 1.37

2 1.72 1.68

4 1.72 1.68

8 2.10 1.68

12 2.10 1.98

20 2.10 1.98

24 2.46 2.28

NO = 5

Ns  Ro( 0 = 10
-3) Ro(Q = 10- 5)

1 1.36 1.37

2 1.44 1.44

4 1.60 1.58

8 1.60 1.58

12 1.75 1.65

20 1.82 1.78

24 1.82 1.78
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Chapter III Simultaneous detection and estimation of the mean

intensity of an optical image

The detection of the image on a photosensitive surface

described in Chapter II is based on the knowledge about the intensity

and location of the light source. In practice, however, the estima-

tion of the parameters such as the intensity IS and the center loca-

tion 0 of the image may be needed as well as the detection. The

observer must estimate these parameters as best he can on the basis

of the observed set of data n. In this chapter we will assume that

if the object image is detected, the location of the image is known,

but its intensity must be simultaneously estimated. One seeks a

strategy to estimate the intensity, IS = ISn), which is a function

of the data n = (n1 ,n2 . . nN). Two most important strategies,

Bayes and maximum likelihood (1 ,2), will be discussed. A quadratic

cost function will be used to derive the Bayes estimate. When the

signal is not too weak, the Bayes estimate is approximately equiva-

lent to the maximum likelihood estimate. An almost optimum estimate

is therefore proposed and its statistical properties will be studied.

The expectation of the biased estimate will be evaluated and plotted

as a function of relative intensity at different observation times

or total numbers N of small areas with 'a truncated Gaussian or

parabolic image.
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Simultaneous detection and estimation for a single parameter

As we have discussed in connection with the binary hypotheses

tests in Chapter II, when a set of data _ = (bl,b 2 . . . bNI is

obtained, the observer will choose the hypothesis between the binary

hypotheses H0 and H1. Since the signal received under hypothesis H1

now depends on a certain unknown parameter 6, the observer must seek

a strategy based on the N measurements of b so that when hypothesis

11 is chosen, the parameter 0 will also be estimated (3 ) . If, however,

H0 is chosen, it implies that there is only background noise; there-

fore the parameter 0 does not exist or is equal to zero. The condi-

tional p.d.f. P(I0b) is assumed to be given in general. If the cost

functions C(6,0), which are the costs for choosing hypothesis H0 or

H1 and making estimate 8 = 0 or O(b) for given true parameter 0, are

given, and if the prior p.d.f. z(8) of the parameter 6 and the condi-

tional p.d.f. Yo(Alb) of the estimate 0 for given data b are known,

then the Bayes strategy can be used. The average risk (4 ) per experi-

ment for simultaneous detection and estimation of the parameter is

given by

C = dO dJ dN o(0) y o(6b) P(bIO) C[0,6]

(3.1)

where 0, A and E are the spaces for parameters 8, 0 and b respectively.

The Bayes strategy is to properly choose the function yo(iab)
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so that the average risk C can be minimized. Let us define

y(O.) t (HO ) 6(0) + (o , (3.2)

where 6(0) is the Dirac delta function. I(HO f ) ifs the conditional

probability for the system to choose H0 . 11(ob) is the conditional

p.d.f. for estimate 0 when H1 is chosen with observed data b. Further-

more, we have

fA ( Lb.) dO = (H1Lb) , (3.3)

where (H1fb) is the conditional probability for the system to choose

H1 with given data b and *(H 1Lb) + I(HO[b) = 1. We also let

o(0) = 5 6(a) + (1-) z(a), (3.4)

where , 1-C are the prior probabilities for hypotheses H0 and H1 as

discussed in Chapter II. z(8) is the prior p.d.f..of parameter 0

under Hi .

By substituting (3.2), (3.3) and (3.4) into (3.1) we can

write the average risk as

= d+ ( (HOIbC 0 0 + df 6 (01b) C10 ) 0
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+ (1-O) de z(O) (10( ()) C 1 () + (bA IA

Cll ( .)] P(b( ) (3.5)

where P(b ) = P (IHO),

C0 is the cost of choosing H0 when H- is true,

C0 1 (6) is the cost of choosing H0 when H1 is true with

parameter 0,

C10 (0) is the cost of choosing H1 with estimate 0 when H0

is true,

C11(0,0) is the cost of choosing H1 with estimate 6 when H1

is true with parameter 0.

Now since

P(beO) z(6) = P(Ofb) P ,) (3.6)

where P(0 b) is the posterior p.d.f. and

P()= f P(b 0) z(o) dO (3.7)

we can also write the average risk C in' terms of the conditional risks

as
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C dNb P() C[ oba + d (10) C( Ib)] (3.8)

where

CHIob * (Holb) [c 00 Po) / P)

+ (1-j) dO C0 l() P(O b) (3.9)

is the conditional risk when H0 is chosen for given b and

c(O j) = ( C10(e) P0 ) / P(b)

+ (1--) dO C1 1 (O,) P(elb) (3.10)

A

is the conditional risk when H is chosen with 0 for given bLNow the

p.d.f. P(b and conditional p.d.f. (1Ob) are both positive over the

space E of the outcome b, and the conditional risk CHO b is not a

function of estimate 0, the average risk C is minimized with respect

* A

to 0 by making the conditional risk C(6 I) as small as possible for

every set of data b. Now -we choose the p.d.f. H(OIb) as

Hn( ) - Hb) (- .)) , (3.11)

where (b) is the optimum estimate 6 obtained from minimizing the

conditional risk C(O1b) and can be determined from the following
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equation

Sc(Olj) = 0 or

SP 0 C10 (0) + (1-) P () dO P(0b

- (0,) . 0 (3.12)
80

Thus the minimum average risk from (3.8) at = O(e) becomes

Cmin = d 1- ( H I b  C [ ooPo( )

+ (1-C) P(b) dO C01(0) P(elb)]

+ (H1 ) [ C10 ((b)) PO()

1- + (1-b)a dO C11(, ),O) P (eb) (3.13)

If we now define

A() = 00 (b) + (1-c) Pr() de C0 1 () P(e b)

B(,eb)) = Clo((b)) P0 (b) + (1-E) P()

S dO Cll((,b),0) P(Oeb), (3.14)
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then (3.13) can be written as

Cfin db A() + p(Hlb,) [BQ,OGb)) - A

(3.15)

As the cost functions can be chosen so that both functions A(b) and

Bb,8(b)) are positive. Then we can further minimize the average risk

from (3.15) so that

(Hl ) = 1 if B(b,0% )) < A(b)

(HIj) = 0

or otherwise

(HOIb) = 1

(3.16)

This is equivalent to defining a cost likelihood ratio Ah where

(1-) P(b) dO[Cl(6)-C11(6(b),O)] P(Ob)

A ,

5 Pcg) [C10((,))-C00

(3.17)

and a decision level Ahc 1 so that hypothesis H1 will be chosen if

A > 0 and estimate 6(b) will be issued; otherwise, H0 will beAc Ac0
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chosen.

When there is no information about the cost functions, the

prior probabilities of the hypotheses, or the prior p.d.f. z(8) of

the parameter, the maximum-likelihood strategy can be used. The

estimate 0 will be determined from maximizing the posterior p.d.f.

P(6O ),which is expressed in (3.6). Since P() is independent of 8,

it is equivalent to maximizing the product of P(bI0) and z(0). With

very little knowledge about z(8), we must assume that the prior p.d.f.

z(8) is very broad, so that z(O) will not affect the decision and

estimate we have made. This implies.that the estimate 8 is simply

obtained by maximizing the joint conditional p.d.f. P(bI0) or

determined from the following equation

= 0 . (3.18)

The estimate 0 determined from (3,18) will be a function of the data

When the data b are a set of discrete random variables, the

function P(fI0) will be the conditional probability function instead

of conditional p.d.f. All the equations we have discussed in this

chapter are still valid except that we have to change the integrals

/f dNb into summations . For the detection of the image andb
estimation of its intensity of a light source, both Bayes strategy

and maximum likelihood strategy will be discussed in the following

paragraphs.
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The operation of simultaneous detection and estimation of

the signal and its parameter 0 can be described by the following

.block diagram.

A 9 1
c

Cost like- A > 1 H0
lihood A H1

given

;, C(6,6), z(O),

Signal b ayes esti-

and. Data ator O) @= ^ ()

noise Sampling

given Max-likeli- H0 with

P(b0) hood esti- a = 0

mator (b) H1'

6 = (b)

Figure 11 Block diagram for simultaneous

detection and estimation of a single parameter

0 from the signal.



Bayes strategy for detecting the image and estimating its intensity

of a point source with a quadratic cost function

When the photosensitive surface is divided into N small areas

dA, the data n are the numbers of photoelectrons ejected from the N

small areas dA. = dA, i = 1, 2 . . . N ; n is a set of N discrete

random variables. As TW >> 1, they are Poisson distributed and

statistically independent. The joint conditional probability under

hypothesis H0 can be written as

N

P(lIs4=0) = PO ) T= 7i e / n.I , (3.19)
i=1

where

= caT Ib dA (3.20)
b

is the average number of photoelectrons ejected from each area dA

due to the background light illumination. The joint conditional

probability under hypothesis H1 can be written as

N

Tni -(+Si
P(nJI S)  s i )  e / ni (3.21)

i=l

where

S aTYidA , Yi=Y ( x i )  (3.22)
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with y(t) as the weighting function given by (2.16). We let the

cost functions described in (3.5) be

C10  s) = C10 .

^ 2
C11( S,IS) = CO(ISIs)2 (3.23)

where C00 , C0 1 , C1 0 , CO are all given constants.

The Bayes estimate IS(n) can be determined from (3.12)

I(n) = IS P(IsIn) dlS (3.24)

which is the conditional expectation (5 ) of the intensity IS . The

posterior p.d.f. P(ISIn) can be expressed by using (3.6) and (3.7)

as

z(IS) P@II S)
P(I In) (3.25)

j Z(Is) PnI1S) dI S

for positive values I S. The denominator of (3.25) can be written as

o z (I S) SPIIs) dIS

0ni Si

= dls z(I) S +Iq) e / nl. .(3.26)
0i=1
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When the p.d.f. z(IS) is given, the Bayes estimate from (3.24) can

be evaluated.

We now assume that the p.d.f. z(I ) is a gamma distributed

probability function

B -CI
z(I ) B(B) e U(I S )  (3.27)

S P(B) S s

with B, C real and positive constants. U(x) is the step function.

If the object light is very much weaker than the background light,

IS << Ib , (3.26) can be calculated approximately as

z(Is) P ( n JI S ) dI S

o I CB  - CIS
f is r(B) s

N

S + n -I  e -  n.

i= -  i

i= e P 1+ Yi CIb n i  (3.28)

The Bayes estimate from (3.24) becomes

N ni B

ISn) " e C C [l+ni i (B+1)/CI b ] / ni

i= - ni
e p (1+nlYiB/CIb) / ni!
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N 1
B + , (3.29)
Ci=1 + C Ib

il B B n iyi

where all the values ni, Yi' Ib B, C are known. If the object light

is so strong that we can assume that there are mi areas dA which are

so close to the image center and such that iS >> I and m0 areas

which are far away from the image center and Yi S b (m + ml = N

is the total number of areas into which we have divided the image),

then (3.26) can be calculated approximately

Sz(I ) P(JI S) dl
0 S S

B  M -mp n. -1

SB)e q N
F(B)

B-1 + M1  -(C+M )I

f e q S dl (3.30)

where

N ml

FN  = ni  , M = qi
i= q i=

m0

MO it n i

is the total number of photoelectrons ejected from the m0 areas far

from the image center.
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M1

M1  ni
i=l

is the total number of photoelectrons ejected from the mi areas close

to the image center, where

0 B-1 + M - (C+Mq )IS  r(B+ M 1)

S (C + M)B+M
q

(3.31)

The Bayes estimate I (n) according to (3.24) can be approximated as

A F(B +1+M 1 ) B+M 1IS () (C +M ) F(B+M) C+M (3.32)
q q

When M >> B we have
1

I (n) Kb E  n i  (3.33)
i=l

-1
with K = C + M .

b a



Maximum-likelihood strategy and the almost optimum intensity estimate

When there is no information about the cost function, the

prior probabilities of the hypotheses, or the prior p.d.f. z(IS ) of

the intensity, the maximum-likelihood strategy will be used and the

estimate I () will be determined from (3.18); it satisfies the

following equation

N N

ni i E q (3.34)

i=1 qi IS() + p i=1

When the object light is so much weaker than the background light

that IS << Ib, the estimate I (n) can be determined approximately

from

N N

Si -- ni 1i [I - q I ~)l
i=1 i=l

N N

or I S  2(n -1) qi / niq 2  (3.35)
i=1 i=l

If the object light is so strong that there are m i areas close to the

image center and q IS ) >> P, and m0 areas away from the image

center and qiIs ) << p so that they contribute little to the sum,

then we approximate the estimate IS(n) from (3.34) by

i=1
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where

N

-1iK =- qi

The estimate I S() we have just obtained resembles the approximate

form of the Bayes estimate given by (3.33) when the object light is

not too weak. In general we may not have any information about the

cost functions and the prior p.d.f. z(Is). We therefore propose an

almost optimum estimate ISa(n) as

N

I ( ) = K (n - 8) U(ni - 6) , (3.37)

where U(x)=l for x>O and 0 for x O, K is defined in (3.36). 0 is

the threshold level which can be determined from a preassigned

false-alarm probability Q0 such that 6 is the smallest integer that

satisfies the following equation

8

N E e / n! > N - Q (3.38)
n=0

In other words, the number ni of photoelectrons ejected from each

area dAi, i = 1, 2 . . . N, will be compared with the decision level

0; if ni > 8, we will consider that some of the photoelectrons

ejected from the ith area of the surface are due to the object

illumination. We therefore will keep the term. If ni < 0 we
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assume that the number ni of photoelectrons ejected from the surface

are due only to the background illumination; thus we will discard

the term. When all the numbers ni, i 1= , 2 . . . N are less than

6, the hypothesis H0 will be chosen. Otherwise, the hypothesis H1

will be chosen, and the intensity -estimate IS () is calculated

according to (3.37).



Performance of the almost optimum intensity estimate for a

truncated Gaussian or a parabolic image

The estimate IS ) we have discussed is a function of the N

measurements n. Since the data n are a set of random variables, no

two experiments will yield the same value of the estimate I S(n) even

though the true value of the parameter I is the same in both. The
S

most one can hope for is that the estimate IS(n) will be close to

the true value I in the sense of "on the average".
S

The mean and variance of the estimate I we have just
Sa

discussed can be derived as follows

E[I s ]  E K N- (ni-O) u(ni- , )
i=1

N

K E[(n -8) U(n i-)]
i=1

Var V n K (n -0) u(ni-8 ) P

i= n=

N

= 2 Var[(ni-6) U(ni-0)]
i=l

N

= K n +n - 2n 0 + 2
=11

113 1
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- (n (ni-O)2 P(n iI S)
i 0

-.-

n =i

(3.39)

where

n -n.
P(n.iIs) = n. e / n ,

n i = i + is

To investigate the statistical performance of the estimate ISa as

discussed in (3.37), a truncated Gaussian image will be postulated.

The image surface with radius R is divided into M small rings as

shown in Fig. 12.

The average number of photoelectrons ejected from each ring

by the background light illumination is assumed to be evenly distri-

buted and symmetrical with respect to the image center. The area

dR of the ith ring cal be calculated as

iA 2

dRi = . pdp d
(i-1),Ap 0

2
-a(2i - 1)Ap = (2i - 1) A (3.40)0
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x2

x 1

ith

ring dR i.

Figure 12 Image surface divided into rings

2
where Ao p P=P p - Pi- 1  for i = 1, 2 . . M. Here

p2 = x + x2 with x p cos , x2 = p sin 4 as the rectangular

coordinates used in Fig. 3.

The total number of rings is

M = Ro /AP (3.41)

If we further divide each ith ring into a number (21-1) of small

equal areas dAi such that dAi = Ao , the total number of small equal

areas dA from the whole image is

M

N = (2i-1) = M2 . (3.42)
i=1
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The distribution of the mean number of photoelectrons ejected from

the image surface by the object light is described by the weighting

function y(xi) as given in (2.16) and (2.56) for a Gaussian image,or in

polar coordinates we can write

2 2

r(p) = B0 e-P /2 (3.43)

where B0 is a constant and a is the width of the Gaussian function.

The average number of photoelectrons emitted from each small area

dAi (= Ao) is assumed to be evenly distributed and is proportional

to the intensity IS . We calculate the coefficient

q = aT y(p) pdp d
0 (i-l)Ap

STB 0 2 eT0 (i-l) 2 RA2 /2N -i R 2/ 2 N

(3.44)

where

q' = qi(2i-1) (3.45)

with qi defined in (3.22). RA R /a. Ro is the radius of the

truncated image under observation. i is the index (i = 1, 2 . .. M).

Because of the presence of the background light, one would
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like to investigate the estimate ISa with respect to the true inten-

sity IS in terms of the signal-to-noise 
ratio. In other words one

could assume that the energy of the background light falling on the

image surface within the radius Ro of the truncated image is equi-

valent to that from the object light with intensity

2

I So M (3.46)

i=1

Since the total average number of photoelectrons ejected from the

.surface of the image is proportional to the incident energy, the

intensity of the point source can be described by

I = d I so(3.47)

where d2 is called the signal-to-noise ratio for the truncated

Gaussian image.

The mean and variance of the estimate ISa according to (3.37)

can be written as

E[ISa] = K (2i-1) 'i- 0 - (ni-8) Pl(n i)

i=1 ni =0

Var[Is ] = K2 L (2i-1) 2 +  - 2n o + 2
Sa i1
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S0 2

- 2 (ni-0)2  1(n ) - - - (ni) P (ni)
n n= nl=0

i n

(3.48)

Sni  -n

where Pl(ni) =n e / ni with ni  p + q' /(2i-1) and

V and qi' are given in (3.20) and (3.45).

We also define the error of the estimate ISa by

Err = (Var ISa) E[^S1 (3.49)

as the ratio of the standard deviation to the mean value of the

estimate ISa given by (3.48).

To investigate the estimate ISa in terms of various parameters

we assume the background light intensity corresponding to an object

light with unit intensity IS0 = 1. The average number of photo-

electrons ejected from each area dA due to the background light is

assumed to be 0.1 for an observation time T and coefficient a (i.e.,

p = aT IbAo 0.1). The false-alarm probability is preassigned at

0.01. Where the parameters B0 and a are set at l,the expected value

of the estimate ISa is calculated at various ratios RA = 0.5, 1, 2

and 3 and is plotted as a function of the relative intensity IS

defined in (3.47) in Fig. 13. As the size of the observation area

changes, the estimate ISa will also be affected. In Fig. 14, the

estimate ISais plotted as a function of the relative intensity ISestimat
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Figure 13 Mean intensity estimate ISa vs.

relative intensity IS for truncated Gaussian
-2

image; Q0 = 10 , the number of rings is 100.

Mean background counts 1 = 0.1 at RA = o= 1

for time T. Curves are indexed by parameter

RA defined in (3.44).
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Figure 14 Mean estimate ISa vs. relative

intensity IS for truncated Gaussian image;
-2

Q0 = 10 , v = 0.1 at RA = 1 for 100 rings

for time T. Curves are indexed by the

parameter M defined in (3.41).
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Figure 15 Mean estimate ISa vs. relative

intensity IS for truncated Gaussian image;

Q0 =10-2 M = 100, = 0.1 at RA = 1 for

time T. Curves are indexed by observation

intervals T.
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when the observation area is fixed but divided into three different

numbers of rings, 25, 50 and 100. In Fig. 15 the estimate ISa is also

plotted as a function of IS with three different observation times

T, 10T and 100T.

Observations also have been made by assuming the image as a

parabolic function. That is (3.43) replaced by

y'(y) = B'(Ro2  2) jp < R

=0 Ipl > R
o,

(3.50)

where R is the radius of the image; B' is a constant. The coeffi-
0

cient qi" can be calculated from

q"1
1  aT d if y (p) pdp.

0 (i-1)p

= T B'7 R0 4 M72 [(2i-l)M - (2i -3i 2 +2i- )]-i

(3.51)

The mean, variance,and error can be calculated by using (3.48) and

(3.49). At B' = 1, R = 1 we have plotted the expected value of

the estimate ISa as a function of IS at three different values of

parameters M and T in Fig. 16 and Fig. 17 with Q0 = 0.01. The error

of the estimate Isa for the parabolic image is also plotted as a
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function of the average background photoelectrons p at fixed

IS = 10 and 20 in Fig. 18, where the error for p = 0.1 is 9.24%

at IS = 10 or 3.15% at IS = 20 with the image surface divided into

100 rings. The average number p is then varied either by changing

the size of each dA or the observation time T.



127

Figure 16 Mean estimate Isa vs. relative
-2

intensity IS for parabolic image; Q0 
= 1 0 - 2

p = 0.1 at Ro = 1 for time T. Curves are

indexed by parameter M.
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Figure 17 Mean estimate I vs. relative
-2

intensity IS for parabolic image: Q0 = 10

p = 0.1 at Ro = 1 for time T. Curves are

indexed by observation intervals T.
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Figure 18 Error vs. mean counts V

for parabolic image; Q0 = 10
- 2 . Curves

are indexed by parameters IS defined in

(3.47) and M.
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Discussion

A statistical model for simultaneous detection and estimation

of a stochastic image is proposed. When the prior p.d.f. of the

source intensity and the prior probability E are known and the cost

functions are available, the Bayes strategy leads to the optimum

operation. If there is no information about the prior probability

and the cost functions,the maximum-likelihood strategy can be used.

Upon examining the estimate IS for both strategies, it is interesting

to note that the Bayes estimate IS from (3.33) for.a quadratic cost

function is approximately the same as the maximum-likelihood esti-

mate from (3.36) when the signal is not very weak.

For a Gaussian image, the bias and linearity will be improved

when RA is increased; however, after RA is larger than 2, very little

improvement will be gained by increasing RA farther. In order to

reduce the bias of the estimate, it is always wise to use longer

observation time, to divide the observed image into a smaller number

M of rings, or to use larger observation image area. In addition,

a suitable constant should be added into the estimate ISa to compen-

sate for the bias. The observed image has an effective range of RA

between 1 and 2 for the Gaussian truncated image. For the image of

parabolic shape, one should always use the whole image area. As

long as the observation area on the image surface is properly defined,

the shape of the function y(p) has no significant effect on the

quality of the estimate. To reduce the estimation error, increasing

133'
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the observation time is more effective than decreasing the total

number M of rings.as we can see from Fig. 18.

When the false-alarm probability Q0 is preassigned, randomi-

zation can be used and the probability f for choosing H1 when n = 0

can be calculated from the difference in (3.38) of

0

f (1 + Q0/N - n e / n! e 8 el
n=0

The estimate ISa from (3.37) can be modified as

N'

ISa = K in. U(n. - 0 - 0.5) + fem - C (3.52)

mO is the total number of the areas where ni = 0. C is some constant.

Since the bias of the estimate approaches a constant as the intensity

becomes larger,as we can see from Fig. 15 or Fig. 17, a proper con-

stant C can be found to compensate for the bias.



Footnotes

Chapter III

1. Helstrom [10], Chapter VIII.

2. Van Trees [20], Chapter II.

3. Middleton [9].

4. Middleton [26], Chapter I.

5. Helstrom [10], Chapter VIII, eq. (1.11).
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Chapter IV Detectors for resolving two point sources in optical

communication by photon-counting techniques

The techniques we have discussed of counting the photoelectrons

from the photosensitive surface for the detection and estimation of

the object light intensity have great usefulness in binary optical

communication. Since those devices, such as photomultipliers, image

tubes, and image orthicons are well developed in commercial industry,

photon-counting techniques, combined with adequate digital computer

facilities can be used for many purposes. In this chapter we will

further discuss some detectors used for resolving the point sources in

optical communication by photon-counting techniques. The ideal

detector described in Chapter II can be used for distinguishing two

light sources of equal radiant power from a single source with twice

the radiant power or for deciding which one of the two light sources

is present. In the absence of background light, the performance of

the ideal detector for deciding which one of the two light sources is

present will be compared with two other receivers, the simple detector

and the counting comparator. The intensities of the optical images

due to the point sources will be postulated to be Gaussian distributed

spatially. As uniform background light also passes through the

aperture, the error probabilities of the simple detector and the

counting comparator will be calculated with a finite observation area.

When the point sources are mislocated, the effects on the ideal

detector and the counting comparator will be discussed, and their

average error probabilities will be calculated.
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Ideal detector for resolving two light sources from the one light

source

When two point sources with equal radiant power are very

close to each other, they may often appear to the observer 
as one

source with twice the radiant power, located midway between 
them.

The criterion given by Rayleigh for two point sources to be 
resolved

is that the peak illuminance of the diffraction pattern of one 
source

will not fall closer than the first minimum of the diffraction 
pattern

of the other. In this section, we will construct the optimum statistic

for the resolution of the two point sources from the standpoint of a

classical hypothesis test(1). The observer will choose between two

hypotheses, (H1) two point sources whose images have equal intensities

are present at x and -x in the image plane, and (H0 ) one source with

twice the power is located at the origin. The optimum statistic g

described by (2.18) in Chapter II, based on observing the set of n

photoelectrons, can still be applied here. The intensity Ik() given

by (2.15) can now be written as

Ik x) = Ib + I S Yk1 i ) , for k = 0, 1 , (4.1)

where the weighting functions are given by

Yk(Xi,X2i) = . [Y(xli - kxo,x2i) + Y(Xli + kx0,x2 i)], (4.2)

and y(xli,x 2 i) = yx i ) is described by (2.16). Ib is the uniform

intensity of the background light. I S is the intensity of the point
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source, whose image is centered at (x0,0) or (-x0 ,0) on the

photosensitive surface under hypothesis H1 as shown by Figure 3.

The optimum statistic for binary detection of the point sources

can be derived from the likelihood ratio in a way similar to (2.18),

and we write

N

gR n=  i n HR( x) , (4.3)

i=0

where the function HR x ) defined in (2.17) becomes

HR -i ) = Il x -0

I S [YIxi) yo xi)]
=i+

IS
b[1 + Y )

= x1 + D2 [u u (x,) [1 + O xu (4.4)

.and uk(xi) Ao Yk(Xi), k = 0, 1, D IS/I bA. Here A is an

arbitrarily defined finite area, as discussed in Chapter II.

Since the weighting function lies between 0 and 1,

O < Yk() < 1 for k = 0 or 1. We will have 0 < HR(x i ) < 1 for some

areas where y0 x) > yl(x). This implies that the statistic gR is no

longer a sum of non-negative random variables. As TW >> 1, the m.g.f.

of the optimum statistic gg according to (2.19) from Chapter II

becomes
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h (s) exp aTI 2x[1+D2uk)] [( x))s -1] , k=0,1 4.5)
Rk (s =C25-k [(i x l

where A is the area of the receptor, T is the observation interval,and

a is the coefficient defined in Chapter II. Since the average number
N

difference AN = (nil - ni 0 ) vanishes in this case, the statistic
i=1

gR from (4.3) is the logarithm of the likelihood ratio defined by

(2.11). It is easy to show hRl(S ) = hRO(S -1). Also when Bayes

strategy is used, the decision level gRO.is zero when the prior

1
probability is = ~-as we can see from (2.13).

In order to use the numerical method of steepest descent, the

complex phase, defined by (A7) in Appendix A when (4.5) is used, can.

be written as

Rk(s ) = gRO TI 2x[l+D2Uk )][(HR(X)) -l]+s, k=0,l .(4.6)

The saddle-point will be determined by solving the equation Rk(s)=O

or

R = aTIb 2x[l+D2Uk )](H ))-sin HR(), for k=0,1 .(4.7)

The nth derivative of the complex phase for both H1 and H0 as

n > 2 can be written as

Rk(s) (-1)aTIb 2x[+D2uk]( ))k- s n H))) (4.8)
for k=0(4.8)

for k=0,l
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and (ROn(s0) = qRI n(s ) for n Z 1 where s. is the saddle-point

under Hk for k = 0,1 and satisfies (4.7) and (2.51). Because the

function HR(x) has the term y(x) in the denominator as given in (4.4),

the evaluation of (4.6), (4.7) or (4.8) will involve a double

integration. The iteration procedure to search for the saddle point as

discussed in Chapter II will be tedious numerically although it can be

carried out by the digital computer. In the meantime, the nth cumulant

under hypothesis Hk for k = 0 or 1 is

Gkn = (-)n - n hRk(S)s=
dsn

= (-I) aTIb 2x[1 + D2uk(x)] nn HR x),for k=0,1 (4.9)

If all the nth cumulants for n > 2 are negligible in comparison with

the second cumulant, the distribution of the statistic gR can be

approximated by a Gaussian function. The mean and variance of the

statistic can be calculated from (4.9) at n = 1 and n = 2. We have

not carried out any numerical example for this ideal detector. However,

we will investigate the performance of the ideal detector with a

Gaussian image in the next paragraph for the decision whether a single

source is located-at x or at -x



Ideal detector for binary detection in optical communication

In order to transmit the information about the bit "1" or the

bit "0", an optical system can be used by focusing a radiant source

either on the upper half plane or the lower half plane of a photo-

sensitive surface. The observer will choose between the hypotheses:

(H1) the bit "1" and (HO) the bit "0" on the basis of the set of

photoelectrons ejected from a large number of small areas of the

photosensitive surface. The intensity of the image of the light source

at point (xi) of the surface under hypothesis Hk for k = 0 or 1 in the

presence of the uniform background light can be described by

Ikxi) = ib + IS Yk i )  (4.10)

with yk i,) = Y(Xli, x2i + (-1) kx), for k = 0 or 1.

where y(xli, x2i) is the weighting function and (0,x0) or (0,-x 0 ) is

the center location of the image on the upper half or the lower half of

the photosensitive surface, and Ib is the uniform intensity of the

background light.

The optimum statistic gR from the likelihood ratio can be

expressed according to (4.3) with 1R(x) as the ratio of Il( ) and

10o() defined by (4.10). gR wil.l be compared with the decision level

gRO' and hypothesis H1 will be chosen if gR 
> gRO Otherwise hypothesis

H0 will be chosen. The m.g.f. of the statistic gR and its cumulants

will be involved with double integration as discussed in the previous
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paragraph. However, when the background light is negligible or absent

so that Ib = 0, the distribution of the statistic can be derived

directly from the inverse Fourier transform of the characteristic

function when Gaussian images are postulated, and the performance of

the ideal detector can be analyzed as follows.

The function HR() described in (4.4) at Ib = 0 becomes

(4.11)

where for the Gaussian images we have

Yki )  12 exp{- -  [xli2+(x 2 i + (-l)kx0) 2 ] } (4.12)
2o2r 2o

for k = 0 or 1

and the function HR(xi) from (4.11) becomes

HR(X i )  exp(2x0 x2i/0 2 ), x 0 > 0 (4.13)

Thus the statistic gR will be the sum of the numbers of photoelectrons

ejected from each small area dAi, i = 1, 2.... or N, weighted by the

coordinate x2i of the center location (xli., x2i) of that area. As we

pass the limit dAi + 0, the m.g.f. of the optimum statistic can be
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written as

hRk(s) = exp TI S  dxldx 2 1 k(.)[(HR -s-1

x
exp Ns exp {2 ( - )2 [1)k+s] s}1 (4.14)

for k=O,l

with Ns = aTIS  as the total number of photoelectrons emitted from the

photosensitive surface during the observation interval (0,T) because of

the light from the source.

If we expand the right-hand side. of (4.14) into a series of
x0 2  k

exp[2(-) ((-1) + s) s] we have

Nn 2 2N s

hRk(s) = exp(-Ns  exp [nks + n2 ] (4.15)

for k=0,l

x0 2 k
where Mnk -2n(T) (-1) for n=0,1,2...

x 2 (4.16)
a 4n (-) k=0,1n a

The m.g.f. hRk(s) from (4.15) is a convergent power series where the

nth term of the series is the m.g.f. of the Gaussian random variable

with mean Mnk and variance a 2 given by (4.16) and is weighted by ank 11
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factor exp(-Ns) Nsn/n!. The p.d.f. of the statistic gR can be

obtained by taking the inverse Fourier transform of its characteristic

function and can be written as

CO n

Pk(gR) = exp(-Ns) s (gR n!
n

exp 2 (gR nk 2 for k=0,1 (4.17)
2a

(3)
where 6(gR) is the Dirac delta function

The p.d.f. of the statistic gR has the delta function at the

origin. The probability that there is no photoelectron ejected at all

is exp(-N
s ).

The distribution of the statistic under hypothesis Hk for

k=0 or 1 is

Fk(gR) = P[gR gRO ] = 1 - Pk(gR) dg R

Os ,R

= 1- exp(-Ns ) N erfc RO Mnk for g >0
n=1 n

nk

= 1 - exp(-N )[1 + -S erfc R ,s n * an=1 n

for gRO<0 (4.19)

2
with an and Mnk given by (4.16) and the function erfc(x) defined by

(2.44) in Chapter II.
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The nth cumulant of the statistic can be also derived as

follows ,

dn

GRkn  = (-) n d n hRk(S) S=0-
Rk dsn

1 )N 
2x n f I exp [- 12(x+(-)kx 2]xndx 2

2x - .o 20(4.20)

= (-1)n Ns.\2 n nk' for k=0,1 (4.20)

F 2 ]

where nk exp[- -2(x 2 + (-1 )k x 0 ) 2 x2n dx2where 1nk x 2 2n "dx 2

a E[X - (-1)k ]

n

-.O n kr.,Or E[Xn-r

r=0 
.

is the nth central moment(4) of a zero mean Gaussian random variable

X with unit variance and

E[X n ] = 1.2-3... (n-l) for n even
I n  

n!

= 0 for n odd, \r) rl(n-r)!

The average error probability according to (2.6) is equal to the Bayes

cost when the relative costs C10 - COO and C01 - C11 are equal and

C01 = C10 = 1, COO.  C11 = 0. The decision level gRO will be set at

zero when =- , and the minimum error probability of the ideal
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detector can be calculated from

1 1
Pe =  2 QO + - Qd

-n

= exp(-Ns) [1 + 2erfec( n ] C4.21)
n=l !

for n=l1,2,...

At Ns = 0.1, 0.5, 1, 2,and 5, the error probabilities of the ideal

detector have been calculated and plotted as a function of the ratio
2x0

(- ) by the solid curves in Fig. 19 where 2x0 is the distance

separating the images, which are centered at (0,x0) and (0, -x0 ) of

the surface. a is the width of the Gaussian image described in (4.12).

The error probability Pe will be reduced as the distance 2x0 between

the two images increases. However, Pe will be limited by a value of

Iexp(-Ns)  as the ratio 2x0 /a approaches to infinity. Therefore, the

larger the value of Ns, the better the performance of the detector

will be.
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Figure 19 Average error probability Pe
in binary bits detection vs. distance of

separation (2 x0/a) between images for

ideal detector, counting comparator,or

simple detectors in. the absence of back-

ground light; N = 0.1, 1, 2, 5.S
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Simple detector for detection of binary-bits

When background light also passes through the aperture and

corrupts the object light, a simple way is to measure the total number

of photoelectrons ejected from a finite area A' of the upper half

photosensitive surface centered at (O,x0). The simple detector

described. in Chapter II thus can be used here to detect the binary bits.

As TW >> 1, the number of photoelectrons ejected from the area A' has a

Poisson distribution. The conditional probability under hypothesis

Hk for k = 0 or 1 is given by (2.3) where the means can be determined

from

nT = aTj [Ib + I S Y(xl, x 2 - x 0 )] dx1 dx 2

nT = aT [Ib + I S y(x, x 2 + x0 )] dx1 dx 2 * (4.22)

For a Gaussian image, with y k') given in (4.12) and A' = R202 is

the circular area of the upper half surface where x2 +(x 2 22
1 +(x 2  0 ) %a

We have

s 1 2 2
n2 exp[-2 (xl +(x 2 - x0) )]}dx dx

27c7 2a

2irR 0 exp(-

aRO2a2b T+ aT exp(- >) RdRdO

12 2 2
- NO[ R +D(1- exp(-R /2)) i
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TO aT I +IS exp[- 12(x2+(x2+x0 2]]dx1 dx2SI S 2na 2U

2 2 S R 0 0

2 a TI+aT I 2  exp[- 2 Rx0cos- 2
0 b 2 2 2

RdRdO

(l 2x
0 NO[ 0 + (1 - Q( x , RO] (4.23)

where Q(a,b) is the "Q function" (5 ) for constants a and b, and

2
N = 2 o aT I0 b

D2 = No/aTI S  = N0 /Ns

NO is the average number of photoelectrons ejected from an area 2,2

2
during the interval (0,T), D is the signal-to-noise ratio as defined

in (2.57) and (2.58).

If A' is a square area, that is,we only consider the area

A' = 4R0
2 2  for Ix2 - x0o 5 R0 o, IX11 R0 o in the upper half plane,

the means can be calculated as

R a x0+R a

nT1 aT dx -R dx2

1 1 2

Ib IS 2 exp{ - 2[x 1 +(x2 - 0
2ira 2a
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R

= 4R2 Cr TIb + aT 2 J exp(- -)dR

-R
2R

N No[ + D2(l - 2 erfc(R 0))
2

ROo xo+R0 o

nTO = dxT dx2ib+lS  21
R 0 0-R00 2ao

20
2o

2R 2x

SN0  + 2(1 - 2 erfc(R 0))[erfc(--o - R

2x
- erfc(--a + R0 ] (4.24)

The observer will compare the number of photoelectrons n ejected from

the area A' with a decision level gR0 such that HI will be chosen if

n > gRO and H0 otherwise. The decision level can be determined

according to (2.33) and .

gRO =  (In AsO + nT1 - nTO)[n(nTl/nT0 - (4.25)

where As0 is the decision level on the likelihood ratio and can be

calculated according to (2.2) when the cost functions are given.For

the Neyman Pearson strategy, randomization must be used,and gR0 is then

an integer, which can be determined from (2.74),where Q0 is preassigned.

The reliability and the average error probability can be calculated by

using (2.73) and (2.6). As the background light also passes through

the aperture, there is a certain optimum size of the observation area
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at which for a fixed value of the false-alarm probability, the

detection probability is maximum,as we have discussed' in Chapter II.

The result and discussion would be the same if the observation

area A' were taken from the lower half of the photosensitive surface

and centered at (0,-x 0). We only have to change the weighting function

by

k
Yk ) = Y(x 1 ,x2 - (-1). X0), for k=0,1 , (4.26)

where the mean numbers nTO and nT1 observed from the lower half plane

will be the same as given by (4.22), (4.23) or (4.24).

In order to compare with the ideal detector just discussed,

we shall investigate the performance of the simple detector in the

absence of background light. The observation area A will be now

taken as the whole upper (or lower) half plane. For a Gaussian image

with yk(x) given by (4.12) the mean numbers can be written as

-Nfdx 1 1 2 2
nT1 =  N dx dx 2 2 exp[- 2 (x1 +(x 2 - x0 )

1 s o 2ora 2a

x0
N [1 - erfc( )] ,

s a

nTO = N dx dx 2  2 exp[- 2 (X1 +(x2+x0) 2'L 2 2a 2 2  1

x

= N erfc(- ) (4.27)
s a
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1
When the relative costs are equal and ( = , the decision level is

gRO = (nT - nT )[In(nT /nTO)] for the Bayes strategy. The error

probability P is calculated according to (2.77) and plotted as a
e

function of the ratio (2x0/) by the dashed curves in Fig. 19 at
.2x

N 0= .1, 0.5, 1, 2,and 5. As the ratio (-) approaches infinity,
s 0

where n + Ns and nTO -* 0, the error probability Pe will be also

limited by I exp(-Ns) , which is half of the probability for. n=0 with

the average number Ns

The error probability Pe of the simple detector in the absence

of the background light can be further reduced if the optimum

observation area is considered. That is, instead of taking the whole

upper half plane, the observation area will be moved up from the center

line by a distance xd such that the error probability according to

(2.77). is minimum. In other words, for the Gaussian image we can take

the proper.integral range of x2 from (4.27) as (xd,O) instead of (0,o)

as x > 0 so that the probability P can be further minimized. For
d -e

N = 5, the typical values of xd at different values of ratio (x0 /o)

are listed in table 2. The minimized Pe is plotted as a function of

(2x0 /o) in Fig. 20 where the error probabilities of the ideal detector

and the simple detector at xd=0 are also plotted.

When the background light also passes through the aperture,

t
the observation area A for Gaussian image discussed in (4.23) or

(4.24) can be used. With the square area A' = 402 at R0=1, the means

are calculated from (4.24), and the error probabilities of the simple

detector are plotted as a function of Ns for NO = 0, 0.1i, 0.5,and



154

1 at x0/o = 2 in Fig. 21 by the dashed curves. In Fig. 22, the error

probabilities are also plotted as a function of Ns at xol = 1 and

Xo/o = 2 for the square area A = 4a2 by the dashed curves. When the

mean number nTO is fixed at 0.5, 1 or 2, the error probability of the

simple detector is then plotted as a function of the number difference

AN = Ti - nTO in Fig. 23 by the dashed curves.
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Figure 20 Average error probability Pe in

binary bits detection vs.. distance (2 x0 /o)

for ideal detection and simple detector with

fixed area or optimum area in the absence of

the background light, N = 5.
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Figure 21 Average error probability Pe
in binary detection vs. average number Ns

for simple detector, counting comparator

with square observation area A = 402 at

R0 = 1 and x0/ = 2 N = 0, 0.1, 0.5, 1.
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Figure 22 Average error probability P in
e

binary detection vs. average number Ns for

simple detector and counting comparator with

square observation area At 402 at R = 1
and NO = 0.1; x0/la = 1i, 2.
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Figure 23 Average error probability Pe

in binary detection vs. average number

difference AN for simple detector and

counting comparator where AN = ETl - nTO

with nTk as the mean number of photo-

electrons observed from a finite area of

one-half of the surface under hypothesis

Hk for k=O, 1; nT0 = 0.5, 1i, 2.
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Counting comparator for detection of binary bits

Another simple receiver for detecting the radiant source located

at either (0,x0 ) or (0,-x 0 ), similar to the receiver discussed by

(2) of photoelectrons
Peters and Arguello , measures the total number n of photoelectrons

emitted from the area A centered at (0,x) in the upper half photo-

sensitive surface and compares it with the total number nL of

photoelectrons emitted from the area A" centered at (0,-x 0 ) of the

lower half plane (A'=A"). The observer will choose H1 if n u > n and

H if nu < nL. When nu = nL hypothesis H1 will be chosen with a

probability f. The false-alarm probability and the detection

probability according to (2.9) and (2.10) can be written as

Q0 = Pr[nu > nLIH0]+f Pj
[n u =nLIHO]

= P0 (n+m) Pl(n)+f P0 (n) P1 (n)
n=0 m=1l n=0

Qd = Pr[nu > nLIHl] + f Pr[nu = nLH 1

Pl1 (n+m) P0 (n)+f P(n) P 0 (n)
n=0 m=l1 n=0

where Pk(n) = n enTk/n! , for k=0,l (4.28)

with means nT1 and nTO given in (4.22), (4.23), or (4.24).

(4.28) can be expressed in simpler form. Since
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=0 P0 (n + m) Pl(n)
n=0 m=l

Sn+m -n n -nnT e TO nT e- Tl / n! (m+n)!

n=0 m=l

= e I (ab)

m=l Tl

= 1 - Q (a,b) (4.29)

where I (x) = (x/ 2 ) m+ 2 n / n! (n+m)!
n=0

is the modified Bessel function (6 ) for m=.0,1,2... and

2(a + b )  m

Q(a,b) = 1 - e b) I(ab)
m=l

is the "Q function" ( 5 ) with

a 2--- b 2na = 2n ,TO . (4.30)

Also we can write

P1 (n) PO (n) = I (nTO Tl)n e-(nTO + T1)(n!) 2
n= n=O

- (a 2 + b)
=e 10 (ab) . (4.31)
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1
Therefore,for equal prior probabilities or = , the average error

probability for making the decisions is

1 1
Pe - QO - Qd

SP (nh) P(n) + P (n) P (n)
n=O m=l1 n=O

1 2 2
-(a,b) + exp -(a + b)) 10 (ab) (4.32)

The error probability Pe from (4.32) of the counting comparator has

been evaluated in the absence of the background light for the Gaussian

images with the mean numbers under H1 and H0 as given by (4.27). The

error probabilities P of this receiver are plotted as a function of
e

the ratio (2x0 /o) at Ns = 0.1, 0.5, 1, 2,and 5 in Fig. 19. The error

probability decreases as the ratio (2x0/a) increases. As 2x0/

approaches infinity, the error probability will be limited by

1
exp(-Ns).

When the background light.also passes through the aperture, the

error probabilities of this receiver are also calculated with a square

observation area A = 4a with R = 1 and plotted as a function of N
0 s

in Fig. 21 by the Solid curves at NO = 0, 0.1, 0.5,and 1 for x0/a = 2.

In Fig. 22, the error probabilities are plotted as a function of N

when the same observation area A' = 4o2 is used and the average

background number NO is fixed at 0.1 for x0/o = 1 and 2. In Fig. 23

the error probabilities are plotted as a function of the number
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difference AN by the solid curves at fixed values of average number

nTO' 0.5, l,and 2. As the size of the square area A' is varied, the

error probability Pe changes. The error probabilities of the counting

comparator are plotted as a function of the length R0 in Fig. 24 at

different values of No, 0.1, 0.5,and 1.
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Figure 24 Error probability P of the counting

comparator vs. the length R0 for the rectangular

observation area; N. = 5. The curves are indexed

by the parameter NO defined in (2.57).
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Image location effects on the detectors in the 
absence of background

The investigations of the detectors of binary bits that we have

just discussed are based on the primary assumption-that 
we know that

the image is located at either (O,x0) or (0,-x 0) exactly. We would

like to investigate the performances of those detectors when the

distance between the image is still 2x0 , but the images are mislocated

with a shift of ±+. That is the images are actually located at (0,x0')

and (0,-x') under hypothesis H1 and H0 where x0 = 0 + , x0 = x0 -

or x 0 = x 0 - C, x 0 = x 0 + E for c > 0.

When the ideal detector is used, the expression of the function

HR xi) from (4.13) can still be used, where the weighting function

yk x() from (4.12) will be replaced with 
x0 = x0 for k = 1 and

x0 = x0 " for k=0. We can derive the m.g.f. of the optimum statistic gR

following (4.14), and the expression of the m.g.f. hRk(s) from (4.15)

can still be used with Mnk now replaced by

Mnk= 2n 2 (-_)k, for k=l1
nk 2

- 2n 20 (-_)k for k=0, n=0,1,2... (4.33)

and on unchanged.

The false-alarm probability and detection probability with zero

decision level can be expressed according to (4.19) as
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QO = Pr[gR > OIH0]

s 

exp(-N ) N erfc (An-- 0
s n! a :

Qd P r gR > written as

n ,

exp(-N) +2 (+ erfc (n x 0 (i

n= ) )  (4.34)

The average error probability for equal prior probability or

c li

5.= can be written as

e -2 QO d (

(4.35)

The error probability will be the same for either x O ' = x 0 +

X0" = x0 - c or x0 ' 
= x0 - E, Xo" = X 0 + E. That is, (4.35) is the

average error probability of the ideal detector when the images are

mislocated with a shift either c or -e.

When the counting comparator is used, with the distance between

the images fixed at 2x0, the mean numbers due to a shift c or -c of the

actual image can be expressed as
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n = Ns [l - erfc o ]

SN erfc (4.36)
TOT Ns erfc

where nTl+, nTO-  are the means for a positive shift c and nT1-'

nTO+ are the. means for a negative shift -e. The false-alarm probability

and the detection probability of the counting comparator when the

images are misolcated at (O,xO ) and (O,-x 0 ) under hypothesis 'H1 and HO,

while actually located at (O,x0+C) and (0,-x 0+c) or (O,x0 -c) and

(0,-xo-c), can be written as

QO+ = Pr[n u > nLIHO] + f Pr[n u = nL H O]

SP 1(n) P (n+m) + f Pl(n) P(n)

n=O m=l n=O

Qdi = Pr[nu > rLH 1] + f Pr[nu = nLIH 1

S1 -(n) P OT(n+m) + f P1± (n) P o(n)
n=O m=O n=O

(4.37)

n -nTkf/
where P k(n) = Tk e n!, for k=O,l .

QO+ and Qd+ are the false-alarm probability and the detection
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probability for a positive shift e while QO-' Qd- are the probabilities

for a negative shift -e.

1 1
For equal prior probability 

=  and f =  , the average error

probability will be the same for either a shift e or -E and can be

written as

1 1
P+ Qo+ +  (1- Qd)

Co 0 do

= P(n) P (n+m)+ . 1  P(n) P (n)

n=O m=l n=O

+ P1+ (n) PO0 (n+m) +  Z P 1 ±(n) POT(n)
n=O m=l n=O

- ( a 2 +b+ 2

1 1 2 +
= - 2 {Q(a ,b )+Q(a+,b_ )- [e 10 (ab+)

2+ 2

1a+ +b 2 )  (4.38)
2 + -

+ e IO (a+b _ ) ]

where a+ =2nTl, b'=2nOt and Q(a,b), Io(ab) are given in (4.29).

Pe+ is the error probability for a shift of c and Pe- is the error

probability for a shift of -e. Pe+ = Pe- as we can see from (4.38).

The error probabilities of both the ideal detector and the

counting comparator are calculated at different values of shift E when

(4.35) and (4.38) are used. In Fig. 25, the error probabilities of

these two detectors are plotted as a function of the ratio IlI/x 0 at

Ns = 2, 5 and 8 with x0/o = 1. In Fig. 26 the error probabilities are

plotted as a function of the ratio IsI/x 0 at x0/ = 1.5, 2 and 4 with

fixed value of N at 5.
s
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Figure 25 Average error probability Pe

in binary bits detection vs. the ratio

leI/x 0 due to the mislocation of the

images for the ideal detector or the

counting comparator at x0/o = 1; Ns = 2,

5, 8.
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Figure 26 Average error probability P in

binary bits detection vs. the ratio ICE/x 0

due to the mislocation of the images for the

ideal detector and the counting comparator

for fixed value Ns = 5; x0/a = 1.5, 2, 4.
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Discussion

In the absence of uniform background light, registering the

locations of the ejected photoelectrons for the detection of either

one of the two Gaussian images,as we have discussed in this chapter,

not only utilizes more of the.information, but also effectively reduces

the mean value of the optimum statistic under H0 and thus improves the

performance of the ideal detector. As for the simple detector, the

gain by optimizing the observation area will be limited because

varying the area will affect both the mean numbers nTO and LTI as

defined in (4.27). Therefore, the performance of the ideal detector

is better than that of the simple detector, as we can see from Fig. 19

and Fig. 20. When the counting comparator is used, the observed

numbers of the photoelectrons ejected from both the upper half surface

and the lower half surface will be used, while for the simple detector

only the number of photoelectrons ejected from the upper half surface

,(or the lower half surface) will be utilized for making decision. In

other words, the counting comparator utilizes more information than

the simple detector, but less information than the ideal detector.

Thus the performance is better than that of the simple detector, but

not as good as that of the ideal detector as shown in Fig. 19.

When background light also passes through the aperture, the

average error probability for making decisions will be increased. In

the meantime, the observer must define a finite observation area

when any one of the detectors will be used. For the simple detector or

the counting comparator, the finite observation area can be chosen such
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that for a fixed false-alarm probability, the detection probability of

the detector will be as large as possible. The proper size of the

square area for the counting comparator to be used at 0.1 N0 < 1 is

R = 2 or A' = 16 2 as we can see from Fig. 24. For a finite square

area 42 , the average error probabilities for both simple detector and

counting comparator will increase as the background light increases or

the ratio x0o/o decreases as shown in Fig. 21, Fig. 22, and Fig. 23.

When Gaussian images are postulated, the performance of the

detectors for detecting binary bits will also depend on the prior

knowledge about the locations of the images. The average probability

of making errors in each decision will be increased if the images for

bit "i" and bit "0" are mislocated. The severity of mislocation will

also depend on the distance 2x0 separating the images. For example,

when the ratio x0/c = 4, the effect on either the ideal detector or

the counting comparator due to mislocation will be insignificant until

the ratio of shift ICI/x 0 is greater than 1.2, as we can see from Fig.

26. Furthermore, the effect on the counting comparator of mislocation

of the images will be little smaller than that on the ideal detector

as shown in Fig. 25 or Fig. 26 and at x0 /o = 1.5; for example, the

average error probability of the counting comparator becomes smaller

than that of the ideal detector when ICI/x 0 is greater than 1.6, as

shown in Figure 26,
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Table 2 - Optimum Distance for Simple Detector

x0 /o 0.1 0.5 0.75 1.0 1.25 1.5 2.0 3.0

xd/o 0.16 0.52 1.09 1.1 1.1 1.08 1.04 0.84



Footnotes

Chapter IV

1. 'Helstrom [27],

2. Peters and Arguello [28].

3. Papoulis [29], p. 155, eq. (5.77)

4. Papoulis [29], p. 146

5. Helstrom [10], Appendix F.

6. I. S. Gradshteyn and I. M. Ryzhik [30], p. 961, eq.(8.445)
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APPENDIX A

Asymptotic Expansion Approximation of the

Tail Distribution by the Method of Steepest Descent

In detection theory, the evaluation of the cumulative distri-

bution for a statistic is often important, and it-is required to reach

a certain accuracy. For example, when the Neyman-Pearson criterion is

used, the decision level of the likelihood-ratio detector must be

calculated from the preassigned false-alarmprobability Q0. As Q0 is

small, there may be a serious error in the decision level if the

cumulative distribution cannot be accurately calculated. The

statistic we will discuss in this Appendix is of the'type of the sum

of N independent random variables and can be written in general as

N

Z =X X i = 1, 2, .... N . (Al)

When {Xi } are identical random variables and N is large, the cen-

tral limit theorem (1),(2) can be applied. If {Xi) are independent

but not identical, the distribution of Z may be dominated by one of

the random variables and can be approximated by the Gaussian distri-

bution when conditions such as Lyapunov's condition (3 ) are satisfied.

On the other hand,the distribution of the statistic Z can be derived

from the inverse Fourier transform of its characteristic function when

the inverse integral can be approximated by the asymptotic expansion

series through the steepest-descent method. For detailed treatment of

the steepest-descent approximation we-refer to the works of many
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authors ( - 7 ) . For applications of the steepest-descent method in

statistics we refer to the works of the authors(8-0) Here we will

discuss the asymptotic expansion approximation of the integral with

only one saddle point.

The characteristic function(11) of the random variable Z is

defined by

iwZ ]  iZA

h() Ee = e dF(Z) , (A2)

where F(ZO) = Pr[Z < ZO] is the distribution of the random variable Z.

The probability that Z exceeds a value ZO can be written as

Q(Zo) = Pr[Z > Z] = 1 - U(Z 0 - Z) dF(Z)

(A3)

where U(x) is the step function.

If we take the Fourier transform of Q(Z0) by discarding the

portion of the integral which oscillates with infinite rapidity, we

have

( }= j e Q(ZO) dZ

S2i6(w) h(-w) (A4)

where 6(w) is the Dirac delta function.

The probability Q(Z0 ) can then be expressed in terms of h(-w)

by taking the inverse Fourier transform of (A4). That is
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Q(Z0 )  r F-o[Q(Z)]

-i z
= 1 f 1 h(-w) dw (A5)

where 6r -lare the Fourier transform and inverse Fourier transform

operators respectively.

When the integral on the right-hand side of (A5) cannot be

evaluated exactly, the method of steepest-descent can be used to

approximate the tail probability Q(ZO). The integral from (A5) can be

extended to a contour integral as

(Z) =1 exp[ZO .(s)] ds. (A6)

c

The contour cl of the integration is a straight line running from

ao- i- to ao+ i= for ao> 0 in the complex plane s with real values of

ZO. Here

-.1
£(s) = s+ Z0-1 tn h(s) (A7)

-sZ
is the complex phase of the integral, and h(s) = E[e - s ] is the m.g.f.

of the random variable Z as defined by (A2) with s = iw. The inte-

gral in (A6) can be approximated by taking the integration path on the

complex plane so that the imaginary part of 4(s) is constant (Path of

the steepest descent) along the path, which also passes through the

real saddle point so upon which the modulus of e (s)decreases most

rapidly. The saddle point sO can be determined from the equation
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d- * (s) = 0 or
de

Z0 = - h'(s 0 )/h(s 0 ) . (A8)

Since the origin is also a singular point of the integral, the

contributions from taking the integral path through the saddle point

sO and around the singularity s = 0 cannot be 
treated separately when

sO is small or near to the origin. Rice presented a more general

discussion for cases involving more than one saddle point. 
In our case

the complex phase (s) has only one saddle point as discussed in

Appendix B. If (s) is analytic in the neighborhood of the origin,

4(s) behaves much like a second-order polynomial in 
s. This suggests

changing the variable of the integral from s to u in such a way that

2
~(u) = u -2u 0 u (s) (A9)

is the new complex phase
(1 2 ) in the u plane with u0 as the new saddle

point corresponding to sO in the s-plane, and q(u0) =- (s0
). The new

saddle point u0 can be determined from (A9) as

u0 = sign(s 0 ) (-(s 0 )), (A10)

where the function sign(x) = 1 for x > 0, sign(x) = - 1 for x < 0,

so that u0 and sO have the same sign. 4(s0) is the complex phase at

S = s0 and is assumed to be non-positive. Thus, integral on the

right-hand side of (A6) can be expanded into a uniform asymptotic
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-1
series of powers ZO-1 as

s exp[Z 0  (s)]ds
c
C

-1
,=f f(u) exp[Z0 (u 2 - 2 u 0 u)]du

c 1

= 0 (Z0 ) + k(Z 0 ) An 0-n (All)
n= 1

where

f(u) = uds/sdu ,

k0 (Z 0 ) = u-1 exp[ZO(u 2 
- 2 u 0 u )]du ,

ci

with c' running from a' - i- to a + i- for a' > 0 in the complex u

plane. An is the coefficient of the nth term in the. expansion and can

be determined from the Ursell method as discussed by Rice (1 3 )

Thus, the probability from (A6) can be approximated by the

uniform asymptotic expansion series as

Q(Z 0 ) =1 - E(Z - I( (A12)

where
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E(ZO) = 1 - erfc [(-2 Zo p(Z 0 )) ] , for s o < 0

erfc [(-2 ZO 0(Z 0 )) , for so > 0

,and

exp[Z0  (so) ] -2 _

(2)>
1 -4 (so) -k

sign(s 0 ) 1 k (so)Z O  (sO

where

erfc y = f exp(- /2)d

y

and

SA ,n 0, for n < L or £ = 0, n >1

1, for n = £ = 0

n-k+1 (m+n)-2 m4 (so)
A£+, n+l + (2(s) n-m+l

n + 1 m = 1 0 (m+2)[ ( s ,

A£,n are the coefficients which can be calculated by the recurrence

relation through the nth derivative 4n(so) of the complex phase,where
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(n(S) ZO1 (dn n h(s), for n . 2 , (A13)

and is evaluated at the saddle point s = sO . This scheme can be easily

programmed for a digital computer. The tail distribution Q(Z ) is

obtained by adding up the terms in the asymptotic- expansion given by

(A12) until they become insignificantly small or they stop decreasing

and begin to increase.

When Z is a discrete random variable, the tail distribution

can be written as

Q(Z 0 ) = p(Z) (A14)

0

.where p(Z) is the probability of the random variable Z and the m.g.f.

can be written as

-sZ -sZ
hd(s) = E[e - Z] = p(Z) e . (A15)

Z = 0

The calculation of the tail distribution is simpler and more accurate

if one first approximates the probability p(Z) and then adds up the

probabilities for all Z > ZO as given by (A14). For example, when Z

takes only integral values' we can express the probability by the

contour integral (14) and approximate it by the uniform asymptotic

series as
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1 e dsp(Z) = e ds

Cd

explZ d(So) i 

-- (2)
[2s d (s ) ] m = 0

2 2 m A (A16)
(2) Z,2m (2

(2d (s0
)  k = 0 t+m '

where ed is the contour running from a" - iT to a" + iu, a" > 0 and

-1

Zd(S) = Z n hd(s) + s o (A17)

The saddle point s., the coefficients, A,2m and the derivative of the

complex phase d(s) can be determined as. before.

To illustrate the applications of the asymptotic-expansion

approximation, three well-known distributions, Gaussian, gamma,and

Poisson will be discussed as follows:

Gaussian distribution

The p.d.f. of Gaussian distribution is given by

p(Z) = ex[- (Z - m)2 ]  (A18)

2zve 202 *

with m, a as the mean and variance. The m.g.f. h(s) is given by

22

h(s) = exp[- s m + s . (A19)
2
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dThe. saddle point can be determined from " 
o (s) = 0 or by (A8). We

have

80 (m- ZO)/o
2 o (A20)

The complex phase and its nth derivatives evaluated at sO are

(sO 0-1 in h(s0) + = Z-1(m - Z) 2/202

"(sO ) = 2 /z ,

'(s) = n(s ) 
= 0 for n > 2 . (A21)

Thus, the coefficient ARn 0 for all Z, n " 0 and I(g0 ) vanishes;

alsothe tail distribution becomes

Q(Z0 ) = 1 - E(Z0 ) = erf c , so < 0

=1 erfc , s > 0 (A22)

as it should be for Gaussian distribution.

Gamma distribution

The p.d.f. of a gamma distribution is given by



193

X 0-1. -Xz
p(Z) -- (XZ) e , , X > 0, Z > 0

S0 otherwise (A23)

The m.g.f.(15) is given by

h(s) = 1 +) . (A24)

The saddle point s0 is determined from (A8) or

-1
.o0 z 0-1 X, Z0 > 0. (A25)

The complex phase and its nth derivative evaluated at so are

-l
(s O) = ZO [- n(B/Zo ) + 13 - ZO]

4n(s 0) = (- 1 ) n (n-1)!(Z0 /) n - l for n > 2 . (A26)

The special case at X = 1, 1 = 1 is the exponential distribution where

-Z
p(Z) =e , Z > 0

S0 otherwise . (A27)

The complex phase and its derivatives of the exponential distribution

evaluated at the saddle point from (A25) and (A26) are
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-1
$ =Z -1
0 0

(s 0 )= Z0- 1 + n Z ) - 1

(n(s1) = (-)n Z0 n-i (n- 1)! for n > 2. (A28)

The numerical calculation of the tail distribution by using the

asymptotic expansion series given in (A12) for the exponential distri-

bution has been carried out and compared with the exact value. The

percentage of relative error is listed in Table 3.

Poisson distribution

p(Z) =e X /Z! Z = 0,1, . . .

= 0 otherwise . (A29)

The m.g.f. is

hd(s) = exp[X(e - s - 1)1 . (A30)

The saddle point s o is solved from (A8) or

s o = n (X/Z ) . (A31)

The complex phase and its nth derivatives evaluated at s o are
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( 0 ) = - -1 + £n(A -1

n(s ) = (-I) n , for n > 2 . (A32)

The tail distribution has been evaluated by first approximating the

probability p(Z) with the asymptotic expansion series given in (A16)

and then adding up the probabilities for all Z > ZO. The relative

error by comparing with the exact value is listed in Table 4.



Table 3 - Percentage Error of Exponential Distribution

ZO  0.05 0.3 0.6 0.7 2.5 10 20 40 60

Error
% 0.0072 0.0194 0.3243 0.3310 -0.0174 -0.0866 -0.0866 0.2039 0.6614

Table 4 - Percentage Error of Poisson Distribution

7Q 6 10 14 18 22 26 30 35

Error
% -0.0061 -0.0062 -0.0087 -0.0049 -0.0043 -0.0058 -0.0045 -0.0028
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Appendix B

Iteration Procedure for Finding the

Saddle Point in the Asymptotic Expansion Series

In this Appqndix
- we will show that there is only one real

saddle point of the contour integral given by (A6) in Appendix A for

approximating the tail distribution of the 
optimum statistic g or the

-threshold statistic g6 from (2.18) or (2.26). The formulas used for

searching for the saddle point when the Neyman --Pearson criterion'is

applied will be given.

The cumulant-generating function for the ideal detector is

given by (2.20) from Chapter II as

ck(s) = £n 'h(s) = a T Ib Hk(x) (H(x))-l]d x

A

k = 0, 1 . (B1)

The m.g.f. M(s, go) of the positive statistic g is defined by

M(s,g0) = E[e -(g-g 0 )

f e -s(g-g dFk(g)

0
= exp[go0s + Ck(s)]

- exp[g 0 k(S)] , k = 0, 1 (B2)

and can be expressed as a function of k(s) as given in (2.48).
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As we investigate the complex phase k(s) for k = 0, 1 and its

first and second derivatives from (2.53)

' -1 k-s - 2
k - 0 a T Ib f [ )] () dk-s + 1 ,

A

4k() = g c T [f(x)]k £n H(x) d 2 E ,

A

k=0, 1

I I It

we have Pk(-- ) = -, k(
m
) = 1 and k(S) > 0 for all real values of

s. Then ik(s) is a non-decreasing function of real s. Furthermore,

the cumulant-generating function Ck(s) exists in -m < s < m.

Therefore,. according to the theorems 6.1 and 6.2 of Daniels(l)

there is only one real root, which is simple, of k(s) = 0 for

go > 0 and no more real roots otherwise. This is true also for the

threshold statistic go.

When the Neyman --Pearson strategy is used, the false-alarm

probability Q0 is preassigned. To search for the saddle' point s0 under

HO, we must arbitrarily pick the initial values sON and sOp in such a

way that the false-alarm probability calculated at sON or sp by using

the asymptotic series from (A12) will be Q0ON or QOP and

QON < Q0 < P
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A trial value s0 of the saddle point then will be determined from the

equation

T + OP ON (B3)
s0 s ON Q0P - QON 0 ON (B3)

The trial value of the decision level go and probability Q0
T can be

calculated by substituting soT into (2.62) and (2.55) for the ideal

detector or (2.69) and (2.55) for the threshold detector. If

T
> Q0, the values of sop and Q0P will be replaced by the values

T T 0T
so and . f < Q0' the values of sON and Q0N will be replaced

instead. Thus, a new trial value so will be obtained according to

(B3), and the procedure will be repeated until the calculated values

T
Q0 approaches the preassigned value Q0 within a tolerable error.

The decision level go is obtained from the final trial value g0o For

the ideal detector, the saddle point sl under H1 can be determined

from (2.51). For the threshold detector, the saddle point sl under H1

must be searched for again by iteration. That is,.after the decision

level go0 is obtained,we must arbitrarily pick the initial values slN

and s1P in such a way that the decision levels calculated from (2.69)

T
are gN and gp and gN < g00< gP. The trial value of sl will be

determined from

s s
T 1P -SiN

s = SIN + (gGo- gN) (B4)

By substituting the calculated value-sI into (2.69), the trial value

T T T

go0 is determined. If go > g0 0 gp and s lP will be replaced by g0
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and sl , otherwise gN and slN will be replaced instead. A new trial

value siT will be determined again from (B4). Repeat the procedure

T
until the calculated value g00 approaches the decision level gowithin

a tolerable error. The final trial value slT will be used to calculate

the detection probability Qd for the threshold detector by using

(2.55).

For calculating the integral, Simpson's rule has been used

for the numerical integrations. The number of points used in the

integration procedure depends on the relative error the system

requires. In our calculations we use about 50 points at most times.

More points can be used when higher accuracy is required. Further-

more, when the saddle point sk  (k = 0, or 1) is near zero, double

precision may be required to calculate the saddle point sk so that the

term Ik(go) in (2.55) can be evaluated accurately.

The typical behavior of the saddle point so of the ideal

detector for a Gaussian image is given in Fig. 27 where the values of

sO are plotted as a function of signal-to-noise ratio D 2 at N0 = 0.5

and 5, with preassigned false-alarm probabilities Q0 = 1 0- 3 and 10- 5
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Figure 27 Saddle point sO vs. the signal-
2

to-noise ratio D for a Gaussian image;

N = 0.5, 5, Q = 10-3 10
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