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The intensity ﬁf the image is assumed to be Gaussian distributed
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estimate %g-proposed when the intensity of the object light is
unknown, and its statistical performance is studied. The applic%tion
of the photon-counting techniques is futher discussed where

detectors are investigated for resolving two point sources with
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Introduction

An optical communication system, owing to its high
information-carrying capacity both in the temporal énd the spatial
channels, is more advantageous than electromagnetic wave systems of
lower frequency. In general, the retrieval of the information wi;l
rely heavily on prior knowledge about the field and the performance of
the detecting system. Usually the optical field at space point r and -
time t js not a measurable quantity, and only its average power at
that point can be observed. A photoelectric detector, such as the
 photo-tube, the photomultiplier, the image tube, or the image orthicon,
which carries the informétion about the optical field in the sense
that the probability of the photoelectron emission is proportional to
the inﬁensity of the light at its photosensitive surface, plays an
important role in the optical system for the detection and extraction
of the information. For example, in observational astronomy it is
often a practice to use an imapge tube or a photomultiplier to detect
a star for the purpose of observation and navigation; in a binary
communication system a photofube may be used to detect a bit "1" when
a specified optical object is received.

In most applicatioqs, the background light, referred to as the
"noise", may also pass through the optical system and fﬁus corrupt the
object light, referred to as the "signal". When the signal-to-noise
ratio is low, the observer will not only be required to detect the
optical signal,but also to seek the best strategy he can to make the
decision whether there is only the noise or whether the object signal

is also present. One way to observe the optical field by using a



photoélectric detector is to count the ﬁumber of ejected photoelectrons.
That is, as the photosensitive surface of the detector is divided like
a mosaic Into many sm§ll equal areas, the set of data can be obtained
from observing the numbers of the photoelectrons ejected from each
such area during the time interval (O, T). Because of the stochastic
na?ure of the optical field, each of the observed data will be a random
variable. To make decisions, detection theéry and the concegpts of
statistical hypothesis testing‘can be applied when the object éignal is
specified. 1If there are also some parameters of the object signal
unknown, the estimation of such parameters as well as thé detection
must be carried out. In this thesis we will discuss the basic binary
detection and single parameter estimation of an optical image and some
of their applications in optical communication systems by using
photon~counting techniques.

A point source, at a known location, emits incoherent
quasimonochromatic light of given spectral density and is focused on
the photosensitive surface of a photoelectric detector. Its

(1)

électromagnetic field s which is spectrally pure, is assumed to be a
stationary, spatio~temporal, circular Gaussian random process., A
brief description of the image formation and statistical description
of the photoelectric detector will be given in Chapter I. As the
observation interval T is much greater than the reciprocal of the

-1
bandwidth W, the distribution of the number of photoelectrons ejected

from a single small area of the photosensitive surface, discussed by

(2) (3)
(4)

Mandel and Helstrom ~°, will be derived in this chapter, following

Siegert , and it can be approximated by a Poisson distribution



function. The derivation will be then extended to the approximation
that the numbers of photoelectrons ejected froﬁ the different small
areas of the surface will be Poisson distributed and statistically
independent from each other. The moment-generating function (m.g.f.)
of the statistic, which is the sum of the number of photoelectrons
ejécted from many small areas as‘Lhese areas 5ecome infinitesimally
"small, will also be discussed. |

When the optical signai is sbecified;réﬁéuéiégie binary
hypothesis tests can Eé used. -Two important strafegies, Bayes and
Neyman-Pearson, will be briefly described in Chapter II.l The optimum
statistic based on the likelihood ratio and its m.g.f. for the
spatially varying optical signal, discussed previously by Helstrom(s),
will also be given. The performance of the ideal detector, in the
absence of the background light, will be discussed,and its detection
probability will be calculated for a preassigned false-alarm
. probability. When background light also passes through the system,
only an approximate fprm of the distribution can be used. Because of
the complexity of the m.g.f. of the statistic, a Gaussian approximation

(5)_

was suggested by Helstrom When the signal-to-noise ratio becomes
large, the Kth order cumulant of the statistic increases as K increases,
and the Gaussian approximation is not wvalid. Farrell(6) recommended
thelgamma distribution approximation. We have used the method of
steepest descent to approximate the distribution with a uniferm

(7

asymptotic expansion serles following Rice + a8 also discussed by

Daniel(g). The performénce of the optimum detector has been

W



investigated with a Gaussian image and uniform background light, where
the detection probability at preassigned values of false-alarm
probability, and the average error probability will be calculated by

using the digital computer. As the signal-to-noise ratio is small,

1

the optimum detector can be approximated by the threshold detector and
wiil be also discussed. Besides the ideal detector, which registers
the locations of the ejected photoelectroné from tﬁe supface; a
simple detector, which observes the total phdtoélectrons ejected from
the surface without dividing it into many small areas, will be also
discussed. The performances of both the threshold detector andythe
simpie detector will be investigéted with the Gaussian image and
uniform background light. Comparison between these three detectﬁrs
will be made with the evaluation of the average errof probabilities
and of the detection probabilities at preassigned values of the
false-alarm probabilities.

VWhen the intensity of the peint sburce, which is located in
the field of view, is unknown, the observer must also estimate the
inténsity of the image simultaneously if he makes the decision that
the optical signal is presént. Since the observed data are a
set of random variables, no two experiments will yield the same value

“of the intensity estimate even though the true value of the intensity
is the same in both. Tﬁe most one‘can hope for is that the estimate
will be close to the true value of the intensity in the sense of "on
the average'. Two most important strategies, Bayes and
maximum-likelihood, will be discussed in Chapter III. The intensity

estimate, derived from the Bayes strategy, which has been discussed

f



also Ey Middleton and Esposito(g), will be investigated with a quadratic
cost function where the prior probability demsity function (p.d.f.) of
the intensity will be assumed to be a gamma distribution function.
When the signal-to-noilse ratio 1is not too weak, the Bayes estimate of‘
intensity will be approximately equivalent to the maximum-likelihood
eétimate. An almost optimﬁm estiﬁate therefore will be proposed,and
its statistical performance will be investigated witﬁ a truncated -
Gausslan or a parabolig image.' The expectatioqs of the estimate will
be calculated by the digital computer at different values of

. pafameters such as the duration of the obéervation interval and the
radius of observation area, all at a preassigned vélue of the
false—alarmrprobability.

'In Chapter IV, we will further discuss some applicatioms to
optical communication of the photon-counting techniques. For cxample,
~the ideal detector\derived from the likelibood ratio given in Chapter
IT can be applied to resolve two point sou?ces with equal radiant
power at known locations from a single point source with twice the
power located between them. The m.g.f. of the ideal detector and its
cumulants will bé given. Since the m.g.f. of the ideal detector bears
a complicated form with double integration,we will not practice the
numerical calculation though it can be carried out by the digital
computer. Instead, the ideal detector for detecting a bit "1" when
light from a point source located at x is received or a bit "O" wﬁen
a light from a point source located at -x is received will be
investigated numerically in the absence of any backgroﬁnd light. A

Gaussian image will be postulated, and the calculation of the error



probability, which iz dependent on the separation distaﬁce of the
point sources, will be carried out. Two more detectors, the simple
detéctor that counts the total number of photoelectrons ejected from
half of the surface of the photoelectric detector and the counting
comparater that compares the numbers of photoelectrons observed from
the upper and 1§we; half-surfaces of the photoelec;ric detector, will
be also discussed,and their error probabilities will be evaluated.

As the bac&ground light also passes through the aperture, the average
error probabilities of both the sgimple detector amd the counting
compérator will be calculated with a fini£e square observation area.
éince the pe?formances of the detector for detecting binmary bits will
also depend on the prior knowledge about the locations of the images,

the effects of mislocation on the ideal detector and counting

comparator will be discussed,
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Chapter 1 Image formation and photon-counting statistics

In this chapter, the general terms such as intensity, co-
variance function,and point-spread functiom in Image forming and
processing will be discussed. The optical field v will be considered
as a complex circular Gaussian stochastic process which is stationary,
ergodic and spectrally pure. In other woras, the process can be
described by the complex random functiéns of.space_g and time t,
Vl(g,t) and Vz(g,t), where Vl(g,t) and Vz(g,t).are the real and
imaginary parts of the process, The statistical déscription of the
photoelectric detector will be given. When the observation time T_
is much greater than tﬁe reciprocal of the bandwidth W"l,the nunbers
of the photoelectrons ejected from differeﬁt small areas of the
photosensitive surface will be proved to be Poisson distributed and
statistically independent of eaéh other, The moment generating
function (m.g.f.) of the photon-counting statistic will be derived

in a general form and discussed. : : '



~Image formation when diffraction Eheory is applied

.Theldifffacti;n theory of image formation has been lérgely
used fo describe imaging systems in which thé process 1s considered
both linear and spatially stationary. The:basic elements for an
1m;ging system ére the luminous ogject'o, aperture A (for example,
a lens) and image I located in the planes U; A, R respectively as
shown in Fig. 1, where 25 and z, are the distances of the object

plane U and the image plane R from the aperture A,

/}/

Pl
\\_._:/\_a;
-<“
I
N

i

%)

¥

Figure 1 Image formation system

The optical field v at the point (g,zl) of the object plane at time
t 1s assumed to be linearly polarized and quasimonochromatic and can

be characterized by

viw,z),t) = RS V(gzp,t) etot (1.1)



where

Viy,z ,t) = Vl(g,zl,F) + 4V, (4,2, ,t) . (1.2)

is the complex amplitude of the electric field and Vl(g,zl,t),

Vz(g,zl,t) are its real and imaginary parts, which are Gaussian ran-

1 .
dom processeg . 'ﬂo is the angular frequency at the center of the

objedt spectrum. "R%" indicates the real part of the analytic signal

EUR:

V(g,zl,t)-e 0 . As the distances z. and z, are much greater than the

1 2
wavelength of the light, the complex ampiitude V(E;zz,t) at point

(5,22) of the image plane_R at time t due to the object light can bel

expressed(z) as_-

o ' : _ )
v(r,z,,t) = fV(eszl,t) KQu,x} d'y (1.3)
. (o] )
where K(u,r) is the amplitude point-spread function describing the
propagation from the object plane to the image plane. o is the area
‘of the object,
The instantaneous intensity at any point (%,z) of an arbi-

trary plane X away from the aperture with a distance z and at time t

is defined by
* ‘
1(2,2,t) = V(x,2,8) V (x,2,t) | (1.4)

*
where V (x,2,t) is the complex conjugate of the amplitude V(x,z,t),

10



i1

vhich is not directly measurable;lthe observable quantity is the

(3

enscmble average intensity defined
. ’ * ) '
Cr(x,z,t)> = {V(x,z,t) V (x,z,t)) (1.5)

When the process is also ergodic, the ensemble average is equivalent
to the time average through the interval (-T,T) as T + =,

The field is normalized so that the instantaneous power
density at point (g,zl) of the object plane at time t is
%{,V(g,?l,t)lz,and the complex covariance function between the complex
field at point (gi,z ) and the complex-conjugate field at point

-(gj’?l) of the object plane at times tj and t. respectively is defined

3
by

F(gi,uj ti’t N (V(~i,zl,t ) V (~*’zl’t > (1.6)

(4)

(1,6) is known as the complex autocovariance function
' (5,6)

; it is pro-

portional to the mutual coherence function

o(ti tj)

with a factor
P(Ei‘gi’tl’tl:zl) is the average power density at point
(gi,zl) of the object plane along the direction z. For an optical
system that can be apbroximated by only considering the paraxial rays
and has small bandwidth W such that W << @ o’ the property of the
spectrally pure light is characterized by Mandel( ) in such a way that
the superposition of light beams will not affect the spectral distri-

bution; the covariance function from (1.6) is then reducible to the



product of two simpler funétions as

where ¢(Hi”gj’zl) and x(ti - tj) are the complex spatial and temporal
(8)

coherence functions In general x(1) is normalized so that
% ' -
x(0) = 1 and x(t) = x (-1} for real power spectrum (1t is real). The

ensenble average intensity from (1.5) can also be written as

(I@i,z,t))? 21‘@_,5,&,&:2) ,. _ ' : (1.8)

% of the

which is the wvariance of the process V(&,z,t) or the.sum
variances of the two independent processes Vl(i,z,t) and v, (x,2,t)
at point (x,z) of the plane X and at time t.

As the complex amplitude V(g,zl,t) is defined to be zero out-

side the object o, (1.3) can also be expressed by a conveluticn

equation(3) for the paraxial approximation,that is
o o
2 .
V({_,zz,t) = fj.d'gv u,zl,t) K{xr - u) ., (1.9)
-m - —wo

The average intensity at point Q:_,zz) of the image plane due to the

object light according to (1.5) is

Typrzypt)) = <V(Ez,t) V*(g,z?_,t)>



B AV

O -0

F@i,gj,t,t:zl) K(‘E_'E'i) K*('E—’Ej) . (1.10)

when (1.6) and (i.Q) a.re .u.sed. P(E'i"l‘{j’t’t:zl)‘ is the ecovarilance
- function between points (g'i,zl) and Qx_j,zl) of the object plane at
time t. As the light is assumed to be spectrally pure, the average
energy received within the small area 4A of the {mage plane btecause
of the object illumination during the observation interval (0,T) is

‘given by _ o
. T T :
AE =jﬁ dz_x_:_‘[ dt I‘(g,_g,t,t:zz)
- AA 0
2
= T j- dz_g;' f f d2_1.5:L f f d *Ej
AA - oo e o

$luynuyp2) Kmyy) K*(l—'.'.&*.j) : (1.11)

as (1.6), (1.7) and (1.9) are used,

13



Intensity representation of light from an incoherent object

The average intensity at point (5,22) of the image plane and
at time t due to the coherent object illumination can be expressed by.

(1.10} or can also be written as

K1, (T,2,t))= <lffK(--u ) vL_i, o) a%y [ >. (1.12)

~ -

Tor an incoherent object, the spatial coherence function from (1.7)

(8) as

can be defined
. -— 2 :

= - 1.13

: ¢(ui,uj,zl) ko © Bluy) G(U-.Ej) , ( )

wﬁere B(gi) is‘the radiance so defined that B(gi)féw is the power emit-
ted per unit area per steraedian in the direction z normal to the object
flane The radiance B(_i) is of 1im1Led extent. Here k = Q /C with

" Cythe veloc1ty of the light, and ¢(u) is the two-dimensional Dirac
delta function. The average intensity given by (1.10) can be

expressed in terms of the radiance B(gi) as

. . ) @ . @ " .
CipE:255800 =2“k;2fffﬁ2-‘31 dzﬂj Klzmyy) K*(E“n‘ij)
, -~~~ ~ 0 _ .

“Bly,) GQJ,i-y_j)

= 21k, ff B(__i) S(e-y,) %y, | ’ (1.14)

-0 -

14



where S(ngi) = lK({:gi)[z is defined'as the incoherent point-spread
function. Thus we can see from (1.12) that for a coherent object
illumination the imaging system is linear in complex amplitude.
Héwever, for an incoherent object the imaging system is linear only

in intensity as given by (1.14).

y
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The statistical description of a photoelectric detector

,Wﬁen the photoelectric detector is used fqr.image detection,
the pﬁotosensitive surface-—for example,rthe surface of a photo-
multiplier--=will be placed at the image plane. The output of the
illuminated photodetector carries information about the rad;ation
field in the sense that the'iqstantaneous‘probability'of the photo-
electron emission is proportional to the classical instantaneous
intensity IV(E,zz,t)lz of the light as long as the intensity of the
iight is not so strong that the photoelectron emission cannot be
descyibed by the first-order perturbation theory. Theloutput of the
detecfor is a sequence fti] of time-instants of absorﬁtion—emission
phenomena. These instants {ti} are random and coﬁstitute a point
process. If we observe this process for a fixed timg interval
[t,t4T]), a total number n of photoelectrons will be ejected from the
area A of the photosensitive surface. The sequence tl,tz; cee ti
of instants when the photoelectrons are emitted can be written
symbolically as {ti}’ When the total energy reﬁeived from that area

A during the interval [t,t+T] is given, the probability that n

photoelectrons are ejected is a Polsson function:
n ‘ . .
’ P(n |2, (6)) = () exp(-Ap(t)) / nl . (.15

where

16



t+T :
-AT(t) = fgftJ{u IV(E-tl)IZ dty d%E T (1.16)

is the average number of photoelectrons and can be pfedictéd if the
coefficient o is given. o is propgrtional directly to the guantum
éfficiency and inversely to the energy hQ/2nw of each quantum of light,
where h is the Planck's constant and © is the angular frequency of
the field. V(x,t) is the complex amplitude of the light field at the
polnt r of the photosensitive surface at time t. Since V(r,t) is a
stochastie process, so is the number AT(t). The probability for ﬁ
photoelectrons in any counting interval [t,t+T] can then be expressed

(10)

only by the ensemble average of the conditional probability

p(nlarct)}, That is,
p(1,0) = LOgeN® expl-age)) /ad . (1.17)

The derivation(ll’lz)

of (1.15) is well known and will not be given
here, The operation of the expectation on the probability-from (1.17)
makes it depart from the Poisson distribution. For a stationary
process, the ensemble average is independent of the initial time t.

We will use the expression Pn(T) to replace Pn(T,t) in (1.17) from

now on,



Distribution of the photoelectrons from a single small area when the

time-bandwidth product TW >> 1

When linearly polarized light impinges normally on the photo-
sensitive surface, the preobability that a number n, photoelectrons
are emitted from a small area dAi centered at point _1;1_‘ during an

interval (0,T) can be written according to (1.17) as

Pn (T} = <Ki 1 exp(—ki) / ni!> (1.18)

i

where

T .
Ai = U‘ffh?(z;,t)[z dt d2r

. |
- ufffi(z) v, 02 de d’c C@ay
O A . S

with fi(g) as the function defined by

’

fiw =1 , L€ dAi .
=0 L ¢ aA (1.20)

A is the entire area of the surface. li depends on the coefficient

o, the size dAi and the amplitude ‘VQ{,I:)' e dA The distribution

1"
of the random variable ni can also be derived from its moment

generating function (m.g.f.),which is the ensemble average of the

conditional m.g.f. with given A That is ,

i-

18



L]

<E[e>:p(sni) | J\iJ)

- nTN .
= <Z ,exp(sni) )\i e ! ni.>
ni=0

hi(s)

- <exp[}\i(es—-l)] > . (1.21)
Now
T o
s s 2 2
X, (e-1) = a ff £.(x)(e-1) ,V(?:E:t)' dt d'x
S | i
0 A
[T v |
) ) % ] 2 .2
4 Ky (ap a2y 18y 5t,) Vixgst)) Vo Qxp,t,y) dtydtydzdy |
A A
(1.22)
vhere the kernel
. = H — e 1‘23
K, (50%p0tp,t,) = Fi(sixy) 8 (xyx,) 6t mty) (1.23)
and
-— S_
Fi(sﬂgl) = afe -1) fi(gl) . (1.24)

The m.g.f. from (1.21) can be worked out as in the proble.m of finding
the m.g.f. of a quadratic functional of a circular Gaussian random

process(a’ln. One can show that hi(s) can be determined from the

expression -

1.



1 T |
du f j‘ L(x,t,x,t:-u) dt dzgé] (1.25)
0 - '

h, (s) = eXP[
1 A

0

(4,14)

where I;Ql,tl,_gé,tz:u) can be solved from the following integral

equation

T T f .
' ' 2 2
L(}gl,tl,_:gz,tz:u) + 2u [ j f A dy, 4y, dvy dh,

0 A
F Ry (e ttahy) TRy axyshyshy) Llyyshy sy, tyiu)

T
9.
- 2’{’{ K, (5103 7t5hy) T axyhyaty) dyy dhy  (1.26)

For spectrally pure light, the autocovariance function can be written

according to (1.7) as

Thus, substituting (1.23), (1.24) and (1.27) into (1.26) and solving

for L(':El’tl’“}fz’tz:u) recursively we have

L ,tyaXyatyin) = 28 (six)) 40 .)) x(t;-t))
T
- 22f _[ d2 dh, F (s:x.) ¢(x ) x(t.~h.)
OA-Y—zzi'-l 1342 1772

F,(e:y,) ¢(y, »Xy) X (hz—t?_)

20



T T . -
+ ul2 f f f f dly_d X3 dh gdhy Fy 1(s3x0) ¢(x;.%,)
'x(,tl_h2) pi(sglz)@(y_z,_}_ra) x(h2—113) Fi(s:_}j_3) ¢(13,_252) X(h3-—t2)

e ' (1.28)

By substituting (1.28) into (1.25) we can write the logarithm of the

m.g.f. as

in h (s) = 2x(0) T f F (s:_}g) ¢ (x,%) d,z.?.{.
A

+-- (2’1‘) jf f F (s:x) F, (s:y,) ¢(x.x,) ¢(¥1,x) a? X d,xl

T2 f f x(t-h;) x(h; t) dt dh
+ % (2T) j{j-j‘ Fi(s:0) F (s ,y,l) F, (s:y,) ¢(_,,_x1) ¢(Zlq..‘£2) ¢(},2,_§)

T T
2 -3 f f f
d_},g d X d Xy T X(t-h_l) X(hl—hZ) x(hz-—t) dtdhldh2

¢ 0 0

1 z'f f , | ) : . ,
—-_E- . e IQT) A . . A Fi(s:._:-_t_) Fi(szil) .. ri(s:1-2_1)¢Q,11)¢Qltz2)

2 .2 2 ) f _ -
e 0y (ox) dxdTyy .7y, LT _[.. A x(t-h)) o o x(h, ,-t)dtdh,
»odh St

= 2 x(0) T f Fy(s:0) $(e3) dx
A
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£22
v ¢(1£_19-2.{.) d-?.{,d ll b diﬂ_l ' PR, , . (1-29)
where

£ =2 (1.30)

Now the bandwidth W is defined(ls) by

wa= @1 jr T2 al ™t =1 j‘ Ix@) (2 aa/2n)™ _, (1.31)

as x(0) =1

where
x(@ = f x() e (1.32)

is the temporal épectral density of the complex field at the image

: *
plane and is real so that y(1) = x (-1). We now let

- 1 H f f .
- .E-(zl A “ F (S'E)F (s lﬁ) . . Fi(s'12-1)¢(§*31)¢(x1‘22)

fT T T a | | -
- j j

P =T . . - - -—

. | S x(hl hz)x(hz h3) . . X(hz hl)dhldhl e . dhl

3
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- hg‘ - hl = -(tl + tz LI ) tf,"l) . ' (1133)

When T >> %}- we can extend the range of integration to (~w,») and by

-

changing variabies we can writ:e {1.30) es

P "Hl j. f j‘ x(t )x(t) .. xl- tl tyeaty )dt dtz..d 41

-—C

- (1.34)
o q - | (16)
Accoldllng to the convolution theorem we have
‘éd x(tl) x(-—tl-—tz . . —tg_l) dt,
= j x () exp[-iﬂ(t2+t3+ R tR,—l)J da/f2n (1.35)

By substitut'ing (1.31), (1.32) and (1.35) into (1.34) we have

: -2+ ' 2 df2 )
p, =T fx(ﬂ)-i-l—f-f Ix(tz)...x(tg_l)

-ex]?[-ig(t2+t L tﬂr-l)] dtz o. . . dt

3 £-1

ol f x* (@) do/2%

e (TW) R . | (1.36)



where

0, da [ [ 2,0y 42,01 | (1.37)
R, = ji.x(ﬂ)_-f;/[_w () . |
As WT >> 1, we can approximately write x(Q) N% for 9 ¢ .(—T[W,TrW)

and x(2) = 0 otherwise. Thus Ry ~ 1 is finite and PR + 0 for

£ 2 2., Tor spatially slowly varying light and small area dAi we

define.
— 2 . -
n=2chf d(x,x) d'x .
i aA
i
=~ 20T ¢(51L§i) dAi . - (1.38)

as the average number of photoelectrons ejected from the small area

- dA, centered as x

1 Since for the spatial coherence function

5°

,‘|¢(&i;§j)f = ¢(§i”51) ; for all 1 # 3,

| [-{ e (0 Ry, (533000 0Y) - -
' 2 .2 2
Fi(szln-l)¢(l£-l;'¥-) d"xd ¥ . d.y_z_ll |

< l[ Fi(5=z)¢(§,£)|9’. | (1.39)

L

Thus as long as ;; defined by (1.38) 1is not too large,.all the terms

24



in (1.29) for £ 2 2 are negligible by comparing with the first term

as WI »>> 1, That is -

fn h (s) = ‘Ei'(es-i) , (1.40)

which is thé logarithm of the m.g.f. of a Poisson distribution(l7)

with mean ;;.
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pistribution of the photoelectrons from two small areas for TW >> 1

When the energy receivéd by each of the two small areas dAl
and dA2 centergd at_§1 and,zz iz given, the numbers of photoelectrons
ﬁl and n, ejected from these areas during the timg-interval (t,t+T]
are Poisson distributed with the given mean values ki for 1 =1, 2
 defined in (1.19) and are statistically independent; The joint m.g.f.
of the random §ariables ni and n, can be derived from the expected
value of the conditional m.g.f.:

8,0,+8,0
(e V122 1 1=1,21)

hlz(sl,sz) i.\

51 &
(exp_[ll(e -1) + Rz(e -1)]> , (1.41)

1t

wvhere now

6, = 8
"ll(e l--1) + A (e 2--1)

f dt j‘dx[flgce -1)+fzc,)(e 2030 P

T ,
f f’ f _[A dt dt d % d Xy K 2(-1’x tl,t )Vgl,t )V ch,t Yy

(1.42)

]

where fi(g) for 1 = 1 or 2 is given by (1.20) and
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) - T . _ - 1.43)
Ko () x)tt,t)) Flo(81,8,:) )8 (xpmx)) 8(E,-8)) , (
with
. . . 8, . ' -32 1. 84)
) - 1)t f - (1.
F12 (sl,sz._ggl) = ufl(gl) (e ~-1} foz(lci) (e “~1).

The m.g.f. can also be expressed in the form of (1.25) and the

following integral equafion_ mist be satisfied.

' T
L12(§1’t1’332’t2=u)+2u { ,{ Flz( sl,szgg_{l)¢(§l,tl¢2,h2)

"L1a Qg Py 2yt ) dydn,
Fl_q(s 552:,751)¢(.§lst19,_752,t2) . (1_.45‘)

The kernel Ll?_@l,tl,géz,tzzu) is solved for recursively and substi-
tuted into the joint m.g.f. as described before where Ki(ﬁl’}&Z:tl’tz)
and Fi(s:_a_gl) in (1.23) and (1.24)7 are now replaced by Klz('icl,_gz:tl, t?_)
and F12(s].’sé 1% ). We have

2
in hlzcsl:sz) = ZX(O)T ‘é’ Flz(slssz:_ﬁ)qb(?ig_}f_) d X
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1 3 2.2 .2 N )
+ 3 (2T) _Zv '{- ‘{ d xd 11d Xy Flz(sl,sz.g_(_) F12(Sl’s2'l]_.)

. Flz(Slgszl...‘CzM’(?is.Il)‘p(1’.1_&12)‘1'@2;—"9 P3

1 2 .}r 2.2 2 ‘
S P +-E (21T j{ . - dxd hARREE d'zf,-l Flz(sl’SZ'z{-)
3 A AL %
Flz(sl,sz:ll) . .. Flz(sl,sz:_w,_r_g_lm(ﬁ_,ll)fb'(}:l;_zz) .o l¢(1£_192{_) P,

(1.46)
. SN .

'where'P£ for £ = 2 is given by (1.30). By the same argument, that is,

when the average numbersn; defined in‘(1.38) for 1 = 1, 2 are not too

large and WT >> 1, (1.46) can be approximated by the first term or

. . ,
f,n..hlz(sl,sz)z 2T.j: F12(51’82f5)¢(-}5-’-}5)d X

s : : .8
1 2
o~ 2aTdA1 4)(:51,51) {e T=1) + 2aTdA2 ¢(§2,_352) {e “=1)

- 8 — By _
= nl(e -1) +n2(e ~1) | ' (1.47)

. 3
Since fn hi(si) = ni(e i—l) for 1 = 1, 2 as given by (1.40), this
implies that the joint m.g.f. h,,(s;,8,) 1s the product of the m.g.f.'s

hl(sl) and hz(sz) as TW >> 1. 1In other words, the number of

28



photoelectrons ejected from areas dAl and dAZ during any observation
interval are Poisson distributed and statistically independent of

each other when the time-bandwidth product is large.
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Distribution of the sum of the photoeiectrons from a large number of

gmall areas when WT >> 1

When there are a large number N of small areas Qéi for

Aii =1, 2. . . N, the distribution of the sum of the photoelectrons
from these areas can bé derived. in the same way just described as for
N =2, For genera;ization, we discuss the distpibution'of a statistic
" given by

N

Y = Zniﬁ(l‘i)_’ o | _ (1.48)

i=]

is the center of each small area dAi where n, photoelectrons

i 1

are ejected., PB(xX,) is a weighting function to characterize the
i

where x

location of n;. For example, vhen BQci) =1, v is the sum of the

photoelectrons ejected from the N'small areas. As N is very large
we will then pass to the limit as dAi + 0,

The m.g.f. of Y can be written asg

N .
hY(S) = (@[exp s ; niB@;E;l) l.}gi]>

i=1

’ N
B
= '(exp[ZAices (Ei_-m) , (1.49)

vhere
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e

Row’

. ‘
sB(x,)
PIRPWS )
i=]
N s8(x,) T
a Z (e % -1) ,V@,t)lz dtdzz.,
i=} 0 “da,

N T e
sB(x[) .
a Z (e ~1) f f £, ‘V(E,t)lz dt d2x
1=1 o “a ¢ ' =

T T Y o ' ‘
j‘ f f f Kyl oxpityty) V() Viy0tp)
0 Y0 “a

A

2.2
‘--dtldtzd 'J-{'ld Xy

‘gu(ﬁl’-)iz:tl"tz) = E_N(s&l(l)ﬁ(?\gl—gz)d(tlwtz) ,

3

vith

LI sB(x,)
- _Eu(s,_ggl) = q 2::(e-L"l

i=l D &),

and fiQ_cl) is defined in (1.20).

We must first solve the integral equation

T .

0

(1.50)

(1.51)

(1.52)
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, -
"Lo(gysbyaxy,tyiu) 'y, dhy
= 2 Bupleux e (xx)x(e,-t,) | (1.53)

Now -

,{ ,?;N(s,gg)cb(_zs,x) dzg_:, |

sB{x.)
Ce % ~1) f s,y dx
A

n
=
MZ

i=1 4
. sB(x,) :
~ o 2y (e 1) oG Ay, (1.54)

[y
i
[

as ¢(x,y) is slowly varying spatially. When N is very lafge we can

~ pass the limit as da; ~ 0. (1.54) can be written as

f By(s,®) 6y dx

A

o uf @1y sy a’x . (1.55)
A .

The logarithm of the m,g.f. can be obtained when the kernel

Lo(gl,tllgz,tl:u) is solved first recursively from (1.53) where (1.54)

is substituted. We have

Lole.tl,ggz,tz:u) = 2 Fu(s,x)) ¢0x;.%,) x(t)-t,)



. T ’ .
2
- 2% au __FN(s&l)’{ J{: an, a%y,

sB{y,)
GI

. (e -1) ¢(§1,_g2) ¢(12,_>,c_2) x(tl-hz) x(h?_-tz)

' ) ——— S
3, .2 : 2 2

+ 27 (@u)” F (s,x,) f f f f dh, dh, d7y, dy

N 1 0 o L VA 2 73 2 3

eB(y)  sB(yy)

x(e;=h,) x(hymhy) x(hy-t,)

e N | . ' (1.56)

The logarithm of the m.g.f. can be derived as we pass to the limit

.. dA, - 0 where (1.55) and (1.56) are used.

i .
| Al T
2
fn h_ {8) = J[ du f _[ Loﬁzg,t,‘_)g,t:-u) dt d'x
- 0 0 YA

= 20x(0)T f (*F@ 1) ¢ (%) dzﬁ
A | .

+3 (201) 2 f f a’y, %y,
A A

sBQl) sB(y,)
'(e . "'1) (e -1) ¢(Xl,_y,2) ¢(12’1l) - PZ s S

1 3 ' 2 .2 2
+ = (2aT) f f "o e f dy, dy, . . . d
L A N 1 2 - C X,

3
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— | L
[ﬂ (ess(li)-l) ]

(1.57)

where P‘Q for £ = 2 is given by (1.30). As WT >> 1, P£ + Q0 for all

£ = 2, and by the same argument used in {1.39), all the terms in

{1.,57) except the first term become very small. Then we can

approximate

14

fn hy(s) = 2T f @F @ 1) s dx, (1.58)
A .

or the m.g.f. of the statistic Y can be written approximately

h (s) = exp [zon:f B®_ 1y xm a%x ] (1.59)
Y A J

where the mean and variance in general are

E[Yj = 2an_ B(:_c_)#@,_:g) d2_>5 .
A

Var[Y] = ZU-Tf 82(_:5) 4 (X, %) dz_:;g ) (1.60)
. A

" For B(x) = 1, (1.59) becomes

’

h (s) = exp [Zqu ¢(_}‘{',_}3) dzz_:' (es-l)] €1.61)
Y _ A



which is‘the m.g.f. of a Polsson distribptionlwith equal cumulants
2aT f ¢ (x,x) dz_gg_ for all orders.
. A - ‘ '

'On the other hand, as we expand '

: (esB_Q‘)—l) = Zi (sB@)‘m /o, (1.62)
m= . .

4£

. A ’ 2 .
if ) $Gn dx << %f HORTRR
we J, - ' .

A

for m = 3 . y . (1.63)

. we can further approximate’ (1.59) 53
h () = exp [ZﬂTf s B(x) ¢(x,%) d2_=5
N

[ 4

_ zanszsz@ ¢ dix ] (1.64)
A .

~

which 1s the m.g.f. of a Gaussian distribution.
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Chapter II Binary detection of an optical signal at a
photosensitive surface

Two important criteria, Bayes and Neyman-Pearson, used in the

" gimple hypothesis test for binary‘detecpioﬁ will be briefly described.
The optical signal is detecte& by using the photoelectric detector.

The photésensitive surface of the device is divided like a mosaic

into many small equal areas so that the observed data p are the set

6f numbers of photcelectrons ejected from all thé small areas. The
optimum statistic(l) obtained from the likelihood ratio in the presence
of the uniform backgropnd light will be discussed and its moment-
generating function (m.g.f.) will be derived. Because of the com-
pigxity of the m.g.f., the distribution of the optimum statistié will

o (2)

be approximated by the method of steepest descent and compared with

. two other appfoximéte forms, the Gaussian and gamﬁa distributions. The
detection of the optical signal in the absence of ‘the background light
will also be discussed. Two other detectors, the threshold and the
simple detector, will be studied. In order to investigate the per-
formances af these detectors, a Gausslan image will be postulated and

the false-alarm probability, the detection probability, and the average

error probability will be calculated.

37



Binary hypothesis test

In a communication system when a set of data b = {bl’bZ"'bN}
is observed, the decision between binary ﬁypotheses(3’4) HO and Hl,
where H0 is‘the hypothesis of background noise alone and Hl is the
hypothesis that a signal is also present, can be viewed as a rule for
dividing the total N-dimensional observation space I of the data b
into two regions, EO and El. Hypothesis HO will be chosen 1f the
observéd data b fall in the region EO; Hl will be chosen otherwise.

The joint conditional probability density function (p.d.f.) P(k]Hk)
under Hk for k= 0 or 1 is to be given,énd the likelihood rat;o definéd
by

P n,))

A = P [H,) .1

‘'will be calculated. If the Bayes criterion is used, a decision level

defined by

elcyg - Cop)
0~ @Bty - ¢

(2.2)

can be evaluated, where the prior probability £ of hypothesis H0 and

when H, happens to be true

i J

0 and El are divided im such a

contains all the data for A(h) < A

the costs Cij of choosing hypothesis H

(1, = 0,1), are given. The regions I

way that I and 21 for A(B) > A

0 0 0’
The false-alarm probability and the detection probaﬁility are defined

as

38



‘Qo = Pr [A(R) > A, H,] | =f P(‘glﬁn)drtg_ ,

L

1
| Q, = PrA@ > Agliyd =J{ PR )b . (2.3)
: . 1

When there is no information about the prior probability § and the cost
: functicns, the appropriate way to make the decision according to the
Neyman-Pearson criterion is that the false-alarm probability QO will

not exceed the preassigned value. The decision level AO must be solved

from the expression of QO by (2.3),and the hypothesis Hl or H, will be

0
selecte@ according as AB) > AO or A(g)‘s AO.

If b is a set of discrete random variables,the likelihood ratio

A(®) defined in (2.1) will be the ratio of the probabilities P(bJH,)
and P(Q[HO). When the Neyman-Pearson criterion ié used, randomiza-

(3)

tion must be applied. That is,a probabilitj f of choosing H1 must

be assigned at Ab) = A, so that the false-alarm probability
Q = Pr[A@>A0 IHOJ +fPr[AQ:»_)=A0 [HOJ

= Z PQ?.lHo) +fPQ>_:A(_13_)=A0|H0) ..'(2.!4)

ﬁ(hpﬁo

equals exactly the preassigned value. Forx given QD’ both AO and f can
be solved from (2.4) and will be discussed later for Poisson distribu-
tion. Hypothesis Hl or Ho will be chosen for A(b) > AO or A(b) < AO.

The detection probability for the correct decision can be evaluated in

the same way after the decision level AO and probability f-are

obtained. That is, .
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Y A3, Pfu,) + fPQ:AR) = AglH) (2.5)

The average error probability for each decision is defined by

P, = £Qy+ (1-0)(-q), o (2.6)

if thg relative costs C10 - COd and COl - Cll‘given in (i.Z) are egual,
the hypothesis Hk with greater posterior probability P(Hkth) for k=0 ‘
or 1 is always selected when the Bayes criterion is used and the érror
probab;lity P siven by (2.6) is minimized(3).

The reliability and error probability are used to measure the .
performance of the detectors. Oﬁe deteétor is said to be better than
;he other detector if for a figed value.do, the former hag higherlde—
tection probability and hence smaller error probaﬁility.

The operation of the hypothesis test for binary détection can

best be described by the block diagram on the next page. fhe.selectiqn
of the Bayes or the Neyman-Pearson criterion depends on the information
about the system we have and its application. The block labeled
"computer" implies that certain numerical calculations will be involved
s0 that the decision level AO, the reliability {Qo,Qd] or.the error

probability Pe can be calculated.
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Thé ideal‘photoelectric detector

When a luminous object is located in the field of view of an
optical detector and focused on the photosensitive surface, the
photoelectrons emitted from the surface will be proportional to the
intensity of the object light, whigh is a fluctuating function of
time as discussed in Chapter I. If there 1is also Background light
incident through the aperture, the information carried by the object
" light will be corrupted. As the intensity of the object light is not
© puch stronger than the background light, in order to decide whether
a certain luminous object is present or not, we can use strategies
,according to the hypothesis tests which we have just discussed. The
basic elements of the optical éetector have been shown in Fig. 1,
where the photoelectrical emission surface of the photo-tube is
- placed in the image plane and is divided like a mosaic with a large

number N of small equal areas dAi as shown in Fig. 3.

X, .
!
Figure 3 Photoelectrical emission surface
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Thg received data are the values 0 = {nl,nz . e s nN} obtained by
measuring the nuumbers n, of photoelectrons ejected from each area
dAi = dA for £ =1, 2 . . . N during the interval (0,7). Since the
background light in general also enters the aperture, the observer
muét choose between the two hypotheseé:-(Ho) dnly background light is
present,or (Hl) object light is also incident through the‘ape;ture in
addition to the background light. When the observation time T is much
greater thén W"E the numbers n, of photoelectrons emitted from each
area dAi under hypothesis H, (k = 0, 1) are Poisson distributed and
statistically independent of each other as discussealin Chapter I.

The probability is given by

P, () = Eik_i e ¥/ | o an

,ﬁhere E;k is the average number of photoeléctrons enitted during the

interval (0,T) for k = 0, 1 from the ith area dAi and

. r-=.aTdA Ichi) , k=0,1 {2.8)
with

Ik(gi) = 2 ¢k(§i‘§i) . k=20,1 (2.9)

when (1,38) is used. ¢k(§i”§j) is the spatial coherence function under

hypothesis H for k=0,1at point_;gi and point_gj. Ik(gi) is the



mean intensity at point_gi. The joint conditional probability fer

observing the data pn under hypotheéis Hk for k = 0 or 1l is
P'E(TIHk) ] ‘ P (T]Hk)

i=1
NIEX ‘
Mk
/n,! (2.10}
{=1 1

The likelihood ratio defined by (2.1) becomes

) = P'E(TIHI) / PB_(T]HO)
N /— \™  _ v s |
. n =11, n : L
- ] | e | (2.11)

i=1 i0

and will be compared with the decision level AO according to the Bayes

1 will be chosen if

A[QJ >‘A0,and H0 will be chosen otherwise. It is also equivalent to use

strategy or Neyman—-Pearscn strategy. Hypothesis II

the optimum statistic

N ——
n
g = :E: n; 4n 2 (2.12)

i=1  *  \ ™0

since A[g}_is a monotone function of g which is obtained from the
logarithm of the likelihood ratio ALg]. The decision level of

this statistic is given by
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= %0 A 4+ AN, B (2,13)

) 0
where
N
AN = Z (Eil-}"{io) (2.14)

is the total average number of photoelectrons emittéd over the entire
area of the surface when the signal field alone is present. Thus we
can compére g with &g instead and selegt H1 if g > go-and HU when

g = 8o When Neyman-Pearson criterion is used, the false-alarm |
probability QO is preassigned. The diétribution of the statistic g
under HO must be known so¢ that the decision level gy can be determined
from either of the expressions in (2.3} or (2.4) as discussed pre-
viously. To examine the reliability or the error probability of making
‘each decision we must also know the distribution of the statistic‘g.

<

The mean intensity Ik(gi) given in (2.9) can be written as

L) = Tk +kI &),

k=0,1 . (2.15)

where Io(gi) is the mean intensity due to the background light. In
most cases, such as thermal background light, Io(gi) can be assumed to
be spatially invariant for all areas qgi over the surface. Is(gi) is

the mean intensity due to the object 1light in the area dAi' Therefore
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wve can write

10(51) = I, , for all dA,

H]

' = ‘ .« = s No 2’16
rov@) , 4 ‘ 1, 2 . (2.16)

1,68

2 .
where I, = dﬁr Is(ﬁ) d"x 1s the total power transmitted to the
A - '

surface from the object and 7(51) i5 the weighting function to
. characterize the distribution of the power at point X, A is the

entire area which is divided into N equal areas dA. .

~We also define a function

BG) = ngy /gy

(1,6 + 1G] /7 Tpix)
= 1T v(s) /T

e 1e0fu@) | (2.17)
where D2 is called the sigﬂal—to~noi$e and is the ratic of the total
average number uTIS of photoelectrons ejeéted from the surface by the
object light illumination to éhe average number c:TIbAO of‘photoelectrons
ejected from a finite area Ao of the surface by the background light

11lumination., The function u(gi) is only different from Y(Ei) by the
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factor Ao,that is.u(gi)‘ = AOY(éi)f Ao is arbitrarily defined. The

gtatistic g from (2.12) can be written as

N

Z n, An HLi ' (2.18)

i=1 ) ' . R
which 1s similar to the statistic Y of (1.48) with B(Ei) = In H(Ei)

as discussed in Chapter I. As N is very large, by passing to the limit
ag dA + 0, the m.g.f. of the statistic g under hypoth651s Hk as TW >> 1

" can be written according te (l 59) as

E [e'sg [ H.k]

= exp | aT f (e—slnHQE)-l) Ik(g) dz,;g]
. A

= exp ;anb j; Hng) [H's@-l] dz,;g] ,

i

: lf'k(s)

‘k=0,1 . S (2.19)

The logarithm of hk(s) is
am@ = e, f o [ ]
for k=0, 1 .- {(2.20)

The distribution of the statistic g.cannot in genefal be obtained in
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exact form. Only an approximation can be used and will be discussed

later. .
' The logarithm of h (s) from (2.20) is differentiable for any

- order with respect to the variable s,and the nth cumulant under hypo-

thesis Hk for k = 0, 1 can be expressed as

n

G, = D" = — fn hk(s) | =0
" qTIbf 'Hk(}‘c_) an H() dzg._:, N o (2.21)
A : - ,

In particular, the mean and variance of the statistic g can be cal-

- culated by

fl

Elg(H ] u"nbj; B0 tn 0 d’x

Var[gIHk]l ulej: Hk.(gc_) EnZH(_:g) dz‘;_g .

k=0, 1 ] o - (2.22)

If the average intensity Is(£i> given in (2.16) is zero outside a
finite area Al of the photosensitive surface, that is, if

11(:51) = Ingi) + Io(gi) for X € Al and’ Il(‘%i) = 10(51) otherwise,
then H(Ei) =1 when__:gi ¢ Ay and the optimum statistic g involves only
' the emission within the area Al, s0 that there will be a finite proba-

bility of getting no electrons under hypothesis Hk’
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Pr [g=0hlk]‘ = exp [-—O.T-[;ﬂ: L dzﬁ] |

1
k=0,1 | (2.23)

which is the result of (2.19) as s + =,
When 15(51) is also spatially invariant, so is the function
‘-H(Ei)' The optimum statistic is therefore equivalent to g/%n C, where

C = H(ﬁi) is constant for all i, and the statistic can be written as

N . . .
g = z o, , , ' (2.24)

i=1 -

which is the sum of the photoelectrons from\the total number N of small
aréas dA. As TW >> 1, the m.g.f. of the statistic g' is given by (1.59)
with B(x) = 1 as discussed in Chapter I. g' is therefore a random
variable with a Poisson distribution.

The detector just described.represents a particular way of
processing the light field behind the aperture of the optical system
in order to choose between the hypotheses. It has been compared with
the optimum means of processing the field from the point of view of
quantum detection theory(s). When diffraction is negligible and the

surface has unit quantum efficiency, this detector is equivalent to

the optimum detector of the Image-forming light(s).

49



Threshold detector

The structure of the optimum statistic is based on the
function H(x) which is a function of Dzu(gi) és given by (2.17). When
the signal-to-noise ratio D2 is not known, the detector must be |
designed fofisome reasonable standard value., If D2 is very sﬁall, the
appropriate thing to do in detection theeory is to expand the logarithm
of the conditional likelihood ratic A[gJDZJ from (2.11) into a power
lrgeries in Dz, and the oﬁtimum statistic is equivalent to the threshold
statistic, which is based on the lowest order of D2 in that expan—~
‘sion(T). For detecting the image on the photoelectric surface we have
Just discussed, the optimgm statistic g from (2.18) caﬁ be expanded

into a power serles inmn D2 or
N o
m~1 2 m 1 .
g = : : ny Z (~1) [D u(§i)] / m' (2.25)
+ 1i=1 m=1 ‘

Since D2 is very small and is independent of the location, we can base
the decision on the threshold statistic, which is the coefficient of
the lowest order of D2 in (2;25). We have
g = Z n,u(x,) (2.26)
8 1=1 i =17 . _
The m.g.f. of this statistic can be derived for TW >> 1 and is given by
(1.59) where B(§i) = u(gi). That is when N is very large. By passing

to the limit as dA + 0 we have
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= H
hOk(S) Ele X
- 2
= exp ¢aT Ibf HkQ:.) ,[e SUNL —1] dx
A ’

K=0,1 . | (2.27)

vhere H(x) and u(x) are given in (2.17), and the logarithm of (2.27) is

Ln hek(sj = aT Ib_!;: Hk()_;_) [e-su@)-l] dzg_g
for k=0, 1 . . T (2.28)

The nth cumulant of the threshold statistic ge under Hk '
can be written as
n
n

d .
= (~1) —- gn h_ (s)
ok dsn ok s=0

(2]
i

aT Ibv/; Hk(l_ﬁ) un(?;) dz_gg .

for k =0, 1
(2.29)

and the mean and variance are

B[g 8] = aof ijA Q) u(w d’x |
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| 'Var[gemk] - of ij: 1 (%) u?‘_(;g) dz_;_c_ L N (2.30)

Since the m.g.f. from (2.27) is dependent on the signal-to-noise ratio
fnz only through the function H(x), the distribution of the threshold

stétistic B will not depend on D2 when HO is true.r

L
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Simple detector

Instead of weighting the number n, of photoelectrons from each

area dA, with a factor 2n H(Ei), a simple way is to collect all the

i
photoelectrons ejected from a certain area Al. of the surface without
any weighting factor about the location. As TW >> 1, the probability
of n photoelectrons ejected from the area Alu under hypothesis Hk has

been proved in Chapter I to be Poilsson distributed and

. _ —n Tk ' .
Pn(Tjnk) N © /!, (2.31)
where
n. = aT 1 Idz : ‘ 1, 32
g = @ A k(:g) x k=0Qorl, (2.32)
. 1' * )

i{s the average number of photoelectrons ejected from the area Al' undér
Hk,and Ik(z) is given by (2.9). The likelihood ratio of the simple

detector according to (2.1) is

A () = Pn(T,Hl) / Pn(TlHD)
—— n — —
-1, + n
- %_Tl e 1 TT0 | (2.33)
TO

Hypothesis H. will be chosen if As(n) = AS and H, will be chosen

0 1
is the decision level,which can be obtained

0

otherwise, where A
s0

according to the criterion we use., Because the likelihood ratio As(n)
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of the simple detector is a monotone function of n, it is therefore

equivalent to use the optimum statistic from the iogarithm of hs(n)
g, = n (2.34)

and hypothesis H, will be chosen if g_ > g, and H, otherwise except

that at B = a probability f will be assigned for choosing Hl.

Bs0
When the Bayes criterion is used the decision level 850 of the statistic

can be determined from the likelihcod-ratic decision level AsO and

| - o /a7t |
850 (fn Ao + bnp) [tn(d +.,AnT/nT0)] , (2.35)
wvhere AnT = E&l - ;&O is the average number of photoelectrons ejected

from the area Alu by the object light 1llumination alone and can be

" calculated from the expression

AnT = qF Isf Y () dz_:g_ : , (2.36)
A ’
| ! -

The optimum area Al' for the observer to adopt is the area wﬁere the

detection probability is maximum for a fixed false—alarm probability or

the error probability is minimum.
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Reliability and error probability of the ideal detector in the absence

- of the backgroun& light

The performancé of a detector can be charécterized by the re-
liability, Qo and Qs and the errgr prgbébility P, as defined by (2.3)
and (2.6). When ;here is no background light, there will be no photo-
electrons ejected from the photosensitive surface under the hypothesis
HO. For both Bayes and Neyman-Pearson criteria ‘the.strategy is to
“choose Hl .
observed. As TW >> 1, the joint probability for observing the data

whenever one or more than one photoelectron have been-

aArs (nl,nz...nN) from the N small areas under hypothesis Hl is given

by (2.10). Since the probability of zero photoelectron emission

under HO is 1, the likelihood ratio at p = 0 is
: | ;Ns
A(@=0) = e ’ _ (2.37)
where
NS = T IS | ' (2.38)

is the total average number of photoelectrons ejected from the photo-
sensitive surface due to the object light, For the detection of the

image when Bayes criterion is used, hypothesis H. will be chosen at

1
-N
n=0 1if e 5 AO and HO otherwise ,with AO given by (2.2). If the
relative costs Clo - COO and C01 - cll are equal, the hypothesis with

greater posterior probability P(HkIEéO) for k = 0, 1 18 always
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selected where

P, | p=0) = 'p(uk) P(a=0 | ¥) / P(@=0)
k=0Qorl, (2.39)

The minimum average error probability will be

N

e

In particulér, when the hypotheses are equally likely

=N S :
1 5 S §
Pe 2 e ’ | E - 2 + | (2.41)

- For the Neyman-Pearson criterion, the randomized strategy muét be used.
As tﬁe falééﬂalarm ﬁfobability Q0 is preassigned, hypothesis Hl will be
'choseﬁ witﬁ a probability‘Qo when no photoeleétron'is emitted from the

surface during the interval (0,T). The detection probability at this

case becomes

, =N
Q = 1-0ge °. o (2.42)

Thus the error probability Pe can be calculated again according to

(2.6).

P, = min(g, (1-8) e ) . N ¢ N 1))
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Reliability and error érobability of thé ideal detector in the presence

of the background light

When the'backgfound light 1s present and IO(EJ = Ib’ the opti-
mum statistic g is expressed by (2.18),where its m.g.f. is given by
(2.19). It is not in general possible to evaluate the distribution,

which is known as an infinitely divisible distribution(s’g).

10 '
Helstrom( ) treated the distribution by a Gaussian approximation,

‘where the p.d.f. of the statistic g 1s approximated by

N () == expl-(g-g)” /202 ] (2.43)
2% Oy ' ‘

with
g = Elgln] |
o _ for k = 0, 1 |
2 .
% = Var[glw] |
given in (2.22),

The reliability of the detector can then be expressed by

‘the error-function integral,
Qy = Prlevgylu,] = erfe (yg),

Q = Pr[g>g0’Hl] = erfc (yl) , (2.44)
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with

’ @
2
wte 0 = [y
' 2m

ve = (8- 8) /o » k=0,1

ks we have discussed in Chaptér I, with the m.g.f. given by (2.19) the
distribution of the statistic g can be approiimated Ey the Gaussian
function if only the condition from (1.63) is true. In 6ther words,

" with B8(x)} = &n Rtﬁi) the condition from (1.63) wili be satisgfied if

D2 << 1. For large values of the signal-to-noise ratio Dz, the
“Gaﬁssian approximation will not be accurate because the mth order

- cumulant of the statisﬁic incréasés as m inéreases. Farrell(ll)
recommended approximating the distribution of the statistic g by a
gamma distribution func;ion. .The p.é.f; Sf the statistic is approxi-

mated by

‘ b,~-1 -ag .
Gk(g) = [ak / P(bk)] (akg) k™ e kr (2.45)

with
a, = Elglg] / var[g|n ]

| bk = (E[g‘Hk])z./ Var[glﬂk]
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go that the mean and variance of the gamma random varilable are matched
with the mean and variance given by (2,22). Here F(bk) is the
gamma function,

The reliability of the optimum detector 1s then approximated

by
. @
Q = Plevgglugd = f By(z) dz
z
0
Q = P[g>g0,Hl:] = f By (2) dz (2.46)
z .
where
b, -1
- 1 k ~%
8, (2) T(b,) z e
Z, " 28 k=1, 0.

On the o;hér hand, it.is reasoﬁable to use Fhe method of steepest
'descent'as illustrated in Appendix A,where well-known distributions,
such as Gaussian, gamma and Poisson, have.been used as exaﬁples and
good numerical agreement has been obtalned, as listed in Table 3 and
Table 4, |
The optimum statistic g given by (2.18) is a hon—negative
random variable since the function H(x) exceeds 1 for all x. The
m.g.f. is given by (2.19). The probability that g exceeds the decision

level under Hk can be written as
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Pr[g>goIHk] = f T, (&)

Eo

k=20,1 (2.47)
and can be approximated by the asymptotic expansion serles given by
(A12) in Appendix A, where Fk(g) is the distribution function of the
random variable g. The complex phase of the integral defined by (A7)
under hypothesis Hk for k = Qorl is .

-1
g0 n hk(s) + s

4, ()

n

gy = o I, f B [@E)S-1] g +s
/A |
for k=0, 1 (2.48)

when (2.20) is used.
There is only one saddle point for this complex phase as
discussed in Appendix B, and it .can be determined from the equation

é% ¢k(s) = 0 or

gy = of Il;f (H(gg))k_s 2n H(x) dz_-.g_ _ (2.49)
. A '
If we use the statistic
N _
E : n
' il
g n, itn = + N8



instead of the statistic from.(2.12) we can derive the m.g.f. of g'

under hypothesis Hk for k=0, 1 as

hk' (s) = exp {aT ijr [(H@_))k__sv—l] dz._:i + {s~k) NS}

A

which gives us the fundamental relation for all likelihood-ratioc de-

tectors as

hy(s) = hg(s-1)

The saddle point Sq under Hl can be directly obtained ﬁhrough the

saddle point 50 under H0 for real values by

Bi = SO + 1 .

(2.50)

{2.51)

The relation from (2.51) also satisfies (2.49) for a fixed value of gy

for both H1 and H0° Whether the saddle point s

positive or negative will depend on the following conditions

k for k = 0 or ; is

5, <0  if gy > E[g,Hk] ,
>0  if gy < Elg[n ]

=0 if gy = Elgn]

k=20,1

(2.52)
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The nth derivative of the complex phase ¢k(s) for m = 2 under hypo-
thesis Hk is

n _ &
¢, (& = ¢, (8)

dsn

n

. =1 k-
-1 gg ©f ij; CICI T H(x) d_2x )
for k=0, 1 . o - (2.53)
Froﬁ the relation (2.51) we can have

¢0n(50) = d]ln(sl) , . forn=1 . | (2,54)

The false—alarm probability and the detection probability can be approxi-

matad(12’13) by using (Al2) from Appendix A
Q = 1~ EO(gO) - Io(go)
Q = 1-Ej(gy) - I,(gy) (2.55)
where
' X
1 - erfc[ (-2 80 ¢k(sk)) ], for 8, < 0
Ek(go) = "
| | errel(-2 iy 4, ()" ), for 5> 0
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and

L _ exp[go ¢k(sk)] jé:: -2 ! -1
I(gy) = (2) i (2) *k
. (s 017 3=0 ] \gy ¢ (s

[2“ 30 ¢k ' k)

24 - . . .=
B g 2 ()
ooom=0 L=0 7’ ]

2
, -$ ( )(s ) G _
- sign (s, ) % —-%5-7:-5—15(-— (8y ¢;.(5,)) .
N7k Tk k
: .,
where A, 1 . sign(x)'are defined in (Al2) and (AIO) for integers
I 7% 0 ¥4 gk
1,‘n, j- If the Bayes criterion is used, the decision level g0 is cal-
culated by (2.13). The saddle point can be obtained by solving (2.49),
and ¢k(sg) and ¢kn(s£) for k = 0, 1 can be evaluated from (2.48},
(2.53) and (2.54) where numerical integration will be required. The
probability.Qb or Qd will then be approximated by summing the series
given in (2.55) up to the term after which the absolute values of the
terms either begin to increase or become insignificantly small., If the
Neyman-Pearson criterion is used, the value of QO is preassigned and the
decision level gy must be hunted by iteration. Since 8¢ is a monotone
function of the real value g2 both &g and sg can be found simultaneously
by iteration until the false-~alarm probability calculated by the asymp-
totic expansion approaches the.preassigned value QO within a tolerable

error such that (2.49) is satisfied. The saddle point s, under H, will

1
be obtained according te (2.51}, and the detection probability Qd will



be approximated by the expansion (2.55). The numerical iteration pro-
. cedure for searching for the saddle points g7 sl,and the decision
level &g is descxibed in Appendix B.

. When the relative costs 0 ~ o0 ‘and Cop ~ Cllare equal, the
'décision level &o for Bayes critefion is given by (2.13) with
. AO = g/ (1-£). The'saddle peints g and sl.are calculated from (Z.49)
and (2,51). The average errorrprobability is minimized and can be
obtained after tﬁe probabilities QO and Qd afe approximated by the
asymptotic.equnsion (2.55). The performance of the ideél detector

will be studied with a Gaussian image and compared with the threshold

~ detector and simple detector in the following paragraphs.
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Performance of the ideal detector for a Gaussian image

In order to inveétigate the performance of the ideal detector
and éompare it.with the other two‘detectors, the threshold and the
'simple detector, a Gaussian image will be postulated, The average
-inéensity function on the photosensitive surface due to the objéct

Iight giveﬁ in (2.16) is described by the weighting function

1
‘]’(_J;C) = 5 eXpi - Ty . (2.56)

where 0 is’ the width of the image, this might be the image of a circu-
lar nebula or, more important, of a point source whose light has

(14)

- passed through a turbulent medium . If we define

_ , | | ,
N, 21 ¢ L, oT . (2.57)

i

as the average number of photoelectrons emitted from an area
.2 ’ .
Ab = 2w ¢ of the photosensitive surface due to the background
light and with NS given by (2.38), the signal-to-noise ratio D2 and
and function u(x) from (2.17) can be written as
2

D" = NS/N0 , for N0 #0

u(x) = exp|- g (2.58)
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In the absence of the background lighﬁ,'that is N0‘= 0, and for a
false-alarm probability Q0 preassigﬁed at 0.2, 0.1 or 0.01, the de-
tection probability Qd is plotted as a function of N8 in Fig. 4;
(2.42) is used to calculate Q-

- If the background light is present, the m.g.f. of the ideal

statistic g at WT >> 1 for the Gaussian image is given by

N A A '
h, (8) = expg 0 f j (1+D2u@5))k f(l"'DZUQC,))_S-i] dz.?.i}

2ﬂ02

k=0,1 . ' | (2.59)

when (2.19), (2.56), (2.57), and (2.58) are used.

Now we can change variables by letting

x, = Ro cos O s X, = Ro gin ©

s0 that -

R2

The m.g.f. from (2.59) fecomes

2n pw
Yo 2 2, X
hk(s) = exp 5 {1+D” exp(-R"/2))
210" Q 0

L [4D? exp(-R%/2))7% Z1] o’RARde

s
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1 : : C
= exp NO f (lii'—Dzy)k [(l—i-Dzy)Hs - 1] y-l dy
0 _

k= Qorl , -~ (2.60)

where (2.60) is obtained by changing the variable y = e R /2. The

complex phase required in the asymptotic expansion series under Hk

for k = 0, 1 as piven by (2.48) can be written as _ : :
.l o -
6 () = gy N f ao?y® [y ™ - 1 yay + s
k 0 0 0
kK=0,1 , (2.61)
where the saddle point is obtained by 'solving the equation

. 1
. - . _1- b
gy = _No ‘{ (1+D2y)k y R.n(1+D2y) y Tdy,

k=0,1 (2.62)

and 5, and S0 satisfy (2;51).

The nth derivative of the complex phase ¢k(s) for n = 2 under
hypothesis Hk is

1

_ 1
$7s) = D" gt N f ?y) S el (en’y) vy
k o oJ, |

k=0ortl . {2.63)
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" Figure 4 Detection probability Qd a

functlon of N deflned in (2. 38) for the

ideal detecLor in the absence of background

- 1ight; false-alarm probability QO = 0,01,

0.1, 0.2,
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e
The mean and varlance of the optimum statistic g from (2.22) for the

' Gaussian image under H_ for k = 0, 1 becomes

]

1
o 2.\ .
Ny, f (l+D2y)k En(14D7y)y 1dy 3
o ' '

‘F-[.g-‘lHk] |

1 |
Nof (1+1)2y)k ﬂﬁz(lﬂ)zy)y—ldy . (2.64)

Vaf[g 1, 1 A

In oxder to compare the three apﬁroximation methods, steepest descent,
Guassian,and gamma, the reli;bility.of the ideal detector has been A
h-caicﬁlatédrby the three approxiﬁatg forms.as given-in (2.555, (2.445:
“and (2.46) respectively. At typical vélueéiof Ny = N, = 5 (D2 = 1);
‘the fglse-alarm_an& detection probaﬁilities of the étatistic are
plotted as funcéipns ofithe decision level g, in Fig. 5. It can be
noticed that Bcth Gaussian and gamma approximations with the mean énd
variance matched bj (2.64) are least accurate in the tails of the
‘diétributions. For small fglse-alarm'probability QO’ therermay be a
.éeriogs error in the decision level 8¢ if either one of the apbroxi—
mate forms is used under the Neyman—Pear§on criterion where QO is
preassigned. To apply the asymptotic exéansion series given in {2.55),
an iterative search method was used to determine fhe decision leveli
go and the assoclated saddle pqint Sy Detailed descriptién of the
iteration is given in Appendix B.
To investigéte thé performance of the optimum detecéor and

later the threshold detector, the detection probability Qd of the

optimum detector is calculated by using the asympotic expansion series



l_a frém (2.55) and 1s plotted as a functlion of the signal-to-nolse ratio
p? for fypical values of N, at 0.5 and 5 in Fig. 6 where the false~
alarm probabili£y QD is preassigned at 10_3 and IOhS. The detection
probability ié also plotted as a-fungtion of fhe mean number N8 by
the solid curves in Fig. 7 at Q, =110_37and in Fig. 8 at Q = 10“5.
The detection probébility Qd at NO = 0, given by (2.42), 1s also
piotted in Fig. 7 and Fig. 8 for the purpose of comparison. When

. the relativg costs ClO_— C00 and COl - Cll are equél, the minimum

error probébility of the optimum detector at £ = % can be calculated

‘ by.using (2.6) ané the asymptotic expansion series (2.55) and is
Aplotteé as a functioniof the mean ﬁumber NS by the solid curVESKin.‘

Fig. 9 where the decision level gy = N is obtained-according to (2.13)

and the saddle point s is searched for by iteration to satisfy (2.62).
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Figure 5 Pfoﬁability QD and‘probability
Qd as a function of decision level go for
the ideal detector calculated by the saddle
point, Gaussian and gamma approximations;

No = NS = 5, where N0 is defined in (2.57).
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Figure 6 Probabiliﬁy Qd as a function
of the signal-to-noise ratio D2 defined
in (2.58) for the ideal detector;

Ny = 0.5, 5, Q = 1073, 107,
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Figure 7 Probability Qq as a function of
Ns for ideal, threshold and simple detectors;

Q, = 1072 at N, = 0, 0.5, 5.
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Figure 8 Probability Qd as a function of
Ns for ideal, threshold and simple detectors,

- 10"° =
Qg = 107° at Ny = 0, 0.5, 5.
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Figure 9 A\}erage error probability Pe in
detecting the Gaussian image against the
uniform backgrouﬁd light vs. ‘the mean number
NS for ideal and simple detectors; NO =0,
0.01,0.5, 5.
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Performance of the threshold detector for a Gaugssian image in the

presence of the background light

When the signal-to-noise ratio D2 is small and the threshold
statistic &g from (2.26) is used,the m.g.f. given by (2.27) for a

Gaussian image becomes ‘
h,, (s) =- exp 4 oT f j. (1+D2u(x))k
ok Lt J_ ! %))
[exp (-su(x))-1] d 35}
, “),
,k=0§r 1. (2.65) -

Again by changing variables, we have

. ' N 21 o ' ’
hy (8) = exp’ 02 f f (1407 exp(-R%/2))"
2rg” 0 0

(exp (-5 eXP(-RZIZ))—'l)‘ o*RdRdE

1 ' -
= exp {NU-{ (1+D2y)k (exp (-sy)-1) y—ldy}

»

- | k=0orl . (2.66)

The mean and variance of the threshold statistic 8 under Hk for

k=0, 1 are
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i

1
. ) . 2
E[gelﬂkl N, J{R (1+D?y)kdy = N0(1+kD /2)

il

_ 1
Var[golHk] NO‘i( (1+D2y)kydy = NO(%+kD2/3),

k=0,1 . (2.67)

The complex phase defined by (A7) under_Hk for k = 0, 1 is

- . o
bo(s) = ggp A hg(s) + s

_ 1 _
= g "1 pr (1+D2y)kEEXP(~sy)-13y-ldy +s
AR A -

(2.68)

from which the saddle point s 1is determined by the equation

d
s Yok

il
<

or

(s)
1
80 = N f 0" exp(-sy) dy
80 0 0 : I '
= s71 NO { l—exp(-s)+kD2[s_l—(1+S—l)exp(—s)]}

k=0,1, (2.69)

Since the relation of the m.g.f.'s by (2.51) does not hold for the
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statistic Bgs the saddle point s under hypothesis Hk for both k = 0, 1

must be calculated from (2.69) which has only one root of real wvalue
as discussed in Appendix B. The nth derivatives of ¢k(s) forn = 2

are given by

1 .
= . 2k p-
¢kn(3) = (-1)" 80 NO,{ (1+d%y) " 47 .l exp (~sy) dy

= D% gge N {E, () + kp® £ ()

k=0, 1 (2.70)

where

L ,
£,(5) = j. y" exp(-sy) dy
0 .

. . ’ n
= nl S«_n-—l_ sfl exp (~-s) 2 [n! J(n-3)1] s )
320

(2.71)

y
Again, with the méan nuﬁber NO and the'signal-to-noise ratio D2 given,
the reliability of the statistic can be approximated by the asymptotic
expansion as given in (2.55). For eaclr decision level €0 the saddle
points g, Sp can be solved for from (2.69). The false-alarm proba-

bility and the detector probability are plotted as a function of

o= 5 and p? = 0.1, 1, 2, 3, 4, and 6. Since the

60
in Fig. 10 at N

B4



QFstribution of the threshold statistic ge is independent of the
signal strength under hypothesis HO; the advantage of the.threshold
detector is that for each prgassigned QO the decision level &0 is
fixed for all values of Dz as shown by Fig. 10. The detection proba-
bilicy Qd is also plotted as a function of the mean number NS by the
dashed curves in Fig. 7 and Fig. 8 for typical values of NO at

Qo = 10h3 and Q0 = 10_5. The detection probability Qd of the
threshold detector approabhes thé curves of tﬁe optimum detector when
D2 is very small; however, the optimum detector always has higher
detection probability: To calculate theuminimum ercor probability

Pe one has to solve the decision level 840 such that the ratio of

the probabilities for By =

€a0 1 0

We have not carried out the calculation.

under H, and H, is equal to £/(1-£).
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Figure 10 Probability Q0 and probability

Qd vs. decision level gO‘for threshold

detector; NO = 0.5, D2 = 0.1, 1, 2,'3, 4, 6.
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Performance of the simple detector for a Gaussian image in the

presence of trhe background light

"For the simple detector, the optimum statistic from the like-
lihood ratio is the total number n of the photoelectrons emitted from

the optimum area A,' as given by (2.34). 1f the radius of the area

1

Al' is given by GRD, the average number E‘I‘k of the photoelectrons
emitted from Al' under hypothesis Hk for the Gaussian image according

to (2.32) becomes

' 2
n. a’r_./;; ' [Ib +< kIS y(x)] d'x

1
2n oRo -
, 2.2
' : - a'rf f (Ib + kIg 12 exp(-R"/20 ))
: 0 0 2ro”
«RdRAO
2 2 2
= av o" R LT + ka IST 1 - exp(-—Ro /2))
2 -p
No[p+kD(l-e)]
k=0,1, (2.72)

2
wherep=-£Ro andA1'=1r0 Ro'
Since the statistic 8 is a discrete random variable, when

the Neyman-Pearson criterion is used, randomization must be applied.
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That 1s, the reliability of the simple detector according to (2.4)

and (2.5) can be written as )

' E : n  -n, g -n |
- - TO + . e — °-s0 TO '
QO\ n e /n.ﬂ-fn e /gso.

E -0 “ry —~ Bsp M1

= 1] 1

.Qd = n e / n! +fn | e / Bep * >
(2.73)

where for preassigned Q0 the decision level 850 is the smallest

integer such that

E50 _ . : ‘ . B}

- n '
Zenm(?l')=/nz>1-q (2.74)
TO 0 - .

=0 .
f i1s the probability to choose Hl when n = 0 an& can be determined

from

gsO _
-1 n
£ = (Z e 10 (g /n.')+ Q - 1

=0
'(nTo) e 80 * (2.75)

where ;%O’ n.. are given by (2.72) for k = 0, 1. Hypothesis H, will

Tl 1

be then chesen if n > 8.0 and HU will be chosen if n < 8a0" As the
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false~alarm probabilities QO are pfeaésigned at'lo—3 and 10-5’ the

‘detection probabiiities Qd of the simple detector are calculated

from (2.73) at N, = 0.5 and 5 and are plotted as a function of the

0
mean value Ng‘in Fig. 7 and Fig. 8. For each point on the curves,
the radius Ro was varied to yield maxi@um detecticn probabilility.

When the Baﬁes criterion is used,.with ASO givgn by (2.2),
the decision level from (2.35) becomes

= [anA +N032(1ee"p)] [zn(l+92p_l(1-e'piﬂ_l.

- Bg0 s0

g _ ' | _ - (2.76)

Hypothesis H. will be chosen if the number n > 8.0 °F H, will be

1 0

éhosen otherwise. The reliability of the detector can be evaluated
according to (2.73), except that we let f = O because the probability
for Bgp O be an integer 1s negligible. When the relative costs are

equal, the average error probability given by (2.6) is minimum and

" can be written as

n  -n
— TO
Pe = § N, e / a!
n>830
| L% -
E —, 0 TApp
+ (1-£) ng e [/ nl | (2.77)
n=0 ,

At £ =k, g0 is calculated from (2.76) with AS = l,and the error

0

probabilities Pe are calculated and plotted as a function of mean



number difference AN = N_ at Ny =0,0.01,0.5 and 5 by the dashed curves
in Fig. 9. For_eﬁch'point on these curvés the wvalue Ro was varied to
yield maximum Pe'

When the false—alarm probabilit& Qb is preassigned, the
decision level gsodetermined from (2.74) is a monotonically increasing
function of R,. The optimum radius R, at which the detection proba-
bility Qd yields a maximum can easily be searched by the digital
computer. The values of the optimum radius Rq at different values
of N, are listed in Table 1 at tyéical values of N, = 0.5, 5. The

maxima are quite f£lat and the radius R, of the observation area is

Q
ﬁot c;itical. For the calculation of the average error probability
when the decision.level o0 is determined from (2.76), géo is also a
mbnotﬁnicallylincreasing.function of RO' However, both QO and Qd

are varied by changing gso,and their sensitivities toward the change
are different. We found that there are several minima in a certain

small region as we vary the radius R ,and we have picked the smallest

‘one for the plots in Fig. 9.
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Discussion

It is important in detection theory to calculaté the distri-
bution of the statistic as accurately as possible so that the statis-—
tical performances of the detectors can be invest;gated. The statisgic
glven by (2.18) or (2.26) is the sum of W independent random variables
and is very common in detection and estimation thgory. Since the
exact distribution of the statiétic cannot ﬁe obtained, the Gaussian
approximation has been largely used for the statistical evaluations
in the past. On the other -hand, the method of steepest descent has
_been proved mathematically to provide approximations of an accuracy
~that is often high; usually the error of the approximation is of the
order of the first term neglected in tﬁe'asymptotic expansion series.
Furthermore, the asymptotic expansion series expressed by (2.55)
~glves the exact expression of a Gaussian distribution and a fairly
good numerical agreement with the other two well-known distributions,
the exponential and Poisson distributions, as discussed in Appendix A,
It is therefore appropriate for us to uée the method of sfeepest
descent to approximéte the tall distribution of the ideal and
threshold detectors in order to Investigate their performances,
%lthough more numerical calculations may be required such as searching
for saddle point., With the availability of the digital computer at
the present time, the asymptotic-expansion approximation should be
.very_useful for solving many problems in detection and estimation

theory.
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Each of the detection statistics we have discussed is the

sum of every ejected number n, of photoelectrons weighted by a factor

i
as given by'(2.18), (2.26),and (2.34). 1In order to design a better
detector, we must make the false-alarm pfobability of the detector
small and its détection probability as large as possible, or,
equivalently, make the magnitude of the statistic as small under
hypothesis HO and as large under hypothesis H1 as we can. Irom

Figs. 7, 8 and 9 we can see that the ideal and threshold detecto;s,
which‘utilize the information about the shape of image, are not much
better thén the simple defector when the optimum observation area

@f fhe simple detector is used to yield maximum detection probaﬁility
or minimum error probability. 1In othér yords, to register the loca-
tions of photoelectroné doeg not help much to improve the detection
of the image. Thigs is because when the background light islaséumed
to be uniform, the effectiveness of reducing the magnitude of the
statistic on the average under_H0 or increasing the ﬁagnitude of the
statistic on the average under Hl is limited,.especially when the
signal-to-noise ratio D2 is low, bn the othe; hand, by farying the
cbservation area, we can optimize the mean numbers of photoelectrons

under H0 and Hl effectively and reduce the error probability or

improve the reliabilitf of the simple detector.

93



TABLE 1

Optimum Radius for Simple Counter

N, = 0.5
N R, (Q, = 107°) R, (@, = 107)
s o \~p SO0
1 1.31 1.37
2 1.72 " 1.68
4 1.72 1.68
8 2.10 1.68
12 2.10 1.98
20 2,10 1.98
24 2.46 2.28
B, =5
N, Ry(Q, = 1073 Ro{Qq = 107)
1 1.36 1.37
2 1.44 1.44
4 1.60 1.58
8 1.60 1.58
12 1.75 1.65
20 1.82 1.78
24 1.82 1.78

94



9.
10.
11.
12.
13.

14.

Footnotes

Chapfer I1

Belstrom [5].

Papoulis [19]. Abpendix 1I-4 gives a brief description of
the saddle point method of integration. For a more thorough
explanation, see Erde'lyi [33] and Jeffreys [34].
Helstrom [10], Chapter III,

Van Trees [203} Chapter II.

Heistrom [21].

Helstrom and Wang [22].

Helstrﬁm [10], Chapter V, §1d.

Gnedenko and Kolmogorov [23], Chapter 3, §17.
Feller {[24], Chapter VI; §3.

Helstrom [5]. .

Farrell [6]. |

Rice [7].

Wang [25].

Helstrom [14].



t

Chapter ILI Simultaneous detectioﬁ and estimation of the mean

intensity of an optical image

The detection of the image on a photosensitive surface
described in Chapter II is based.on the knowledge about the intensity
and location of the light source, In pfactice, howeverF the estima-
"tion qf the parameters such as the inténsity ;S énd the center loca-
tion,zg0 of the image may be needed as well as the detection. Thg
observer must estimate these parameters as best he can on the basis - {
of the observed set of data n. In this chapter we will assume that
if £he object image is detected, the location of the image is kﬁown,
but its intensity must be simultaneougiy'egtim;ted. One_seeks a

~ '

strategy to estimate the intensity, I = IS(Q), which is a funetion ' !

- of the data p = (nl,nz‘° ‘. nN)° Two most important strategies,

(1’2>, will be discussed. A quadratic

- Bayes and ﬁaximum likelihood
cost function will be used to derive thé Bayes estiﬁéte. Wheﬁ the
signal is not too weak, the Bayes estimate is approximately equiva-
lent to the maximﬁm likelihood estimate, An almost optimum estimate
i1s therefore proposed and its statistical properfies will be studied.
The expeétation of the biased estimate will be evaluated and plotted
as a function of relative intensity at different observation times

or total numbers N of small areas with ‘a truncated Gaussian or

parabolic image.
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Simultaneous detection and estimation for a single parameter

As we have discussed in connection with the binary hypotheses
tests in Chapter II, when a set of data b = [bl,b2 Vo bN} is
obtained, the observer will choose the hypothesis between the binary

hypotheses H0 and Hl' Since the signal received under hypothesis Hl

now depends on a certain unknown parameter 6, the observer must seek

a strategy hased on the N measurements of b so that when hypothesis

H (3). 1f, however,

1

H0 is chosen, it implies that there is only background noise; there-

fore the parameter 6 does mot exist or is equal teo zero. The condi-

is chosen, the parameter 8 will also be estimated

‘tionél p.d.£f. P(Q[B) is assumed to be given in general. I1f the cost -
functions C(@,G), which are the cosfs for choosing hypothesis HO or
Hl and making estimate_§ = 0 or a(k} for given true parameter 8, are
given, and if the prior p.d.f. z(8) of the parameter 6 and the condi-
tional p.d.f. ¥§§LE) of the estimate 6 for given déta‘h.are known,
(4) '

then the Bayes strategy can be used. The average risk per experi-

ment for simultaneous detection and estimation of the parameter is

glven by

C = f def déf dN_b_ a(8) Yo(al_}g_) P(bje) c[6,6]
9] A Z '

(3.1)

where £, A and I are the spaces for parameters 6, 6 and b respectively,

The Bayes strategy is to prbperly choose the function %§6L§)
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so that the average risk C can be minimized. Let us define
yBlp = wyly 6@ + 16y, (3.2)

where 6(8) is the Dirac delta function. w(Holb) {s the conditional
. ~
probability for the system to choose HO' H(B[EQ is the conditional

p.d.f. for estimate 6 when H, is chosen with observed data b. Further-

1

more, we have

'fn(afla_).dé\ = vl | (3.3)
fi) -

wvhere w(Hth)ais the conditional probabiiity for the system to choose

Hl with given data b and ¢tHl|k) + ¢(HOLQ) = 1. We also let
co(8) = £ &6(0) + (1-&) z(8) , : (3.4

where &£, 1-L are the prior probabiiities for hypothesés HO and Hl as

discussed in Chapter II. z(8) is the prior p.d.f.. of parameter ©
under Hl'
By substituting (3.2), (3.3) and (3.4} into (3.1) we can

write the average risk as

_— N " - "
c =f d'b {& [q;(ﬂ lb)c +f dé (e|p) C (e):l P (b)
. { 0'=~00 " J, ) ¢, o®

o8
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+ (-1_.5))[ d6 z(0) [q;(xiol(l_:_)) Cyy (8 +f dé (8 ]p)
, /a o A |

C?_l(e,e)]P(}g'lO)E (3.5)

wvhere Py(®) = P(b[H,),

C00 is the cost of chousing Holwhen HO is trpe,

COl(G) is the cost of choosing Hy when H; is true with

parameter O,

-

L] A~
clo(e) is the cost of choosing H, with estimate 6 when H

1 _ 0
is true, '
Cll(a,e) is the cost of choosing Hy with estimate ® when Hl
is true with parameter 8.
Now since
P[6) z(8) = P(elp) P , : (3.6)
where P(BLQ) is the posterior p.d.f. and
P(p) = f P(ple) z(8) do (3.7)
. Y] .

we can also write the average risk C in terms of the conditional risks

as
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H

o]
1]
:.,\%5
=
i
a e}
=
S
[ p—
N 4
=2
wr

| +'[ dé n(6lp) c(d Ua)] (3.8)
where

CHO'P' = ¥(8y[b) [CCOO Po / PQ)

.+'(1—£>f de Cy;(0) P(tﬂp,)] , (3.9)
Jo ‘ o
\; -
is the conditional risk when H0 is chosen for given b and
A ~ ’
c(d ) = gc ) P ) /PR
+ (1-:;)jf de C,.(8,8) P(8]b) (3.10)
. Q 11 _ - . .

, _ : . A .

is the conditional risk when Hl is chosen with 6 for Biven-b Now the
_ . N _

p.d.f. P(E) and ‘conditional p.d.f. H(BLE) are both positive over the

space I of the outcome b, and the conditional risk C is not a

H.|b
L) — 0~
function of estimate 6, the average risk C is minimized with respect
- to 8 by making the conditional risk C(ﬁ Lh) as small as possible for

every set of data b, Now .  we choose the p.d.f. ﬁ(é[g) as
melp) = k) 866 - 6@ - - (3.11)

where 6(b) is the optimum estimate 8 obtained from minimizing the

conditional risk C(élg) and can be determined from the following



equation

e
— Cc(6b) = 0 or
2 o6l .

N . a . |
| £ Py E'a‘clo(e) + (;—E) P(lg,)‘fn do P(efb)

S o2 (8,0).= 0 . | (3.12)

Thus the minimum average risk from (3.8) at 8 = E(g) becomes

Cpin = j; dh{[l""pmll—@] [ECODPD@

+ (1-8) p(g)fde Cop (8) P(GLI_)_)]
_ o |

+vay [0 G®) 7w

A

o+ (1-8) P@_)f de cll(é@,e) P(efjg_)}} (3.13)
. ¢ Q . . ’ .

- If we'now define

AR = € Coo 'Po(lg) + (1-¢) P@f dé C,,(e) P(6/b) |
: {2
Bb,6(2) = € CpB®) Py + (1-6) P(®)

: jg 40 €13 (6®,0) P(O[R) 3.14)
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then (3.13) can be written as

——

N o
Cotn = j; d,t_g,{A(g) + p(H, o) [B@,6()) - A(.g)]} _

(3.15)

" As the cost functions can be chosen so that both functions A(k) and
B(h,é(g)) are positive. Then we can further minimize the average risk

from (3.15) so that - ' : . “

oy by = 1 1f B(,6(5)) < AR >
. 1
l@'(HlL?_) = 0
or ' ) - otherwise
vyl = 1

(3.16)

This is equivalent to defining a cost likelihood ratio Ac where

—

1-) P@f a6lc,; (9)-C,; (), 0] (o ]y
o 2 .

¢

E2® TN CICH PR

(3.17)

and a decision level Aco = 1 so that hypothesis H., will be chogen if

I

A > A _ and estimate a(b) will be issued; otherwise, H

c cO

o will be
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chosen,

When there ig no information aboﬁt the cost functionz, the
prior probabilities of the h&potheses, or the prior p.d.f. z(8) of .
;the parameter, the maximum-likelihood str;tegy can be used., The
gstimate P will.se determined from maximizing the posterior p.d.f.
"P(8{h),which is expreséed in (3.6). Since P(b) is independent of 6,
it is equivalent to maximizing the product of P(QIB) and z(6). With
very little knowledge about z(8), we mﬁst‘assume that the prior p.d.f.
z(8) is very broad, so that z(6) will not affect the decision and
estimate we have made. This implies.that the estimate 5 is simpl§

obtained by maximizing the joint conditional p.d.f. PCQ,B) or

determined from the following equation

> P(b|6) 0 S o (3.18)

L]

The estimate 6 determined from (3,185 will be a function of the data
b

When the data b are a set‘of discrete random variableé, the
function P(Q[G) will be the conditional probability function inéfea&_
of conditional p.d.f. All the equations we Bave discussed in this
chapter are still valid except that we have to chaﬁge the iﬁtegrals
.,Z dﬁg into sﬁmmations EE: - For the detection of the image and
estimation of its intensifg-of a light saurce, both Bayes strategy
and maximum likelihood strategy will be discussed in the following

paragraphs.
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The operation of simultaneous detection and estimation of
the signal and its parameter 0 can be described.bj the following

. block diégram,

o

A =1
o

Cost like—. fie > 1 ’ Ho
o - * 1ihood A —° ¥

. given
£, C(8,6), z(8),

. PQ]B)
Signal b Bayes esti- : '
and . Data ~ [pator  6(b) §=10(b)

‘noise Sampling
given ] C Max-likeli-f———""" HO with
P(pjo)e - hood esti- 6 =0
. mator §(R) f—— H,,
6 = 6

Figure 11  Block diagfam for simultaneous
‘detection and estimation of a single parameter
. 6 from the signal.



Bayes strategy for detecting the image and estimating its intensity

of a point source with a guadratic cost function

‘ Wﬁen the photosensitive surface is divided into N small areas
dA, the data n are the numﬁers of photoelectrons ejected from the R
small areas dAi =dA, 1 =1, 2 . . . N‘:,g is é set of N discrete
" random variables., As TW >> 1, they ére:Poisson distributed and
gtatistiéally independent. The joint cﬁnditional probaﬁility under

hypothesis HO can be written as

N i
n,  _ .
P(njI=0) = P.(n) = ] [ pt e /a (3.19)
s -0 . i° .
i=1 _
where
b

W o= of I, d& o (3.20)

is the average number of‘photoelectrons ejected from each area dA
‘due to the background light fllumination. The joint conditional

probability under hypothesis H., can be written as

1
. - ,
njl = ] i utl_g e / n,! (3.21)
S 421 s | | i°,
where
g = aIvda , Y;=Y(%) | , (3.22)

105



with Y(gi) as the weighting function given by (2.16). We let the

cost functions deécribed in (3.5) be
Ci1oIg) = Cip
€, (IeyIe) = Ca(Te-10)2 : (3.23)
117878 05 °S s . .

00’ COl’ ClO’ CO are all given constants,

The 'Bayes estimate is(p_) can be determined from (3.12)

. where C

0

I () =f I, P(Ig|n) 4Ty, - | (3.24)

(3 of the intensity I_,. The

which is the conditional expectation g

posterior p.d.f. P(IS‘B) can be expressed by using (3.6) and (3.7)

as

| 2(1y) 2|1y | |
(Il = - (3.25)

«r

z(L,) P(g_lf_ts) dI

for positive values I The denominator of (3.25) can be written as

s

f 2(I) PlIg ) dIg
0

N -+l gq,) ,
f dl z(I ) ﬂ (u+I qi e §71 / ni.' . (3.26)
0 i1=1 .

LUb
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When the p.d.f. z(IS) is given, the Bayes estimate from (3.24) can
be evaluated.
We now assume that the p.d.f. z(is) is a gamma distributed
probability function
' C B-1. [ :
. = e I 3.27
=g = v@y Y5 ¢ T VY (3.27)
- with B, C real and positive constants, U(x) is the step functiom.
If the object light is wvery much weaker than the background light,

IS << Is ) (3.26) can be calculated approximately as

J{). | 2(1) Plaf1) dI,

o f d1 & 1 BL eECIS
0 s T(B) s

R . : '
o i S ~H '
u l4n, — ¥ e n,.
Ll{ ( 1T, i) / ™4
. H ) ' .
. n : -
- i B
= ] I e " l+ny, — n,t (3.28)
1=1 ( i_i C.Ib ) / .i _ _

The Bayes estimate from (3.24) becomes

: N -4 4B
- e ¥ p = [ 14n,y, (B+1)Y/CI. 1/ n !
I @ =~ C 171 b 1
S o~
i=1 -, B

e W 1 (1+niYiB/CIb) / ni!



N R ~
. 1. -
. R— (3.29)
C '

T
- c
1 Bf14 2
- B gy ;

where all the values Ny Yoo Ib’ B, C are known. If the object light

is so0 strong that we can assume that there are m, areas dA which are

so close to the imapge center and such that TiI >> Ib’ and m, areas

5
which are far away from the image center and YiIs << Ib (mo + m = N
is the total number of areas into which we have divided the image),

v

then (3.26) can be calculated approximately

P \

j‘; z(IS) Q’I_IIS) aI _
. ™
e T l l . M) rt
OTE B e i N
o i=1

© Bl 4M, ~(C+MOI.
j, I I . T 5 gr

4] S ?

(3.30)

where‘ .
.= ] { n, ' s M = :E:: q
K 1=1 17, 121 i
%o
M, = :E:: n,,
0 o1 i

is the total number of phetcoelectrons ejected from the m, areas far

from the image center.
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is the total number of photoelectrons ejected from the m, areas close

to the image center, where

®  B-1+M, ~(CH+M)I F(B+M,)
f I Lo 5 g1 = L

0 5 (c + Mq)B+Ml

(3.31)

. The Bayes estimate fs(_rl).according to (3.24) can be approximated as

. OT(B LM BHM,
I = iy TE+N,) = C+H ) (3.32)
. g 1 q
When Ml >> B we have
‘ | ™ |
-Is(t}_) o Kb; ny | ' (3.33)



Maximum—-1ikelihood strategy and the almost optimum intensity estimate

When there is no information about the cost function, the
‘pfior probabilities of the hypdtheses, or the Prior p.d.f, z(IS) of
the intensity, the maximum—likelihﬁod strategy wi%} be used and the
estimate‘is(g) will be determined fréﬁ (3.18); it satisfies the

following eguation

M=

(3.34)

N
N394 ~ E
= q

"~ i .
qy IS(_Q) + u i=1

[
tl
fay

When the object light is so much weaker than the background light

that IS << I,, the estiméte IS(Q) can be determined approximately

from 7 :
N N _
~1 " -1
:EL: q. = :%:: n,q, v {1-gq, I (@) u ]
j=1 1 i=1 i*1 : i’s
, N ) N _
- 2 =] 2 .
‘or I.(@ = Z (e =) g / E n,q (3.35)
s 1 e T :

If the object light is so strong that there are m. areas close to the

1
image center and qiis(g) >> u, and m, areas away from the image
center and quS(g) << p so that they contribute little to the sum,

then we approximate the estimate is(g) from (3.34) by

(3.36)
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where

Y
K~ = qy

i=1

Tﬁe estimate ES(Q) we have just obtained resembles.the approximate

form of the Bayes estimate given by (3.33) when therobject light is
not too weak. In geﬁeral we may not have any inforﬁation'about the
cost functions and the priox p.d.f. z(IS). We therefore propose an

almost optimum estimate I () as
a

-~

. N o 7
ISa(g) = K Z (ni- ) U(ni-- 8) , - | A(3.37)
where U(x)=1 for x>0 and 0 for % €0, Kis defined in (3.36). 0 is
thé threshold level which can be determined from a preassigned

" false-alarm probability QO such that 6 is the smallest integer that

satisfies the following equation
N E v e™ iml >N - g | (3.38)

In other words, the number n, of photoelectrons ejected from each

i
area dAi, i=1, 2. . . N, will be compared with the decision level

6; 1f n, > 6, we will consider that some of the photoelectrons

i

ejected from the ith area of the surface are due to the object

illumination. We therefore will keep the term., If n, < 6 we
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agsume that the numper ny of photoelectrons ejéqted from the surface
are due only to the bgckground illumination; thus we will discard
‘Jthe|term,' When all the numbers ng, 1 =1, 2 .. .N are less than
B; the hypothesis HO will bé chosen. Otherwise, the hypothesis Hl
“will be chosen;and'the intensity-estimgtg‘is(g} is calculated

according to (3.37).



Performance of the almost optimum Intensity estimate for a

truncated Gaussian or a parabolic image

The estimate IS(E) we have discussed is a function of the N

measurements n. Since the data _11 are a set of random variables, no

-

two experiments will yield the same value of the estimate IS(g) even
though the true value of the parameter IS is the same in both. The

most one can hope for is that the estimate IS@_) will be close to

it

the true value IS in the sense of 'on the average'.

The mean and variance of the estimate IS we have just
_ a

discussed can be derived as follows

. L (N ., -
E| x Z (n,~6) p(n,~9)
: =1 ' *

\

E[ISa:J B
N . ".
= K Z E[ (n,-8) u(n,-8)]
R i i |
. N _ 8 T
= K Z , -fx_i -6 - Z : (ni—e) Péni]I )
| i=1 © n;=0 B I
N
Var[‘f }] = varl x Z (n, -8) y(n,~9)
Sa i=1 i i
N ' .
= k2 Z Var[ (n;-68) y(n-0)]
- 1=1 :

N
K2 E: Hi+312 - 2':Iie+e2
1=1

-
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8 . .
' 2
- Z (n,-0) P(ni]IS)
n, =0
. 1
_ 0 - 2
- fn -6~ :5:: (n =6) P(nills)
- n_ =0
i »
(3.39)
- where
~ny -ﬁi
. - |
P(nills? = n a / n ',
ny TR g lg

To investigate the statiétical performance of the egtimate iSa as
. discussed in (3.37), a truncated Gaussian image will be postulated.
The imagé surface with radius Ro is divided inte M small rings as
shown in fig. 12.

The average number of photoelectrons ejecteﬂ from each‘ring
by the background_light 11lumination is assumed to be evenly distri-

buted and symmetrical with respect to the image center, The area

dR, of the ith ring cad be calculated as

1
1hp . 27 |
dRi = f f pdp d¢
0

(i-L)ap

e w(2i - 1Ae® = (21 - 1) A, (3.40)
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Figure 12 Image surface divided into. rings

. : 5 2 o :“ _
where AO = nhpT, bLp = pi pi—l for 41 1, 2. . . M. Here

2 2 2
p = ;l + Xy with xy

coordinates used in Fig. 3.

= p cos 9, X, = p sin ¢ as the rectangular
The total number of rings is

M = R /80 . o T (3.4))
If‘we further divide each ith ring into a number (2i-1) of small

equal areas dA, such that dAi = Ao, the total number of small equal

i

areas dAi from the whole imaée is

M . : -
N = E(Zi-l) = M, | (3.42)
1=1
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The distribution of the mean number of phﬁtoelectrons ejected from
the image surface by the object light is described by the welghting
function Y(§i) as given in (2.16) and (2.56) for a Gaussian image,or in |
polar coordinates we can write *
- 2,, 2 : ‘
: ~-p /20 o
r(p) =3Bje o™/ , ST (3.43)
wherel%)is a constant and a is the width of the Gaussian function.
The average number of photoelectrons emitted from each small area
dAi (=;Ab) is assumed to be evenly distributed and is proportional
. to the intensity IS. We calculate the coefficient

_ 2u 14p s
aT _[ j vy(p) pdp do

T "0 (i-1)4p
- aTﬂomzi ~a-nZr itk |
'.(3.44)
yhére
q' = q,(21-1) o (3.45)

with‘qi defined in (3.22). R, = RD/U: RO is the radius of the

truncated image under observation., 1 1is the index (i =1, 2 . . . M).

Because of the presence of the background light, one would
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like to investigate the estimate iSa with respect to the true inten-

sity I. in terms of the signal-to-noise ratio. In other words one

5
could'assume that the enexrgy of the background light falling on the

image surface within the radius R0 of the truncated image is equi-

valent to that from the object light with intensity

f

uMz

I, = ———— | - | (3.46)

s0 M
2.

ll
i=1

Since the total average number of photoelectrons ejected from the
surface of the image is proportional to the incident energy , the

intensity of the point source can be deséribed by
2 g
I. = 4 1 : (3.47)

where d2 is called the signal-to-noise ratio for the truncated
Gaussian image.
The mean and variance of the estimate iSa according to (3.37)

can be written as

M - 6 : ’
E[Isa] = K e (24-1) {n, - 8 ~ Z (ni—e) P,(n;)
i=1 n,=0
. i
M 3
Var[IS ] = K2 (21-1) {n, + 3'2 - 2n,8 + 82
a” 11 i i i
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2
B et [ 3 e el
i 1
n_ =0 _ n, =0
(3.48)
: ' ni' ;;; _ :
where P (n ) = e / n,' with n, =y +4q,'T /(21-1) and
i i i1°s
v and qi' are given in (3.20) and (3.45). |
- We also define the error of the estimate iSa by
Err = (Var 1.7/ E[I.] . (3.49)
Sa Sa | ' *

as the ratio of the standard deviation to the mean value of the

f\

estimate Sa given by (3.48).

To 1nve5t1gate the estimate I in terms of various parameters

Sa
we assume the background light intensity corresponding to an object
lighf with’ﬁnit‘intensity ISO = 1., The avé?age number of photo-
electroné ejected frém each area dA due tq the background light is
assumed to be 0.1 for aﬁ observation time T and coefficient o (i.e.,
uré oT IbA0 = 0.1). The false-alarﬁ probability is preassigned at
0.01. Where.tﬁg parameters Boand v are set at 1,the expected value
of the estimate iSa is calculéte& at various ratios R, = 0.5, 1, 2
and 3 and is plotted as a function of the relative intensity IS
defined in (3.47) in Fig. 13. As the size of the observation area
changes, the estimate iSa will alsﬁ be affeptéd. In Fig. 14, the

estimate ISa.is plotted as a function of the relative intensity IS
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Figure 13 Mean intensity estimate iSa vs,

. relative intensity I_ for truncated Gaussian

S
image; QO = 10_2, the number of rings is 100,

Mean background counts p = 0.1 at_RA =g=1

for time T. Curves are indexed by parameter

‘RA defined in (3.44).
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'QO =10 7, p = 0.1 at R

~

Figure 14 Mean estimate ISa vs. relative
intensity I_ for truncated Gaussian image;

-p S

L= 1 for 100 rings

for time T. Curves are indexed by the

parameter M defined in (3.41).
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~

Figure 15 Mean estimate I, vs. relative

Sa
intensity IS for truncated Gaussian image;

Q - 1072, M = 100, u = 0.1 at R, = 1 for

time T. Curves are indexed by observation

intervals T.
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when the observation area is fixed but divided imnto three different
numbers of rings, 25, S0 and 100. In Fig. 15 the estimate iSa is also

plotted as a function of IS

with threé different observation times
T, 10T and 100T.
Observations also have been made by assuming the image as a

parabolic function. That is (3.43) feﬁlaced Ey

2 2 '
Y'(y) = B'(R" - ") bl < R, ’
B O ' . 'pl i’ RU ’

- (3.50)

vhere Ro is the radius of the image; B' is a constant. The coeffi-

‘can be calculated from

2% iap
t
Loqyt o= aT_[ d¢ f y {p) pdp-

b (i-1)ap

cient gq.’'
ql

= of B'r Ro4 i 2 [(21—1)M2 - (213-312+21—15)J_1,

-

(3.51)

The mean,:variance,ahd error can‘be calculated by using (3.48) and
(3.49). At B' =1, Ro = 1 we have plotted the expected value of
the estimate iSa as.a function of IS at three different vaiueé of
parameters M and T in Fig. 16 and Fig. 17 with Q, = 0.01. The error

4

of the estimate ISa for the parabolic image is also plotted as a
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function of the average background pﬁotoelectrons p at fixed

.IS = 10 and 20 in Fig. 18, where the error for u = 0.1 is 9,24%

at I, = 10 or 3.15% at I, = 20 with the image surface divided into

s S
‘100 rings. The average number ié then varied either by changing

: the size of each dA or the observation time T. .
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~

Figure 16 Mean estimate ISa vs. relative
intensity IS for parabolic image; Q0 = 10”2,
u=0.1 at R; = 1 for time T. Curves are

indexed by parameter M.
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~

Figure 17 Mean estimate ISa vs. relative
-2

g for parabolic image: QO =10 7,

p = 0.1 at Ry, = 1 for time T. Curves are

intensity I

indexed by observation intervals T.
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Fipure 18 Error vs.lmean counts ﬁ

for parabolic image; QO ='10_2. Curves
are indexed by parameters IS defined in
{3.47) and M,
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Discussion

i

A statistical model for simultanecus detection and estimation
of a sﬁochastic image is proposed.. When the prior p.d.f. of the
sopurce intensity and the prior probability £ are known and the cos;
functions are available, the Bayes str;tegy leads tolthe optimum
operation. If there is no information about the prior probability
and the cost functions,the maximum-likelihood strategy can be used.

Upon examining the estimate I_, for both strategies, it is interesting

5
to nﬁte_thgt the Bayes estimate ES from (3.33) for a quadratic cost
function is épproximately the same as the maximum-likelihood esti-
mate from (3.36) when the.signal is not very'weak.

.Eor a Gaussian image, the bias and linearity will be improved

A A

improvement will be gained by increasing RA farther. In order to

reduce the bias of the estimate, it is always wise to use longer

when R, is increased; however, after R, is larger than 2, very little

observation time, to divide the observed image into a smaller number
M of rings, or to use larger observation image area. In addition,

a sultable constant should be added into the egtimate I to compen-

Sa
sgte for the blas. The observed image has an effective range of RA
between 1 and é for the Gaussian truncated image. For the image of
parabolic shape, one should always use the whole image area. As

long as the observation area on the image surface is properly defined,

the shape of the function y{(p) has no significant effect on the

quality of the estimate. To reduce the estimation error, increasing
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the cobservation time 1s more‘efféctivé th%n deéreasing the total
number M of rings. as we can sce from Fig. 18.

When the false-alarm probability QO is preassigned, randomi-
zation can be.used and the probabiiity f for choosing H1 when nygo= g
can be calculated from the difference in (3.38) or

: ) 6 . o ’
f = (1+Q0/N- Z'un e ¥ /n!) e ud et )

n=0

The estimate T a from (3.37) can be modified as

S
‘N
2n, v, |
ISa = K n U(ni -8 - OﬂS) + femU -C (3.52)
2o

is the total number of the areas where n, = 8. C is some constant.
Since the bias of the estimate approaches a constant as the intensity
becomes larger, as we can see from Fig. 15 or Fig. 17, 2 proper con-

stant C can be found to compensate for the bias.



Footnotes

Chapter III

Helstrom [10], Chapter VIIIL.
Van Trees [20], Chaptex II.
Middleton [9].

Middleton [26], Chapter I.

Helstrom [10}, Chapter VIII, eq. (1.11).
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Chapter v Detectors for resolving two point sources in optical

communication by photon-counting techniques

The techniques we have discussed of counting the photoelectrons
from the photosensitive surface for the detection and estimation of
Ethe objeét light intensity have great usefulneés in binaryloptical
communicatlion. Since those devices, such as phofomultipliers, i&age
tubes, and image orthicons are well-developed in commercial industry,
photon-counting techniques, combined with adequate digital computer
facilities can be used for many purposes; In this chapter we will
further discuss some‘detectors used for resolving the point sources in
optical coﬁmunicatién by phéton—counting techniques. The ideal
detector deséribed in Chapter II can be used for distinguishing two
light sources of eqﬁal radiant power from a single source with twice
the radiant power or for deciding which ome of the two light sources
is presént. In the absence of background light, the performance of
the ideal déteétor for deciding which one of the two light sources is
’present will be compared-gith two othef receivers, the simple detector
ana the couﬁting comparator. The intensities of the optical images |
due to the point soﬁrces will be postulated to be Gaussian distributed
spatially. As uniform background light alsc passes through the
aperture, the error proBabilities of the simple detector and the
cduqt;ng comparator will be calculated with a finite observation areé.
When the point sources are mislocated, the gffécts on the ideal

detector and the counting comparator will be discussed, and their

average error probabilities will be calculated.
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Ideal detector for resolving two light sources from the one light

gource

When two point sources with equal radiant power are Very
gloée to each other, they may often appear to the observer as one
‘source wifh twiée the radiant power, located midway between them.
The criterion given'by Rayleigh for two point sources to be ;esoiﬁed
is that the peak illuminance of the diffraétion pattern of one source
will not fall closer than the first minimum of the diffraction pattern
of the other. In thisvsection, we will construct the optimum statistic
for the iesolution of the two point sources from the standpoint of a
classical hypothesis test(l). The observer wili choose betweeﬁ two -
hypotheses, (Hl) two point sources whose images have equal intensities
are present at x and -x in the image ﬁlane, and (HO) one source with
twice the power is located at the origin. The optimum sta;isfic g
described.by {2.18) in Chapter II, based on observing the set of n-
photéelectrons, can still be applied here. The intensity Ik(g) given

/by (2.15) can now be written as
) Ik(gi? = Ib + IS Yk(ﬁi)’ for k = 0,1 , {4.1)
where the weighting functions are given by
‘ L

and y(xli,xzi] = Y(Ei) is descr%bed by (2.16). I, is the uniform

intensity of the background light. Ig is the intensity of the point
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source, whose image is centered at (xO,O) or (~x0,0) on the
photosensitive surface under hypothesis'Hl as‘ghown by Figure 3.
The optimum statistic for binary detection of the point sources
can be derived from the likelihood ratio in a way similar to (2.18),
_énd we write
.

gy = 2 : n, &n Hp(x) | ‘ : (4.3

i=0

where the function HR(gi) defined in (2.17) becomes

n

TG TG

- Iglv &) - Yo(zc,i).l
. I
I [1+ = v, (x)]
b

14 0P ()~ ugx )10+ DRy x0T (4.5)

i G5y

it

. _ 2 B ) .
. and uk(xi) = Ao_Yk(xi), k=0, 1, b° = IS/IbAO. Here Ao is an

arbitrarily defined finite area, as discussed in Chapter II.

Since the weighting function lies between 0 and 1,
0 < Yk(g) <1 for k=0 or 1. We will have 0 < HR(éi) f\1 for gome
areas where TO(E) > yltg). This implies ghat the statistice g is no
longer a sum of non—neéétive random variables. As TW >> 1, the m.g;f.
of the optimum statistie &r accgrding t; (2.19) from Chapter II

becomes



hey () = expatr, Adz_}g[m?zuk@)][(i{lgg))“?—_ll}, k=01, (4.5)

where A is the area of the receptqr; T is the observation interval,and
d is the coefficiené defined in Cﬁavter'II: Since the average number
difference z: (nil n ) vanlghes in this case; the statistic
g from (4.3) is the logarlthm of the likelihood ratio defined by
(2.11). 1t is easy to show th(S) = hRo(_s -1). Also when Bayes
strategy is used, the deciéion level gRO.is éero'when the prioer

probability 1s & = %’as we can see from (2.13).
In oxder to use thelnuﬁerical method of steepest descent, the
complex phase, defined by (A7) in Appendix A when (4.5) is used, can,

be written as

¢Rk(s) = gRo_laTIbl;ZE[1+D2uk(§)][(}iR(§))_s—l]+s,‘ k=0,1 . (4.6)'

The saddle-point will be determined by solving the equation ¢R£(s)=0

or

820 = uTIbﬁz_z_g{l+D2qug)}(Hﬁ(gc__))-skn Ho (), for k=0,1 (4.7)
A : .

- The nth derivative of the complex phase for both Hl and HO as

n = 2 can be written as

() = (D)7aTI j;”_:s_[l-:-nzuk@}(HR(es))k‘s 0" K (), (4.8)
A _

for k=0,1
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is the saddle—point

n

n - ‘
(sl) forn=z=1 Ivhere By

and ¢R0n(80)' dp1

under Hk for k = 0,1 and satisfies (4.7) and (2.51). Because the
function HK(g) has the term YO(&)_in the denominator as given in (4.4),

the evaluation of (4.6), (4.7} or (4.8) will involve a double

-

integration. The iteration procedure to search for the saddle point as
discussed in Chapter II will be tedious numerically although it can be

B

carried out by the digital computer. In the meantime, the nth cumulant

under hypothesis Hk for k = 0 or 1 is

~

N1
1

B ) b & 2 |
Rk S A LI R COR O

ds™

)

'(rl)nuTIbﬁzz:[l + Dzuk_Q(‘)] en" Hp (%), for k=0,1  (4.9)
YA '

If all the nth cumulants for m > 2 are negligible in comparison with
the second cumuiant; the distribution of.the staﬁistié g can be
approximated-&y a Gaussian function. “The mean and variance of the
statistiq can be calculated from (4.9) at n=1and n=2, We have

not carried éut any numerical eﬁample for this ideal detector. However,
we will investigate the perférmance of the ideal detector with a
Gaussian iﬁage in the next paragraph for the décision whethgr a single

-

source is located at X or at -x .



Ideal detector for binary detection in optical communication

In order to transmit the information about the bit "1" or the
bit "0", an optical systéem can be‘used by focusing a radiant source
éither-ou.the ubper half plaﬁe or the lowér half plane of a photo-
sensitive surface. The observer will choose between the hypotheses:
(Hl) the bit "1'" and (Ho) thé Lit "'0" on the basis of the set of
photoelectfons ejected from a large number of small areas of the
photosensitive surface. . The intensity of the image of the light source
at pqinf ggi) of the surface under hypothesis Hk for k = 0 Qr 1 in the

prgéence of the uniform background light can be described by

I+ Ig v () ' - (4.10)

L&) =
with Yk(gi) = Y(xli, Xo4 + (wl)kxc), for g = 0 or 1.

vhere Y(xli, xZi) is the weighting function.and (O,xo) or (0,-xd) is
the center location of the image on the upper‘hélf or the lower half of
thé photosenéitive gsurface, and Is 1s the uniform intensity of the
background light.

| The optimum statistic B from the likelihood ratio can be
expressed accordiﬁg to (4,3) with HRQEI as the ratio of Il(g) and

10(5) defined by (4.10). g

R will be compared with the decision level

Ero° and hypothesis Hl will be chosen if gr * Bpo" Otherwise hypothesis
HO will be chosen.‘ The m.g.f. of the statistic g and its cumulants

will be involved with double integration as discussed in the previous
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paragraph. However, when the background light is ﬁegligible or abgent
.so that I, =0, the distribution of the statistic can be derived
difectly from the inverse Fourier transform of the characteristic
function when Gaussian images are postulated, and the performance of

the ideal detector can be analyzed as follows.

The functiog Hp () describe§ in (4;4) at I, = 0 becomes

CCANRIRACRINCRY

% v (&, ' (4.11)
Yl('-l Y0(~1 , -
where for the Gaussian images we have

Y &) = 21;2 exp{- -z-i—?_ [x112+(xéi + (-1)‘%:0)2]}’ (4.12)

for k =0o0r 1 ,
and the function ﬁR(ﬁi) from (4.11) becomes

BR(xi) = exp(Zxo xZi/c Y, Xg > 0 . : (4ﬁ13)
Thus the statistig gR will be the sum of the numbers of photoelectrons
ejected from each small area dAi’ i=1, 2... or N, weighted by the

coordinate Xo4 of the center location (xli? x21) of that grea. As we

pass the limit dAi + 0, the m.g.f. of the optimum statistié can be
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1

written as

o o

I
exp uTISf'!-dx d:»,.z Yk.(*‘) (H'R(‘-)) "1]

]

b )

= exp NS(EXP{ 39')2[(-1) +s)s} - 1) o 4.14)
for k=0,1

with NS = aTIS as the total number of photoelectrons emitted from the

photosensitive surface during the observation interval (0,T) because of
the light from the source.
If we expand the right-hand side of (4.14) into a series of

% -
EKP[Z(G—O)Z ((—l}k + 5) s8] we have

- n 2 2 -
. : _ Né On 5 ‘
thl(_S) = eXP(“Ns) : :n‘— exp -Mnks +. 5 {4.15)
) n=0
' - ’
 for k=0,1
: 7 Xy 2 :
vhere Mnk = —2n(——) (- l) for nfO,l,Z...
B . . (4.16)
6?2 = 4ncf9)2 *=0,1
n g i

The m.g.f. th(s) from (4.15) is a convergent power series where the
nth term of the series is the m.g.f. of the Gaussian random variable

with mean Mnk and variance 0“2 given by (4.16) and is weighted by a
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factor exp(-¥g) Nsn/n!. The p.d.f. of the statistic gp can be
obtained by taking the inverse Fourier transform of its characteristic

function and can be written as

n
[ Ns
P, (g,) = exp(-N.), d(g )+ —_—
kR ‘ s ‘ R ji; n!¢EF'Un
exp[— 3 (gR - Mnk) ]} for k=0,1 {4.17)
{gcnr | ,
(3

where G(gk) is the Diréc delta functiop .

The p.d.f. of the statistic gy has the delta function at the
origin. The probability that there is no photoelectron ejected.at all
is ekp(-Ns?.

The distribution of the statistiec under hypothesis Bk for

k=0 or 1 is
Fl8pg) = Poleg <gpgl =1- P (gp) dep
Ero
w n
N gpon — M
' RO nk
= 1 - exp(-N) E :—S—-erfc (—————-——), for g_, 20
e n! | % RO
S =~ N g =~ M
= 1- exp(-N)I[L+ E :u%- erfc (M) ]
) . [a) ]
. n=1 n
for gpa<0 ’ | , (4.19)

with an and Mnk given by (4.16) and the function erfc(x) defined by

(2.44) in Chapter II.
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The nth cumulant of the statisﬁic can be also derived as

follows ,
on n dn
Gt = (1) ;;;-ﬁn hpy (8)]s=0
n . [Zo\" 1 . 1 k .2.n
= (-1)7 B \—5— ' exp [~-—-§(x2+(-1) %g) Jx,dx,
- Bl Joo V27 .0 20
2x.\n
- -1y (2 = (4.20)
= (~1) NS(UZ ) Moo fo? k=0,1 ,
‘ 1 1 k .2 n
vhere .y = Jﬁ” exp[- —5(x, + (1) x,7 ) %, dx
nk . o o N o 7 ¥2 2
i p.4 n
= o E[X - (ml)k-gg]
- n
n n T xOr n-r
= o ()(-1) <OF gx" Ty
r=0\"/ ¢ .

is the nth central moment(ﬁ) of a zero mean Caussian random variable

X with unit variance and

E[X?] = 1+2¢3,.. (n-1) for n even

‘ . . ny n!
a 0 for n odd, \r)  rt(n-r)T )

The average error probability according to (2.6) 1s equal to the Bayes
cost when the relative costs Clo - COO and C01 - C11 are equal and

c Cy, = 0. The decision level g,  will be set at

00 = “11.
, and the minimum error probability of the ideal

Cop = €10 = s

zero when § =

(I

’



detector can be calculated from

1 1

Yo = 7 9 *30 -9y
= exp(N) [1+2 2 :_s__ erfe(¥n =)1 (4.21)
: & = nl! a
_ n=1.
for n=1,2,... .

At NS = 0,1, 0.5, 1, 2,aﬁd 5, the error probabilities of the ideal
détector have been calculated and plotted as a function of the ratio
Qiéu) by the solid curves in Fig. 19 where Zxo is the distance
separating the images, which are centered at (O,xG)‘and {0, wxo) of
the surface. o is the width of the-Gaussian image described in (4.12),
. The error probability Pe will be reduced as the distance 2x0_between
the two images ingreases. However, Pe ﬁill be lim;ted by a value of
%-exp(~NS) as the ratio 2x0/c approaches to infinity. Therefore, the

larger the wvalue of Ns’ the better the performance of the detector

will be.
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Figure 19  Average error pfobability Pe
in binary bits detection vs. distance of
separation (2 XD/U) between images for
ideal detector, counting comparator, or
- gimple detectors in. the absence of back—
ground light; NS = O.;,‘;, 2, 5.



148

Iillll!

Pe T
0l ]
~ .
\\\\ :
Ideal Detector ~ —:
| —--— Counting Comparator T
————— Simple Detector - |

oot L— | | [ | 1
0 l 2 3 4 o 6 1



Simple detector for detection of binary-bits

When background light also passes through the aperture and
corrupts the object light, a simpie way 1s to méasure the total number
of'phofoeiecprons ejected from a finite aréa A" of the‘ppper half
photosenéitive surface centered at (O,XO). The simple detector
déscribed.in Chapter II thus can be used here to detect the binary bits.
As TW >> 1, the number of photoelectrons ejected from the area A' has a
Poisson distribution. The conditional probability under hypothesis
H for k = 0 or 1 is given by (2.3) where the means can be determined

from

=1
1§

1 aTJ{[: {Ib + IS Y(xl, X, = ?co)] dxl dxz ’

oy QTM [Ib + IS 'Y(xl, %, + xo}] dxl dx2 . {4.22)

For a Gaussian image, with Y_.k;(:é) gi#en in (4.12) and A' = -:rRozoz_ is

the circular area of the upper half surface where xi +(x2 - xo)zs th)oz.

We have

- ‘ 1 . 1 .2 2 |
n o= aTﬁ{I + I exp[- —s(x] +(x, - x.)7)]1}dx, dx
Tl. A b S 2“02 202 1 2 1] 1 2

: - I v Ry p2
= U'Tr,RO_G 'I_‘Ib + .aT o A A exp (- T) RdRd#8

.
= Nyl5 Rg + D2(1 - eg:p(*Ré/IZ)) b,
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- 1 1,2 9 .
N, = uTj:ju[I +1, ——= exp[— —(x+{x,+x,) ") ]1dx, dx
1O ot b 78 2n02 | 202 1 270 | 1 2
5 1. 2" Ko 2 2Rx 2x .2
e guBoo T 4ol = § exp[~ +— - — cosg- ]
0 b 2T o 0 2 o 62
*+ RdRd 6
- .
1 2 0
= Nyl 3R, + D7 (1 - Q( — E RO, (4.23)
where Q(a,b) is the "Q functionf(s) for constants a'and-b, and
N ’ = 2 02 TI
0 e at Iy
D2 = N /aTI = N./N
‘ 0 S 0 s °

' NO is the avérage number of photoelectrons ejected from an area Zﬂﬁz
during the interval (0,T), 'Dz is the signal-to-noige ratio as defined
4n (2.57) and (2.58).
If A' is a square area, that'is,wé~on1y consider the area
, 2 2 , , | '
A = 4RO a fo? |x2 - xol < RDU, ]xll = ROU in the upper half plane,

the means can be calculated as

R, o X 4R.0

N ;}f' 0 Jiﬂ 00

n = ol dxz dx
. ! Tl 1 ‘ 2
. Roo ¥y ROU

3

2

: 1 1
,'{Ib + Ig g expl~ 5l

o -
+{x, - x.)
210 20 2~ %o’ {}



. X 0 2 2
2 2 s R®
= 4Ry0%aTI + of 2n[~ip exp (- 3)dR

2
2R0
™

= NO[

o Ry0 +R00 ' ;
' 1
aT;ﬁﬁ -é{ I +1
My Li o _S o’

2
1

+ D2(1 - 2 erfc(RO))z] ,

=R
i

—li (x.7 + (x2+x0) ]}
20

2R02 2 7 - 2x0
= + DL - 2 erfc(RO))[grfc(—"E—-- RO)

-exp[-

= ND{

2x

- erfe(—>+R)1} | (4.24)
The observer will compare the number of photoelectrons n ejected from
the area A' with a decision level 8ro such that Hl will be chosen if

n > gy, and Hb otherwise. . The decision 1éve1 can be determined

. according to (2,33) and .

= (&n ASO + )[in(n

Ero Pr1 T T3 “To)]
where Aso is the decision level on the likelihood ratio and can be
calculated according to (2.2) when the cost functions are given.For

the Neyman Pearson strategy, randomization must be used, and gRO is then

an integer, which can be determined from (2.74),where QO is preassigned.

The reliability and the average error probability can be calculated by
using (2.73) and (2.6). As the background light alsc passes through

the aperture, there is a certain optimum size of the cobservation area

(4.25)
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at which for a fixed value of the false-alarm probability, the
detection probability is maximum,as we have discussed in Chapter II.
The result and discussion would be the same 1f the observation

area Af were taken from the lower half of the photosensitive surface

and centered at.(O,—xG). We only have to change the weighting function
by : _ ,
@ = yex, - (D x), for k=0,1 , - (4.26)

where the mean numbers o and T

will be the same as given by (4.22), (4.23) or (4.24).

observed from the lower half plane

In order to compare with the ideal detector just discussed,

~ we shall investigate the performancerof thé siﬁple detector in the
absence of background light. Thé observation area A' will be now
taken as the whole uﬁper {or lower) half plane. qu a Gaussian image

with Yk(E} given by (4.12) the mean numbers can be written as

- 1 1,2 2
nTl . Nsﬁdxl'l;; dx2 ;—Tw—z exp[- '-2"'0—2(}{1 .-l-(xz - }CO) )]

. ) ;'{0 :
Ns[l - erfc(-a— 3,

- 1 1 2., .2
N fdx fdx expl- —5 (x, +{x,+x.) )]
sf 1 b 2 2“62 202 1 ‘ 270

Xy . :
Ns erfc( . ) | . (4.27)

¥
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When the relative costs are equal and £ =-% , the deciSioﬁ level is
- - - - -1 )
= - ; : trat . The error
R0 (nTl nTD)[zn(nTllnTO)] for the Bayes strategy. _
probability Pe is calculated according to (2.77) and plotted as a

function of the ratio (ZXOIU) by the dashed curves in Fig. 19 at
ST ' g :
NS = 0.1, 0.5, 1, 2,and 5. As the ratio (—EQ) approaches infinity,

where n,,, + NS and n.., + 0, the error probabllity Pe will be also

T1 O

limited by -%.exp(—Ns), which is half of the probability for n=0 with

the average number NS.

The error probability Pe of the simple detector in the absence

of the background light can be further reduced if the optimum

observation area is considered. That is, instead of takingrthe whole

upper half plane, the observation area will be moved up from the center

" line by a distaﬂce;h.such that the error probability according to
(2.77) is minimuﬁ. In other words, for the Gaussian image we can take
" the proper_intééral range of Zy from (4.27) aé (Xd’é) instead of (0,«)
as xa >‘0 so that the probability,ge can be_fﬁrther minimi%ed. For

N, = 5, the typical values ﬁf xs a? different values of ratio kﬁolc)

" are listed in table 2. The minimized Py is plotted as a function of
(Zxolo) in Fig. 20 where ﬁhe error probabilities of the ideai detector
and the simple detector at Xd“O are also plotted.

When the baqur;und lipght also passes through the aperture,
the observation area A' for CGaussian image discussed in (4.23) or
{4.24) can be used. With the square area Al = 402 at R0=l, the means
are calcﬁlated from (4.24), and the error probabilities of the simple

‘detector are plotted as a function of NS for N. = 0, 0.1, 0.5,and

0
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1 at xO/U = 2 in Fig. 21 by the dashed curves. In Fig. 22, the error

probabilities are also plotted as a function of'NS at xO/U = 1 and

x.fo = 2 for the square area Al = 402 by the dashed curves. When the -

of
mean number ETO is fixed at 0.5, 1 or 2, the error probability of the

simple detector is then plotted.as a function of the number difference

AN = m,. - n.. in Fig. 23 by the dashed curves.

TO



A

Figure 20 Average error probability Pe in

binary bits detection vs. distance (2 xolc)

- for ideal detection and simple detector with

fixed area or optimum area in the absence of

the background light, NS‘= 5.
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Figure 21  Average error probability Pe
in binary detection vs. average number Ns
for simple detector, counting comparator
with square observation area Al = &02 at

R, = 1 and xolo =2, Ny =0, 0.1, 0.5, 1.
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Figure 22 Average error probability Pe in
hinary detection vs. average number Ns for
simple detector and counting comparator with
square observétion area A' = 402 at R0 = 1

and N0 = 0,1; xolc =1, 2.
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Figure 23  Average error probability Pe
in binary detection vs. average number

difference AN for simple detector and

. — - . =-r—1 - =
counting comparator where AN p1 = g

with ETk as the mean number of photo-—-

electrons observed from a finite area of

-one~half of the surface under hypothesis

H, for k=0, 1; n

. = 0.5, 1, 2.

TO
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Counting comparator for detection of binary bits

Another simﬁle.receiver for detecting ghe radiant sourcé located
at either (O;xo) or (0,—x0), similar to the receiver discussed by
Peters and Arguellocz), measures the totai number ny of-photoelectrons
emitted from thé aréa A' centered at (d,xo)_in the upper half photo-
sensitive surface and compares it with the total number ng of
phoﬁoelectrons emitted f£rom the area A" centered at {0,—x0) of the
lﬁwer half plane (A'=A"). The‘obsefver will choose Hl if n, > np and
HO if no<n. Wheﬂ n, o= 0 hfpothésis Hi wiii be chosen with a

probability f. The false-alarm probability and the detection

probability according to (2.9) and (2.10) can be written as

Q - Pr[n >n [H ]+f,Pr[n =n |HO]
= 2 j 2 : P, (nim) P L () Z Po(n) P () |
n=0 m=1 n=0
Qd = Pr[n > nL|H1] +‘f‘Pr[nu = nLIHI],,
= Z Z P (n+m) P (n)+£ Z Pl(n) Po(n) ,
n=0 m=1 n=0
where P () = " e P /oy, for k=0,1 (4.28)

with means ETl and nTO given in (4.22), (4 23), or (4.24).

(4.28) can be expressed in simpler form. Since
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=] 2]

Z Po(n + m) Pl(n)

=0 m=1

(4] =]

- ™M -5 -n - '
“EZ nn, e "TO n enTl/n! (min) !
T0 T1
n=0 n=1

oo

(P F T a3
e Tl "0 Z(_T—O)zlm(ab)

' =] nTl

1-0q (a,b)
where Im(x) = E (X/Z)m+2n /n! {(n+m) !

n=0

is the modified Bessel function(ﬁ) for m=0,1,2... and

L2 02y
Q(a,b) =1 -e 2(3 te ; (2)“1 Im(ab)

is the "Q function"(S) with

Also we can write
o oy

E P, (n) Pb(n) = E (i 7 )? & (pg ¥ Bpy)
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(4.30)

(4.31)
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Therefore, for equal prior probabilities or £ =-%, the average error
probability for making the decisions is
e lo o wlaoqy
Pe = 79371 Qp
= EZ P(nm)P(n)Jrl E: Py(m) P ()
n=0 m=1
= 1-Qa,b) + 3 exp- @+ b)) TyGab) 4.32)

The error probability P from (4. 32) of the c0unt1ng comparatcr has
been evaluated in the absence of the background light for the Gaussian

.1mages.with the mean numbers under H1 and H0 as given by (4.27). The

‘error probabilitieé Pe of this receiver are piotted as a functiQn of
the ratio (220/0} at N, = 0.1, 0.5, 1, 2,and 5 in Fig. 19. The error
probability decreases as the ratio‘(230/0).increases. As 2x0/0
appreaches infinity, the error probability will be limited byi
% exp(fN$). | - -

When the background light also passes through the aperture, the

error probabilities of this receiver are also calculated with a square

observation area A' = 402 with RD = 1 and plotted as a function of Ns

in Fig. 21 by the gso0lid cuxrves at ¥ = 0,.0.1, 0.5,and 1 for xolc = 2

0
In Fig. 22, the error probabilities are plotted as a function of NS

vhen the same observation area A' = 402 is used and the average

background number N, is fixed at 0.1 for xofc =1 and 2, In Fig. 23

0

the error probabilities are plotted as a function of the number



difference AN by the solid curves at fixed values of average number

ETO’ 0.5, l,and 2. As the size of the square area A' is varied, the

error probability Pe changes. The error probabilities of the counting

Comparator are plotted as a functionrof the length R0 in Fig. 24 at

different values of N

o’ 0.1, 0,5,and 1.
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Figure 24  Error probability Pe of the counting
comparator vs. the length R0 for the rectangular
"observation area; N = 5. The curves are indexed.

by-the parameter NO defined in (2.57).
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Inage location effects on the detectors in the absence of background

light

The investigations of the detectors of binary bits that we have
just discussed are based on the primary assumption _that we know that
" the imape is located at either (O,XO)ror (0,—x0) exactly.l We would
like to investigate the performances of those detectors when the.
' distance between the image is still 2x0, but'the images are mislocated

with a shift of te. That is the images are actually located at (O,xo‘)

" . Sy wo_ _
and (0,-%p) under hypothesis Hl and HO where Xy = X + e, Xy 2 £

t
or X = X

0 £, X "= x. 4+e for e > 0.

o 0 0
When the ideal detector is used, thelekpression'of the function
(”1) ‘from (4 13) can still be used, where the welghtlng function
Yk(“l) from (4.12) will be replaced with X, = XO' for k = 1 and
xé = xo" for kﬁO.‘ We can derive the m.g.f. of the optimum statistic gp
following (4.14), and the expression of the m.g.f. th(s) from (4.15)

can still be used with Mnk now replaced by

X
0 K
My = - In — (-1)", for k=1
[+]
xx“
= - 2n -020 -1)%, for k=0, n=0,1,2... (4.33)
d 0.2 unchanged
and o, unchanged.

The false-alarm probability and detection probability with zero

" decision level can be expressed according to (4.19) as
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Q = I lgp > 0[H,]

L
[==]

_ N n n
exp(-—NB) Z -2 erfc (/o ) ,
n=1 ' _

°|

Qy = P_lg, > 0|H,]

exp(—NS) Z;; = {1 -~ erfc (/r_x'—p—- ) . (4.34)
n= .

n! g

The average error probability for equal prior probability or

g\:-% can be written as

1 1 '
Po = 79 *2( -9
= 3 'ZN: ‘/_xo"_ f"fi‘!_'.
= 3 exp(fNS-).[I + et i (erfe (/n ——) + erfe (/n r 1))
{4.35)

The error probability will be the same for either xo' = x, + €

xo" =%y = € or xo' = %5 = €, xG" = x5 + €. That is, (4.35) 1s the

a_irerage error probability of the ideai detector when the images are
mislocated with a shift. elther ¢ or -e. |

‘When the counting comparator i..t;. used, with the distance between
the images fixed at 2::,0, the mean numbers due to a shift € or -e of the
actual image can be expressed as

-,
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_ "(xo te
nTli = N [1 - erfe p ) } ,
x, + € ' .
n = — 4.36
Rroz N erfc ( ) ’ ('. )
where Ry s Rpg. are the means for a po‘si_tu..re shift € and nTl_._,
n are the means for a negative shift,-e; The false-alarm probability

TO+

AU
and . the detection probability of the counting comparator when the
"images are misolcated at (O,XO) and (O,—xo) under hypothesis’Hl and HO,
while actually located at (0,x0+€) and (O,—x0+e) of_(O,xO—a) and

(0,~x ~£), can be written as
¢

o = Prin > m |H ] +.f Prin, = n [H,]

Qs+ =
= Z Z l”(n) P (n+m) + f Z Plx(n) P()-a-(n> ,
=0 w=1 n=0 - g
Qq, = Prln > nL|H1] +.f Pr[nﬁ = nLIHll

= , Z Z P, (n) PO_(n+m) + £ Z P () PO"(H)

‘=0 m=0 n—O

n e";Tk:/h!

vhere Fkt(n) = ETki , for k=0,1,

Q,, and Qg are the false-alarm probability and the detection



probability for a positive shift ¢ while QO—’ Qda are the probabilities

for a negative shiff —-e.

Fox equal prior probability £ = -l and £ = ;, the average error

probabillty will be the same for either a shift € or -e and can be

written as

1 1,
Por = 3 Qut31- Qs
=-1-{ZZP<n>P(n+m)-1- P(n)P(‘n)
2 1% Ox 2 1¥ 0x
n=0 mw=1 n= .
+ E ; § : P, () I’O;(n+m)+ > E : Pli(n) Pox(n)]
- =0 m=1 n= .
1 1 "%(3—2“34-2)
SRR AUCRIRLCRERLE SC To(e.by)
. ._-f',l;(a+2+b_2) - (4.38)
- 4 e IQ(%+h_)]} ,
whe:e ‘f = jznTOt and Q(a,b), Io(ab) arg given in (4.29).
Pe+ is the error probability for a shift of € and Pe— is the error
probability for a shift of -e. Pe+ = Pe— as we can see from (4.38).

The error probabilities of both the ideal detector and the

counting comparator are calculated at different ‘values of shift e when

(4.35) and (4.38) are used. In Fig. 25, the error probabilities of
these two detectors are plotted as a function of the ratio [c|/x0 at
N, = 2, 5 and 8 with xO/G =1, 1In Fig. 26 the error probabilities are

plotted as a function of the ratio |e|/x0 at XO/U = 1.5, 2 and 4 with

fixed value of NS at 5.
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Fligure 25 Average error probability Pe
in binary bits detection vs. the ratio
lel/xo due to the mislocation of the
images for the ideal detector or the
counting comparator at xolc = 1; Ns =2,
5, 8.
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Figure 26  Average error probability Pe in
binary bits detection vs. the ratio |E[/x0 ‘
due to the mislocation of the images for the
ideal detector and the counting comparator

for fixed value NS = 5; XO/U = 1,5, 2, 4.
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Discussion

In the absence of uniform background‘iight, registering the
ioéations of the ejected photoelectrons for the detection of either
oﬁe of the two Gaussian images,as we have discussgd in{this chapter;
not only utilizes more of the. information, but also effectively reduces
the meaﬁ value‘of the optimum statistic uncier‘H0 and thus improves the
performance of the ideal detector. As for the simple detector, the
.géin by optimizing the observation area will be limited because
Qarying the area will affect both the mean numbers-HT0 and ETl as
defiﬁed in (4.27). Therefore, the ﬁerformaﬁce of tﬂe ideal detector
is better than that of the simple detector; as we cén see from Fig. 19
and Fig. 20. When the couuting.comparator is used, the obser#ed
~ numbers of the photoelectrons ejected from Both the upper half surface
and the lower half surfaée will be used, while for the éimPle detector
only the number of photoelectrons éjected froﬁ the upﬁer hélf éurface
-{or the lower hélf surface) will be utilized for making decision; In
' 0fher words, tﬁe coqntiég comparator utilizes more information than
the simple detector, but less iﬁformation than the ideal detector.
Thus the performaﬁce is better than that of the simple detector, but
not as good as that of the ideal detector as shown in Fig. 19;

When background light also passes through the aperture, the
average error prdbability for making decisions will be Increased. In
the_meantime, the ;bserver nmust define a finite observation area

vhen any one of the detectors will be used. For the simple detector or

the counting comparator, the finite observation area can be chosen such
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that for a fixed false-alarm probability, the detection probability of
the detector will be as large as possible. The proper size of the
square area for the counting comparator to be used at O.l_s Ny < 1 is
ARO = 2'or A = 1602 as we can-seerfrom-Fig. 24, Tor a finité square
area 402,‘the average error probabilities for both simple detector and
counting comparator will increase as the background ;ight increasgs or
the ratio xofc-decreases_as'shown in Fig. 21,‘Fig. 22, and Fig. 23.
When Gaussian images are postulated, §he perforﬁance of the
dgtectors for detecting binary bits Willralsu depend on the prior

knowledge about the locations of the images. The average probability

of making errors in each decision will be increased if the images for

bit "1" and bit "O" are mislocated. The severity of mislocation will

also depend on the distance %%0 separating the images. For e#ample,
when thé ratio XO/U = 4, the-eﬂfect on either the ideal detector or
the couﬁting comparator due fo mislocation wiil be insignificént until
‘the ratio of shift IEI/XO is:greéter than 1;2; as we can see from Fig.
26. Furthermore, the effect on the counting comparator of mislocation
of the images will be little smaller than tﬁat on the ideal deﬁecﬁor
as shown in Fig. 25 or Fig. 26 ;nd at xolﬁ = l.Si’for ekampie, the’
average error probability of the counting comparator becomes smaller

than that of the ideal detector when |el/x0 is greater than 1.6, as

shown in Figure 26,
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Al

Table 2 ~ Optimum Distance for Simple Detector

xo/o| 0.1 0.5 075 - 1.0 125 15 2.0 3.0
x/o ! 0.16 0.52 - 1.09 1.1 1.1 1.08  1.04  0.84




Footnotes |

Chapter 1V

‘Helstrom [27],

Petérs and Arguéllo {28];
Papoulis [29]; p. 155, eq. (5.77) .

Papoulis [29], p. 146 .,

" Helstrom [10], Appendix F.

1. S. Gradshteyn and I. M. Ryzhik [30], P 961, eq.(8.445)
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APPENDIX A

Asymptotic Expansion Approximation of the

Tail Distribution by the Method of Steepest Descent

In detection theory, the evaluation of the cumulative distri-
bution for a statistic is of;en imporfant, and it‘iskreqﬁired to reach
a certain accuracy. For example, when the Neymaﬁ—Pearson criﬁerioﬁ is
' usé&, tﬁe decision level pf-the likelihood~ra£io_detector must be
calculated from the preassigned false—alarm,probability bo. As Qb is
small, there méy be a serious érror in the decision_ievel if the
cuﬁulative distyibution cannot be accurately calculated, The
statistic we will diécusshih thié Appendix is of the type of the sum

of N independent random variables and can be written in general as

N .
AR 2 : Xi i=1,2, ... .N8. (A1)
= |

When {X,} are identical random Va;iablés and N is large, the cen-

(1),(2)

tral limit theorem can be applied. If {Xi} are independent
but not identical, the distribution of Z may be dominated by one of
the random wvariables and can be approximated by the Gaussian distri-

3 __

bution when conditions such as Lyapunov's condition are satisfied.
On the other hand,thé distribution of the statistic Z can be derived
from the inverse Fourier transform of its characteristic function when
the inverse integral can be approxiﬁated by the asymptotic expansion

series through the steepest-descent method. For detailed treatment of

the steepest-descent approximation we.refer to the works of many
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'authors(4-7). For applications of the steepest-descent method in
statistics we refer to the works of the authors(B_lo). Here we will

discuss the asymptotic exﬁansion approximation of the integ;al with
only one saddle point,

The characteristic function(ll) of the random wvariable Z is.

defined by

n(w) = E[ei*] =jf eI ar(z) | (A2)
. - ' . - '
where F(ZO) = Pr[zls‘zoj is the distribution of the random variable Z.

The probability that Z exceeds a value ZO can be written as

Q(ZO) = Pr[Z > ZO] =1- ;fr U(JO - 2) dF(Z),
' ' = ‘ (A3)
where U(x) is the step functiom.
If we take the Fourier transform ole(Zo) by discarding the

portion of the integral which oscillates with infinite rapidity, we

have

) ks _inD ‘
3?[Q(ZO)} = J{” ¢ Q(Zo) dz
e 2m6) = L h(ew) (A%)
. iw ?
where &6(w) is the Dirac delta fuhction.

The probability Q(ZO) can then be expressed in terms of h(-w)

by taking the inverse Fourier transform of (A4). That is



_lu s
Q(Zo) - 77 710G)]

) i '
I e 0 hEw) g4, (A5)
2“ iw .

whereg@'gfdare the Fourier transform and inverse Fourier transform
'operators r33pective1y. |

When the integral on the right-hand side of (AS5) cannot be
evaluated exactly, the method of steepest-descent can be used to
aﬁproximate the tail probability Q(ZO). The integral frqm (A5) can be

extended to a contour iIntegral as

Q(Z ) = l Ziiyir i-exp[zo'¢(s)] ds. (AG)

¢

~

The contour ¢y of the intégrapion is a straight line running from
| u,— 1o to eyt ie for an> O in the complex plane s with real values of
ZO" Here

L v—l . ’ ) . .

4(s) = s + Zy " fn h{(s) _ (A7)

is the complex phase of the integral, and h{s) = E[ehsz] is the m.g.f.
of the random variable Z as defined by (A2) with s = i1iw. The inte-
gral in (A6) can be approximated by taking the integration path on the
complex plane so that the imaginary part of ¢(s) is constant (path of
the steepest descent) along the path, which also passes through the

ZD¢(S)

real saddle point Sg upon which the meodulus of e decreases most

rapldly. The saddle point sy can be determined from the equation
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d
-&g ¢(S) 0 or

Z,= - b (s /(s - R
Since the origin is also a singulér point of the integral, the
contributions from taking the integral path through the saddlq point
8, and around the singularity s = 0 cannot be treated separatelf when
g is small or near to the origin, Rice(g).presented a more general
discussion for_caseslinvolﬁing more than one saddle point. In our case
the compliex phase #(s) has only one saddle’point as discussed in
" Appendix B; 1f ¢(s) is analytic in the neighborhood of the origin,
$(s) beﬁaveg-much like a second—ﬁrder polynomial in s, This suggests —
‘;chaﬁging the vériable of the intégral from s to u in such a wa§ that
qé(u} = -}12 - 2ug u = ¢(5)- | | | A
is tﬁe new complex phase(lz) in the d plane with Y as the neﬁ saddle
polint cﬁ?respondimg to s, in the g—plane, gnd @(uo) =-¢(50). The new
sgddle point uy can be determined frém (AQ) as '

4, = sigalsy) (s, (A10)

where the function sign(x) = 1 for x » 0, sign(x) = - 1 for x < o,
so that ug and S0 have the same sign. ¢(so) is the complex phase at
s = s, and is assumed to be non-positive, Thus, integral on the

0
right-hand side of (A6) can be expanded into a uniform asymptotic
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series of powers ZO as

L j- -;- exp(Z, $(s)1ds

c

-1
I | o = ;-f(u) éxp[Z'(u2 - 2w, u)ldu
- u 0 0
. 1 ‘
B! - . . .
' -n
= ko (z4) + &y (Zp) Z AnZq (a11)
n =1 -
where
f(u) = uds/sdu | - ~
k. (Z ) = o1 explzgu? - 2 u, 5]du
0%’ = ou” =2 ugu Hldu,
¥ ) . ’
: ‘1 |
K (z. ) = exp[Z (u2 -2 u u) 1du
*1%0 ¥l 0 '
with ci running from a' - i to a' + i® for o' > 0 in the complex u
plane. A, is the coefficient of the nth term in the. expansion and can

be determined from the Ursell metﬁod as discussed by Rice(13).

Thus, the probability from (A6) can be abproximated by the

uniform asymptotic expansion serles as -
Q) =1 - E@Zg) - 1(Z4) , | (A12)

where
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Ny
E(ZO) = {1 - erfe [(-2 ZO ¢(ZO}) ], for 85 <0 .
' %
erfc [(-2 ZO ¢(ZO))-? , for %0 >0
.and
B 3 . to. o : . -2 k
_ exp[Z, ¢(s)] Z ( ) -1
I(Z.) = Sy
U qen oz ¢(2)(s 1 o \z, 6P As)
2k
z: (- -2k+n E:
Ly )L n 2,+k
(2)
()(1)( (S)) Z, ¢(s,))
~ sign(s
0 2k 2¢(5
. . . ]
x.
. where
. 1 2 -
erfc y = —— exp(-87/2)dB |
y
and
A = {0, forn< % or & = 0, n>1
L,n . .
1, for n=212=0
g+l '
=2 g m ¢(m+n)(so)
A —_ A
Lol g a1 T 1P,y et
1 1{1 - 1 R S § T A
(2)m —2'-(-2-4"1) ("2"'4' 2) (2+m 1), (2)0— 1.
AL o are the coefficients which can be calculated by the recurrence
>

relation through the nth derivative ¢n(so) of the complex phase,where
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o7 (s) = zZ -1 (Q_)n ¢n h(s), forn> 2, (A13)

0 ds
and 1s evaluated at the saddle point s =lso. This scheme can be easily
programmed for a digital computer. The tall distribution Q(Zo) is
obtained by adding up the terms in the asymptotic expansion given by
{(A12) until they become insignificantly small or they stop decreasing
and begin ;b Increase. .

When Z is a discrete random variable, the tail distribution

can be written as

o

> p(2) - (A14)

Qz,) =
' 0 Z> Z0

-where p(Z) is the probability of the random variable Z and the m.g.f.
can be written as

ow

hy(e) = B4 = D @) & @
Z=0
The calculation of the tail distribution is simpler and more accurate
if one first approximatés the probability p(Z) and then adds up the
probabilities for 21l Z > ZO as given by (A14). TFor example, when Z
takes only integral values, we can express the probability by the

(14)

contour integral and approximate 1t by the uniform asymptotic

series as
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ez¢d(s’)

p(Z) = ....l...- ds

21l
C

d

 explz ¢,(50) ] 2‘3
{2z ¢d(2)(s y 1% w0

(o) X v 0. o

Z¢d(2)(50_) 2= 0

.where c, 1is the contour running from a" - im to a" + im, o > 0 and’

d

py() = 27 tnngte) + 5 (A17)
The saddle point sg, the coefficients, A£A2m and the derivative of the
.-’ ¥ R
- complex phase ¢d(s) can be determined as. before.

To illustrate the applications of the asymptotic-expansion

approximation, three well-known distributions, Gaussian, gamma , and

" Poisson will be discussed as follows:

Gaussian distribution

The p.d.f. of Gaussian distribution is given by

@) = —— expl- L5 @ - w7 (A18)
2ng 20

P

with m, ¢ as the mean and variance. The m.g.f. h(s) is given by

2 2 -
AL N . (A19)

h(s) = exp[- s m 4



The saddle point can be determined frbm-gg $(s) = 0 or by (AB). We

have
& = (m - 2.)/c? : , (A20)
0 0 . :

The complex phase . and its nth derivatives evaluated at 50 are

¢(50)_= Zb—l n h(so) + SO,= ZO_%(m - 20)2/202’

2

114 - '
$"(sy) = o /20 ,
6'(s,) = ¢"(s) =0 form>2 . (A21)
0 0 ] .
Thus, the coefficient Ag ne 0 for all £, n # 0 and I(go) Vanisﬁes;_
‘ _ o = :

also, the tail distribution becomes

Q(ZO).= 1 -.E(ZO) = arfe

lm - ZO :
— | s, > 0 (A22)

c

= 1l = exfe [

as 1t should be for Gaussian distribution.

Gamma distribution

The p.d.f. of a gamma distribution is given by
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A -1 =AZ
p(Z) = O) (AZ)B ! e ", B>»0, A>0,2>0

i

= 0 otherwise |, ‘ (A23)

(15)

- The m.g.£. is given by

5

h(s) - (1 ¥ x)-s : | (a24)

o I8 determinad from (A8) or

The saddle point &

5, = Z B~ Xy, Z,.>0 . (A25)

The,cbmpléx phase and its nth derivative evaluated at s, are

4(sp) = 2,7 [-B I (B/Zg)) + 8 = A 2]

"(sy) = DT eDIEYON for nz2 . (A26)

i

The special case at A = 1, B = 1 is the exponential distribution where

p(Z) =e 2, Z50

=0 otherwise . | (A27)
The complex phase and 1ts derivatives of the expomnential distribution

evaluated at the saddle point from (A25) and (A26) are
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' -1
4;(50) = Z, (1L + 2n zo) - 1’
‘ Gy = (-1)“'20“‘1 (mn - 1)! for n» 2. (A28)
The numerical calculation of the tail distribution by using the
' asymptotic expansion series given in (A12) for the exponential distri-
‘bution has been céfried out and compared with the exact value. The

percentage of relative error is listed in Table 3.

Poisson distribution

) p(Z) = e--l )\z/Z! y Z = 0’ '1, * o.-l
= 0 _ othérwise . (A29)
The m.g.f. is
hy(s) = explA(e™® ~ D] . (A30)

The saddle point s, is solved from (A8) or

0

5y = %0 iz . | ' (A31)

are

The complex phase and 1ts nth derivatives evaluated at Sg
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1

| 1+gn(mz_)
]

¢(so) =.1 -3z

$"(sy) = (-1, for n22 . (A32)
The tail distribution has been evaluated by first approximating the
probability p(Z) with the asymptotic expansion series given in (A16)
and then adding up the probabilities for all Z > ZO‘ The relative

error by comparing with the exact value is listed in Table 4.



Table 3 ~ Percentage Error of Exponentilal Distribution

_ZO 0.05 0.3 0.6 0.7 2.5 10 20 40 60
Error
% 0,0072 0.0194 0.3243 0.3310 ~0.0174 -D.0866 -0.0866 0.2039 0.6614
Table 4 - Percentage Error of Poisson Distribution
ZO 6 ‘ 10 14 18 22 26 30 35
Error - :
7 -0,0061 -0.0062 ~0,0087 -0,0049 ~-0.0043 ~0,0058 =0,0045 -0.0028
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Appéndix B

Iteration Procedure for Finding the

Saddle Point in the Asymptotic Expansion Series

-

In this Appqndix)we will show that there‘is only one real
saddle point of the contour 1ntegral given by (A6) in Appendlx A for
approximating the tail dlvtrlbutlon of the optimum StatlSth £ or Lhe
»threshold statistic gé'from (2.18) or (2.26), The formulas used for .
gearching for the saddle point when the Neyman —Pearson criterion’is
applied will be given.

The éumulant«generating function for the ideél detector is

given by (2.2O)Ifrom Chapter II as

ck(s) = En‘hk(s) =g T Ig‘erk(E)[(H(z))—snl]dzg’
o A
k=0, 1. (B1)

The m.g.f. M(s, go) of the positive statistic g is defined By

-5 (g-g,)
M(s,go) = Ele ]

' ® -S(gwgo)
= e dFk(g)

0
exp[gos + ck(S)]

explgy ¢, ()], k=20,1 (B2)

and can be expressed as a function of ¢k(s) as given in (2.48).
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As we investigate the complex phase ¢k(s) for k = 0, 1 and its

first and second derivatives from (2.53)

- 80-1 o T I Jjn[H(g)]k-s'En H{x) d2§ + 1,

A—

it

t A
(@)

0(s) = g a T T, j‘r 1w’ u ax

A

k=0,1,

we have ¢;(—m) = - o, ¢;(m) = 1 and ¢;(s) >0 for.all real valﬁes of
s. Then ¢;(s)'is a non-decreasing function of real s. Furthermore,
the ;umulant—geﬁerating function Ck(s) existé in =» < 5 < o,
Therefére, accordiné to the theorems 6;1 and 6.2 of Daniels(l),
there.is only one reallroot, which is éimple, of ¢;(s) = 0 for

gy > 0 and no more real roots otherwise. This is true also for the

thresheld statistic gé.

When the Neyman —Pearson strategy is used, the false~alarm

probability Q0 is preassignédf To search for the saddle point Sg under

HO’ we must arbitrarily pick the initial values SON and Sop in such a
way that the false-alarm probability calculated at Son °F Sop by using

the asymptotic series from (A12) will be QON or QOP and

Qn < Q% < p -
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A trial value sg of the saddle point then will be determined from the

equation

B, = SbN H e (QO - QON) . (B3)

The trial valué‘of the decision level gOT and probability QOT can be
calculated by substituting SOT into (2.62) and (2.55)1for the ideal
fdetector or (2.69)'and {2.55) for the threshold detector. If

QQT > QO’ the values of 50p and QOP‘will be replaced by the values

SOT and QOT. If QOTl< QO’ the values of SN and QON will be rgplaced
instead. Thus,ia new trigl value soT will be obtained according to
(33), and the procedure will be repeated until the calculated values
QOT approaches the preassigned value QO within a tolerable error.

The decision level 8g is gbtained from the final trial value gOT. For
the ideal defector, the saddie péint Sy under Hl can be determined

1 under Hl

must be searched for again by iteration, That is, after the decision

from (2.51). Fér the threshold detector, the saddle point s

level is obtained,we must arbitrarily pick the initial values s

60 1N

and S1p in such a way that the decision levels calculated from (2.69)

are g and Bp and By < Bgo< 8p: The trial value of slT will be

determined from

By —.8
T 1P 1N
1 "~ St 8p = By (8g0~ 8y (B4)

&

By substituting the calculated value-s T into (2.69), the trial value

1
T {c determined. If g, > ' T
8go 15 determined. Bgo ~ Bg0.58p and 51p yill be replaced by oo



and slT, otherwise By and s N will be replaced instead. A new trial

1
value slT will be determined again from (B4). Repeat the procedure

until the calculated value geg approaches the decision level ggowithin
‘a tolerable error. The final trial value slT will be used to calculate

the detectlon probability Qd for the threshold detector by using

(2.55).
‘ For célculatiﬁg the inEegral, Simpson's rule has been uéed
vfor the numerical‘integrations. The number of points used in the
integration procedure depends on the relative error the system
réquires. In our caiculations we use aboﬁt 50 points at most times.
Morg points can}be used when‘higher accuracy is reduired. Furfher-
-mére, when the . saddlé point s, (k = 0, or 1) is near zero, double
prgcision may be required to cal;uiate the saddle point 8y S0 that the
term Ik(go) in (2.55) qanrbe evaluatéd accurately;

‘The‘typical behavior of the Sadﬂlg pointrsO of the ideal
ae%ector-for a Gaussian imape is given In Fig. 27 where the values of
0 aré plotted as a funqtion of signal-to-noise ratio Dz at'NO = 0.5
and 5, withrpreassigned false-~alarm probabilifies QO = 10"3 and 10F5.

B
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Figure 27 Saddle point $g VS- the signal-

to-noise ratio Dz for a Gaussian image;
Ny = 0.5, 5, @y = 1072, 107,
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1.

Daniels[8], §6.

Footnotes
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