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A STUDY OF FATIGUE AND FRACTURE IN 7075-T6 ALUMINUM

ALLOY IN VACUUM AND AIR ENVIRONMENTS*

By C. Michael Hudson

Langley Research Center

SUMMARY

- Axial-load fatigue-life, fatigue-crack-propagation, and fracture-toughness

experiments were conducted on sheet specimens made of 7075-T6 aluminum alloy.

These experiments were conducted at pressures ranging from atmospheric to

7 /LtPa (5 x 10~8 torr) to determine the effect of air pressure on fatigue behavior.

Analysis of the results from the fatigue-life experiments indicated that for a

given stress level, lower air pressures produced longer fatigue lives. At a pressure

of 7 p.Pa. (5 x 10~8 torr) fatigue lives were 15 or more times as long as at atmospheric

pressure.

Analysis of the results from the fatigue-crack-propagation experiments indicated

that for small stress-intensity-factor ranges the fatigue-crack-propagation rates were

up to twice as high at atmospheric pressure as in vacuum. An empirical equation

developed by Forman, Kearney, and Engle (Trans. ASME, Ser. D.: J. Basic Eng.,

Sept. 1967) fit these rate data quite well.

The fracture toughness of 7075-T6 was unaffected by the vacuum environment.

Fractographic examination showed that specimens tested in both vacuum and

air developed fatigue striations. Considerably more striations developed on specimens

tested at atmospheric pressure, however.

*Some of the information presented herein was included in a thesis entitled
"An Experimental Investigation of the Effects of Vacuum Environment on the Fatigue
Life, Fatigue-Crack-Growth Behavior, and Fracture Toughness of 7075-T6 Aluminum
Alloy," offered in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Materials Engineering, North Carolina State University, Raleigh, North
Carolina, 1972.



INTRODUCTION

Engine and thruster firings, thermal cycles, and other kinetic loading sources
can produce fatigue loadings on spacecraft structures in low-pressure environments.

Although some fatigue tests have been made on pure metals in a vacuum (ref. 1), rela-
tively little is known about the vacuum-fatigue behavior of most structural alloys.
Consequently, in the present study a series of fatigue-life, fatigue-crack-propagation,
and fracture-toughness specimens of 7075-T6 aluminum alloy were tested at various

air pressures to demonstrate the effects of environment on the three phases of the
fatigue phenomenon. These data will also provide baseline information for future investi-
gations into the effects of different gas environments on the fatigue behavior of 7075-T6.

Three ultrahigh-vacuum chambers containing fatigue-loading frames were used
for the experiments. The fatigue-life specimens were tested at various pressures from
atmospheric to 7 /nPa (5 x 10 -torr). The fatigue-crack-propagation and fracture-
toughness specimens were tested at two pressures: atmospheric and 7 /iPa (5 x 10~8 torr).

The fatigue-crack-propagation and fracture-toughness data were correlated with
stress-intensity parameters. Such correlations are useful for predicting crack propa-
gation in complex structures. For example, Poe (ref. 2) showed that fatigue-crack
growth in stiffened panels can be predicted from stress-intensity parameters plus the
data from tests of simple sheet specimens. An empirical equation developed by Forman,
Kearney, and Engle (ref. 3) was fitted by the least-squares technique to the fatigue-crack
propagation data. The fracture surfaces of selected specimens were examined with trans-
mission and scanning electron microscopes to study fracture modes in vacuum and in air.

' ' '-• SYMBOLS

The physical quantities.in this paper are given both in the International System of
Units (SI) and in U.S. Customary Units. The measurements and calculations were made
in U. S. Customary Units. Factors relating the two systems are given in reference 4 and
those used in the present investigation are presented in appendix A.

a ... . one-half of total length of a central crack, mm (in.)

a one-half of total crack length at the' onset of unstable crack growth, mm (in.)



C constant in fatigue-crack-propagation equation

da/dN rate of fatigue-crack propagation, nm/cycle (in./cycle)

E Young's modulus of elasticity, GN/m^ (psi)

e elongation in gage length of 51 mm (2 in.), percent

K critical stress-intensity factor at failure, MN/m3/2 (psi-inl/2)
L>

K maximum stress-intensity factor, MN/m3/2 (psi-inV2)

K . minimum stress-intensity factor, MN/mV2 (psi-inl/2)

K,-, theoretical elastic stress-concentration factor

AK stress-intensity-factor range, MN/m3/2 (psi-inl/2)

LNg liquid nitrogen

N number of cycles

n exponent in fatigue-crack-propagation equation

P amplitude of load applied in a cycle, N (Ibf)

PC load on specimen immediately prior to rapid fracture, N (Ibf)

P mean load applied in a cycle, N (Ibf)

P maximum load applied in a cycle, P + P , N (Ibf)

Pmin minimum load applied in a cycle, P - P , N (Ibf)

R ratio of minimum stress to maximum stress



S gross maximum stress, Pmax/wt> MN/m2 (psi)
XTld-A

S' • net maximum stress, Pmax/(w ~ x)*> MN/m2 (psi)

S . gross minimum stress, Pmin/wt, MN/m2 (psi)

t specimen thickness, mm (in.)

w specimen width, mm (in.)

x width of a central notch, mm (in.)

a secant correction factor for finite width of panel

CTU ultimate tensile strength, MN/m2 (psi)

CT yield strength (0.2-percent offset), MN/m2 (psi)

EXPERIMENTAL PROCEDURES

Specimens

General. - All fatigue-life, fatigue-crack-propagation, and fracture-toughness

specimens were made from a special stock of 7075-T6 aluminum alloy, 2.3 mm (0.090 in.)

thick, retained at Langley Research Center for fatigue testing. (Tensile properties

are listed in table I.) The longitudinal axis of all specimens was parallel to the rolling

direction of the sheet material.

Fatigue-life specimens. - Figure 1 shows the configurations of the fatigue-life

specimens. Scratches and tool marks on the unnotched specimens were removed by fine

hand polishing. This polishing was done in the longitudinal direction of the specimen to

preclude transverse polishing marks. After polishing, the average surface roughness of

the unnotched specimens was about 150 nm rms (6 fj.in. rms).

Surface scratches on the notched specimens were removed by moderate hand

polishing. The notch was cut into the center of the specimens by first drilling two holes

2.95 mm (0.116 in.) in diameter on either side of the center line and then drilling a hole



6.35 mm (0.250 in.) in diameter in the center of the specimen. The resulting notch

configuration approximates an ellipse having a stress-concentration factor of 4.1 (ref. 5).
A rotating rubber rod impregnated with an abrasive was used to deburr the perimeter of
the notch. This deburring procedure produced a slight bevel around the circumference
of the notch.

Fatigue-crack-propagation and fracture-toughness specimens. - Figure 2 shows
the configuration of the fatigue-crack-propagation and fracture-toughness specimens.
A notch 2.54 mm (0.10 in.) long by 0.25 mm (0.01 in.) wide was cut into the center of

each specimen by an electrical-discharge machining process. The heat-affected zone

resulting from this process is less than 0.25 mm (0.01 in.) wide. Consequently, after
crack initiation, all of the material through which the fatigue crack propagated was
unaltered by the cutting process.

One side of each specimen bore a reference grid (ref. 6) for crack-propagation
tracking. No detrimental effects of the grid were observed in metallographic examinations
and tensile tests of specimens bearing the grid.

Testing Equipment

Vacuum-fatigue testing systems. - Experiments were conducted in three vacuum-

fatigue testing systems. (See appendix B.) Basically, each system consisted of an ultra-
high-vacuum chamber mounted on an axial-load fatigue testing machine. The vacuum
chamber enclosed the machine's specimen-mounting apparatus, which included the speci-
men grips and the upper portions of the loading ram and load-reaction frame. Each

fatigue machine had a load capacity of ±89 kN (±20000 Ibf). Two of the fatigue machines
were driven by closed-loop hydraulic-loading units at frequencies between 13 and 23 Hz
(780 and.1380 cpm). The third was mechanically driven at a subresonant frequency of
30 Hz (1800 cpm). Loads were continuously monitored on these machines by measuring
the output of a dynamometer in series with the specimens. The maximum error in loading
was less than ±1 percent of the required maximum load.

The vacuum-chamber section of each system was a vertical stainless-steel cylinder
that had a horizontal parting plane in the middle for access. A mechanical pump main-
tained a medium vacuum, and a diffusion pump maintained a high vacuum. Water-cooled
and liquid-nitrogen-cooled baffles trapped oil vapors streaming back from the diffusion
pump. The vacuum chambers contained cryopanels which were cooled with liquid nitrogen



to accelerate pumping for tests at 7 jitPa (5 x 10~8 torr). However, these cryopanels
tended to cool the specimens; consequently, quartz-tube lamps were used to maintain the
specimens at room temperature. For tests at higher pressures, the cryopanels, and

consequently the lamps, were not required.

Ancillary tests showed that the specimen temperature could be satisfactorily regu-

lated by controlling the temperature of a tab mounted next to the specimen. A temperature-
control unit, supplied with the signal from a thermocouple on the tab, maintained room

temperature.

A pressure-control unit automatically maintained the desired air pressure inside
the chamber by admitting quantities of dry air. Thermocouple gages measured chamber
pressures between 133 Pa and 133 mPa (1 torr and 1 x 10~3 torr); ionization gages
measured pressures between 133 mPa and 7 jitPa (1 x lO'3 and 5 x 10~8 torr).

Detailed descriptions of similar hydraulic and subresonant loading systems are
given in references 7 and 8, respectively. Detailed descriptions of the vacuum and
temperature-control systems are given in appendix B of this report.

Electron microscopes. - Transmission and scanning electron microscopes were
used to study the fatigue-fracture surfaces of selected specimens. Two-stage carbon-
platinum replicas of the fracture surfaces were studied in the transmission electron
microscope. The fracture surfaces were studied directly in the scanning electron
microscope.

Test Procedure

General. - Axial-load fatigue-life, fatigue-crack-propagation, and fracture-
toughness experiments were conducted. Experiments at atmospheric pressure were
conducted in laboratory air. Experiments at lower pressures were conducted in dry air

which was admitted to the chamber by the automatic pressure controller.

In all fatigue-life and fatigue-crack-propagation experiments, a stress ratio R of
0. 02 was used, and the mean and alternating loads were constant throughout each test.

Fatigue-life experiments. - Most of the unnotched and all of the notched fatigue-
life specimens were tested at either atmospheric pressure or 7 fiPa (5 x 10~8 torr).

Additional unnotched specimens were tested at pressures of 67 Pa, 7 Pa, and 67 mPa



(5 x 10"!, 5 x 10~2, and 5 x 10~4 torr) to establish the variation of fatigue life with

decreasing pressure.

Fatigue-crack-propagation experiments. - The center-notched fatigue-crack-
propagation specimens were tested at atmospheric pressure and 7 /u,Pa (5 x 10~8 torr)

Fatigue-crack propagation was visually observed through ports in the chamber wall.
The number of cycles required to propagate the crack to each grid line was recorded so
that crack-propagation rates could be determined. All tests were terminated when the
fatigue cracks reached predetermined crack lengths; these specimens were then tested
for fracture toughness.

Fracture-toughness experiments. - The unf ailed crack-propagation specimens
were immediately loaded to failure in situ at the same air pressures that were used in
the crack-propagation experiments. During the fracture tests, the load-cell output was
recorded on an oscillograph in order to determine the load at failure. The photographic
grid provided a visual reference of the crack tip location at the onset of the unstable

crack growth which occurred at P . The loading rate in these fracture rtoughness
\s

experiments was approximately 1500 N/s (20000 Ibf/min).

RESULTS

The special stock of 7075-T6 aluminum alloy used in this investigation is more
than 20 years old. Consequently, a preliminary study was conducted to determine
whether the fatigue properties of the 7075-T6 had changed in 20 years. In this prelimi-
nary study, the data scatter band from fatigue-life tests conducted about 20 years ago on

specimens made from this stock (ref. 8) was compared with data from similar tests
conducted as part of this investigation (fig. 3). The close agreement between the data

from this investigation and the data scatter band from reference 8 indicates that the
fatigue resistance of the 7075-T6 has changed very little over the 20-year period.

Fatigue-Life Experiments

Tables n and HI present the results of the fatigue-life experiments on the unnotched
and notched specimens, respectively. These tables give the maximum stress and fatigue
life for each specimen at the various air pressures of the tests.



Figure 4 shows the variation of fatigue life with gross maximum stress for the
unnotched specimens at various air pressures. A curve is faired through each set of
data. Symbols with arrows represent tests in which the specimens did not fail in 5 000 000
or more cycles. Numbers under some symbols indicate the number of specimens having

essentially the same fatigue life.

Figure 5, which shows the curves from figure 4 on a single plot, indicates that
for a given stress level, lower air pressures produced longer fatigue lives. For S

ITlclX

between 410 and 290 MN/m2 (60 and 42 x 1Q3 psi), fatigue lives were 15 to 100 times
longer at an air pressure of 7 juPa (5 x 10~8 torr) than at atmospheric pressure, 101 kPa
(760 torr). The fatigue limit (taken at 5 x 106 cycles) was about 70 MN/m2 (10 x 103 psi)
higher at an air pressure of 7 juPa (5 x 10~8 torr) than at atmospheric pressure.

It should be noted that the variation of fatigue life with gas pressure has not been
established to date for all aluminum alloys. In some instances, a continuous increase in

fatigue life with decreasing gas pressure was found (as in the investigation reported here-
in), whereas in other instances, a stepwise increase occurred at some critical pressure

level (ref. 1).

Figure 6 shows the variation of fatigue life with net maximum stress for the
notched (KT = 4.1) specimens. For S^^ between 207 and 1-17 MN/m2 (30 and

17 x 103 psi), fatigue lives were 5 to 15 times longer at an air pressure of 7 /^Pa
(5 x 10~8 torr) than at atmospheric pressure. In contrast to the results for the

unnotched specimens, the fatigue limit was only slightly higher at 7 juPa (5 x 10~8 torr)

than at atmospheric pressure.
N

Several investigators (refs. 9 and 10) have suggested that specimens having
Kp ~ 4 notches exhibit fatigue behavior like that of contemporary aerospace structures.

If so, the results for the Kp = 4.1 specimens, as well as those for the unnotched speci-

mens discussed earlier, indicate that the space environment may significantly increase
the fatigue resistance of space-vehicle structures provided, of course, that other space
phenomena such as micrometeorite impingement and heavy radiation fluxes do not have
overriding deleterious effects.

A literature review included in reference 11 indicates that the most probable
cause of the increased fatigue life at reduced air pressures observed in this investigation
is the exclusion of water vapor from the environment surrounding the test specimens.



Fatigue-Crack-Propagation Experiments

Table IV presents the results of the fatigue-crack-propagation experiments.

These data were used to plot crack half-length against cycles, curves were faired through

the data points, and then fatigue-crack-propagation rates da/dN were obtained by con-

structing tangents to the curves. These rates are plotted against the stress-intensity-

factor range AK in figure 7. (Appendix C describes the use of A K in correlating fatigue -

crack-propagation data.) At both atmospheric pressure and 7 jiPa (5 x 10~8 torr),

fatigue-crack-propagation rates were single-valued functions of AK. For the lower

values of AK, the fatigue-crack-propagation rates under vacuum were approximately

one-half those at atmospheric pressure. However, for the higher values of AK, the

crack-propagation rates were about the same in vacuum and at atmospheric pressure.

An empirical fatigue-crack-propagation equation developed by Forman, Kearney,

and Engle (ref. 3) fits the data of figure 7 quite well. This equation has the form:

C(AK)nda
dN (1 - R)K - AK (1)

The values of K were determined in the fracture-toughness portion of this investigation.
Lf

The values of C and n were determined by using the least-squares technique and are listed

in the following table:

Pressure C n
Units for -

da/dN AK Kc

SI system

Atmospheric (101 kPa)

7 juPa

23.57

2.81

2.44

3.02
Him/cycle MN/m3/2 MN/m3/2

U.S. system

Atmospheric (760 torr)

5 x 10"8 torr

5.19 x 10'11

1.19 x 10'13

2.44

3.02
)in./cycle psi-in*/2 psi-inV2



Fracture Toughness Experiments

Table V presents the results of the fracture-toughness experiments. This table

gives a (the half-length of the crack at the onset of unstable crack growth), P (the loadc . c
on the specimen immediately preceding rapid fracture), and K (the critical stress-

\s

intensity factor at failure). Figure 8 shows the variation of Kc with ac for tests at both
atmospheric pressure and 7 jitPa (5 x 10"8 torr). Generally, Kc was constant for all

values of a . Moreover, the average value of K for tests conducted at both pressures
C C

was the same, indicating that the environment had no effect on fracture toughness.

Fractographic Examination

Fractographs of unnotched specimens were made with both transmission and
scanning electron microscopes. Figure 9 shows fractographs of specimens tested at
atmospheric pressure. Fatigue striations are clearly visible in these photographs. At
the lower stress levels, numerous large patches of these striations appeared on the
fracture surface. At higher stress levels, smaller, moderately spaced patches of stria-
tions appeared. At all stress levels, these patches were readily discernible.

Figure 10 shows fractographs of specimens tested at 7 /LtPa (5 x 10~8 torr). A
thorough search of the specimen's fracture surfaces with the scanning electron micro-
scope revealed small, very widely scattered patches of fatigue striations. However, the
transmission electron microscope revealed no such striations. The striations which
formed in vacuum either did not replicate well or were frequently obscured by the copper
grid that holds the replicas in the transmission electron microscope.

DISCUSSION

The fatigue phenomenon is generally considered to consist of three phases: crack

initiation, crack propagation, and fracture. In this investigation the effects of vacuum
environment on each of these phases were studied. The effects on the crack-propagation
and fracture phases were studied directly; the effects on the crack-initiation phase were
deduced from the results of the fatigue-life experiments, which included all three phases.
These studies showed that for 7075-T6 aluminum alloy (a) the fatigue lives of unnotched
specimens could be 15 or more times longer in vacuum than at atmospheric pressure;
(b) fatigue-crack-propagation rates were lower by, at most, a factor of 2 in vacuum than

10



at atmospheric pressure; and (c) the fracture toughness in vacuum and at atmospheric
pressure was the same. Consideration of these findings indicates that crack initiation
was the phase most significantly affected by vacuum. In tests on pure aluminum and on

aluminum alloys, Broom and Nicholson (ref. 12) and Ham and Reichenbach (ref. 13) also
found that a vacuum environment significantly retarded the initiation of fatigue cracks.
On the other hand, Bradshaw and Wheeler (ref. 14) and Wadsworth (ref. 15) found that
fatigue cracks initiated in the same number of cycles in vacuum and at atmospheric
pressure. The reason for this difference in findings is not apparent.

SUMMARY OF RESULTS

A series of fatigue-life, fatigue-crack-propagation, and fracture-toughness speci-
mens were tested at various air pressures to study the effect of vacuum environment on
fatigue behavior. These specimens were made of 7075-T6 aluminum alloy 2.3 mm
(0.090 in.) thick. The results can be summarized as follows:

1. Crack initiation was the phase most affected by vacuum environment.

2. For a given stress level, lower air pressures produced longer fatigue lives.

3. Fatigue limits were higher in vacuum than at atmospheric pressure.

4. For small stress-intensity-factor ranges, the fatigue-crack-propagation

rates in vacuum were approximately 50 percent of those at atmospheric pressure. For
large stress-intensity-factor ranges, the fatigue-crack-propagation rates were about the

same in vacuum as at atmospheric pressure.

5. The vacuum environment had no effect on the fracture toughness of 7075-T6
aluminum alloy.

6. Fatigue striations were found on the fracture surfaces of both air- and vacuum-
tested specimens, but considerably more striations were found on the surfaces of the air-
tested specimens.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., July 12, 1973.
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APPENDIX A

CONVERSION OF SI UNITS TO U. S. CUSTOMARY UNITS

The International System of Units (SI) was adopted by the Eleventh General

Conference on Weights and Measures held in Paris in 1960 (ref. 4). Conversion factors

required for units used herein are given in the following table:

Physical quantity

Force
Length
Pressure
Stress
Stress intensity
Frequency

SI Unit
(a)

newton (N)
meter (m)
pascal (Pa)
newtons per meter^ (N/m2)
newtons per meter3/2 (N/m3/2)
hertz (Hz)

Conversion
factor

(b)
0.2248
0.3937 x 102

0.7500 x ID'2

0.145 x ID'3

0.9099 xlO-3
60

U.S. Customary
Unit

Ibf
in.
torr
psi
psi-inl/2
cpm

a Prefixes and symbols to indicate multiples of units are as follows:

Multiple

10-9
10-6
10-3
103
106

109

Prefix

nano
micro .
milli
kilo
mega
giga

Symbol

n
M
m
k
M
G

"Multiply value given in SI Unit by conversion factor to obtain equivalent in U.S.
Customary Unit.

12



APPENDIX B

VACUUM AND TEMPERATURE CONTROL SYSTEMS

Figure 11 is a schematic diagram of the vacuum pumping system. The minimum
gas pressure for this system is 107 nPa (8 x 10~10 torr). A 254-mm (10-in.) diameter
diffusion pump evacuated the chamber for tests in the high-vacuum range. A water-
cooled baffle mounted above the diffusion pump inhibited back-streaming of pump-oil
vapors. A liquid-nitrogen-cooled baffle mounted above the water-cooled baffle further
inhibited back-streaming.

Either a mechanical roughing pump (which was also used to evacuate the chamber
down to 6.7 Pa (5 x 10~2 torr)) or a mechanical holding pump maintained a pressure of
1.3 Pa (ID'2 torr) at the exhaust of the diffusion pump.

An automatic pressure controller regulated the pressure inside the chamber.
This controller actuated a variable-leak valve which admitted dry air into the chamber.
The chamber pressure was controllable within the range from 133 Pa to 107 nPa (1 torr
to 8 x 10'10 torr).

Thermocouple and ionization gages measured gas pressures inside the chamber.
The thermocouple gage can measure pressures between 133 Pa and 133 mPa (1 torr
and 1 x 10~3 torr). The ionization gage can measure pressures between 133 mPa and
107 nPa (1 x 10-3 and 8 x 10'10 torr).

The specimen-vie wing ports were located 180° apart on the upper half of the
chamber. Concentric pairs of O-rings sealed these ports, and another pair sealed the
main flange of the vacuum system. A guard pump evacuated the area between these
O-rings in order to reduce the pressure differential, and consequently the leakage, across
the inner O-ring.

Feed-throughs carried electrical power, liquid nitrogen, and the signals from
thermocouples through the chamber wall, and exposed the sensing elements of the ioniza-
tion and thermocouple gages to the vacuum environment. Copper gaskets sealed these
feed-throughs and the connection for the variable-leak valve.

Figure 12 is a schematic diagram of the specimen temperature-control system,
which could control the specimen temperature within the range from 200 to 366 K (-100°
to 200° F). The four banks of quartz-tube lamps, two on each side of the specimen, had

13



APPENDIX B - Concluded

polished parabolic reflectors to concentrate the energy on the specimen. Separate
temperature controllers regulated the lamps on each side of the specimen by using the

thermocouple signal from a tab mounted next to the specimen.

Two oxygen-free high-conductivity copper cryopanels filled with liquid nitrogen
cooled the specimen. Black paint with a minimum emittance of 0. 9 made the inward-

facing side of the cryopanels highly absorptive for rapid cooling of the specimen. Chrome
plating made the outward-facing side of the cryopanel highly reflective (so that extraneous
heat energy was not absorbed).

In addition to cooling the test specimen, the cryopanels helped to pump the system
by condensing gases on the cryopanel surfaces. The cryopanels retained these gases
until the fatigue experiment was completed. Level controllers automatically kept the
cryopanels filled with liquid nitrogen during testing.

14



APPENDIX C

FATIGUE -CRACK- PROPAGATION ANALYSIS

The fatigue -crack-propagation data were correlated by the stress-intensity method.
Paris (ref. 16) hypothesized that the rate of fatigue-crack propagation was a function of
the stress-intensity range; that is,

§ = f(AK) (Cl)

where

AK = Kmax - Kmin (C2)

For centrally cracked specimens subjected to a uniformly distributed axial load,

K

and

Kmin = aSminl/a* (C4)

max

The term a is a factor intended to correct for the finite width of the specimen (ref. 17)
and is given by

at = sec (C5)

15
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TABLE I.- TENSILE PROPERTIES OF THE 7075-T6 ALUMINUM ALLOY

Year of
data

1968

1949
(ref. 8)

CTU

MN/m2

574

572

psi

83200

82900

ay
MN/m2

523

518

psi

75900

75500

E

GN/m2

69.6

70.5

psi

10.1 x lO 6

10.2 x 106

e>
percent

12

12

No. of
tests

20

152
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TABLE II.- RESULTS OF FATIGUE-LIFE EXPERIMENTS

ON UNNOTCHED SPECIMENS (R = 0.02)

(a) Air pressure, 101 kPa (760 torr)

Specimen
number

B83N7-47
B83N7-45
B83N7-46
B83N7-42
B65N7-125
B84N7-59
B71N7-184
B71N7-181
B84N7-53
B84N7-56
B71N7-183
B71N7-182
B71N7-188
B71N7-189
B84N7-57
B72N7-196
B88N7-93
B65N7-126
B65N7-130
B88N7-99
B84N7-52
B72N7-197
B69N7-168
B83N7-43
B65N7-123
B65N7-124
B69N7-162
B69N7-166
B83N7-44
B74N7-15

smax

MN/m2

414
414
414
414
414
345
345
345
345
345
276
276
276
276
276
276
241
241
241
241
241
241
228
228
228
228
228
228
228
228

psi

60000
60000
60000
60000
60000
50000
50000
50000
50000
50000
40000
40000
40000
40000
40000
40000
35000
35000
35000
35000
35000
35000
33000
33000
33000
33000
33000
33000
33000
33000

Fatigue
life,

cycles

8590
10320
16810
18560
22550
27660
27710
35040
42130
46990
47290
54970
74020
79260

145640
195930
239090

1 405 500
4246550

>5 113 230
>5376110
>6 135730

134340
421 500
440 540

2337380
>5 000 000
>5 009 850
>5 012 250
>9 066 790

Remarks

Did not fail
Did not fail
Did not fail

Did not fail
Did not fail
Did not fail
Did not fail
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TABLE II.- RESULTS OF FATIGUE-LIFE EXPERIMENTS

ON UNNOTCHED SPECIMENS (R = 0.02) - Continued

(b) Air pressure, 67 Pa (5 x 10"1 torr)

Specimen
number

B64N7-120
B88N7-92
B64N7-111
B83N7-49
B69N7-161
B65N7-129
B74N7-17
B56N7-5
B60N7-7
B64N7-114
B87N7-90
B87N7-86

Smax

MN/m2

414
414
414
345
345
345
310
310
310
276
276
276

psi

60000
60000
60000
50000
50000
50000
45000
45000
45000
40000
40000
40000

Fatigue
life,

cycles

78220
94580

116360
101020
101070
140340
221740
844830

1159740
1264000

>5 004 290
>8 181 610

Remarks

Did not fail
Did not fail

(c) Air pressure, 7 Pa (5 x 10'2 torr)

Specimen
number

B68N7.-157
B86N7-80
B74N7-18
B69N7-165
B69N7-170
B69N7-167
B69N7-169
B65N7-128
B83N7-50
B74N7-16
B87N7-83
B63N7-103
B68N7-158
B86N7-74

Smax

MN/m2

414
414
414
345
345
345
345
345
345
310
310
310
276
276

psi

60000
60000
60000
50000
50000
50000
50000
50000
50000
45000
45000
45000
40000
40000

Fatigue
life,

cycles

89600
140450
146370
83190
98880

114210
124790
171840
225090
711870

1047810
1168970

>5 201 580
>7 095 840

Remarks

Did not fail
Did not fail
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TABLE II.- RESULTS OF FATIGUE-LIFE EXPERIMENTS

ON UNNOTCHED SPECIMENS (R = 0.02) - Concluded

(d) Air pressure, 67 mPa (5 X 10"4 torr)

Specimen
number

B74N7-14
B87N7-81
B49N7-7
B52N7-1
B74N7-19
B74N7-12
B87N7-84
B58N7-3
B52N7-9
B58N7-1
B86N7-71
B68N7-156
B87N7-87
B64N7-118

°max

MN/m2

414
414
414
345
345
345
310
310
310
310
276
276
276
276

psi

60000
60000
60000
50000
50000
50000
45000
45000
45000
45000
40000
40000
40000
40000

'Fatigue
life,

cycles

180310
188 740
379170
251960
359780
517 600
340 400
375000

>5 000 300
5197200
2442500

>5008710
>5049570
>7 106 710

Remarks

Did not fail

Did not fail
Did not fail
Did not fail

(e) Air pressure, 7 fiPa (5 X 10~8 torr)

Specimen
number

B64N7-117
B88N7-98
B86N7-77
B72N7-192
B72N7-194
B64N7-119
B68N7-153
B72N7-191
B64N7-115
B88N7-100
B63N7-104
B86N7-75
B64N7-112
B74N7-11
B63N7-107
B86N7-79
B64N7-113
B87N7-88
B87N7-82
B87N7-85
B63N7-105
B63N7-106

^max

MN/m2

414
414
414
414
414
345
345
345
345
345
345
345
310
310
310
310
310
276
276
276
276
276

psi

60000
60000
60000
60000
60000
50000
50000
50000
50000
50000
50000
50000
45000
45000
45000
45000
45000
40000
40000
40000
40000
40000

Fatigue
life,

cycles

137790
155460
296560
364880
570870
583300
634310
874000
954 680

1194830
1319420
1412010

625200
805020

1956270
2119710
2496230

> 5 000 000
>5 799 290
>7 992 310
>8 086 090
>8 243 790

Remarks

Did not fail
Did not fail
Did not fail
Did not fail
Did not fail
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TABLE HI.- RESULTS OF FATIGUE-LIFE EXPERIMENTS

ON NOTCHED SPECIMENS WITH KT = 4.1 (R = 0.02)

(a) Air pressure, 101 kPa (760 torr)

Specimen
number

B98N7-96
B98N7-94
B98N7-100
B92N7-33
B94N7-60
B94N7-59
B98N7-93
B98N7-92
B94N7-54
B90N7-12
B98N7-95
B94N7-53
B92N7-39
B95N7-61
B92N7-34
B92N7-37
B92N7-35
B90N7-11
B90N7-14
B92N7-32
B92N7-31

Cl
max

NM/m2

207
207
207
207
207

138
138
138
138
138
103
103
103
103
103
103
83
83
83
83
83

psi

30000
30000
30000
30000
30000
20000
20000
20000
20000
20000
15000
15000
15000
15000
15000
15000
12000
12000
12000
12000
12000

Fatigue
life,

cycles

7030
7090
7150
7360
7760

38600
39600
45680
50490
51080

1659960
2 683 640
3020730
3454040

>5 033 660
>5 394 790
>5 000 310
>5 000 330
>5 086 160
>5 261 970
>5 277 000

Remarks

Did not fail
Did not fail
Did not fail
Did not fail
Did not fail
Did not fail
Did not fail

(b) Air pressure, 7 /iPa (5 x 10~8 torr)

Specimen
number

B94N7-51
B95N7-64
B95N7-69
B92N7-38
B95N7-68

B90N7-19
B92N7-40
B90N7-20
B94N7-52
B92N7-36
B95N7-63
B95N7-66
B95N7-62
B95N7-70
B95N7-65
B91N7-24
B91N7-30
B95N7-67

S1

max

MN/m2

207
207
207
207
207

138
138
138
138
138
124
124
124
124
124
103
103
103

psi

30000
30000
30000
30000
30000

20000
20000
20000
20000
20000
18000
18000
18000
18000
18000
15000
15000
15000

Fatigue
life,

cycles

27410
29600
40060
42090
59240

323 580
611 130
688730
724 900
802 960
502980
580 490

1150820
1 268 800
1956620
1 444 350
2 895 970

>6 401 400

Remarks

Did not fail
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TABLE V.- RESULTS OF FRACTURE-TOUGHNESS EXPERIMENTS

Specimen
number

ac

mm in.

pc

kN Ibf

Kc

MN/m3/2 psi-inV2

(a) Air pressure, 101 kPa (760 torr)

B59N7-10
B58N7-6
B58N7-10
B57N7-4
B55N7-10
B52N7-10
B57N7-8
B53N7-6
B52N7-8
B56N7-2
B57N7-2
B51N7-10

12.7
15.0
10.7
15.0
6.6

10.2
5.6

16.0
9.9

14.7
13.7
10.7

0.50
.59
.42
.59
.26
.40
.22
.63
.39
.58
.54
.42

29.3
24.6
37.2
24.5
44.4
36.0
49.4
22.2
36.0
23.0
28.7
33.2

6580
5540
8370
5500
9980
8090

11100
4980
8090
5170
6450
7460

56.9
55.0
61.6
53.7
54.6
58.7
54.2
45.7
57.5
50.5
57.9
56.6

51800
50000
56100
48900
49700
53400
49300
41600
52300
46000
52600
51500

(b) Air pressure, 7 fiPa. (5 X 10"8 torr)

B56N7-6
B55N7-4
B56N7-10
B55N7-6
B60N7-6
B57N7-10
B53N7-10
B57N7-6
B58N7-4
B53N7-2

16.3
17.0
11.9
11.9
10.2
10.7
9.9

10.2
6.1
7.1

0.64
.67
.47
.47
.40
.42
.39
.40
.24
.28

23.4
18.9
29.5
28.6
33.3
34.7
38.3
33.9
46.1
44.9

5260
4250
6640
6420
7490
7810
8600
7610

10370
10090

57.6
49.1
53.3
52.5
54.3
57.0
61.6
54.0
55.8
58.1

52400
44700
48500
47800
49400
51900
56100
49100
50800
52900
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Figure 2.- Configuration of the fatigue-crack-propagation and fracture
toughness specimens. Material thickness was 2.3 mm (0.090 in.).
Dimensions are in mm (in.)-
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Figure 3.- Fatigue life of 7075-T6 aluminum alloy before and after 20 years' storage.
Air pressure, 101 kPa (760 torr); R = 0.02 for data points; R = 0 for scatter band.
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Figure 4.- Variation of the fatigue life of unnotched specimens of 7075-T6
aluminum alloy with stress and air pressure. R = 0.02.
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Figure 5.- Effect of air pressure on the fatigue life of unnotched
specimens of 7075-T6 aluminum alloy. R = 0.02.
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D 7AtPa(5xlO"8torr)

20

-3
-,10

_5 da/dN,
in./cycle10

-7
10

40

AK,MN/m3/2

Figure 7.- Variation of fatigue-crack-propagation rate with AK
in vacuum and at atmospheric pressure. R = 0.02.
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(a) Transmission electron microscope.

(b) Scanning electron microscope. L-73-6811

Figure 9.- Fractographs of an unnotched specimen tested in air at
101 kPa (760 torr). Smax = 345 MN/m2 (50000 psi); R = 0.02.
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r̂

(a) Transmission electron microscope.

(b) Scanning electron microscope. L-73-6812

Figure 10.- Fractographs of an unnotched specimen tested in vacuum of
7 /iPa (5 x 10-8 torr). Smax = 345 MN/m2 (50000 psi); R = 0.02.
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ŝ
0)
xso
03

cu
^i

36 NASA-Langley, 1973 17 L-8829



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON. D.C. 2O546

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE S3OO SPECIAL FOURTH-CLASS RATE
BOOK

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION
451

POSTMASTER : If Undeliverable (Section 158
Tosta! Manual) Do Not Return

"The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination .
of information concerning its activities and the results thereof."

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS
TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons/Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major .
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

N A T I O N A L A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N

Washington, D.C. 20546


