

Characterization of Variability Sources Associated with Measuring Inspired Carbon Dioxide in Spacesuits

Omar Bekdash¹, Jason Norcross¹, John Fricker², Ian Meginnis³, and Andrew Abercromby³

¹ KBRWyle, 2400 NASA Pkwy, Houston, Texas

² Oceaneering 16665 Space Center Blvd, Houston, Texas

³ NASA Johnson Space Center 2101 NASA Parkway Houston, Texas

- Adequate elimination of CO₂ produced by respiration is an essential requirement for spacesuits.
 - o Exposure to excessive levels of carbon dioxide (CO₂) can lead to hypercapnia.
- Washout refers to the ability of a suit's ventilation design to remove CO₂ from the helmet environment.
- Previous studies indicate that the accuracy and reliability of inspired CO₂ measurements depends on many variables:
 - Measurement equipment setup
 - Analysis methods used
 - Human subjects

Study Objectives

- 1. Review existing methodologies for CO₂ washout measurement and analysis.
- 2. Characterize sources of variability associated with spacesuit CO₂ washout measurement equipment and methods.
- 3. Define a methodology that minimizes measurement error for use with future human testing.
 - Hardware configurations
 - Analysis methods

Existing Carbon Dioxide Washout Measurement Methods

- Industries that use respiratory protective equipment such as diving, firefighting, or aviation, typically require donning a mask that seals over the nose and mouth.
 - Provides a direct means of sampling inspired CO₂ from the small dead space volume inside the oral-nasal cup for human test standards
- NIOSH and European standards also employ breathing simulator based methods to limit variability in human breathing both intra- and inter- wearers
 - Impractical for suited testing
 - Human testing is important to quantify the real variability that occurs in CO₂ washout due to factors such as breathing characteristics, fitness levels, face anthropometry, and head positioning and movement.
 - During the developmental stages of spacesuit design before designs have been finalized it is not practical to construct unique manikins for each design iteration

NASA CO₂ Washout Methods Development

Ongoing effort since Gemini EVAs demanded crewmembers operate at higher work rates

1969

Fig. 2. Carbon dioxide monitoring in space suit research.

- Subjects breathe through a small mouthpiece
- Inspired CO2 calculated from minimun inspired value

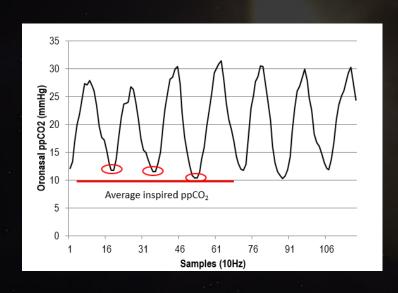
NASA CO₂ Washout Methods Development

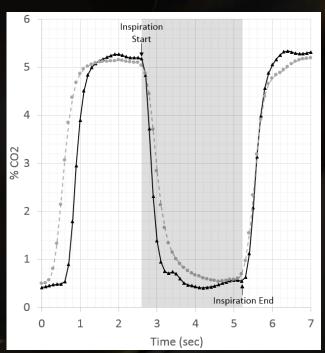
Recent NASA testing has evaluated different methods of affixing sampling lines to the person

- These investigations span multiple suits, both EVA prototype and Launch/Entry/Abort (LEA)
- Several iterations on the oral-nasal mask design were evaluated
 - Potential for the mask to alter the nominal air flow path inside the helmet
 - Dead space volume inside the mask may affect measurement
- None were able to provide repeatable measurement of respiratory data
- Unacceptable human factors
 - Test subject comfort
 - Ability to use a Valsalva device for pressure equalization

NASA CO₂ Washout Methods Development

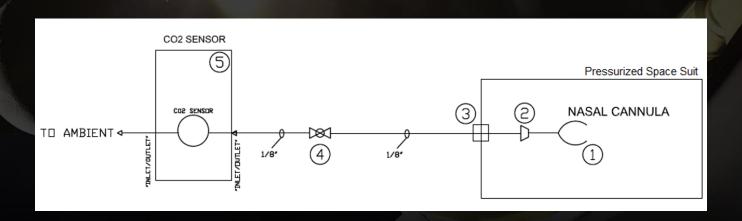
Variability of results using masks and a desire to improve human factors aspects of the sampling system led us to use a nasal cannula for in suit sampling.


- Provides a low profile sampling line that is placed directly in the nasal cavity
- Reduces dead space
- Prevents interference with nominal flow paths of the suit.
- Possible concerns related to breathing style (nose vs nose\mouth)
 - Potentially resolved through standardizing sampling methodology



Calculation of Inspired CO₂

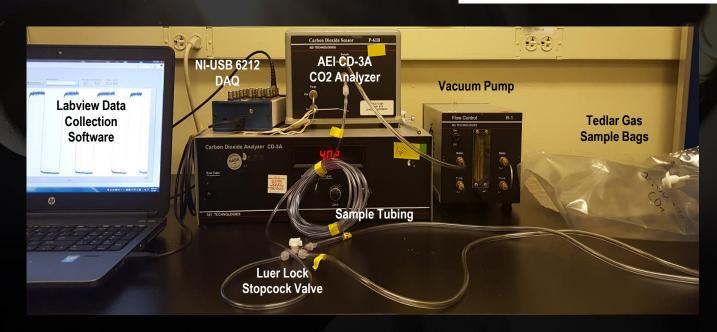
Comparison against industry standards for certification of CO₂ washout performance suggests that the whole inspiration cycle and not just the local end-expired minimum be considered


Average of minimum inspired

Time weighted average of inspired

Typical Spacesuit Testing Equipment Configuration

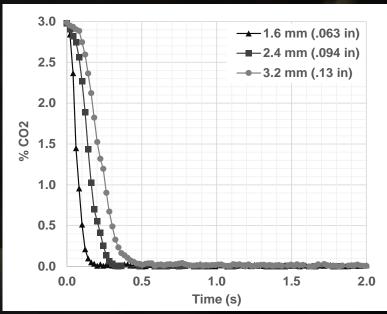
- 1. Nasal Cannula worn by subject
- 2. Cannula tubing reducer
- 3. Suit pass-through
- 4. Needle valve or Rotameter
- 5. CO2 Sensor


Simulated Breathing Gas Testing Technique

- A manual valve is switched between 1% (inspired) and 4% (expired) CO₂ calibration gas.
- A vacuum pump draws gas to the sensor through a sample tube.

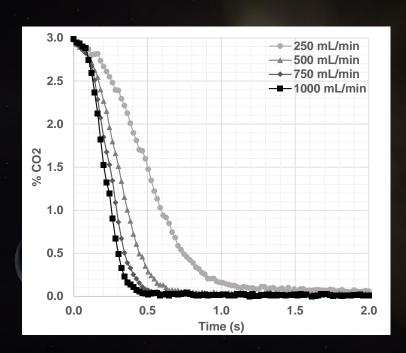
Table 1. Sample line lengths, diameters, and flow rates tested using calibration gas methodology. Flow rates (mL/min) are shown in each cell of the matrix.

		Line Length, m (ft)		
		0.61 (2)	3.0 (10)	6.1 (20)
Line Internal Diameter mm (in)	1.6 (0.063)	1000	250, 500, 750, 1000	1000
	2.4 (0.094)	1000	250, 500, 750, 1000	1000
	3.2 (0.13)	1000	250, 500, 750, 1000	1000
	4.8 (0.19)	1000	250, 500, 750, 1000	1000

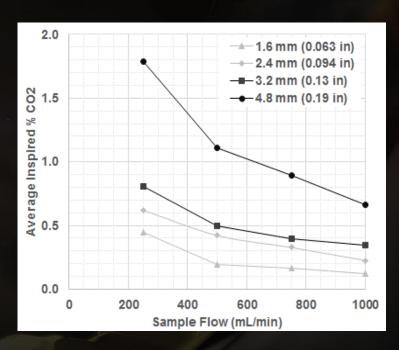

Sample Line Length and Inner diameter

- All data collected were normalized to 0% CO₂ as a baseline by subtracting the 1% calibration gas from all data points.
- CO₂ concentrations are known and subtracted from all data

 Values of inspired CO₂ greater than zero represent inherent error due to the testing methodology.



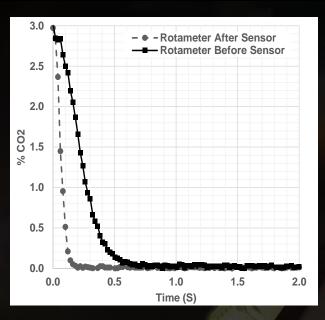
Data integrity decreases as line length and inner diameter increases for a constant sample rate of 1000 mL/min.

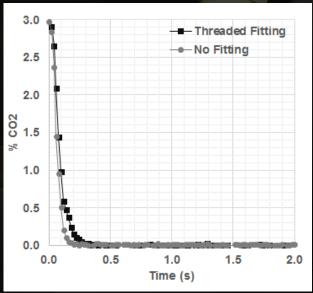

Sampling Flow Rate

• Data integrity decreases as flow rate decreases

Decreased data integrity as flow rate decreases for a constant line length (3.0 m) and diameter (3.2 mm).

Inspired %CO₂ based on measurements of different sample flow rates and sample line diameters with 3.0 m long sample tube time was assumed.

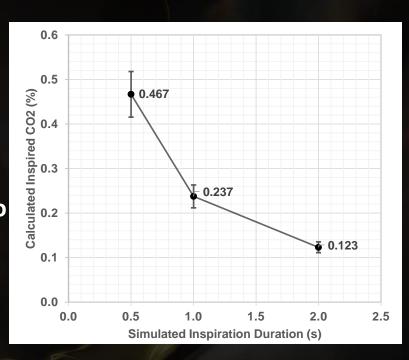

Rotameter Location and Passthrough Fittings



A rotameter has previously been positioned prior to the sensor to provide the proper flow rate from the cannula to the sensor external to the suit.

- Spacesuits are typically operated at approximately 29.6 to 56.5 kPa (4.3 to 8.3 psi) above ambient
- The pre-sensor rotameter had a time-weighted inspired ppCO2 level of 0.38% CO2, compared with the post-sensor rotameter which had a timeweighted inspired ppCO2 level of 0.12% CO2, assuming a 2 second inspiration.

Threaded fittings or similar pass-throughs are needed to accommodate cannula sample line in the suit

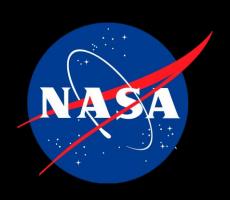


Accounting for impact of inspiration duration

 The shorter the duration of an inspiration, the larger the effect of the methodology error when a time-weighted average is calculated

- A single error value may not be applicable to all HITL test conditions.
- An option to account for this variability is to match human and methodology error inspiration durations when calculating inspired CO₂ levels.
- Human inspiration duration is available from the recorded data, and the same duration would be applied to the error calculation.

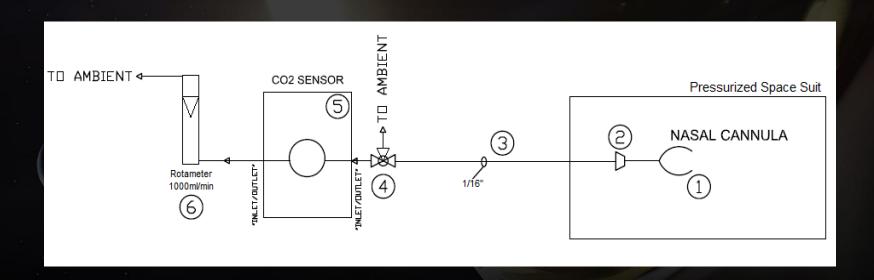
CO₂ Washout Sampling Methodology Recommendations



- Conduct subsequent testing with the 1.6 mm (0.063 inch)
 diameter, 3.0 m (10 ft) length sample line at a flow rate of 1000
 mL/min.
 - Provides a practical length for future HITL testing while minimizing error due to mixing.
- Position rotameter after the CO₂ analyzer
- Specific future configurations of fittings can be tested using the methodology described here to identify the associated measurement error.
- Consider adjusting inspired CO2 calculation to match subject breathing variability

Proposed roadmap to develop evidence-based CO₂ exposure requirements for suited astronauts.

Objective	Activity	Complete
1. Review existing methodologies for CO ₂ washout	Perform literature search in analogous and	2016
measurement	related fields	
2. Characterize sources of variability associated with	Perform unmanned test to explore variations in	2016
spacesuit CO ₂ washout measurement equipment and	CO ₂ sampling hardware to determine critical	
methods	effects	
3. Determine sample probe type	Perform unsuited human testing to explore	2017
	sample probe types and positions	
4. Characterize intra- and inter-subject variability related	Perform unsuited and suited human testing to	2017
to washout testing	explore variability due to respiratory variability	
5. Quantify inspired CO ₂ in existing spacesuits using	Perform suited human testing in existing	2017
developed methodology	spacesuits to determine inspired CO ₂	
6. Correlate ambient CO ₂ levels used in research to	Perform chamber testing with unsuited subjects	2018
actual inspired CO2 levels to allow comparison of suited	while measuring ambient and inspired CO2	
exposure to existing research data on CO2 effects	levels	
7. Collect data for EVA-like durations, metabolic rates,	Perform human testing of functional	2018
and tasks that are missing from existing research data	performance at different levels of inspired CO ₂	
8. Acquire inspired CO ₂ data from ISS crew to allow	Use or supplement existing equipment and	2019
comparison of crew levels to research data on CO ₂	methodology to measure ISS crew inspired CO ₂	
effects	levels	
9. Develop evidence-based CO ₂ exposure requirement	Combine data from steps 1 through 8 to	2019
for crew in spacesuits	develop standards	



Backup

Potential method for In-suit sampling at pressure

May be possible to avoid this problem if an open T port is used before the sensor and the rotameter is placed after the sensor during suited testing

