https://ntrs.nasa.gov/search.jsp?R=20170002699 2019-08-31T16:54:29+00:00Z

Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project

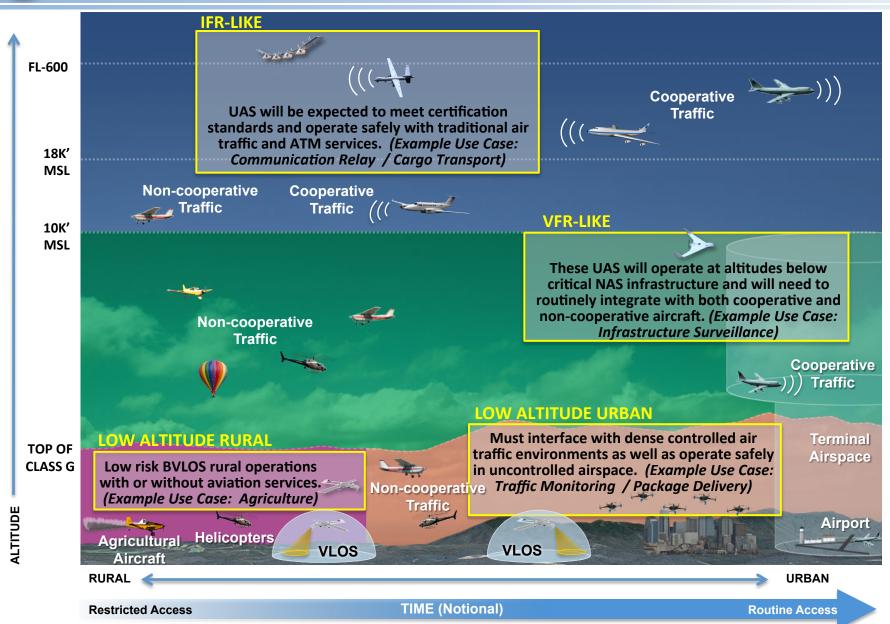
Detect and Avoid

 Jay Shively

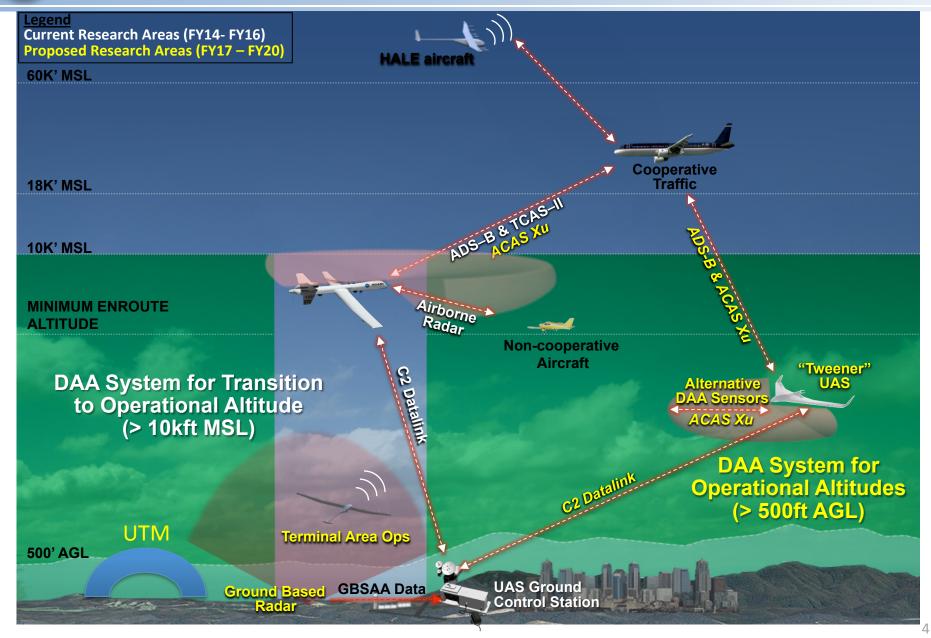
 UAS INTEGRATION IN THE NAS
 DAA Sub-Project Manager

28 March 2017

1


Full UAS Integration Vision of the Future

Manned and unmanned aircraft will be able to routinely operate through all phases of flight in the NAS, based on airspace requirements and system performance capabilities.


Future Civil UAS Airspace Environment

3

DAA Operational Environments

 Several civil/commercial markets are poised to take full advantage of the capabilities UAS offer

Demand Scenario	Automation Assisted	Highly Automated	Autonomous
Low Altitude Rural	Aerial Photography	Wildlife Surveillance	Precision Agriculture
IFR-Like	Broad Area Surveillance	Cargo Transport	Communication Relay
Low Altitude Urban	Search and Rescue	Traffic Monitoring	Local Package Delivery
VFR-Like	Horizontal Infrastructure	Passenger Transport	Cargo Delivery

growth until the barriers and challenges, currently preventing full integration, are addressed

THE ECONOMIC IMPACT OF UNMANNED AIRCRAFT SYSTEMS INTEGRATION IN THE UNITED STATES

AUVSI

"For every year integration is delayed, the United States loses more than \$10B in potential economic impact (\$27.6M per day)." – AUVSI Economic Report 2013

UAS-NAS Phase 2 Project Organization Structure

-ICE		Project Manager Deputy PM F Deputy PM, Integ Chief Engineer V	(PM) Robert Sakahar gration	Davis Hackenberg, AFRC		
SUBPROJECT LEVEL LEVEL	Subproje Mike Ja Subproject T	t Planning & Control April Jungers, AFRO Winter Preciado, Warcquel Frieson, AF Julie Blackett, GRC Pat O'Neal, LaRC Irma Ruiz, AFRC Jamie Turner, AFRO Lexie Brown, AFRO Sarah Strahan, hd Control (C2) ct Manager rrell, GRC Technical Lead mer, GRC	C Detect a Subp Jay Subproje Confesor Sa	Project Suppor Staff Engineer Systems Eng Lu and Avoid (DAA) project Manager & Shively, ARC ect Technical Leads ntiago, ARC; Lisa Fern, Tod Lewis, LaRC	Dan Roth, AFRC	r RC eads
EL	Technical Work P	ackages (TWP)	Technical Wo	rk Packages (TWP)	Technical Work Packages (TWP).

Technical Work Packages (TWP): Terrestrial Extensions, Ka-band Satcom, Ku-band Satcom, C-band Satcom Technical Work Packages (TWP): Alternative Surveillance, Well Clear, ACAS Xu, External Collaboration, Integrated Events Technical Work Packages (TWP):, Integration of Technologies into LVC-DE, Simulation Planning and Integration, Integrated Flight Test

See and Avoid: FAR Sec. 91.113

General. When weather conditions permit, regardless of whether an operation is conducted under instrument flight rules or visual flight rules, vigilance shall be maintained by each person operating an aircraft so as to see and avoid other aircraft. When a rule of this section gives another aircraft the right-ofway, the pilot shall give way to that aircraft and may not pass over, under, or ahead of it unless well clear.

Piloted "see and avoid" = UAS "detect and avoid"

Pilots vision replace by sensors (on- or off- board or both)

Pilot judgment of well clear = mathematical expression of well clear

Horz Miss Distance = 4000ft; Vert Miss Distance = 450ft; modTau = 35sec; DMOD = 4000ft

Define operational environment (CONOPS)

Develop well clear definition

Develop algorithms for guidance

Develop sensor requirements

End to end timelines Human response A/C response Datalink latencies

Develop guidance displays, alerting logic and presentation

Ensure interoperability with TCAS/ACAS

Alerting

Symbol	Name	Pilot Action	Buffered Well Clear Criteria	Time to Loss of Well Clear	Aural Alert Verbiage
	TCAS RA	 Immediate action required Comply with RA sense and vertical rate Notify ATC as soon as practicable after taking action 	*DMOD = 0.55 nmi *ZTHR = 600 ft *modTau = 25 sec	0 sec (+/- 5 sec) (TCPA approximate: 25 sec)	"Climb/Descend"
	DAA Warning Alert	 <i>Immediate action required</i> Notify ATC as soon as practicable after taking action 	DMOD = 0.75 nmi HMD = 0.75 nmi ZTHR = 450 ft modTau = 35 sec	25 sec (TCPA approximate: 60 sec)	"Traffic, Maneuver Now" x2
	Corrective DAA Alert	 On current course, <i>corrective action</i> <i>required</i> Coordinate with ATC to determine an appropriate maneuver 	DMOD = 0.75 nmi HMD = 0.75 nmi ZTHR = 450 ft modTau = 35 sec	55 sec (TCPA approximate: 90 sec)	"Traffic, Avoid"
	Preventive DAA Alert	 On current course, corrective action should not be required Monitor for intruder course changes Talk with ATC if desired 	DMOD = 0.75 nmi HMD = 1.0 nmi ZTHR = 700 ft modTau = 35 sec	55 sec (TCPA approximate: 90 sec)	"Traffic, Monitor"
	Guidance Traffic	 No action required Traffic generating guidance bands outside of current course 	Associated w/ bands outside current course	Х	N/A
4	None (Target)	 No action required No coordination required 	Within surveillance field of regard	Х	N/A

 * These values show the Protection Volume (**not well clear volume**) at MSL 5000-10000ft (TCAS Sensitivity Level 5) 9

Phase 1:

SC 228 DAA MOPS Phase 1

Class A, transitioning through E

Larger UAS capable for carrying an on-board DAA sensor and performing in an IFR environment

Users: DoD, DHS, NASA, public agencies

Phase 2:

SC 228 Phase 2 MOPS

Terminal Operations

Smaller, less payload A/C

Alternative Sensors

New Well Clear Definition

Airspace down to UTM

Users: Police, Fire, BLM, Forestry, Public Utilities, Fisheries, Agriculture

- SC 228
- SC 147
- DoD
- ICAO
- Industry
- FAA

Questions ?