

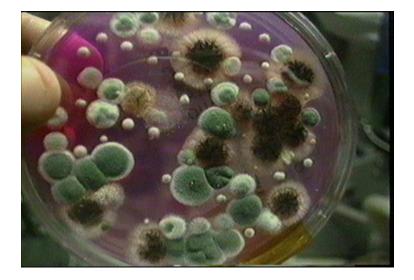
Advantages and Context of Omic Approaches for Microbial Risk Assessments of Spacecraft Environments

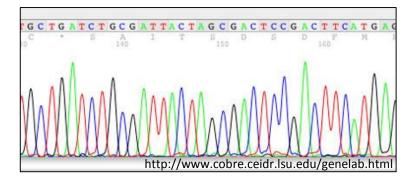
C. Mark Ott, Ph.D. Microbiology Laboratory NASA Johnson Space Center

TCC Omics Workshop April 11, 2017

Why Monitor Spacecraft Environments

- Infectious Disease
- Systems failure
- Biodegradation
- Food spoilage
- Release of volatiles


Prevention



Current Microbiological Requirements

- Current spaceflight requirements are based on classical microbiological enumeration using "colony forming units" that reflect the number of microorganisms that grow on a media plate.
 - Example: Flight surface requirement for bacteria = 10,000 CFU/cm²
- Current spaceflight requirements also include identification of medically significant organisms.
 - Identification originally relied on biochemical testing allowing us to describe the genus and species.
 - Technological advances have allowed us to identify microorganisms using DNA based tools.

Preflight Monitoring and Disinfection

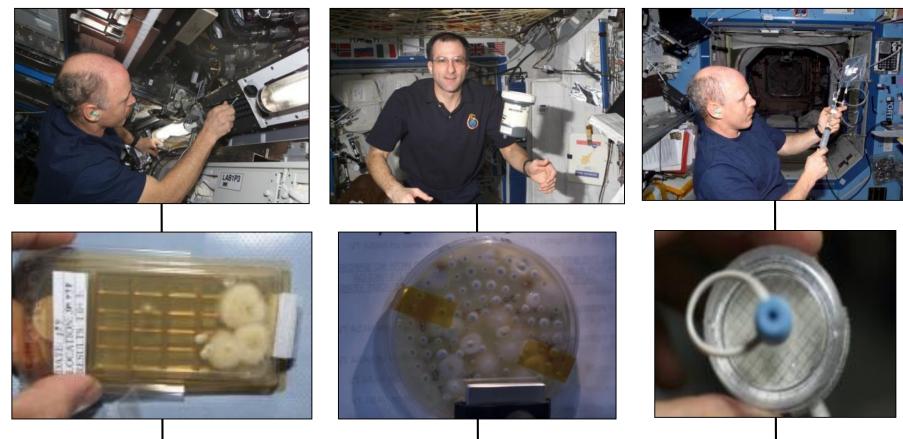
- Possible routes of infection during spaceflight missions
 - Crew
 - Spaceflight food and water
 - Salmonella enterica serovar Typhimurium
 - Staphylococcus aureus
 - Vehicle air, surfaces, and cargo
 - Pseudomonas aeruginosa
 - S. aureus
 - Experimental Payloads (Biosafety Review)
 - S. Typhimurium
 - Methicillin resistant S. aureus (MRSA)
- Disinfection criteria
 - High microbial concentrations
 - Medically significant organisms

Contamination Potential

Preflight contamination

Spacecraft are complex

Astronaut activities (*e.g.*, eating and hygiene)



Microbiological Monitoring on the ISS

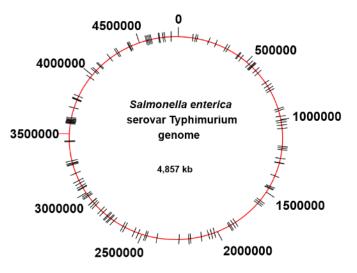
Surfaces

Water

Quantified in-flight and returned to JSC for identification

Next Generation Spaceflight Monitoring

- Spaceflight technology demonstrations
 - Razor EX (Biofire Defense)
 - Targets selected microorganisms or groups of microorganisms
 - Real Time Polymerase Chain Reaction (RT-PCR)
 - Designed for and used by the military
 - Dry chemistry for easier sample prep
 - MinION (Oxford Nanopore)
 - Sequences all organisms in the sample
 - Nanopore technology
 - Both systems performed well in recent ISS technology demonstrations
- As these technologies do not enumerate microorganisms using CFUs, and the goal is autonomous environmental microbiological monitoring, new requirements are needed.



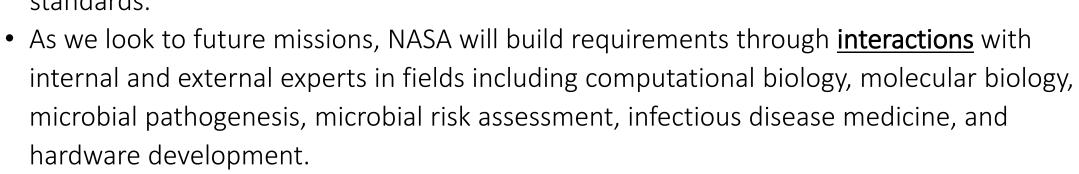
The Impact of the Spaceflight Environment on Salmonella enterica serovar Typhimurium

- In 2006, the MICROBE Experiment (PI: Cheryl Nickerson, Arizona State University) identified <u>alterations in microbial virulence</u> in spaceflight grown cultures of S. Typhimurium.
 - Proteomic profiling identified <u>73 differentially regulated proteins</u>, and microarray analysis identified <u>167 differentially regulated genes</u> compared to ground controls
 - Common molecular regulatory protein (Hfq) associated with 32% of the differentially regulated genes
 - Genes were globally distributed and associated with:
 - Protein secretion
 - Outer membrane proteins
 - Iron metabolism and storage
 - Ion response pathways
 - Plasmid transfer functions
 - Energy and metabolism
 - Ribosomal proteins
 - Small regulatory RNAs
 - Biofilm formation
 - Transcriptional regulators

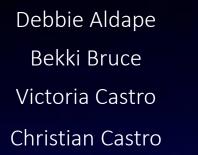
Wilson et al. Proc Natl Acad Sci USA 2007

Developing New Requirements

- What information do we <u>really</u> need?
- As a starting point, we begin with information that is equivalent to our current approach.
 - Do we need less information based on lessons learned from the past?
 - Is there information that we did not require in the past that should be required in the future?
 - Toxin production
 - Ability to track a given microbial clone
- What impact will vehicle design have on the required information?


Developing New Requirements

- More devils in the details
 - How important is <u>enumeration</u>? If we do not use CFUs, then what would we use?
 - We want to **identify medically significant organisms**, but can we provide a list?
 - How will new technologies indicate microbial <u>viability</u>?
 - <u>Antibiotic resistance</u> is often important to know. How will autonomous spacecraft system provide this information?
- Engineering design of the monitoring system
 - What should be the **detection sensitivity** (*e.g.*, 1 bacterium per liter)?
 - How do we define the <u>required confidence</u> in the data (replicates, accuracy, depth, coverage)?
 - Should it include **software to analyze the data** (Green light-Red light)?


Moving forward

- The goal is to require monitoring approaches that provide the <u>best available</u> <u>information</u> to maintain both crew health and vehicle integrity.
- We can start out with an <u>equivalent information</u> approach, basically requiring that any new technology on the International Space Station provide information that meet our current standards.

Microbiology Laboratory NASA Johnson Space Center

Brandon Dunbar Todd Elliott Crystal Enloe Tanner Hamilton Jane McCourt Cherie Oubre, PhD Duane Pierson, PhD Melanie Smith Sarah Stahl Sarah Wallace, PhD