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Abstract 

Infrared (IR) heating of corn followed by tempering treatments has potential to rapidly dry 

and simultaneously decontaminate corn without adverse effect on the overall quality. However, it 

is vital to determine the optimal processing parameters that maximize throughput and minimize 

drying energy without affecting overall corn quality. This study investigated the effects of IR 

heating and tempering treatments on moisture removal, mold load reduction, corn color change, 

and drying energy requirements. In addition, the study evaluated the feasibility of scaling up IR 

drying process using a newly built, pilot scale IR dryer. Freshly harvested corn with initial 

moisture content (IMC) of 20%, 24% and 28% wet basis (w.b.) were dried using a laboratory 

scale IR batch dryer in one- and two- drying passes. The dried sample were then tempered for 2, 

4, and 6 h at 50C, 70C, and 90C. The result showed that as tempering temperature and 

tempering duration increased, moisture removed increased and was higher for one-pass 

treatments compared to two-pass; similar trends were observed for mold load reductions.  For the 

studied range of processing conditions, mold load reduction ranged from 1 to 3.8 log CFU/g for 

one-pass and 0.8 to 4.4 log CFU/g for two-pass treatments. Scaled up IR drying treatments of 

corn at IMC of 24% w.b. with IR intensity of 2.39, 3.78 and 5.55 kW/m2 required only 650 s, 

455 s, and 395 s to dry corn down to a safe moisture content (MC) of 13% (w.b.); the 

corresponding mold load reduction ranged from 2.4 to 2.8 log CFU/g, 2.9 to 3.1 log CFU/g, and 

2.8 to 2.9 log CFU/g as intensity increased (p>0.05). This work showed that IR drying of corn 

holds promise as a rapid drying method with potential benefits of microbial decontamination of 

corn; this may help producers combat mold related problems such as mycotoxin contamination. 

 

Keywords. Corn, Drying and tempering, Infrared heating, Moisture removal, mold load 

reduction, color. 
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Chapter 1 

Statement of Research 

I. Problem Identification 

Development of effective drying and decontamination strategies to maintain corn quality and 

prevent mycotoxin development has become a priority for the corn industry. In the United States 

(U.S.) corn is typically harvested at moisture contents (MCs) ranging from 18% to 24% wet 

basis (w.b.) and must be dried as soon as possible to about 12% to 14% moisture content. 

Otherwise, the corn is susceptible to mold contamination which may lead to production of 

mycotoxins. Some mycotoxins are known carcinogens and pose health hazards to humans and 

animals who consume contaminated products. 

 Unfortunately, the natural air, in-bin drying of corn is weather dependent, and under some 

drying scenarios, may be characterized with untimely corn drying which poses risks of grain 

molding and mycotoxin formation, especially in the bin upper layers. Although the convective 

heated air drying method may speed up corn drying, the conventional process is deficient of 

energy fluxes to inactivate heat tolerant mold spores and requires multiple drying passes to 

mitigate corn quality reduction. This increases the risk of mycotoxin production on the corn 

during storage. 

Infrared (IR) heating, compared to conventional convective air heating has merits of high 

heat delivery and rapid product surface heating characteristics. The energy flux associated with 

IR heating may simultaneously dry corn and inactivate harmful mold spores while maintaining 

the corn quality. The advent of special catalytic type of infrared (CIR) emitters for producing IR 

energy at peak wavelength that maximizes heating of water in food materials offers new avenues 

for industrializing the IR heating technology for drying and decontamination of corns. Thus, 

successful development and implementation of the IR drying technology for corn may lead to 
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very positive gains in maintaining the quality of corn while preventing formation of mycotoxin.  

This research sought to develop effective strategies which utilize IR energy to achieve 

simultaneous drying and decontamination of corn while maintaining product quality and 

preventing mycotoxin development.  

II. Objectives  

The objectives for this research are as follows:  

1. Determine the effectiveness of IR heating to dry freshly-harvested corn of different initial 

moisture contents and at various product-to-emitter gap sizes (IR intensity). 

2. Determine effectiveness of combining IR heating and tempering to achieve simultaneous 

drying of corn and microbial decontamination. 

3.  Scale up IR drying of corn and investigate the performance of a newly-built continuous-

flow, IR heating system for corn drying and microbial decontamination. 

4. Evaluate the implications of the new IR drying process on dried product quality. 
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Chapter 2 

Literature Review 

 

Corn is normally harvested at a moisture content (MC) higher than the required level of 

12% to 14% wet basis (w.b.) for safe storage. In order to reduce the MC to the safe storage level, 

corn needs to be dried. There are several methods of drying corn. Natural-air in-bin drying takes 

place in a one- to two-foot thick drying zone that moves slowly up through the bin. Under some 

natural- air drying scenarios, the duration required for complete drying of corn may cause mold 

growth in the grain mass leading to development of mycotoxins (D’Mello and Macdonald, 

1997). To circumvent the limitations of slow, low-temperature air drying systems, some 

processors use high-temperature convective dryers. However, the energy flux associated with the 

high-temperature dryers require exposing corn kernel to high temperatures for prolonged 

duration before complete drying can be accomplished. Although, hot air can almost completely 

dry the corn to safe storage MC, the heat flux associated with the process is not sufficient to 

inactivate some harmful, heat tolerant mold spores such aspergillus flavus and fusarium 

verticillioides (Bittman and Kowalenko, 2004). Also the high temperature causes kernel pores to 

shrink and almost close, leading to crust formation or "case hardening", which is usually 

undesirable. In practice, several passes may be necessary to reduce the amount of heat damage. 

However, the more the drying passes needed, the larger the energy input is required (Hellevang, 

2011).  

 IR heating has recently received considerable attention for different applications in food 

processing (Pan and Atungulu, 2010). IR heating has been associated with advantages of high 

energy transfer rate, short drying duration, and less environmental footprints. In some cases, 

compared with convective heated air treatments, IR treatments have been touted to produce 

products with better or comparable quality (Ratti and Mujumdar, 1995; Afzal et al., 1999; Pan et 
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al., 2008). The IR electromagnetic spectrum can be classified into three regions, namely, near 

infrared (NIR), mid-infrared (MIR), and far-infrared (FIR), corresponding to spectral ranges of 

0.75 to 1.4, 1.4 to 3, and 3 to 1000 μm, respectively (Sakai and Hanzawa, 1994). Most food 

components, especially water, absorb radiative energy in the FIR region (Ginzburg, 1969; Sandu, 

1986; Pan et al., 2011). IR radiation is transmitted through water at short wavelengths, whereas 

at longer wavelengths it is absorbed at the surface (Sakai and Hanzawa, 1994). Hence, drying of 

thin layers seems to be more efficient at the FIR region, while drying of thicker bodies should 

give better results at the NIR region. (Hashimoto et al. 1990, 1994) studied the penetration of 

FIR energy into sweet potato and found that FIR radiation absorbed by a vegetable model was 

damped to 1% of the initial values at a depth of 0.26 to 0.36 mm below the surface, whereas NIR 

showed a similar reduction at a depth of 0.38 to 2.54 mm. 

The IR emitters used in this study to treat corn emitted FIR radiation of 3 to 7 μm 

wavelength corresponding to the peak wavelength for maximum absorption of IR energy by 

water. Studies have shown that FIR energy penetrates very little with almost all the energy being 

converted to heat at the surface of the food (Hashimoto et al., 1994; Sakai and Hanzawa, 1994). 

IR does not heat up dry air, but may heat the water molecules in the air slightly raising the 

temperature. Compared to convective heated air, IR heating may not be limited by wet bulb 

temperature of air. This means that for corn drying, kernel surface could be quickly heated to 

high temperatures thereby shortening drying duration.  

Combining the IR heating process with tempering stages may lead to removal of 

significant amounts of moisture from a product while maintaining quality (Nishiyama et al., 

2006). During tempering stage, IR energy is not transferred to the grain, but the grain is held at a 

certain temperature to rest. The tempering stage allows the transfer of moisture from the center to 
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the surface of the grain before another cycle of heating (Li et al., 1999); this eliminates the 

moisture gradient inside the grain imposed during the previous drying stage. Intermittent heating 

and tempering stages, as in the case of multiple drying passes have been reported to positively 

influence drying rates and the quality of final products (Franca et al., 1994; Kowalski and 

Pawlowski, 2010). Combining tempering stage with a drying process leads to reduction of 

energy consumption by reducing the duration required for drying. Continuous drying alone 

would increase the corn temperature while removing less moisture compared to sequential drying 

and tempering process (Thakur and Gupta, 2006). In addition, it is also possible to use sensible 

heat from the corn to remove more moisture in a natural cooling process after tempering. 

The energy flux associated with IR heating has been reported to result in microbial 

decontamination as well (Wang et al., 2014). The authors (Wang et al., 2014) reported the 

potential of inactivating Aspergillus flavus molds on rice by using IR heating. A. flavus is a 

common and opportunistic pathogen that may grow on corn and produce aflatoxins (Sandeep, 

2011). Compared to rice, corn is less susceptibility to stress-crack formation and may endure 

larger doses of IR energy before the quality is compromised. Therefore, it may be possible to 

achieve greater reductions of A. flavus mold in corn than rice by using greater IR treatment 

intensities, longer IR exposure durations, and incorporating tempering steps during the drying 

process. 

 Large amounts of aflatoxins produced by A. flavus have been reported to occur in 

cereals, peanuts, and oilseeds, especially with insufficient drying and inappropriate storage 

facilities (Arim, 1995; Lubulwa and Davis, 1994). Consumption of aflatoxin contaminated food 

cause several diseases in humans (Reddy and Raghavender, 2007). According to the U.S. Food 

and Drug Administration (FDA), grain with 20 parts per billion or more cannot be used for 
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human consumption (CAST, 2003).  Corn exceeding 20 ppb can be fed to animals of a specific 

weight, and production stage (CAST, 2003).  Both acute and chronic toxicity on human could 

occur as a result of aflatoxin accumulation in body causing acute liver damage, liver cirrhosis, 

induction of tumors and teratogenic effects (Stoloff, 1977).  

Poor drying practices may negatively affect U.S. grain export market (Dohlman, 2003). 

Corn above the FDA action level of 20 ppb cannot be exported (Dohlman, 2003). The current 

U.S. corn export markets are Japan, Mexico, and South Korea (Ye, 2015). According to Ye 

(2015), the revenue generated from corn export amount to approximately 50 billion dollars. Such 

revenue could be lost due to a negative image of U.S. corn quality. It is therefore vital that corn 

be managed appropriately to attract premium prices in a global market. In the past, it was 

possible to divert corn contaminated with aflatoxin to the ethanol production stream. However, 

the ethanol production industry now seeks to generate additional revenue from the by-products 

of the ethanol production processes and has therefore, placed a large demand on premium 

aflatoxin-free raw materials. 

Despite the advantages of IR heating technology, the applications of IR heating of food 

and agricultural products are still very limited due to lack of knowledge about the technology 

(Sundu, 1986; Paakkonen, 1998; Hebbar and Rastogi, 2001; Seyed-Yaoobi and Wirtz, 2001; 

Mongpraneet et al., 2002; Pan et al., 2005). No previous reports were found on the feasibility of 

IR heating to achieve simultaneous drying and decontamination of corn. However, literature 

suggest that IR heating could save energy up to 38% for drying apples, significantly shorten the 

processing duration, and improve product quality (Ginzburg, 1969; Pan and McHugh, 2004). 

Therefore, this study sought to extend the benefits associated with IR heating to realize scaled up 

drying operation for high MC corn. 
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Chapter 3 

Procedures 

I. Corn Sampling 

Freshly-harvested corn (Pioneer hybrid PI 1319 YHR/PI 2088) grown in a commercial 

producer’s field in Northeastern Arkansas were procured for use in batch IR drying experiments.  

The samples were cleaned by sorting and removing any material other grain and immediately 

stored in a laboratory cold room set at 4C. Before conducting any experiments, the samples 

were retrieved and allowed to equilibrate with ambient conditions. The initial moisture contents 

(IMCs) of the samples were determined by using an AM 5200 Grain Moisture Tester (PERTEN 

Instruments, Hägersten, Sweden). All reported IMCs are on wet basis. The IMCs of the samples 

used were 20.0 ± 0.1%, 24.0 ± 0.1%, and 28.0 ± 0.3%. Another set of corn samples were 

procured from Des Arc, Arkansas for continuous-flow non-batch IR drying experiments which 

used a pilot scale IR drying equipment. The non-batch, continuous-flow IR treatment used 

yellow dent corn with IMC of 24 ± 0.6%. 

II. Infrared Heating Devices 

Batch Infrared Drying 

A catalytic IR dryer (Catalytic Drying Technologies LLC, Independence, KS) was used to 

dry corn (Figure 1a-c). The lab-assembled IR dryer was equipped with catalytic infrared (CIR) 

emitters which generated IR radiant energy through a catalytic reaction. In principle, air across a 

platinum sheet embedded in the emitter assembly combined with propane gas and reacted by 

oxidation reduction to yield IR energy, as well as small amounts of carbon dioxide and water 

vapor (Khir et al., 2011; Khir et al., 2012 ; Pan et al., 2011; Pan et al., 2008). The equipment had 

an effective heating area of 0.32 m2 (two emitters enjoined with dimensions of 0.58 m length and 

0.28 m width).  
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Figure 1. (a) Construction of catalytic infrared emitter showing the heating element, 

catalyst, insulation; (b) a laboratory assembled infrared dryer equipped with catalytic 

infrared emitters with effective heating area of 0.32 m2; (c) schematic diagram of the 

infrared heating set-up for measurement of surface temperature profile of corn sample 

(loading rate of 3.77 kg m-2). 

 

Infrared Drying of Corn using a Continuous-flow Pilot Scale Equipment 

Tests were conducted using a pilot scale IR heating system (Catalytic Drying Technologies 

LLC, Independence, KS) (Figure 2). The recently designed and built system was used to 

simulate continuous-flow IR treatments to dry corn from harvest moisture content (MC) to safe 

storage MC. The single zone system utilizes CIR emitters powered by either natural or propane 

gas and has a modular design to allow adjustment of process parameters such as belt speed, IR 

intensity, belt vibration intensity, air circulation level within the drying zone, and product-to-

emitter-gap (PEG) size.  Similar to the emitter construction used in the batch experiments, air 

across a platinum sheet embedded in the emitter assembly combined with the propane gas and 
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reacted by oxidation reduction to yield IR energy, and small amounts of carbon dioxide and 

water vapor (Khir et al., 2011; Khir et al., 2012 ; Pan et al., 2011; Pan et al., 2008). In the 

continuous-flow process using a pilot scale IR equipment, corn samples were heated with IR 

then allowed to cool to reach room temperature (26oC) and then heated again. The process was 

repeated until the corn samples reached the safe storage MC of 13%. The intermittent IR 

treatment was used to avoid burning and discoloration of corn at elevated surface temperatures.  

Since IR heating is superficial, rapid cooling of corn to room temperature was achievable within 

5 minutes. The different levels of process parameters used to perform the experiments are shown 

in Table 1.  

 

 

 

 

 

 

 

 

 

Figure 2. Pilot scale equipment for continuous-flow IR drying of corn and mold 

inactivation.    
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Table 1. Experimental design for testing pilot-scale infrared (IR) heating equipment for 

drying and decontamination of corn at product-to-emitter gap size of 450 mm. 

 

Intermittent IR Drying Duration  

(s) 

Conveyor 

Belt Speed 

(m/s) 

IR Intensity 

 (setting) 

(kW/m2) 

30 0.115 2.39  (Low) 

50 0.069      3.78 (Medium) 

180 0.019 5.55 (High) 

 

III. Measurement of Radiant Energy Transfer 

A radiometer (Ophir-Spiricon, LLC, North Logan, UT) was used to determine energy 

transfer (IR intensity) from IR energy source to the product. The radiometer measured power 

emitted in kW; the IR intensity was then calculated by dividing the supplied power by area of 

heated black body (equation 1). 

Energy transfer (IR heating intensity) =
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑝𝑜𝑤𝑒𝑟 (𝑘𝑊)

𝐻𝑒𝑎𝑡𝑒𝑑 𝑏𝑙𝑎𝑐𝑘 𝑏𝑜𝑑𝑦 𝑎𝑟𝑒𝑎 (𝑚2)
       (1)                                             

IV. Determination of Corn Kernel Temperature Profile  

A single layer of corn kernels at a loading rate of 3.77 kg m-2 and IMCs of 20%, 24% or 

28% was placed on an aluminum tray and set at PEG sizes of 110, 240, or 430 mm.  The corn 

kernels were allowed to have contact with one another to simulate what would be realistic in a 

typical processing line. A type K, insulated beaded wire thermocouple (Omega, Engineering 

Inc., Stamford, CO) was inserted in individual corn kernels to allow surface temperature profile 

measurement during IR heat treatment. Data representing corn kernel temperature rise during IR 

heating was recorded on a data logger (HH147, Omega, Engineering Inc., Stamford, CO). The 

results were compared with the profiles of corn kernels during convective heating with hot air at 

temperature of 110C and relative humidity of 10%. The hot air temperature of 110C and 

relative humidity of 10% was chosen to simulate the current industrial drying conditions. 
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V. Infrared Drying and Tempering 

A single layer of corn samples at a loading rate of 3.77 kg m-2 was placed under the IR 

emitters with an effective heating area of 0.32 m2. The samples were heated using IR at three 

PEG sizes of 110, 240, and 430 mm until corn surface temperatures of 50C, 70C, and 90C 

were achieved. The weight loss during IR heating was determined; the corn MC after heating and 

percentage points of moisture removed were calculated. In order to determine the effect of 

combining IR heating with tempering, samples of corn at IMC of 20%, 24%, and 28% were 

heated by IR to surface temperatures of 50C, 70C, and 90C, tempered at 50C, 70C, and 

90C for 0, 2, 4 and 6 h, and then allowed to cool to room temperature. The percentage points of 

moisture removed after IR heating and tempering of the corn were determined.  

In case of tempering treatments, samples were transferred into glass jars immediately after 

IR heating, and the jars were sealed air-tight and incubated at the desired tempering temperature 

of 50C, 70C, or 90C. The jars were allowed to stay in the tempering environment for the 

entire tempering duration. After tempering, the samples were removed from the jars and spread 

on a flat wire mesh, and allowed to cool naturally until surface temperatures dropped to ambient 

condition (26C). The weight of the cooled sample was determined. The percentage points of 

moisture removed after IR heating, tempering and natural cooling was calculated as the 

difference between the original and final MCs after natural cooling. The effect of one-pass and 

two-pass IR heating and tempering on moisture removal were determined. One-pass treatment 

constituted IR heating followed by tempering and natural cooling, sequentially. Two-pass 

treatment constituted IR heating followed by tempering, natural cooling, another IR heating, 

tempering and then natural cooling. Test for one-pass and two-pass treatments were performed 
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using a select PEG size that gave the greatest moisture removal by comparing all the IR 

treatments.  

In the experiments, the total moisture removal was comprised of water removed during IR 

heating and tempering steps. Calculations were performed to evaluate energy supplied by the IR 

emitter versus the total water removal during combined IR heating and tempering process, in 

one- and two-pass processes. Total energy supplied by the emitter to remove moisture from corn 

at various IMCs, when heated with IR to surface temperatures of 50C, 70C, and 90C, 

followed by tempering at 2, 4 and 6 h, for one- and two-pass processes, was evaluated as 

indicated in the following example:   

 The loading rate of corn and supplied IR intensity are considered to be L kg m-2 and 

I kW m-2, respectively.   

 A unit mass of corn receives I/L = E                           (2) 

where  

I is the supplied IR intensity (kW m-2) 

L is the loading rate of corn (kg m-2) 

E is the energy per unit mass of corn (kW kg-1) 

 The supplied energy is considered to contribute to moisture removal for a one-pass 

process of IR heating and tempering that liberates R and T kg of moisture per kg of 

corn, respectively.  

 The effectiveness of the process to remove a unit mass of water was calculated as E/ 

(R+T) kW kg-1 water removed.  
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VI. Analysis of Mold Load Reduction  

Standard procedures for microbial isolation, plating and counting were used (AOAC 

method 997.02) to determine the corn total mold counts. Phosphate-buffered dilution water (0.5 

M, pH = 7.2) was used and sterilized by autoclaving at 121C (AOAC method 997.02).  

To determine total mold counts on corn, the samples were masticated using a lab masticator 

(Silver Panoramic, iUL, S.A., Barcelona, Spain) to dislodge the microorganisms. A 10 g sample 

of corn was mixed with 90 mL phosphate-buffered dilution water in a sterile stomacher bag and 

masticated. The masticator was set at 240 s and 0.7 stroke/s. This process resulted in corn 

samples that were pulverized into powder for total microbial load analysis. Preliminary tests 

indicated that the masticating method produced comparable results as blending method with the 

merit of keeping the sample temperature low so that the microbes are not affected, and also 

avoided potential cross contamination resulting from the typical grinding process. Serial ten-fold 

dilutions of the samples were prepared in phosphate-buffered. Preliminary tests were used to 

determine the total number of dilutions used. The 3M Petrifilm Mold Count Plates (3M 

Microbiology Product, Minneapolis, MN) were used to enumerate mold counts per manufacturer 

recommendations. The inoculated plates were stacked to a maximum of 20 units and incubated. 

Mold Count Plates were incubated at 25C for 120 h before counting. After incubation, the 

colony forming units (CFU) on each plate were counted. Mold colony colors were blue, black, 

yellow, or green. The appropriate dilution factor, volume, and sample weight were taken into 

account to obtain the total CFU/g of each sample:  

𝑇𝑐𝑓𝑢 =
𝑃𝑐𝑓𝑢

𝐷𝑟
                                                                                                         (3) 

where, Tcfu is total colony forming units per gram of corn (cfu/g), Pcfu is colony forming units 

counted on plate per gram of corn (cfu/g) and Dr is dilution rate (10-1 to 10-5 times). 
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VII. Determination of Corn Color  

The International Commission on Illumination (CIE) color parameters (L*/a*/b*) were 

measured using a colorimeter (Hunter Associates Laboratory, Reston, VA). The parameters L* 

measures the brightness from 100 (lightness) to 0 (darkness), a* describes red-green color with 

positive a* values indicating redness and negative a* values indicating greenness, and b* 

describes yellow-blue color with positive b* values indicating yellowness and negative b* values 

indicating blueness (Good 2002; Lamberts et al. 2007). Delta E (ΔE) indicates the overall change 

in color. The ΔE is a combination of all the CIE parameters and was calculated using equation 4. 

  

where the subscripts 1 and 2 on the variables L*, a*, and b* represents freshly harvested  corn 

(control) and infrared dried corn, respectively. 

 

VIII. Statistical Analyses 

A one-way fixed effects analysis of variance (ANOVA)  and Tukey’s honest significant 

difference (HSD) test were performed with statistical software (JMP version 11.0.0, SAS 

Institute) to determine significant differences within and among samples. All test were 

considered to be significant when p < 0.05.  
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Chapter 4 

Results and Discussion 

I. Batch Drying of Freshly-Harvested Corn using Infrared Heating 

Infrared Intensity and Surface Temperature Profile 

The measured intensity of IR energy reaching the corn surface at product-to-emitter-gap 

(PEG) sizes of 110, 240, and 430 mm was 10.84, 2.83 and 2.15 kWm-2, respectively. The 

temperature profiles of shelled corn kernels at initial moisture contents (IMCs) of 20%, 24%, and 

28% during heating with IR are shown in Figure 3a-c. The rate of surface temperature rise of the 

shelled corn kernels depended on the IMC and was greatest for kernels at the lowest IMC of 

20%. Generally, shelled corn with high moisture content (MC) are expected to have higher 

specific heat capacity than low MC corn. Hence, relatively longer duration was required for the 

surface temperature of corn kernels at IMC of 28% to reach 50C, 70C, and 90C compared to 

corn at IMC of 20%.  Durations of up to 110, 120, and 140 s were required to achieve kernel 

surface temperature of 90C at the largest PEG size of 430 mm and IMC of 20%, 24%, and 28%, 

respectively. Durations of up to 35, 44, and 45 s were required to achieve kernel surface 

temperature of 90C at the smallest PEG size of 110 mm and IMC of 20%, 24%, and 28%, 

respectively. 
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Figure 3. Surface temperature profiles of corn kernels during infrared heating to 

temperature of 90C and at product-to-emitter-gap sizes of (a) 110 mm, (b) 240 mm, and 

(c) 430 mm corresponding to infrared intensities of 10.84, 2.83, and 2.15 kW m-2, 

respectively. 



 

17 

 

The temperature profiles resulting from IR heating were compared with those of 

convective heated air. For corn drying, the typically recommended air temperatures range from 

98C to 110C.  Compared to IR heating, the convective heated air requires longer durations to 

raise the corn kernel surface temperature to 90C (Figure 4). The rate of surface temperature rise 

of the shelled corn kernels depended on the IMC and was greatest for kernels at the lowest IMC 

of 20%. By convective heated air at 110C and relative humidity of 10%, heating durations of 

420, 480, and 550 s were required to raise the surface temperature of corn kernels at IMC of 

20%, 24% and 28%, respectively, to 90C.  The corresponding durations with IR heating at PEG 

size of 430 mm were 110, 120, and 140 s, respectively.    

  

Figure 4. Surface temperature profiles of corn kernels during convective heating with an 

air temperature of 110C.  

 

 The temperature profiles indicated (Figures 3 & 4) do not take into account the typical 

airflow rates encountered in industrial corn drying scenarios.  In practice, increasing airflow rate 

would result in increased mass transfer at the surface of the corn kernel. The evaporative cooling 
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that occurs at the kernel surface may affect the rate of change in the temperature profiles. The 

reported surface temperatures of corn kernels may be higher than what might be observed in 

practice since this study only accounted for natural convection and not forced-air convection. 

Comparing results of the Figures 3 and 4 revealed that IR heating accorded more rapid heating of 

the corn kernel surface compared to convective heating. Afzal and Abe (1997) reported that 

when drying rice using IR heating there was higher moisture reduction and shorter drying 

duration than when using convective heating. My results for the application of IR for drying corn 

are in agreement with the results of Afzal and Abe (1997). 

Effect of Product-To -Emitter Gap Size on Moisture Removal 

From IR drying stand-point, it is important to select the PEG size such that a significant 

amount of moisture is removed within a short duration while not burning the corn. From 

preliminary experiments the surface color characteristics of the kernels were not compromised 

when the surface temperatures reached 90C. However, kernel surface burning was observed 

when surface temperature of 110C was attained. Therefore, to ensure good quality of processed 

corn, the study limited corn surface temperature to 90C.  The percentage point of moisture 

removed from IR dried corn depended on the PEG size, IMC of the corn, and the final surface 

temperature of the kernels after IR heating (Figure 5). The product heated with IR while at the 

larger PEG size of 430 mm resulted in the greatest moisture removal. In general, at a PEG size of 

430 mm, durations required for the corn surface temperatures to reach 50C, 70C, and 90C 

were longer than at 110 mm. Longer IR heating durations resulted in larger amounts of moisture 

evaporated from the corn.   

 When shelled corn kernels at IMC of 20%, 24% and 28% were heated by IR to the 

greatest surface temperature of 90C, the disparity of percentage points of moisture removed for 
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the lowest PEG size of 110 mm and largest PEG size of 430 mm were 0.9, 1.2, and 1.4 

percentage points, respectively (Figure 5). When corn kernels at IMC of 20%, 24% and 28% 

were heated by IR to surface temperature of 70C, the disparity of percentage points of moisture 

removed for the lowest PEG size of 110 mm and largest PEG size of 430 mm were 0.3, 0.6, and 

0.8 percentage points, respectively.  When corn at IMC of 20%, 24% and 28% were heated by IR 

to corn surface temperature of 50C, the disparity of percentage points of moisture removed for 

the lowest PEG size of 110 mm and largest PEG size of 430 mm were 0.1, 0.3, and 0.3 

percentage points, respectively.    

A one-way fixed effects ANOVA was conducted to determine if there was any difference 

in percentage point moisture removed based on the PEG, corn surface temperatures, and IMCs. 

There was a statistically significant interaction between the IMCs and surface temperatures (p < 

.0001). Tukey’s HSD analysis was then conducted to determine where the differences occurred 

and the results are presented in Table 2. There was a significant difference between the PEG and 

corn surface temperatures (p = 0.0013). It was apparent that the corn moisture removal increased 

with the increased corn surface temperature under specific IR intensity levels and IMCs. The 

forgoing phenomenon was expected due to additional energy absorption leading to increased 

evaporation. The results also clearly showed that more moisture was removed from corn with 

high IMCs. From a practical standpoint, it might be justifiable to use the largest PEG of 430 mm 

instead of 110 mm to achieve large moisture removal without impacting the product quality. At 

the lowest PEG size of 110 mm, corn kernels surface discolored within a shorter heating duration 

than at 430 mm, which also restricted how much moisture could be removed before the surface 

quality of corn deteriorated. Similar results were reported for rice (Khir et. al. 2012). The rice 
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moisture removal increased with increased IMC and was attributed to energy absorption and 

therefore greater evaporation (Khir et. al. 2012). 

 
Figure 5. The effect of initial moisture content and product-to-emitter-gap size on 

percentage points of moisture removal when corn kernels were heated to surface 

temperatures of 50C, 70C and 90C. 
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Table 2. Tukey’s HSD test for interaction between corn initial moisture content and final 

surface temperatures after infrared (IR) heating, and product-to-emitter-gap size and corn 

final surface temperatures after IR heating on the least square means of percentage point 

moisture removed. 

 

Initial 

moisture 

content 

 (% w.b.) 

Corn surface 

temperatures 
 (C) 

LS 

Mean 
SD 

Product-to-

emitter-gap 

size  

(mm) 

Corn 

surface 

temperature

s (C) 

LS 

Mean 
SD 

20 

50 0.95F 0.15 

110 

50 1.07F 0.23 

70 1.84D 0.41 70 1.99E 0.50 

90 2.37C 0.46 90 2.76C 0.79 

24 

50 1.19EF 0.19 

240 

50 1.18F 0.22 

70 2.42C 0.53 70 2.35D 0.62 

90 3.30B 0.58 90 3.19B 0.74 

28 

50 1.42E 0.24 

430 

50 1.33F 0.31 

70 2.62C 0.55 70 2.55CD 0.53 

90 3.84A 0.70 90 3.57A 0.82 

A - F data set lacking a common letter differs (p < 0.05); LS and SD symbolize least square and 

standard deviation respectively. 

  

Effect of Infrared Heating and Tempering on Moisture Removal 

The PEG size of 430 mm was used in the treatments to study the effect of IR heating 

followed by tempering.  Tempering resulted in further moisture removal from IR heated corn 

kernels.  Figure 6 shows the effect of one-pass IR heating to kernel surface temperature of 90C, 

followed by tempering treatments at 50C, 70C, and 90C for 0, 2, 4 and 6 h on moisture 

removal. The longer the tempering duration, the more the moisture was removed for all the 

treatments. When corn at IMC of 28% was heated by IR to surface temperature of 90C and 

tempered at 50C, 70C, and 90C for 6 h, a total of 4.0, 4.5, and 5 percentage point of moisture 

removal were achieved, respectively. Statistical analyses were performed to determine if there 

were significant differences in percent point moisture removed based on the tempering 
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temperature, tempering duration, and IMCs. In general, the tempering duration at various 

tempering temperature had a significant impact percentage point moisture removal for one-pass 

IR treatment (p< 0.05) as shown in table 3. 

 
Figure 6. The effect of one-pass infrared heating of corn kernels  to surface temperatures of 

90C followed by tempering treatments at 50C, 70C, and 90C, for 0 to 6 h on moisture 

removal. 
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Table 3.  Statistical analysis showing the effect of parameters on percentage point moisture 

removed of corn dried using IR heating at different tempering temperature and tempering 

duration for one-pass. 

 

  

Moisture Removal  

(% point) 

Parameters DF Pr. > F 

Tempering Temperature (C) 2 <.0001 

Tempering Duration 3 <.0001 

Initial Moisture Content (% wet basis) 2 0.0002 

Tempering temperature (C)*Tempering 

Duration 6 0.0011 

Tempering temperature (C)*Initial 

Moisture content (% wet basis) 4 0.6616 

Tempering Duration*Initial Moisture 

content (% wet basis) 6 0.5189 

Tempering temperature (C)*Tempering 

Duration*Initial Moisture content (% wet 

basis) 12 0.9981 

  

Figure 7 shows the effect of two-pass IR heating of corn kernels to surface temperatures of 

50C, 70C, and 90C, followed by tempering treatments at 50C, 70C, and 90C for 0, 2, 4 and 

6 h. Compared to one-pass treatment (Figure 6), more moisture was removed for two-pass 

(Figure 7) IR heating and tempering treatments.  Two-pass IR heating and tempering treatments 

nearly doubled the percentage point of moisture removed compared to one-pass.  Two-pass IR 

heating and tempering was most effective for drying corn kernels at the greatest IMC of 28% 

than at 20%. Although it may be more effective to reduce the tempering temperature to avoid 

cake formation. 
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Statistical analyses were performed to determine if there were significant differences for a 

two-pass treatment on percent point moisture removed due to the tempering temperature, 

tempering duration and IMCs. The effects of IMC (p <0.0001), tempering temperature (p = 

0.005) and tempering duration (p <0.0001) were significant (Table 4).  

 
Figure 7. The effect of two-pass IR heating of corn kernels to surface temperatures of 90C  

followed by tempering treatments at 50C , 70C , and 90C , for 0 to 6 h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

25 

 

Table 4.  Statistical analysis showing the effect of parameters on percentage point moisture 

removed of corn dried using IR heating at different tempering temperature and tempering 

duration for two-pass. 

  

  

Moisture Removal  

(% point) 

Parameters DF Pr. > F 

Tempering Temperature (C) 2 0.005 

Tempering Duration 3 <.0001 

Initial Moisture Content (% wet basis) 2 <.0001 

Tempering temperature (C)*Tempering 

Duration 6 0.469 

Tempering temperature (C)*Initial 

Moisture content (% wet basis) 4 0.947 

Tempering Duration*Initial Moisture 

content (% wet basis) 6 0.264 

Tempering temperature (C)*Tempering 

Duration*Initial Moisture content (% wet 

basis) 12 1.000 

 

 The IR energy supplied to facilitate removal of a unit mass of water from corn in a 

combined IR heating and tempering process, for one-pass and two-pass treatments is shown in 

Figures 8 and 9. Statistical analyses were performed to determine if there were significant 

differences in IR energy supplied to facilitate removal of a unit mass of water from corn in a 

combined IR heating and tempering process, for one-pass and two-pass treatments based on the 

tempering temperature and tempering duration. There was a statistically significant interaction 

between IMC and tempering duration (p = 0.0057) for one-pass treatment (Figure 8). Tukey’s 

HSD test was done to explain the differences in more details (Figure 8). There was also a 
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significant interaction between IMC and tempering duration (p < 0.0001) for two-pass treatments 

(Figures 9). Tukey’s HSD test was done to explain the differences in more details (Figures 9).  

The IMC, tempering duration, tempering temperature, and number of passes dictated the 

overall energy utilized. Better energy utilization was noted when corn was treated with two-

passes compared to one-pass. It should be noted that the energy values in Figures 8 and 9 are 

lower than those reported for convective heated air drying (Strumillo and Lopez-Cacicedo, 

1987). The reason for the difference is because the values reported for this research include 

moisture liberated during tempering stage as well. Therefore, the energy values are expected to 

reduce as tempering duration increased because moisture continued to be liberated in the 

tempering stages without energy addition from IR heating.  The processing conditions that 

corresponded to the lowest amount of energy to remove a unit mass of moisture in corn at IMC 

range of 20% to 28% MC is heating the corn kernels to surface temperature of 90C  followed by 

tempering in a one-pass IR and tempering treatment.  

Overall, effective moisture removal was noted when corn was at high IMC. Therefore, IR 

heating could be appropriate for initial drying of high MC corn. In case of corn destined for high 

value products such as the protein zein (Shukla and Cheryan, 2001), IR pre-drying combined 

with convective heated air drying could be ideal to avoid product shrinkage due to steep moisture 

content gradients as well as other physicochemical changes in quality. Convective heated air 

drying in the falling-rate drying period, when the rate of removal of moisture from the interior of 

the product is a mass-transfer limiting process, could be used to improve dried product quality 

rather using IR drying throughout.  

Industrial implementation of IR heating for drying shelled corn could be used to divert 

the wetter, high MC lot of corn at harvest to a high temperature continuous-flow IR dryer to be 



 

27 

 

used for initial drying. Under these conditions, the corn would finish drying in an existing bin 

dryer at conventional drying air temperature. Another option would be to direct the wetter corn 

to separate bins in the dryer. The bins with the high MC corn kernels would be fitted with 

auxiliary IR emitters to heat the corn prior to entry into the bins. The IR emitter intensities could 

be ramped down based on the average corn MC determined by the rate of moisture removal 

versus residence duration under a given IR heating intensity.  A third implementation would be 

to dry the high MC corn to safe storage MC by exclusively using optimized IR heating, 

tempering and natural cooling protocols.   

 

Figure 8.   Infrared energy supplied to facilitate a unit mass of water removal from a 

combined infrared heating and tempering process, in a one-pass treatment. Means with the 

same type of letters are not significantly different at α = 0.05. 
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Figure 9.   Infrared energy supplied to facilitate a unit mass of water removal from a 

combined infrared heating and tempering (effect of tempering duration) in a two-pass 

treatment. Means with the same type of letters are not significantly different at α = 0.05.  

 

 

II. Effectiveness of Combining IR Heating and Tempering to Achieve Microbial 

Decontamination for Corn 

Effectiveness of Combining IR Heating and tempering on Mold Load Reduction 

Figure 10 shows that the mold count decreased significantly with tempering for one-pass 

treatments. The maximum mold load reduction was observed after IR heating corn of IMC 20%, 

24% and 28% followed by tempering at 50C for 4 h. The corresponding mold load reductions 

were 3.8, 3.8 and 4.5 log CFU/g for one-pass, respectively. A one-way fixed effects analysis of 

variance was conducted to determine if there were statistically significant differences in mold 

counts based on the effects of tempering temperature, tempering duration, and IMCs for one-

pass. The effect of tempering duration was statistically significant (p <0.0001). Tukey’s HSD test 

was then conducted to determine where the differences occurred and the results are presented in 

Table 5.  



 

29 

 

Figure 11 shows that the mold count decreased significantly with tempering for two-pass 

treatments. The maximum mold load reduction was observed after IR heating corn of IMC 20%, 

24% and 28% followed by tempering at 70C for 2 h. The corresponding mold load reductions 

were 3.9, 4.2 and 4.7 log CFU/g, respectively for two-pass. The tempering duration (p <0.0001) 

and tempering temperature (p = 0.0016) were statistically significant. Tukey’s HSD test was 

conducted to determine where the differences occurred and the results are presented in table 6. 

Based on the results, a 2 h tempering duration might be recommended when two-pass treatments 

are used.  The 2 h tempering duration came close to achieving approximately 5 log reductions 

which is recommended by the National Advisory Committee on Microbiological Criteria for 

Foods (NACMCF, 1999) and for food in general. 

 
Figure 10. The effect of one-pass infrared heating of corn kernels to surface temperatures 

of 90C  followed by tempering treatments at 50C, 70C, and 90C, for 0 to 6 h on the 

mold count (in terms of log colony forming units (CFU) per gram of corn sample). 
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Table 5. Tukey’s HSD test for the effect of tempering duration after one-pass infrared (IR) 

heating on the least square means of mold count expressed in log colony forming (CFU) per 

gram of corn sample. 

 

Tempering 

Duration 

LS Mean Mold 

Count 

(log(CFU/g)) 

SD 

Control 5.76A 0.73 

IR Heating 5.51A 0.76 

2 h 2.72B 0.79 

4 h 2.33BC 0.84 

6 h 2.17C 0.88 

A - C data set lacking a common letter differs (p < 0.05); LS and SD symbolize least square and 

standard deviation respectively. 

 

 
Figure 11. The effect of two-pass infrared heating of corn kernels to surface temperatures 

of 90C followed by tempering treatments at 50C, 70C, and 90C, for 0 to 6 h on the mold 

count (in terms of log colony forming units (CFU) per gram of corn sample. 
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Table 6. Tukey’s HSD test for the effect of tempering temperature and tempering duration 

after two-pass infrared (IR) heating on the least square means of mold count expressed in 

log colony forming (CFU) per gram of corn sample). 

 

Tempering 

Duration 

LS Mean 

Mold Count 

(log(CFU/g)) 

SD 

Tempering 

Temperature 

(C) 

LS Mean 

Mold Count 

(log(CFU/g)) 

SD 

Control 5.76A 0.73 90 3.63A 1.80 

IR Heating 5.40A 0.76 50 3.32B 1.90 

2 2.00B 0.79 70 3.18B 1.70 

4 1.90B 0.84    

6 1.90B 0.88    

A - B data set lacking a common letter differs (p < 0.05); LS and SD symbolize least square and 

standard deviation respectively. 

 

Effect of Infrared Heating and Tempering on Color 

 The deviation of color (ΔE) of the IR dried corn samples from the color of non-treated 

freshly-harvested corn, control sample was determined. There were statistically significant 

interactions between IMC and tempering duration (p= 0.0058) and tempering duration and 

tempering temperature (p = 0.0007) for one-pass treatments. Tukey’s HSD analyses were 

conducted to determine where the differences occurred and the results are presented in Figures 

12 and 13, respectively. There were statistically significant interactions between IMC and 

tempering duration (p = 0.004) and tempering duration and tempering temperature (p = 0.0007), 

for two-pass treatments. Tukey’s HSD analyses were then conducted to determine where the 

differences occurred and the results are presented in Figures 14 and 15. Although color change 

was seen in comparison to the control samples, for ΔE below 13 the visual response with 

reference to color change is expected to be negligible (Lite et al. 2001; Atungulu et al. 2004). 
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Figure 12. Tukey’s HSD test for interaction between corn initial moisture content and 

tempering duration after one-pass infrared heating on corn color. Means with the same 

type of letters are not significantly different at α = 0.05. 

 

 
Figure 13. Tukey’s HSD test for interaction between tempering temperature and tempering 

duration after one-pass infrared heating on corn color. Means with the same type of letters 

are not significantly different at α = 0.05. 
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Figure 14. Tukey’s HSD test for interaction between corn initial moisture content and 

tempering duration after two-pass infrared heating on corn color. Means with the same 

type of letters are not significantly different at α = 0.05. 

 

 

Figure 15. Tukey’s HSD test for interaction between tempering temperature and tempering 

duration after two-pass infrared heating on corn color. Means with the same type of letters 

are not significantly different at α = 0.05. 
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III. Continuous-flow infrared drying of corn using a pilot scale equipment 

Effect of Infrared Heating on Drying Duration 

Multiple passes of IR heating of corn were done to dry corn with IMCs of 24 % to a final 

MC of 13%.  The total duration required to dry the corn at different levels of IR intensities and 

intermittent IR heating durations is shown in Figure 16.  A completely randomized full factorial 

analysis was done to determine if there were any significant interactions among the process 

variables. In cases where there were interactions, analyses were done to understand which effect 

significantly contributed to variations in the drying duration.  

There was an interaction between IR intensity and the intermittent IR heating duration (p 

<0.0001). Tukey’s HSD test was done to identify where the differences were. Treatments with 

high IR intensity took the shortest total drying duration to dry corn (Figure 16). All treatments 

carried out with an intermittent IR heating duration of 30 s took a shorter total drying duration 

while intermittent IR heating duration of 180 s resulted in the longest total drying duration 

(Figure 16). The highest IR heating intensity and the shortest intermittent IR heating duration 

gave the lowest total drying duration.  
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Figure 16. The effect of intermittent infrared heating of corn kernels (30, 50, and 180 s) and 

infrared intensity (low, medium and high intensities which correspond to 2.9, 3. and 5.55 

kW/m2) on total drying durations of corn from initial moisture content of 24% to final 

storage moisture of 13% (wet basis).  Means with the same type of letters are not 

significantly different at α = 0.05. 

 

Effect of Infrared Heating on Energy 

The IR energy supplied to facilitate removal of a unit mass of water from corn dried 

using continuous-flow, intermittent IR heating process is shown in Figure 17. A completely 

randomized full factorial analysis was done to determine if there were any significant 

interactions. There was a significant interaction between IR heating intensity and the intermittent 

IR heating duration (p <0.0001). Tukey’s HSD test was done to identify where the differences 

were. The intermittent IR heating duration of 30 s at low intensity required the lowest energy to 

remove a unit mass of water from the corn kernel (Figure17). The energy utilized at the high IR 

intensity for intermittent IR heating durations of 30, 50 and 180 s was significantly higher than at 

low and medium intensities (Figure 17).  



 

36 

 

 
Figure 17. Effect of initial moisture content and infrared heating intensity (Low, Medium 

and High corresponding to 2.9, 3.78 and 5.55 kW/m2, respectively) on energy required to 

remove a unit mass of water from the corn kernel. Means with the same type of letters are 

not significantly different at α = 0.05. 

 

Effect of Infrared Heating on Mold Load Reduction 

A completely randomized factorial design with fixed effects was conducted to determine 

if there were significant interactions between the IR heating intensity and intermittent IR heating 

duration. The effect of intermittent IR heating duration was statistically significant (p <0.0001). 

Figure 18 indicated that the mean (M) mold counts on the control samples in terms of log CFU/g 

(M = 4.79, SD = 0.15) were significantly higher than those on samples treated at intermittent IR 

heating durations of 30 s (M = 1.95, SD = 0.9), 50 s (M = 1.98, SD = 0.7) and 180 s (M = 2.03, 

SD = 1.2).The results indicates that IR heating may be used effectively for mold inactivation. 
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Figure 18. Effect of initial moisture content and infrared heating intensity (Low, Medium 

and High corresponding to 2.9, 3.78 and 5.55 kW/m2, respectively) on mold counts (log 

colony forming units (CFU) per gram of corn sample). 

  

Effect of Infrared Heating on Color 

The results show that corn could be dried at the high IR intensity (5.55 kW/m2) for long 

durations (720 s) without significant impact on color characteristics (Figure 19). A completely 

randomized factorial design with fixed effects was conducted to determine if there was 

significant difference in the values of L*, a* and b*, among treatments with different IR heating 

intensities and intermittent IR heating durations. There was no significant difference in L*(p = 

0.14), a* (p = 0.07), and b* (p = 0.65).   
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Figure 19. Effect of infrared heating intensity (Low, Medium and High corresponding to 

2.9, 3.78 and 5.55 kW/m2, respectively) and intermittent infrared heating duration on 

treated corn color characteristics. 
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Chapter 5 

Conclusions 

 

Batch Infrared Drying of Corn using Infrared heating 

The percentage points reduction of moisture content achieved by combined infrared (IR) 

heating of corn kernels to surface temperature of 90C, and tempering for 2, 4, and 6 h at 50C, 

70C, and 90C were determined. The following observations were made:  

 The processing conditions that corresponded to the lowest amount of energy utilized to 

remove a unit mass of moisture from corn of initial moisture content (IMC) range 20% to 

28% wet basis (w.b.) was heating the corn kernels to surface temperature of 90C at a 

product-to-emitter gap size of 430 mm followed by tempering for 2, 4 and 6 h in a one-

pass IR heating and tempering treatment. 

 For corn at IMC of 20%, the energy required to remove a unit mass of moisture was 

statistically different and greater than that for corn at IMCs of 24% and 28%. 

 Tempering was found to be very crucial for corn at IMCs of 20% and 24% compared to 

28%. Overall, effective moisture removal was noted when corn was at 28%bIMC.  

 There was a significant mold reduction on treated corn after IR and tempering treatments; 

with reference to the freshly-harvested sample the treatments resulted in a significant 

change in dried corn color, but may not be detected visually. 

In summary, at high IMCs, longer IR exposure duration may be necessary to achieve high 

corn surface temperatures compared to low IMCs. For such cases, it may be more effective to 

reduce the tempering temperature to avoid cake formation. 
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Infrared Drying of Corn using a Continuous-flow Pilot Scale Equipment 

Infrared (IR) treatments for corn drying and microbial decontamination were scaled up using 

a recently built pilot scale IR drying equipment. Freshly harvested corn were intermittently 

heated for 30, 50, and 180 s using IR energy at low, medium and high IR intensities 

(corresponding to 2.9, 3.78 and 5.55 kW/m2, respectively) to accomplish drying  of corn from 

initial moisture content (IMC) of 24% to final safe storage moisture content (MC) of 13% (w.b.). 

The following conclusions were drawn: 

 IR heating could be scaled up and holds potential to simultaneously dry and 

decontaminate corn.  

 The total drying durations were significantly dependent on the IR intensity and 

intermittent IR heating duration.  

 The total drying duration decreased with an increase in IR intensity and a decrease in 

intermittent IR heating duration.  

 Drying energy requirement increased as the IR intensity and intermittent IR heating 

duration increased.  

 There was a significant mold load reduction on the treated corn after the IR treatments at 

the lowest intensity of 2.9 kW/m2, however the mold load reduction was not significantly 

different compared to that with treatments done at the medium and high intensities. 

 For the studied range of process parameters and product characteristics, treating the corn 

with IR only to dry the kernels to a final safe storage MC of 13% (w.b.) did not have a 

significant impact on the corn kernel color characteristics.  

In summary, IR heating technology for corn drying may hold promise not only to achieve 

rapid removal of moisture from freshly harvested, high MC corn, but also to simultaneously 
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inactivate microbes on the corn kernels, thereby reducing the risk of mycotoxin development. 

When fully optimized, intermittent IR heating of corn without additional convective heated air, 

or long tempering durations may hold potential to dry, freshly harvested high MC corn kernels to 

final safe storage MC. The new IR drying technology could be implemented at the front end of 

the current corn drying systems without complex retrofitting requirements. 
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